libata-pmp: update ata_eh_reset() for PMP
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable);
72 static void ata_dev_xfermask(struct ata_device *dev);
73 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int atapi_passthru16 = 1;
89 module_param(atapi_passthru16, int, 0444);
90 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
91
92 int libata_fua = 0;
93 module_param_named(fua, libata_fua, int, 0444);
94 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
95
96 static int ata_ignore_hpa = 0;
97 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
98 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
99
100 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
101 module_param(ata_probe_timeout, int, 0444);
102 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
103
104 int libata_noacpi = 1;
105 module_param_named(noacpi, libata_noacpi, int, 0444);
106 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
107
108 MODULE_AUTHOR("Jeff Garzik");
109 MODULE_DESCRIPTION("Library module for ATA devices");
110 MODULE_LICENSE("GPL");
111 MODULE_VERSION(DRV_VERSION);
112
113
114 /**
115 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
116 * @tf: Taskfile to convert
117 * @pmp: Port multiplier port
118 * @is_cmd: This FIS is for command
119 * @fis: Buffer into which data will output
120 *
121 * Converts a standard ATA taskfile to a Serial ATA
122 * FIS structure (Register - Host to Device).
123 *
124 * LOCKING:
125 * Inherited from caller.
126 */
127 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
128 {
129 fis[0] = 0x27; /* Register - Host to Device FIS */
130 fis[1] = pmp & 0xf; /* Port multiplier number*/
131 if (is_cmd)
132 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
133
134 fis[2] = tf->command;
135 fis[3] = tf->feature;
136
137 fis[4] = tf->lbal;
138 fis[5] = tf->lbam;
139 fis[6] = tf->lbah;
140 fis[7] = tf->device;
141
142 fis[8] = tf->hob_lbal;
143 fis[9] = tf->hob_lbam;
144 fis[10] = tf->hob_lbah;
145 fis[11] = tf->hob_feature;
146
147 fis[12] = tf->nsect;
148 fis[13] = tf->hob_nsect;
149 fis[14] = 0;
150 fis[15] = tf->ctl;
151
152 fis[16] = 0;
153 fis[17] = 0;
154 fis[18] = 0;
155 fis[19] = 0;
156 }
157
158 /**
159 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
160 * @fis: Buffer from which data will be input
161 * @tf: Taskfile to output
162 *
163 * Converts a serial ATA FIS structure to a standard ATA taskfile.
164 *
165 * LOCKING:
166 * Inherited from caller.
167 */
168
169 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
170 {
171 tf->command = fis[2]; /* status */
172 tf->feature = fis[3]; /* error */
173
174 tf->lbal = fis[4];
175 tf->lbam = fis[5];
176 tf->lbah = fis[6];
177 tf->device = fis[7];
178
179 tf->hob_lbal = fis[8];
180 tf->hob_lbam = fis[9];
181 tf->hob_lbah = fis[10];
182
183 tf->nsect = fis[12];
184 tf->hob_nsect = fis[13];
185 }
186
187 static const u8 ata_rw_cmds[] = {
188 /* pio multi */
189 ATA_CMD_READ_MULTI,
190 ATA_CMD_WRITE_MULTI,
191 ATA_CMD_READ_MULTI_EXT,
192 ATA_CMD_WRITE_MULTI_EXT,
193 0,
194 0,
195 0,
196 ATA_CMD_WRITE_MULTI_FUA_EXT,
197 /* pio */
198 ATA_CMD_PIO_READ,
199 ATA_CMD_PIO_WRITE,
200 ATA_CMD_PIO_READ_EXT,
201 ATA_CMD_PIO_WRITE_EXT,
202 0,
203 0,
204 0,
205 0,
206 /* dma */
207 ATA_CMD_READ,
208 ATA_CMD_WRITE,
209 ATA_CMD_READ_EXT,
210 ATA_CMD_WRITE_EXT,
211 0,
212 0,
213 0,
214 ATA_CMD_WRITE_FUA_EXT
215 };
216
217 /**
218 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
219 * @tf: command to examine and configure
220 * @dev: device tf belongs to
221 *
222 * Examine the device configuration and tf->flags to calculate
223 * the proper read/write commands and protocol to use.
224 *
225 * LOCKING:
226 * caller.
227 */
228 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
229 {
230 u8 cmd;
231
232 int index, fua, lba48, write;
233
234 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
235 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
236 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
237
238 if (dev->flags & ATA_DFLAG_PIO) {
239 tf->protocol = ATA_PROT_PIO;
240 index = dev->multi_count ? 0 : 8;
241 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
242 /* Unable to use DMA due to host limitation */
243 tf->protocol = ATA_PROT_PIO;
244 index = dev->multi_count ? 0 : 8;
245 } else {
246 tf->protocol = ATA_PROT_DMA;
247 index = 16;
248 }
249
250 cmd = ata_rw_cmds[index + fua + lba48 + write];
251 if (cmd) {
252 tf->command = cmd;
253 return 0;
254 }
255 return -1;
256 }
257
258 /**
259 * ata_tf_read_block - Read block address from ATA taskfile
260 * @tf: ATA taskfile of interest
261 * @dev: ATA device @tf belongs to
262 *
263 * LOCKING:
264 * None.
265 *
266 * Read block address from @tf. This function can handle all
267 * three address formats - LBA, LBA48 and CHS. tf->protocol and
268 * flags select the address format to use.
269 *
270 * RETURNS:
271 * Block address read from @tf.
272 */
273 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
274 {
275 u64 block = 0;
276
277 if (tf->flags & ATA_TFLAG_LBA) {
278 if (tf->flags & ATA_TFLAG_LBA48) {
279 block |= (u64)tf->hob_lbah << 40;
280 block |= (u64)tf->hob_lbam << 32;
281 block |= tf->hob_lbal << 24;
282 } else
283 block |= (tf->device & 0xf) << 24;
284
285 block |= tf->lbah << 16;
286 block |= tf->lbam << 8;
287 block |= tf->lbal;
288 } else {
289 u32 cyl, head, sect;
290
291 cyl = tf->lbam | (tf->lbah << 8);
292 head = tf->device & 0xf;
293 sect = tf->lbal;
294
295 block = (cyl * dev->heads + head) * dev->sectors + sect;
296 }
297
298 return block;
299 }
300
301 /**
302 * ata_build_rw_tf - Build ATA taskfile for given read/write request
303 * @tf: Target ATA taskfile
304 * @dev: ATA device @tf belongs to
305 * @block: Block address
306 * @n_block: Number of blocks
307 * @tf_flags: RW/FUA etc...
308 * @tag: tag
309 *
310 * LOCKING:
311 * None.
312 *
313 * Build ATA taskfile @tf for read/write request described by
314 * @block, @n_block, @tf_flags and @tag on @dev.
315 *
316 * RETURNS:
317 *
318 * 0 on success, -ERANGE if the request is too large for @dev,
319 * -EINVAL if the request is invalid.
320 */
321 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
322 u64 block, u32 n_block, unsigned int tf_flags,
323 unsigned int tag)
324 {
325 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
326 tf->flags |= tf_flags;
327
328 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
329 /* yay, NCQ */
330 if (!lba_48_ok(block, n_block))
331 return -ERANGE;
332
333 tf->protocol = ATA_PROT_NCQ;
334 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
335
336 if (tf->flags & ATA_TFLAG_WRITE)
337 tf->command = ATA_CMD_FPDMA_WRITE;
338 else
339 tf->command = ATA_CMD_FPDMA_READ;
340
341 tf->nsect = tag << 3;
342 tf->hob_feature = (n_block >> 8) & 0xff;
343 tf->feature = n_block & 0xff;
344
345 tf->hob_lbah = (block >> 40) & 0xff;
346 tf->hob_lbam = (block >> 32) & 0xff;
347 tf->hob_lbal = (block >> 24) & 0xff;
348 tf->lbah = (block >> 16) & 0xff;
349 tf->lbam = (block >> 8) & 0xff;
350 tf->lbal = block & 0xff;
351
352 tf->device = 1 << 6;
353 if (tf->flags & ATA_TFLAG_FUA)
354 tf->device |= 1 << 7;
355 } else if (dev->flags & ATA_DFLAG_LBA) {
356 tf->flags |= ATA_TFLAG_LBA;
357
358 if (lba_28_ok(block, n_block)) {
359 /* use LBA28 */
360 tf->device |= (block >> 24) & 0xf;
361 } else if (lba_48_ok(block, n_block)) {
362 if (!(dev->flags & ATA_DFLAG_LBA48))
363 return -ERANGE;
364
365 /* use LBA48 */
366 tf->flags |= ATA_TFLAG_LBA48;
367
368 tf->hob_nsect = (n_block >> 8) & 0xff;
369
370 tf->hob_lbah = (block >> 40) & 0xff;
371 tf->hob_lbam = (block >> 32) & 0xff;
372 tf->hob_lbal = (block >> 24) & 0xff;
373 } else
374 /* request too large even for LBA48 */
375 return -ERANGE;
376
377 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
378 return -EINVAL;
379
380 tf->nsect = n_block & 0xff;
381
382 tf->lbah = (block >> 16) & 0xff;
383 tf->lbam = (block >> 8) & 0xff;
384 tf->lbal = block & 0xff;
385
386 tf->device |= ATA_LBA;
387 } else {
388 /* CHS */
389 u32 sect, head, cyl, track;
390
391 /* The request -may- be too large for CHS addressing. */
392 if (!lba_28_ok(block, n_block))
393 return -ERANGE;
394
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
397
398 /* Convert LBA to CHS */
399 track = (u32)block / dev->sectors;
400 cyl = track / dev->heads;
401 head = track % dev->heads;
402 sect = (u32)block % dev->sectors + 1;
403
404 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
405 (u32)block, track, cyl, head, sect);
406
407 /* Check whether the converted CHS can fit.
408 Cylinder: 0-65535
409 Head: 0-15
410 Sector: 1-255*/
411 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
412 return -ERANGE;
413
414 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
415 tf->lbal = sect;
416 tf->lbam = cyl;
417 tf->lbah = cyl >> 8;
418 tf->device |= head;
419 }
420
421 return 0;
422 }
423
424 /**
425 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
426 * @pio_mask: pio_mask
427 * @mwdma_mask: mwdma_mask
428 * @udma_mask: udma_mask
429 *
430 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
431 * unsigned int xfer_mask.
432 *
433 * LOCKING:
434 * None.
435 *
436 * RETURNS:
437 * Packed xfer_mask.
438 */
439 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
440 unsigned int mwdma_mask,
441 unsigned int udma_mask)
442 {
443 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
444 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
445 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
446 }
447
448 /**
449 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
450 * @xfer_mask: xfer_mask to unpack
451 * @pio_mask: resulting pio_mask
452 * @mwdma_mask: resulting mwdma_mask
453 * @udma_mask: resulting udma_mask
454 *
455 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
456 * Any NULL distination masks will be ignored.
457 */
458 static void ata_unpack_xfermask(unsigned int xfer_mask,
459 unsigned int *pio_mask,
460 unsigned int *mwdma_mask,
461 unsigned int *udma_mask)
462 {
463 if (pio_mask)
464 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
465 if (mwdma_mask)
466 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
467 if (udma_mask)
468 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
469 }
470
471 static const struct ata_xfer_ent {
472 int shift, bits;
473 u8 base;
474 } ata_xfer_tbl[] = {
475 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
476 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
477 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
478 { -1, },
479 };
480
481 /**
482 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
483 * @xfer_mask: xfer_mask of interest
484 *
485 * Return matching XFER_* value for @xfer_mask. Only the highest
486 * bit of @xfer_mask is considered.
487 *
488 * LOCKING:
489 * None.
490 *
491 * RETURNS:
492 * Matching XFER_* value, 0 if no match found.
493 */
494 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
495 {
496 int highbit = fls(xfer_mask) - 1;
497 const struct ata_xfer_ent *ent;
498
499 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
500 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
501 return ent->base + highbit - ent->shift;
502 return 0;
503 }
504
505 /**
506 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
507 * @xfer_mode: XFER_* of interest
508 *
509 * Return matching xfer_mask for @xfer_mode.
510 *
511 * LOCKING:
512 * None.
513 *
514 * RETURNS:
515 * Matching xfer_mask, 0 if no match found.
516 */
517 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
518 {
519 const struct ata_xfer_ent *ent;
520
521 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
522 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
523 return 1 << (ent->shift + xfer_mode - ent->base);
524 return 0;
525 }
526
527 /**
528 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
529 * @xfer_mode: XFER_* of interest
530 *
531 * Return matching xfer_shift for @xfer_mode.
532 *
533 * LOCKING:
534 * None.
535 *
536 * RETURNS:
537 * Matching xfer_shift, -1 if no match found.
538 */
539 static int ata_xfer_mode2shift(unsigned int xfer_mode)
540 {
541 const struct ata_xfer_ent *ent;
542
543 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
544 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
545 return ent->shift;
546 return -1;
547 }
548
549 /**
550 * ata_mode_string - convert xfer_mask to string
551 * @xfer_mask: mask of bits supported; only highest bit counts.
552 *
553 * Determine string which represents the highest speed
554 * (highest bit in @modemask).
555 *
556 * LOCKING:
557 * None.
558 *
559 * RETURNS:
560 * Constant C string representing highest speed listed in
561 * @mode_mask, or the constant C string "<n/a>".
562 */
563 static const char *ata_mode_string(unsigned int xfer_mask)
564 {
565 static const char * const xfer_mode_str[] = {
566 "PIO0",
567 "PIO1",
568 "PIO2",
569 "PIO3",
570 "PIO4",
571 "PIO5",
572 "PIO6",
573 "MWDMA0",
574 "MWDMA1",
575 "MWDMA2",
576 "MWDMA3",
577 "MWDMA4",
578 "UDMA/16",
579 "UDMA/25",
580 "UDMA/33",
581 "UDMA/44",
582 "UDMA/66",
583 "UDMA/100",
584 "UDMA/133",
585 "UDMA7",
586 };
587 int highbit;
588
589 highbit = fls(xfer_mask) - 1;
590 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
591 return xfer_mode_str[highbit];
592 return "<n/a>";
593 }
594
595 static const char *sata_spd_string(unsigned int spd)
596 {
597 static const char * const spd_str[] = {
598 "1.5 Gbps",
599 "3.0 Gbps",
600 };
601
602 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
603 return "<unknown>";
604 return spd_str[spd - 1];
605 }
606
607 void ata_dev_disable(struct ata_device *dev)
608 {
609 if (ata_dev_enabled(dev)) {
610 if (ata_msg_drv(dev->link->ap))
611 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
612 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
613 ATA_DNXFER_QUIET);
614 dev->class++;
615 }
616 }
617
618 /**
619 * ata_devchk - PATA device presence detection
620 * @ap: ATA channel to examine
621 * @device: Device to examine (starting at zero)
622 *
623 * This technique was originally described in
624 * Hale Landis's ATADRVR (www.ata-atapi.com), and
625 * later found its way into the ATA/ATAPI spec.
626 *
627 * Write a pattern to the ATA shadow registers,
628 * and if a device is present, it will respond by
629 * correctly storing and echoing back the
630 * ATA shadow register contents.
631 *
632 * LOCKING:
633 * caller.
634 */
635
636 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
637 {
638 struct ata_ioports *ioaddr = &ap->ioaddr;
639 u8 nsect, lbal;
640
641 ap->ops->dev_select(ap, device);
642
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
645
646 iowrite8(0xaa, ioaddr->nsect_addr);
647 iowrite8(0x55, ioaddr->lbal_addr);
648
649 iowrite8(0x55, ioaddr->nsect_addr);
650 iowrite8(0xaa, ioaddr->lbal_addr);
651
652 nsect = ioread8(ioaddr->nsect_addr);
653 lbal = ioread8(ioaddr->lbal_addr);
654
655 if ((nsect == 0x55) && (lbal == 0xaa))
656 return 1; /* we found a device */
657
658 return 0; /* nothing found */
659 }
660
661 /**
662 * ata_dev_classify - determine device type based on ATA-spec signature
663 * @tf: ATA taskfile register set for device to be identified
664 *
665 * Determine from taskfile register contents whether a device is
666 * ATA or ATAPI, as per "Signature and persistence" section
667 * of ATA/PI spec (volume 1, sect 5.14).
668 *
669 * LOCKING:
670 * None.
671 *
672 * RETURNS:
673 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
674 * the event of failure.
675 */
676
677 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
678 {
679 /* Apple's open source Darwin code hints that some devices only
680 * put a proper signature into the LBA mid/high registers,
681 * So, we only check those. It's sufficient for uniqueness.
682 */
683
684 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
685 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
686 DPRINTK("found ATA device by sig\n");
687 return ATA_DEV_ATA;
688 }
689
690 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
691 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
692 DPRINTK("found ATAPI device by sig\n");
693 return ATA_DEV_ATAPI;
694 }
695
696 DPRINTK("unknown device\n");
697 return ATA_DEV_UNKNOWN;
698 }
699
700 /**
701 * ata_dev_try_classify - Parse returned ATA device signature
702 * @dev: ATA device to classify (starting at zero)
703 * @present: device seems present
704 * @r_err: Value of error register on completion
705 *
706 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
707 * an ATA/ATAPI-defined set of values is placed in the ATA
708 * shadow registers, indicating the results of device detection
709 * and diagnostics.
710 *
711 * Select the ATA device, and read the values from the ATA shadow
712 * registers. Then parse according to the Error register value,
713 * and the spec-defined values examined by ata_dev_classify().
714 *
715 * LOCKING:
716 * caller.
717 *
718 * RETURNS:
719 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
720 */
721 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
722 u8 *r_err)
723 {
724 struct ata_port *ap = dev->link->ap;
725 struct ata_taskfile tf;
726 unsigned int class;
727 u8 err;
728
729 ap->ops->dev_select(ap, dev->devno);
730
731 memset(&tf, 0, sizeof(tf));
732
733 ap->ops->tf_read(ap, &tf);
734 err = tf.feature;
735 if (r_err)
736 *r_err = err;
737
738 /* see if device passed diags: if master then continue and warn later */
739 if (err == 0 && dev->devno == 0)
740 /* diagnostic fail : do nothing _YET_ */
741 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
742 else if (err == 1)
743 /* do nothing */ ;
744 else if ((dev->devno == 0) && (err == 0x81))
745 /* do nothing */ ;
746 else
747 return ATA_DEV_NONE;
748
749 /* determine if device is ATA or ATAPI */
750 class = ata_dev_classify(&tf);
751
752 if (class == ATA_DEV_UNKNOWN) {
753 /* If the device failed diagnostic, it's likely to
754 * have reported incorrect device signature too.
755 * Assume ATA device if the device seems present but
756 * device signature is invalid with diagnostic
757 * failure.
758 */
759 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
760 class = ATA_DEV_ATA;
761 else
762 class = ATA_DEV_NONE;
763 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
764 class = ATA_DEV_NONE;
765
766 return class;
767 }
768
769 /**
770 * ata_id_string - Convert IDENTIFY DEVICE page into string
771 * @id: IDENTIFY DEVICE results we will examine
772 * @s: string into which data is output
773 * @ofs: offset into identify device page
774 * @len: length of string to return. must be an even number.
775 *
776 * The strings in the IDENTIFY DEVICE page are broken up into
777 * 16-bit chunks. Run through the string, and output each
778 * 8-bit chunk linearly, regardless of platform.
779 *
780 * LOCKING:
781 * caller.
782 */
783
784 void ata_id_string(const u16 *id, unsigned char *s,
785 unsigned int ofs, unsigned int len)
786 {
787 unsigned int c;
788
789 while (len > 0) {
790 c = id[ofs] >> 8;
791 *s = c;
792 s++;
793
794 c = id[ofs] & 0xff;
795 *s = c;
796 s++;
797
798 ofs++;
799 len -= 2;
800 }
801 }
802
803 /**
804 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
805 * @id: IDENTIFY DEVICE results we will examine
806 * @s: string into which data is output
807 * @ofs: offset into identify device page
808 * @len: length of string to return. must be an odd number.
809 *
810 * This function is identical to ata_id_string except that it
811 * trims trailing spaces and terminates the resulting string with
812 * null. @len must be actual maximum length (even number) + 1.
813 *
814 * LOCKING:
815 * caller.
816 */
817 void ata_id_c_string(const u16 *id, unsigned char *s,
818 unsigned int ofs, unsigned int len)
819 {
820 unsigned char *p;
821
822 WARN_ON(!(len & 1));
823
824 ata_id_string(id, s, ofs, len - 1);
825
826 p = s + strnlen(s, len - 1);
827 while (p > s && p[-1] == ' ')
828 p--;
829 *p = '\0';
830 }
831
832 static u64 ata_id_n_sectors(const u16 *id)
833 {
834 if (ata_id_has_lba(id)) {
835 if (ata_id_has_lba48(id))
836 return ata_id_u64(id, 100);
837 else
838 return ata_id_u32(id, 60);
839 } else {
840 if (ata_id_current_chs_valid(id))
841 return ata_id_u32(id, 57);
842 else
843 return id[1] * id[3] * id[6];
844 }
845 }
846
847 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
848 {
849 u64 sectors = 0;
850
851 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
852 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
853 sectors |= (tf->hob_lbal & 0xff) << 24;
854 sectors |= (tf->lbah & 0xff) << 16;
855 sectors |= (tf->lbam & 0xff) << 8;
856 sectors |= (tf->lbal & 0xff);
857
858 return ++sectors;
859 }
860
861 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
862 {
863 u64 sectors = 0;
864
865 sectors |= (tf->device & 0x0f) << 24;
866 sectors |= (tf->lbah & 0xff) << 16;
867 sectors |= (tf->lbam & 0xff) << 8;
868 sectors |= (tf->lbal & 0xff);
869
870 return ++sectors;
871 }
872
873 /**
874 * ata_read_native_max_address - Read native max address
875 * @dev: target device
876 * @max_sectors: out parameter for the result native max address
877 *
878 * Perform an LBA48 or LBA28 native size query upon the device in
879 * question.
880 *
881 * RETURNS:
882 * 0 on success, -EACCES if command is aborted by the drive.
883 * -EIO on other errors.
884 */
885 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
886 {
887 unsigned int err_mask;
888 struct ata_taskfile tf;
889 int lba48 = ata_id_has_lba48(dev->id);
890
891 ata_tf_init(dev, &tf);
892
893 /* always clear all address registers */
894 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
895
896 if (lba48) {
897 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
898 tf.flags |= ATA_TFLAG_LBA48;
899 } else
900 tf.command = ATA_CMD_READ_NATIVE_MAX;
901
902 tf.protocol |= ATA_PROT_NODATA;
903 tf.device |= ATA_LBA;
904
905 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
906 if (err_mask) {
907 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
908 "max address (err_mask=0x%x)\n", err_mask);
909 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
910 return -EACCES;
911 return -EIO;
912 }
913
914 if (lba48)
915 *max_sectors = ata_tf_to_lba48(&tf);
916 else
917 *max_sectors = ata_tf_to_lba(&tf);
918 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
919 (*max_sectors)--;
920 return 0;
921 }
922
923 /**
924 * ata_set_max_sectors - Set max sectors
925 * @dev: target device
926 * @new_sectors: new max sectors value to set for the device
927 *
928 * Set max sectors of @dev to @new_sectors.
929 *
930 * RETURNS:
931 * 0 on success, -EACCES if command is aborted or denied (due to
932 * previous non-volatile SET_MAX) by the drive. -EIO on other
933 * errors.
934 */
935 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
936 {
937 unsigned int err_mask;
938 struct ata_taskfile tf;
939 int lba48 = ata_id_has_lba48(dev->id);
940
941 new_sectors--;
942
943 ata_tf_init(dev, &tf);
944
945 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
946
947 if (lba48) {
948 tf.command = ATA_CMD_SET_MAX_EXT;
949 tf.flags |= ATA_TFLAG_LBA48;
950
951 tf.hob_lbal = (new_sectors >> 24) & 0xff;
952 tf.hob_lbam = (new_sectors >> 32) & 0xff;
953 tf.hob_lbah = (new_sectors >> 40) & 0xff;
954 } else {
955 tf.command = ATA_CMD_SET_MAX;
956
957 tf.device |= (new_sectors >> 24) & 0xf;
958 }
959
960 tf.protocol |= ATA_PROT_NODATA;
961 tf.device |= ATA_LBA;
962
963 tf.lbal = (new_sectors >> 0) & 0xff;
964 tf.lbam = (new_sectors >> 8) & 0xff;
965 tf.lbah = (new_sectors >> 16) & 0xff;
966
967 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
968 if (err_mask) {
969 ata_dev_printk(dev, KERN_WARNING, "failed to set "
970 "max address (err_mask=0x%x)\n", err_mask);
971 if (err_mask == AC_ERR_DEV &&
972 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
973 return -EACCES;
974 return -EIO;
975 }
976
977 return 0;
978 }
979
980 /**
981 * ata_hpa_resize - Resize a device with an HPA set
982 * @dev: Device to resize
983 *
984 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
985 * it if required to the full size of the media. The caller must check
986 * the drive has the HPA feature set enabled.
987 *
988 * RETURNS:
989 * 0 on success, -errno on failure.
990 */
991 static int ata_hpa_resize(struct ata_device *dev)
992 {
993 struct ata_eh_context *ehc = &dev->link->eh_context;
994 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
995 u64 sectors = ata_id_n_sectors(dev->id);
996 u64 native_sectors;
997 int rc;
998
999 /* do we need to do it? */
1000 if (dev->class != ATA_DEV_ATA ||
1001 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1002 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1003 return 0;
1004
1005 /* read native max address */
1006 rc = ata_read_native_max_address(dev, &native_sectors);
1007 if (rc) {
1008 /* If HPA isn't going to be unlocked, skip HPA
1009 * resizing from the next try.
