Merge git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.10" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 static unsigned int ata_unique_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95
96 MODULE_AUTHOR("Jeff Garzik");
97 MODULE_DESCRIPTION("Library module for ATA devices");
98 MODULE_LICENSE("GPL");
99 MODULE_VERSION(DRV_VERSION);
100
101
102 /**
103 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
104 * @tf: Taskfile to convert
105 * @fis: Buffer into which data will output
106 * @pmp: Port multiplier port
107 *
108 * Converts a standard ATA taskfile to a Serial ATA
109 * FIS structure (Register - Host to Device).
110 *
111 * LOCKING:
112 * Inherited from caller.
113 */
114
115 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
116 {
117 fis[0] = 0x27; /* Register - Host to Device FIS */
118 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
119 bit 7 indicates Command FIS */
120 fis[2] = tf->command;
121 fis[3] = tf->feature;
122
123 fis[4] = tf->lbal;
124 fis[5] = tf->lbam;
125 fis[6] = tf->lbah;
126 fis[7] = tf->device;
127
128 fis[8] = tf->hob_lbal;
129 fis[9] = tf->hob_lbam;
130 fis[10] = tf->hob_lbah;
131 fis[11] = tf->hob_feature;
132
133 fis[12] = tf->nsect;
134 fis[13] = tf->hob_nsect;
135 fis[14] = 0;
136 fis[15] = tf->ctl;
137
138 fis[16] = 0;
139 fis[17] = 0;
140 fis[18] = 0;
141 fis[19] = 0;
142 }
143
144 /**
145 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
146 * @fis: Buffer from which data will be input
147 * @tf: Taskfile to output
148 *
149 * Converts a serial ATA FIS structure to a standard ATA taskfile.
150 *
151 * LOCKING:
152 * Inherited from caller.
153 */
154
155 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
156 {
157 tf->command = fis[2]; /* status */
158 tf->feature = fis[3]; /* error */
159
160 tf->lbal = fis[4];
161 tf->lbam = fis[5];
162 tf->lbah = fis[6];
163 tf->device = fis[7];
164
165 tf->hob_lbal = fis[8];
166 tf->hob_lbam = fis[9];
167 tf->hob_lbah = fis[10];
168
169 tf->nsect = fis[12];
170 tf->hob_nsect = fis[13];
171 }
172
173 static const u8 ata_rw_cmds[] = {
174 /* pio multi */
175 ATA_CMD_READ_MULTI,
176 ATA_CMD_WRITE_MULTI,
177 ATA_CMD_READ_MULTI_EXT,
178 ATA_CMD_WRITE_MULTI_EXT,
179 0,
180 0,
181 0,
182 ATA_CMD_WRITE_MULTI_FUA_EXT,
183 /* pio */
184 ATA_CMD_PIO_READ,
185 ATA_CMD_PIO_WRITE,
186 ATA_CMD_PIO_READ_EXT,
187 ATA_CMD_PIO_WRITE_EXT,
188 0,
189 0,
190 0,
191 0,
192 /* dma */
193 ATA_CMD_READ,
194 ATA_CMD_WRITE,
195 ATA_CMD_READ_EXT,
196 ATA_CMD_WRITE_EXT,
197 0,
198 0,
199 0,
200 ATA_CMD_WRITE_FUA_EXT
201 };
202
203 /**
204 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
205 * @tf: command to examine and configure
206 * @dev: device tf belongs to
207 *
208 * Examine the device configuration and tf->flags to calculate
209 * the proper read/write commands and protocol to use.
210 *
211 * LOCKING:
212 * caller.
213 */
214 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
215 {
216 u8 cmd;
217
218 int index, fua, lba48, write;
219
220 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
221 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
222 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
223
224 if (dev->flags & ATA_DFLAG_PIO) {
225 tf->protocol = ATA_PROT_PIO;
226 index = dev->multi_count ? 0 : 8;
227 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
228 /* Unable to use DMA due to host limitation */
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else {
232 tf->protocol = ATA_PROT_DMA;
233 index = 16;
234 }
235
236 cmd = ata_rw_cmds[index + fua + lba48 + write];
237 if (cmd) {
238 tf->command = cmd;
239 return 0;
240 }
241 return -1;
242 }
243
244 /**
245 * ata_tf_read_block - Read block address from ATA taskfile
246 * @tf: ATA taskfile of interest
247 * @dev: ATA device @tf belongs to
248 *
249 * LOCKING:
250 * None.
251 *
252 * Read block address from @tf. This function can handle all
253 * three address formats - LBA, LBA48 and CHS. tf->protocol and
254 * flags select the address format to use.
255 *
256 * RETURNS:
257 * Block address read from @tf.
258 */
259 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
260 {
261 u64 block = 0;
262
263 if (tf->flags & ATA_TFLAG_LBA) {
264 if (tf->flags & ATA_TFLAG_LBA48) {
265 block |= (u64)tf->hob_lbah << 40;
266 block |= (u64)tf->hob_lbam << 32;
267 block |= tf->hob_lbal << 24;
268 } else
269 block |= (tf->device & 0xf) << 24;
270
271 block |= tf->lbah << 16;
272 block |= tf->lbam << 8;
273 block |= tf->lbal;
274 } else {
275 u32 cyl, head, sect;
276
277 cyl = tf->lbam | (tf->lbah << 8);
278 head = tf->device & 0xf;
279 sect = tf->lbal;
280
281 block = (cyl * dev->heads + head) * dev->sectors + sect;
282 }
283
284 return block;
285 }
286
287 /**
288 * ata_build_rw_tf - Build ATA taskfile for given read/write request
289 * @tf: Target ATA taskfile
290 * @dev: ATA device @tf belongs to
291 * @block: Block address
292 * @n_block: Number of blocks
293 * @tf_flags: RW/FUA etc...
294 * @tag: tag
295 *
296 * LOCKING:
297 * None.
298 *
299 * Build ATA taskfile @tf for read/write request described by
300 * @block, @n_block, @tf_flags and @tag on @dev.
301 *
302 * RETURNS:
303 *
304 * 0 on success, -ERANGE if the request is too large for @dev,
305 * -EINVAL if the request is invalid.
306 */
307 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
308 u64 block, u32 n_block, unsigned int tf_flags,
309 unsigned int tag)
310 {
311 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
312 tf->flags |= tf_flags;
313
314 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
315 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
316 likely(tag != ATA_TAG_INTERNAL)) {
317 /* yay, NCQ */
318 if (!lba_48_ok(block, n_block))
319 return -ERANGE;
320
321 tf->protocol = ATA_PROT_NCQ;
322 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
323
324 if (tf->flags & ATA_TFLAG_WRITE)
325 tf->command = ATA_CMD_FPDMA_WRITE;
326 else
327 tf->command = ATA_CMD_FPDMA_READ;
328
329 tf->nsect = tag << 3;
330 tf->hob_feature = (n_block >> 8) & 0xff;
331 tf->feature = n_block & 0xff;
332
333 tf->hob_lbah = (block >> 40) & 0xff;
334 tf->hob_lbam = (block >> 32) & 0xff;
335 tf->hob_lbal = (block >> 24) & 0xff;
336 tf->lbah = (block >> 16) & 0xff;
337 tf->lbam = (block >> 8) & 0xff;
338 tf->lbal = block & 0xff;
339
340 tf->device = 1 << 6;
341 if (tf->flags & ATA_TFLAG_FUA)
342 tf->device |= 1 << 7;
343 } else if (dev->flags & ATA_DFLAG_LBA) {
344 tf->flags |= ATA_TFLAG_LBA;
345
346 if (lba_28_ok(block, n_block)) {
347 /* use LBA28 */
348 tf->device |= (block >> 24) & 0xf;
349 } else if (lba_48_ok(block, n_block)) {
350 if (!(dev->flags & ATA_DFLAG_LBA48))
351 return -ERANGE;
352
353 /* use LBA48 */
354 tf->flags |= ATA_TFLAG_LBA48;
355
356 tf->hob_nsect = (n_block >> 8) & 0xff;
357
358 tf->hob_lbah = (block >> 40) & 0xff;
359 tf->hob_lbam = (block >> 32) & 0xff;
360 tf->hob_lbal = (block >> 24) & 0xff;
361 } else
362 /* request too large even for LBA48 */
363 return -ERANGE;
364
365 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
366 return -EINVAL;
367
368 tf->nsect = n_block & 0xff;
369
370 tf->lbah = (block >> 16) & 0xff;
371 tf->lbam = (block >> 8) & 0xff;
372 tf->lbal = block & 0xff;
373
374 tf->device |= ATA_LBA;
375 } else {
376 /* CHS */
377 u32 sect, head, cyl, track;
378
379 /* The request -may- be too large for CHS addressing. */
380 if (!lba_28_ok(block, n_block))
381 return -ERANGE;
382
383 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
384 return -EINVAL;
385
386 /* Convert LBA to CHS */
387 track = (u32)block / dev->sectors;
388 cyl = track / dev->heads;
389 head = track % dev->heads;
390 sect = (u32)block % dev->sectors + 1;
391
392 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
393 (u32)block, track, cyl, head, sect);
394
395 /* Check whether the converted CHS can fit.
396 Cylinder: 0-65535
397 Head: 0-15
398 Sector: 1-255*/
399 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
400 return -ERANGE;
401
402 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
403 tf->lbal = sect;
404 tf->lbam = cyl;
405 tf->lbah = cyl >> 8;
406 tf->device |= head;
407 }
408
409 return 0;
410 }
411
412 /**
413 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
414 * @pio_mask: pio_mask
415 * @mwdma_mask: mwdma_mask
416 * @udma_mask: udma_mask
417 *
418 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
419 * unsigned int xfer_mask.
420 *
421 * LOCKING:
422 * None.
423 *
424 * RETURNS:
425 * Packed xfer_mask.
426 */
427 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
428 unsigned int mwdma_mask,
429 unsigned int udma_mask)
430 {
431 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
432 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
433 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
434 }
435
436 /**
437 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
438 * @xfer_mask: xfer_mask to unpack
439 * @pio_mask: resulting pio_mask
440 * @mwdma_mask: resulting mwdma_mask
441 * @udma_mask: resulting udma_mask
442 *
443 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
444 * Any NULL distination masks will be ignored.
445 */
446 static void ata_unpack_xfermask(unsigned int xfer_mask,
447 unsigned int *pio_mask,
448 unsigned int *mwdma_mask,
449 unsigned int *udma_mask)
450 {
451 if (pio_mask)
452 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
453 if (mwdma_mask)
454 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
455 if (udma_mask)
456 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
457 }
458
459 static const struct ata_xfer_ent {
460 int shift, bits;
461 u8 base;
462 } ata_xfer_tbl[] = {
463 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
464 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
465 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
466 { -1, },
467 };
468
469 /**
470 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
471 * @xfer_mask: xfer_mask of interest
472 *
473 * Return matching XFER_* value for @xfer_mask. Only the highest
474 * bit of @xfer_mask is considered.
475 *
476 * LOCKING:
477 * None.
478 *
479 * RETURNS:
480 * Matching XFER_* value, 0 if no match found.
481 */
482 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
483 {
484 int highbit = fls(xfer_mask) - 1;
485 const struct ata_xfer_ent *ent;
486
487 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
488 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
489 return ent->base + highbit - ent->shift;
490 return 0;
491 }
492
493 /**
494 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
495 * @xfer_mode: XFER_* of interest
496 *
497 * Return matching xfer_mask for @xfer_mode.
498 *
499 * LOCKING:
500 * None.
501 *
502 * RETURNS:
503 * Matching xfer_mask, 0 if no match found.
504 */
505 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
506 {
507 const struct ata_xfer_ent *ent;
508
509 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
510 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
511 return 1 << (ent->shift + xfer_mode - ent->base);
512 return 0;
513 }
514
515 /**
516 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
517 * @xfer_mode: XFER_* of interest
518 *
519 * Return matching xfer_shift for @xfer_mode.
520 *
521 * LOCKING:
522 * None.
523 *
524 * RETURNS:
525 * Matching xfer_shift, -1 if no match found.
526 */
527 static int ata_xfer_mode2shift(unsigned int xfer_mode)
528 {
529 const struct ata_xfer_ent *ent;
530
531 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
532 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
533 return ent->shift;
534 return -1;
535 }
536
537 /**
538 * ata_mode_string - convert xfer_mask to string
539 * @xfer_mask: mask of bits supported; only highest bit counts.
540 *
541 * Determine string which represents the highest speed
542 * (highest bit in @modemask).
543 *
544 * LOCKING:
545 * None.
546 *
547 * RETURNS:
548 * Constant C string representing highest speed listed in
549 * @mode_mask, or the constant C string "<n/a>".
550 */
551 static const char *ata_mode_string(unsigned int xfer_mask)
552 {
553 static const char * const xfer_mode_str[] = {
554 "PIO0",
555 "PIO1",
556 "PIO2",
557 "PIO3",
558 "PIO4",
559 "PIO5",
560 "PIO6",
561 "MWDMA0",
562 "MWDMA1",
563 "MWDMA2",
564 "MWDMA3",
565 "MWDMA4",
566 "UDMA/16",
567 "UDMA/25",
568 "UDMA/33",
569 "UDMA/44",
570 "UDMA/66",
571 "UDMA/100",
572 "UDMA/133",
573 "UDMA7",
574 };
575 int highbit;
576
577 highbit = fls(xfer_mask) - 1;
578 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
579 return xfer_mode_str[highbit];
580 return "<n/a>";
581 }
582
583 static const char *sata_spd_string(unsigned int spd)
584 {
585 static const char * const spd_str[] = {
586 "1.5 Gbps",
587 "3.0 Gbps",
588 };
589
590 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
591 return "<unknown>";
592 return spd_str[spd - 1];
593 }
594
595 void ata_dev_disable(struct ata_device *dev)
596 {
597 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
598 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
599 dev->class++;
600 }
601 }
602
603 /**
604 * ata_devchk - PATA device presence detection
605 * @ap: ATA channel to examine
606 * @device: Device to examine (starting at zero)
607 *
608 * This technique was originally described in
609 * Hale Landis's ATADRVR (www.ata-atapi.com), and
610 * later found its way into the ATA/ATAPI spec.
611 *
612 * Write a pattern to the ATA shadow registers,
613 * and if a device is present, it will respond by
614 * correctly storing and echoing back the
615 * ATA shadow register contents.
616 *
617 * LOCKING:
618 * caller.
619 */
620
621 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
622 {
623 struct ata_ioports *ioaddr = &ap->ioaddr;
624 u8 nsect, lbal;
625
626 ap->ops->dev_select(ap, device);
627
628 iowrite8(0x55, ioaddr->nsect_addr);
629 iowrite8(0xaa, ioaddr->lbal_addr);
630
631 iowrite8(0xaa, ioaddr->nsect_addr);
632 iowrite8(0x55, ioaddr->lbal_addr);
633
634 iowrite8(0x55, ioaddr->nsect_addr);
635 iowrite8(0xaa, ioaddr->lbal_addr);
636
637 nsect = ioread8(ioaddr->nsect_addr);
638 lbal = ioread8(ioaddr->lbal_addr);
639
640 if ((nsect == 0x55) && (lbal == 0xaa))
641 return 1; /* we found a device */
642
643 return 0; /* nothing found */
644 }
645
646 /**
647 * ata_dev_classify - determine device type based on ATA-spec signature
648 * @tf: ATA taskfile register set for device to be identified
649 *
650 * Determine from taskfile register contents whether a device is
651 * ATA or ATAPI, as per "Signature and persistence" section
652 * of ATA/PI spec (volume 1, sect 5.14).
653 *
654 * LOCKING:
655 * None.
656 *
657 * RETURNS:
658 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
659 * the event of failure.
660 */
661
662 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
663 {
664 /* Apple's open source Darwin code hints that some devices only
665 * put a proper signature into the LBA mid/high registers,
666 * So, we only check those. It's sufficient for uniqueness.
667 */
668
669 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
670 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
671 DPRINTK("found ATA device by sig\n");
672 return ATA_DEV_ATA;
673 }
674
675 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
676 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
677 DPRINTK("found ATAPI device by sig\n");
678 return ATA_DEV_ATAPI;
679 }
680
681 DPRINTK("unknown device\n");
682 return ATA_DEV_UNKNOWN;
683 }
684
685 /**
686 * ata_dev_try_classify - Parse returned ATA device signature
687 * @ap: ATA channel to examine
688 * @device: Device to examine (starting at zero)
689 * @r_err: Value of error register on completion
690 *
691 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
692 * an ATA/ATAPI-defined set of values is placed in the ATA
693 * shadow registers, indicating the results of device detection
694 * and diagnostics.
695 *
696 * Select the ATA device, and read the values from the ATA shadow
697 * registers. Then parse according to the Error register value,
698 * and the spec-defined values examined by ata_dev_classify().
699 *
700 * LOCKING:
701 * caller.
702 *
703 * RETURNS:
704 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
705 */
706
707 static unsigned int
708 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
709 {
710 struct ata_taskfile tf;
711 unsigned int class;
712 u8 err;
713
714 ap->ops->dev_select(ap, device);
715
716 memset(&tf, 0, sizeof(tf));
717
718 ap->ops->tf_read(ap, &tf);
719 err = tf.feature;
720 if (r_err)
721 *r_err = err;
722
723 /* see if device passed diags: if master then continue and warn later */
724 if (err == 0 && device == 0)
725 /* diagnostic fail : do nothing _YET_ */
726 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
727 else if (err == 1)
728 /* do nothing */ ;
729 else if ((device == 0) && (err == 0x81))
730 /* do nothing */ ;
731 else
732 return ATA_DEV_NONE;
733
734 /* determine if device is ATA or ATAPI */
735 class = ata_dev_classify(&tf);
736
737 if (class == ATA_DEV_UNKNOWN)
738 return ATA_DEV_NONE;
739 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
740 return ATA_DEV_NONE;
741 return class;
742 }
743
744 /**
745 * ata_id_string - Convert IDENTIFY DEVICE page into string
746 * @id: IDENTIFY DEVICE results we will examine
747 * @s: string into which data is output
748 * @ofs: offset into identify device page
749 * @len: length of string to return. must be an even number.
750 *
751 * The strings in the IDENTIFY DEVICE page are broken up into
752 * 16-bit chunks. Run through the string, and output each
753 * 8-bit chunk linearly, regardless of platform.
754 *
755 * LOCKING:
756 * caller.
757 */
758
759 void ata_id_string(const u16 *id, unsigned char *s,
760 unsigned int ofs, unsigned int len)
761 {
762 unsigned int c;
763
764 while (len > 0) {
765 c = id[ofs] >> 8;
766 *s = c;
767 s++;
768
769 c = id[ofs] & 0xff;
770 *s = c;
771 s++;
772
773 ofs++;
774 len -= 2;
775 }
776 }
777
778 /**
779 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
780 * @id: IDENTIFY DEVICE results we will examine
781 * @s: string into which data is output
782 * @ofs: offset into identify device page
783 * @len: length of string to return. must be an odd number.
784 *
785 * This function is identical to ata_id_string except that it
786 * trims trailing spaces and terminates the resulting string with
787 * null. @len must be actual maximum length (even number) + 1.
788 *
789 * LOCKING:
790 * caller.
791 */
792 void ata_id_c_string(const u16 *id, unsigned char *s,
793 unsigned int ofs, unsigned int len)
794 {
795 unsigned char *p;
796
797 WARN_ON(!(len & 1));
798
799 ata_id_string(id, s, ofs, len - 1);
800
801 p = s + strnlen(s, len - 1);
802 while (p > s && p[-1] == ' ')
803 p--;
804 *p = '\0';
805 }
806
807 static u64 ata_id_n_sectors(const u16 *id)
808 {
809 if (ata_id_has_lba(id)) {
810 if (ata_id_has_lba48(id))
811 return ata_id_u64(id, 100);
812 else
813 return ata_id_u32(id, 60);
814 } else {
815 if (ata_id_current_chs_valid(id))
816 return ata_id_u32(id, 57);
817 else
818 return id[1] * id[3] * id[6];
819 }
820 }
821
822 /**
823 * ata_noop_dev_select - Select device 0/1 on ATA bus
824 * @ap: ATA channel to manipulate
825 * @device: ATA device (numbered from zero) to select
826 *
827 * This function performs no actual function.
828 *
829 * May be used as the dev_select() entry in ata_port_operations.
830 *
831 * LOCKING:
832 * caller.
833 */
834 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
835 {
836 }
837
838
839 /**
840 * ata_std_dev_select - Select device 0/1 on ATA bus
841 * @ap: ATA channel to manipulate
842 * @device: ATA device (numbered from zero) to select
843 *
844 * Use the method defined in the ATA specification to
845 * make either device 0, or device 1, active on the
846 * ATA channel. Works with both PIO and MMIO.
847 *
848 * May be used as the dev_select() entry in ata_port_operations.
849 *
850 * LOCKING:
851 * caller.
852 */
853
854 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
855 {
856 u8 tmp;
857
858 if (device == 0)
859 tmp = ATA_DEVICE_OBS;
860 else
861 tmp = ATA_DEVICE_OBS | ATA_DEV1;
862
863 iowrite8(tmp, ap->ioaddr.device_addr);
864 ata_pause(ap); /* needed; also flushes, for mmio */
865 }
866
867 /**
868 * ata_dev_select - Select device 0/1 on ATA bus
869 * @ap: ATA channel to manipulate
870 * @device: ATA device (numbered from zero) to select
871 * @wait: non-zero to wait for Status register BSY bit to clear
872 * @can_sleep: non-zero if context allows sleeping
873 *
874 * Use the method defined in the ATA specification to
875 * make either device 0, or device 1, active on the
876 * ATA channel.
877 *
878 * This is a high-level version of ata_std_dev_select(),
879 * which additionally provides the services of inserting
880 * the proper pauses and status polling, where needed.
881 *
882 * LOCKING:
883 * caller.
884 */
885
886 void ata_dev_select(struct ata_port *ap, unsigned int device,
887 unsigned int wait, unsigned int can_sleep)
888 {
889 if (ata_msg_probe(ap))
890 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
891 "device %u, wait %u\n", ap->id, device, wait);
892
893 if (wait)
894 ata_wait_idle(ap);
895
896 ap->ops->dev_select(ap, device);
897
898 if (wait) {
899 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
900 msleep(150);
901 ata_wait_idle(ap);
902 }
903 }
904
905 /**
906 * ata_dump_id - IDENTIFY DEVICE info debugging output
907 * @id: IDENTIFY DEVICE page to dump
908 *
909 * Dump selected 16-bit words from the given IDENTIFY DEVICE
910 * page.