1010 */
1011 if (!ata_ignore_hpa) {
1012 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1013 "broken, will skip HPA handling\n");
1014 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1015
1016 /* we can continue if device aborted the command */
1017 if (rc == -EACCES)
1018 rc = 0;
1019 }
1020
1021 return rc;
1022 }
1023
1024 /* nothing to do? */
1025 if (native_sectors <= sectors || !ata_ignore_hpa) {
1026 if (!print_info || native_sectors == sectors)
1027 return 0;
1028
1029 if (native_sectors > sectors)
1030 ata_dev_printk(dev, KERN_INFO,
1031 "HPA detected: current %llu, native %llu\n",
1032 (unsigned long long)sectors,
1033 (unsigned long long)native_sectors);
1034 else if (native_sectors < sectors)
1035 ata_dev_printk(dev, KERN_WARNING,
1036 "native sectors (%llu) is smaller than "
1037 "sectors (%llu)\n",
1038 (unsigned long long)native_sectors,
1039 (unsigned long long)sectors);
1040 return 0;
1041 }
1042
1043 /* let's unlock HPA */
1044 rc = ata_set_max_sectors(dev, native_sectors);
1045 if (rc == -EACCES) {
1046 /* if device aborted the command, skip HPA resizing */
1047 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1048 "(%llu -> %llu), skipping HPA handling\n",
1049 (unsigned long long)sectors,
1050 (unsigned long long)native_sectors);
1051 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1052 return 0;
1053 } else if (rc)
1054 return rc;
1055
1056 /* re-read IDENTIFY data */
1057 rc = ata_dev_reread_id(dev, 0);
1058 if (rc) {
1059 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1060 "data after HPA resizing\n");
1061 return rc;
1062 }
1063
1064 if (print_info) {
1065 u64 new_sectors = ata_id_n_sectors(dev->id);
1066 ata_dev_printk(dev, KERN_INFO,
1067 "HPA unlocked: %llu -> %llu, native %llu\n",
1068 (unsigned long long)sectors,
1069 (unsigned long long)new_sectors,
1070 (unsigned long long)native_sectors);
1071 }
1072
1073 return 0;
1074 }
1075
1076 /**
1077 * ata_id_to_dma_mode - Identify DMA mode from id block
1078 * @dev: device to identify
1079 * @unknown: mode to assume if we cannot tell
1080 *
1081 * Set up the timing values for the device based upon the identify
1082 * reported values for the DMA mode. This function is used by drivers
1083 * which rely upon firmware configured modes, but wish to report the
1084 * mode correctly when possible.
1085 *
1086 * In addition we emit similarly formatted messages to the default
1087 * ata_dev_set_mode handler, in order to provide consistency of
1088 * presentation.
1089 */
1090
1091 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1092 {
1093 unsigned int mask;
1094 u8 mode;
1095
1096 /* Pack the DMA modes */
1097 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1098 if (dev->id[53] & 0x04)
1099 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1100
1101 /* Select the mode in use */
1102 mode = ata_xfer_mask2mode(mask);
1103
1104 if (mode != 0) {
1105 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1106 ata_mode_string(mask));
1107 } else {
1108 /* SWDMA perhaps ? */
1109 mode = unknown;
1110 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1111 }
1112
1113 /* Configure the device reporting */
1114 dev->xfer_mode = mode;
1115 dev->xfer_shift = ata_xfer_mode2shift(mode);
1116 }
1117
1118 /**
1119 * ata_noop_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 *
1123 * This function performs no actual function.
1124 *
1125 * May be used as the dev_select() entry in ata_port_operations.
1126 *
1127 * LOCKING:
1128 * caller.
1129 */
1130 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1131 {
1132 }
1133
1134
1135 /**
1136 * ata_std_dev_select - Select device 0/1 on ATA bus
1137 * @ap: ATA channel to manipulate
1138 * @device: ATA device (numbered from zero) to select
1139 *
1140 * Use the method defined in the ATA specification to
1141 * make either device 0, or device 1, active on the
1142 * ATA channel. Works with both PIO and MMIO.
1143 *
1144 * May be used as the dev_select() entry in ata_port_operations.
1145 *
1146 * LOCKING:
1147 * caller.
1148 */
1149
1150 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1151 {
1152 u8 tmp;
1153
1154 if (device == 0)
1155 tmp = ATA_DEVICE_OBS;
1156 else
1157 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1158
1159 iowrite8(tmp, ap->ioaddr.device_addr);
1160 ata_pause(ap); /* needed; also flushes, for mmio */
1161 }
1162
1163 /**
1164 * ata_dev_select - Select device 0/1 on ATA bus
1165 * @ap: ATA channel to manipulate
1166 * @device: ATA device (numbered from zero) to select
1167 * @wait: non-zero to wait for Status register BSY bit to clear
1168 * @can_sleep: non-zero if context allows sleeping
1169 *
1170 * Use the method defined in the ATA specification to
1171 * make either device 0, or device 1, active on the
1172 * ATA channel.
1173 *
1174 * This is a high-level version of ata_std_dev_select(),
1175 * which additionally provides the services of inserting
1176 * the proper pauses and status polling, where needed.
1177 *
1178 * LOCKING:
1179 * caller.
1180 */
1181
1182 void ata_dev_select(struct ata_port *ap, unsigned int device,
1183 unsigned int wait, unsigned int can_sleep)
1184 {
1185 if (ata_msg_probe(ap))
1186 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1187 "device %u, wait %u\n", device, wait);
1188
1189 if (wait)
1190 ata_wait_idle(ap);
1191
1192 ap->ops->dev_select(ap, device);
1193
1194 if (wait) {
1195 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1196 msleep(150);
1197 ata_wait_idle(ap);
1198 }
1199 }
1200
1201 /**
1202 * ata_dump_id - IDENTIFY DEVICE info debugging output
1203 * @id: IDENTIFY DEVICE page to dump
1204 *
1205 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1206 * page.
1207 *
1208 * LOCKING:
1209 * caller.
1210 */
1211
1212 static inline void ata_dump_id(const u16 *id)
1213 {
1214 DPRINTK("49==0x%04x "
1215 "53==0x%04x "
1216 "63==0x%04x "
1217 "64==0x%04x "
1218 "75==0x%04x \n",
1219 id[49],
1220 id[53],
1221 id[63],
1222 id[64],
1223 id[75]);
1224 DPRINTK("80==0x%04x "
1225 "81==0x%04x "
1226 "82==0x%04x "
1227 "83==0x%04x "
1228 "84==0x%04x \n",
1229 id[80],
1230 id[81],
1231 id[82],
1232 id[83],
1233 id[84]);
1234 DPRINTK("88==0x%04x "
1235 "93==0x%04x\n",
1236 id[88],
1237 id[93]);
1238 }
1239
1240 /**
1241 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1242 * @id: IDENTIFY data to compute xfer mask from
1243 *
1244 * Compute the xfermask for this device. This is not as trivial
1245 * as it seems if we must consider early devices correctly.
1246 *
1247 * FIXME: pre IDE drive timing (do we care ?).
1248 *
1249 * LOCKING:
1250 * None.
1251 *
1252 * RETURNS:
1253 * Computed xfermask
1254 */
1255 static unsigned int ata_id_xfermask(const u16 *id)
1256 {
1257 unsigned int pio_mask, mwdma_mask, udma_mask;
1258
1259 /* Usual case. Word 53 indicates word 64 is valid */
1260 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1261 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1262 pio_mask <<= 3;
1263 pio_mask |= 0x7;
1264 } else {
1265 /* If word 64 isn't valid then Word 51 high byte holds
1266 * the PIO timing number for the maximum. Turn it into
1267 * a mask.
1268 */
1269 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1270 if (mode < 5) /* Valid PIO range */
1271 pio_mask = (2 << mode) - 1;
1272 else
1273 pio_mask = 1;
1274
1275 /* But wait.. there's more. Design your standards by
1276 * committee and you too can get a free iordy field to
1277 * process. However its the speeds not the modes that
1278 * are supported... Note drivers using the timing API
1279 * will get this right anyway
1280 */
1281 }
1282
1283 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1284
1285 if (ata_id_is_cfa(id)) {
1286 /*
1287 * Process compact flash extended modes
1288 */
1289 int pio = id[163] & 0x7;
1290 int dma = (id[163] >> 3) & 7;
1291
1292 if (pio)
1293 pio_mask |= (1 << 5);
1294 if (pio > 1)
1295 pio_mask |= (1 << 6);
1296 if (dma)
1297 mwdma_mask |= (1 << 3);
1298 if (dma > 1)
1299 mwdma_mask |= (1 << 4);
1300 }
1301
1302 udma_mask = 0;
1303 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1304 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1305
1306 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1307 }
1308
1309 /**
1310 * ata_port_queue_task - Queue port_task
1311 * @ap: The ata_port to queue port_task for
1312 * @fn: workqueue function to be scheduled
1313 * @data: data for @fn to use
1314 * @delay: delay time for workqueue function
1315 *
1316 * Schedule @fn(@data) for execution after @delay jiffies using
1317 * port_task. There is one port_task per port and it's the
1318 * user(low level driver)'s responsibility to make sure that only
1319 * one task is active at any given time.
1320 *
1321 * libata core layer takes care of synchronization between
1322 * port_task and EH. ata_port_queue_task() may be ignored for EH
1323 * synchronization.
1324 *
1325 * LOCKING:
1326 * Inherited from caller.
1327 */
1328 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1329 unsigned long delay)
1330 {
1331 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1332 ap->port_task_data = data;
1333
1334 /* may fail if ata_port_flush_task() in progress */
1335 queue_delayed_work(ata_wq, &ap->port_task, delay);
1336 }
1337
1338 /**
1339 * ata_port_flush_task - Flush port_task
1340 * @ap: The ata_port to flush port_task for
1341 *
1342 * After this function completes, port_task is guranteed not to
1343 * be running or scheduled.
1344 *
1345 * LOCKING:
1346 * Kernel thread context (may sleep)
1347 */
1348 void ata_port_flush_task(struct ata_port *ap)
1349 {
1350 DPRINTK("ENTER\n");
1351
1352 cancel_rearming_delayed_work(&ap->port_task);
1353
1354 if (ata_msg_ctl(ap))
1355 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1356 }
1357
1358 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1359 {
1360 struct completion *waiting = qc->private_data;
1361
1362 complete(waiting);
1363 }
1364
1365 /**
1366 * ata_exec_internal_sg - execute libata internal command
1367 * @dev: Device to which the command is sent
1368 * @tf: Taskfile registers for the command and the result
1369 * @cdb: CDB for packet command
1370 * @dma_dir: Data tranfer direction of the command
1371 * @sg: sg list for the data buffer of the command
1372 * @n_elem: Number of sg entries
1373 *
1374 * Executes libata internal command with timeout. @tf contains
1375 * command on entry and result on return. Timeout and error
1376 * conditions are reported via return value. No recovery action
1377 * is taken after a command times out. It's caller's duty to
1378 * clean up after timeout.
1379 *
1380 * LOCKING:
1381 * None. Should be called with kernel context, might sleep.
1382 *
1383 * RETURNS:
1384 * Zero on success, AC_ERR_* mask on failure
1385 */
1386 unsigned ata_exec_internal_sg(struct ata_device *dev,
1387 struct ata_taskfile *tf, const u8 *cdb,
1388 int dma_dir, struct scatterlist *sg,
1389 unsigned int n_elem)
1390 {
1391 struct ata_link *link = dev->link;
1392 struct ata_port *ap = link->ap;
1393 u8 command = tf->command;
1394 struct ata_queued_cmd *qc;
1395 unsigned int tag, preempted_tag;
1396 u32 preempted_sactive, preempted_qc_active;
1397 int preempted_nr_active_links;
1398 DECLARE_COMPLETION_ONSTACK(wait);
1399 unsigned long flags;
1400 unsigned int err_mask;
1401 int rc;
1402
1403 spin_lock_irqsave(ap->lock, flags);
1404
1405 /* no internal command while frozen */
1406 if (ap->pflags & ATA_PFLAG_FROZEN) {
1407 spin_unlock_irqrestore(ap->lock, flags);
1408 return AC_ERR_SYSTEM;
1409 }
1410
1411 /* initialize internal qc */
1412
1413 /* XXX: Tag 0 is used for drivers with legacy EH as some
1414 * drivers choke if any other tag is given. This breaks
1415 * ata_tag_internal() test for those drivers. Don't use new
1416 * EH stuff without converting to it.
1417 */
1418 if (ap->ops->error_handler)
1419 tag = ATA_TAG_INTERNAL;
1420 else
1421 tag = 0;
1422
1423 if (test_and_set_bit(tag, &ap->qc_allocated))
1424 BUG();
1425 qc = __ata_qc_from_tag(ap, tag);
1426
1427 qc->tag = tag;
1428 qc->scsicmd = NULL;
1429 qc->ap = ap;
1430 qc->dev = dev;
1431 ata_qc_reinit(qc);
1432
1433 preempted_tag = link->active_tag;
1434 preempted_sactive = link->sactive;
1435 preempted_qc_active = ap->qc_active;
1436 preempted_nr_active_links = ap->nr_active_links;
1437 link->active_tag = ATA_TAG_POISON;
1438 link->sactive = 0;
1439 ap->qc_active = 0;
1440 ap->nr_active_links = 0;
1441
1442 /* prepare & issue qc */
1443 qc->tf = *tf;
1444 if (cdb)
1445 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1446 qc->flags |= ATA_QCFLAG_RESULT_TF;
1447 qc->dma_dir = dma_dir;
1448 if (dma_dir != DMA_NONE) {
1449 unsigned int i, buflen = 0;
1450
1451 for (i = 0; i < n_elem; i++)
1452 buflen += sg[i].length;
1453
1454 ata_sg_init(qc, sg, n_elem);
1455 qc->nbytes = buflen;
1456 }
1457
1458 qc->private_data = &wait;
1459 qc->complete_fn = ata_qc_complete_internal;
1460
1461 ata_qc_issue(qc);
1462
1463 spin_unlock_irqrestore(ap->lock, flags);
1464
1465 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1466
1467 ata_port_flush_task(ap);
1468
1469 if (!rc) {
1470 spin_lock_irqsave(ap->lock, flags);
1471
1472 /* We're racing with irq here. If we lose, the
1473 * following test prevents us from completing the qc
1474 * twice. If we win, the port is frozen and will be
1475 * cleaned up by ->post_internal_cmd().
1476 */
1477 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1478 qc->err_mask |= AC_ERR_TIMEOUT;
1479
1480 if (ap->ops->error_handler)
1481 ata_port_freeze(ap);
1482 else
1483 ata_qc_complete(qc);
1484
1485 if (ata_msg_warn(ap))
1486 ata_dev_printk(dev, KERN_WARNING,
1487 "qc timeout (cmd 0x%x)\n", command);
1488 }
1489
1490 spin_unlock_irqrestore(ap->lock, flags);
1491 }
1492
1493 /* do post_internal_cmd */
1494 if (ap->ops->post_internal_cmd)
1495 ap->ops->post_internal_cmd(qc);
1496
1497 /* perform minimal error analysis */
1498 if (qc->flags & ATA_QCFLAG_FAILED) {
1499 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1500 qc->err_mask |= AC_ERR_DEV;
1501
1502 if (!qc->err_mask)
1503 qc->err_mask |= AC_ERR_OTHER;
1504
1505 if (qc->err_mask & ~AC_ERR_OTHER)
1506 qc->err_mask &= ~AC_ERR_OTHER;
1507 }
1508
1509 /* finish up */
1510 spin_lock_irqsave(ap->lock, flags);
1511
1512 *tf = qc->result_tf;
1513 err_mask = qc->err_mask;
1514
1515 ata_qc_free(qc);
1516 link->active_tag = preempted_tag;
1517 link->sactive = preempted_sactive;
1518 ap->qc_active = preempted_qc_active;
1519 ap->nr_active_links = preempted_nr_active_links;
1520
1521 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1522 * Until those drivers are fixed, we detect the condition
1523 * here, fail the command with AC_ERR_SYSTEM and reenable the
1524 * port.
1525 *
1526 * Note that this doesn't change any behavior as internal
1527 * command failure results in disabling the device in the
1528 * higher layer for LLDDs without new reset/EH callbacks.
1529 *
1530 * Kill the following code as soon as those drivers are fixed.
1531 */
1532 if (ap->flags & ATA_FLAG_DISABLED) {
1533 err_mask |= AC_ERR_SYSTEM;
1534 ata_port_probe(ap);
1535 }
1536
1537 spin_unlock_irqrestore(ap->lock, flags);
1538
1539 return err_mask;
1540 }
1541
1542 /**
1543 * ata_exec_internal - execute libata internal command
1544 * @dev: Device to which the command is sent
1545 * @tf: Taskfile registers for the command and the result
1546 * @cdb: CDB for packet command
1547 * @dma_dir: Data tranfer direction of the command
1548 * @buf: Data buffer of the command
1549 * @buflen: Length of data buffer
1550 *
1551 * Wrapper around ata_exec_internal_sg() which takes simple
1552 * buffer instead of sg list.
1553 *
1554 * LOCKING:
1555 * None. Should be called with kernel context, might sleep.
1556 *
1557 * RETURNS:
1558 * Zero on success, AC_ERR_* mask on failure
1559 */
1560 unsigned ata_exec_internal(struct ata_device *dev,
1561 struct ata_taskfile *tf, const u8 *cdb,
1562 int dma_dir, void *buf, unsigned int buflen)
1563 {
1564 struct scatterlist *psg = NULL, sg;
1565 unsigned int n_elem = 0;
1566
1567 if (dma_dir != DMA_NONE) {
1568 WARN_ON(!buf);
1569 sg_init_one(&sg, buf, buflen);
1570 psg = &sg;
1571 n_elem++;
1572 }
1573
1574 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1575 }
1576
1577 /**
1578 * ata_do_simple_cmd - execute simple internal command
1579 * @dev: Device to which the command is sent
1580 * @cmd: Opcode to execute
1581 *
1582 * Execute a 'simple' command, that only consists of the opcode
1583 * 'cmd' itself, without filling any other registers
1584 *
1585 * LOCKING:
1586 * Kernel thread context (may sleep).
1587 *
1588 * RETURNS:
1589 * Zero on success, AC_ERR_* mask on failure
1590 */
1591 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1592 {
1593 struct ata_taskfile tf;
1594
1595 ata_tf_init(dev, &tf);
1596
1597 tf.command = cmd;
1598 tf.flags |= ATA_TFLAG_DEVICE;
1599 tf.protocol = ATA_PROT_NODATA;
1600
1601 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1602 }
1603
1604 /**
1605 * ata_pio_need_iordy - check if iordy needed
1606 * @adev: ATA device
1607 *
1608 * Check if the current speed of the device requires IORDY. Used
1609 * by various controllers for chip configuration.
1610 */
1611
1612 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1613 {
1614 /* Controller doesn't support IORDY. Probably a pointless check
1615 as the caller should know this */
1616 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1617 return 0;
1618 /* PIO3 and higher it is mandatory */
1619 if (adev->pio_mode > XFER_PIO_2)
1620 return 1;
1621 /* We turn it on when possible */
1622 if (ata_id_has_iordy(adev->id))
1623 return 1;
1624 return 0;
1625 }
1626
1627 /**
1628 * ata_pio_mask_no_iordy - Return the non IORDY mask
1629 * @adev: ATA device
1630 *
1631 * Compute the highest mode possible if we are not using iordy. Return
1632 * -1 if no iordy mode is available.
1633 */
1634
1635 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1636 {
1637 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1638 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1639 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1640 /* Is the speed faster than the drive allows non IORDY ? */
1641 if (pio) {
1642 /* This is cycle times not frequency - watch the logic! */
1643 if (pio > 240) /* PIO2 is 240nS per cycle */
1644 return 3 << ATA_SHIFT_PIO;
1645 return 7 << ATA_SHIFT_PIO;
1646 }
1647 }
1648 return 3 << ATA_SHIFT_PIO;
1649 }
1650
1651 /**
1652 * ata_dev_read_id - Read ID data from the specified device
1653 * @dev: target device
1654 * @p_class: pointer to class of the target device (may be changed)
1655 * @flags: ATA_READID_* flags
1656 * @id: buffer to read IDENTIFY data into
1657 *
1658 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1659 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1660 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1661 * for pre-ATA4 drives.
1662 *
1663 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1664 * now we abort if we hit that case.
1665 *
1666 * LOCKING:
1667 * Kernel thread context (may sleep)
1668 *
1669 * RETURNS:
1670 * 0 on success, -errno otherwise.
1671 */
1672 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1673 unsigned int flags, u16 *id)
1674 {
1675 struct ata_port *ap = dev->link->ap;
1676 unsigned int class = *p_class;
1677 struct ata_taskfile tf;
1678 unsigned int err_mask = 0;
1679 const char *reason;
1680 int may_fallback = 1, tried_spinup = 0;
1681 int rc;
1682
1683 if (ata_msg_ctl(ap))
1684 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1685
1686 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1687 retry:
1688 ata_tf_init(dev, &tf);
1689
1690 switch (class) {
1691 case ATA_DEV_ATA:
1692 tf.command = ATA_CMD_ID_ATA;
1693 break;
1694 case ATA_DEV_ATAPI:
1695 tf.command = ATA_CMD_ID_ATAPI;
1696 break;
1697 default:
1698 rc = -ENODEV;
1699 reason = "unsupported class";
1700 goto err_out;
1701 }
1702
1703 tf.protocol = ATA_PROT_PIO;
1704
1705 /* Some devices choke if TF registers contain garbage. Make
1706 * sure those are properly initialized.
1707 */
1708 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1709
1710 /* Device presence detection is unreliable on some
1711 * controllers. Always poll IDENTIFY if available.
1712 */
1713 tf.flags |= ATA_TFLAG_POLLING;
1714
1715 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1716 id, sizeof(id[0]) * ATA_ID_WORDS);
1717 if (err_mask) {
1718 if (err_mask & AC_ERR_NODEV_HINT) {
1719 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1720 ap->print_id, dev->devno);
1721 return -ENOENT;
1722 }
1723
1724 /* Device or controller might have reported the wrong
1725 * device class. Give a shot at the other IDENTIFY if
1726 * the current one is aborted by the device.
1727 */
1728 if (may_fallback &&
1729 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1730 may_fallback = 0;
1731
1732 if (class == ATA_DEV_ATA)
1733 class = ATA_DEV_ATAPI;
1734 else
1735 class = ATA_DEV_ATA;
1736 goto retry;
1737 }
1738
1739 rc = -EIO;
1740 reason = "I/O error";
1741 goto err_out;
1742 }
1743
1744 /* Falling back doesn't make sense if ID data was read
1745 * successfully at least once.
1746 */
1747 may_fallback = 0;
1748
1749 swap_buf_le16(id, ATA_ID_WORDS);
1750
1751 /* sanity check */
1752 rc = -EINVAL;
1753 reason = "device reports invalid type";
1754
1755 if (class == ATA_DEV_ATA) {
1756 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1757 goto err_out;
1758 } else {
1759 if (ata_id_is_ata(id))
1760 goto err_out;
1761 }
1762
1763 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1764 tried_spinup = 1;
1765 /*
1766 * Drive powered-up in standby mode, and requires a specific
1767 * SET_FEATURES spin-up subcommand before it will accept
1768 * anything other than the original IDENTIFY command.
1769 */
1770 ata_tf_init(dev, &tf);
1771 tf.command = ATA_CMD_SET_FEATURES;
1772 tf.feature = SETFEATURES_SPINUP;
1773 tf.protocol = ATA_PROT_NODATA;
1774 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1775 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1776 if (err_mask && id[2] != 0x738c) {
1777 rc = -EIO;
1778 reason = "SPINUP failed";
1779 goto err_out;
1780 }
1781 /*
1782 * If the drive initially returned incomplete IDENTIFY info,
1783 * we now must reissue the IDENTIFY command.
1784 */
1785 if (id[2] == 0x37c8)
1786 goto retry;
1787 }
1788
1789 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1790 /*
1791 * The exact sequence expected by certain pre-ATA4 drives is:
1792 * SRST RESET
1793 * IDENTIFY (optional in early ATA)
1794 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1795 * anything else..
1796 * Some drives were very specific about that exact sequence.
1797 *
1798 * Note that ATA4 says lba is mandatory so the second check
1799 * shoud never trigger.
1800 */
1801 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1802 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1803 if (err_mask) {
1804 rc = -EIO;
1805 reason = "INIT_DEV_PARAMS failed";
1806 goto err_out;
1807 }
1808
1809 /* current CHS translation info (id[53-58]) might be
1810 * changed. reread the identify device info.
1811 */
1812 flags &= ~ATA_READID_POSTRESET;
1813 goto retry;
1814 }
1815 }
1816
1817 *p_class = class;
1818
1819 return 0;
1820
1821 err_out:
1822 if (ata_msg_warn(ap))
1823 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1824 "(%s, err_mask=0x%x)\n", reason, err_mask);
1825 return rc;
1826 }
1827
1828 static inline u8 ata_dev_knobble(struct ata_device *dev)
1829 {
1830 struct ata_port *ap = dev->link->ap;
1831 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1832 }
1833
1834 static void ata_dev_config_ncq(struct ata_device *dev,
1835 char *desc, size_t desc_sz)
1836 {
1837 struct ata_port *ap = dev->link->ap;
1838 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1839
1840 if (!ata_id_has_ncq(dev->id)) {
1841 desc[0] = '\0';
1842 return;
1843 }
1844 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1845 snprintf(desc, desc_sz, "NCQ (not used)");
1846 return;
1847 }
1848 if (ap->flags & ATA_FLAG_NCQ) {
1849 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1850 dev->flags |= ATA_DFLAG_NCQ;
1851 }
1852
1853 if (hdepth >= ddepth)
1854 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1855 else
1856 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1857 }
1858
1859 /**
1860 * ata_dev_configure - Configure the specified ATA/ATAPI device
1861 * @dev: Target device to configure
1862 *
1863 * Configure @dev according to @dev->id. Generic and low-level
1864 * driver specific fixups are also applied.
1865 *
1866 * LOCKING:
1867 * Kernel thread context (may sleep)
1868 *
1869 * RETURNS:
1870 * 0 on success, -errno otherwise
1871 */
1872 int ata_dev_configure(struct ata_device *dev)
1873 {
1874 struct ata_port *ap = dev->link->ap;
1875 struct ata_eh_context *ehc = &dev->link->eh_context;
1876 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1877 const u16 *id = dev->id;
1878 unsigned int xfer_mask;
1879 char revbuf[7]; /* XYZ-99\0 */
1880 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1881 char modelbuf[ATA_ID_PROD_LEN+1];
1882 int rc;
1883
1884 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1885 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1886 __FUNCTION__);
1887 return 0;
1888 }
1889
1890 if (ata_msg_probe(ap))
1891 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1892
1893 /* set horkage */
1894 dev->horkage |= ata_dev_blacklisted(dev);
1895
1896 /* let ACPI work its magic */
1897 rc = ata_acpi_on_devcfg(dev);
1898 if (rc)
1899 return rc;
1900
1901 /* massage HPA, do it early as it might change IDENTIFY data */
1902 rc = ata_hpa_resize(dev);
1903 if (rc)
1904 return rc;
1905
1906 /* print device capabilities */
1907 if (ata_msg_probe(ap))
1908 ata_dev_printk(dev, KERN_DEBUG,
1909 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1910 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1911 __FUNCTION__,
1912 id[49], id[82], id[83], id[84],
1913 id[85], id[86], id[87], id[88]);
1914
1915 /* initialize to-be-configured parameters */
1916 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1917 dev->max_sectors = 0;
1918 dev->cdb_len = 0;
1919 dev->n_sectors = 0;
1920 dev->cylinders = 0;
1921 dev->heads = 0;
1922 dev->sectors = 0;
1923
1924 /*
1925 * common ATA, ATAPI feature tests
1926 */
1927
1928 /* find max transfer mode; for printk only */
1929 xfer_mask = ata_id_xfermask(id);
1930
1931 if (ata_msg_probe(ap))
1932 ata_dump_id(id);
1933
1934 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1935 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1936 sizeof(fwrevbuf));
1937
1938 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1939 sizeof(modelbuf));
1940
1941 /* ATA-specific feature tests */
1942 if (dev->class == ATA_DEV_ATA) {
1943 if (ata_id_is_cfa(id)) {
1944 if (id[162] & 1) /* CPRM may make this media unusable */
1945 ata_dev_printk(dev, KERN_WARNING,
1946 "supports DRM functions and may "
1947 "not be fully accessable.\n");
1948 snprintf(revbuf, 7, "CFA");
1949 }
1950 else
1951 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1952
1953 dev->n_sectors = ata_id_n_sectors(id);
1954
1955 if (dev->id[59] & 0x100)
1956 dev->multi_count = dev->id[59] & 0xff;
1957
1958 if (ata_id_has_lba(id)) {
1959 const char *lba_desc;
1960 char ncq_desc[20];
1961
1962 lba_desc = "LBA";
1963 dev->flags |= ATA_DFLAG_LBA;
1964 if (ata_id_has_lba48(id)) {
1965 dev->flags |= ATA_DFLAG_LBA48;
1966 lba_desc = "LBA48";
1967
1968 if (dev->n_sectors >= (1UL << 28) &&
1969 ata_id_has_flush_ext(id))
1970 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1971 }
1972
1973 /* config NCQ */
1974 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1975
1976 /* print device info to dmesg */
1977 if (ata_msg_drv(ap) && print_info) {
1978 ata_dev_printk(dev, KERN_INFO,
1979 "%s: %s, %s, max %s\n",
1980 revbuf, modelbuf, fwrevbuf,
1981 ata_mode_string(xfer_mask));
1982 ata_dev_printk(dev, KERN_INFO,
1983 "%Lu sectors, multi %u: %s %s\n",
1984 (unsigned long long)dev->n_sectors,
1985 dev->multi_count, lba_desc, ncq_desc);
1986 }
1987 } else {
1988 /* CHS */
1989
1990 /* Default translation */
1991 dev->cylinders = id[1];
1992 dev->heads = id[3];
1993 dev->sectors = id[6];
1994
1995 if (ata_id_current_chs_valid(id)) {
1996 /* Current CHS translation is valid. */
1997 dev->cylinders = id[54];
1998 dev->heads = id[55];
1999 dev->sectors = id[56];
2000 }
2001
2002 /* print device info to dmesg */
2003 if (ata_msg_drv(ap) && print_info) {
2004 ata_dev_printk(dev, KERN_INFO,
2005 "%s: %s, %s, max %s\n",
2006 revbuf, modelbuf, fwrevbuf,
2007 ata_mode_string(xfer_mask));
2008 ata_dev_printk(dev, KERN_INFO,
2009 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2010 (unsigned long long)dev->n_sectors,
2011 dev->multi_count, dev->cylinders,
2012 dev->heads, dev->sectors);
2013 }
2014 }
2015
2016 dev->cdb_len = 16;
2017 }
2018
2019 /* ATAPI-specific feature tests */
2020 else if (dev->class == ATA_DEV_ATAPI) {
2021 const char *cdb_intr_string = "";
2022 const char *atapi_an_string = "";
2023 u32 sntf;
2024
2025 rc = atapi_cdb_len(id);
2026 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2027 if (ata_msg_warn(ap))
2028 ata_dev_printk(dev, KERN_WARNING,
2029 "unsupported CDB len\n");
2030 rc = -EINVAL;
2031 goto err_out_nosup;
2032 }
2033 dev->cdb_len = (unsigned int) rc;
2034
2035 /* Enable ATAPI AN if both the host and device have
2036 * the support. If PMP is attached, SNTF is required
2037 * to enable ATAPI AN to discern between PHY status
2038 * changed notifications and ATAPI ANs.
2039 */
2040 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2041 (!ap->nr_pmp_links ||
2042 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2043 unsigned int err_mask;
2044
2045 /* issue SET feature command to turn this on */
2046 err_mask = ata_dev_set_AN(dev, SETFEATURES_SATA_ENABLE);
2047 if (err_mask)
2048 ata_dev_printk(dev, KERN_ERR,
2049 "failed to enable ATAPI AN "
2050 "(err_mask=0x%x)\n", err_mask);
2051 else {
2052 dev->flags |= ATA_DFLAG_AN;
2053 atapi_an_string = ", ATAPI AN";
2054 }
2055 }
2056
2057 if (ata_id_cdb_intr(dev->id)) {
2058 dev->flags |= ATA_DFLAG_CDB_INTR;
2059 cdb_intr_string = ", CDB intr";
2060 }
2061
2062 /* print device info to dmesg */
2063 if (ata_msg_drv(ap) && print_info)
2064 ata_dev_printk(dev, KERN_INFO,
2065 "ATAPI: %s, %s, max %s%s%s\n",
2066 modelbuf, fwrevbuf,
2067 ata_mode_string(xfer_mask),
2068 cdb_intr_string, atapi_an_string);
2069 }
2070
2071 /* determine max_sectors */
2072 dev->max_sectors = ATA_MAX_SECTORS;
2073 if (dev->flags & ATA_DFLAG_LBA48)
2074 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2075
2076 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2077 /* Let the user know. We don't want to disallow opens for
2078 rescue purposes, or in case the vendor is just a blithering
2079 idiot */
2080 if (print_info) {
2081 ata_dev_printk(dev, KERN_WARNING,
2082 "Drive reports diagnostics failure. This may indicate a drive\n");
2083 ata_dev_printk(dev, KERN_WARNING,
2084 "fault or invalid emulation. Contact drive vendor for information.\n");
2085 }
2086 }
2087
2088 /* limit bridge transfers to udma5, 200 sectors */
2089 if (ata_dev_knobble(dev)) {
2090 if (ata_msg_drv(ap) && print_info)
2091 ata_dev_printk(dev, KERN_INFO,
2092 "applying bridge limits\n");
2093 dev->udma_mask &= ATA_UDMA5;
2094 dev->max_sectors = ATA_MAX_SECTORS;
2095 }
2096
2097 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2098 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2099 dev->max_sectors);
2100
2101 if (ap->ops->dev_config)
2102 ap->ops->dev_config(dev);
2103
2104 if (ata_msg_probe(ap))
2105 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2106 __FUNCTION__, ata_chk_status(ap));
2107 return 0;
2108
2109 err_out_nosup:
2110 if (ata_msg_probe(ap))
2111 ata_dev_printk(dev, KERN_DEBUG,
2112 "%s: EXIT, err\n", __FUNCTION__);
2113 return rc;
2114 }
2115
2116 /**
2117 * ata_cable_40wire - return 40 wire cable type
2118 * @ap: port
2119 *
2120 * Helper method for drivers which want to hardwire 40 wire cable
2121 * detection.
2122 */
2123
2124 int ata_cable_40wire(struct ata_port *ap)
2125 {
2126 return ATA_CBL_PATA40;
2127 }
2128
2129 /**
2130 * ata_cable_80wire - return 80 wire cable type
2131 * @ap: port
2132 *
2133 * Helper method for drivers which want to hardwire 80 wire cable
2134 * detection.
2135 */
2136
2137 int ata_cable_80wire(struct ata_port *ap)
2138 {
2139 return ATA_CBL_PATA80;
2140 }
2141
2142 /**
2143 * ata_cable_unknown - return unknown PATA cable.
2144 * @ap: port
2145 *
2146 * Helper method for drivers which have no PATA cable detection.
2147 */
2148
2149 int ata_cable_unknown(struct ata_port *ap)
2150 {
2151 return ATA_CBL_PATA_UNK;
2152 }
2153
2154 /**
2155 * ata_cable_sata - return SATA cable type
2156 * @ap: port
2157 *
2158 * Helper method for drivers which have SATA cables
2159 */
2160
2161 int ata_cable_sata(struct ata_port *ap)
2162 {
2163 return ATA_CBL_SATA;
2164 }
2165
2166 /**
2167 * ata_bus_probe - Reset and probe ATA bus
2168 * @ap: Bus to probe
2169 *
2170 * Master ATA bus probing function. Initiates a hardware-dependent
2171 * bus reset, then attempts to identify any devices found on
2172 * the bus.
2173 *
2174 * LOCKING:
2175 * PCI/etc. bus probe sem.
2176 *
2177 * RETURNS:
2178 * Zero on success, negative errno otherwise.
2179 */
2180
2181 int ata_bus_probe(struct ata_port *ap)
2182 {
2183 unsigned int classes[ATA_MAX_DEVICES];
2184 int tries[ATA_MAX_DEVICES];
2185 int rc;
2186 struct ata_device *dev;
2187
2188 ata_port_probe(ap);
2189
2190 ata_link_for_each_dev(dev, &ap->link)
2191 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2192
2193 retry:
2194 /* reset and determine device classes */
2195 ap->ops->phy_reset(ap);
2196
2197 ata_link_for_each_dev(dev, &ap->link) {
2198 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2199 dev->class != ATA_DEV_UNKNOWN)
2200 classes[dev->devno] = dev->class;
2201 else
2202 classes[dev->devno] = ATA_DEV_NONE;
2203
2204 dev->class = ATA_DEV_UNKNOWN;
2205 }
2206
2207 ata_port_probe(ap);
2208
2209 /* after the reset the device state is PIO 0 and the controller
2210 state is undefined. Record the mode */
2211
2212 ata_link_for_each_dev(dev, &ap->link)
2213 dev->pio_mode = XFER_PIO_0;
2214
2215 /* read IDENTIFY page and configure devices. We have to do the identify
2216 specific sequence bass-ackwards so that PDIAG- is released by
2217 the slave device */
2218
2219 ata_link_for_each_dev(dev, &ap->link) {
2220 if (tries[dev->devno])
2221 dev->class = classes[dev->devno];
2222
2223 if (!ata_dev_enabled(dev))
2224 continue;
2225
2226 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2227 dev->id);
2228 if (rc)
2229 goto fail;
2230 }
2231
2232 /* Now ask for the cable type as PDIAG- should have been released */
2233 if (ap->ops->cable_detect)
2234 ap->cbl = ap->ops->cable_detect(ap);
2235
2236 /* We may have SATA bridge glue hiding here irrespective of the
2237 reported cable types and sensed types */
2238 ata_link_for_each_dev(dev, &ap->link) {
2239 if (!ata_dev_enabled(dev))
2240 continue;
2241 /* SATA drives indicate we have a bridge. We don't know which
2242 end of the link the bridge is which is a problem */
2243 if (ata_id_is_sata(dev->id))
2244 ap->cbl = ATA_CBL_SATA;
2245 }
2246
2247 /* After the identify sequence we can now set up the devices. We do
2248 this in the normal order so that the user doesn't get confused */
2249
2250 ata_link_for_each_dev(dev, &ap->link) {
2251 if (!ata_dev_enabled(dev))
2252 continue;
2253
2254 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2255 rc = ata_dev_configure(dev);
2256 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2257 if (rc)
2258 goto fail;
2259 }
2260
2261 /* configure transfer mode */
2262 rc = ata_set_mode(&ap->link, &dev);
2263 if (rc)
2264 goto fail;
2265
2266 ata_link_for_each_dev(dev, &ap->link)
2267 if (ata_dev_enabled(dev))
2268 return 0;
2269
2270 /* no device present, disable port */
2271 ata_port_disable(ap);
2272 return -ENODEV;
2273
2274 fail:
2275 tries[dev->devno]--;
2276
2277 switch (rc) {
2278 case -EINVAL:
2279 /* eeek, something went very wrong, give up */
2280 tries[dev->devno] = 0;
2281 break;
2282
2283 case -ENODEV:
2284 /* give it just one more chance */
2285 tries[dev->devno] = min(tries[dev->devno], 1);
2286 case -EIO:
2287 if (tries[dev->devno] == 1) {
2288 /* This is the last chance, better to slow
2289 * down than lose it.
2290 */
2291 sata_down_spd_limit(&ap->link);
2292 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2293 }
2294 }
2295
2296 if (!tries[dev->devno])
2297 ata_dev_disable(dev);
2298
2299 goto retry;
2300 }
2301
2302 /**
2303 * ata_port_probe - Mark port as enabled
2304 * @ap: Port for which we indicate enablement
2305 *
2306 * Modify @ap data structure such that the system
2307 * thinks that the entire port is enabled.
2308 *
2309 * LOCKING: host lock, or some other form of
2310 * serialization.
2311 */
2312
2313 void ata_port_probe(struct ata_port *ap)
2314 {
2315 ap->flags &= ~ATA_FLAG_DISABLED;
2316 }
2317
2318 /**
2319 * sata_print_link_status - Print SATA link status
2320 * @link: SATA link to printk link status about
2321 *
2322 * This function prints link speed and status of a SATA link.
2323 *
2324 * LOCKING:
2325 * None.
2326 */
2327 void sata_print_link_status(struct ata_link *link)
2328 {
2329 u32 sstatus, scontrol, tmp;
2330
2331 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2332 return;
2333 sata_scr_read(link, SCR_CONTROL, &scontrol);
2334
2335 if (ata_link_online(link)) {
2336 tmp = (sstatus >> 4) & 0xf;
2337 ata_link_printk(link, KERN_INFO,
2338 "SATA link up %s (SStatus %X SControl %X)\n",
2339 sata_spd_string(tmp), sstatus, scontrol);
2340 } else {
2341 ata_link_printk(link, KERN_INFO,
2342 "SATA link down (SStatus %X SControl %X)\n",
2343 sstatus, scontrol);
2344 }
2345 }
2346
2347 /**
2348 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2349 * @ap: SATA port associated with target SATA PHY.
2350 *
2351 * This function issues commands to standard SATA Sxxx
2352 * PHY registers, to wake up the phy (and device), and
2353 * clear any reset condition.
2354 *
2355 * LOCKING:
2356 * PCI/etc. bus probe sem.
2357 *
2358 */
2359 void __sata_phy_reset(struct ata_port *ap)
2360 {
2361 struct ata_link *link = &ap->link;
2362 unsigned long timeout = jiffies + (HZ * 5);
2363 u32 sstatus;
2364
2365 if (ap->flags & ATA_FLAG_SATA_RESET) {
2366 /* issue phy wake/reset */
2367 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2368 /* Couldn't find anything in SATA I/II specs, but
2369 * AHCI-1.1 10.4.2 says at least 1 ms. */
2370 mdelay(1);
2371 }
2372 /* phy wake/clear reset */
2373 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2374
2375 /* wait for phy to become ready, if necessary */
2376 do {
2377 msleep(200);
2378 sata_scr_read(link, SCR_STATUS, &sstatus);
2379 if ((sstatus & 0xf) != 1)
2380 break;
2381 } while (time_before(jiffies, timeout));
2382
2383 /* print link status */
2384 sata_print_link_status(link);
2385
2386 /* TODO: phy layer with polling, timeouts, etc. */
2387 if (!ata_link_offline(link))
2388 ata_port_probe(ap);
2389 else
2390 ata_port_disable(ap);
2391
2392 if (ap->flags & ATA_FLAG_DISABLED)
2393 return;
2394
2395 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2396 ata_port_disable(ap);
2397 return;
2398 }
2399
2400 ap->cbl = ATA_CBL_SATA;
2401 }
2402
2403 /**
2404 * sata_phy_reset - Reset SATA bus.
2405 * @ap: SATA port associated with target SATA PHY.
2406 *
2407 * This function resets the SATA bus, and then probes
2408 * the bus for devices.
2409 *
2410 * LOCKING:
2411 * PCI/etc. bus probe sem.
2412 *
2413 */
2414 void sata_phy_reset(struct ata_port *ap)
2415 {
2416 __sata_phy_reset(ap);
2417 if (ap->flags & ATA_FLAG_DISABLED)
2418 return;
2419 ata_bus_reset(ap);
2420 }
2421
2422 /**
2423 * ata_dev_pair - return other device on cable
2424 * @adev: device
2425 *
2426 * Obtain the other device on the same cable, or if none is
2427 * present NULL is returned
2428 */
2429
2430 struct ata_device *ata_dev_pair(struct ata_device *adev)
2431 {
2432 struct ata_link *link = adev->link;
2433 struct ata_device *pair = &link->device[1 - adev->devno];
2434 if (!ata_dev_enabled(pair))
2435 return NULL;
2436 return pair;
2437 }
2438
2439 /**
2440 * ata_port_disable - Disable port.
2441 * @ap: Port to be disabled.
2442 *
2443 * Modify @ap data structure such that the system
2444 * thinks that the entire port is disabled, and should
2445 * never attempt to probe or communicate with devices
2446 * on this port.
2447 *
2448 * LOCKING: host lock, or some other form of
2449 * serialization.
2450 */
2451
2452 void ata_port_disable(struct ata_port *ap)
2453 {
2454 ap->link.device[0].class = ATA_DEV_NONE;
2455 ap->link.device[1].class = ATA_DEV_NONE;
2456 ap->flags |= ATA_FLAG_DISABLED;
2457 }
2458
2459 /**
2460 * sata_down_spd_limit - adjust SATA spd limit downward
2461 * @link: Link to adjust SATA spd limit for
2462 *
2463 * Adjust SATA spd limit of @link downward. Note that this
2464 * function only adjusts the limit. The change must be applied
2465 * using sata_set_spd().
2466 *
2467 * LOCKING:
2468 * Inherited from caller.
2469 *
2470 * RETURNS:
2471 * 0 on success, negative errno on failure
2472 */
2473 int sata_down_spd_limit(struct ata_link *link)
2474 {
2475 u32 sstatus, spd, mask;
2476 int rc, highbit;
2477
2478 if (!sata_scr_valid(link))
2479 return -EOPNOTSUPP;
2480
2481 /* If SCR can be read, use it to determine the current SPD.
2482 * If not, use cached value in link->sata_spd.
2483 */
2484 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2485 if (rc == 0)
2486 spd = (sstatus >> 4) & 0xf;
2487 else
2488 spd = link->sata_spd;
2489
2490 mask = link->sata_spd_limit;
2491 if (mask <= 1)
2492 return -EINVAL;
2493
2494 /* unconditionally mask off the highest bit */
2495 highbit = fls(mask) - 1;
2496 mask &= ~(1 << highbit);
2497
2498 /* Mask off all speeds higher than or equal to the current
2499 * one. Force 1.5Gbps if current SPD is not available.
2500 */
2501 if (spd > 1)
2502 mask &= (1 << (spd - 1)) - 1;
2503 else
2504 mask &= 1;
2505
2506 /* were we already at the bottom? */
2507 if (!mask)
2508 return -EINVAL;
2509
2510 link->sata_spd_limit = mask;
2511
2512 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2513 sata_spd_string(fls(mask)));
2514
2515 return 0;
2516 }
2517
2518 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2519 {
2520 u32 spd, limit;
2521
2522 if (link->sata_spd_limit == UINT_MAX)
2523 limit = 0;
2524 else
2525 limit = fls(link->sata_spd_limit);
2526
2527 spd = (*scontrol >> 4) & 0xf;
2528 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2529
2530 return spd != limit;
2531 }
2532
2533 /**
2534 * sata_set_spd_needed - is SATA spd configuration needed
2535 * @link: Link in question
2536 *
2537 * Test whether the spd limit in SControl matches
2538 * @link->sata_spd_limit. This function is used to determine
2539 * whether hardreset is necessary to apply SATA spd
2540 * configuration.
2541 *
2542 * LOCKING:
2543 * Inherited from caller.
2544 *
2545 * RETURNS:
2546 * 1 if SATA spd configuration is needed, 0 otherwise.
2547 */
2548 int sata_set_spd_needed(struct ata_link *link)
2549 {
2550 u32 scontrol;
2551
2552 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2553 return 0;
2554
2555 return __sata_set_spd_needed(link, &scontrol);
2556 }
2557
2558 /**
2559 * sata_set_spd - set SATA spd according to spd limit
2560 * @link: Link to set SATA spd for
2561 *
2562 * Set SATA spd of @link according to sata_spd_limit.
2563 *
2564 * LOCKING:
2565 * Inherited from caller.
2566 *
2567 * RETURNS:
2568 * 0 if spd doesn't need to be changed, 1 if spd has been
2569 * changed. Negative errno if SCR registers are inaccessible.
2570 */
2571 int sata_set_spd(struct ata_link *link)
2572 {
2573 u32 scontrol;
2574 int rc;
2575
2576 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2577 return rc;
2578
2579 if (!__sata_set_spd_needed(link, &scontrol))
2580 return 0;
2581
2582 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2583 return rc;
2584
2585 return 1;
2586 }
2587
2588 /*
2589 * This mode timing computation functionality is ported over from
2590 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2591 */
2592 /*
2593 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2594 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2595 * for UDMA6, which is currently supported only by Maxtor drives.
2596 *
2597 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2598 */
2599
2600 static const struct ata_timing ata_timing[] = {
2601
2602 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2603 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2604 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2605 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2606
2607 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2608 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2609 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2610 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2611 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2612
2613 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2614
2615 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2616 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2617 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2618
2619 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2620 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2621 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2622
2623 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2624 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2625 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2626 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2627
2628 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2629 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2630 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2631
2632 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2633
2634 { 0xFF }
2635 };
2636
2637 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2638 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2639
2640 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2641 {
2642 q->setup = EZ(t->setup * 1000, T);
2643 q->act8b = EZ(t->act8b * 1000, T);
2644 q->rec8b = EZ(t->rec8b * 1000, T);
2645 q->cyc8b = EZ(t->cyc8b * 1000, T);
2646 q->active = EZ(t->active * 1000, T);
2647 q->recover = EZ(t->recover * 1000, T);
2648 q->cycle = EZ(t->cycle * 1000, T);
2649 q->udma = EZ(t->udma * 1000, UT);
2650 }
2651
2652 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2653 struct ata_timing *m, unsigned int what)
2654 {
2655 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2656 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2657 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2658 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2659 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2660 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2661 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2662 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2663 }
2664
2665 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2666 {
2667 const struct ata_timing *t;
2668
2669 for (t = ata_timing; t->mode != speed; t++)
2670 if (t->mode == 0xFF)
2671 return NULL;
2672 return t;
2673 }
2674
2675 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2676 struct ata_timing *t, int T, int UT)
2677 {
2678 const struct ata_timing *s;
2679 struct ata_timing p;
2680
2681 /*
2682 * Find the mode.
2683 */
2684
2685 if (!(s = ata_timing_find_mode(speed)))
2686 return -EINVAL;
2687
2688 memcpy(t, s, sizeof(*s));
2689
2690 /*
2691 * If the drive is an EIDE drive, it can tell us it needs extended
2692 * PIO/MW_DMA cycle timing.
2693 */
2694
2695 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2696 memset(&p, 0, sizeof(p));
2697 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2698 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2699 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2700 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2701 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2702 }
2703 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2704 }
2705
2706 /*
2707 * Convert the timing to bus clock counts.
2708 */
2709
2710 ata_timing_quantize(t, t, T, UT);
2711
2712 /*
2713 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2714 * S.M.A.R.T * and some other commands. We have to ensure that the
2715 * DMA cycle timing is slower/equal than the fastest PIO timing.
2716 */
2717
2718 if (speed > XFER_PIO_6) {
2719 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2720 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2721 }
2722
2723 /*
2724 * Lengthen active & recovery time so that cycle time is correct.
2725 */
2726
2727 if (t->act8b + t->rec8b < t->cyc8b) {
2728 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2729 t->rec8b = t->cyc8b - t->act8b;
2730 }
2731
2732 if (t->active + t->recover < t->cycle) {
2733 t->active += (t->cycle - (t->active + t->recover)) / 2;
2734 t->recover = t->cycle - t->active;
2735 }
2736
2737 /* In a few cases quantisation may produce enough errors to
2738 leave t->cycle too low for the sum of active and recovery
2739 if so we must correct this */
2740 if (t->active + t->recover > t->cycle)
2741 t->cycle = t->active + t->recover;
2742
2743 return 0;
2744 }
2745
2746 /**
2747 * ata_down_xfermask_limit - adjust dev xfer masks downward
2748 * @dev: Device to adjust xfer masks
2749 * @sel: ATA_DNXFER_* selector
2750 *
2751 * Adjust xfer masks of @dev downward. Note that this function
2752 * does not apply the change. Invoking ata_set_mode() afterwards
2753 * will apply the limit.
2754 *
2755 * LOCKING:
2756 * Inherited from caller.