911 *
912 * LOCKING:
913 * caller.
914 */
915
916 static inline void ata_dump_id(const u16 *id)
917 {
918 DPRINTK("49==0x%04x "
919 "53==0x%04x "
920 "63==0x%04x "
921 "64==0x%04x "
922 "75==0x%04x \n",
923 id[49],
924 id[53],
925 id[63],
926 id[64],
927 id[75]);
928 DPRINTK("80==0x%04x "
929 "81==0x%04x "
930 "82==0x%04x "
931 "83==0x%04x "
932 "84==0x%04x \n",
933 id[80],
934 id[81],
935 id[82],
936 id[83],
937 id[84]);
938 DPRINTK("88==0x%04x "
939 "93==0x%04x\n",
940 id[88],
941 id[93]);
942 }
943
944 /**
945 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
946 * @id: IDENTIFY data to compute xfer mask from
947 *
948 * Compute the xfermask for this device. This is not as trivial
949 * as it seems if we must consider early devices correctly.
950 *
951 * FIXME: pre IDE drive timing (do we care ?).
952 *
953 * LOCKING:
954 * None.
955 *
956 * RETURNS:
957 * Computed xfermask
958 */
959 static unsigned int ata_id_xfermask(const u16 *id)
960 {
961 unsigned int pio_mask, mwdma_mask, udma_mask;
962
963 /* Usual case. Word 53 indicates word 64 is valid */
964 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
965 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
966 pio_mask <<= 3;
967 pio_mask |= 0x7;
968 } else {
969 /* If word 64 isn't valid then Word 51 high byte holds
970 * the PIO timing number for the maximum. Turn it into
971 * a mask.
972 */
973 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
974 if (mode < 5) /* Valid PIO range */
975 pio_mask = (2 << mode) - 1;
976 else
977 pio_mask = 1;
978
979 /* But wait.. there's more. Design your standards by
980 * committee and you too can get a free iordy field to
981 * process. However its the speeds not the modes that
982 * are supported... Note drivers using the timing API
983 * will get this right anyway
984 */
985 }
986
987 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
988
989 if (ata_id_is_cfa(id)) {
990 /*
991 * Process compact flash extended modes
992 */
993 int pio = id[163] & 0x7;
994 int dma = (id[163] >> 3) & 7;
995
996 if (pio)
997 pio_mask |= (1 << 5);
998 if (pio > 1)
999 pio_mask |= (1 << 6);
1000 if (dma)
1001 mwdma_mask |= (1 << 3);
1002 if (dma > 1)
1003 mwdma_mask |= (1 << 4);
1004 }
1005
1006 udma_mask = 0;
1007 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1008 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1009
1010 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1011 }
1012
1013 /**
1014 * ata_port_queue_task - Queue port_task
1015 * @ap: The ata_port to queue port_task for
1016 * @fn: workqueue function to be scheduled
1017 * @data: data for @fn to use
1018 * @delay: delay time for workqueue function
1019 *
1020 * Schedule @fn(@data) for execution after @delay jiffies using
1021 * port_task. There is one port_task per port and it's the
1022 * user(low level driver)'s responsibility to make sure that only
1023 * one task is active at any given time.
1024 *
1025 * libata core layer takes care of synchronization between
1026 * port_task and EH. ata_port_queue_task() may be ignored for EH
1027 * synchronization.
1028 *
1029 * LOCKING:
1030 * Inherited from caller.
1031 */
1032 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1033 unsigned long delay)
1034 {
1035 int rc;
1036
1037 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1038 return;
1039
1040 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1041 ap->port_task_data = data;
1042
1043 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1044
1045 /* rc == 0 means that another user is using port task */
1046 WARN_ON(rc == 0);
1047 }
1048
1049 /**
1050 * ata_port_flush_task - Flush port_task
1051 * @ap: The ata_port to flush port_task for
1052 *
1053 * After this function completes, port_task is guranteed not to
1054 * be running or scheduled.
1055 *
1056 * LOCKING:
1057 * Kernel thread context (may sleep)
1058 */
1059 void ata_port_flush_task(struct ata_port *ap)
1060 {
1061 unsigned long flags;
1062
1063 DPRINTK("ENTER\n");
1064
1065 spin_lock_irqsave(ap->lock, flags);
1066 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1067 spin_unlock_irqrestore(ap->lock, flags);
1068
1069 DPRINTK("flush #1\n");
1070 flush_workqueue(ata_wq);
1071
1072 /*
1073 * At this point, if a task is running, it's guaranteed to see
1074 * the FLUSH flag; thus, it will never queue pio tasks again.
1075 * Cancel and flush.
1076 */
1077 if (!cancel_delayed_work(&ap->port_task)) {
1078 if (ata_msg_ctl(ap))
1079 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1080 __FUNCTION__);
1081 flush_workqueue(ata_wq);
1082 }
1083
1084 spin_lock_irqsave(ap->lock, flags);
1085 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1086 spin_unlock_irqrestore(ap->lock, flags);
1087
1088 if (ata_msg_ctl(ap))
1089 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1090 }
1091
1092 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1093 {
1094 struct completion *waiting = qc->private_data;
1095
1096 complete(waiting);
1097 }
1098
1099 /**
1100 * ata_exec_internal_sg - execute libata internal command
1101 * @dev: Device to which the command is sent
1102 * @tf: Taskfile registers for the command and the result
1103 * @cdb: CDB for packet command
1104 * @dma_dir: Data tranfer direction of the command
1105 * @sg: sg list for the data buffer of the command
1106 * @n_elem: Number of sg entries
1107 *
1108 * Executes libata internal command with timeout. @tf contains
1109 * command on entry and result on return. Timeout and error
1110 * conditions are reported via return value. No recovery action
1111 * is taken after a command times out. It's caller's duty to
1112 * clean up after timeout.
1113 *
1114 * LOCKING:
1115 * None. Should be called with kernel context, might sleep.
1116 *
1117 * RETURNS:
1118 * Zero on success, AC_ERR_* mask on failure
1119 */
1120 unsigned ata_exec_internal_sg(struct ata_device *dev,
1121 struct ata_taskfile *tf, const u8 *cdb,
1122 int dma_dir, struct scatterlist *sg,
1123 unsigned int n_elem)
1124 {
1125 struct ata_port *ap = dev->ap;
1126 u8 command = tf->command;
1127 struct ata_queued_cmd *qc;
1128 unsigned int tag, preempted_tag;
1129 u32 preempted_sactive, preempted_qc_active;
1130 DECLARE_COMPLETION_ONSTACK(wait);
1131 unsigned long flags;
1132 unsigned int err_mask;
1133 int rc;
1134
1135 spin_lock_irqsave(ap->lock, flags);
1136
1137 /* no internal command while frozen */
1138 if (ap->pflags & ATA_PFLAG_FROZEN) {
1139 spin_unlock_irqrestore(ap->lock, flags);
1140 return AC_ERR_SYSTEM;
1141 }
1142
1143 /* initialize internal qc */
1144
1145 /* XXX: Tag 0 is used for drivers with legacy EH as some
1146 * drivers choke if any other tag is given. This breaks
1147 * ata_tag_internal() test for those drivers. Don't use new
1148 * EH stuff without converting to it.
1149 */
1150 if (ap->ops->error_handler)
1151 tag = ATA_TAG_INTERNAL;
1152 else
1153 tag = 0;
1154
1155 if (test_and_set_bit(tag, &ap->qc_allocated))
1156 BUG();
1157 qc = __ata_qc_from_tag(ap, tag);
1158
1159 qc->tag = tag;
1160 qc->scsicmd = NULL;
1161 qc->ap = ap;
1162 qc->dev = dev;
1163 ata_qc_reinit(qc);
1164
1165 preempted_tag = ap->active_tag;
1166 preempted_sactive = ap->sactive;
1167 preempted_qc_active = ap->qc_active;
1168 ap->active_tag = ATA_TAG_POISON;
1169 ap->sactive = 0;
1170 ap->qc_active = 0;
1171
1172 /* prepare & issue qc */
1173 qc->tf = *tf;
1174 if (cdb)
1175 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1176 qc->flags |= ATA_QCFLAG_RESULT_TF;
1177 qc->dma_dir = dma_dir;
1178 if (dma_dir != DMA_NONE) {
1179 unsigned int i, buflen = 0;
1180
1181 for (i = 0; i < n_elem; i++)
1182 buflen += sg[i].length;
1183
1184 ata_sg_init(qc, sg, n_elem);
1185 qc->nbytes = buflen;
1186 }
1187
1188 qc->private_data = &wait;
1189 qc->complete_fn = ata_qc_complete_internal;
1190
1191 ata_qc_issue(qc);
1192
1193 spin_unlock_irqrestore(ap->lock, flags);
1194
1195 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1196
1197 ata_port_flush_task(ap);
1198
1199 if (!rc) {
1200 spin_lock_irqsave(ap->lock, flags);
1201
1202 /* We're racing with irq here. If we lose, the
1203 * following test prevents us from completing the qc
1204 * twice. If we win, the port is frozen and will be
1205 * cleaned up by ->post_internal_cmd().
1206 */
1207 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1208 qc->err_mask |= AC_ERR_TIMEOUT;
1209
1210 if (ap->ops->error_handler)
1211 ata_port_freeze(ap);
1212 else
1213 ata_qc_complete(qc);
1214
1215 if (ata_msg_warn(ap))
1216 ata_dev_printk(dev, KERN_WARNING,
1217 "qc timeout (cmd 0x%x)\n", command);
1218 }
1219
1220 spin_unlock_irqrestore(ap->lock, flags);
1221 }
1222
1223 /* do post_internal_cmd */
1224 if (ap->ops->post_internal_cmd)
1225 ap->ops->post_internal_cmd(qc);
1226
1227 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1228 if (ata_msg_warn(ap))
1229 ata_dev_printk(dev, KERN_WARNING,
1230 "zero err_mask for failed "
1231 "internal command, assuming AC_ERR_OTHER\n");
1232 qc->err_mask |= AC_ERR_OTHER;
1233 }
1234
1235 /* finish up */
1236 spin_lock_irqsave(ap->lock, flags);
1237
1238 *tf = qc->result_tf;
1239 err_mask = qc->err_mask;
1240
1241 ata_qc_free(qc);
1242 ap->active_tag = preempted_tag;
1243 ap->sactive = preempted_sactive;
1244 ap->qc_active = preempted_qc_active;
1245
1246 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1247 * Until those drivers are fixed, we detect the condition
1248 * here, fail the command with AC_ERR_SYSTEM and reenable the
1249 * port.
1250 *
1251 * Note that this doesn't change any behavior as internal
1252 * command failure results in disabling the device in the
1253 * higher layer for LLDDs without new reset/EH callbacks.
1254 *
1255 * Kill the following code as soon as those drivers are fixed.
1256 */
1257 if (ap->flags & ATA_FLAG_DISABLED) {
1258 err_mask |= AC_ERR_SYSTEM;
1259 ata_port_probe(ap);
1260 }
1261
1262 spin_unlock_irqrestore(ap->lock, flags);
1263
1264 return err_mask;
1265 }
1266
1267 /**
1268 * ata_exec_internal - execute libata internal command
1269 * @dev: Device to which the command is sent
1270 * @tf: Taskfile registers for the command and the result
1271 * @cdb: CDB for packet command
1272 * @dma_dir: Data tranfer direction of the command
1273 * @buf: Data buffer of the command
1274 * @buflen: Length of data buffer
1275 *
1276 * Wrapper around ata_exec_internal_sg() which takes simple
1277 * buffer instead of sg list.
1278 *
1279 * LOCKING:
1280 * None. Should be called with kernel context, might sleep.
1281 *
1282 * RETURNS:
1283 * Zero on success, AC_ERR_* mask on failure
1284 */
1285 unsigned ata_exec_internal(struct ata_device *dev,
1286 struct ata_taskfile *tf, const u8 *cdb,
1287 int dma_dir, void *buf, unsigned int buflen)
1288 {
1289 struct scatterlist *psg = NULL, sg;
1290 unsigned int n_elem = 0;
1291
1292 if (dma_dir != DMA_NONE) {
1293 WARN_ON(!buf);
1294 sg_init_one(&sg, buf, buflen);
1295 psg = &sg;
1296 n_elem++;
1297 }
1298
1299 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1300 }
1301
1302 /**
1303 * ata_do_simple_cmd - execute simple internal command
1304 * @dev: Device to which the command is sent
1305 * @cmd: Opcode to execute
1306 *
1307 * Execute a 'simple' command, that only consists of the opcode
1308 * 'cmd' itself, without filling any other registers
1309 *
1310 * LOCKING:
1311 * Kernel thread context (may sleep).
1312 *
1313 * RETURNS:
1314 * Zero on success, AC_ERR_* mask on failure
1315 */
1316 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1317 {
1318 struct ata_taskfile tf;
1319
1320 ata_tf_init(dev, &tf);
1321
1322 tf.command = cmd;
1323 tf.flags |= ATA_TFLAG_DEVICE;
1324 tf.protocol = ATA_PROT_NODATA;
1325
1326 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1327 }
1328
1329 /**
1330 * ata_pio_need_iordy - check if iordy needed
1331 * @adev: ATA device
1332 *
1333 * Check if the current speed of the device requires IORDY. Used
1334 * by various controllers for chip configuration.
1335 */
1336
1337 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1338 {
1339 int pio;
1340 int speed = adev->pio_mode - XFER_PIO_0;
1341
1342 if (speed < 2)
1343 return 0;
1344 if (speed > 2)
1345 return 1;
1346
1347 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1348
1349 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1350 pio = adev->id[ATA_ID_EIDE_PIO];
1351 /* Is the speed faster than the drive allows non IORDY ? */
1352 if (pio) {
1353 /* This is cycle times not frequency - watch the logic! */
1354 if (pio > 240) /* PIO2 is 240nS per cycle */
1355 return 1;
1356 return 0;
1357 }
1358 }
1359 return 0;
1360 }
1361
1362 /**
1363 * ata_dev_read_id - Read ID data from the specified device
1364 * @dev: target device
1365 * @p_class: pointer to class of the target device (may be changed)
1366 * @flags: ATA_READID_* flags
1367 * @id: buffer to read IDENTIFY data into
1368 *
1369 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1370 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1371 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1372 * for pre-ATA4 drives.
1373 *
1374 * LOCKING:
1375 * Kernel thread context (may sleep)
1376 *
1377 * RETURNS:
1378 * 0 on success, -errno otherwise.
1379 */
1380 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1381 unsigned int flags, u16 *id)
1382 {
1383 struct ata_port *ap = dev->ap;
1384 unsigned int class = *p_class;
1385 struct ata_taskfile tf;
1386 unsigned int err_mask = 0;
1387 const char *reason;
1388 int rc;
1389
1390 if (ata_msg_ctl(ap))
1391 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1392 __FUNCTION__, ap->id, dev->devno);
1393
1394 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1395
1396 retry:
1397 ata_tf_init(dev, &tf);
1398
1399 switch (class) {
1400 case ATA_DEV_ATA:
1401 tf.command = ATA_CMD_ID_ATA;
1402 break;
1403 case ATA_DEV_ATAPI:
1404 tf.command = ATA_CMD_ID_ATAPI;
1405 break;
1406 default:
1407 rc = -ENODEV;
1408 reason = "unsupported class";
1409 goto err_out;
1410 }
1411
1412 tf.protocol = ATA_PROT_PIO;
1413
1414 /* Some devices choke if TF registers contain garbage. Make
1415 * sure those are properly initialized.
1416 */
1417 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1418
1419 /* Device presence detection is unreliable on some
1420 * controllers. Always poll IDENTIFY if available.
1421 */
1422 tf.flags |= ATA_TFLAG_POLLING;
1423
1424 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1425 id, sizeof(id[0]) * ATA_ID_WORDS);
1426 if (err_mask) {
1427 if (err_mask & AC_ERR_NODEV_HINT) {
1428 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1429 ap->id, dev->devno);
1430 return -ENOENT;
1431 }
1432
1433 rc = -EIO;
1434 reason = "I/O error";
1435 goto err_out;
1436 }
1437
1438 swap_buf_le16(id, ATA_ID_WORDS);
1439
1440 /* sanity check */
1441 rc = -EINVAL;
1442 reason = "device reports illegal type";
1443
1444 if (class == ATA_DEV_ATA) {
1445 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1446 goto err_out;
1447 } else {
1448 if (ata_id_is_ata(id))
1449 goto err_out;
1450 }
1451
1452 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1453 /*
1454 * The exact sequence expected by certain pre-ATA4 drives is:
1455 * SRST RESET
1456 * IDENTIFY
1457 * INITIALIZE DEVICE PARAMETERS
1458 * anything else..
1459 * Some drives were very specific about that exact sequence.
1460 */
1461 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1462 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1463 if (err_mask) {
1464 rc = -EIO;
1465 reason = "INIT_DEV_PARAMS failed";
1466 goto err_out;
1467 }
1468
1469 /* current CHS translation info (id[53-58]) might be
1470 * changed. reread the identify device info.
1471 */
1472 flags &= ~ATA_READID_POSTRESET;
1473 goto retry;
1474 }
1475 }
1476
1477 *p_class = class;
1478
1479 return 0;
1480
1481 err_out:
1482 if (ata_msg_warn(ap))
1483 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1484 "(%s, err_mask=0x%x)\n", reason, err_mask);
1485 return rc;
1486 }
1487
1488 static inline u8 ata_dev_knobble(struct ata_device *dev)
1489 {
1490 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1491 }
1492
1493 static void ata_dev_config_ncq(struct ata_device *dev,
1494 char *desc, size_t desc_sz)
1495 {
1496 struct ata_port *ap = dev->ap;
1497 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1498
1499 if (!ata_id_has_ncq(dev->id)) {
1500 desc[0] = '\0';
1501 return;
1502 }
1503 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1504 snprintf(desc, desc_sz, "NCQ (not used)");
1505 return;
1506 }
1507 if (ap->flags & ATA_FLAG_NCQ) {
1508 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1509 dev->flags |= ATA_DFLAG_NCQ;
1510 }
1511
1512 if (hdepth >= ddepth)
1513 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1514 else
1515 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1516 }
1517
1518 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1519 {
1520 int i;
1521
1522 if (ap->scsi_host) {
1523 unsigned int len = 0;
1524
1525 for (i = 0; i < ATA_MAX_DEVICES; i++)
1526 len = max(len, ap->device[i].cdb_len);
1527
1528 ap->scsi_host->max_cmd_len = len;
1529 }
1530 }
1531
1532 /**
1533 * ata_dev_configure - Configure the specified ATA/ATAPI device
1534 * @dev: Target device to configure
1535 *
1536 * Configure @dev according to @dev->id. Generic and low-level
1537 * driver specific fixups are also applied.
1538 *
1539 * LOCKING:
1540 * Kernel thread context (may sleep)
1541 *
1542 * RETURNS:
1543 * 0 on success, -errno otherwise
1544 */
1545 int ata_dev_configure(struct ata_device *dev)
1546 {
1547 struct ata_port *ap = dev->ap;
1548 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1549 const u16 *id = dev->id;
1550 unsigned int xfer_mask;
1551 char revbuf[7]; /* XYZ-99\0 */
1552 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1553 char modelbuf[ATA_ID_PROD_LEN+1];
1554 int rc;
1555
1556 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1557 ata_dev_printk(dev, KERN_INFO,
1558 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1559 __FUNCTION__, ap->id, dev->devno);
1560 return 0;
1561 }
1562
1563 if (ata_msg_probe(ap))
1564 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1565 __FUNCTION__, ap->id, dev->devno);
1566
1567 /* print device capabilities */
1568 if (ata_msg_probe(ap))
1569 ata_dev_printk(dev, KERN_DEBUG,
1570 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1571 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1572 __FUNCTION__,
1573 id[49], id[82], id[83], id[84],
1574 id[85], id[86], id[87], id[88]);
1575
1576 /* initialize to-be-configured parameters */
1577 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1578 dev->max_sectors = 0;
1579 dev->cdb_len = 0;
1580 dev->n_sectors = 0;
1581 dev->cylinders = 0;
1582 dev->heads = 0;
1583 dev->sectors = 0;
1584
1585 /*
1586 * common ATA, ATAPI feature tests
1587 */
1588
1589 /* find max transfer mode; for printk only */
1590 xfer_mask = ata_id_xfermask(id);
1591
1592 if (ata_msg_probe(ap))
1593 ata_dump_id(id);
1594
1595 /* ATA-specific feature tests */
1596 if (dev->class == ATA_DEV_ATA) {
1597 if (ata_id_is_cfa(id)) {
1598 if (id[162] & 1) /* CPRM may make this media unusable */
1599 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1600 ap->id, dev->devno);
1601 snprintf(revbuf, 7, "CFA");
1602 }
1603 else
1604 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1605
1606 dev->n_sectors = ata_id_n_sectors(id);
1607
1608 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1609 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1610 sizeof(fwrevbuf));
1611
1612 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1613 sizeof(modelbuf));
1614
1615 if (dev->id[59] & 0x100)
1616 dev->multi_count = dev->id[59] & 0xff;
1617
1618 if (ata_id_has_lba(id)) {
1619 const char *lba_desc;
1620 char ncq_desc[20];
1621
1622 lba_desc = "LBA";
1623 dev->flags |= ATA_DFLAG_LBA;
1624 if (ata_id_has_lba48(id)) {
1625 dev->flags |= ATA_DFLAG_LBA48;
1626 lba_desc = "LBA48";
1627
1628 if (dev->n_sectors >= (1UL << 28) &&
1629 ata_id_has_flush_ext(id))
1630 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1631 }
1632
1633 /* config NCQ */
1634 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1635
1636 /* print device info to dmesg */
1637 if (ata_msg_drv(ap) && print_info) {
1638 ata_dev_printk(dev, KERN_INFO,
1639 "%s: %s, %s, max %s\n",
1640 revbuf, modelbuf, fwrevbuf,
1641 ata_mode_string(xfer_mask));
1642 ata_dev_printk(dev, KERN_INFO,
1643 "%Lu sectors, multi %u: %s %s\n",
1644 (unsigned long long)dev->n_sectors,
1645 dev->multi_count, lba_desc, ncq_desc);
1646 }
1647 } else {
1648 /* CHS */
1649
1650 /* Default translation */
1651 dev->cylinders = id[1];
1652 dev->heads = id[3];
1653 dev->sectors = id[6];
1654
1655 if (ata_id_current_chs_valid(id)) {
1656 /* Current CHS translation is valid. */
1657 dev->cylinders = id[54];
1658 dev->heads = id[55];
1659 dev->sectors = id[56];
1660 }
1661
1662 /* print device info to dmesg */
1663 if (ata_msg_drv(ap) && print_info) {
1664 ata_dev_printk(dev, KERN_INFO,
1665 "%s: %s, %s, max %s\n",
1666 revbuf, modelbuf, fwrevbuf,
1667 ata_mode_string(xfer_mask));
1668 ata_dev_printk(dev, KERN_INFO,
1669 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1670 (unsigned long long)dev->n_sectors,
1671 dev->multi_count, dev->cylinders,
1672 dev->heads, dev->sectors);
1673 }
1674 }
1675
1676 dev->cdb_len = 16;
1677 }
1678
1679 /* ATAPI-specific feature tests */
1680 else if (dev->class == ATA_DEV_ATAPI) {
1681 char *cdb_intr_string = "";
1682
1683 rc = atapi_cdb_len(id);
1684 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1685 if (ata_msg_warn(ap))
1686 ata_dev_printk(dev, KERN_WARNING,
1687 "unsupported CDB len\n");
1688 rc = -EINVAL;
1689 goto err_out_nosup;
1690 }
1691 dev->cdb_len = (unsigned int) rc;
1692
1693 if (ata_id_cdb_intr(dev->id)) {
1694 dev->flags |= ATA_DFLAG_CDB_INTR;
1695 cdb_intr_string = ", CDB intr";
1696 }
1697
1698 /* print device info to dmesg */
1699 if (ata_msg_drv(ap) && print_info)
1700 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1701 ata_mode_string(xfer_mask),
1702 cdb_intr_string);
1703 }
1704
1705 /* determine max_sectors */
1706 dev->max_sectors = ATA_MAX_SECTORS;
1707 if (dev->flags & ATA_DFLAG_LBA48)
1708 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1709
1710 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1711 /* Let the user know. We don't want to disallow opens for
1712 rescue purposes, or in case the vendor is just a blithering
1713 idiot */
1714 if (print_info) {
1715 ata_dev_printk(dev, KERN_WARNING,
1716 "Drive reports diagnostics failure. This may indicate a drive\n");
1717 ata_dev_printk(dev, KERN_WARNING,
1718 "fault or invalid emulation. Contact drive vendor for information.\n");
1719 }
1720 }
1721
1722 ata_set_port_max_cmd_len(ap);
1723
1724 /* limit bridge transfers to udma5, 200 sectors */
1725 if (ata_dev_knobble(dev)) {
1726 if (ata_msg_drv(ap) && print_info)
1727 ata_dev_printk(dev, KERN_INFO,
1728 "applying bridge limits\n");
1729 dev->udma_mask &= ATA_UDMA5;
1730 dev->max_sectors = ATA_MAX_SECTORS;
1731 }
1732
1733 if (ap->ops->dev_config)
1734 ap->ops->dev_config(ap, dev);
1735
1736 if (ata_msg_probe(ap))
1737 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1738 __FUNCTION__, ata_chk_status(ap));
1739 return 0;
1740
1741 err_out_nosup:
1742 if (ata_msg_probe(ap))
1743 ata_dev_printk(dev, KERN_DEBUG,
1744 "%s: EXIT, err\n", __FUNCTION__);
1745 return rc;
1746 }
1747
1748 /**
1749 * ata_bus_probe - Reset and probe ATA bus
1750 * @ap: Bus to probe
1751 *
1752 * Master ATA bus probing function. Initiates a hardware-dependent
1753 * bus reset, then attempts to identify any devices found on
1754 * the bus.