2757 *
2758 * RETURNS:
2759 * 0 on success, negative errno on failure
2760 */
2761 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2762 {
2763 char buf[32];
2764 unsigned int orig_mask, xfer_mask;
2765 unsigned int pio_mask, mwdma_mask, udma_mask;
2766 int quiet, highbit;
2767
2768 quiet = !!(sel & ATA_DNXFER_QUIET);
2769 sel &= ~ATA_DNXFER_QUIET;
2770
2771 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2772 dev->mwdma_mask,
2773 dev->udma_mask);
2774 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2775
2776 switch (sel) {
2777 case ATA_DNXFER_PIO:
2778 highbit = fls(pio_mask) - 1;
2779 pio_mask &= ~(1 << highbit);
2780 break;
2781
2782 case ATA_DNXFER_DMA:
2783 if (udma_mask) {
2784 highbit = fls(udma_mask) - 1;
2785 udma_mask &= ~(1 << highbit);
2786 if (!udma_mask)
2787 return -ENOENT;
2788 } else if (mwdma_mask) {
2789 highbit = fls(mwdma_mask) - 1;
2790 mwdma_mask &= ~(1 << highbit);
2791 if (!mwdma_mask)
2792 return -ENOENT;
2793 }
2794 break;
2795
2796 case ATA_DNXFER_40C:
2797 udma_mask &= ATA_UDMA_MASK_40C;
2798 break;
2799
2800 case ATA_DNXFER_FORCE_PIO0:
2801 pio_mask &= 1;
2802 case ATA_DNXFER_FORCE_PIO:
2803 mwdma_mask = 0;
2804 udma_mask = 0;
2805 break;
2806
2807 default:
2808 BUG();
2809 }
2810
2811 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2812
2813 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2814 return -ENOENT;
2815
2816 if (!quiet) {
2817 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2818 snprintf(buf, sizeof(buf), "%s:%s",
2819 ata_mode_string(xfer_mask),
2820 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2821 else
2822 snprintf(buf, sizeof(buf), "%s",
2823 ata_mode_string(xfer_mask));
2824
2825 ata_dev_printk(dev, KERN_WARNING,
2826 "limiting speed to %s\n", buf);
2827 }
2828
2829 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2830 &dev->udma_mask);
2831
2832 return 0;
2833 }
2834
2835 static int ata_dev_set_mode(struct ata_device *dev)
2836 {
2837 struct ata_eh_context *ehc = &dev->link->eh_context;
2838 unsigned int err_mask;
2839 int rc;
2840
2841 dev->flags &= ~ATA_DFLAG_PIO;
2842 if (dev->xfer_shift == ATA_SHIFT_PIO)
2843 dev->flags |= ATA_DFLAG_PIO;
2844
2845 err_mask = ata_dev_set_xfermode(dev);
2846 /* Old CFA may refuse this command, which is just fine */
2847 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2848 err_mask &= ~AC_ERR_DEV;
2849 /* Some very old devices and some bad newer ones fail any kind of
2850 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2851 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2852 dev->pio_mode <= XFER_PIO_2)
2853 err_mask &= ~AC_ERR_DEV;
2854 if (err_mask) {
2855 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2856 "(err_mask=0x%x)\n", err_mask);
2857 return -EIO;
2858 }
2859
2860 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2861 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
2862 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2863 if (rc)
2864 return rc;
2865
2866 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2867 dev->xfer_shift, (int)dev->xfer_mode);
2868
2869 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2870 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2871 return 0;
2872 }
2873
2874 /**
2875 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2876 * @link: link on which timings will be programmed
2877 * @r_failed_dev: out paramter for failed device
2878 *
2879 * Standard implementation of the function used to tune and set
2880 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2881 * ata_dev_set_mode() fails, pointer to the failing device is
2882 * returned in @r_failed_dev.
2883 *
2884 * LOCKING:
2885 * PCI/etc. bus probe sem.
2886 *
2887 * RETURNS:
2888 * 0 on success, negative errno otherwise
2889 */
2890
2891 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2892 {
2893 struct ata_port *ap = link->ap;
2894 struct ata_device *dev;
2895 int rc = 0, used_dma = 0, found = 0;
2896
2897 /* step 1: calculate xfer_mask */
2898 ata_link_for_each_dev(dev, link) {
2899 unsigned int pio_mask, dma_mask;
2900
2901 if (!ata_dev_enabled(dev))
2902 continue;
2903
2904 ata_dev_xfermask(dev);
2905
2906 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2907 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2908 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2909 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2910
2911 found = 1;
2912 if (dev->dma_mode)
2913 used_dma = 1;
2914 }
2915 if (!found)
2916 goto out;
2917
2918 /* step 2: always set host PIO timings */
2919 ata_link_for_each_dev(dev, link) {
2920 if (!ata_dev_enabled(dev))
2921 continue;
2922
2923 if (!dev->pio_mode) {
2924 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2925 rc = -EINVAL;
2926 goto out;
2927 }
2928
2929 dev->xfer_mode = dev->pio_mode;
2930 dev->xfer_shift = ATA_SHIFT_PIO;
2931 if (ap->ops->set_piomode)
2932 ap->ops->set_piomode(ap, dev);
2933 }
2934
2935 /* step 3: set host DMA timings */
2936 ata_link_for_each_dev(dev, link) {
2937 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2938 continue;
2939
2940 dev->xfer_mode = dev->dma_mode;
2941 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2942 if (ap->ops->set_dmamode)
2943 ap->ops->set_dmamode(ap, dev);
2944 }
2945
2946 /* step 4: update devices' xfer mode */
2947 ata_link_for_each_dev(dev, link) {
2948 /* don't update suspended devices' xfer mode */
2949 if (!ata_dev_enabled(dev))
2950 continue;
2951
2952 rc = ata_dev_set_mode(dev);
2953 if (rc)
2954 goto out;
2955 }
2956
2957 /* Record simplex status. If we selected DMA then the other
2958 * host channels are not permitted to do so.
2959 */
2960 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2961 ap->host->simplex_claimed = ap;
2962
2963 out:
2964 if (rc)
2965 *r_failed_dev = dev;
2966 return rc;
2967 }
2968
2969 /**
2970 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2971 * @link: link on which timings will be programmed
2972 * @r_failed_dev: out paramter for failed device
2973 *
2974 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2975 * ata_set_mode() fails, pointer to the failing device is
2976 * returned in @r_failed_dev.
2977 *
2978 * LOCKING:
2979 * PCI/etc. bus probe sem.
2980 *
2981 * RETURNS:
2982 * 0 on success, negative errno otherwise
2983 */
2984 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2985 {
2986 struct ata_port *ap = link->ap;
2987
2988 /* has private set_mode? */
2989 if (ap->ops->set_mode)
2990 return ap->ops->set_mode(link, r_failed_dev);
2991 return ata_do_set_mode(link, r_failed_dev);
2992 }
2993
2994 /**
2995 * ata_tf_to_host - issue ATA taskfile to host controller
2996 * @ap: port to which command is being issued
2997 * @tf: ATA taskfile register set
2998 *
2999 * Issues ATA taskfile register set to ATA host controller,
3000 * with proper synchronization with interrupt handler and
3001 * other threads.
3002 *
3003 * LOCKING:
3004 * spin_lock_irqsave(host lock)
3005 */
3006
3007 static inline void ata_tf_to_host(struct ata_port *ap,
3008 const struct ata_taskfile *tf)
3009 {
3010 ap->ops->tf_load(ap, tf);
3011 ap->ops->exec_command(ap, tf);
3012 }
3013
3014 /**
3015 * ata_busy_sleep - sleep until BSY clears, or timeout
3016 * @ap: port containing status register to be polled
3017 * @tmout_pat: impatience timeout
3018 * @tmout: overall timeout
3019 *
3020 * Sleep until ATA Status register bit BSY clears,
3021 * or a timeout occurs.
3022 *
3023 * LOCKING:
3024 * Kernel thread context (may sleep).
3025 *
3026 * RETURNS:
3027 * 0 on success, -errno otherwise.
3028 */
3029 int ata_busy_sleep(struct ata_port *ap,
3030 unsigned long tmout_pat, unsigned long tmout)
3031 {
3032 unsigned long timer_start, timeout;
3033 u8 status;
3034
3035 status = ata_busy_wait(ap, ATA_BUSY, 300);
3036 timer_start = jiffies;
3037 timeout = timer_start + tmout_pat;
3038 while (status != 0xff && (status & ATA_BUSY) &&
3039 time_before(jiffies, timeout)) {
3040 msleep(50);
3041 status = ata_busy_wait(ap, ATA_BUSY, 3);
3042 }
3043
3044 if (status != 0xff && (status & ATA_BUSY))
3045 ata_port_printk(ap, KERN_WARNING,
3046 "port is slow to respond, please be patient "
3047 "(Status 0x%x)\n", status);
3048
3049 timeout = timer_start + tmout;
3050 while (status != 0xff && (status & ATA_BUSY) &&
3051 time_before(jiffies, timeout)) {
3052 msleep(50);
3053 status = ata_chk_status(ap);
3054 }
3055
3056 if (status == 0xff)
3057 return -ENODEV;
3058
3059 if (status & ATA_BUSY) {
3060 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3061 "(%lu secs, Status 0x%x)\n",
3062 tmout / HZ, status);
3063 return -EBUSY;
3064 }
3065
3066 return 0;
3067 }
3068
3069 /**
3070 * ata_wait_ready - sleep until BSY clears, or timeout
3071 * @ap: port containing status register to be polled
3072 * @deadline: deadline jiffies for the operation
3073 *
3074 * Sleep until ATA Status register bit BSY clears, or timeout
3075 * occurs.
3076 *
3077 * LOCKING:
3078 * Kernel thread context (may sleep).
3079 *
3080 * RETURNS:
3081 * 0 on success, -errno otherwise.
3082 */
3083 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3084 {
3085 unsigned long start = jiffies;
3086 int warned = 0;
3087
3088 while (1) {
3089 u8 status = ata_chk_status(ap);
3090 unsigned long now = jiffies;
3091
3092 if (!(status & ATA_BUSY))
3093 return 0;
3094 if (!ata_link_online(&ap->link) && status == 0xff)
3095 return -ENODEV;
3096 if (time_after(now, deadline))
3097 return -EBUSY;
3098
3099 if (!warned && time_after(now, start + 5 * HZ) &&
3100 (deadline - now > 3 * HZ)) {
3101 ata_port_printk(ap, KERN_WARNING,
3102 "port is slow to respond, please be patient "
3103 "(Status 0x%x)\n", status);
3104 warned = 1;
3105 }
3106
3107 msleep(50);
3108 }
3109 }
3110
3111 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3112 unsigned long deadline)
3113 {
3114 struct ata_ioports *ioaddr = &ap->ioaddr;
3115 unsigned int dev0 = devmask & (1 << 0);
3116 unsigned int dev1 = devmask & (1 << 1);
3117 int rc, ret = 0;
3118
3119 /* if device 0 was found in ata_devchk, wait for its
3120 * BSY bit to clear
3121 */
3122 if (dev0) {
3123 rc = ata_wait_ready(ap, deadline);
3124 if (rc) {
3125 if (rc != -ENODEV)
3126 return rc;
3127 ret = rc;
3128 }
3129 }
3130
3131 /* if device 1 was found in ata_devchk, wait for register
3132 * access briefly, then wait for BSY to clear.
3133 */
3134 if (dev1) {
3135 int i;
3136
3137 ap->ops->dev_select(ap, 1);
3138
3139 /* Wait for register access. Some ATAPI devices fail
3140 * to set nsect/lbal after reset, so don't waste too
3141 * much time on it. We're gonna wait for !BSY anyway.
3142 */
3143 for (i = 0; i < 2; i++) {
3144 u8 nsect, lbal;
3145
3146 nsect = ioread8(ioaddr->nsect_addr);
3147 lbal = ioread8(ioaddr->lbal_addr);
3148 if ((nsect == 1) && (lbal == 1))
3149 break;
3150 msleep(50); /* give drive a breather */
3151 }
3152
3153 rc = ata_wait_ready(ap, deadline);
3154 if (rc) {
3155 if (rc != -ENODEV)
3156 return rc;
3157 ret = rc;
3158 }
3159 }
3160
3161 /* is all this really necessary? */
3162 ap->ops->dev_select(ap, 0);
3163 if (dev1)
3164 ap->ops->dev_select(ap, 1);
3165 if (dev0)
3166 ap->ops->dev_select(ap, 0);
3167
3168 return ret;
3169 }
3170
3171 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3172 unsigned long deadline)
3173 {
3174 struct ata_ioports *ioaddr = &ap->ioaddr;
3175
3176 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3177
3178 /* software reset. causes dev0 to be selected */
3179 iowrite8(ap->ctl, ioaddr->ctl_addr);
3180 udelay(20); /* FIXME: flush */
3181 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3182 udelay(20); /* FIXME: flush */
3183 iowrite8(ap->ctl, ioaddr->ctl_addr);
3184
3185 /* spec mandates ">= 2ms" before checking status.
3186 * We wait 150ms, because that was the magic delay used for
3187 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3188 * between when the ATA command register is written, and then
3189 * status is checked. Because waiting for "a while" before
3190 * checking status is fine, post SRST, we perform this magic
3191 * delay here as well.
3192 *
3193 * Old drivers/ide uses the 2mS rule and then waits for ready
3194 */
3195 msleep(150);
3196
3197 /* Before we perform post reset processing we want to see if
3198 * the bus shows 0xFF because the odd clown forgets the D7
3199 * pulldown resistor.
3200 */
3201 if (ata_check_status(ap) == 0xFF)
3202 return -ENODEV;
3203
3204 return ata_bus_post_reset(ap, devmask, deadline);
3205 }
3206
3207 /**
3208 * ata_bus_reset - reset host port and associated ATA channel
3209 * @ap: port to reset
3210 *
3211 * This is typically the first time we actually start issuing
3212 * commands to the ATA channel. We wait for BSY to clear, then
3213 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3214 * result. Determine what devices, if any, are on the channel
3215 * by looking at the device 0/1 error register. Look at the signature
3216 * stored in each device's taskfile registers, to determine if
3217 * the device is ATA or ATAPI.
3218 *
3219 * LOCKING:
3220 * PCI/etc. bus probe sem.
3221 * Obtains host lock.
3222 *
3223 * SIDE EFFECTS:
3224 * Sets ATA_FLAG_DISABLED if bus reset fails.
3225 */
3226
3227 void ata_bus_reset(struct ata_port *ap)
3228 {
3229 struct ata_device *device = ap->link.device;
3230 struct ata_ioports *ioaddr = &ap->ioaddr;
3231 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3232 u8 err;
3233 unsigned int dev0, dev1 = 0, devmask = 0;
3234 int rc;
3235
3236 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3237
3238 /* determine if device 0/1 are present */
3239 if (ap->flags & ATA_FLAG_SATA_RESET)
3240 dev0 = 1;
3241 else {
3242 dev0 = ata_devchk(ap, 0);
3243 if (slave_possible)
3244 dev1 = ata_devchk(ap, 1);
3245 }
3246
3247 if (dev0)
3248 devmask |= (1 << 0);
3249 if (dev1)
3250 devmask |= (1 << 1);
3251
3252 /* select device 0 again */
3253 ap->ops->dev_select(ap, 0);
3254
3255 /* issue bus reset */
3256 if (ap->flags & ATA_FLAG_SRST) {
3257 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3258 if (rc && rc != -ENODEV)
3259 goto err_out;
3260 }
3261
3262 /*
3263 * determine by signature whether we have ATA or ATAPI devices
3264 */
3265 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3266 if ((slave_possible) && (err != 0x81))
3267 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3268
3269 /* is double-select really necessary? */
3270 if (device[1].class != ATA_DEV_NONE)
3271 ap->ops->dev_select(ap, 1);
3272 if (device[0].class != ATA_DEV_NONE)
3273 ap->ops->dev_select(ap, 0);
3274
3275 /* if no devices were detected, disable this port */
3276 if ((device[0].class == ATA_DEV_NONE) &&
3277 (device[1].class == ATA_DEV_NONE))
3278 goto err_out;
3279
3280 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3281 /* set up device control for ATA_FLAG_SATA_RESET */
3282 iowrite8(ap->ctl, ioaddr->ctl_addr);
3283 }
3284
3285 DPRINTK("EXIT\n");
3286 return;
3287
3288 err_out:
3289 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3290 ata_port_disable(ap);
3291
3292 DPRINTK("EXIT\n");
3293 }
3294
3295 /**
3296 * sata_link_debounce - debounce SATA phy status
3297 * @link: ATA link to debounce SATA phy status for
3298 * @params: timing parameters { interval, duratinon, timeout } in msec
3299 * @deadline: deadline jiffies for the operation
3300 *
3301 * Make sure SStatus of @link reaches stable state, determined by
3302 * holding the same value where DET is not 1 for @duration polled
3303 * every @interval, before @timeout. Timeout constraints the
3304 * beginning of the stable state. Because DET gets stuck at 1 on
3305 * some controllers after hot unplugging, this functions waits
3306 * until timeout then returns 0 if DET is stable at 1.
3307 *
3308 * @timeout is further limited by @deadline. The sooner of the
3309 * two is used.
3310 *
3311 * LOCKING:
3312 * Kernel thread context (may sleep)
3313 *
3314 * RETURNS:
3315 * 0 on success, -errno on failure.
3316 */
3317 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3318 unsigned long deadline)
3319 {
3320 unsigned long interval_msec = params[0];
3321 unsigned long duration = msecs_to_jiffies(params[1]);
3322 unsigned long last_jiffies, t;
3323 u32 last, cur;
3324 int rc;
3325
3326 t = jiffies + msecs_to_jiffies(params[2]);
3327 if (time_before(t, deadline))
3328 deadline = t;
3329
3330 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3331 return rc;
3332 cur &= 0xf;
3333
3334 last = cur;
3335 last_jiffies = jiffies;
3336
3337 while (1) {
3338 msleep(interval_msec);
3339 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3340 return rc;
3341 cur &= 0xf;
3342
3343 /* DET stable? */
3344 if (cur == last) {
3345 if (cur == 1 && time_before(jiffies, deadline))
3346 continue;
3347 if (time_after(jiffies, last_jiffies + duration))
3348 return 0;
3349 continue;
3350 }
3351
3352 /* unstable, start over */
3353 last = cur;
3354 last_jiffies = jiffies;
3355
3356 /* Check deadline. If debouncing failed, return
3357 * -EPIPE to tell upper layer to lower link speed.
3358 */
3359 if (time_after(jiffies, deadline))
3360 return -EPIPE;
3361 }
3362 }
3363
3364 /**
3365 * sata_link_resume - resume SATA link
3366 * @link: ATA link to resume SATA
3367 * @params: timing parameters { interval, duratinon, timeout } in msec
3368 * @deadline: deadline jiffies for the operation
3369 *
3370 * Resume SATA phy @link and debounce it.
3371 *
3372 * LOCKING:
3373 * Kernel thread context (may sleep)
3374 *
3375 * RETURNS:
3376 * 0 on success, -errno on failure.
3377 */
3378 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3379 unsigned long deadline)
3380 {
3381 u32 scontrol;
3382 int rc;
3383
3384 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3385 return rc;
3386
3387 scontrol = (scontrol & 0x0f0) | 0x300;
3388
3389 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3390 return rc;
3391
3392 /* Some PHYs react badly if SStatus is pounded immediately
3393 * after resuming. Delay 200ms before debouncing.
3394 */
3395 msleep(200);
3396
3397 return sata_link_debounce(link, params, deadline);
3398 }
3399
3400 /**
3401 * ata_std_prereset - prepare for reset
3402 * @link: ATA link to be reset
3403 * @deadline: deadline jiffies for the operation
3404 *
3405 * @link is about to be reset. Initialize it. Failure from
3406 * prereset makes libata abort whole reset sequence and give up
3407 * that port, so prereset should be best-effort. It does its
3408 * best to prepare for reset sequence but if things go wrong, it
3409 * should just whine, not fail.
3410 *
3411 * LOCKING:
3412 * Kernel thread context (may sleep)
3413 *
3414 * RETURNS:
3415 * 0 on success, -errno otherwise.
3416 */
3417 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3418 {
3419 struct ata_port *ap = link->ap;
3420 struct ata_eh_context *ehc = &link->eh_context;
3421 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3422 int rc;
3423
3424 /* handle link resume */
3425 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3426 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3427 ehc->i.action |= ATA_EH_HARDRESET;
3428
3429 /* if we're about to do hardreset, nothing more to do */
3430 if (ehc->i.action & ATA_EH_HARDRESET)
3431 return 0;
3432
3433 /* if SATA, resume link */
3434 if (ap->flags & ATA_FLAG_SATA) {
3435 rc = sata_link_resume(link, timing, deadline);
3436 /* whine about phy resume failure but proceed */
3437 if (rc && rc != -EOPNOTSUPP)
3438 ata_link_printk(link, KERN_WARNING, "failed to resume "
3439 "link for reset (errno=%d)\n", rc);
3440 }
3441
3442 /* Wait for !BSY if the controller can wait for the first D2H
3443 * Reg FIS and we don't know that no device is attached.
3444 */
3445 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3446 rc = ata_wait_ready(ap, deadline);
3447 if (rc && rc != -ENODEV) {
3448 ata_link_printk(link, KERN_WARNING, "device not ready "
3449 "(errno=%d), forcing hardreset\n", rc);
3450 ehc->i.action |= ATA_EH_HARDRESET;
3451 }
3452 }
3453
3454 return 0;
3455 }
3456
3457 /**
3458 * ata_std_softreset - reset host port via ATA SRST
3459 * @link: ATA link to reset
3460 * @classes: resulting classes of attached devices
3461 * @deadline: deadline jiffies for the operation
3462 *
3463 * Reset host port using ATA SRST.
3464 *
3465 * LOCKING:
3466 * Kernel thread context (may sleep)
3467 *
3468 * RETURNS:
3469 * 0 on success, -errno otherwise.
3470 */
3471 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3472 unsigned long deadline)
3473 {
3474 struct ata_port *ap = link->ap;
3475 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3476 unsigned int devmask = 0;
3477 int rc;
3478 u8 err;
3479
3480 DPRINTK("ENTER\n");
3481
3482 if (ata_link_offline(link)) {
3483 classes[0] = ATA_DEV_NONE;
3484 goto out;
3485 }
3486
3487 /* determine if device 0/1 are present */
3488 if (ata_devchk(ap, 0))
3489 devmask |= (1 << 0);
3490 if (slave_possible && ata_devchk(ap, 1))
3491 devmask |= (1 << 1);
3492
3493 /* select device 0 again */
3494 ap->ops->dev_select(ap, 0);
3495
3496 /* issue bus reset */
3497 DPRINTK("about to softreset, devmask=%x\n", devmask);
3498 rc = ata_bus_softreset(ap, devmask, deadline);
3499 /* if link is occupied, -ENODEV too is an error */
3500 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3501 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3502 return rc;
3503 }
3504
3505 /* determine by signature whether we have ATA or ATAPI devices */
3506 classes[0] = ata_dev_try_classify(&link->device[0],
3507 devmask & (1 << 0), &err);
3508 if (slave_possible && err != 0x81)
3509 classes[1] = ata_dev_try_classify(&link->device[1],
3510 devmask & (1 << 1), &err);
3511
3512 out:
3513 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3514 return 0;
3515 }
3516
3517 /**
3518 * sata_link_hardreset - reset link via SATA phy reset
3519 * @link: link to reset
3520 * @timing: timing parameters { interval, duratinon, timeout } in msec
3521 * @deadline: deadline jiffies for the operation
3522 *
3523 * SATA phy-reset @link using DET bits of SControl register.
3524 *
3525 * LOCKING:
3526 * Kernel thread context (may sleep)
3527 *
3528 * RETURNS:
3529 * 0 on success, -errno otherwise.
3530 */
3531 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3532 unsigned long deadline)
3533 {
3534 u32 scontrol;
3535 int rc;
3536
3537 DPRINTK("ENTER\n");
3538
3539 if (sata_set_spd_needed(link)) {
3540 /* SATA spec says nothing about how to reconfigure
3541 * spd. To be on the safe side, turn off phy during
3542 * reconfiguration. This works for at least ICH7 AHCI
3543 * and Sil3124.
3544 */
3545 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3546 goto out;
3547
3548 scontrol = (scontrol & 0x0f0) | 0x304;
3549
3550 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3551 goto out;
3552
3553 sata_set_spd(link);
3554 }
3555
3556 /* issue phy wake/reset */
3557 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3558 goto out;
3559
3560 scontrol = (scontrol & 0x0f0) | 0x301;
3561
3562 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3563 goto out;
3564
3565 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3566 * 10.4.2 says at least 1 ms.
3567 */
3568 msleep(1);
3569
3570 /* bring link back */
3571 rc = sata_link_resume(link, timing, deadline);
3572 out:
3573 DPRINTK("EXIT, rc=%d\n", rc);
3574 return rc;
3575 }
3576
3577 /**
3578 * sata_std_hardreset - reset host port via SATA phy reset
3579 * @link: link to reset
3580 * @class: resulting class of attached device
3581 * @deadline: deadline jiffies for the operation
3582 *
3583 * SATA phy-reset host port using DET bits of SControl register,
3584 * wait for !BSY and classify the attached device.
3585 *
3586 * LOCKING:
3587 * Kernel thread context (may sleep)
3588 *
3589 * RETURNS:
3590 * 0 on success, -errno otherwise.
3591 */
3592 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3593 unsigned long deadline)
3594 {
3595 struct ata_port *ap = link->ap;
3596 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3597 int rc;
3598
3599 DPRINTK("ENTER\n");
3600
3601 /* do hardreset */
3602 rc = sata_link_hardreset(link, timing, deadline);
3603 if (rc) {
3604 ata_link_printk(link, KERN_ERR,
3605 "COMRESET failed (errno=%d)\n", rc);
3606 return rc;
3607 }
3608
3609 /* TODO: phy layer with polling, timeouts, etc. */
3610 if (ata_link_offline(link)) {
3611 *class = ATA_DEV_NONE;
3612 DPRINTK("EXIT, link offline\n");
3613 return 0;
3614 }
3615
3616 /* wait a while before checking status, see SRST for more info */
3617 msleep(150);
3618
3619 rc = ata_wait_ready(ap, deadline);
3620 /* link occupied, -ENODEV too is an error */
3621 if (rc) {
3622 ata_link_printk(link, KERN_ERR,
3623 "COMRESET failed (errno=%d)\n", rc);
3624 return rc;
3625 }
3626
3627 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3628
3629 *class = ata_dev_try_classify(link->device, 1, NULL);
3630
3631 DPRINTK("EXIT, class=%u\n", *class);
3632 return 0;
3633 }
3634
3635 /**
3636 * ata_std_postreset - standard postreset callback
3637 * @link: the target ata_link
3638 * @classes: classes of attached devices
3639 *
3640 * This function is invoked after a successful reset. Note that
3641 * the device might have been reset more than once using
3642 * different reset methods before postreset is invoked.
3643 *
3644 * LOCKING:
3645 * Kernel thread context (may sleep)
3646 */
3647 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3648 {
3649 struct ata_port *ap = link->ap;
3650 u32 serror;
3651
3652 DPRINTK("ENTER\n");
3653
3654 /* print link status */
3655 sata_print_link_status(link);
3656
3657 /* clear SError */
3658 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3659 sata_scr_write(link, SCR_ERROR, serror);
3660
3661 /* is double-select really necessary? */
3662 if (classes[0] != ATA_DEV_NONE)
3663 ap->ops->dev_select(ap, 1);
3664 if (classes[1] != ATA_DEV_NONE)
3665 ap->ops->dev_select(ap, 0);
3666
3667 /* bail out if no device is present */
3668 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3669 DPRINTK("EXIT, no device\n");
3670 return;
3671 }
3672
3673 /* set up device control */
3674 if (ap->ioaddr.ctl_addr)
3675 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3676
3677 DPRINTK("EXIT\n");
3678 }
3679
3680 /**
3681 * ata_dev_same_device - Determine whether new ID matches configured device
3682 * @dev: device to compare against
3683 * @new_class: class of the new device
3684 * @new_id: IDENTIFY page of the new device
3685 *
3686 * Compare @new_class and @new_id against @dev and determine
3687 * whether @dev is the device indicated by @new_class and
3688 * @new_id.
3689 *
3690 * LOCKING:
3691 * None.
3692 *
3693 * RETURNS:
3694 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3695 */
3696 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3697 const u16 *new_id)
3698 {
3699 const u16 *old_id = dev->id;
3700 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3701 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3702
3703 if (dev->class != new_class) {
3704 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3705 dev->class, new_class);
3706 return 0;
3707 }
3708
3709 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3710 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3711 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3712 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3713
3714 if (strcmp(model[0], model[1])) {
3715 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3716 "'%s' != '%s'\n", model[0], model[1]);
3717 return 0;
3718 }
3719
3720 if (strcmp(serial[0], serial[1])) {
3721 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3722 "'%s' != '%s'\n", serial[0], serial[1]);
3723 return 0;
3724 }
3725
3726 return 1;
3727 }
3728
3729 /**
3730 * ata_dev_reread_id - Re-read IDENTIFY data
3731 * @dev: target ATA device
3732 * @readid_flags: read ID flags
3733 *
3734 * Re-read IDENTIFY page and make sure @dev is still attached to
3735 * the port.
3736 *
3737 * LOCKING:
3738 * Kernel thread context (may sleep)
3739 *
3740 * RETURNS:
3741 * 0 on success, negative errno otherwise
3742 */
3743 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3744 {
3745 unsigned int class = dev->class;
3746 u16 *id = (void *)dev->link->ap->sector_buf;
3747 int rc;
3748
3749 /* read ID data */
3750 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3751 if (rc)
3752 return rc;
3753
3754 /* is the device still there? */
3755 if (!ata_dev_same_device(dev, class, id))
3756 return -ENODEV;
3757
3758 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3759 return 0;
3760 }
3761
3762 /**
3763 * ata_dev_revalidate - Revalidate ATA device
3764 * @dev: device to revalidate
3765 * @new_class: new class code
3766 * @readid_flags: read ID flags
3767 *
3768 * Re-read IDENTIFY page, make sure @dev is still attached to the
3769 * port and reconfigure it according to the new IDENTIFY page.
3770 *
3771 * LOCKING:
3772 * Kernel thread context (may sleep)
3773 *
3774 * RETURNS:
3775 * 0 on success, negative errno otherwise
3776 */
3777 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3778 unsigned int readid_flags)
3779 {
3780 u64 n_sectors = dev->n_sectors;
3781 int rc;
3782
3783 if (!ata_dev_enabled(dev))
3784 return -ENODEV;
3785
3786 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3787 if (ata_class_enabled(new_class) &&
3788 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3789 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3790 dev->class, new_class);
3791 rc = -ENODEV;
3792 goto fail;
3793 }
3794
3795 /* re-read ID */
3796 rc = ata_dev_reread_id(dev, readid_flags);
3797 if (rc)
3798 goto fail;
3799
3800 /* configure device according to the new ID */
3801 rc = ata_dev_configure(dev);
3802 if (rc)
3803 goto fail;
3804
3805 /* verify n_sectors hasn't changed */
3806 if (dev->class == ATA_DEV_ATA && n_sectors &&
3807 dev->n_sectors != n_sectors) {
3808 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3809 "%llu != %llu\n",
3810 (unsigned long long)n_sectors,
3811 (unsigned long long)dev->n_sectors);
3812
3813 /* restore original n_sectors */
3814 dev->n_sectors = n_sectors;
3815
3816 rc = -ENODEV;
3817 goto fail;
3818 }
3819
3820 return 0;
3821
3822 fail:
3823 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3824 return rc;
3825 }
3826
3827 struct ata_blacklist_entry {
3828 const char *model_num;
3829 const char *model_rev;
3830 unsigned long horkage;
3831 };
3832
3833 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3834 /* Devices with DMA related problems under Linux */
3835 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3836 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3837 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3838 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3839 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3840 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3841 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3842 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3843 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3844 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3845 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3846 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3847 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3848 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3849 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3850 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3851 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3852 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3853 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3854 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3855 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3856 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3857 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3858 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3859 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3860 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3861 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3862 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3863 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3864 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3865 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3866 { "IOMEGA ZIP 250 ATAPI Floppy",
3867 NULL, ATA_HORKAGE_NODMA },
3868
3869 /* Weird ATAPI devices */
3870 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3871
3872 /* Devices we expect to fail diagnostics */
3873
3874 /* Devices where NCQ should be avoided */
3875 /* NCQ is slow */
3876 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3877 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3878 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3879 /* NCQ is broken */
3880 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3881 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3882 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
3883 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
3884
3885 /* Blacklist entries taken from Silicon Image 3124/3132
3886 Windows driver .inf file - also several Linux problem reports */
3887 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3888 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3889 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3890 /* Drives which do spurious command completion */
3891 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3892 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3893 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3894 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3895 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
3896 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3897 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3898 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3899 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
3900 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
3901 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3902
3903 /* devices which puke on READ_NATIVE_MAX */
3904 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3905 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3906 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3907 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3908
3909 /* Devices which report 1 sector over size HPA */
3910 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3911 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3912
3913 /* End Marker */
3914 { }
3915 };
3916
3917 int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
3918 {
3919 const char *p;
3920 int len;
3921
3922 /*
3923 * check for trailing wildcard: *\0
3924 */
3925 p = strchr(patt, wildchar);
3926 if (p && ((*(p + 1)) == 0))
3927 len = p - patt;
3928 else
3929 len = strlen(name);
3930
3931 return strncmp(patt, name, len);
3932 }
3933
3934 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3935 {
3936 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3937 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3938 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3939
3940 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3941 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3942
3943 while (ad->model_num) {
3944 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
3945 if (ad->model_rev == NULL)
3946 return ad->horkage;
3947 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
3948 return ad->horkage;
3949 }
3950 ad++;
3951 }
3952 return 0;
3953 }
3954
3955 static int ata_dma_blacklisted(const struct ata_device *dev)
3956 {
3957 /* We don't support polling DMA.
3958 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3959 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3960 */
3961 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
3962 (dev->flags & ATA_DFLAG_CDB_INTR))
3963 return 1;
3964 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3965 }
3966
3967 /**
3968 * ata_dev_xfermask - Compute supported xfermask of the given device
3969 * @dev: Device to compute xfermask for
3970 *
3971 * Compute supported xfermask of @dev and store it in
3972 * dev->*_mask. This function is responsible for applying all
3973 * known limits including host controller limits, device
3974 * blacklist, etc...
3975 *
3976 * LOCKING:
3977 * None.
3978 */
3979 static void ata_dev_xfermask(struct ata_device *dev)
3980 {
3981 struct ata_link *link = dev->link;
3982 struct ata_port *ap = link->ap;
3983 struct ata_host *host = ap->host;
3984 unsigned long xfer_mask;
3985
3986 /* controller modes available */
3987 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3988 ap->mwdma_mask, ap->udma_mask);
3989
3990 /* drive modes available */
3991 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3992 dev->mwdma_mask, dev->udma_mask);
3993 xfer_mask &= ata_id_xfermask(dev->id);
3994
3995 /*
3996 * CFA Advanced TrueIDE timings are not allowed on a shared
3997 * cable
3998 */
3999 if (ata_dev_pair(dev)) {
4000 /* No PIO5 or PIO6 */
4001 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4002 /* No MWDMA3 or MWDMA 4 */
4003 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4004 }
4005
4006 if (ata_dma_blacklisted(dev)) {
4007 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4008 ata_dev_printk(dev, KERN_WARNING,
4009 "device is on DMA blacklist, disabling DMA\n");
4010 }
4011
4012 if ((host->flags & ATA_HOST_SIMPLEX) &&
4013 host->simplex_claimed && host->simplex_claimed != ap) {
4014 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4015 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4016 "other device, disabling DMA\n");
4017 }
4018
4019 if (ap->flags & ATA_FLAG_NO_IORDY)
4020 xfer_mask &= ata_pio_mask_no_iordy(dev);
4021
4022 if (ap->ops->mode_filter)
4023 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4024
4025 /* Apply cable rule here. Don't apply it early because when
4026 * we handle hot plug the cable type can itself change.
4027 * Check this last so that we know if the transfer rate was
4028 * solely limited by the cable.
4029 * Unknown or 80 wire cables reported host side are checked
4030 * drive side as well. Cases where we know a 40wire cable
4031 * is used safely for 80 are not checked here.
4032 */
4033 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4034 /* UDMA/44 or higher would be available */
4035 if((ap->cbl == ATA_CBL_PATA40) ||
4036 (ata_drive_40wire(dev->id) &&
4037 (ap->cbl == ATA_CBL_PATA_UNK ||
4038 ap->cbl == ATA_CBL_PATA80))) {
4039 ata_dev_printk(dev, KERN_WARNING,
4040 "limited to UDMA/33 due to 40-wire cable\n");
4041 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4042 }
4043
4044 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4045 &dev->mwdma_mask, &dev->udma_mask);
4046 }
4047
4048 /**
4049 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4050 * @dev: Device to which command will be sent
4051 *
4052 * Issue SET FEATURES - XFER MODE command to device @dev
4053 * on port @ap.
4054 *
4055 * LOCKING:
4056 * PCI/etc. bus probe sem.
4057 *
4058 * RETURNS:
4059 * 0 on success, AC_ERR_* mask otherwise.
4060 */
4061
4062 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4063 {
4064 struct ata_taskfile tf;
4065 unsigned int err_mask;
4066
4067 /* set up set-features taskfile */
4068 DPRINTK("set features - xfer mode\n");
4069
4070 /* Some controllers and ATAPI devices show flaky interrupt
4071 * behavior after setting xfer mode. Use polling instead.
4072 */
4073 ata_tf_init(dev, &tf);
4074 tf.command = ATA_CMD_SET_FEATURES;
4075 tf.feature = SETFEATURES_XFER;
4076 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4077 tf.protocol = ATA_PROT_NODATA;
4078 tf.nsect = dev->xfer_mode;
4079
4080 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4081
4082 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4083 return err_mask;
4084 }
4085
4086 /**
4087 * ata_dev_set_AN - Issue SET FEATURES - SATA FEATURES
4088 * @dev: Device to which command will be sent
4089 * @enable: Whether to enable or disable the feature
4090 *
4091 * Issue SET FEATURES - SATA FEATURES command to device @dev
4092 * on port @ap with sector count set to indicate Asynchronous
4093 * Notification feature
4094 *
4095 * LOCKING:
4096 * PCI/etc. bus probe sem.
4097 *
4098 * RETURNS:
4099 * 0 on success, AC_ERR_* mask otherwise.
4100 */
4101 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable)
4102 {
4103 struct ata_taskfile tf;
4104 unsigned int err_mask;
4105
4106 /* set up set-features taskfile */
4107 DPRINTK("set features - SATA features\n");
4108
4109 ata_tf_init(dev, &tf);
4110 tf.command = ATA_CMD_SET_FEATURES;
4111 tf.feature = enable;
4112 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4113 tf.protocol = ATA_PROT_NODATA;
4114 tf.nsect = SATA_AN;
4115
4116 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4117
4118 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4119 return err_mask;
4120 }
4121
4122 /**
4123 * ata_dev_init_params - Issue INIT DEV PARAMS command
4124 * @dev: Device to which command will be sent
4125 * @heads: Number of heads (taskfile parameter)
4126 * @sectors: Number of sectors (taskfile parameter)
4127 *
4128 * LOCKING:
4129 * Kernel thread context (may sleep)
4130 *
4131 * RETURNS:
4132 * 0 on success, AC_ERR_* mask otherwise.
4133 */
4134 static unsigned int ata_dev_init_params(struct ata_device *dev,
4135 u16 heads, u16 sectors)
4136 {
4137 struct ata_taskfile tf;
4138 unsigned int err_mask;
4139
4140 /* Number of sectors per track 1-255. Number of heads 1-16 */
4141 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4142 return AC_ERR_INVALID;
4143
4144 /* set up init dev params taskfile */
4145 DPRINTK("init dev params \n");
4146
4147 ata_tf_init(dev, &tf);
4148 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4149 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4150 tf.protocol = ATA_PROT_NODATA;
4151 tf.nsect = sectors;
4152 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4153
4154 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4155 /* A clean abort indicates an original or just out of spec drive
4156 and we should continue as we issue the setup based on the
4157 drive reported working geometry */
4158 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4159 err_mask = 0;
4160
4161 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4162 return err_mask;
4163 }
4164
4165 /**
4166 * ata_sg_clean - Unmap DMA memory associated with command
4167 * @qc: Command containing DMA memory to be released
4168 *
4169 * Unmap all mapped DMA memory associated with this command.
4170 *
4171 * LOCKING:
4172 * spin_lock_irqsave(host lock)
4173 */
4174 void ata_sg_clean(struct ata_queued_cmd *qc)
4175 {
4176 struct ata_port *ap = qc->ap;
4177 struct scatterlist *sg = qc->__sg;
4178 int dir = qc->dma_dir;
4179 void *pad_buf = NULL;
4180
4181 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4182 WARN_ON(sg == NULL);
4183
4184 if (qc->flags & ATA_QCFLAG_SINGLE)
4185 WARN_ON(qc->n_elem > 1);
4186
4187 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4188
4189 /* if we padded the buffer out to 32-bit bound, and data
4190 * xfer direction is from-device, we must copy from the
4191 * pad buffer back into the supplied buffer
4192 */
4193 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4194 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4195
4196 if (qc->flags & ATA_QCFLAG_SG) {
4197 if (qc->n_elem)
4198 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4199 /* restore last sg */
4200 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4201 if (pad_buf) {
4202 struct scatterlist *psg = &qc->pad_sgent;
4203 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4204 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4205 kunmap_atomic(addr, KM_IRQ0);
4206 }
4207 } else {
4208 if (qc->n_elem)
4209 dma_unmap_single(ap->dev,
4210 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4211 dir);
4212 /* restore sg */
4213 sg->length += qc->pad_len;
4214 if (pad_buf)
4215 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4216 pad_buf, qc->pad_len);
4217 }
4218
4219 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4220 qc->__sg = NULL;
4221 }
4222
4223 /**
4224 * ata_fill_sg - Fill PCI IDE PRD table
4225 * @qc: Metadata associated with taskfile to be transferred
4226 *
4227 * Fill PCI IDE PRD (scatter-gather) table with segments
4228 * associated with the current disk command.
4229 *
4230 * LOCKING:
4231 * spin_lock_irqsave(host lock)
4232 *
4233 */
4234 static void ata_fill_sg(struct ata_queued_cmd *qc)
4235 {
4236 struct ata_port *ap = qc->ap;
4237 struct scatterlist *sg;
4238 unsigned int idx;
4239
4240 WARN_ON(qc->__sg == NULL);
4241 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4242
4243 idx = 0;
4244 ata_for_each_sg(sg, qc) {
4245 u32 addr, offset;
4246 u32 sg_len, len;
4247
4248 /* determine if physical DMA addr spans 64K boundary.
4249 * Note h/w doesn't support 64-bit, so we unconditionally
4250 * truncate dma_addr_t to u32.
4251 */
4252 addr = (u32) sg_dma_address(sg);
4253 sg_len = sg_dma_len(sg);
4254
4255 while (sg_len) {
4256 offset = addr & 0xffff;
4257 len = sg_len;
4258 if ((offset + sg_len) > 0x10000)
4259 len = 0x10000 - offset;
4260
4261 ap->prd[idx].addr = cpu_to_le32(addr);
4262 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4263 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4264
4265 idx++;
4266 sg_len -= len;
4267 addr += len;
4268 }
4269 }
4270
4271 if (idx)
4272 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4273 }
4274
4275 /**
4276 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4277 * @qc: Metadata associated with taskfile to be transferred
4278 *
4279 * Fill PCI IDE PRD (scatter-gather) table with segments
4280 * associated with the current disk command. Perform the fill
4281 * so that we avoid writing any length 64K records for
4282 * controllers that don't follow the spec.
4283 *
4284 * LOCKING:
4285 * spin_lock_irqsave(host lock)
4286 *
4287 */
4288 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4289 {
4290 struct ata_port *ap = qc->ap;
4291 struct scatterlist *sg;
4292 unsigned int idx;
4293
4294 WARN_ON(qc->__sg == NULL);
4295 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4296
4297 idx = 0;
4298 ata_for_each_sg(sg, qc) {
4299 u32 addr, offset;
4300 u32 sg_len, len, blen;
4301
4302 /* determine if physical DMA addr spans 64K boundary.
4303 * Note h/w doesn't support 64-bit, so we unconditionally
4304 * truncate dma_addr_t to u32.
4305 */
4306 addr = (u32) sg_dma_address(sg);
4307 sg_len = sg_dma_len(sg);
4308
4309 while (sg_len) {
4310 offset = addr & 0xffff;
4311 len = sg_len;
4312 if ((offset + sg_len) > 0x10000)
4313 len = 0x10000 - offset;
4314
4315 blen = len & 0xffff;
4316 ap->prd[idx].addr = cpu_to_le32(addr);
4317 if (blen == 0) {
4318 /* Some PATA chipsets like the CS5530 can't
4319 cope with 0x0000 meaning 64K as the spec says */
4320 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4321 blen = 0x8000;
4322 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4323 }
4324 ap->prd[idx].flags_len = cpu_to_le32(blen);
4325 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4326
4327 idx++;
4328 sg_len -= len;
4329 addr += len;
4330 }
4331 }
4332
4333 if (idx)
4334 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4335 }
4336
4337 /**
4338 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4339 * @qc: Metadata associated with taskfile to check
4340 *
4341 * Allow low-level driver to filter ATA PACKET commands, returning
4342 * a status indicating whether or not it is OK to use DMA for the
4343 * supplied PACKET command.
4344 *
4345 * LOCKING:
4346 * spin_lock_irqsave(host lock)
4347 *
4348 * RETURNS: 0 when ATAPI DMA can be used
4349 * nonzero otherwise
4350 */
4351 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4352 {
4353 struct ata_port *ap = qc->ap;
4354
4355 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4356 * few ATAPI devices choke on such DMA requests.
4357 */
4358 if (unlikely(qc->nbytes & 15))
4359 return 1;
4360
4361 if (ap->ops->check_atapi_dma)
4362 return ap->ops->check_atapi_dma(qc);
4363
4364 return 0;
4365 }
4366
4367 /**
4368 * ata_std_qc_defer - Check whether a qc needs to be deferred
4369 * @qc: ATA command in question
4370 *
4371 * Non-NCQ commands cannot run with any other command, NCQ or
4372 * not. As upper layer only knows the queue depth, we are
4373 * responsible for maintaining exclusion. This function checks
4374 * whether a new command @qc can be issued.
4375 *
4376 * LOCKING:
4377 * spin_lock_irqsave(host lock)
4378 *
4379 * RETURNS:
4380 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4381 */
4382 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4383 {
4384 struct ata_link *link = qc->dev->link;
4385
4386 if (qc->tf.protocol == ATA_PROT_NCQ) {
4387 if (!ata_tag_valid(link->active_tag))
4388 return 0;
4389 } else {
4390 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4391 return 0;
4392 }
4393
4394 return ATA_DEFER_LINK;
4395 }
4396
4397 /**
4398 * ata_qc_prep - Prepare taskfile for submission
4399 * @qc: Metadata associated with taskfile to be prepared
4400 *
4401 * Prepare ATA taskfile for submission.
4402 *
4403 * LOCKING:
4404 * spin_lock_irqsave(host lock)
4405 */
4406 void ata_qc_prep(struct ata_queued_cmd *qc)
4407 {
4408 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4409 return;
4410
4411 ata_fill_sg(qc);
4412 }
4413
4414 /**
4415 * ata_dumb_qc_prep - Prepare taskfile for submission
4416 * @qc: Metadata associated with taskfile to be prepared
4417 *
4418 * Prepare ATA taskfile for submission.
4419 *
4420 * LOCKING:
4421 * spin_lock_irqsave(host lock)
4422 */
4423 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4424 {
4425 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4426 return;
4427
4428 ata_fill_sg_dumb(qc);
4429 }
4430
4431 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4432
4433 /**
4434 * ata_sg_init_one - Associate command with memory buffer
4435 * @qc: Command to be associated
4436 * @buf: Memory buffer
4437 * @buflen: Length of memory buffer, in bytes.
4438 *
4439 * Initialize the data-related elements of queued_cmd @qc
4440 * to point to a single memory buffer, @buf of byte length @buflen.
4441 *
4442 * LOCKING:
4443 * spin_lock_irqsave(host lock)
4444 */
4445
4446 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4447 {
4448 qc->flags |= ATA_QCFLAG_SINGLE;
4449
4450 qc->__sg = &qc->sgent;
4451 qc->n_elem = 1;
4452 qc->orig_n_elem = 1;
4453 qc->buf_virt = buf;
4454 qc->nbytes = buflen;
4455
4456 sg_init_one(&qc->sgent, buf, buflen);
4457 }
4458
4459 /**
4460 * ata_sg_init - Associate command with scatter-gather table.
4461 * @qc: Command to be associated
4462 * @sg: Scatter-gather table.
4463 * @n_elem: Number of elements in s/g table.
4464 *
4465 * Initialize the data-related elements of queued_cmd @qc
4466 * to point to a scatter-gather table @sg, containing @n_elem
4467 * elements.
4468 *
4469 * LOCKING:
4470 * spin_lock_irqsave(host lock)
4471 */
4472
4473 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4474 unsigned int n_elem)
4475 {
4476 qc->flags |= ATA_QCFLAG_SG;
4477 qc->__sg = sg;
4478 qc->n_elem = n_elem;
4479 qc->orig_n_elem = n_elem;
4480 }
4481
4482 /**
4483 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4484 * @qc: Command with memory buffer to be mapped.
4485 *
4486 * DMA-map the memory buffer associated with queued_cmd @qc.
4487 *
4488 * LOCKING:
4489 * spin_lock_irqsave(host lock)
4490 *
4491 * RETURNS:
4492 * Zero on success, negative on error.
4493 */
4494
4495 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4496 {
4497 struct ata_port *ap = qc->ap;
4498 int dir = qc->dma_dir;
4499 struct scatterlist *sg = qc->__sg;
4500 dma_addr_t dma_address;
4501 int trim_sg = 0;
4502
4503 /* we must lengthen transfers to end on a 32-bit boundary */
4504 qc->pad_len = sg->length & 3;
4505 if (qc->pad_len) {
4506 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4507 struct scatterlist *psg = &qc->pad_sgent;
4508
4509 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4510
4511 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4512
4513 if (qc->tf.flags & ATA_TFLAG_WRITE)
4514 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4515 qc->pad_len);
4516
4517 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4518 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4519 /* trim sg */
4520 sg->length -= qc->pad_len;
4521 if (sg->length == 0)
4522 trim_sg = 1;
4523
4524 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4525 sg->length, qc->pad_len);
4526 }
4527
4528 if (trim_sg) {
4529 qc->n_elem--;
4530 goto skip_map;
4531 }
4532
4533 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4534 sg->length, dir);
4535 if (dma_mapping_error(dma_address)) {
4536 /* restore sg */
4537 sg->length += qc->pad_len;
4538 return -1;
4539 }
4540
4541 sg_dma_address(sg) = dma_address;
4542 sg_dma_len(sg) = sg->length;
4543
4544 skip_map:
4545 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4546 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4547
4548 return 0;
4549 }
4550
4551 /**
4552 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4553 * @qc: Command with scatter-gather table to be mapped.
4554 *
4555 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4556 *
4557 * LOCKING:
4558 * spin_lock_irqsave(host lock)
4559 *
4560 * RETURNS:
4561 * Zero on success, negative on error.
4562 *
4563 */
4564
4565 static int ata_sg_setup(struct ata_queued_cmd *qc)
4566 {
4567 struct ata_port *ap = qc->ap;
4568 struct scatterlist *sg = qc->__sg;
4569 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4570 int n_elem, pre_n_elem, dir, trim_sg = 0;
4571
4572 VPRINTK("ENTER, ata%u\n", ap->print_id);
4573 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4574
4575 /* we must lengthen transfers to end on a 32-bit boundary */
4576 qc->pad_len = lsg->length & 3;
4577 if (qc->pad_len) {
4578 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4579 struct scatterlist *psg = &qc->pad_sgent;
4580 unsigned int offset;
4581
4582 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4583
4584 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4585
4586 /*
4587 * psg->page/offset are used to copy to-be-written
4588 * data in this function or read data in ata_sg_clean.
4589 */
4590 offset = lsg->offset + lsg->length - qc->pad_len;
4591 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4592 psg->offset = offset_in_page(offset);
4593
4594 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4595 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4596 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4597 kunmap_atomic(addr, KM_IRQ0);
4598 }
4599
4600 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4601 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4602 /* trim last sg */
4603 lsg->length -= qc->pad_len;
4604 if (lsg->length == 0)
4605 trim_sg = 1;
4606
4607 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4608 qc->n_elem - 1, lsg->length, qc->pad_len);
4609 }
4610
4611 pre_n_elem = qc->n_elem;
4612 if (trim_sg && pre_n_elem)
4613 pre_n_elem--;
4614
4615 if (!pre_n_elem) {
4616 n_elem = 0;
4617 goto skip_map;
4618 }
4619
4620 dir = qc->dma_dir;
4621 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4622 if (n_elem < 1) {
4623 /* restore last sg */
4624 lsg->length += qc->pad_len;
4625 return -1;
4626 }
4627
4628 DPRINTK("%d sg elements mapped\n", n_elem);
4629
4630 skip_map:
4631 qc->n_elem = n_elem;
4632
4633 return 0;
4634 }
4635
4636 /**
4637 * swap_buf_le16 - swap halves of 16-bit words in place
4638 * @buf: Buffer to swap
4639 * @buf_words: Number of 16-bit words in buffer.
4640 *
4641 * Swap halves of 16-bit words if needed to convert from
4642 * little-endian byte order to native cpu byte order, or
4643 * vice-versa.
4644 *
4645 * LOCKING:
4646 * Inherited from caller.