1755 *
1756 * LOCKING:
1757 * PCI/etc. bus probe sem.
1758 *
1759 * RETURNS:
1760 * Zero on success, negative errno otherwise.
1761 */
1762
1763 int ata_bus_probe(struct ata_port *ap)
1764 {
1765 unsigned int classes[ATA_MAX_DEVICES];
1766 int tries[ATA_MAX_DEVICES];
1767 int i, rc, down_xfermask;
1768 struct ata_device *dev;
1769
1770 ata_port_probe(ap);
1771
1772 for (i = 0; i < ATA_MAX_DEVICES; i++)
1773 tries[i] = ATA_PROBE_MAX_TRIES;
1774
1775 retry:
1776 down_xfermask = 0;
1777
1778 /* reset and determine device classes */
1779 ap->ops->phy_reset(ap);
1780
1781 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1782 dev = &ap->device[i];
1783
1784 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1785 dev->class != ATA_DEV_UNKNOWN)
1786 classes[dev->devno] = dev->class;
1787 else
1788 classes[dev->devno] = ATA_DEV_NONE;
1789
1790 dev->class = ATA_DEV_UNKNOWN;
1791 }
1792
1793 ata_port_probe(ap);
1794
1795 /* after the reset the device state is PIO 0 and the controller
1796 state is undefined. Record the mode */
1797
1798 for (i = 0; i < ATA_MAX_DEVICES; i++)
1799 ap->device[i].pio_mode = XFER_PIO_0;
1800
1801 /* read IDENTIFY page and configure devices */
1802 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1803 dev = &ap->device[i];
1804
1805 if (tries[i])
1806 dev->class = classes[i];
1807
1808 if (!ata_dev_enabled(dev))
1809 continue;
1810
1811 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1812 dev->id);
1813 if (rc)
1814 goto fail;
1815
1816 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1817 rc = ata_dev_configure(dev);
1818 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1819 if (rc)
1820 goto fail;
1821 }
1822
1823 /* configure transfer mode */
1824 rc = ata_set_mode(ap, &dev);
1825 if (rc) {
1826 down_xfermask = 1;
1827 goto fail;
1828 }
1829
1830 for (i = 0; i < ATA_MAX_DEVICES; i++)
1831 if (ata_dev_enabled(&ap->device[i]))
1832 return 0;
1833
1834 /* no device present, disable port */
1835 ata_port_disable(ap);
1836 ap->ops->port_disable(ap);
1837 return -ENODEV;
1838
1839 fail:
1840 switch (rc) {
1841 case -EINVAL:
1842 case -ENODEV:
1843 tries[dev->devno] = 0;
1844 break;
1845 case -EIO:
1846 sata_down_spd_limit(ap);
1847 /* fall through */
1848 default:
1849 tries[dev->devno]--;
1850 if (down_xfermask &&
1851 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1852 tries[dev->devno] = 0;
1853 }
1854
1855 if (!tries[dev->devno]) {
1856 ata_down_xfermask_limit(dev, 1);
1857 ata_dev_disable(dev);
1858 }
1859
1860 goto retry;
1861 }
1862
1863 /**
1864 * ata_port_probe - Mark port as enabled
1865 * @ap: Port for which we indicate enablement
1866 *
1867 * Modify @ap data structure such that the system
1868 * thinks that the entire port is enabled.
1869 *
1870 * LOCKING: host lock, or some other form of
1871 * serialization.
1872 */
1873
1874 void ata_port_probe(struct ata_port *ap)
1875 {
1876 ap->flags &= ~ATA_FLAG_DISABLED;
1877 }
1878
1879 /**
1880 * sata_print_link_status - Print SATA link status
1881 * @ap: SATA port to printk link status about
1882 *
1883 * This function prints link speed and status of a SATA link.
1884 *
1885 * LOCKING:
1886 * None.
1887 */
1888 static void sata_print_link_status(struct ata_port *ap)
1889 {
1890 u32 sstatus, scontrol, tmp;
1891
1892 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1893 return;
1894 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1895
1896 if (ata_port_online(ap)) {
1897 tmp = (sstatus >> 4) & 0xf;
1898 ata_port_printk(ap, KERN_INFO,
1899 "SATA link up %s (SStatus %X SControl %X)\n",
1900 sata_spd_string(tmp), sstatus, scontrol);
1901 } else {
1902 ata_port_printk(ap, KERN_INFO,
1903 "SATA link down (SStatus %X SControl %X)\n",
1904 sstatus, scontrol);
1905 }
1906 }
1907
1908 /**
1909 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1910 * @ap: SATA port associated with target SATA PHY.
1911 *
1912 * This function issues commands to standard SATA Sxxx
1913 * PHY registers, to wake up the phy (and device), and
1914 * clear any reset condition.
1915 *
1916 * LOCKING:
1917 * PCI/etc. bus probe sem.
1918 *
1919 */
1920 void __sata_phy_reset(struct ata_port *ap)
1921 {
1922 u32 sstatus;
1923 unsigned long timeout = jiffies + (HZ * 5);
1924
1925 if (ap->flags & ATA_FLAG_SATA_RESET) {
1926 /* issue phy wake/reset */
1927 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1928 /* Couldn't find anything in SATA I/II specs, but
1929 * AHCI-1.1 10.4.2 says at least 1 ms. */
1930 mdelay(1);
1931 }
1932 /* phy wake/clear reset */
1933 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1934
1935 /* wait for phy to become ready, if necessary */
1936 do {
1937 msleep(200);
1938 sata_scr_read(ap, SCR_STATUS, &sstatus);
1939 if ((sstatus & 0xf) != 1)
1940 break;
1941 } while (time_before(jiffies, timeout));
1942
1943 /* print link status */
1944 sata_print_link_status(ap);
1945
1946 /* TODO: phy layer with polling, timeouts, etc. */
1947 if (!ata_port_offline(ap))
1948 ata_port_probe(ap);
1949 else
1950 ata_port_disable(ap);
1951
1952 if (ap->flags & ATA_FLAG_DISABLED)
1953 return;
1954
1955 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1956 ata_port_disable(ap);
1957 return;
1958 }
1959
1960 ap->cbl = ATA_CBL_SATA;
1961 }
1962
1963 /**
1964 * sata_phy_reset - Reset SATA bus.
1965 * @ap: SATA port associated with target SATA PHY.
1966 *
1967 * This function resets the SATA bus, and then probes
1968 * the bus for devices.
1969 *
1970 * LOCKING:
1971 * PCI/etc. bus probe sem.
1972 *
1973 */
1974 void sata_phy_reset(struct ata_port *ap)
1975 {
1976 __sata_phy_reset(ap);
1977 if (ap->flags & ATA_FLAG_DISABLED)
1978 return;
1979 ata_bus_reset(ap);
1980 }
1981
1982 /**
1983 * ata_dev_pair - return other device on cable
1984 * @adev: device
1985 *
1986 * Obtain the other device on the same cable, or if none is
1987 * present NULL is returned
1988 */
1989
1990 struct ata_device *ata_dev_pair(struct ata_device *adev)
1991 {
1992 struct ata_port *ap = adev->ap;
1993 struct ata_device *pair = &ap->device[1 - adev->devno];
1994 if (!ata_dev_enabled(pair))
1995 return NULL;
1996 return pair;
1997 }
1998
1999 /**
2000 * ata_port_disable - Disable port.
2001 * @ap: Port to be disabled.
2002 *
2003 * Modify @ap data structure such that the system
2004 * thinks that the entire port is disabled, and should
2005 * never attempt to probe or communicate with devices
2006 * on this port.
2007 *
2008 * LOCKING: host lock, or some other form of
2009 * serialization.
2010 */
2011
2012 void ata_port_disable(struct ata_port *ap)
2013 {
2014 ap->device[0].class = ATA_DEV_NONE;
2015 ap->device[1].class = ATA_DEV_NONE;
2016 ap->flags |= ATA_FLAG_DISABLED;
2017 }
2018
2019 /**
2020 * sata_down_spd_limit - adjust SATA spd limit downward
2021 * @ap: Port to adjust SATA spd limit for
2022 *
2023 * Adjust SATA spd limit of @ap downward. Note that this
2024 * function only adjusts the limit. The change must be applied
2025 * using sata_set_spd().
2026 *
2027 * LOCKING:
2028 * Inherited from caller.
2029 *
2030 * RETURNS:
2031 * 0 on success, negative errno on failure
2032 */
2033 int sata_down_spd_limit(struct ata_port *ap)
2034 {
2035 u32 sstatus, spd, mask;
2036 int rc, highbit;
2037
2038 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2039 if (rc)
2040 return rc;
2041
2042 mask = ap->sata_spd_limit;
2043 if (mask <= 1)
2044 return -EINVAL;
2045 highbit = fls(mask) - 1;
2046 mask &= ~(1 << highbit);
2047
2048 spd = (sstatus >> 4) & 0xf;
2049 if (spd <= 1)
2050 return -EINVAL;
2051 spd--;
2052 mask &= (1 << spd) - 1;
2053 if (!mask)
2054 return -EINVAL;
2055
2056 ap->sata_spd_limit = mask;
2057
2058 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2059 sata_spd_string(fls(mask)));
2060
2061 return 0;
2062 }
2063
2064 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2065 {
2066 u32 spd, limit;
2067
2068 if (ap->sata_spd_limit == UINT_MAX)
2069 limit = 0;
2070 else
2071 limit = fls(ap->sata_spd_limit);
2072
2073 spd = (*scontrol >> 4) & 0xf;
2074 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2075
2076 return spd != limit;
2077 }
2078
2079 /**
2080 * sata_set_spd_needed - is SATA spd configuration needed
2081 * @ap: Port in question
2082 *
2083 * Test whether the spd limit in SControl matches
2084 * @ap->sata_spd_limit. This function is used to determine
2085 * whether hardreset is necessary to apply SATA spd
2086 * configuration.
2087 *
2088 * LOCKING:
2089 * Inherited from caller.
2090 *
2091 * RETURNS:
2092 * 1 if SATA spd configuration is needed, 0 otherwise.
2093 */
2094 int sata_set_spd_needed(struct ata_port *ap)
2095 {
2096 u32 scontrol;
2097
2098 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2099 return 0;
2100
2101 return __sata_set_spd_needed(ap, &scontrol);
2102 }
2103
2104 /**
2105 * sata_set_spd - set SATA spd according to spd limit
2106 * @ap: Port to set SATA spd for
2107 *
2108 * Set SATA spd of @ap according to sata_spd_limit.
2109 *
2110 * LOCKING:
2111 * Inherited from caller.
2112 *
2113 * RETURNS:
2114 * 0 if spd doesn't need to be changed, 1 if spd has been
2115 * changed. Negative errno if SCR registers are inaccessible.
2116 */
2117 int sata_set_spd(struct ata_port *ap)
2118 {
2119 u32 scontrol;
2120 int rc;
2121
2122 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2123 return rc;
2124
2125 if (!__sata_set_spd_needed(ap, &scontrol))
2126 return 0;
2127
2128 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2129 return rc;
2130
2131 return 1;
2132 }
2133
2134 /*
2135 * This mode timing computation functionality is ported over from
2136 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2137 */
2138 /*
2139 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2140 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2141 * for UDMA6, which is currently supported only by Maxtor drives.
2142 *
2143 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2144 */
2145
2146 static const struct ata_timing ata_timing[] = {
2147
2148 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2149 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2150 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2151 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2152
2153 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2154 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2155 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2156 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2157 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2158
2159 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2160
2161 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2162 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2163 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2164
2165 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2166 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2167 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2168
2169 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2170 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2171 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2172 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2173
2174 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2175 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2176 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2177
2178 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2179
2180 { 0xFF }
2181 };
2182
2183 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2184 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2185
2186 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2187 {
2188 q->setup = EZ(t->setup * 1000, T);
2189 q->act8b = EZ(t->act8b * 1000, T);
2190 q->rec8b = EZ(t->rec8b * 1000, T);
2191 q->cyc8b = EZ(t->cyc8b * 1000, T);
2192 q->active = EZ(t->active * 1000, T);
2193 q->recover = EZ(t->recover * 1000, T);
2194 q->cycle = EZ(t->cycle * 1000, T);
2195 q->udma = EZ(t->udma * 1000, UT);
2196 }
2197
2198 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2199 struct ata_timing *m, unsigned int what)
2200 {
2201 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2202 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2203 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2204 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2205 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2206 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2207 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2208 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2209 }
2210
2211 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2212 {
2213 const struct ata_timing *t;
2214
2215 for (t = ata_timing; t->mode != speed; t++)
2216 if (t->mode == 0xFF)
2217 return NULL;
2218 return t;
2219 }
2220
2221 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2222 struct ata_timing *t, int T, int UT)
2223 {
2224 const struct ata_timing *s;
2225 struct ata_timing p;
2226
2227 /*
2228 * Find the mode.
2229 */
2230
2231 if (!(s = ata_timing_find_mode(speed)))
2232 return -EINVAL;
2233
2234 memcpy(t, s, sizeof(*s));
2235
2236 /*
2237 * If the drive is an EIDE drive, it can tell us it needs extended
2238 * PIO/MW_DMA cycle timing.
2239 */
2240
2241 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2242 memset(&p, 0, sizeof(p));
2243 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2244 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2245 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2246 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2247 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2248 }
2249 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2250 }
2251
2252 /*
2253 * Convert the timing to bus clock counts.
2254 */
2255
2256 ata_timing_quantize(t, t, T, UT);
2257
2258 /*
2259 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2260 * S.M.A.R.T * and some other commands. We have to ensure that the
2261 * DMA cycle timing is slower/equal than the fastest PIO timing.
2262 */
2263
2264 if (speed > XFER_PIO_6) {
2265 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2266 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2267 }
2268
2269 /*
2270 * Lengthen active & recovery time so that cycle time is correct.
2271 */
2272
2273 if (t->act8b + t->rec8b < t->cyc8b) {
2274 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2275 t->rec8b = t->cyc8b - t->act8b;
2276 }
2277
2278 if (t->active + t->recover < t->cycle) {
2279 t->active += (t->cycle - (t->active + t->recover)) / 2;
2280 t->recover = t->cycle - t->active;
2281 }
2282
2283 return 0;
2284 }
2285
2286 /**
2287 * ata_down_xfermask_limit - adjust dev xfer masks downward
2288 * @dev: Device to adjust xfer masks
2289 * @force_pio0: Force PIO0
2290 *
2291 * Adjust xfer masks of @dev downward. Note that this function
2292 * does not apply the change. Invoking ata_set_mode() afterwards
2293 * will apply the limit.
2294 *
2295 * LOCKING:
2296 * Inherited from caller.
2297 *
2298 * RETURNS:
2299 * 0 on success, negative errno on failure
2300 */
2301 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2302 {
2303 unsigned long xfer_mask;
2304 int highbit;
2305
2306 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2307 dev->udma_mask);
2308
2309 if (!xfer_mask)
2310 goto fail;
2311 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2312 if (xfer_mask & ATA_MASK_UDMA)
2313 xfer_mask &= ~ATA_MASK_MWDMA;
2314
2315 highbit = fls(xfer_mask) - 1;
2316 xfer_mask &= ~(1 << highbit);
2317 if (force_pio0)
2318 xfer_mask &= 1 << ATA_SHIFT_PIO;
2319 if (!xfer_mask)
2320 goto fail;
2321
2322 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2323 &dev->udma_mask);
2324
2325 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2326 ata_mode_string(xfer_mask));
2327
2328 return 0;
2329
2330 fail:
2331 return -EINVAL;
2332 }
2333
2334 static int ata_dev_set_mode(struct ata_device *dev)
2335 {
2336 struct ata_eh_context *ehc = &dev->ap->eh_context;
2337 unsigned int err_mask;
2338 int rc;
2339
2340 dev->flags &= ~ATA_DFLAG_PIO;
2341 if (dev->xfer_shift == ATA_SHIFT_PIO)
2342 dev->flags |= ATA_DFLAG_PIO;
2343
2344 err_mask = ata_dev_set_xfermode(dev);
2345 /* Old CFA may refuse this command, which is just fine */
2346 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2347 err_mask &= ~AC_ERR_DEV;
2348
2349 if (err_mask) {
2350 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2351 "(err_mask=0x%x)\n", err_mask);
2352 return -EIO;
2353 }
2354
2355 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2356 rc = ata_dev_revalidate(dev, 0);
2357 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2358 if (rc)
2359 return rc;
2360
2361 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2362 dev->xfer_shift, (int)dev->xfer_mode);
2363
2364 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2365 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2366 return 0;
2367 }
2368
2369 /**
2370 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2371 * @ap: port on which timings will be programmed
2372 * @r_failed_dev: out paramter for failed device
2373 *
2374 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2375 * ata_set_mode() fails, pointer to the failing device is
2376 * returned in @r_failed_dev.
2377 *
2378 * LOCKING:
2379 * PCI/etc. bus probe sem.
2380 *
2381 * RETURNS:
2382 * 0 on success, negative errno otherwise
2383 */
2384 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2385 {
2386 struct ata_device *dev;
2387 int i, rc = 0, used_dma = 0, found = 0;
2388
2389 /* has private set_mode? */
2390 if (ap->ops->set_mode)
2391 return ap->ops->set_mode(ap, r_failed_dev);
2392
2393 /* step 1: calculate xfer_mask */
2394 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2395 unsigned int pio_mask, dma_mask;
2396
2397 dev = &ap->device[i];
2398
2399 if (!ata_dev_enabled(dev))
2400 continue;
2401
2402 ata_dev_xfermask(dev);
2403
2404 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2405 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2406 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2407 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2408
2409 found = 1;
2410 if (dev->dma_mode)
2411 used_dma = 1;
2412 }
2413 if (!found)
2414 goto out;
2415
2416 /* step 2: always set host PIO timings */
2417 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2418 dev = &ap->device[i];
2419 if (!ata_dev_enabled(dev))
2420 continue;
2421
2422 if (!dev->pio_mode) {
2423 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2424 rc = -EINVAL;
2425 goto out;
2426 }
2427
2428 dev->xfer_mode = dev->pio_mode;
2429 dev->xfer_shift = ATA_SHIFT_PIO;
2430 if (ap->ops->set_piomode)
2431 ap->ops->set_piomode(ap, dev);
2432 }
2433
2434 /* step 3: set host DMA timings */
2435 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2436 dev = &ap->device[i];
2437
2438 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2439 continue;
2440
2441 dev->xfer_mode = dev->dma_mode;
2442 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2443 if (ap->ops->set_dmamode)
2444 ap->ops->set_dmamode(ap, dev);
2445 }
2446
2447 /* step 4: update devices' xfer mode */
2448 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2449 dev = &ap->device[i];
2450
2451 /* don't update suspended devices' xfer mode */
2452 if (!ata_dev_ready(dev))
2453 continue;
2454
2455 rc = ata_dev_set_mode(dev);
2456 if (rc)
2457 goto out;
2458 }
2459
2460 /* Record simplex status. If we selected DMA then the other
2461 * host channels are not permitted to do so.