4647 */
4648 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4649 {
4650 #ifdef __BIG_ENDIAN
4651 unsigned int i;
4652
4653 for (i = 0; i < buf_words; i++)
4654 buf[i] = le16_to_cpu(buf[i]);
4655 #endif /* __BIG_ENDIAN */
4656 }
4657
4658 /**
4659 * ata_data_xfer - Transfer data by PIO
4660 * @adev: device to target
4661 * @buf: data buffer
4662 * @buflen: buffer length
4663 * @write_data: read/write
4664 *
4665 * Transfer data from/to the device data register by PIO.
4666 *
4667 * LOCKING:
4668 * Inherited from caller.
4669 */
4670 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4671 unsigned int buflen, int write_data)
4672 {
4673 struct ata_port *ap = adev->link->ap;
4674 unsigned int words = buflen >> 1;
4675
4676 /* Transfer multiple of 2 bytes */
4677 if (write_data)
4678 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4679 else
4680 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4681
4682 /* Transfer trailing 1 byte, if any. */
4683 if (unlikely(buflen & 0x01)) {
4684 u16 align_buf[1] = { 0 };
4685 unsigned char *trailing_buf = buf + buflen - 1;
4686
4687 if (write_data) {
4688 memcpy(align_buf, trailing_buf, 1);
4689 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4690 } else {
4691 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4692 memcpy(trailing_buf, align_buf, 1);
4693 }
4694 }
4695 }
4696
4697 /**
4698 * ata_data_xfer_noirq - Transfer data by PIO
4699 * @adev: device to target
4700 * @buf: data buffer
4701 * @buflen: buffer length
4702 * @write_data: read/write
4703 *
4704 * Transfer data from/to the device data register by PIO. Do the
4705 * transfer with interrupts disabled.
4706 *
4707 * LOCKING:
4708 * Inherited from caller.
4709 */
4710 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4711 unsigned int buflen, int write_data)
4712 {
4713 unsigned long flags;
4714 local_irq_save(flags);
4715 ata_data_xfer(adev, buf, buflen, write_data);
4716 local_irq_restore(flags);
4717 }
4718
4719
4720 /**
4721 * ata_pio_sector - Transfer a sector of data.
4722 * @qc: Command on going
4723 *
4724 * Transfer qc->sect_size bytes of data from/to the ATA device.
4725 *
4726 * LOCKING:
4727 * Inherited from caller.
4728 */
4729
4730 static void ata_pio_sector(struct ata_queued_cmd *qc)
4731 {
4732 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4733 struct scatterlist *sg = qc->__sg;
4734 struct ata_port *ap = qc->ap;
4735 struct page *page;
4736 unsigned int offset;
4737 unsigned char *buf;
4738
4739 if (qc->curbytes == qc->nbytes - qc->sect_size)
4740 ap->hsm_task_state = HSM_ST_LAST;
4741
4742 page = sg[qc->cursg].page;
4743 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4744
4745 /* get the current page and offset */
4746 page = nth_page(page, (offset >> PAGE_SHIFT));
4747 offset %= PAGE_SIZE;
4748
4749 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4750
4751 if (PageHighMem(page)) {
4752 unsigned long flags;
4753
4754 /* FIXME: use a bounce buffer */
4755 local_irq_save(flags);
4756 buf = kmap_atomic(page, KM_IRQ0);
4757
4758 /* do the actual data transfer */
4759 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4760
4761 kunmap_atomic(buf, KM_IRQ0);
4762 local_irq_restore(flags);
4763 } else {
4764 buf = page_address(page);
4765 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4766 }
4767
4768 qc->curbytes += qc->sect_size;
4769 qc->cursg_ofs += qc->sect_size;
4770
4771 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4772 qc->cursg++;
4773 qc->cursg_ofs = 0;
4774 }
4775 }
4776
4777 /**
4778 * ata_pio_sectors - Transfer one or many sectors.
4779 * @qc: Command on going
4780 *
4781 * Transfer one or many sectors of data from/to the
4782 * ATA device for the DRQ request.
4783 *
4784 * LOCKING:
4785 * Inherited from caller.
4786 */
4787
4788 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4789 {
4790 if (is_multi_taskfile(&qc->tf)) {
4791 /* READ/WRITE MULTIPLE */
4792 unsigned int nsect;
4793
4794 WARN_ON(qc->dev->multi_count == 0);
4795
4796 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4797 qc->dev->multi_count);
4798 while (nsect--)
4799 ata_pio_sector(qc);
4800 } else
4801 ata_pio_sector(qc);
4802
4803 ata_altstatus(qc->ap); /* flush */
4804 }
4805
4806 /**
4807 * atapi_send_cdb - Write CDB bytes to hardware
4808 * @ap: Port to which ATAPI device is attached.
4809 * @qc: Taskfile currently active
4810 *
4811 * When device has indicated its readiness to accept
4812 * a CDB, this function is called. Send the CDB.
4813 *
4814 * LOCKING:
4815 * caller.
4816 */
4817
4818 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4819 {
4820 /* send SCSI cdb */
4821 DPRINTK("send cdb\n");
4822 WARN_ON(qc->dev->cdb_len < 12);
4823
4824 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4825 ata_altstatus(ap); /* flush */
4826
4827 switch (qc->tf.protocol) {
4828 case ATA_PROT_ATAPI:
4829 ap->hsm_task_state = HSM_ST;
4830 break;
4831 case ATA_PROT_ATAPI_NODATA:
4832 ap->hsm_task_state = HSM_ST_LAST;
4833 break;
4834 case ATA_PROT_ATAPI_DMA:
4835 ap->hsm_task_state = HSM_ST_LAST;
4836 /* initiate bmdma */
4837 ap->ops->bmdma_start(qc);
4838 break;
4839 }
4840 }
4841
4842 /**
4843 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4844 * @qc: Command on going
4845 * @bytes: number of bytes
4846 *
4847 * Transfer Transfer data from/to the ATAPI device.
4848 *
4849 * LOCKING:
4850 * Inherited from caller.
4851 *
4852 */
4853
4854 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4855 {
4856 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4857 struct scatterlist *sg = qc->__sg;
4858 struct ata_port *ap = qc->ap;
4859 struct page *page;
4860 unsigned char *buf;
4861 unsigned int offset, count;
4862
4863 if (qc->curbytes + bytes >= qc->nbytes)
4864 ap->hsm_task_state = HSM_ST_LAST;
4865
4866 next_sg:
4867 if (unlikely(qc->cursg >= qc->n_elem)) {
4868 /*
4869 * The end of qc->sg is reached and the device expects
4870 * more data to transfer. In order not to overrun qc->sg
4871 * and fulfill length specified in the byte count register,
4872 * - for read case, discard trailing data from the device
4873 * - for write case, padding zero data to the device
4874 */
4875 u16 pad_buf[1] = { 0 };
4876 unsigned int words = bytes >> 1;
4877 unsigned int i;
4878
4879 if (words) /* warning if bytes > 1 */
4880 ata_dev_printk(qc->dev, KERN_WARNING,
4881 "%u bytes trailing data\n", bytes);
4882
4883 for (i = 0; i < words; i++)
4884 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4885
4886 ap->hsm_task_state = HSM_ST_LAST;
4887 return;
4888 }
4889
4890 sg = &qc->__sg[qc->cursg];
4891
4892 page = sg->page;
4893 offset = sg->offset + qc->cursg_ofs;
4894
4895 /* get the current page and offset */
4896 page = nth_page(page, (offset >> PAGE_SHIFT));
4897 offset %= PAGE_SIZE;
4898
4899 /* don't overrun current sg */
4900 count = min(sg->length - qc->cursg_ofs, bytes);
4901
4902 /* don't cross page boundaries */
4903 count = min(count, (unsigned int)PAGE_SIZE - offset);
4904
4905 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4906
4907 if (PageHighMem(page)) {
4908 unsigned long flags;
4909
4910 /* FIXME: use bounce buffer */
4911 local_irq_save(flags);
4912 buf = kmap_atomic(page, KM_IRQ0);
4913
4914 /* do the actual data transfer */
4915 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4916
4917 kunmap_atomic(buf, KM_IRQ0);
4918 local_irq_restore(flags);
4919 } else {
4920 buf = page_address(page);
4921 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4922 }
4923
4924 bytes -= count;
4925 qc->curbytes += count;
4926 qc->cursg_ofs += count;
4927
4928 if (qc->cursg_ofs == sg->length) {
4929 qc->cursg++;
4930 qc->cursg_ofs = 0;
4931 }
4932
4933 if (bytes)
4934 goto next_sg;
4935 }
4936
4937 /**
4938 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4939 * @qc: Command on going
4940 *
4941 * Transfer Transfer data from/to the ATAPI device.
4942 *
4943 * LOCKING:
4944 * Inherited from caller.
4945 */
4946
4947 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4948 {
4949 struct ata_port *ap = qc->ap;
4950 struct ata_device *dev = qc->dev;
4951 unsigned int ireason, bc_lo, bc_hi, bytes;
4952 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4953
4954 /* Abuse qc->result_tf for temp storage of intermediate TF
4955 * here to save some kernel stack usage.
4956 * For normal completion, qc->result_tf is not relevant. For
4957 * error, qc->result_tf is later overwritten by ata_qc_complete().
4958 * So, the correctness of qc->result_tf is not affected.
4959 */
4960 ap->ops->tf_read(ap, &qc->result_tf);
4961 ireason = qc->result_tf.nsect;
4962 bc_lo = qc->result_tf.lbam;
4963 bc_hi = qc->result_tf.lbah;
4964 bytes = (bc_hi << 8) | bc_lo;
4965
4966 /* shall be cleared to zero, indicating xfer of data */
4967 if (ireason & (1 << 0))
4968 goto err_out;
4969
4970 /* make sure transfer direction matches expected */
4971 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4972 if (do_write != i_write)
4973 goto err_out;
4974
4975 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4976
4977 __atapi_pio_bytes(qc, bytes);
4978 ata_altstatus(ap); /* flush */
4979
4980 return;
4981
4982 err_out:
4983 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4984 qc->err_mask |= AC_ERR_HSM;
4985 ap->hsm_task_state = HSM_ST_ERR;
4986 }
4987
4988 /**
4989 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4990 * @ap: the target ata_port
4991 * @qc: qc on going
4992 *
4993 * RETURNS:
4994 * 1 if ok in workqueue, 0 otherwise.
4995 */
4996
4997 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4998 {
4999 if (qc->tf.flags & ATA_TFLAG_POLLING)
5000 return 1;
5001
5002 if (ap->hsm_task_state == HSM_ST_FIRST) {
5003 if (qc->tf.protocol == ATA_PROT_PIO &&
5004 (qc->tf.flags & ATA_TFLAG_WRITE))
5005 return 1;
5006
5007 if (is_atapi_taskfile(&qc->tf) &&
5008 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5009 return 1;
5010 }
5011
5012 return 0;
5013 }
5014
5015 /**
5016 * ata_hsm_qc_complete - finish a qc running on standard HSM
5017 * @qc: Command to complete
5018 * @in_wq: 1 if called from workqueue, 0 otherwise
5019 *
5020 * Finish @qc which is running on standard HSM.
5021 *
5022 * LOCKING:
5023 * If @in_wq is zero, spin_lock_irqsave(host lock).
5024 * Otherwise, none on entry and grabs host lock.
5025 */
5026 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5027 {
5028 struct ata_port *ap = qc->ap;
5029 unsigned long flags;
5030
5031 if (ap->ops->error_handler) {
5032 if (in_wq) {
5033 spin_lock_irqsave(ap->lock, flags);
5034
5035 /* EH might have kicked in while host lock is
5036 * released.
5037 */
5038 qc = ata_qc_from_tag(ap, qc->tag);
5039 if (qc) {
5040 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5041 ap->ops->irq_on(ap);
5042 ata_qc_complete(qc);
5043 } else
5044 ata_port_freeze(ap);
5045 }
5046
5047 spin_unlock_irqrestore(ap->lock, flags);
5048 } else {
5049 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5050 ata_qc_complete(qc);
5051 else
5052 ata_port_freeze(ap);
5053 }
5054 } else {
5055 if (in_wq) {
5056 spin_lock_irqsave(ap->lock, flags);
5057 ap->ops->irq_on(ap);
5058 ata_qc_complete(qc);
5059 spin_unlock_irqrestore(ap->lock, flags);
5060 } else
5061 ata_qc_complete(qc);
5062 }
5063 }
5064
5065 /**
5066 * ata_hsm_move - move the HSM to the next state.
5067 * @ap: the target ata_port
5068 * @qc: qc on going
5069 * @status: current device status
5070 * @in_wq: 1 if called from workqueue, 0 otherwise
5071 *
5072 * RETURNS:
5073 * 1 when poll next status needed, 0 otherwise.
5074 */
5075 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5076 u8 status, int in_wq)
5077 {
5078 unsigned long flags = 0;
5079 int poll_next;
5080
5081 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5082
5083 /* Make sure ata_qc_issue_prot() does not throw things
5084 * like DMA polling into the workqueue. Notice that
5085 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5086 */
5087 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5088
5089 fsm_start:
5090 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5091 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5092
5093 switch (ap->hsm_task_state) {
5094 case HSM_ST_FIRST:
5095 /* Send first data block or PACKET CDB */
5096
5097 /* If polling, we will stay in the work queue after
5098 * sending the data. Otherwise, interrupt handler
5099 * takes over after sending the data.
5100 */
5101 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5102
5103 /* check device status */
5104 if (unlikely((status & ATA_DRQ) == 0)) {
5105 /* handle BSY=0, DRQ=0 as error */
5106 if (likely(status & (ATA_ERR | ATA_DF)))
5107 /* device stops HSM for abort/error */
5108 qc->err_mask |= AC_ERR_DEV;
5109 else
5110 /* HSM violation. Let EH handle this */
5111 qc->err_mask |= AC_ERR_HSM;
5112
5113 ap->hsm_task_state = HSM_ST_ERR;
5114 goto fsm_start;
5115 }
5116
5117 /* Device should not ask for data transfer (DRQ=1)
5118 * when it finds something wrong.
5119 * We ignore DRQ here and stop the HSM by
5120 * changing hsm_task_state to HSM_ST_ERR and
5121 * let the EH abort the command or reset the device.
5122 */
5123 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5124 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5125 "error, dev_stat 0x%X\n", status);
5126 qc->err_mask |= AC_ERR_HSM;
5127 ap->hsm_task_state = HSM_ST_ERR;
5128 goto fsm_start;
5129 }
5130
5131 /* Send the CDB (atapi) or the first data block (ata pio out).
5132 * During the state transition, interrupt handler shouldn't
5133 * be invoked before the data transfer is complete and
5134 * hsm_task_state is changed. Hence, the following locking.
5135 */
5136 if (in_wq)
5137 spin_lock_irqsave(ap->lock, flags);
5138
5139 if (qc->tf.protocol == ATA_PROT_PIO) {
5140 /* PIO data out protocol.
5141 * send first data block.
5142 */
5143
5144 /* ata_pio_sectors() might change the state
5145 * to HSM_ST_LAST. so, the state is changed here
5146 * before ata_pio_sectors().
5147 */
5148 ap->hsm_task_state = HSM_ST;
5149 ata_pio_sectors(qc);
5150 } else
5151 /* send CDB */
5152 atapi_send_cdb(ap, qc);
5153
5154 if (in_wq)
5155 spin_unlock_irqrestore(ap->lock, flags);
5156
5157 /* if polling, ata_pio_task() handles the rest.
5158 * otherwise, interrupt handler takes over from here.
5159 */
5160 break;
5161
5162 case HSM_ST:
5163 /* complete command or read/write the data register */
5164 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5165 /* ATAPI PIO protocol */
5166 if ((status & ATA_DRQ) == 0) {
5167 /* No more data to transfer or device error.
5168 * Device error will be tagged in HSM_ST_LAST.
5169 */
5170 ap->hsm_task_state = HSM_ST_LAST;
5171 goto fsm_start;
5172 }
5173
5174 /* Device should not ask for data transfer (DRQ=1)
5175 * when it finds something wrong.
5176 * We ignore DRQ here and stop the HSM by
5177 * changing hsm_task_state to HSM_ST_ERR and
5178 * let the EH abort the command or reset the device.
5179 */
5180 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5181 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5182 "device error, dev_stat 0x%X\n",
5183 status);
5184 qc->err_mask |= AC_ERR_HSM;
5185 ap->hsm_task_state = HSM_ST_ERR;
5186 goto fsm_start;
5187 }
5188
5189 atapi_pio_bytes(qc);
5190
5191 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5192 /* bad ireason reported by device */
5193 goto fsm_start;
5194
5195 } else {
5196 /* ATA PIO protocol */
5197 if (unlikely((status & ATA_DRQ) == 0)) {
5198 /* handle BSY=0, DRQ=0 as error */
5199 if (likely(status & (ATA_ERR | ATA_DF)))
5200 /* device stops HSM for abort/error */
5201 qc->err_mask |= AC_ERR_DEV;
5202 else
5203 /* HSM violation. Let EH handle this.
5204 * Phantom devices also trigger this
5205 * condition. Mark hint.
5206 */
5207 qc->err_mask |= AC_ERR_HSM |
5208 AC_ERR_NODEV_HINT;
5209
5210 ap->hsm_task_state = HSM_ST_ERR;
5211 goto fsm_start;
5212 }
5213
5214 /* For PIO reads, some devices may ask for
5215 * data transfer (DRQ=1) alone with ERR=1.
5216 * We respect DRQ here and transfer one
5217 * block of junk data before changing the
5218 * hsm_task_state to HSM_ST_ERR.
5219 *
5220 * For PIO writes, ERR=1 DRQ=1 doesn't make
5221 * sense since the data block has been
5222 * transferred to the device.
5223 */
5224 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5225 /* data might be corrputed */
5226 qc->err_mask |= AC_ERR_DEV;
5227
5228 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5229 ata_pio_sectors(qc);
5230 status = ata_wait_idle(ap);
5231 }
5232
5233 if (status & (ATA_BUSY | ATA_DRQ))
5234 qc->err_mask |= AC_ERR_HSM;
5235
5236 /* ata_pio_sectors() might change the
5237 * state to HSM_ST_LAST. so, the state
5238 * is changed after ata_pio_sectors().
5239 */
5240 ap->hsm_task_state = HSM_ST_ERR;
5241 goto fsm_start;
5242 }
5243
5244 ata_pio_sectors(qc);
5245
5246 if (ap->hsm_task_state == HSM_ST_LAST &&
5247 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5248 /* all data read */
5249 status = ata_wait_idle(ap);
5250 goto fsm_start;
5251 }
5252 }
5253
5254 poll_next = 1;
5255 break;
5256
5257 case HSM_ST_LAST:
5258 if (unlikely(!ata_ok(status))) {
5259 qc->err_mask |= __ac_err_mask(status);
5260 ap->hsm_task_state = HSM_ST_ERR;
5261 goto fsm_start;
5262 }
5263
5264 /* no more data to transfer */
5265 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5266 ap->print_id, qc->dev->devno, status);
5267
5268 WARN_ON(qc->err_mask);
5269
5270 ap->hsm_task_state = HSM_ST_IDLE;
5271
5272 /* complete taskfile transaction */
5273 ata_hsm_qc_complete(qc, in_wq);
5274
5275 poll_next = 0;
5276 break;
5277
5278 case HSM_ST_ERR:
5279 /* make sure qc->err_mask is available to
5280 * know what's wrong and recover
5281 */
5282 WARN_ON(qc->err_mask == 0);
5283
5284 ap->hsm_task_state = HSM_ST_IDLE;
5285
5286 /* complete taskfile transaction */
5287 ata_hsm_qc_complete(qc, in_wq);
5288
5289 poll_next = 0;
5290 break;
5291 default:
5292 poll_next = 0;
5293 BUG();
5294 }
5295
5296 return poll_next;
5297 }
5298
5299 static void ata_pio_task(struct work_struct *work)
5300 {
5301 struct ata_port *ap =
5302 container_of(work, struct ata_port, port_task.work);
5303 struct ata_queued_cmd *qc = ap->port_task_data;
5304 u8 status;
5305 int poll_next;
5306
5307 fsm_start:
5308 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5309
5310 /*
5311 * This is purely heuristic. This is a fast path.
5312 * Sometimes when we enter, BSY will be cleared in
5313 * a chk-status or two. If not, the drive is probably seeking
5314 * or something. Snooze for a couple msecs, then
5315 * chk-status again. If still busy, queue delayed work.
5316 */
5317 status = ata_busy_wait(ap, ATA_BUSY, 5);
5318 if (status & ATA_BUSY) {
5319 msleep(2);
5320 status = ata_busy_wait(ap, ATA_BUSY, 10);
5321 if (status & ATA_BUSY) {
5322 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5323 return;
5324 }
5325 }
5326
5327 /* move the HSM */
5328 poll_next = ata_hsm_move(ap, qc, status, 1);
5329
5330 /* another command or interrupt handler
5331 * may be running at this point.
5332 */
5333 if (poll_next)
5334 goto fsm_start;
5335 }
5336
5337 /**
5338 * ata_qc_new - Request an available ATA command, for queueing
5339 * @ap: Port associated with device @dev
5340 * @dev: Device from whom we request an available command structure
5341 *
5342 * LOCKING:
5343 * None.
5344 */
5345
5346 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5347 {
5348 struct ata_queued_cmd *qc = NULL;
5349 unsigned int i;
5350
5351 /* no command while frozen */
5352 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5353 return NULL;
5354
5355 /* the last tag is reserved for internal command. */
5356 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5357 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5358 qc = __ata_qc_from_tag(ap, i);
5359 break;
5360 }
5361
5362 if (qc)
5363 qc->tag = i;
5364
5365 return qc;
5366 }
5367
5368 /**
5369 * ata_qc_new_init - Request an available ATA command, and initialize it
5370 * @dev: Device from whom we request an available command structure
5371 *
5372 * LOCKING:
5373 * None.
5374 */
5375
5376 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5377 {
5378 struct ata_port *ap = dev->link->ap;
5379 struct ata_queued_cmd *qc;
5380
5381 qc = ata_qc_new(ap);
5382 if (qc) {
5383 qc->scsicmd = NULL;
5384 qc->ap = ap;
5385 qc->dev = dev;
5386
5387 ata_qc_reinit(qc);
5388 }
5389
5390 return qc;
5391 }
5392
5393 /**
5394 * ata_qc_free - free unused ata_queued_cmd
5395 * @qc: Command to complete
5396 *
5397 * Designed to free unused ata_queued_cmd object
5398 * in case something prevents using it.
5399 *
5400 * LOCKING:
5401 * spin_lock_irqsave(host lock)
5402 */
5403 void ata_qc_free(struct ata_queued_cmd *qc)
5404 {
5405 struct ata_port *ap = qc->ap;
5406 unsigned int tag;
5407
5408 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5409
5410 qc->flags = 0;
5411 tag = qc->tag;
5412 if (likely(ata_tag_valid(tag))) {
5413 qc->tag = ATA_TAG_POISON;
5414 clear_bit(tag, &ap->qc_allocated);
5415 }
5416 }
5417
5418 void __ata_qc_complete(struct ata_queued_cmd *qc)
5419 {
5420 struct ata_port *ap = qc->ap;
5421 struct ata_link *link = qc->dev->link;
5422
5423 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5424 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5425
5426 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5427 ata_sg_clean(qc);
5428
5429 /* command should be marked inactive atomically with qc completion */
5430 if (qc->tf.protocol == ATA_PROT_NCQ) {
5431 link->sactive &= ~(1 << qc->tag);
5432 if (!link->sactive)
5433 ap->nr_active_links--;
5434 } else {
5435 link->active_tag = ATA_TAG_POISON;
5436 ap->nr_active_links--;
5437 }
5438
5439 /* clear exclusive status */
5440 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5441 ap->excl_link == link))
5442 ap->excl_link = NULL;
5443
5444 /* atapi: mark qc as inactive to prevent the interrupt handler
5445 * from completing the command twice later, before the error handler
5446 * is called. (when rc != 0 and atapi request sense is needed)
5447 */
5448 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5449 ap->qc_active &= ~(1 << qc->tag);
5450
5451 /* call completion callback */
5452 qc->complete_fn(qc);
5453 }
5454
5455 static void fill_result_tf(struct ata_queued_cmd *qc)
5456 {
5457 struct ata_port *ap = qc->ap;
5458
5459 qc->result_tf.flags = qc->tf.flags;
5460 ap->ops->tf_read(ap, &qc->result_tf);
5461 }
5462
5463 /**
5464 * ata_qc_complete - Complete an active ATA command
5465 * @qc: Command to complete
5466 * @err_mask: ATA Status register contents
5467 *
5468 * Indicate to the mid and upper layers that an ATA
5469 * command has completed, with either an ok or not-ok status.
5470 *
5471 * LOCKING:
5472 * spin_lock_irqsave(host lock)
5473 */
5474 void ata_qc_complete(struct ata_queued_cmd *qc)
5475 {
5476 struct ata_port *ap = qc->ap;
5477
5478 /* XXX: New EH and old EH use different mechanisms to
5479 * synchronize EH with regular execution path.
5480 *
5481 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5482 * Normal execution path is responsible for not accessing a
5483 * failed qc. libata core enforces the rule by returning NULL
5484 * from ata_qc_from_tag() for failed qcs.
5485 *
5486 * Old EH depends on ata_qc_complete() nullifying completion
5487 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5488 * not synchronize with interrupt handler. Only PIO task is
5489 * taken care of.
5490 */
5491 if (ap->ops->error_handler) {
5492 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5493
5494 if (unlikely(qc->err_mask))
5495 qc->flags |= ATA_QCFLAG_FAILED;
5496
5497 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5498 if (!ata_tag_internal(qc->tag)) {
5499 /* always fill result TF for failed qc */
5500 fill_result_tf(qc);
5501 ata_qc_schedule_eh(qc);
5502 return;
5503 }
5504 }
5505
5506 /* read result TF if requested */
5507 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5508 fill_result_tf(qc);
5509
5510 __ata_qc_complete(qc);
5511 } else {
5512 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5513 return;
5514
5515 /* read result TF if failed or requested */
5516 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5517 fill_result_tf(qc);
5518
5519 __ata_qc_complete(qc);
5520 }
5521 }
5522
5523 /**
5524 * ata_qc_complete_multiple - Complete multiple qcs successfully
5525 * @ap: port in question
5526 * @qc_active: new qc_active mask
5527 * @finish_qc: LLDD callback invoked before completing a qc
5528 *
5529 * Complete in-flight commands. This functions is meant to be
5530 * called from low-level driver's interrupt routine to complete
5531 * requests normally. ap->qc_active and @qc_active is compared
5532 * and commands are completed accordingly.
5533 *
5534 * LOCKING:
5535 * spin_lock_irqsave(host lock)
5536 *
5537 * RETURNS:
5538 * Number of completed commands on success, -errno otherwise.
5539 */
5540 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5541 void (*finish_qc)(struct ata_queued_cmd *))
5542 {
5543 int nr_done = 0;
5544 u32 done_mask;
5545 int i;
5546
5547 done_mask = ap->qc_active ^ qc_active;
5548
5549 if (unlikely(done_mask & qc_active)) {
5550 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5551 "(%08x->%08x)\n", ap->qc_active, qc_active);
5552 return -EINVAL;
5553 }
5554
5555 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5556 struct ata_queued_cmd *qc;
5557
5558 if (!(done_mask & (1 << i)))
5559 continue;
5560
5561 if ((qc = ata_qc_from_tag(ap, i))) {
5562 if (finish_qc)
5563 finish_qc(qc);
5564 ata_qc_complete(qc);
5565 nr_done++;
5566 }
5567 }
5568
5569 return nr_done;
5570 }
5571
5572 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5573 {
5574 struct ata_port *ap = qc->ap;
5575
5576 switch (qc->tf.protocol) {
5577 case ATA_PROT_NCQ:
5578 case ATA_PROT_DMA:
5579 case ATA_PROT_ATAPI_DMA:
5580 return 1;
5581
5582 case ATA_PROT_ATAPI:
5583 case ATA_PROT_PIO:
5584 if (ap->flags & ATA_FLAG_PIO_DMA)
5585 return 1;
5586
5587 /* fall through */
5588
5589 default:
5590 return 0;
5591 }
5592
5593 /* never reached */
5594 }
5595
5596 /**
5597 * ata_qc_issue - issue taskfile to device
5598 * @qc: command to issue to device
5599 *
5600 * Prepare an ATA command to submission to device.
5601 * This includes mapping the data into a DMA-able
5602 * area, filling in the S/G table, and finally
5603 * writing the taskfile to hardware, starting the command.
5604 *
5605 * LOCKING:
5606 * spin_lock_irqsave(host lock)
5607 */
5608 void ata_qc_issue(struct ata_queued_cmd *qc)
5609 {
5610 struct ata_port *ap = qc->ap;
5611 struct ata_link *link = qc->dev->link;
5612
5613 /* Make sure only one non-NCQ command is outstanding. The
5614 * check is skipped for old EH because it reuses active qc to
5615 * request ATAPI sense.
5616 */
5617 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5618
5619 if (qc->tf.protocol == ATA_PROT_NCQ) {
5620 WARN_ON(link->sactive & (1 << qc->tag));
5621
5622 if (!link->sactive)
5623 ap->nr_active_links++;
5624 link->sactive |= 1 << qc->tag;
5625 } else {
5626 WARN_ON(link->sactive);
5627
5628 ap->nr_active_links++;
5629 link->active_tag = qc->tag;
5630 }
5631
5632 qc->flags |= ATA_QCFLAG_ACTIVE;
5633 ap->qc_active |= 1 << qc->tag;
5634
5635 if (ata_should_dma_map(qc)) {
5636 if (qc->flags & ATA_QCFLAG_SG) {
5637 if (ata_sg_setup(qc))
5638 goto sg_err;
5639 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5640 if (ata_sg_setup_one(qc))
5641 goto sg_err;
5642 }
5643 } else {
5644 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5645 }
5646
5647 ap->ops->qc_prep(qc);
5648
5649 qc->err_mask |= ap->ops->qc_issue(qc);
5650 if (unlikely(qc->err_mask))
5651 goto err;
5652 return;
5653
5654 sg_err:
5655 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5656 qc->err_mask |= AC_ERR_SYSTEM;
5657 err:
5658 ata_qc_complete(qc);
5659 }
5660
5661 /**
5662 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5663 * @qc: command to issue to device
5664 *
5665 * Using various libata functions and hooks, this function
5666 * starts an ATA command. ATA commands are grouped into
5667 * classes called "protocols", and issuing each type of protocol
5668 * is slightly different.
5669 *
5670 * May be used as the qc_issue() entry in ata_port_operations.
5671 *
5672 * LOCKING:
5673 * spin_lock_irqsave(host lock)
5674 *
5675 * RETURNS:
5676 * Zero on success, AC_ERR_* mask on failure
5677 */
5678
5679 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5680 {
5681 struct ata_port *ap = qc->ap;
5682
5683 /* Use polling pio if the LLD doesn't handle
5684 * interrupt driven pio and atapi CDB interrupt.
5685 */
5686 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5687 switch (qc->tf.protocol) {
5688 case ATA_PROT_PIO:
5689 case ATA_PROT_NODATA:
5690 case ATA_PROT_ATAPI:
5691 case ATA_PROT_ATAPI_NODATA:
5692 qc->tf.flags |= ATA_TFLAG_POLLING;
5693 break;
5694 case ATA_PROT_ATAPI_DMA:
5695 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5696 /* see ata_dma_blacklisted() */
5697 BUG();
5698 break;
5699 default:
5700 break;
5701 }
5702 }
5703
5704 /* select the device */
5705 ata_dev_select(ap, qc->dev->devno, 1, 0);
5706
5707 /* start the command */
5708 switch (qc->tf.protocol) {
5709 case ATA_PROT_NODATA:
5710 if (qc->tf.flags & ATA_TFLAG_POLLING)
5711 ata_qc_set_polling(qc);
5712
5713 ata_tf_to_host(ap, &qc->tf);
5714 ap->hsm_task_state = HSM_ST_LAST;
5715
5716 if (qc->tf.flags & ATA_TFLAG_POLLING)
5717 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5718
5719 break;
5720
5721 case ATA_PROT_DMA:
5722 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5723
5724 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5725 ap->ops->bmdma_setup(qc); /* set up bmdma */
5726 ap->ops->bmdma_start(qc); /* initiate bmdma */
5727 ap->hsm_task_state = HSM_ST_LAST;
5728 break;
5729
5730 case ATA_PROT_PIO:
5731 if (qc->tf.flags & ATA_TFLAG_POLLING)
5732 ata_qc_set_polling(qc);
5733
5734 ata_tf_to_host(ap, &qc->tf);
5735
5736 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5737 /* PIO data out protocol */
5738 ap->hsm_task_state = HSM_ST_FIRST;
5739 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5740
5741 /* always send first data block using
5742 * the ata_pio_task() codepath.
5743 */
5744 } else {
5745 /* PIO data in protocol */
5746 ap->hsm_task_state = HSM_ST;
5747
5748 if (qc->tf.flags & ATA_TFLAG_POLLING)
5749 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5750
5751 /* if polling, ata_pio_task() handles the rest.
5752 * otherwise, interrupt handler takes over from here.
5753 */
5754 }
5755
5756 break;
5757
5758 case ATA_PROT_ATAPI:
5759 case ATA_PROT_ATAPI_NODATA:
5760 if (qc->tf.flags & ATA_TFLAG_POLLING)
5761 ata_qc_set_polling(qc);
5762
5763 ata_tf_to_host(ap, &qc->tf);
5764
5765 ap->hsm_task_state = HSM_ST_FIRST;
5766
5767 /* send cdb by polling if no cdb interrupt */
5768 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5769 (qc->tf.flags & ATA_TFLAG_POLLING))
5770 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5771 break;
5772
5773 case ATA_PROT_ATAPI_DMA:
5774 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5775
5776 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5777 ap->ops->bmdma_setup(qc); /* set up bmdma */
5778 ap->hsm_task_state = HSM_ST_FIRST;
5779
5780 /* send cdb by polling if no cdb interrupt */
5781 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5782 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5783 break;
5784
5785 default:
5786 WARN_ON(1);
5787 return AC_ERR_SYSTEM;
5788 }
5789
5790 return 0;
5791 }
5792
5793 /**
5794 * ata_host_intr - Handle host interrupt for given (port, task)
5795 * @ap: Port on which interrupt arrived (possibly...)
5796 * @qc: Taskfile currently active in engine
5797 *
5798 * Handle host interrupt for given queued command. Currently,
5799 * only DMA interrupts are handled. All other commands are
5800 * handled via polling with interrupts disabled (nIEN bit).
5801 *
5802 * LOCKING:
5803 * spin_lock_irqsave(host lock)
5804 *
5805 * RETURNS:
5806 * One if interrupt was handled, zero if not (shared irq).
5807 */
5808
5809 inline unsigned int ata_host_intr (struct ata_port *ap,
5810 struct ata_queued_cmd *qc)
5811 {
5812 struct ata_eh_info *ehi = &ap->link.eh_info;
5813 u8 status, host_stat = 0;
5814
5815 VPRINTK("ata%u: protocol %d task_state %d\n",
5816 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5817
5818 /* Check whether we are expecting interrupt in this state */
5819 switch (ap->hsm_task_state) {
5820 case HSM_ST_FIRST:
5821 /* Some pre-ATAPI-4 devices assert INTRQ
5822 * at this state when ready to receive CDB.
5823 */
5824
5825 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5826 * The flag was turned on only for atapi devices.
5827 * No need to check is_atapi_taskfile(&qc->tf) again.
5828 */
5829 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5830 goto idle_irq;
5831 break;
5832 case HSM_ST_LAST:
5833 if (qc->tf.protocol == ATA_PROT_DMA ||
5834 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5835 /* check status of DMA engine */
5836 host_stat = ap->ops->bmdma_status(ap);
5837 VPRINTK("ata%u: host_stat 0x%X\n",
5838 ap->print_id, host_stat);
5839
5840 /* if it's not our irq... */
5841 if (!(host_stat & ATA_DMA_INTR))
5842 goto idle_irq;
5843
5844 /* before we do anything else, clear DMA-Start bit */
5845 ap->ops->bmdma_stop(qc);
5846
5847 if (unlikely(host_stat & ATA_DMA_ERR)) {
5848 /* error when transfering data to/from memory */
5849 qc->err_mask |= AC_ERR_HOST_BUS;
5850 ap->hsm_task_state = HSM_ST_ERR;
5851 }
5852 }
5853 break;
5854 case HSM_ST:
5855 break;
5856 default:
5857 goto idle_irq;
5858 }
5859
5860 /* check altstatus */
5861 status = ata_altstatus(ap);
5862 if (status & ATA_BUSY)
5863 goto idle_irq;
5864
5865 /* check main status, clearing INTRQ */
5866 status = ata_chk_status(ap);
5867 if (unlikely(status & ATA_BUSY))
5868 goto idle_irq;
5869
5870 /* ack bmdma irq events */
5871 ap->ops->irq_clear(ap);
5872
5873 ata_hsm_move(ap, qc, status, 0);
5874
5875 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5876 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5877 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5878
5879 return 1; /* irq handled */
5880
5881 idle_irq:
5882 ap->stats.idle_irq++;
5883
5884 #ifdef ATA_IRQ_TRAP
5885 if ((ap->stats.idle_irq % 1000) == 0) {
5886 ata_chk_status(ap);
5887 ap->ops->irq_clear(ap);
5888 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5889 return 1;
5890 }
5891 #endif
5892 return 0; /* irq not handled */
5893 }
5894
5895 /**
5896 * ata_interrupt - Default ATA host interrupt handler
5897 * @irq: irq line (unused)
5898 * @dev_instance: pointer to our ata_host information structure
5899 *
5900 * Default interrupt handler for PCI IDE devices. Calls
5901 * ata_host_intr() for each port that is not disabled.
5902 *
5903 * LOCKING:
5904 * Obtains host lock during operation.
5905 *
5906 * RETURNS:
5907 * IRQ_NONE or IRQ_HANDLED.
5908 */
5909
5910 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5911 {
5912 struct ata_host *host = dev_instance;
5913 unsigned int i;
5914 unsigned int handled = 0;
5915 unsigned long flags;
5916
5917 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5918 spin_lock_irqsave(&host->lock, flags);
5919
5920 for (i = 0; i < host->n_ports; i++) {
5921 struct ata_port *ap;
5922
5923 ap = host->ports[i];
5924 if (ap &&
5925 !(ap->flags & ATA_FLAG_DISABLED)) {
5926 struct ata_queued_cmd *qc;
5927
5928 qc = ata_qc_from_tag(ap, ap->link.active_tag);
5929 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5930 (qc->flags & ATA_QCFLAG_ACTIVE))
5931 handled |= ata_host_intr(ap, qc);
5932 }
5933 }
5934
5935 spin_unlock_irqrestore(&host->lock, flags);
5936
5937 return IRQ_RETVAL(handled);
5938 }
5939
5940 /**
5941 * sata_scr_valid - test whether SCRs are accessible
5942 * @link: ATA link to test SCR accessibility for
5943 *
5944 * Test whether SCRs are accessible for @link.
5945 *
5946 * LOCKING:
5947 * None.
5948 *
5949 * RETURNS:
5950 * 1 if SCRs are accessible, 0 otherwise.
5951 */
5952 int sata_scr_valid(struct ata_link *link)
5953 {
5954 struct ata_port *ap = link->ap;
5955
5956 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5957 }
5958
5959 /**
5960 * sata_scr_read - read SCR register of the specified port
5961 * @link: ATA link to read SCR for
5962 * @reg: SCR to read
5963 * @val: Place to store read value
5964 *
5965 * Read SCR register @reg of @link into *@val. This function is
5966 * guaranteed to succeed if the cable type of the port is SATA
5967 * and the port implements ->scr_read.
5968 *
5969 * LOCKING:
5970 * None.
5971 *
5972 * RETURNS:
5973 * 0 on success, negative errno on failure.
5974 */
5975 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5976 {
5977 struct ata_port *ap = link->ap;
5978
5979 if (sata_scr_valid(link))
5980 return ap->ops->scr_read(ap, reg, val);
5981 return -EOPNOTSUPP;
5982 }
5983
5984 /**
5985 * sata_scr_write - write SCR register of the specified port
5986 * @link: ATA link to write SCR for
5987 * @reg: SCR to write
5988 * @val: value to write
5989 *
5990 * Write @val to SCR register @reg of @link. This function is
5991 * guaranteed to succeed if the cable type of the port is SATA
5992 * and the port implements ->scr_read.
5993 *
5994 * LOCKING:
5995 * None.
5996 *
5997 * RETURNS:
5998 * 0 on success, negative errno on failure.
5999 */
6000 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6001 {
6002 struct ata_port *ap = link->ap;
6003
6004 if (sata_scr_valid(link))
6005 return ap->ops->scr_write(ap, reg, val);
6006 return -EOPNOTSUPP;
6007 }
6008
6009 /**
6010 * sata_scr_write_flush - write SCR register of the specified port and flush
6011 * @link: ATA link to write SCR for
6012 * @reg: SCR to write
6013 * @val: value to write
6014 *
6015 * This function is identical to sata_scr_write() except that this
6016 * function performs flush after writing to the register.
6017 *
6018 * LOCKING:
6019 * None.
6020 *
6021 * RETURNS:
6022 * 0 on success, negative errno on failure.
6023 */
6024 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6025 {
6026 struct ata_port *ap = link->ap;
6027 int rc;
6028
6029 if (sata_scr_valid(link)) {
6030 rc = ap->ops->scr_write(ap, reg, val);
6031 if (rc == 0)
6032 rc = ap->ops->scr_read(ap, reg, &val);
6033 return rc;
6034 }
6035 return -EOPNOTSUPP;
6036 }
6037
6038 /**
6039 * ata_link_online - test whether the given link is online
6040 * @link: ATA link to test
6041 *
6042 * Test whether @link is online. Note that this function returns
6043 * 0 if online status of @link cannot be obtained, so
6044 * ata_link_online(link) != !ata_link_offline(link).
6045 *
6046 * LOCKING:
6047 * None.
6048 *
6049 * RETURNS:
6050 * 1 if the port online status is available and online.
6051 */
6052 int ata_link_online(struct ata_link *link)
6053 {
6054 u32 sstatus;
6055
6056 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6057 (sstatus & 0xf) == 0x3)
6058 return 1;
6059 return 0;
6060 }
6061
6062 /**
6063 * ata_link_offline - test whether the given link is offline
6064 * @link: ATA link to test
6065 *
6066 * Test whether @link is offline. Note that this function
6067 * returns 0 if offline status of @link cannot be obtained, so
6068 * ata_link_online(link) != !ata_link_offline(link).
6069 *
6070 * LOCKING:
6071 * None.
6072 *
6073 * RETURNS:
6074 * 1 if the port offline status is available and offline.
6075 */
6076 int ata_link_offline(struct ata_link *link)
6077 {
6078 u32 sstatus;
6079
6080 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6081 (sstatus & 0xf) != 0x3)
6082 return 1;
6083 return 0;
6084 }
6085
6086 int ata_flush_cache(struct ata_device *dev)
6087 {
6088 unsigned int err_mask;
6089 u8 cmd;
6090
6091 if (!ata_try_flush_cache(dev))
6092 return 0;
6093
6094 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6095 cmd = ATA_CMD_FLUSH_EXT;
6096 else
6097 cmd = ATA_CMD_FLUSH;
6098
6099 /* This is wrong. On a failed flush we get back the LBA of the lost
6100 sector and we should (assuming it wasn't aborted as unknown) issue
6101 a further flush command to continue the writeback until it
6102 does not error */
6103 err_mask = ata_do_simple_cmd(dev, cmd);
6104 if (err_mask) {
6105 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6106 return -EIO;
6107 }
6108
6109 return 0;
6110 }
6111
6112 #ifdef CONFIG_PM
6113 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6114 unsigned int action, unsigned int ehi_flags,
6115 int wait)
6116 {
6117 unsigned long flags;
6118 int i, rc;
6119
6120 for (i = 0; i < host->n_ports; i++) {
6121 struct ata_port *ap = host->ports[i];
6122 struct ata_link *link;
6123
6124 /* Previous resume operation might still be in
6125 * progress. Wait for PM_PENDING to clear.
6126 */
6127 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6128 ata_port_wait_eh(ap);
6129 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6130 }
6131
6132 /* request PM ops to EH */
6133 spin_lock_irqsave(ap->lock, flags);
6134
6135 ap->pm_mesg = mesg;
6136 if (wait) {
6137 rc = 0;
6138 ap->pm_result = &rc;
6139 }
6140
6141 ap->pflags |= ATA_PFLAG_PM_PENDING;
6142 __ata_port_for_each_link(link, ap) {
6143 link->eh_info.action |= action;
6144 link->eh_info.flags |= ehi_flags;
6145 }
6146
6147 ata_port_schedule_eh(ap);
6148
6149 spin_unlock_irqrestore(ap->lock, flags);
6150
6151 /* wait and check result */
6152 if (wait) {
6153 ata_port_wait_eh(ap);
6154 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6155 if (rc)
6156 return rc;
6157 }
6158 }
6159
6160 return 0;
6161 }
6162
6163 /**
6164 * ata_host_suspend - suspend host
6165 * @host: host to suspend
6166 * @mesg: PM message
6167 *
6168 * Suspend @host. Actual operation is performed by EH. This
6169 * function requests EH to perform PM operations and waits for EH
6170 * to finish.
6171 *
6172 * LOCKING:
6173 * Kernel thread context (may sleep).
6174 *
6175 * RETURNS:
6176 * 0 on success, -errno on failure.
6177 */
6178 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6179 {
6180 int rc;
6181
6182 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6183 if (rc == 0)
6184 host->dev->power.power_state = mesg;
6185 return rc;
6186 }
6187
6188 /**
6189 * ata_host_resume - resume host
6190 * @host: host to resume
6191 *
6192 * Resume @host. Actual operation is performed by EH. This
6193 * function requests EH to perform PM operations and returns.
6194 * Note that all resume operations are performed parallely.
6195 *
6196 * LOCKING:
6197 * Kernel thread context (may sleep).
6198 */
6199 void ata_host_resume(struct ata_host *host)
6200 {
6201 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6202 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6203 host->dev->power.power_state = PMSG_ON;
6204 }
6205 #endif
6206
6207 /**
6208 * ata_port_start - Set port up for dma.
6209 * @ap: Port to initialize
6210 *
6211 * Called just after data structures for each port are
6212 * initialized. Allocates space for PRD table.
6213 *
6214 * May be used as the port_start() entry in ata_port_operations.
6215 *
6216 * LOCKING:
6217 * Inherited from caller.
6218 */
6219 int ata_port_start(struct ata_port *ap)
6220 {
6221 struct device *dev = ap->dev;
6222 int rc;
6223
6224 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6225 GFP_KERNEL);
6226 if (!ap->prd)
6227 return -ENOMEM;
6228
6229 rc = ata_pad_alloc(ap, dev);
6230 if (rc)
6231 return rc;
6232
6233 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6234 (unsigned long long)ap->prd_dma);
6235 return 0;
6236 }
6237
6238 /**
6239 * ata_dev_init - Initialize an ata_device structure
6240 * @dev: Device structure to initialize
6241 *
6242 * Initialize @dev in preparation for probing.
6243 *
6244 * LOCKING:
6245 * Inherited from caller.
6246 */
6247 void ata_dev_init(struct ata_device *dev)
6248 {
6249 struct ata_link *link = dev->link;
6250 struct ata_port *ap = link->ap;
6251 unsigned long flags;
6252
6253 /* SATA spd limit is bound to the first device */
6254 link->sata_spd_limit = link->hw_sata_spd_limit;
6255 link->sata_spd = 0;
6256
6257 /* High bits of dev->flags are used to record warm plug
6258 * requests which occur asynchronously. Synchronize using
6259 * host lock.
6260 */
6261 spin_lock_irqsave(ap->lock, flags);
6262 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6263 dev->horkage = 0;
6264 spin_unlock_irqrestore(ap->lock, flags);
6265
6266 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6267 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6268 dev->pio_mask = UINT_MAX;
6269 dev->mwdma_mask = UINT_MAX;
6270 dev->udma_mask = UINT_MAX;
6271 }
6272
6273 /**
6274 * ata_link_init - Initialize an ata_link structure
6275 * @ap: ATA port link is attached to
6276 * @link: Link structure to initialize
6277 * @pmp: Port multiplier port number
6278 *
6279 * Initialize @link.
6280 *
6281 * LOCKING:
6282 * Kernel thread context (may sleep)
6283 */
6284 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6285 {
6286 int i;
6287
6288 /* clear everything except for devices */
6289 memset(link, 0, offsetof(struct ata_link, device[0]));
6290
6291 link->ap = ap;
6292 link->pmp = pmp;
6293 link->active_tag = ATA_TAG_POISON;
6294 link->hw_sata_spd_limit = UINT_MAX;
6295
6296 /* can't use iterator, ap isn't initialized yet */
6297 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6298 struct ata_device *dev = &link->device[i];
6299
6300 dev->link = link;
6301 dev->devno = dev - link->device;
6302 ata_dev_init(dev);
6303 }
6304 }
6305
6306 /**
6307 * sata_link_init_spd - Initialize link->sata_spd_limit
6308 * @link: Link to configure sata_spd_limit for
6309 *
6310 * Initialize @link->[hw_]sata_spd_limit to the currently
6311 * configured value.
6312 *
6313 * LOCKING:
6314 * Kernel thread context (may sleep).
6315 *
6316 * RETURNS:
6317 * 0 on success, -errno on failure.
6318 */
6319 int sata_link_init_spd(struct ata_link *link)
6320 {
6321 u32 scontrol, spd;
6322 int rc;
6323
6324 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6325 if (rc)
6326 return rc;
6327
6328 spd = (scontrol >> 4) & 0xf;
6329 if (spd)
6330 link->hw_sata_spd_limit &= (1 << spd) - 1;
6331
6332 link->sata_spd_limit = link->hw_sata_spd_limit;
6333
6334 return 0;
6335 }
6336
6337 /**
6338 * ata_port_alloc - allocate and initialize basic ATA port resources
6339 * @host: ATA host this allocated port belongs to
6340 *
6341 * Allocate and initialize basic ATA port resources.
6342 *
6343 * RETURNS:
6344 * Allocate ATA port on success, NULL on failure.
6345 *
6346 * LOCKING:
6347 * Inherited from calling layer (may sleep).
6348 */
6349 struct ata_port *ata_port_alloc(struct ata_host *host)
6350 {
6351 struct ata_port *ap;
6352
6353 DPRINTK("ENTER\n");
6354
6355 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6356 if (!ap)
6357 return NULL;
6358
6359 ap->pflags |= ATA_PFLAG_INITIALIZING;
6360 ap->lock = &host->lock;
6361 ap->flags = ATA_FLAG_DISABLED;
6362 ap->print_id = -1;
6363 ap->ctl = ATA_DEVCTL_OBS;
6364 ap->host = host;
6365 ap->dev = host->dev;
6366 ap->last_ctl = 0xFF;
6367
6368 #if defined(ATA_VERBOSE_DEBUG)
6369 /* turn on all debugging levels */
6370 ap->msg_enable = 0x00FF;
6371 #elif defined(ATA_DEBUG)
6372 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6373 #else
6374 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6375 #endif
6376
6377 INIT_DELAYED_WORK(&ap->port_task, NULL);
6378 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6379 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6380 INIT_LIST_HEAD(&ap->eh_done_q);
6381 init_waitqueue_head(&ap->eh_wait_q);
6382 init_timer_deferrable(&ap->fastdrain_timer);
6383 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6384 ap->fastdrain_timer.data = (unsigned long)ap;
6385
6386 ap->cbl = ATA_CBL_NONE;
6387
6388 ata_link_init(ap, &ap->link, 0);
6389
6390 #ifdef ATA_IRQ_TRAP
6391 ap->stats.unhandled_irq = 1;
6392 ap->stats.idle_irq = 1;
6393 #endif
6394 return ap;
6395 }
6396
6397 static void ata_host_release(struct device *gendev, void *res)
6398 {
6399 struct ata_host *host = dev_get_drvdata(gendev);
6400 int i;
6401
6402 for (i = 0; i < host->n_ports; i++) {
6403 struct ata_port *ap = host->ports[i];
6404
6405 if (!ap)
6406 continue;
6407
6408 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6409 ap->ops->port_stop(ap);
6410 }
6411
6412 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6413 host->ops->host_stop(host);
6414
6415 for (i = 0; i < host->n_ports; i++) {
6416 struct ata_port *ap = host->ports[i];
6417
6418 if (!ap)
6419 continue;
6420
6421 if (ap->scsi_host)
6422 scsi_host_put(ap->scsi_host);
6423
6424 kfree(ap);
6425 host->ports[i] = NULL;
6426 }
6427
6428 dev_set_drvdata(gendev, NULL);
6429 }
6430
6431 /**
6432 * ata_host_alloc - allocate and init basic ATA host resources
6433 * @dev: generic device this host is associated with
6434 * @max_ports: maximum number of ATA ports associated with this host
6435 *
6436 * Allocate and initialize basic ATA host resources. LLD calls
6437 * this function to allocate a host, initializes it fully and
6438 * attaches it using ata_host_register().