2462 */
2463 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2464 ap->host->simplex_claimed = 1;
2465
2466 /* step5: chip specific finalisation */
2467 if (ap->ops->post_set_mode)
2468 ap->ops->post_set_mode(ap);
2469
2470 out:
2471 if (rc)
2472 *r_failed_dev = dev;
2473 return rc;
2474 }
2475
2476 /**
2477 * ata_tf_to_host - issue ATA taskfile to host controller
2478 * @ap: port to which command is being issued
2479 * @tf: ATA taskfile register set
2480 *
2481 * Issues ATA taskfile register set to ATA host controller,
2482 * with proper synchronization with interrupt handler and
2483 * other threads.
2484 *
2485 * LOCKING:
2486 * spin_lock_irqsave(host lock)
2487 */
2488
2489 static inline void ata_tf_to_host(struct ata_port *ap,
2490 const struct ata_taskfile *tf)
2491 {
2492 ap->ops->tf_load(ap, tf);
2493 ap->ops->exec_command(ap, tf);
2494 }
2495
2496 /**
2497 * ata_busy_sleep - sleep until BSY clears, or timeout
2498 * @ap: port containing status register to be polled
2499 * @tmout_pat: impatience timeout
2500 * @tmout: overall timeout
2501 *
2502 * Sleep until ATA Status register bit BSY clears,
2503 * or a timeout occurs.
2504 *
2505 * LOCKING:
2506 * Kernel thread context (may sleep).
2507 *
2508 * RETURNS:
2509 * 0 on success, -errno otherwise.
2510 */
2511 int ata_busy_sleep(struct ata_port *ap,
2512 unsigned long tmout_pat, unsigned long tmout)
2513 {
2514 unsigned long timer_start, timeout;
2515 u8 status;
2516
2517 status = ata_busy_wait(ap, ATA_BUSY, 300);
2518 timer_start = jiffies;
2519 timeout = timer_start + tmout_pat;
2520 while (status != 0xff && (status & ATA_BUSY) &&
2521 time_before(jiffies, timeout)) {
2522 msleep(50);
2523 status = ata_busy_wait(ap, ATA_BUSY, 3);
2524 }
2525
2526 if (status != 0xff && (status & ATA_BUSY))
2527 ata_port_printk(ap, KERN_WARNING,
2528 "port is slow to respond, please be patient "
2529 "(Status 0x%x)\n", status);
2530
2531 timeout = timer_start + tmout;
2532 while (status != 0xff && (status & ATA_BUSY) &&
2533 time_before(jiffies, timeout)) {
2534 msleep(50);
2535 status = ata_chk_status(ap);
2536 }
2537
2538 if (status == 0xff)
2539 return -ENODEV;
2540
2541 if (status & ATA_BUSY) {
2542 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2543 "(%lu secs, Status 0x%x)\n",
2544 tmout / HZ, status);
2545 return -EBUSY;
2546 }
2547
2548 return 0;
2549 }
2550
2551 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2552 {
2553 struct ata_ioports *ioaddr = &ap->ioaddr;
2554 unsigned int dev0 = devmask & (1 << 0);
2555 unsigned int dev1 = devmask & (1 << 1);
2556 unsigned long timeout;
2557
2558 /* if device 0 was found in ata_devchk, wait for its
2559 * BSY bit to clear
2560 */
2561 if (dev0)
2562 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2563
2564 /* if device 1 was found in ata_devchk, wait for
2565 * register access, then wait for BSY to clear
2566 */
2567 timeout = jiffies + ATA_TMOUT_BOOT;
2568 while (dev1) {
2569 u8 nsect, lbal;
2570
2571 ap->ops->dev_select(ap, 1);
2572 nsect = ioread8(ioaddr->nsect_addr);
2573 lbal = ioread8(ioaddr->lbal_addr);
2574 if ((nsect == 1) && (lbal == 1))
2575 break;
2576 if (time_after(jiffies, timeout)) {
2577 dev1 = 0;
2578 break;
2579 }
2580 msleep(50); /* give drive a breather */
2581 }
2582 if (dev1)
2583 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2584
2585 /* is all this really necessary? */
2586 ap->ops->dev_select(ap, 0);
2587 if (dev1)
2588 ap->ops->dev_select(ap, 1);
2589 if (dev0)
2590 ap->ops->dev_select(ap, 0);
2591 }
2592
2593 static unsigned int ata_bus_softreset(struct ata_port *ap,
2594 unsigned int devmask)
2595 {
2596 struct ata_ioports *ioaddr = &ap->ioaddr;
2597
2598 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2599
2600 /* software reset. causes dev0 to be selected */
2601 iowrite8(ap->ctl, ioaddr->ctl_addr);
2602 udelay(20); /* FIXME: flush */
2603 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2604 udelay(20); /* FIXME: flush */
2605 iowrite8(ap->ctl, ioaddr->ctl_addr);
2606
2607 /* spec mandates ">= 2ms" before checking status.
2608 * We wait 150ms, because that was the magic delay used for
2609 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2610 * between when the ATA command register is written, and then
2611 * status is checked. Because waiting for "a while" before
2612 * checking status is fine, post SRST, we perform this magic
2613 * delay here as well.
2614 *
2615 * Old drivers/ide uses the 2mS rule and then waits for ready
2616 */
2617 msleep(150);
2618
2619 /* Before we perform post reset processing we want to see if
2620 * the bus shows 0xFF because the odd clown forgets the D7
2621 * pulldown resistor.
2622 */
2623 if (ata_check_status(ap) == 0xFF)
2624 return 0;
2625
2626 ata_bus_post_reset(ap, devmask);
2627
2628 return 0;
2629 }
2630
2631 /**
2632 * ata_bus_reset - reset host port and associated ATA channel
2633 * @ap: port to reset
2634 *
2635 * This is typically the first time we actually start issuing
2636 * commands to the ATA channel. We wait for BSY to clear, then
2637 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2638 * result. Determine what devices, if any, are on the channel
2639 * by looking at the device 0/1 error register. Look at the signature
2640 * stored in each device's taskfile registers, to determine if
2641 * the device is ATA or ATAPI.
2642 *
2643 * LOCKING:
2644 * PCI/etc. bus probe sem.
2645 * Obtains host lock.
2646 *
2647 * SIDE EFFECTS:
2648 * Sets ATA_FLAG_DISABLED if bus reset fails.
2649 */
2650
2651 void ata_bus_reset(struct ata_port *ap)
2652 {
2653 struct ata_ioports *ioaddr = &ap->ioaddr;
2654 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2655 u8 err;
2656 unsigned int dev0, dev1 = 0, devmask = 0;
2657
2658 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2659
2660 /* determine if device 0/1 are present */
2661 if (ap->flags & ATA_FLAG_SATA_RESET)
2662 dev0 = 1;
2663 else {
2664 dev0 = ata_devchk(ap, 0);
2665 if (slave_possible)
2666 dev1 = ata_devchk(ap, 1);
2667 }
2668
2669 if (dev0)
2670 devmask |= (1 << 0);
2671 if (dev1)
2672 devmask |= (1 << 1);
2673
2674 /* select device 0 again */
2675 ap->ops->dev_select(ap, 0);
2676
2677 /* issue bus reset */
2678 if (ap->flags & ATA_FLAG_SRST)
2679 if (ata_bus_softreset(ap, devmask))
2680 goto err_out;
2681
2682 /*
2683 * determine by signature whether we have ATA or ATAPI devices
2684 */
2685 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2686 if ((slave_possible) && (err != 0x81))
2687 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2688
2689 /* re-enable interrupts */
2690 ap->ops->irq_on(ap);
2691
2692 /* is double-select really necessary? */
2693 if (ap->device[1].class != ATA_DEV_NONE)
2694 ap->ops->dev_select(ap, 1);
2695 if (ap->device[0].class != ATA_DEV_NONE)
2696 ap->ops->dev_select(ap, 0);
2697
2698 /* if no devices were detected, disable this port */
2699 if ((ap->device[0].class == ATA_DEV_NONE) &&
2700 (ap->device[1].class == ATA_DEV_NONE))
2701 goto err_out;
2702
2703 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2704 /* set up device control for ATA_FLAG_SATA_RESET */
2705 iowrite8(ap->ctl, ioaddr->ctl_addr);
2706 }
2707
2708 DPRINTK("EXIT\n");
2709 return;
2710
2711 err_out:
2712 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2713 ap->ops->port_disable(ap);
2714
2715 DPRINTK("EXIT\n");
2716 }
2717
2718 /**
2719 * sata_phy_debounce - debounce SATA phy status
2720 * @ap: ATA port to debounce SATA phy status for
2721 * @params: timing parameters { interval, duratinon, timeout } in msec
2722 *
2723 * Make sure SStatus of @ap reaches stable state, determined by
2724 * holding the same value where DET is not 1 for @duration polled
2725 * every @interval, before @timeout. Timeout constraints the
2726 * beginning of the stable state. Because, after hot unplugging,
2727 * DET gets stuck at 1 on some controllers, this functions waits
2728 * until timeout then returns 0 if DET is stable at 1.
2729 *
2730 * LOCKING:
2731 * Kernel thread context (may sleep)
2732 *
2733 * RETURNS:
2734 * 0 on success, -errno on failure.
2735 */
2736 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2737 {
2738 unsigned long interval_msec = params[0];
2739 unsigned long duration = params[1] * HZ / 1000;
2740 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2741 unsigned long last_jiffies;
2742 u32 last, cur;
2743 int rc;
2744
2745 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2746 return rc;
2747 cur &= 0xf;
2748
2749 last = cur;
2750 last_jiffies = jiffies;
2751
2752 while (1) {
2753 msleep(interval_msec);
2754 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2755 return rc;
2756 cur &= 0xf;
2757
2758 /* DET stable? */
2759 if (cur == last) {
2760 if (cur == 1 && time_before(jiffies, timeout))
2761 continue;
2762 if (time_after(jiffies, last_jiffies + duration))
2763 return 0;
2764 continue;
2765 }
2766
2767 /* unstable, start over */
2768 last = cur;
2769 last_jiffies = jiffies;
2770
2771 /* check timeout */
2772 if (time_after(jiffies, timeout))
2773 return -EBUSY;
2774 }
2775 }
2776
2777 /**
2778 * sata_phy_resume - resume SATA phy
2779 * @ap: ATA port to resume SATA phy for
2780 * @params: timing parameters { interval, duratinon, timeout } in msec
2781 *
2782 * Resume SATA phy of @ap and debounce it.
2783 *
2784 * LOCKING:
2785 * Kernel thread context (may sleep)
2786 *
2787 * RETURNS:
2788 * 0 on success, -errno on failure.
2789 */
2790 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2791 {
2792 u32 scontrol;
2793 int rc;
2794
2795 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2796 return rc;
2797
2798 scontrol = (scontrol & 0x0f0) | 0x300;
2799
2800 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2801 return rc;
2802
2803 /* Some PHYs react badly if SStatus is pounded immediately
2804 * after resuming. Delay 200ms before debouncing.
2805 */
2806 msleep(200);
2807
2808 return sata_phy_debounce(ap, params);
2809 }
2810
2811 static void ata_wait_spinup(struct ata_port *ap)
2812 {
2813 struct ata_eh_context *ehc = &ap->eh_context;
2814 unsigned long end, secs;
2815 int rc;
2816
2817 /* first, debounce phy if SATA */
2818 if (ap->cbl == ATA_CBL_SATA) {
2819 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2820
2821 /* if debounced successfully and offline, no need to wait */
2822 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2823 return;
2824 }
2825
2826 /* okay, let's give the drive time to spin up */
2827 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2828 secs = ((end - jiffies) + HZ - 1) / HZ;
2829
2830 if (time_after(jiffies, end))
2831 return;
2832
2833 if (secs > 5)
2834 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2835 "(%lu secs)\n", secs);
2836
2837 schedule_timeout_uninterruptible(end - jiffies);
2838 }
2839
2840 /**
2841 * ata_std_prereset - prepare for reset
2842 * @ap: ATA port to be reset
2843 *
2844 * @ap is about to be reset. Initialize it.
2845 *
2846 * LOCKING:
2847 * Kernel thread context (may sleep)
2848 *
2849 * RETURNS:
2850 * 0 on success, -errno otherwise.
2851 */
2852 int ata_std_prereset(struct ata_port *ap)
2853 {
2854 struct ata_eh_context *ehc = &ap->eh_context;
2855 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2856 int rc;
2857
2858 /* handle link resume & hotplug spinup */
2859 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2860 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2861 ehc->i.action |= ATA_EH_HARDRESET;
2862
2863 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2864 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2865 ata_wait_spinup(ap);
2866
2867 /* if we're about to do hardreset, nothing more to do */
2868 if (ehc->i.action & ATA_EH_HARDRESET)
2869 return 0;
2870
2871 /* if SATA, resume phy */
2872 if (ap->cbl == ATA_CBL_SATA) {
2873 rc = sata_phy_resume(ap, timing);
2874 if (rc && rc != -EOPNOTSUPP) {
2875 /* phy resume failed */
2876 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2877 "link for reset (errno=%d)\n", rc);
2878 return rc;
2879 }
2880 }
2881
2882 /* Wait for !BSY if the controller can wait for the first D2H
2883 * Reg FIS and we don't know that no device is attached.
2884 */
2885 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2886 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2887
2888 return 0;
2889 }
2890
2891 /**
2892 * ata_std_softreset - reset host port via ATA SRST
2893 * @ap: port to reset
2894 * @classes: resulting classes of attached devices
2895 *
2896 * Reset host port using ATA SRST.
2897 *
2898 * LOCKING:
2899 * Kernel thread context (may sleep)
2900 *
2901 * RETURNS:
2902 * 0 on success, -errno otherwise.
2903 */
2904 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2905 {
2906 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2907 unsigned int devmask = 0, err_mask;
2908 u8 err;
2909
2910 DPRINTK("ENTER\n");
2911
2912 if (ata_port_offline(ap)) {
2913 classes[0] = ATA_DEV_NONE;
2914 goto out;
2915 }
2916
2917 /* determine if device 0/1 are present */
2918 if (ata_devchk(ap, 0))
2919 devmask |= (1 << 0);
2920 if (slave_possible && ata_devchk(ap, 1))
2921 devmask |= (1 << 1);
2922
2923 /* select device 0 again */
2924 ap->ops->dev_select(ap, 0);
2925
2926 /* issue bus reset */
2927 DPRINTK("about to softreset, devmask=%x\n", devmask);
2928 err_mask = ata_bus_softreset(ap, devmask);
2929 if (err_mask) {
2930 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2931 err_mask);
2932 return -EIO;
2933 }
2934
2935 /* determine by signature whether we have ATA or ATAPI devices */
2936 classes[0] = ata_dev_try_classify(ap, 0, &err);
2937 if (slave_possible && err != 0x81)
2938 classes[1] = ata_dev_try_classify(ap, 1, &err);
2939
2940 out:
2941 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2942 return 0;
2943 }
2944
2945 /**
2946 * sata_port_hardreset - reset port via SATA phy reset
2947 * @ap: port to reset
2948 * @timing: timing parameters { interval, duratinon, timeout } in msec
2949 *
2950 * SATA phy-reset host port using DET bits of SControl register.
2951 *
2952 * LOCKING:
2953 * Kernel thread context (may sleep)
2954 *
2955 * RETURNS:
2956 * 0 on success, -errno otherwise.
2957 */
2958 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
2959 {
2960 u32 scontrol;
2961 int rc;
2962
2963 DPRINTK("ENTER\n");
2964
2965 if (sata_set_spd_needed(ap)) {
2966 /* SATA spec says nothing about how to reconfigure
2967 * spd. To be on the safe side, turn off phy during
2968 * reconfiguration. This works for at least ICH7 AHCI
2969 * and Sil3124.
2970 */
2971 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2972 goto out;
2973
2974 scontrol = (scontrol & 0x0f0) | 0x304;
2975
2976 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2977 goto out;
2978
2979 sata_set_spd(ap);
2980 }
2981
2982 /* issue phy wake/reset */
2983 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2984 goto out;
2985
2986 scontrol = (scontrol & 0x0f0) | 0x301;
2987
2988 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2989 goto out;
2990
2991 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2992 * 10.4.2 says at least 1 ms.
2993 */
2994 msleep(1);
2995
2996 /* bring phy back */
2997 rc = sata_phy_resume(ap, timing);
2998 out:
2999 DPRINTK("EXIT, rc=%d\n", rc);
3000 return rc;
3001 }
3002
3003 /**
3004 * sata_std_hardreset - reset host port via SATA phy reset
3005 * @ap: port to reset
3006 * @class: resulting class of attached device
3007 *
3008 * SATA phy-reset host port using DET bits of SControl register,
3009 * wait for !BSY and classify the attached device.
3010 *
3011 * LOCKING:
3012 * Kernel thread context (may sleep)
3013 *
3014 * RETURNS:
3015 * 0 on success, -errno otherwise.
3016 */
3017 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3018 {
3019 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3020 int rc;
3021
3022 DPRINTK("ENTER\n");
3023
3024 /* do hardreset */
3025 rc = sata_port_hardreset(ap, timing);
3026 if (rc) {
3027 ata_port_printk(ap, KERN_ERR,
3028 "COMRESET failed (errno=%d)\n", rc);
3029 return rc;
3030 }
3031
3032 /* TODO: phy layer with polling, timeouts, etc. */
3033 if (ata_port_offline(ap)) {
3034 *class = ATA_DEV_NONE;
3035 DPRINTK("EXIT, link offline\n");
3036 return 0;
3037 }
3038
3039 /* wait a while before checking status, see SRST for more info */
3040 msleep(150);
3041
3042 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3043 ata_port_printk(ap, KERN_ERR,
3044 "COMRESET failed (device not ready)\n");
3045 return -EIO;
3046 }
3047
3048 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3049
3050 *class = ata_dev_try_classify(ap, 0, NULL);
3051
3052 DPRINTK("EXIT, class=%u\n", *class);
3053 return 0;
3054 }
3055
3056 /**
3057 * ata_std_postreset - standard postreset callback
3058 * @ap: the target ata_port
3059 * @classes: classes of attached devices
3060 *
3061 * This function is invoked after a successful reset. Note that
3062 * the device might have been reset more than once using
3063 * different reset methods before postreset is invoked.
3064 *
3065 * LOCKING:
3066 * Kernel thread context (may sleep)
3067 */
3068 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3069 {
3070 u32 serror;
3071
3072 DPRINTK("ENTER\n");
3073
3074 /* print link status */
3075 sata_print_link_status(ap);
3076
3077 /* clear SError */
3078 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3079 sata_scr_write(ap, SCR_ERROR, serror);
3080
3081 /* re-enable interrupts */
3082 if (!ap->ops->error_handler)
3083 ap->ops->irq_on(ap);
3084
3085 /* is double-select really necessary? */
3086 if (classes[0] != ATA_DEV_NONE)
3087 ap->ops->dev_select(ap, 1);
3088 if (classes[1] != ATA_DEV_NONE)
3089 ap->ops->dev_select(ap, 0);
3090
3091 /* bail out if no device is present */
3092 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3093 DPRINTK("EXIT, no device\n");
3094 return;
3095 }
3096
3097 /* set up device control */
3098 if (ap->ioaddr.ctl_addr)
3099 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3100
3101 DPRINTK("EXIT\n");
3102 }
3103
3104 /**
3105 * ata_dev_same_device - Determine whether new ID matches configured device
3106 * @dev: device to compare against
3107 * @new_class: class of the new device
3108 * @new_id: IDENTIFY page of the new device
3109 *
3110 * Compare @new_class and @new_id against @dev and determine
3111 * whether @dev is the device indicated by @new_class and
3112 * @new_id.
3113 *
3114 * LOCKING:
3115 * None.
3116 *
3117 * RETURNS:
3118 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3119 */
3120 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3121 const u16 *new_id)
3122 {
3123 const u16 *old_id = dev->id;
3124 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3125 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3126 u64 new_n_sectors;
3127
3128 if (dev->class != new_class) {
3129 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3130 dev->class, new_class);
3131 return 0;
3132 }
3133
3134 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3135 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3136 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3137 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3138 new_n_sectors = ata_id_n_sectors(new_id);
3139
3140 if (strcmp(model[0], model[1])) {
3141 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3142 "'%s' != '%s'\n", model[0], model[1]);
3143 return 0;
3144 }
3145
3146 if (strcmp(serial[0], serial[1])) {
3147 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3148 "'%s' != '%s'\n", serial[0], serial[1]);
3149 return 0;
3150 }
3151
3152 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3153 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3154 "%llu != %llu\n",
3155 (unsigned long long)dev->n_sectors,
3156 (unsigned long long)new_n_sectors);
3157 return 0;
3158 }
3159
3160 return 1;
3161 }
3162
3163 /**
3164 * ata_dev_revalidate - Revalidate ATA device
3165 * @dev: device to revalidate
3166 * @readid_flags: read ID flags
3167 *
3168 * Re-read IDENTIFY page and make sure @dev is still attached to
3169 * the port.
3170 *
3171 * LOCKING:
3172 * Kernel thread context (may sleep)
3173 *
3174 * RETURNS:
3175 * 0 on success, negative errno otherwise
3176 */
3177 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3178 {
3179 unsigned int class = dev->class;
3180 u16 *id = (void *)dev->ap->sector_buf;
3181 int rc;
3182
3183 if (!ata_dev_enabled(dev)) {
3184 rc = -ENODEV;
3185 goto fail;
3186 }
3187
3188 /* read ID data */
3189 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3190 if (rc)
3191 goto fail;
3192
3193 /* is the device still there? */
3194 if (!ata_dev_same_device(dev, class, id)) {
3195 rc = -ENODEV;
3196 goto fail;
3197 }
3198
3199 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3200
3201 /* configure device according to the new ID */
3202 rc = ata_dev_configure(dev);
3203 if (rc == 0)
3204 return 0;
3205
3206 fail:
3207 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3208 return rc;
3209 }
3210
3211 struct ata_blacklist_entry {
3212 const char *model_num;
3213 const char *model_rev;
3214 unsigned long horkage;
3215 };
3216
3217 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3218 /* Devices with DMA related problems under Linux */
3219 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3220 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3221 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3222 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3223 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3224 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3225 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3226 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3227 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3228 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3229 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3230 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3231 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3232 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3233 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3234 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3235 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3236 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3237 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3238 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3239 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3240 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3241 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3242 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3243 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3244 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3245 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3246 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3247 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3248 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3249
3250 /* Devices we expect to fail diagnostics */
3251
3252 /* Devices where NCQ should be avoided */
3253 /* NCQ is slow */
3254 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3255
3256 /* Devices with NCQ limits */
3257
3258 /* End Marker */
3259 { }
3260 };
3261
3262 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3263 {
3264 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3265 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3266 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3267
3268 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3269 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3270
3271 while (ad->model_num) {
3272 if (!strcmp(ad->model_num, model_num)) {
3273 if (ad->model_rev == NULL)
3274 return ad->horkage;
3275 if (!strcmp(ad->model_rev, model_rev))
3276 return ad->horkage;
3277 }
3278 ad++;
3279 }
3280 return 0;
3281 }
3282
3283 static int ata_dma_blacklisted(const struct ata_device *dev)
3284 {
3285 /* We don't support polling DMA.
3286 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3287 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3288 */
3289 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3290 (dev->flags & ATA_DFLAG_CDB_INTR))
3291 return 1;
3292 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3293 }
3294
3295 /**
3296 * ata_dev_xfermask - Compute supported xfermask of the given device
3297 * @dev: Device to compute xfermask for
3298 *
3299 * Compute supported xfermask of @dev and store it in
3300 * dev->*_mask. This function is responsible for applying all
3301 * known limits including host controller limits, device
3302 * blacklist, etc...
3303 *
3304 * LOCKING:
3305 * None.
3306 */
3307 static void ata_dev_xfermask(struct ata_device *dev)
3308 {
3309 struct ata_port *ap = dev->ap;
3310 struct ata_host *host = ap->host;
3311 unsigned long xfer_mask;
3312
3313 /* controller modes available */
3314 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3315 ap->mwdma_mask, ap->udma_mask);
3316
3317 /* Apply cable rule here. Don't apply it early because when
3318 * we handle hot plug the cable type can itself change.
3319 */
3320 if (ap->cbl == ATA_CBL_PATA40)
3321 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3322 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3323 * host side are checked drive side as well. Cases where we know a
3324 * 40wire cable is used safely for 80 are not checked here.
3325 */
3326 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3327 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3328
3329
3330 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3331 dev->mwdma_mask, dev->udma_mask);
3332 xfer_mask &= ata_id_xfermask(dev->id);
3333
3334 /*
3335 * CFA Advanced TrueIDE timings are not allowed on a shared
3336 * cable
3337 */
3338 if (ata_dev_pair(dev)) {
3339 /* No PIO5 or PIO6 */
3340 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3341 /* No MWDMA3 or MWDMA 4 */
3342 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3343 }
3344
3345 if (ata_dma_blacklisted(dev)) {
3346 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3347 ata_dev_printk(dev, KERN_WARNING,
3348 "device is on DMA blacklist, disabling DMA\n");
3349 }
3350
3351 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3352 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3353 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3354 "other device, disabling DMA\n");
3355 }
3356
3357 if (ap->ops->mode_filter)
3358 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3359
3360 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3361 &dev->mwdma_mask, &dev->udma_mask);
3362 }
3363
3364 /**
3365 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3366 * @dev: Device to which command will be sent
3367 *
3368 * Issue SET FEATURES - XFER MODE command to device @dev
3369 * on port @ap.
3370 *
3371 * LOCKING:
3372 * PCI/etc. bus probe sem.
3373 *
3374 * RETURNS:
3375 * 0 on success, AC_ERR_* mask otherwise.
3376 */
3377
3378 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3379 {
3380 struct ata_taskfile tf;
3381 unsigned int err_mask;
3382
3383 /* set up set-features taskfile */
3384 DPRINTK("set features - xfer mode\n");
3385
3386 ata_tf_init(dev, &tf);
3387 tf.command = ATA_CMD_SET_FEATURES;
3388 tf.feature = SETFEATURES_XFER;
3389 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3390 tf.protocol = ATA_PROT_NODATA;
3391 tf.nsect = dev->xfer_mode;
3392
3393 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3394
3395 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3396 return err_mask;
3397 }
3398
3399 /**
3400 * ata_dev_init_params - Issue INIT DEV PARAMS command
3401 * @dev: Device to which command will be sent
3402 * @heads: Number of heads (taskfile parameter)
3403 * @sectors: Number of sectors (taskfile parameter)
3404 *
3405 * LOCKING:
3406 * Kernel thread context (may sleep)
3407 *
3408 * RETURNS:
3409 * 0 on success, AC_ERR_* mask otherwise.
3410 */
3411 static unsigned int ata_dev_init_params(struct ata_device *dev,
3412 u16 heads, u16 sectors)
3413 {
3414 struct ata_taskfile tf;
3415 unsigned int err_mask;
3416
3417 /* Number of sectors per track 1-255. Number of heads 1-16 */
3418 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3419 return AC_ERR_INVALID;
3420
3421 /* set up init dev params taskfile */
3422 DPRINTK("init dev params \n");
3423
3424 ata_tf_init(dev, &tf);
3425 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3426 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3427 tf.protocol = ATA_PROT_NODATA;
3428 tf.nsect = sectors;
3429 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3430
3431 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3432
3433 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3434 return err_mask;
3435 }
3436
3437 /**
3438 * ata_sg_clean - Unmap DMA memory associated with command
3439 * @qc: Command containing DMA memory to be released
3440 *
3441 * Unmap all mapped DMA memory associated with this command.
3442 *
3443 * LOCKING:
3444 * spin_lock_irqsave(host lock)
3445 */
3446 void ata_sg_clean(struct ata_queued_cmd *qc)
3447 {
3448 struct ata_port *ap = qc->ap;
3449 struct scatterlist *sg = qc->__sg;
3450 int dir = qc->dma_dir;
3451 void *pad_buf = NULL;
3452
3453 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3454 WARN_ON(sg == NULL);
3455
3456 if (qc->flags & ATA_QCFLAG_SINGLE)
3457 WARN_ON(qc->n_elem > 1);
3458
3459 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3460
3461 /* if we padded the buffer out to 32-bit bound, and data
3462 * xfer direction is from-device, we must copy from the
3463 * pad buffer back into the supplied buffer
3464 */
3465 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3466 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3467
3468 if (qc->flags & ATA_QCFLAG_SG) {
3469 if (qc->n_elem)
3470 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3471 /* restore last sg */
3472 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3473 if (pad_buf) {
3474 struct scatterlist *psg = &qc->pad_sgent;
3475 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3476 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3477 kunmap_atomic(addr, KM_IRQ0);
3478 }
3479 } else {
3480 if (qc->n_elem)
3481 dma_unmap_single(ap->dev,
3482 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3483 dir);
3484 /* restore sg */
3485 sg->length += qc->pad_len;
3486 if (pad_buf)
3487 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3488 pad_buf, qc->pad_len);
3489 }
3490
3491 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3492 qc->__sg = NULL;
3493 }
3494
3495 /**
3496 * ata_fill_sg - Fill PCI IDE PRD table
3497 * @qc: Metadata associated with taskfile to be transferred
3498 *
3499 * Fill PCI IDE PRD (scatter-gather) table with segments
3500 * associated with the current disk command.
3501 *
3502 * LOCKING:
3503 * spin_lock_irqsave(host lock)
3504 *
3505 */
3506 static void ata_fill_sg(struct ata_queued_cmd *qc)
3507 {
3508 struct ata_port *ap = qc->ap;
3509 struct scatterlist *sg;
3510 unsigned int idx;
3511
3512 WARN_ON(qc->__sg == NULL);
3513 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3514
3515 idx = 0;
3516 ata_for_each_sg(sg, qc) {
3517 u32 addr, offset;
3518 u32 sg_len, len;
3519
3520 /* determine if physical DMA addr spans 64K boundary.
3521 * Note h/w doesn't support 64-bit, so we unconditionally
3522 * truncate dma_addr_t to u32.
3523 */
3524 addr = (u32) sg_dma_address(sg);
3525 sg_len = sg_dma_len(sg);
3526
3527 while (sg_len) {
3528 offset = addr & 0xffff;
3529 len = sg_len;
3530 if ((offset + sg_len) > 0x10000)
3531 len = 0x10000 - offset;
3532
3533 ap->prd[idx].addr = cpu_to_le32(addr);
3534 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3535 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3536
3537 idx++;
3538 sg_len -= len;
3539 addr += len;
3540 }
3541 }
3542
3543 if (idx)
3544 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3545 }
3546 /**
3547 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3548 * @qc: Metadata associated with taskfile to check
3549 *
3550 * Allow low-level driver to filter ATA PACKET commands, returning
3551 * a status indicating whether or not it is OK to use DMA for the
3552 * supplied PACKET command.
3553 *
3554 * LOCKING:
3555 * spin_lock_irqsave(host lock)
3556 *
3557 * RETURNS: 0 when ATAPI DMA can be used
3558 * nonzero otherwise
3559 */
3560 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3561 {
3562 struct ata_port *ap = qc->ap;
3563 int rc = 0; /* Assume ATAPI DMA is OK by default */
3564
3565 if (ap->ops->check_atapi_dma)
3566 rc = ap->ops->check_atapi_dma(qc);
3567
3568 return rc;
3569 }
3570 /**
3571 * ata_qc_prep - Prepare taskfile for submission
3572 * @qc: Metadata associated with taskfile to be prepared
3573 *
3574 * Prepare ATA taskfile for submission.
3575 *
3576 * LOCKING:
3577 * spin_lock_irqsave(host lock)
3578 */
3579 void ata_qc_prep(struct ata_queued_cmd *qc)
3580 {
3581 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3582 return;
3583
3584 ata_fill_sg(qc);
3585 }
3586
3587 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3588
3589 /**
3590 * ata_sg_init_one - Associate command with memory buffer
3591 * @qc: Command to be associated
3592 * @buf: Memory buffer
3593 * @buflen: Length of memory buffer, in bytes.
3594 *
3595 * Initialize the data-related elements of queued_cmd @qc
3596 * to point to a single memory buffer, @buf of byte length @buflen.
3597 *
3598 * LOCKING:
3599 * spin_lock_irqsave(host lock)
3600 */
3601
3602 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3603 {
3604 qc->flags |= ATA_QCFLAG_SINGLE;
3605
3606 qc->__sg = &qc->sgent;
3607 qc->n_elem = 1;
3608 qc->orig_n_elem = 1;
3609 qc->buf_virt = buf;
3610 qc->nbytes = buflen;
3611
3612 sg_init_one(&qc->sgent, buf, buflen);
3613 }
3614
3615 /**
3616 * ata_sg_init - Associate command with scatter-gather table.
3617 * @qc: Command to be associated
3618 * @sg: Scatter-gather table.
3619 * @n_elem: Number of elements in s/g table.
3620 *
3621 * Initialize the data-related elements of queued_cmd @qc
3622 * to point to a scatter-gather table @sg, containing @n_elem
3623 * elements.
3624 *
3625 * LOCKING:
3626 * spin_lock_irqsave(host lock)
3627 */
3628
3629 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3630 unsigned int n_elem)
3631 {
3632 qc->flags |= ATA_QCFLAG_SG;
3633 qc->__sg = sg;
3634 qc->n_elem = n_elem;
3635 qc->orig_n_elem = n_elem;
3636 }
3637
3638 /**
3639 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3640 * @qc: Command with memory buffer to be mapped.
3641 *
3642 * DMA-map the memory buffer associated with queued_cmd @qc.
3643 *
3644 * LOCKING:
3645 * spin_lock_irqsave(host lock)
3646 *
3647 * RETURNS:
3648 * Zero on success, negative on error.
3649 */
3650
3651 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3652 {
3653 struct ata_port *ap = qc->ap;
3654 int dir = qc->dma_dir;
3655 struct scatterlist *sg = qc->__sg;
3656 dma_addr_t dma_address;
3657 int trim_sg = 0;
3658
3659 /* we must lengthen transfers to end on a 32-bit boundary */
3660 qc->pad_len = sg->length & 3;
3661 if (qc->pad_len) {
3662 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3663 struct scatterlist *psg = &qc->pad_sgent;
3664
3665 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3666
3667 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3668
3669 if (qc->tf.flags & ATA_TFLAG_WRITE)
3670 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3671 qc->pad_len);
3672
3673 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3674 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3675 /* trim sg */
3676 sg->length -= qc->pad_len;
3677 if (sg->length == 0)
3678 trim_sg = 1;
3679
3680 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3681 sg->length, qc->pad_len);
3682 }
3683
3684 if (trim_sg) {
3685 qc->n_elem--;
3686 goto skip_map;
3687 }
3688
3689 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3690 sg->length, dir);
3691 if (dma_mapping_error(dma_address)) {
3692 /* restore sg */
3693 sg->length += qc->pad_len;
3694 return -1;
3695 }
3696
3697 sg_dma_address(sg) = dma_address;
3698 sg_dma_len(sg) = sg->length;
3699
3700 skip_map:
3701 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3702 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3703
3704 return 0;
3705 }
3706
3707 /**
3708 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3709 * @qc: Command with scatter-gather table to be mapped.
3710 *
3711 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3712 *
3713 * LOCKING:
3714 * spin_lock_irqsave(host lock)
3715 *
3716 * RETURNS:
3717 * Zero on success, negative on error.
3718 *
3719 */
3720
3721 static int ata_sg_setup(struct ata_queued_cmd *qc)
3722 {
3723 struct ata_port *ap = qc->ap;
3724 struct scatterlist *sg = qc->__sg;
3725 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3726 int n_elem, pre_n_elem, dir, trim_sg = 0;
3727
3728 VPRINTK("ENTER, ata%u\n", ap->id);
3729 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3730
3731 /* we must lengthen transfers to end on a 32-bit boundary */
3732 qc->pad_len = lsg->length & 3;
3733 if (qc->pad_len) {
3734 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3735 struct scatterlist *psg = &qc->pad_sgent;
3736 unsigned int offset;
3737
3738 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3739
3740 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3741
3742 /*
3743 * psg->page/offset are used to copy to-be-written
3744 * data in this function or read data in ata_sg_clean.
3745 */
3746 offset = lsg->offset + lsg->length - qc->pad_len;
3747 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3748 psg->offset = offset_in_page(offset);
3749
3750 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3751 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3752 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3753 kunmap_atomic(addr, KM_IRQ0);
3754 }
3755
3756 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3757 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3758 /* trim last sg */
3759 lsg->length -= qc->pad_len;
3760 if (lsg->length == 0)
3761 trim_sg = 1;
3762
3763 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3764 qc->n_elem - 1, lsg->length, qc->pad_len);
3765 }
3766
3767 pre_n_elem = qc->n_elem;
3768 if (trim_sg && pre_n_elem)
3769 pre_n_elem--;
3770
3771 if (!pre_n_elem) {
3772 n_elem = 0;
3773 goto skip_map;
3774 }
3775
3776 dir = qc->dma_dir;
3777 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3778 if (n_elem < 1) {
3779 /* restore last sg */
3780 lsg->length += qc->pad_len;
3781 return -1;
3782 }
3783
3784 DPRINTK("%d sg elements mapped\n", n_elem);
3785
3786 skip_map:
3787 qc->n_elem = n_elem;
3788
3789 return 0;
3790 }
3791
3792 /**
3793 * swap_buf_le16 - swap halves of 16-bit words in place
3794 * @buf: Buffer to swap
3795 * @buf_words: Number of 16-bit words in buffer.
3796 *
3797 * Swap halves of 16-bit words if needed to convert from
3798 * little-endian byte order to native cpu byte order, or
3799 * vice-versa.
3800 *
3801 * LOCKING:
3802 * Inherited from caller.
3803 */
3804 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3805 {
3806 #ifdef __BIG_ENDIAN
3807 unsigned int i;
3808
3809 for (i = 0; i < buf_words; i++)
3810 buf[i] = le16_to_cpu(buf[i]);
3811 #endif /* __BIG_ENDIAN */
3812 }
3813
3814 /**
3815 * ata_data_xfer - Transfer data by PIO
3816 * @adev: device to target
3817 * @buf: data buffer
3818 * @buflen: buffer length
3819 * @write_data: read/write
3820 *
3821 * Transfer data from/to the device data register by PIO.
3822 *
3823 * LOCKING:
3824 * Inherited from caller.
3825 */
3826 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3827 unsigned int buflen, int write_data)
3828 {
3829 struct ata_port *ap = adev->ap;
3830 unsigned int words = buflen >> 1;
3831
3832 /* Transfer multiple of 2 bytes */
3833 if (write_data)
3834 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3835 else
3836 ioread16_rep(ap->ioaddr.data_addr, buf, words);
3837
3838 /* Transfer trailing 1 byte, if any. */
3839 if (unlikely(buflen & 0x01)) {
3840 u16 align_buf[1] = { 0 };
3841 unsigned char *trailing_buf = buf + buflen - 1;
3842
3843 if (write_data) {
3844 memcpy(align_buf, trailing_buf, 1);
3845 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3846 } else {
3847 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3848 memcpy(trailing_buf, align_buf, 1);
3849 }
3850 }
3851 }
3852
3853 /**
3854 * ata_data_xfer_noirq - Transfer data by PIO
3855 * @adev: device to target
3856 * @buf: data buffer
3857 * @buflen: buffer length
3858 * @write_data: read/write
3859 *
3860 * Transfer data from/to the device data register by PIO. Do the
3861 * transfer with interrupts disabled.
3862 *
3863 * LOCKING:
3864 * Inherited from caller.
3865 */
3866 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3867 unsigned int buflen, int write_data)
3868 {
3869 unsigned long flags;
3870 local_irq_save(flags);
3871 ata_data_xfer(adev, buf, buflen, write_data);
3872 local_irq_restore(flags);
3873 }
3874
3875
3876 /**
3877 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3878 * @qc: Command on going
3879 *
3880 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3881 *
3882 * LOCKING:
3883 * Inherited from caller.
3884 */
3885
3886 static void ata_pio_sector(struct ata_queued_cmd *qc)
3887 {
3888 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3889 struct scatterlist *sg = qc->__sg;
3890 struct ata_port *ap = qc->ap;
3891 struct page *page;
3892 unsigned int offset;
3893 unsigned char *buf;
3894
3895 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
3896 ap->hsm_task_state = HSM_ST_LAST;
3897
3898 page = sg[qc->cursg].page;
3899 offset = sg[qc->cursg].offset + qc->cursg_ofs;
3900
3901 /* get the current page and offset */
3902 page = nth_page(page, (offset >> PAGE_SHIFT));
3903 offset %= PAGE_SIZE;
3904
3905 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3906
3907 if (PageHighMem(page)) {
3908 unsigned long flags;
3909
3910 /* FIXME: use a bounce buffer */
3911 local_irq_save(flags);
3912 buf = kmap_atomic(page, KM_IRQ0);
3913
3914 /* do the actual data transfer */
3915 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3916
3917 kunmap_atomic(buf, KM_IRQ0);
3918 local_irq_restore(flags);
3919 } else {
3920 buf = page_address(page);
3921 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3922 }
3923
3924 qc->curbytes += ATA_SECT_SIZE;
3925 qc->cursg_ofs += ATA_SECT_SIZE;
3926
3927 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
3928 qc->cursg++;
3929 qc->cursg_ofs = 0;
3930 }
3931 }
3932
3933 /**
3934 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3935 * @qc: Command on going
3936 *
3937 * Transfer one or many ATA_SECT_SIZE of data from/to the
3938 * ATA device for the DRQ request.
3939 *
3940 * LOCKING:
3941 * Inherited from caller.
3942 */
3943
3944 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3945 {
3946 if (is_multi_taskfile(&qc->tf)) {
3947 /* READ/WRITE MULTIPLE */
3948 unsigned int nsect;
3949
3950 WARN_ON(qc->dev->multi_count == 0);
3951
3952 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
3953 qc->dev->multi_count);
3954 while (nsect--)
3955 ata_pio_sector(qc);
3956 } else
3957 ata_pio_sector(qc);
3958 }
3959
3960 /**
3961 * atapi_send_cdb - Write CDB bytes to hardware
3962 * @ap: Port to which ATAPI device is attached.
3963 * @qc: Taskfile currently active
3964 *
3965 * When device has indicated its readiness to accept
3966 * a CDB, this function is called. Send the CDB.
3967 *
3968 * LOCKING:
3969 * caller.
3970 */
3971
3972 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3973 {
3974 /* send SCSI cdb */
3975 DPRINTK("send cdb\n");
3976 WARN_ON(qc->dev->cdb_len < 12);
3977
3978 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3979 ata_altstatus(ap); /* flush */
3980
3981 switch (qc->tf.protocol) {
3982 case ATA_PROT_ATAPI:
3983 ap->hsm_task_state = HSM_ST;
3984 break;
3985 case ATA_PROT_ATAPI_NODATA:
3986 ap->hsm_task_state = HSM_ST_LAST;
3987 break;
3988 case ATA_PROT_ATAPI_DMA:
3989 ap->hsm_task_state = HSM_ST_LAST;
3990 /* initiate bmdma */
3991 ap->ops->bmdma_start(qc);
3992 break;
3993 }
3994 }
3995
3996 /**
3997 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3998 * @qc: Command on going
3999 * @bytes: number of bytes
4000 *
4001 * Transfer Transfer data from/to the ATAPI device.
4002 *
4003 * LOCKING:
4004 * Inherited from caller.
4005 *
4006 */
4007
4008 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4009 {
4010 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4011 struct scatterlist *sg = qc->__sg;
4012 struct ata_port *ap = qc->ap;
4013 struct page *page;
4014 unsigned char *buf;
4015 unsigned int offset, count;
4016
4017 if (qc->curbytes + bytes >= qc->nbytes)
4018 ap->hsm_task_state = HSM_ST_LAST;
4019
4020 next_sg:
4021 if (unlikely(qc->cursg >= qc->n_elem)) {
4022 /*
4023 * The end of qc->sg is reached and the device expects
4024 * more data to transfer. In order not to overrun qc->sg
4025 * and fulfill length specified in the byte count register,
4026 * - for read case, discard trailing data from the device
4027 * - for write case, padding zero data to the device
4028 */
4029 u16 pad_buf[1] = { 0 };
4030 unsigned int words = bytes >> 1;
4031 unsigned int i;
4032
4033 if (words) /* warning if bytes > 1 */
4034 ata_dev_printk(qc->dev, KERN_WARNING,
4035 "%u bytes trailing data\n", bytes);
4036
4037 for (i = 0; i < words; i++)
4038 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4039
4040 ap->hsm_task_state = HSM_ST_LAST;
4041 return;
4042 }
4043
4044 sg = &qc->__sg[qc->cursg];
4045
4046 page = sg->page;
4047 offset = sg->offset + qc->cursg_ofs;
4048
4049 /* get the current page and offset */
4050 page = nth_page(page, (offset >> PAGE_SHIFT));
4051 offset %= PAGE_SIZE;
4052
4053 /* don't overrun current sg */
4054 count = min(sg->length - qc->cursg_ofs, bytes);
4055
4056 /* don't cross page boundaries */
4057 count = min(count, (unsigned int)PAGE_SIZE - offset);
4058
4059 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4060
4061 if (PageHighMem(page)) {
4062 unsigned long flags;
4063
4064 /* FIXME: use bounce buffer */
4065 local_irq_save(flags);
4066 buf = kmap_atomic(page, KM_IRQ0);
4067
4068 /* do the actual data transfer */
4069 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4070
4071 kunmap_atomic(buf, KM_IRQ0);
4072 local_irq_restore(flags);
4073 } else {
4074 buf = page_address(page);
4075 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4076 }
4077
4078 bytes -= count;
4079 qc->curbytes += count;
4080 qc->cursg_ofs += count;
4081
4082 if (qc->cursg_ofs == sg->length) {
4083 qc->cursg++;
4084 qc->cursg_ofs = 0;
4085 }
4086
4087 if (bytes)
4088 goto next_sg;
4089 }
4090
4091 /**
4092 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4093 * @qc: Command on going
4094 *
4095 * Transfer Transfer data from/to the ATAPI device.