6439 *
6440 * @max_ports ports are allocated and host->n_ports is
6441 * initialized to @max_ports. The caller is allowed to decrease
6442 * host->n_ports before calling ata_host_register(). The unused
6443 * ports will be automatically freed on registration.
6444 *
6445 * RETURNS:
6446 * Allocate ATA host on success, NULL on failure.
6447 *
6448 * LOCKING:
6449 * Inherited from calling layer (may sleep).
6450 */
6451 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6452 {
6453 struct ata_host *host;
6454 size_t sz;
6455 int i;
6456
6457 DPRINTK("ENTER\n");
6458
6459 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6460 return NULL;
6461
6462 /* alloc a container for our list of ATA ports (buses) */
6463 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6464 /* alloc a container for our list of ATA ports (buses) */
6465 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6466 if (!host)
6467 goto err_out;
6468
6469 devres_add(dev, host);
6470 dev_set_drvdata(dev, host);
6471
6472 spin_lock_init(&host->lock);
6473 host->dev = dev;
6474 host->n_ports = max_ports;
6475
6476 /* allocate ports bound to this host */
6477 for (i = 0; i < max_ports; i++) {
6478 struct ata_port *ap;
6479
6480 ap = ata_port_alloc(host);
6481 if (!ap)
6482 goto err_out;
6483
6484 ap->port_no = i;
6485 host->ports[i] = ap;
6486 }
6487
6488 devres_remove_group(dev, NULL);
6489 return host;
6490
6491 err_out:
6492 devres_release_group(dev, NULL);
6493 return NULL;
6494 }
6495
6496 /**
6497 * ata_host_alloc_pinfo - alloc host and init with port_info array
6498 * @dev: generic device this host is associated with
6499 * @ppi: array of ATA port_info to initialize host with
6500 * @n_ports: number of ATA ports attached to this host
6501 *
6502 * Allocate ATA host and initialize with info from @ppi. If NULL
6503 * terminated, @ppi may contain fewer entries than @n_ports. The
6504 * last entry will be used for the remaining ports.
6505 *
6506 * RETURNS:
6507 * Allocate ATA host on success, NULL on failure.
6508 *
6509 * LOCKING:
6510 * Inherited from calling layer (may sleep).
6511 */
6512 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6513 const struct ata_port_info * const * ppi,
6514 int n_ports)
6515 {
6516 const struct ata_port_info *pi;
6517 struct ata_host *host;
6518 int i, j;
6519
6520 host = ata_host_alloc(dev, n_ports);
6521 if (!host)
6522 return NULL;
6523
6524 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6525 struct ata_port *ap = host->ports[i];
6526
6527 if (ppi[j])
6528 pi = ppi[j++];
6529
6530 ap->pio_mask = pi->pio_mask;
6531 ap->mwdma_mask = pi->mwdma_mask;
6532 ap->udma_mask = pi->udma_mask;
6533 ap->flags |= pi->flags;
6534 ap->link.flags |= pi->link_flags;
6535 ap->ops = pi->port_ops;
6536
6537 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6538 host->ops = pi->port_ops;
6539 if (!host->private_data && pi->private_data)
6540 host->private_data = pi->private_data;
6541 }
6542
6543 return host;
6544 }
6545
6546 /**
6547 * ata_host_start - start and freeze ports of an ATA host
6548 * @host: ATA host to start ports for
6549 *
6550 * Start and then freeze ports of @host. Started status is
6551 * recorded in host->flags, so this function can be called
6552 * multiple times. Ports are guaranteed to get started only
6553 * once. If host->ops isn't initialized yet, its set to the
6554 * first non-dummy port ops.
6555 *
6556 * LOCKING:
6557 * Inherited from calling layer (may sleep).
6558 *
6559 * RETURNS:
6560 * 0 if all ports are started successfully, -errno otherwise.
6561 */
6562 int ata_host_start(struct ata_host *host)
6563 {
6564 int i, rc;
6565
6566 if (host->flags & ATA_HOST_STARTED)
6567 return 0;
6568
6569 for (i = 0; i < host->n_ports; i++) {
6570 struct ata_port *ap = host->ports[i];
6571
6572 if (!host->ops && !ata_port_is_dummy(ap))
6573 host->ops = ap->ops;
6574
6575 if (ap->ops->port_start) {
6576 rc = ap->ops->port_start(ap);
6577 if (rc) {
6578 ata_port_printk(ap, KERN_ERR, "failed to "
6579 "start port (errno=%d)\n", rc);
6580 goto err_out;
6581 }
6582 }
6583
6584 ata_eh_freeze_port(ap);
6585 }
6586
6587 host->flags |= ATA_HOST_STARTED;
6588 return 0;
6589
6590 err_out:
6591 while (--i >= 0) {
6592 struct ata_port *ap = host->ports[i];
6593
6594 if (ap->ops->port_stop)
6595 ap->ops->port_stop(ap);
6596 }
6597 return rc;
6598 }
6599
6600 /**
6601 * ata_sas_host_init - Initialize a host struct
6602 * @host: host to initialize
6603 * @dev: device host is attached to
6604 * @flags: host flags
6605 * @ops: port_ops
6606 *
6607 * LOCKING:
6608 * PCI/etc. bus probe sem.
6609 *
6610 */
6611 /* KILLME - the only user left is ipr */
6612 void ata_host_init(struct ata_host *host, struct device *dev,
6613 unsigned long flags, const struct ata_port_operations *ops)
6614 {
6615 spin_lock_init(&host->lock);
6616 host->dev = dev;
6617 host->flags = flags;
6618 host->ops = ops;
6619 }
6620
6621 /**
6622 * ata_host_register - register initialized ATA host
6623 * @host: ATA host to register
6624 * @sht: template for SCSI host
6625 *
6626 * Register initialized ATA host. @host is allocated using
6627 * ata_host_alloc() and fully initialized by LLD. This function
6628 * starts ports, registers @host with ATA and SCSI layers and
6629 * probe registered devices.
6630 *
6631 * LOCKING:
6632 * Inherited from calling layer (may sleep).
6633 *
6634 * RETURNS:
6635 * 0 on success, -errno otherwise.
6636 */
6637 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6638 {
6639 int i, rc;
6640
6641 /* host must have been started */
6642 if (!(host->flags & ATA_HOST_STARTED)) {
6643 dev_printk(KERN_ERR, host->dev,
6644 "BUG: trying to register unstarted host\n");
6645 WARN_ON(1);
6646 return -EINVAL;
6647 }
6648
6649 /* Blow away unused ports. This happens when LLD can't
6650 * determine the exact number of ports to allocate at
6651 * allocation time.
6652 */
6653 for (i = host->n_ports; host->ports[i]; i++)
6654 kfree(host->ports[i]);
6655
6656 /* give ports names and add SCSI hosts */
6657 for (i = 0; i < host->n_ports; i++)
6658 host->ports[i]->print_id = ata_print_id++;
6659
6660 rc = ata_scsi_add_hosts(host, sht);
6661 if (rc)
6662 return rc;
6663
6664 /* associate with ACPI nodes */
6665 ata_acpi_associate(host);
6666
6667 /* set cable, sata_spd_limit and report */
6668 for (i = 0; i < host->n_ports; i++) {
6669 struct ata_port *ap = host->ports[i];
6670 unsigned long xfer_mask;
6671
6672 /* set SATA cable type if still unset */
6673 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6674 ap->cbl = ATA_CBL_SATA;
6675
6676 /* init sata_spd_limit to the current value */
6677 sata_link_init_spd(&ap->link);
6678
6679 /* print per-port info to dmesg */
6680 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6681 ap->udma_mask);
6682
6683 if (!ata_port_is_dummy(ap))
6684 ata_port_printk(ap, KERN_INFO,
6685 "%cATA max %s %s\n",
6686 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6687 ata_mode_string(xfer_mask),
6688 ap->link.eh_info.desc);
6689 else
6690 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6691 }
6692
6693 /* perform each probe synchronously */
6694 DPRINTK("probe begin\n");
6695 for (i = 0; i < host->n_ports; i++) {
6696 struct ata_port *ap = host->ports[i];
6697 int rc;
6698
6699 /* probe */
6700 if (ap->ops->error_handler) {
6701 struct ata_eh_info *ehi = &ap->link.eh_info;
6702 unsigned long flags;
6703
6704 ata_port_probe(ap);
6705
6706 /* kick EH for boot probing */
6707 spin_lock_irqsave(ap->lock, flags);
6708
6709 ehi->probe_mask =
6710 (1 << ata_link_max_devices(&ap->link)) - 1;
6711 ehi->action |= ATA_EH_SOFTRESET;
6712 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6713
6714 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6715 ap->pflags |= ATA_PFLAG_LOADING;
6716 ata_port_schedule_eh(ap);
6717
6718 spin_unlock_irqrestore(ap->lock, flags);
6719
6720 /* wait for EH to finish */
6721 ata_port_wait_eh(ap);
6722 } else {
6723 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6724 rc = ata_bus_probe(ap);
6725 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6726
6727 if (rc) {
6728 /* FIXME: do something useful here?
6729 * Current libata behavior will
6730 * tear down everything when
6731 * the module is removed
6732 * or the h/w is unplugged.
6733 */
6734 }
6735 }
6736 }
6737
6738 /* probes are done, now scan each port's disk(s) */
6739 DPRINTK("host probe begin\n");
6740 for (i = 0; i < host->n_ports; i++) {
6741 struct ata_port *ap = host->ports[i];
6742
6743 ata_scsi_scan_host(ap, 1);
6744 }
6745
6746 return 0;
6747 }
6748
6749 /**
6750 * ata_host_activate - start host, request IRQ and register it
6751 * @host: target ATA host
6752 * @irq: IRQ to request
6753 * @irq_handler: irq_handler used when requesting IRQ
6754 * @irq_flags: irq_flags used when requesting IRQ
6755 * @sht: scsi_host_template to use when registering the host
6756 *
6757 * After allocating an ATA host and initializing it, most libata
6758 * LLDs perform three steps to activate the host - start host,
6759 * request IRQ and register it. This helper takes necessasry
6760 * arguments and performs the three steps in one go.
6761 *
6762 * LOCKING:
6763 * Inherited from calling layer (may sleep).
6764 *
6765 * RETURNS:
6766 * 0 on success, -errno otherwise.
6767 */
6768 int ata_host_activate(struct ata_host *host, int irq,
6769 irq_handler_t irq_handler, unsigned long irq_flags,
6770 struct scsi_host_template *sht)
6771 {
6772 int i, rc;
6773
6774 rc = ata_host_start(host);
6775 if (rc)
6776 return rc;
6777
6778 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6779 dev_driver_string(host->dev), host);
6780 if (rc)
6781 return rc;
6782
6783 for (i = 0; i < host->n_ports; i++)
6784 ata_port_desc(host->ports[i], "irq %d", irq);
6785
6786 rc = ata_host_register(host, sht);
6787 /* if failed, just free the IRQ and leave ports alone */
6788 if (rc)
6789 devm_free_irq(host->dev, irq, host);
6790
6791 return rc;
6792 }
6793
6794 /**
6795 * ata_port_detach - Detach ATA port in prepration of device removal
6796 * @ap: ATA port to be detached
6797 *
6798 * Detach all ATA devices and the associated SCSI devices of @ap;
6799 * then, remove the associated SCSI host. @ap is guaranteed to
6800 * be quiescent on return from this function.
6801 *
6802 * LOCKING:
6803 * Kernel thread context (may sleep).
6804 */
6805 void ata_port_detach(struct ata_port *ap)
6806 {
6807 unsigned long flags;
6808 struct ata_link *link;
6809 struct ata_device *dev;
6810
6811 if (!ap->ops->error_handler)
6812 goto skip_eh;
6813
6814 /* tell EH we're leaving & flush EH */
6815 spin_lock_irqsave(ap->lock, flags);
6816 ap->pflags |= ATA_PFLAG_UNLOADING;
6817 spin_unlock_irqrestore(ap->lock, flags);
6818
6819 ata_port_wait_eh(ap);
6820
6821 /* EH is now guaranteed to see UNLOADING, so no new device
6822 * will be attached. Disable all existing devices.
6823 */
6824 spin_lock_irqsave(ap->lock, flags);
6825
6826 ata_port_for_each_link(link, ap) {
6827 ata_link_for_each_dev(dev, link)
6828 ata_dev_disable(dev);
6829 }
6830
6831 spin_unlock_irqrestore(ap->lock, flags);
6832
6833 /* Final freeze & EH. All in-flight commands are aborted. EH
6834 * will be skipped and retrials will be terminated with bad
6835 * target.
6836 */
6837 spin_lock_irqsave(ap->lock, flags);
6838 ata_port_freeze(ap); /* won't be thawed */
6839 spin_unlock_irqrestore(ap->lock, flags);
6840
6841 ata_port_wait_eh(ap);
6842 cancel_rearming_delayed_work(&ap->hotplug_task);
6843
6844 skip_eh:
6845 /* remove the associated SCSI host */
6846 scsi_remove_host(ap->scsi_host);
6847 }
6848
6849 /**
6850 * ata_host_detach - Detach all ports of an ATA host
6851 * @host: Host to detach
6852 *
6853 * Detach all ports of @host.
6854 *
6855 * LOCKING:
6856 * Kernel thread context (may sleep).
6857 */
6858 void ata_host_detach(struct ata_host *host)
6859 {
6860 int i;
6861
6862 for (i = 0; i < host->n_ports; i++)
6863 ata_port_detach(host->ports[i]);
6864 }
6865
6866 /**
6867 * ata_std_ports - initialize ioaddr with standard port offsets.
6868 * @ioaddr: IO address structure to be initialized
6869 *
6870 * Utility function which initializes data_addr, error_addr,
6871 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6872 * device_addr, status_addr, and command_addr to standard offsets
6873 * relative to cmd_addr.
6874 *
6875 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6876 */
6877
6878 void ata_std_ports(struct ata_ioports *ioaddr)
6879 {
6880 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6881 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6882 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6883 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6884 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6885 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6886 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6887 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6888 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6889 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6890 }
6891
6892
6893 #ifdef CONFIG_PCI
6894
6895 /**
6896 * ata_pci_remove_one - PCI layer callback for device removal
6897 * @pdev: PCI device that was removed
6898 *
6899 * PCI layer indicates to libata via this hook that hot-unplug or
6900 * module unload event has occurred. Detach all ports. Resource
6901 * release is handled via devres.
6902 *
6903 * LOCKING:
6904 * Inherited from PCI layer (may sleep).
6905 */
6906 void ata_pci_remove_one(struct pci_dev *pdev)
6907 {
6908 struct device *dev = pci_dev_to_dev(pdev);
6909 struct ata_host *host = dev_get_drvdata(dev);
6910
6911 ata_host_detach(host);
6912 }
6913
6914 /* move to PCI subsystem */
6915 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6916 {
6917 unsigned long tmp = 0;
6918
6919 switch (bits->width) {
6920 case 1: {
6921 u8 tmp8 = 0;
6922 pci_read_config_byte(pdev, bits->reg, &tmp8);
6923 tmp = tmp8;
6924 break;
6925 }
6926 case 2: {
6927 u16 tmp16 = 0;
6928 pci_read_config_word(pdev, bits->reg, &tmp16);
6929 tmp = tmp16;
6930 break;
6931 }
6932 case 4: {
6933 u32 tmp32 = 0;
6934 pci_read_config_dword(pdev, bits->reg, &tmp32);
6935 tmp = tmp32;
6936 break;
6937 }
6938
6939 default:
6940 return -EINVAL;
6941 }
6942
6943 tmp &= bits->mask;
6944
6945 return (tmp == bits->val) ? 1 : 0;
6946 }
6947
6948 #ifdef CONFIG_PM
6949 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6950 {
6951 pci_save_state(pdev);
6952 pci_disable_device(pdev);
6953
6954 if (mesg.event == PM_EVENT_SUSPEND)
6955 pci_set_power_state(pdev, PCI_D3hot);
6956 }
6957
6958 int ata_pci_device_do_resume(struct pci_dev *pdev)
6959 {
6960 int rc;
6961
6962 pci_set_power_state(pdev, PCI_D0);
6963 pci_restore_state(pdev);
6964
6965 rc = pcim_enable_device(pdev);
6966 if (rc) {
6967 dev_printk(KERN_ERR, &pdev->dev,
6968 "failed to enable device after resume (%d)\n", rc);
6969 return rc;
6970 }
6971
6972 pci_set_master(pdev);
6973 return 0;
6974 }
6975
6976 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6977 {
6978 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6979 int rc = 0;
6980
6981 rc = ata_host_suspend(host, mesg);
6982 if (rc)
6983 return rc;
6984
6985 ata_pci_device_do_suspend(pdev, mesg);
6986
6987 return 0;
6988 }
6989
6990 int ata_pci_device_resume(struct pci_dev *pdev)
6991 {
6992 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6993 int rc;
6994
6995 rc = ata_pci_device_do_resume(pdev);
6996 if (rc == 0)
6997 ata_host_resume(host);
6998 return rc;
6999 }
7000 #endif /* CONFIG_PM */
7001
7002 #endif /* CONFIG_PCI */
7003
7004
7005 static int __init ata_init(void)
7006 {
7007 ata_probe_timeout *= HZ;
7008 ata_wq = create_workqueue("ata");
7009 if (!ata_wq)
7010 return -ENOMEM;
7011
7012 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7013 if (!ata_aux_wq) {
7014 destroy_workqueue(ata_wq);
7015 return -ENOMEM;
7016 }
7017
7018 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7019 return 0;
7020 }
7021
7022 static void __exit ata_exit(void)
7023 {
7024 destroy_workqueue(ata_wq);
7025 destroy_workqueue(ata_aux_wq);
7026 }
7027
7028 subsys_initcall(ata_init);
7029 module_exit(ata_exit);
7030
7031 static unsigned long ratelimit_time;
7032 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7033
7034 int ata_ratelimit(void)
7035 {
7036 int rc;
7037 unsigned long flags;
7038
7039 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7040
7041 if (time_after(jiffies, ratelimit_time)) {
7042 rc = 1;
7043 ratelimit_time = jiffies + (HZ/5);
7044 } else
7045 rc = 0;
7046
7047 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7048
7049 return rc;
7050 }
7051
7052 /**
7053 * ata_wait_register - wait until register value changes
7054 * @reg: IO-mapped register
7055 * @mask: Mask to apply to read register value
7056 * @val: Wait condition
7057 * @interval_msec: polling interval in milliseconds
7058 * @timeout_msec: timeout in milliseconds
7059 *
7060 * Waiting for some bits of register to change is a common
7061 * operation for ATA controllers. This function reads 32bit LE
7062 * IO-mapped register @reg and tests for the following condition.
7063 *
7064 * (*@reg & mask) != val
7065 *
7066 * If the condition is met, it returns; otherwise, the process is
7067 * repeated after @interval_msec until timeout.
7068 *
7069 * LOCKING:
7070 * Kernel thread context (may sleep)
7071 *
7072 * RETURNS:
7073 * The final register value.
7074 */
7075 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7076 unsigned long interval_msec,
7077 unsigned long timeout_msec)
7078 {
7079 unsigned long timeout;
7080 u32 tmp;
7081
7082 tmp = ioread32(reg);
7083
7084 /* Calculate timeout _after_ the first read to make sure
7085 * preceding writes reach the controller before starting to
7086 * eat away the timeout.
7087 */
7088 timeout = jiffies + (timeout_msec * HZ) / 1000;
7089
7090 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7091 msleep(interval_msec);
7092 tmp = ioread32(reg);
7093 }
7094
7095 return tmp;
7096 }
7097
7098 /*
7099 * Dummy port_ops
7100 */
7101 static void ata_dummy_noret(struct ata_port *ap) { }
7102 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7103 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7104
7105 static u8 ata_dummy_check_status(struct ata_port *ap)
7106 {
7107 return ATA_DRDY;
7108 }
7109
7110 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7111 {
7112 return AC_ERR_SYSTEM;
7113 }
7114
7115 const struct ata_port_operations ata_dummy_port_ops = {
7116 .check_status = ata_dummy_check_status,
7117 .check_altstatus = ata_dummy_check_status,
7118 .dev_select = ata_noop_dev_select,
7119 .qc_prep = ata_noop_qc_prep,
7120 .qc_issue = ata_dummy_qc_issue,
7121 .freeze = ata_dummy_noret,
7122 .thaw = ata_dummy_noret,
7123 .error_handler = ata_dummy_noret,
7124 .post_internal_cmd = ata_dummy_qc_noret,
7125 .irq_clear = ata_dummy_noret,
7126 .port_start = ata_dummy_ret0,
7127 .port_stop = ata_dummy_noret,
7128 };
7129
7130 const struct ata_port_info ata_dummy_port_info = {
7131 .port_ops = &ata_dummy_port_ops,
7132 };
7133
7134 /*
7135 * libata is essentially a library of internal helper functions for
7136 * low-level ATA host controller drivers. As such, the API/ABI is
7137 * likely to change as new drivers are added and updated.
7138 * Do not depend on ABI/API stability.
7139 */
7140
7141 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7142 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7143 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7144 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7145 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7146 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7147 EXPORT_SYMBOL_GPL(ata_std_ports);
7148 EXPORT_SYMBOL_GPL(ata_host_init);
7149 EXPORT_SYMBOL_GPL(ata_host_alloc);
7150 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7151 EXPORT_SYMBOL_GPL(ata_host_start);
7152 EXPORT_SYMBOL_GPL(ata_host_register);
7153 EXPORT_SYMBOL_GPL(ata_host_activate);
7154 EXPORT_SYMBOL_GPL(ata_host_detach);
7155 EXPORT_SYMBOL_GPL(ata_sg_init);
7156 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7157 EXPORT_SYMBOL_GPL(ata_hsm_move);
7158 EXPORT_SYMBOL_GPL(ata_qc_complete);
7159 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7160 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7161 EXPORT_SYMBOL_GPL(ata_tf_load);
7162 EXPORT_SYMBOL_GPL(ata_tf_read);
7163 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7164 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7165 EXPORT_SYMBOL_GPL(sata_print_link_status);
7166 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7167 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7168 EXPORT_SYMBOL_GPL(ata_check_status);
7169 EXPORT_SYMBOL_GPL(ata_altstatus);
7170 EXPORT_SYMBOL_GPL(ata_exec_command);
7171 EXPORT_SYMBOL_GPL(ata_port_start);
7172 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7173 EXPORT_SYMBOL_GPL(ata_interrupt);
7174 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7175 EXPORT_SYMBOL_GPL(ata_data_xfer);
7176 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7177 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7178 EXPORT_SYMBOL_GPL(ata_qc_prep);
7179 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7180 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7181 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7182 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7183 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7184 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7185 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7186 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7187 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7188 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7189 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7190 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7191 EXPORT_SYMBOL_GPL(ata_port_probe);
7192 EXPORT_SYMBOL_GPL(ata_dev_disable);
7193 EXPORT_SYMBOL_GPL(sata_set_spd);
7194 EXPORT_SYMBOL_GPL(sata_link_debounce);
7195 EXPORT_SYMBOL_GPL(sata_link_resume);
7196 EXPORT_SYMBOL_GPL(sata_phy_reset);
7197 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7198 EXPORT_SYMBOL_GPL(ata_bus_reset);
7199 EXPORT_SYMBOL_GPL(ata_std_prereset);
7200 EXPORT_SYMBOL_GPL(ata_std_softreset);
7201 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7202 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7203 EXPORT_SYMBOL_GPL(ata_std_postreset);
7204 EXPORT_SYMBOL_GPL(ata_dev_classify);
7205 EXPORT_SYMBOL_GPL(ata_dev_pair);
7206 EXPORT_SYMBOL_GPL(ata_port_disable);
7207 EXPORT_SYMBOL_GPL(ata_ratelimit);
7208 EXPORT_SYMBOL_GPL(ata_wait_register);
7209 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7210 EXPORT_SYMBOL_GPL(ata_wait_ready);
7211 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7212 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7213 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7214 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7215 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7216 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7217 EXPORT_SYMBOL_GPL(ata_host_intr);
7218 EXPORT_SYMBOL_GPL(sata_scr_valid);
7219 EXPORT_SYMBOL_GPL(sata_scr_read);
7220 EXPORT_SYMBOL_GPL(sata_scr_write);
7221 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7222 EXPORT_SYMBOL_GPL(ata_link_online);
7223 EXPORT_SYMBOL_GPL(ata_link_offline);
7224 #ifdef CONFIG_PM
7225 EXPORT_SYMBOL_GPL(ata_host_suspend);
7226 EXPORT_SYMBOL_GPL(ata_host_resume);
7227 #endif /* CONFIG_PM */
7228 EXPORT_SYMBOL_GPL(ata_id_string);
7229 EXPORT_SYMBOL_GPL(ata_id_c_string);
7230 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7231 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7232
7233 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7234 EXPORT_SYMBOL_GPL(ata_timing_compute);
7235 EXPORT_SYMBOL_GPL(ata_timing_merge);
7236
7237 #ifdef CONFIG_PCI
7238 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7239 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7240 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7241 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7242 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7243 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7244 #ifdef CONFIG_PM
7245 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7246 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7247 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7248 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7249 #endif /* CONFIG_PM */
7250 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7251 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7252 #endif /* CONFIG_PCI */
7253
7254 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7255 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7256 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7257 EXPORT_SYMBOL_GPL(ata_port_desc);
7258 #ifdef CONFIG_PCI
7259 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7260 #endif /* CONFIG_PCI */
7261 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7262 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7263 EXPORT_SYMBOL_GPL(ata_link_abort);
7264 EXPORT_SYMBOL_GPL(ata_port_abort);
7265 EXPORT_SYMBOL_GPL(ata_port_freeze);
7266 EXPORT_SYMBOL_GPL(sata_async_notification);
7267 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7268 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7269 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7270 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7271 EXPORT_SYMBOL_GPL(ata_do_eh);
7272 EXPORT_SYMBOL_GPL(ata_irq_on);
7273 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7274
7275 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7276 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7277 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7278 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.343342 seconds and 6 git commands to generate.