4096 *
4097 * LOCKING:
4098 * Inherited from caller.
4099 */
4100
4101 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4102 {
4103 struct ata_port *ap = qc->ap;
4104 struct ata_device *dev = qc->dev;
4105 unsigned int ireason, bc_lo, bc_hi, bytes;
4106 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4107
4108 /* Abuse qc->result_tf for temp storage of intermediate TF
4109 * here to save some kernel stack usage.
4110 * For normal completion, qc->result_tf is not relevant. For
4111 * error, qc->result_tf is later overwritten by ata_qc_complete().
4112 * So, the correctness of qc->result_tf is not affected.
4113 */
4114 ap->ops->tf_read(ap, &qc->result_tf);
4115 ireason = qc->result_tf.nsect;
4116 bc_lo = qc->result_tf.lbam;
4117 bc_hi = qc->result_tf.lbah;
4118 bytes = (bc_hi << 8) | bc_lo;
4119
4120 /* shall be cleared to zero, indicating xfer of data */
4121 if (ireason & (1 << 0))
4122 goto err_out;
4123
4124 /* make sure transfer direction matches expected */
4125 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4126 if (do_write != i_write)
4127 goto err_out;
4128
4129 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4130
4131 __atapi_pio_bytes(qc, bytes);
4132
4133 return;
4134
4135 err_out:
4136 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4137 qc->err_mask |= AC_ERR_HSM;
4138 ap->hsm_task_state = HSM_ST_ERR;
4139 }
4140
4141 /**
4142 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4143 * @ap: the target ata_port
4144 * @qc: qc on going
4145 *
4146 * RETURNS:
4147 * 1 if ok in workqueue, 0 otherwise.
4148 */
4149
4150 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4151 {
4152 if (qc->tf.flags & ATA_TFLAG_POLLING)
4153 return 1;
4154
4155 if (ap->hsm_task_state == HSM_ST_FIRST) {
4156 if (qc->tf.protocol == ATA_PROT_PIO &&
4157 (qc->tf.flags & ATA_TFLAG_WRITE))
4158 return 1;
4159
4160 if (is_atapi_taskfile(&qc->tf) &&
4161 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4162 return 1;
4163 }
4164
4165 return 0;
4166 }
4167
4168 /**
4169 * ata_hsm_qc_complete - finish a qc running on standard HSM
4170 * @qc: Command to complete
4171 * @in_wq: 1 if called from workqueue, 0 otherwise
4172 *
4173 * Finish @qc which is running on standard HSM.
4174 *
4175 * LOCKING:
4176 * If @in_wq is zero, spin_lock_irqsave(host lock).
4177 * Otherwise, none on entry and grabs host lock.
4178 */
4179 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4180 {
4181 struct ata_port *ap = qc->ap;
4182 unsigned long flags;
4183
4184 if (ap->ops->error_handler) {
4185 if (in_wq) {
4186 spin_lock_irqsave(ap->lock, flags);
4187
4188 /* EH might have kicked in while host lock is
4189 * released.
4190 */
4191 qc = ata_qc_from_tag(ap, qc->tag);
4192 if (qc) {
4193 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4194 ap->ops->irq_on(ap);
4195 ata_qc_complete(qc);
4196 } else
4197 ata_port_freeze(ap);
4198 }
4199
4200 spin_unlock_irqrestore(ap->lock, flags);
4201 } else {
4202 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4203 ata_qc_complete(qc);
4204 else
4205 ata_port_freeze(ap);
4206 }
4207 } else {
4208 if (in_wq) {
4209 spin_lock_irqsave(ap->lock, flags);
4210 ap->ops->irq_on(ap);
4211 ata_qc_complete(qc);
4212 spin_unlock_irqrestore(ap->lock, flags);
4213 } else
4214 ata_qc_complete(qc);
4215 }
4216
4217 ata_altstatus(ap); /* flush */
4218 }
4219
4220 /**
4221 * ata_hsm_move - move the HSM to the next state.
4222 * @ap: the target ata_port
4223 * @qc: qc on going
4224 * @status: current device status
4225 * @in_wq: 1 if called from workqueue, 0 otherwise
4226 *
4227 * RETURNS:
4228 * 1 when poll next status needed, 0 otherwise.
4229 */
4230 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4231 u8 status, int in_wq)
4232 {
4233 unsigned long flags = 0;
4234 int poll_next;
4235
4236 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4237
4238 /* Make sure ata_qc_issue_prot() does not throw things
4239 * like DMA polling into the workqueue. Notice that
4240 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4241 */
4242 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4243
4244 fsm_start:
4245 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4246 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4247
4248 switch (ap->hsm_task_state) {
4249 case HSM_ST_FIRST:
4250 /* Send first data block or PACKET CDB */
4251
4252 /* If polling, we will stay in the work queue after
4253 * sending the data. Otherwise, interrupt handler
4254 * takes over after sending the data.
4255 */
4256 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4257
4258 /* check device status */
4259 if (unlikely((status & ATA_DRQ) == 0)) {
4260 /* handle BSY=0, DRQ=0 as error */
4261 if (likely(status & (ATA_ERR | ATA_DF)))
4262 /* device stops HSM for abort/error */
4263 qc->err_mask |= AC_ERR_DEV;
4264 else
4265 /* HSM violation. Let EH handle this */
4266 qc->err_mask |= AC_ERR_HSM;
4267
4268 ap->hsm_task_state = HSM_ST_ERR;
4269 goto fsm_start;
4270 }
4271
4272 /* Device should not ask for data transfer (DRQ=1)
4273 * when it finds something wrong.
4274 * We ignore DRQ here and stop the HSM by
4275 * changing hsm_task_state to HSM_ST_ERR and
4276 * let the EH abort the command or reset the device.
4277 */
4278 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4279 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4280 ap->id, status);
4281 qc->err_mask |= AC_ERR_HSM;
4282 ap->hsm_task_state = HSM_ST_ERR;
4283 goto fsm_start;
4284 }
4285
4286 /* Send the CDB (atapi) or the first data block (ata pio out).
4287 * During the state transition, interrupt handler shouldn't
4288 * be invoked before the data transfer is complete and
4289 * hsm_task_state is changed. Hence, the following locking.
4290 */
4291 if (in_wq)
4292 spin_lock_irqsave(ap->lock, flags);
4293
4294 if (qc->tf.protocol == ATA_PROT_PIO) {
4295 /* PIO data out protocol.
4296 * send first data block.
4297 */
4298
4299 /* ata_pio_sectors() might change the state
4300 * to HSM_ST_LAST. so, the state is changed here
4301 * before ata_pio_sectors().
4302 */
4303 ap->hsm_task_state = HSM_ST;
4304 ata_pio_sectors(qc);
4305 ata_altstatus(ap); /* flush */
4306 } else
4307 /* send CDB */
4308 atapi_send_cdb(ap, qc);
4309
4310 if (in_wq)
4311 spin_unlock_irqrestore(ap->lock, flags);
4312
4313 /* if polling, ata_pio_task() handles the rest.
4314 * otherwise, interrupt handler takes over from here.
4315 */
4316 break;
4317
4318 case HSM_ST:
4319 /* complete command or read/write the data register */
4320 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4321 /* ATAPI PIO protocol */
4322 if ((status & ATA_DRQ) == 0) {
4323 /* No more data to transfer or device error.
4324 * Device error will be tagged in HSM_ST_LAST.
4325 */
4326 ap->hsm_task_state = HSM_ST_LAST;
4327 goto fsm_start;
4328 }
4329
4330 /* Device should not ask for data transfer (DRQ=1)
4331 * when it finds something wrong.
4332 * We ignore DRQ here and stop the HSM by
4333 * changing hsm_task_state to HSM_ST_ERR and
4334 * let the EH abort the command or reset the device.
4335 */
4336 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4337 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4338 ap->id, status);
4339 qc->err_mask |= AC_ERR_HSM;
4340 ap->hsm_task_state = HSM_ST_ERR;
4341 goto fsm_start;
4342 }
4343
4344 atapi_pio_bytes(qc);
4345
4346 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4347 /* bad ireason reported by device */
4348 goto fsm_start;
4349
4350 } else {
4351 /* ATA PIO protocol */
4352 if (unlikely((status & ATA_DRQ) == 0)) {
4353 /* handle BSY=0, DRQ=0 as error */
4354 if (likely(status & (ATA_ERR | ATA_DF)))
4355 /* device stops HSM for abort/error */
4356 qc->err_mask |= AC_ERR_DEV;
4357 else
4358 /* HSM violation. Let EH handle this.
4359 * Phantom devices also trigger this
4360 * condition. Mark hint.
4361 */
4362 qc->err_mask |= AC_ERR_HSM |
4363 AC_ERR_NODEV_HINT;
4364
4365 ap->hsm_task_state = HSM_ST_ERR;
4366 goto fsm_start;
4367 }
4368
4369 /* For PIO reads, some devices may ask for
4370 * data transfer (DRQ=1) alone with ERR=1.
4371 * We respect DRQ here and transfer one
4372 * block of junk data before changing the
4373 * hsm_task_state to HSM_ST_ERR.
4374 *
4375 * For PIO writes, ERR=1 DRQ=1 doesn't make
4376 * sense since the data block has been
4377 * transferred to the device.
4378 */
4379 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4380 /* data might be corrputed */
4381 qc->err_mask |= AC_ERR_DEV;
4382
4383 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4384 ata_pio_sectors(qc);
4385 ata_altstatus(ap);
4386 status = ata_wait_idle(ap);
4387 }
4388
4389 if (status & (ATA_BUSY | ATA_DRQ))
4390 qc->err_mask |= AC_ERR_HSM;
4391
4392 /* ata_pio_sectors() might change the
4393 * state to HSM_ST_LAST. so, the state
4394 * is changed after ata_pio_sectors().
4395 */
4396 ap->hsm_task_state = HSM_ST_ERR;
4397 goto fsm_start;
4398 }
4399
4400 ata_pio_sectors(qc);
4401
4402 if (ap->hsm_task_state == HSM_ST_LAST &&
4403 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4404 /* all data read */
4405 ata_altstatus(ap);
4406 status = ata_wait_idle(ap);
4407 goto fsm_start;
4408 }
4409 }
4410
4411 ata_altstatus(ap); /* flush */
4412 poll_next = 1;
4413 break;
4414
4415 case HSM_ST_LAST:
4416 if (unlikely(!ata_ok(status))) {
4417 qc->err_mask |= __ac_err_mask(status);
4418 ap->hsm_task_state = HSM_ST_ERR;
4419 goto fsm_start;
4420 }
4421
4422 /* no more data to transfer */
4423 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4424 ap->id, qc->dev->devno, status);
4425
4426 WARN_ON(qc->err_mask);
4427
4428 ap->hsm_task_state = HSM_ST_IDLE;
4429
4430 /* complete taskfile transaction */
4431 ata_hsm_qc_complete(qc, in_wq);
4432
4433 poll_next = 0;
4434 break;
4435
4436 case HSM_ST_ERR:
4437 /* make sure qc->err_mask is available to
4438 * know what's wrong and recover
4439 */
4440 WARN_ON(qc->err_mask == 0);
4441
4442 ap->hsm_task_state = HSM_ST_IDLE;
4443
4444 /* complete taskfile transaction */
4445 ata_hsm_qc_complete(qc, in_wq);
4446
4447 poll_next = 0;
4448 break;
4449 default:
4450 poll_next = 0;
4451 BUG();
4452 }
4453
4454 return poll_next;
4455 }
4456
4457 static void ata_pio_task(struct work_struct *work)
4458 {
4459 struct ata_port *ap =
4460 container_of(work, struct ata_port, port_task.work);
4461 struct ata_queued_cmd *qc = ap->port_task_data;
4462 u8 status;
4463 int poll_next;
4464
4465 fsm_start:
4466 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4467
4468 /*
4469 * This is purely heuristic. This is a fast path.
4470 * Sometimes when we enter, BSY will be cleared in
4471 * a chk-status or two. If not, the drive is probably seeking
4472 * or something. Snooze for a couple msecs, then
4473 * chk-status again. If still busy, queue delayed work.
4474 */
4475 status = ata_busy_wait(ap, ATA_BUSY, 5);
4476 if (status & ATA_BUSY) {
4477 msleep(2);
4478 status = ata_busy_wait(ap, ATA_BUSY, 10);
4479 if (status & ATA_BUSY) {
4480 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4481 return;
4482 }
4483 }
4484
4485 /* move the HSM */
4486 poll_next = ata_hsm_move(ap, qc, status, 1);
4487
4488 /* another command or interrupt handler
4489 * may be running at this point.
4490 */
4491 if (poll_next)
4492 goto fsm_start;
4493 }
4494
4495 /**
4496 * ata_qc_new - Request an available ATA command, for queueing
4497 * @ap: Port associated with device @dev
4498 * @dev: Device from whom we request an available command structure
4499 *
4500 * LOCKING:
4501 * None.
4502 */
4503
4504 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4505 {
4506 struct ata_queued_cmd *qc = NULL;
4507 unsigned int i;
4508
4509 /* no command while frozen */
4510 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4511 return NULL;
4512
4513 /* the last tag is reserved for internal command. */
4514 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4515 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4516 qc = __ata_qc_from_tag(ap, i);
4517 break;
4518 }
4519
4520 if (qc)
4521 qc->tag = i;
4522
4523 return qc;
4524 }
4525
4526 /**
4527 * ata_qc_new_init - Request an available ATA command, and initialize it
4528 * @dev: Device from whom we request an available command structure
4529 *
4530 * LOCKING:
4531 * None.
4532 */
4533
4534 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4535 {
4536 struct ata_port *ap = dev->ap;
4537 struct ata_queued_cmd *qc;
4538
4539 qc = ata_qc_new(ap);
4540 if (qc) {
4541 qc->scsicmd = NULL;
4542 qc->ap = ap;
4543 qc->dev = dev;
4544
4545 ata_qc_reinit(qc);
4546 }
4547
4548 return qc;
4549 }
4550
4551 /**
4552 * ata_qc_free - free unused ata_queued_cmd
4553 * @qc: Command to complete
4554 *
4555 * Designed to free unused ata_queued_cmd object
4556 * in case something prevents using it.
4557 *
4558 * LOCKING:
4559 * spin_lock_irqsave(host lock)
4560 */
4561 void ata_qc_free(struct ata_queued_cmd *qc)
4562 {
4563 struct ata_port *ap = qc->ap;
4564 unsigned int tag;
4565
4566 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4567
4568 qc->flags = 0;
4569 tag = qc->tag;
4570 if (likely(ata_tag_valid(tag))) {
4571 qc->tag = ATA_TAG_POISON;
4572 clear_bit(tag, &ap->qc_allocated);
4573 }
4574 }
4575
4576 void __ata_qc_complete(struct ata_queued_cmd *qc)
4577 {
4578 struct ata_port *ap = qc->ap;
4579
4580 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4581 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4582
4583 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4584 ata_sg_clean(qc);
4585
4586 /* command should be marked inactive atomically with qc completion */
4587 if (qc->tf.protocol == ATA_PROT_NCQ)
4588 ap->sactive &= ~(1 << qc->tag);
4589 else
4590 ap->active_tag = ATA_TAG_POISON;
4591
4592 /* atapi: mark qc as inactive to prevent the interrupt handler
4593 * from completing the command twice later, before the error handler
4594 * is called. (when rc != 0 and atapi request sense is needed)
4595 */
4596 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4597 ap->qc_active &= ~(1 << qc->tag);
4598
4599 /* call completion callback */
4600 qc->complete_fn(qc);
4601 }
4602
4603 static void fill_result_tf(struct ata_queued_cmd *qc)
4604 {
4605 struct ata_port *ap = qc->ap;
4606
4607 ap->ops->tf_read(ap, &qc->result_tf);
4608 qc->result_tf.flags = qc->tf.flags;
4609 }
4610
4611 /**
4612 * ata_qc_complete - Complete an active ATA command
4613 * @qc: Command to complete
4614 * @err_mask: ATA Status register contents
4615 *
4616 * Indicate to the mid and upper layers that an ATA
4617 * command has completed, with either an ok or not-ok status.
4618 *
4619 * LOCKING:
4620 * spin_lock_irqsave(host lock)
4621 */
4622 void ata_qc_complete(struct ata_queued_cmd *qc)
4623 {
4624 struct ata_port *ap = qc->ap;
4625
4626 /* XXX: New EH and old EH use different mechanisms to
4627 * synchronize EH with regular execution path.
4628 *
4629 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4630 * Normal execution path is responsible for not accessing a
4631 * failed qc. libata core enforces the rule by returning NULL
4632 * from ata_qc_from_tag() for failed qcs.
4633 *
4634 * Old EH depends on ata_qc_complete() nullifying completion
4635 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4636 * not synchronize with interrupt handler. Only PIO task is
4637 * taken care of.
4638 */
4639 if (ap->ops->error_handler) {
4640 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4641
4642 if (unlikely(qc->err_mask))
4643 qc->flags |= ATA_QCFLAG_FAILED;
4644
4645 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4646 if (!ata_tag_internal(qc->tag)) {
4647 /* always fill result TF for failed qc */
4648 fill_result_tf(qc);
4649 ata_qc_schedule_eh(qc);
4650 return;
4651 }
4652 }
4653
4654 /* read result TF if requested */
4655 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4656 fill_result_tf(qc);
4657
4658 __ata_qc_complete(qc);
4659 } else {
4660 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4661 return;
4662
4663 /* read result TF if failed or requested */
4664 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4665 fill_result_tf(qc);
4666
4667 __ata_qc_complete(qc);
4668 }
4669 }
4670
4671 /**
4672 * ata_qc_complete_multiple - Complete multiple qcs successfully
4673 * @ap: port in question
4674 * @qc_active: new qc_active mask
4675 * @finish_qc: LLDD callback invoked before completing a qc
4676 *
4677 * Complete in-flight commands. This functions is meant to be
4678 * called from low-level driver's interrupt routine to complete
4679 * requests normally. ap->qc_active and @qc_active is compared
4680 * and commands are completed accordingly.
4681 *
4682 * LOCKING:
4683 * spin_lock_irqsave(host lock)
4684 *
4685 * RETURNS:
4686 * Number of completed commands on success, -errno otherwise.
4687 */
4688 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4689 void (*finish_qc)(struct ata_queued_cmd *))
4690 {
4691 int nr_done = 0;
4692 u32 done_mask;
4693 int i;
4694
4695 done_mask = ap->qc_active ^ qc_active;
4696
4697 if (unlikely(done_mask & qc_active)) {
4698 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4699 "(%08x->%08x)\n", ap->qc_active, qc_active);
4700 return -EINVAL;
4701 }
4702
4703 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4704 struct ata_queued_cmd *qc;
4705
4706 if (!(done_mask & (1 << i)))
4707 continue;
4708
4709 if ((qc = ata_qc_from_tag(ap, i))) {
4710 if (finish_qc)
4711 finish_qc(qc);
4712 ata_qc_complete(qc);
4713 nr_done++;
4714 }
4715 }
4716
4717 return nr_done;
4718 }
4719
4720 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4721 {
4722 struct ata_port *ap = qc->ap;
4723
4724 switch (qc->tf.protocol) {
4725 case ATA_PROT_NCQ:
4726 case ATA_PROT_DMA:
4727 case ATA_PROT_ATAPI_DMA:
4728 return 1;
4729
4730 case ATA_PROT_ATAPI:
4731 case ATA_PROT_PIO:
4732 if (ap->flags & ATA_FLAG_PIO_DMA)
4733 return 1;
4734
4735 /* fall through */
4736
4737 default:
4738 return 0;
4739 }
4740
4741 /* never reached */
4742 }
4743
4744 /**
4745 * ata_qc_issue - issue taskfile to device
4746 * @qc: command to issue to device
4747 *
4748 * Prepare an ATA command to submission to device.
4749 * This includes mapping the data into a DMA-able
4750 * area, filling in the S/G table, and finally
4751 * writing the taskfile to hardware, starting the command.
4752 *
4753 * LOCKING:
4754 * spin_lock_irqsave(host lock)
4755 */
4756 void ata_qc_issue(struct ata_queued_cmd *qc)
4757 {
4758 struct ata_port *ap = qc->ap;
4759
4760 /* Make sure only one non-NCQ command is outstanding. The
4761 * check is skipped for old EH because it reuses active qc to
4762 * request ATAPI sense.
4763 */
4764 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4765
4766 if (qc->tf.protocol == ATA_PROT_NCQ) {
4767 WARN_ON(ap->sactive & (1 << qc->tag));
4768 ap->sactive |= 1 << qc->tag;
4769 } else {
4770 WARN_ON(ap->sactive);
4771 ap->active_tag = qc->tag;
4772 }
4773
4774 qc->flags |= ATA_QCFLAG_ACTIVE;
4775 ap->qc_active |= 1 << qc->tag;
4776
4777 if (ata_should_dma_map(qc)) {
4778 if (qc->flags & ATA_QCFLAG_SG) {
4779 if (ata_sg_setup(qc))
4780 goto sg_err;
4781 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4782 if (ata_sg_setup_one(qc))
4783 goto sg_err;
4784 }
4785 } else {
4786 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4787 }
4788
4789 ap->ops->qc_prep(qc);
4790
4791 qc->err_mask |= ap->ops->qc_issue(qc);
4792 if (unlikely(qc->err_mask))
4793 goto err;
4794 return;
4795
4796 sg_err:
4797 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4798 qc->err_mask |= AC_ERR_SYSTEM;
4799 err:
4800 ata_qc_complete(qc);
4801 }
4802
4803 /**
4804 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4805 * @qc: command to issue to device
4806 *
4807 * Using various libata functions and hooks, this function
4808 * starts an ATA command. ATA commands are grouped into
4809 * classes called "protocols", and issuing each type of protocol
4810 * is slightly different.
4811 *
4812 * May be used as the qc_issue() entry in ata_port_operations.
4813 *
4814 * LOCKING:
4815 * spin_lock_irqsave(host lock)
4816 *
4817 * RETURNS:
4818 * Zero on success, AC_ERR_* mask on failure
4819 */
4820
4821 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4822 {
4823 struct ata_port *ap = qc->ap;
4824
4825 /* Use polling pio if the LLD doesn't handle
4826 * interrupt driven pio and atapi CDB interrupt.
4827 */
4828 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4829 switch (qc->tf.protocol) {
4830 case ATA_PROT_PIO:
4831 case ATA_PROT_NODATA:
4832 case ATA_PROT_ATAPI:
4833 case ATA_PROT_ATAPI_NODATA:
4834 qc->tf.flags |= ATA_TFLAG_POLLING;
4835 break;
4836 case ATA_PROT_ATAPI_DMA:
4837 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4838 /* see ata_dma_blacklisted() */
4839 BUG();
4840 break;
4841 default:
4842 break;
4843 }
4844 }
4845
4846 /* Some controllers show flaky interrupt behavior after
4847 * setting xfer mode. Use polling instead.
4848 */
4849 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4850 qc->tf.feature == SETFEATURES_XFER) &&
4851 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4852 qc->tf.flags |= ATA_TFLAG_POLLING;
4853
4854 /* select the device */
4855 ata_dev_select(ap, qc->dev->devno, 1, 0);
4856
4857 /* start the command */
4858 switch (qc->tf.protocol) {
4859 case ATA_PROT_NODATA:
4860 if (qc->tf.flags & ATA_TFLAG_POLLING)
4861 ata_qc_set_polling(qc);
4862
4863 ata_tf_to_host(ap, &qc->tf);
4864 ap->hsm_task_state = HSM_ST_LAST;
4865
4866 if (qc->tf.flags & ATA_TFLAG_POLLING)
4867 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4868
4869 break;
4870
4871 case ATA_PROT_DMA:
4872 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4873
4874 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4875 ap->ops->bmdma_setup(qc); /* set up bmdma */
4876 ap->ops->bmdma_start(qc); /* initiate bmdma */
4877 ap->hsm_task_state = HSM_ST_LAST;
4878 break;
4879
4880 case ATA_PROT_PIO:
4881 if (qc->tf.flags & ATA_TFLAG_POLLING)
4882 ata_qc_set_polling(qc);
4883
4884 ata_tf_to_host(ap, &qc->tf);
4885
4886 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4887 /* PIO data out protocol */
4888 ap->hsm_task_state = HSM_ST_FIRST;
4889 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4890
4891 /* always send first data block using
4892 * the ata_pio_task() codepath.
4893 */
4894 } else {
4895 /* PIO data in protocol */
4896 ap->hsm_task_state = HSM_ST;
4897
4898 if (qc->tf.flags & ATA_TFLAG_POLLING)
4899 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4900
4901 /* if polling, ata_pio_task() handles the rest.
4902 * otherwise, interrupt handler takes over from here.
4903 */
4904 }
4905
4906 break;
4907
4908 case ATA_PROT_ATAPI:
4909 case ATA_PROT_ATAPI_NODATA:
4910 if (qc->tf.flags & ATA_TFLAG_POLLING)
4911 ata_qc_set_polling(qc);
4912
4913 ata_tf_to_host(ap, &qc->tf);
4914
4915 ap->hsm_task_state = HSM_ST_FIRST;
4916
4917 /* send cdb by polling if no cdb interrupt */
4918 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4919 (qc->tf.flags & ATA_TFLAG_POLLING))
4920 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4921 break;
4922
4923 case ATA_PROT_ATAPI_DMA:
4924 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4925
4926 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4927 ap->ops->bmdma_setup(qc); /* set up bmdma */
4928 ap->hsm_task_state = HSM_ST_FIRST;
4929
4930 /* send cdb by polling if no cdb interrupt */
4931 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4932 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4933 break;
4934
4935 default:
4936 WARN_ON(1);
4937 return AC_ERR_SYSTEM;
4938 }
4939
4940 return 0;
4941 }
4942
4943 /**
4944 * ata_host_intr - Handle host interrupt for given (port, task)
4945 * @ap: Port on which interrupt arrived (possibly...)
4946 * @qc: Taskfile currently active in engine
4947 *
4948 * Handle host interrupt for given queued command. Currently,
4949 * only DMA interrupts are handled. All other commands are
4950 * handled via polling with interrupts disabled (nIEN bit).
4951 *
4952 * LOCKING:
4953 * spin_lock_irqsave(host lock)
4954 *
4955 * RETURNS:
4956 * One if interrupt was handled, zero if not (shared irq).
4957 */
4958
4959 inline unsigned int ata_host_intr (struct ata_port *ap,
4960 struct ata_queued_cmd *qc)
4961 {
4962 struct ata_eh_info *ehi = &ap->eh_info;
4963 u8 status, host_stat = 0;
4964
4965 VPRINTK("ata%u: protocol %d task_state %d\n",
4966 ap->id, qc->tf.protocol, ap->hsm_task_state);
4967
4968 /* Check whether we are expecting interrupt in this state */
4969 switch (ap->hsm_task_state) {
4970 case HSM_ST_FIRST:
4971 /* Some pre-ATAPI-4 devices assert INTRQ
4972 * at this state when ready to receive CDB.
4973 */
4974
4975 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4976 * The flag was turned on only for atapi devices.
4977 * No need to check is_atapi_taskfile(&qc->tf) again.
4978 */
4979 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4980 goto idle_irq;
4981 break;
4982 case HSM_ST_LAST:
4983 if (qc->tf.protocol == ATA_PROT_DMA ||
4984 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4985 /* check status of DMA engine */
4986 host_stat = ap->ops->bmdma_status(ap);
4987 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4988
4989 /* if it's not our irq... */
4990 if (!(host_stat & ATA_DMA_INTR))
4991 goto idle_irq;
4992
4993 /* before we do anything else, clear DMA-Start bit */
4994 ap->ops->bmdma_stop(qc);
4995
4996 if (unlikely(host_stat & ATA_DMA_ERR)) {
4997 /* error when transfering data to/from memory */
4998 qc->err_mask |= AC_ERR_HOST_BUS;
4999 ap->hsm_task_state = HSM_ST_ERR;
5000 }
5001 }
5002 break;
5003 case HSM_ST:
5004 break;
5005 default:
5006 goto idle_irq;
5007 }
5008
5009 /* check altstatus */
5010 status = ata_altstatus(ap);
5011 if (status & ATA_BUSY)
5012 goto idle_irq;
5013
5014 /* check main status, clearing INTRQ */
5015 status = ata_chk_status(ap);
5016 if (unlikely(status & ATA_BUSY))
5017 goto idle_irq;
5018
5019 /* ack bmdma irq events */
5020 ap->ops->irq_clear(ap);
5021
5022 ata_hsm_move(ap, qc, status, 0);
5023
5024 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5025 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5026 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5027
5028 return 1; /* irq handled */
5029
5030 idle_irq:
5031 ap->stats.idle_irq++;
5032
5033 #ifdef ATA_IRQ_TRAP
5034 if ((ap->stats.idle_irq % 1000) == 0) {
5035 ap->ops->irq_ack(ap, 0); /* debug trap */
5036 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5037 return 1;
5038 }
5039 #endif
5040 return 0; /* irq not handled */
5041 }
5042
5043 /**
5044 * ata_interrupt - Default ATA host interrupt handler
5045 * @irq: irq line (unused)
5046 * @dev_instance: pointer to our ata_host information structure
5047 *
5048 * Default interrupt handler for PCI IDE devices. Calls
5049 * ata_host_intr() for each port that is not disabled.
5050 *
5051 * LOCKING:
5052 * Obtains host lock during operation.
5053 *
5054 * RETURNS:
5055 * IRQ_NONE or IRQ_HANDLED.
5056 */
5057
5058 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5059 {
5060 struct ata_host *host = dev_instance;
5061 unsigned int i;
5062 unsigned int handled = 0;
5063 unsigned long flags;
5064
5065 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5066 spin_lock_irqsave(&host->lock, flags);
5067
5068 for (i = 0; i < host->n_ports; i++) {
5069 struct ata_port *ap;
5070
5071 ap = host->ports[i];
5072 if (ap &&
5073 !(ap->flags & ATA_FLAG_DISABLED)) {
5074 struct ata_queued_cmd *qc;
5075
5076 qc = ata_qc_from_tag(ap, ap->active_tag);
5077 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5078 (qc->flags & ATA_QCFLAG_ACTIVE))
5079 handled |= ata_host_intr(ap, qc);
5080 }
5081 }
5082
5083 spin_unlock_irqrestore(&host->lock, flags);
5084
5085 return IRQ_RETVAL(handled);
5086 }
5087
5088 /**
5089 * sata_scr_valid - test whether SCRs are accessible
5090 * @ap: ATA port to test SCR accessibility for
5091 *
5092 * Test whether SCRs are accessible for @ap.
5093 *
5094 * LOCKING:
5095 * None.
5096 *
5097 * RETURNS:
5098 * 1 if SCRs are accessible, 0 otherwise.
5099 */
5100 int sata_scr_valid(struct ata_port *ap)
5101 {
5102 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5103 }
5104
5105 /**
5106 * sata_scr_read - read SCR register of the specified port
5107 * @ap: ATA port to read SCR for
5108 * @reg: SCR to read
5109 * @val: Place to store read value
5110 *
5111 * Read SCR register @reg of @ap into *@val. This function is
5112 * guaranteed to succeed if the cable type of the port is SATA
5113 * and the port implements ->scr_read.
5114 *
5115 * LOCKING:
5116 * None.
5117 *
5118 * RETURNS:
5119 * 0 on success, negative errno on failure.
5120 */
5121 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5122 {
5123 if (sata_scr_valid(ap)) {
5124 *val = ap->ops->scr_read(ap, reg);
5125 return 0;
5126 }
5127 return -EOPNOTSUPP;
5128 }
5129
5130 /**
5131 * sata_scr_write - write SCR register of the specified port
5132 * @ap: ATA port to write SCR for
5133 * @reg: SCR to write
5134 * @val: value to write
5135 *
5136 * Write @val to SCR register @reg of @ap. This function is
5137 * guaranteed to succeed if the cable type of the port is SATA
5138 * and the port implements ->scr_read.
5139 *
5140 * LOCKING:
5141 * None.
5142 *
5143 * RETURNS:
5144 * 0 on success, negative errno on failure.
5145 */
5146 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5147 {
5148 if (sata_scr_valid(ap)) {
5149 ap->ops->scr_write(ap, reg, val);
5150 return 0;
5151 }
5152 return -EOPNOTSUPP;
5153 }
5154
5155 /**
5156 * sata_scr_write_flush - write SCR register of the specified port and flush
5157 * @ap: ATA port to write SCR for
5158 * @reg: SCR to write
5159 * @val: value to write
5160 *
5161 * This function is identical to sata_scr_write() except that this
5162 * function performs flush after writing to the register.
5163 *
5164 * LOCKING:
5165 * None.
5166 *
5167 * RETURNS:
5168 * 0 on success, negative errno on failure.
5169 */
5170 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5171 {
5172 if (sata_scr_valid(ap)) {
5173 ap->ops->scr_write(ap, reg, val);
5174 ap->ops->scr_read(ap, reg);
5175 return 0;
5176 }
5177 return -EOPNOTSUPP;
5178 }
5179
5180 /**
5181 * ata_port_online - test whether the given port is online
5182 * @ap: ATA port to test
5183 *
5184 * Test whether @ap is online. Note that this function returns 0
5185 * if online status of @ap cannot be obtained, so
5186 * ata_port_online(ap) != !ata_port_offline(ap).
5187 *
5188 * LOCKING:
5189 * None.
5190 *
5191 * RETURNS:
5192 * 1 if the port online status is available and online.
5193 */
5194 int ata_port_online(struct ata_port *ap)
5195 {
5196 u32 sstatus;
5197
5198 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5199 return 1;
5200 return 0;
5201 }
5202
5203 /**
5204 * ata_port_offline - test whether the given port is offline
5205 * @ap: ATA port to test
5206 *
5207 * Test whether @ap is offline. Note that this function returns
5208 * 0 if offline status of @ap cannot be obtained, so
5209 * ata_port_online(ap) != !ata_port_offline(ap).
5210 *
5211 * LOCKING:
5212 * None.
5213 *
5214 * RETURNS:
5215 * 1 if the port offline status is available and offline.
5216 */
5217 int ata_port_offline(struct ata_port *ap)
5218 {
5219 u32 sstatus;
5220
5221 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5222 return 1;
5223 return 0;
5224 }
5225
5226 int ata_flush_cache(struct ata_device *dev)
5227 {
5228 unsigned int err_mask;
5229 u8 cmd;
5230
5231 if (!ata_try_flush_cache(dev))
5232 return 0;
5233
5234 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5235 cmd = ATA_CMD_FLUSH_EXT;
5236 else
5237 cmd = ATA_CMD_FLUSH;
5238
5239 err_mask = ata_do_simple_cmd(dev, cmd);
5240 if (err_mask) {
5241 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5242 return -EIO;
5243 }
5244
5245 return 0;
5246 }
5247
5248 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5249 unsigned int action, unsigned int ehi_flags,
5250 int wait)
5251 {
5252 unsigned long flags;
5253 int i, rc;
5254
5255 for (i = 0; i < host->n_ports; i++) {
5256 struct ata_port *ap = host->ports[i];
5257
5258 /* Previous resume operation might still be in
5259 * progress. Wait for PM_PENDING to clear.
5260 */
5261 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5262 ata_port_wait_eh(ap);
5263 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5264 }
5265
5266 /* request PM ops to EH */
5267 spin_lock_irqsave(ap->lock, flags);
5268
5269 ap->pm_mesg = mesg;
5270 if (wait) {
5271 rc = 0;
5272 ap->pm_result = &rc;
5273 }
5274
5275 ap->pflags |= ATA_PFLAG_PM_PENDING;
5276 ap->eh_info.action |= action;
5277 ap->eh_info.flags |= ehi_flags;
5278
5279 ata_port_schedule_eh(ap);
5280
5281 spin_unlock_irqrestore(ap->lock, flags);
5282
5283 /* wait and check result */
5284 if (wait) {
5285 ata_port_wait_eh(ap);
5286 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5287 if (rc)
5288 return rc;
5289 }
5290 }
5291
5292 return 0;
5293 }
5294
5295 /**
5296 * ata_host_suspend - suspend host
5297 * @host: host to suspend
5298 * @mesg: PM message
5299 *
5300 * Suspend @host. Actual operation is performed by EH. This
5301 * function requests EH to perform PM operations and waits for EH
5302 * to finish.
5303 *
5304 * LOCKING:
5305 * Kernel thread context (may sleep).
5306 *
5307 * RETURNS:
5308 * 0 on success, -errno on failure.
5309 */
5310 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5311 {
5312 int i, j, rc;
5313
5314 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5315 if (rc)
5316 goto fail;
5317
5318 /* EH is quiescent now. Fail if we have any ready device.
5319 * This happens if hotplug occurs between completion of device
5320 * suspension and here.
5321 */
5322 for (i = 0; i < host->n_ports; i++) {
5323 struct ata_port *ap = host->ports[i];
5324
5325 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5326 struct ata_device *dev = &ap->device[j];
5327
5328 if (ata_dev_ready(dev)) {
5329 ata_port_printk(ap, KERN_WARNING,
5330 "suspend failed, device %d "
5331 "still active\n", dev->devno);
5332 rc = -EBUSY;
5333 goto fail;
5334 }
5335 }
5336 }
5337
5338 host->dev->power.power_state = mesg;
5339 return 0;
5340
5341 fail:
5342 ata_host_resume(host);
5343 return rc;
5344 }
5345
5346 /**
5347 * ata_host_resume - resume host
5348 * @host: host to resume
5349 *
5350 * Resume @host. Actual operation is performed by EH. This
5351 * function requests EH to perform PM operations and returns.
5352 * Note that all resume operations are performed parallely.
5353 *
5354 * LOCKING:
5355 * Kernel thread context (may sleep).
5356 */
5357 void ata_host_resume(struct ata_host *host)
5358 {
5359 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5360 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5361 host->dev->power.power_state = PMSG_ON;
5362 }
5363
5364 /**
5365 * ata_port_start - Set port up for dma.
5366 * @ap: Port to initialize
5367 *
5368 * Called just after data structures for each port are
5369 * initialized. Allocates space for PRD table.
5370 *
5371 * May be used as the port_start() entry in ata_port_operations.
5372 *
5373 * LOCKING:
5374 * Inherited from caller.
5375 */
5376 int ata_port_start(struct ata_port *ap)
5377 {
5378 struct device *dev = ap->dev;
5379 int rc;
5380
5381 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5382 GFP_KERNEL);
5383 if (!ap->prd)
5384 return -ENOMEM;
5385
5386 rc = ata_pad_alloc(ap, dev);
5387 if (rc)
5388 return rc;
5389
5390 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5391 (unsigned long long)ap->prd_dma);
5392 return 0;
5393 }
5394
5395 /**
5396 * ata_dev_init - Initialize an ata_device structure
5397 * @dev: Device structure to initialize
5398 *
5399 * Initialize @dev in preparation for probing.
5400 *
5401 * LOCKING:
5402 * Inherited from caller.
5403 */
5404 void ata_dev_init(struct ata_device *dev)
5405 {
5406 struct ata_port *ap = dev->ap;
5407 unsigned long flags;
5408
5409 /* SATA spd limit is bound to the first device */
5410 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5411
5412 /* High bits of dev->flags are used to record warm plug
5413 * requests which occur asynchronously. Synchronize using
5414 * host lock.
5415 */
5416 spin_lock_irqsave(ap->lock, flags);
5417 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5418 spin_unlock_irqrestore(ap->lock, flags);
5419
5420 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5421 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5422 dev->pio_mask = UINT_MAX;
5423 dev->mwdma_mask = UINT_MAX;
5424 dev->udma_mask = UINT_MAX;
5425 }
5426
5427 /**
5428 * ata_port_init - Initialize an ata_port structure
5429 * @ap: Structure to initialize
5430 * @host: Collection of hosts to which @ap belongs
5431 * @ent: Probe information provided by low-level driver
5432 * @port_no: Port number associated with this ata_port
5433 *
5434 * Initialize a new ata_port structure.
5435 *
5436 * LOCKING:
5437 * Inherited from caller.
5438 */
5439 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5440 const struct ata_probe_ent *ent, unsigned int port_no)
5441 {
5442 unsigned int i;
5443
5444 ap->lock = &host->lock;
5445 ap->flags = ATA_FLAG_DISABLED;
5446 ap->id = ata_unique_id++;
5447 ap->ctl = ATA_DEVCTL_OBS;
5448 ap->host = host;
5449 ap->dev = ent->dev;
5450 ap->port_no = port_no;
5451 if (port_no == 1 && ent->pinfo2) {
5452 ap->pio_mask = ent->pinfo2->pio_mask;
5453 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5454 ap->udma_mask = ent->pinfo2->udma_mask;
5455 ap->flags |= ent->pinfo2->flags;
5456 ap->ops = ent->pinfo2->port_ops;
5457 } else {
5458 ap->pio_mask = ent->pio_mask;
5459 ap->mwdma_mask = ent->mwdma_mask;
5460 ap->udma_mask = ent->udma_mask;
5461 ap->flags |= ent->port_flags;
5462 ap->ops = ent->port_ops;
5463 }
5464 ap->hw_sata_spd_limit = UINT_MAX;
5465 ap->active_tag = ATA_TAG_POISON;
5466 ap->last_ctl = 0xFF;
5467
5468 #if defined(ATA_VERBOSE_DEBUG)
5469 /* turn on all debugging levels */
5470 ap->msg_enable = 0x00FF;
5471 #elif defined(ATA_DEBUG)
5472 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5473 #else
5474 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5475 #endif
5476
5477 INIT_DELAYED_WORK(&ap->port_task, NULL);
5478 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5479 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5480 INIT_LIST_HEAD(&ap->eh_done_q);
5481 init_waitqueue_head(&ap->eh_wait_q);
5482
5483 /* set cable type */
5484 ap->cbl = ATA_CBL_NONE;
5485 if (ap->flags & ATA_FLAG_SATA)
5486 ap->cbl = ATA_CBL_SATA;
5487
5488 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5489 struct ata_device *dev = &ap->device[i];
5490 dev->ap = ap;
5491 dev->devno = i;
5492 ata_dev_init(dev);
5493 }
5494
5495 #ifdef ATA_IRQ_TRAP
5496 ap->stats.unhandled_irq = 1;
5497 ap->stats.idle_irq = 1;
5498 #endif
5499
5500 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5501 }
5502
5503 /**
5504 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5505 * @ap: ATA port to initialize SCSI host for
5506 * @shost: SCSI host associated with @ap
5507 *
5508 * Initialize SCSI host @shost associated with ATA port @ap.
5509 *
5510 * LOCKING:
5511 * Inherited from caller.
5512 */
5513 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5514 {
5515 ap->scsi_host = shost;
5516
5517 shost->unique_id = ap->id;
5518 shost->max_id = 16;
5519 shost->max_lun = 1;
5520 shost->max_channel = 1;
5521 shost->max_cmd_len = 12;
5522 }
5523
5524 /**
5525 * ata_port_add - Attach low-level ATA driver to system
5526 * @ent: Information provided by low-level driver
5527 * @host: Collections of ports to which we add
5528 * @port_no: Port number associated with this host
5529 *
5530 * Attach low-level ATA driver to system.
5531 *
5532 * LOCKING:
5533 * PCI/etc. bus probe sem.
5534 *
5535 * RETURNS:
5536 * New ata_port on success, for NULL on error.
5537 */
5538 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5539 struct ata_host *host,
5540 unsigned int port_no)
5541 {
5542 struct Scsi_Host *shost;
5543 struct ata_port *ap;
5544
5545 DPRINTK("ENTER\n");
5546
5547 if (!ent->port_ops->error_handler &&
5548 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5549 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5550 port_no);
5551 return NULL;
5552 }
5553
5554 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5555 if (!shost)
5556 return NULL;
5557
5558 shost->transportt = &ata_scsi_transport_template;
5559
5560 ap = ata_shost_to_port(shost);
5561
5562 ata_port_init(ap, host, ent, port_no);
5563 ata_port_init_shost(ap, shost);
5564
5565 return ap;
5566 }
5567
5568 static void ata_host_release(struct device *gendev, void *res)
5569 {
5570 struct ata_host *host = dev_get_drvdata(gendev);
5571 int i;
5572
5573 for (i = 0; i < host->n_ports; i++) {
5574 struct ata_port *ap = host->ports[i];
5575
5576 if (!ap)
5577 continue;
5578
5579 if (ap->ops->port_stop)
5580 ap->ops->port_stop(ap);
5581
5582 scsi_host_put(ap->scsi_host);
5583 }
5584
5585 if (host->ops->host_stop)
5586 host->ops->host_stop(host);
5587 }
5588
5589 /**
5590 * ata_sas_host_init - Initialize a host struct
5591 * @host: host to initialize
5592 * @dev: device host is attached to
5593 * @flags: host flags
5594 * @ops: port_ops
5595 *
5596 * LOCKING:
5597 * PCI/etc. bus probe sem.
5598 *
5599 */
5600
5601 void ata_host_init(struct ata_host *host, struct device *dev,
5602 unsigned long flags, const struct ata_port_operations *ops)
5603 {
5604 spin_lock_init(&host->lock);
5605 host->dev = dev;
5606 host->flags = flags;
5607 host->ops = ops;
5608 }
5609
5610 /**
5611 * ata_device_add - Register hardware device with ATA and SCSI layers
5612 * @ent: Probe information describing hardware device to be registered
5613 *
5614 * This function processes the information provided in the probe
5615 * information struct @ent, allocates the necessary ATA and SCSI
5616 * host information structures, initializes them, and registers
5617 * everything with requisite kernel subsystems.
5618 *
5619 * This function requests irqs, probes the ATA bus, and probes
5620 * the SCSI bus.
5621 *
5622 * LOCKING:
5623 * PCI/etc. bus probe sem.
5624 *
5625 * RETURNS:
5626 * Number of ports registered. Zero on error (no ports registered).
5627 */
5628 int ata_device_add(const struct ata_probe_ent *ent)
5629 {
5630 unsigned int i;
5631 struct device *dev = ent->dev;
5632 struct ata_host *host;
5633 int rc;
5634
5635 DPRINTK("ENTER\n");
5636
5637 if (ent->irq == 0) {
5638 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5639 return 0;
5640 }
5641
5642 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5643 return 0;
5644
5645 /* alloc a container for our list of ATA ports (buses) */
5646 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5647 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5648 if (!host)
5649 goto err_out;
5650 devres_add(dev, host);
5651 dev_set_drvdata(dev, host);
5652
5653 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5654 host->n_ports = ent->n_ports;
5655 host->irq = ent->irq;
5656 host->irq2 = ent->irq2;
5657 host->iomap = ent->iomap;
5658 host->private_data = ent->private_data;
5659
5660 /* register each port bound to this device */
5661 for (i = 0; i < host->n_ports; i++) {
5662 struct ata_port *ap;
5663 unsigned long xfer_mode_mask;
5664 int irq_line = ent->irq;
5665
5666 ap = ata_port_add(ent, host, i);
5667 host->ports[i] = ap;
5668 if (!ap)
5669 goto err_out;
5670
5671 /* dummy? */
5672 if (ent->dummy_port_mask & (1 << i)) {
5673 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5674 ap->ops = &ata_dummy_port_ops;
5675 continue;
5676 }
5677
5678 /* start port */
5679 rc = ap->ops->port_start(ap);
5680 if (rc) {
5681 host->ports[i] = NULL;
5682 scsi_host_put(ap->scsi_host);
5683 goto err_out;
5684 }
5685
5686 /* Report the secondary IRQ for second channel legacy */
5687 if (i == 1 && ent->irq2)
5688 irq_line = ent->irq2;
5689
5690 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5691 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5692 (ap->pio_mask << ATA_SHIFT_PIO);
5693
5694 /* print per-port info to dmesg */
5695 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5696 "ctl 0x%p bmdma 0x%p irq %d\n",
5697 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5698 ata_mode_string(xfer_mode_mask),
5699 ap->ioaddr.cmd_addr,
5700 ap->ioaddr.ctl_addr,
5701 ap->ioaddr.bmdma_addr,
5702 irq_line);
5703
5704 /* freeze port before requesting IRQ */
5705 ata_eh_freeze_port(ap);
5706 }
5707
5708 /* obtain irq, that may be shared between channels */
5709 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5710 ent->irq_flags, DRV_NAME, host);
5711 if (rc) {
5712 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5713 ent->irq, rc);
5714 goto err_out;
5715 }
5716
5717 /* do we have a second IRQ for the other channel, eg legacy mode */
5718 if (ent->irq2) {
5719 /* We will get weird core code crashes later if this is true
5720 so trap it now */
5721 BUG_ON(ent->irq == ent->irq2);
5722
5723 rc = devm_request_irq(dev, ent->irq2,
5724 ent->port_ops->irq_handler, ent->irq_flags,
5725 DRV_NAME, host);
5726 if (rc) {
5727 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5728 ent->irq2, rc);
5729 goto err_out;
5730 }
5731 }
5732
5733 /* resource acquisition complete */
5734 devres_remove_group(dev, ata_device_add);
5735
5736 /* perform each probe synchronously */
5737 DPRINTK("probe begin\n");
5738 for (i = 0; i < host->n_ports; i++) {
5739 struct ata_port *ap = host->ports[i];
5740 u32 scontrol;
5741 int rc;
5742
5743 /* init sata_spd_limit to the current value */
5744 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5745 int spd = (scontrol >> 4) & 0xf;
5746 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5747 }
5748 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5749
5750 rc = scsi_add_host(ap->scsi_host, dev);
5751 if (rc) {
5752 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5753 /* FIXME: do something useful here */
5754 /* FIXME: handle unconditional calls to
5755 * scsi_scan_host and ata_host_remove, below,
5756 * at the very least
5757 */
5758 }
5759
5760 if (ap->ops->error_handler) {
5761 struct ata_eh_info *ehi = &ap->eh_info;
5762 unsigned long flags;
5763
5764 ata_port_probe(ap);
5765
5766 /* kick EH for boot probing */
5767 spin_lock_irqsave(ap->lock, flags);
5768
5769 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5770 ehi->action |= ATA_EH_SOFTRESET;
5771 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5772
5773 ap->pflags |= ATA_PFLAG_LOADING;
5774 ata_port_schedule_eh(ap);
5775
5776 spin_unlock_irqrestore(ap->lock, flags);
5777
5778 /* wait for EH to finish */
5779 ata_port_wait_eh(ap);
5780 } else {
5781 DPRINTK("ata%u: bus probe begin\n", ap->id);
5782 rc = ata_bus_probe(ap);
5783 DPRINTK("ata%u: bus probe end\n", ap->id);
5784
5785 if (rc) {
5786 /* FIXME: do something useful here?
5787 * Current libata behavior will
5788 * tear down everything when
5789 * the module is removed
5790 * or the h/w is unplugged.
5791 */
5792 }
5793 }
5794 }
5795
5796 /* probes are done, now scan each port's disk(s) */
5797 DPRINTK("host probe begin\n");
5798 for (i = 0; i < host->n_ports; i++) {
5799 struct ata_port *ap = host->ports[i];
5800
5801 ata_scsi_scan_host(ap);
5802 }
5803
5804 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5805 return ent->n_ports; /* success */
5806
5807 err_out:
5808 devres_release_group(dev, ata_device_add);
5809 dev_set_drvdata(dev, NULL);
5810 VPRINTK("EXIT, returning %d\n", rc);
5811 return 0;
5812 }
5813
5814 /**
5815 * ata_port_detach - Detach ATA port in prepration of device removal
5816 * @ap: ATA port to be detached
5817 *
5818 * Detach all ATA devices and the associated SCSI devices of @ap;
5819 * then, remove the associated SCSI host. @ap is guaranteed to
5820 * be quiescent on return from this function.
5821 *
5822 * LOCKING:
5823 * Kernel thread context (may sleep).
5824 */
5825 void ata_port_detach(struct ata_port *ap)
5826 {
5827 unsigned long flags;
5828 int i;
5829
5830 if (!ap->ops->error_handler)
5831 goto skip_eh;
5832
5833 /* tell EH we're leaving & flush EH */
5834 spin_lock_irqsave(ap->lock, flags);
5835 ap->pflags |= ATA_PFLAG_UNLOADING;
5836 spin_unlock_irqrestore(ap->lock, flags);
5837
5838 ata_port_wait_eh(ap);
5839
5840 /* EH is now guaranteed to see UNLOADING, so no new device
5841 * will be attached. Disable all existing devices.
5842 */
5843 spin_lock_irqsave(ap->lock, flags);
5844
5845 for (i = 0; i < ATA_MAX_DEVICES; i++)
5846 ata_dev_disable(&ap->device[i]);
5847
5848 spin_unlock_irqrestore(ap->lock, flags);
5849
5850 /* Final freeze & EH. All in-flight commands are aborted. EH
5851 * will be skipped and retrials will be terminated with bad
5852 * target.
5853 */
5854 spin_lock_irqsave(ap->lock, flags);
5855 ata_port_freeze(ap); /* won't be thawed */
5856 spin_unlock_irqrestore(ap->lock, flags);
5857
5858 ata_port_wait_eh(ap);
5859
5860 /* Flush hotplug task. The sequence is similar to
5861 * ata_port_flush_task().
5862 */
5863 flush_workqueue(ata_aux_wq);
5864 cancel_delayed_work(&ap->hotplug_task);
5865 flush_workqueue(ata_aux_wq);
5866
5867 skip_eh:
5868 /* remove the associated SCSI host */
5869 scsi_remove_host(ap->scsi_host);
5870 }
5871
5872 /**
5873 * ata_host_detach - Detach all ports of an ATA host
5874 * @host: Host to detach
5875 *
5876 * Detach all ports of @host.
5877 *
5878 * LOCKING:
5879 * Kernel thread context (may sleep).
5880 */
5881 void ata_host_detach(struct ata_host *host)
5882 {
5883 int i;
5884
5885 for (i = 0; i < host->n_ports; i++)
5886 ata_port_detach(host->ports[i]);
5887 }
5888
5889 struct ata_probe_ent *
5890 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5891 {
5892 struct ata_probe_ent *probe_ent;
5893
5894 /* XXX - the following if can go away once all LLDs are managed */
5895 if (!list_empty(&dev->devres_head))
5896 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
5897 else
5898 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5899 if (!probe_ent) {
5900 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5901 kobject_name(&(dev->kobj)));
5902 return NULL;
5903 }
5904
5905 INIT_LIST_HEAD(&probe_ent->node);
5906 probe_ent->dev = dev;
5907
5908 probe_ent->sht = port->sht;
5909 probe_ent->port_flags = port->flags;
5910 probe_ent->pio_mask = port->pio_mask;
5911 probe_ent->mwdma_mask = port->mwdma_mask;
5912 probe_ent->udma_mask = port->udma_mask;
5913 probe_ent->port_ops = port->port_ops;
5914 probe_ent->private_data = port->private_data;
5915
5916 return probe_ent;
5917 }
5918
5919 /**
5920 * ata_std_ports - initialize ioaddr with standard port offsets.
5921 * @ioaddr: IO address structure to be initialized
5922 *
5923 * Utility function which initializes data_addr, error_addr,
5924 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5925 * device_addr, status_addr, and command_addr to standard offsets
5926 * relative to cmd_addr.
5927 *
5928 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5929 */
5930
5931 void ata_std_ports(struct ata_ioports *ioaddr)
5932 {
5933 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5934 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5935 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5936 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5937 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5938 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5939 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5940 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5941 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5942 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5943 }
5944
5945
5946 #ifdef CONFIG_PCI
5947
5948 /**
5949 * ata_pci_remove_one - PCI layer callback for device removal
5950 * @pdev: PCI device that was removed
5951 *
5952 * PCI layer indicates to libata via this hook that hot-unplug or
5953 * module unload event has occurred. Detach all ports. Resource
5954 * release is handled via devres.
5955 *
5956 * LOCKING:
5957 * Inherited from PCI layer (may sleep).
5958 */
5959 void ata_pci_remove_one(struct pci_dev *pdev)
5960 {
5961 struct device *dev = pci_dev_to_dev(pdev);
5962 struct ata_host *host = dev_get_drvdata(dev);
5963
5964 ata_host_detach(host);
5965 }
5966
5967 /* move to PCI subsystem */
5968 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5969 {
5970 unsigned long tmp = 0;
5971
5972 switch (bits->width) {
5973 case 1: {
5974 u8 tmp8 = 0;
5975 pci_read_config_byte(pdev, bits->reg, &tmp8);
5976 tmp = tmp8;
5977 break;
5978 }
5979 case 2: {
5980 u16 tmp16 = 0;
5981 pci_read_config_word(pdev, bits->reg, &tmp16);
5982 tmp = tmp16;
5983 break;
5984 }
5985 case 4: {
5986 u32 tmp32 = 0;
5987 pci_read_config_dword(pdev, bits->reg, &tmp32);
5988 tmp = tmp32;
5989 break;
5990 }
5991
5992 default:
5993 return -EINVAL;
5994 }
5995
5996 tmp &= bits->mask;
5997
5998 return (tmp == bits->val) ? 1 : 0;
5999 }
6000
6001 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6002 {
6003 pci_save_state(pdev);
6004
6005 if (mesg.event == PM_EVENT_SUSPEND) {
6006 pci_disable_device(pdev);
6007 pci_set_power_state(pdev, PCI_D3hot);
6008 }
6009 }
6010
6011 int ata_pci_device_do_resume(struct pci_dev *pdev)
6012 {
6013 int rc;
6014
6015 pci_set_power_state(pdev, PCI_D0);
6016 pci_restore_state(pdev);
6017
6018 rc = pcim_enable_device(pdev);
6019 if (rc) {
6020 dev_printk(KERN_ERR, &pdev->dev,
6021 "failed to enable device after resume (%d)\n", rc);
6022 return rc;
6023 }
6024
6025 pci_set_master(pdev);
6026 return 0;
6027 }
6028
6029 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6030 {
6031 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6032 int rc = 0;
6033
6034 rc = ata_host_suspend(host, mesg);
6035 if (rc)
6036 return rc;
6037
6038 ata_pci_device_do_suspend(pdev, mesg);
6039
6040 return 0;
6041 }
6042
6043 int ata_pci_device_resume(struct pci_dev *pdev)
6044 {
6045 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6046 int rc;
6047
6048 rc = ata_pci_device_do_resume(pdev);
6049 if (rc == 0)
6050 ata_host_resume(host);
6051 return rc;
6052 }
6053 #endif /* CONFIG_PCI */
6054
6055
6056 static int __init ata_init(void)
6057 {
6058 ata_probe_timeout *= HZ;
6059 ata_wq = create_workqueue("ata");
6060 if (!ata_wq)
6061 return -ENOMEM;
6062
6063 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6064 if (!ata_aux_wq) {
6065 destroy_workqueue(ata_wq);
6066 return -ENOMEM;
6067 }
6068
6069 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6070 return 0;
6071 }
6072
6073 static void __exit ata_exit(void)
6074 {
6075 destroy_workqueue(ata_wq);
6076 destroy_workqueue(ata_aux_wq);
6077 }
6078
6079 subsys_initcall(ata_init);
6080 module_exit(ata_exit);
6081
6082 static unsigned long ratelimit_time;
6083 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6084
6085 int ata_ratelimit(void)
6086 {
6087 int rc;
6088 unsigned long flags;
6089
6090 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6091
6092 if (time_after(jiffies, ratelimit_time)) {
6093 rc = 1;
6094 ratelimit_time = jiffies + (HZ/5);
6095 } else
6096 rc = 0;
6097
6098 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6099
6100 return rc;
6101 }
6102
6103 /**
6104 * ata_wait_register - wait until register value changes
6105 * @reg: IO-mapped register
6106 * @mask: Mask to apply to read register value
6107 * @val: Wait condition
6108 * @interval_msec: polling interval in milliseconds
6109 * @timeout_msec: timeout in milliseconds
6110 *
6111 * Waiting for some bits of register to change is a common
6112 * operation for ATA controllers. This function reads 32bit LE
6113 * IO-mapped register @reg and tests for the following condition.
6114 *
6115 * (*@reg & mask) != val
6116 *
6117 * If the condition is met, it returns; otherwise, the process is
6118 * repeated after @interval_msec until timeout.
6119 *
6120 * LOCKING:
6121 * Kernel thread context (may sleep)
6122 *
6123 * RETURNS:
6124 * The final register value.
6125 */
6126 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6127 unsigned long interval_msec,
6128 unsigned long timeout_msec)
6129 {
6130 unsigned long timeout;
6131 u32 tmp;
6132
6133 tmp = ioread32(reg);
6134
6135 /* Calculate timeout _after_ the first read to make sure
6136 * preceding writes reach the controller before starting to
6137 * eat away the timeout.
6138 */
6139 timeout = jiffies + (timeout_msec * HZ) / 1000;
6140
6141 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6142 msleep(interval_msec);
6143 tmp = ioread32(reg);
6144 }
6145
6146 return tmp;
6147 }
6148
6149 /*
6150 * Dummy port_ops
6151 */
6152 static void ata_dummy_noret(struct ata_port *ap) { }
6153 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6154 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6155
6156 static u8 ata_dummy_check_status(struct ata_port *ap)
6157 {
6158 return ATA_DRDY;
6159 }
6160
6161 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6162 {
6163 return AC_ERR_SYSTEM;
6164 }
6165
6166 const struct ata_port_operations ata_dummy_port_ops = {
6167 .port_disable = ata_port_disable,
6168 .check_status = ata_dummy_check_status,
6169 .check_altstatus = ata_dummy_check_status,
6170 .dev_select = ata_noop_dev_select,
6171 .qc_prep = ata_noop_qc_prep,
6172 .qc_issue = ata_dummy_qc_issue,
6173 .freeze = ata_dummy_noret,
6174 .thaw = ata_dummy_noret,
6175 .error_handler = ata_dummy_noret,
6176 .post_internal_cmd = ata_dummy_qc_noret,
6177 .irq_clear = ata_dummy_noret,
6178 .port_start = ata_dummy_ret0,
6179 .port_stop = ata_dummy_noret,
6180 };
6181
6182 /*
6183 * libata is essentially a library of internal helper functions for
6184 * low-level ATA host controller drivers. As such, the API/ABI is
6185 * likely to change as new drivers are added and updated.
6186 * Do not depend on ABI/API stability.
6187 */
6188
6189 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6190 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6191 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6192 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6193 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6194 EXPORT_SYMBOL_GPL(ata_std_ports);
6195 EXPORT_SYMBOL_GPL(ata_host_init);
6196 EXPORT_SYMBOL_GPL(ata_device_add);
6197 EXPORT_SYMBOL_GPL(ata_host_detach);
6198 EXPORT_SYMBOL_GPL(ata_sg_init);
6199 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6200 EXPORT_SYMBOL_GPL(ata_hsm_move);
6201 EXPORT_SYMBOL_GPL(ata_qc_complete);
6202 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6203 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6204 EXPORT_SYMBOL_GPL(ata_tf_load);
6205 EXPORT_SYMBOL_GPL(ata_tf_read);
6206 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6207 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6208 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6209 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6210 EXPORT_SYMBOL_GPL(ata_check_status);
6211 EXPORT_SYMBOL_GPL(ata_altstatus);
6212 EXPORT_SYMBOL_GPL(ata_exec_command);
6213 EXPORT_SYMBOL_GPL(ata_port_start);
6214 EXPORT_SYMBOL_GPL(ata_interrupt);
6215 EXPORT_SYMBOL_GPL(ata_data_xfer);
6216 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6217 EXPORT_SYMBOL_GPL(ata_qc_prep);
6218 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6219 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6220 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6221 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6222 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6223 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6224 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6225 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6226 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6227 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6228 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6229 EXPORT_SYMBOL_GPL(ata_port_probe);
6230 EXPORT_SYMBOL_GPL(sata_set_spd);
6231 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6232 EXPORT_SYMBOL_GPL(sata_phy_resume);
6233 EXPORT_SYMBOL_GPL(sata_phy_reset);
6234 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6235 EXPORT_SYMBOL_GPL(ata_bus_reset);
6236 EXPORT_SYMBOL_GPL(ata_std_prereset);
6237 EXPORT_SYMBOL_GPL(ata_std_softreset);
6238 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6239 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6240 EXPORT_SYMBOL_GPL(ata_std_postreset);
6241 EXPORT_SYMBOL_GPL(ata_dev_classify);
6242 EXPORT_SYMBOL_GPL(ata_dev_pair);
6243 EXPORT_SYMBOL_GPL(ata_port_disable);
6244 EXPORT_SYMBOL_GPL(ata_ratelimit);
6245 EXPORT_SYMBOL_GPL(ata_wait_register);
6246 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6247 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6248 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6249 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6250 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6251 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6252 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6253 EXPORT_SYMBOL_GPL(ata_host_intr);
6254 EXPORT_SYMBOL_GPL(sata_scr_valid);
6255 EXPORT_SYMBOL_GPL(sata_scr_read);
6256 EXPORT_SYMBOL_GPL(sata_scr_write);
6257 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6258 EXPORT_SYMBOL_GPL(ata_port_online);
6259 EXPORT_SYMBOL_GPL(ata_port_offline);
6260 EXPORT_SYMBOL_GPL(ata_host_suspend);
6261 EXPORT_SYMBOL_GPL(ata_host_resume);
6262 EXPORT_SYMBOL_GPL(ata_id_string);
6263 EXPORT_SYMBOL_GPL(ata_id_c_string);
6264 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6265 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6266
6267 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6268 EXPORT_SYMBOL_GPL(ata_timing_compute);
6269 EXPORT_SYMBOL_GPL(ata_timing_merge);
6270
6271 #ifdef CONFIG_PCI
6272 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6273 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6274 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6275 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6276 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6277 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6278 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6279 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6280 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6281 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6282 #endif /* CONFIG_PCI */
6283
6284 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6285 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6286
6287 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6288 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6289 EXPORT_SYMBOL_GPL(ata_port_abort);
6290 EXPORT_SYMBOL_GPL(ata_port_freeze);
6291 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6292 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6293 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6294 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6295 EXPORT_SYMBOL_GPL(ata_do_eh);
6296 EXPORT_SYMBOL_GPL(ata_irq_on);
6297 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6298 EXPORT_SYMBOL_GPL(ata_irq_ack);
6299 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
This page took 0.179619 seconds and 6 git commands to generate.