Merge branch 'drm-patches' of master.kernel.org:/pub/scm/linux/kernel/git/airlied...
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108
109
110 /**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150 }
151
152 /**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179 }
180
181 static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
196 0,
197 0,
198 0,
199 0,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
209 };
210
211 /**
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
215 *
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
218 *
219 * LOCKING:
220 * caller.
221 */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 u8 cmd;
225
226 int index, fua, lba48, write;
227
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
242 }
243
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
250 }
251
252 /**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293 }
294
295 /**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318 {
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416 }
417
418 /**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436 {
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441
442 /**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456 {
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464
465 static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468 } ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473 };
474
475 /**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497 }
498
499 /**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519 }
520
521 /**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541 }
542
543 /**
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
546 *
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
556 */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
581 int highbit;
582
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
587 }
588
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599 }
600
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
607 dev->class++;
608 }
609 }
610
611 /**
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
630 {
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
638
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
641
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
644
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652 }
653
654 /**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
670 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
671 {
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691 }
692
693 /**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
713 */
714
715 unsigned int
716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
717 {
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
726 ap->ops->tf_read(ap, &tf);
727 err = tf.feature;
728 if (r_err)
729 *r_err = err;
730
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
740 return ATA_DEV_NONE;
741
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf);
744
745 if (class == ATA_DEV_UNKNOWN)
746 return ATA_DEV_NONE;
747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
748 return ATA_DEV_NONE;
749 return class;
750 }
751
752 /**
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
767 void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
769 {
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784 }
785
786 /**
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
800 void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
802 {
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
807 ata_id_string(id, s, ofs, len - 1);
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813 }
814
815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816 {
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827 }
828
829 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830 {
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839 }
840
841 /**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850 {
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866 }
867
868 /**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876 static u64 ata_read_native_max_address(struct ata_device *dev)
877 {
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893 }
894
895 /**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 *
899 * Perform an LBA48 size set max upon the device in question. Return the
900 * actual LBA48 size or zero if the command fails.
901 */
902
903 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
904 {
905 unsigned int err;
906 struct ata_taskfile tf;
907
908 new_sectors--;
909
910 ata_tf_init(dev, &tf);
911
912 tf.command = ATA_CMD_SET_MAX_EXT;
913 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
914 tf.protocol |= ATA_PROT_NODATA;
915 tf.device |= 0x40;
916
917 tf.lbal = (new_sectors >> 0) & 0xff;
918 tf.lbam = (new_sectors >> 8) & 0xff;
919 tf.lbah = (new_sectors >> 16) & 0xff;
920
921 tf.hob_lbal = (new_sectors >> 24) & 0xff;
922 tf.hob_lbam = (new_sectors >> 32) & 0xff;
923 tf.hob_lbah = (new_sectors >> 40) & 0xff;
924
925 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
926 if (err)
927 return 0;
928
929 return ata_tf_to_lba48(&tf);
930 }
931
932 /**
933 * ata_set_native_max_address - LBA28 native max set
934 * @dev: Device to query
935 *
936 * Perform an LBA28 size set max upon the device in question. Return the
937 * actual LBA28 size or zero if the command fails.
938 */
939
940 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
941 {
942 unsigned int err;
943 struct ata_taskfile tf;
944
945 new_sectors--;
946
947 ata_tf_init(dev, &tf);
948
949 tf.command = ATA_CMD_SET_MAX;
950 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
951 tf.protocol |= ATA_PROT_NODATA;
952
953 tf.lbal = (new_sectors >> 0) & 0xff;
954 tf.lbam = (new_sectors >> 8) & 0xff;
955 tf.lbah = (new_sectors >> 16) & 0xff;
956 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
957
958 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
959 if (err)
960 return 0;
961
962 return ata_tf_to_lba(&tf);
963 }
964
965 /**
966 * ata_hpa_resize - Resize a device with an HPA set
967 * @dev: Device to resize
968 *
969 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
970 * it if required to the full size of the media. The caller must check
971 * the drive has the HPA feature set enabled.
972 */
973
974 static u64 ata_hpa_resize(struct ata_device *dev)
975 {
976 u64 sectors = dev->n_sectors;
977 u64 hpa_sectors;
978
979 if (ata_id_has_lba48(dev->id))
980 hpa_sectors = ata_read_native_max_address_ext(dev);
981 else
982 hpa_sectors = ata_read_native_max_address(dev);
983
984 /* if no hpa, both should be equal */
985 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
986 "hpa_sectors = %lld\n",
987 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
988
989 if (hpa_sectors > sectors) {
990 ata_dev_printk(dev, KERN_INFO,
991 "Host Protected Area detected:\n"
992 "\tcurrent size: %lld sectors\n"
993 "\tnative size: %lld sectors\n",
994 (long long)sectors, (long long)hpa_sectors);
995
996 if (ata_ignore_hpa) {
997 if (ata_id_has_lba48(dev->id))
998 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
999 else
1000 hpa_sectors = ata_set_native_max_address(dev,
1001 hpa_sectors);
1002
1003 if (hpa_sectors) {
1004 ata_dev_printk(dev, KERN_INFO, "native size "
1005 "increased to %lld sectors\n",
1006 (long long)hpa_sectors);
1007 return hpa_sectors;
1008 }
1009 }
1010 }
1011 return sectors;
1012 }
1013
1014 static u64 ata_id_n_sectors(const u16 *id)
1015 {
1016 if (ata_id_has_lba(id)) {
1017 if (ata_id_has_lba48(id))
1018 return ata_id_u64(id, 100);
1019 else
1020 return ata_id_u32(id, 60);
1021 } else {
1022 if (ata_id_current_chs_valid(id))
1023 return ata_id_u32(id, 57);
1024 else
1025 return id[1] * id[3] * id[6];
1026 }
1027 }
1028
1029 /**
1030 * ata_id_to_dma_mode - Identify DMA mode from id block
1031 * @dev: device to identify
1032 * @unknown: mode to assume if we cannot tell
1033 *
1034 * Set up the timing values for the device based upon the identify
1035 * reported values for the DMA mode. This function is used by drivers
1036 * which rely upon firmware configured modes, but wish to report the
1037 * mode correctly when possible.
1038 *
1039 * In addition we emit similarly formatted messages to the default
1040 * ata_dev_set_mode handler, in order to provide consistency of
1041 * presentation.
1042 */
1043
1044 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1045 {
1046 unsigned int mask;
1047 u8 mode;
1048
1049 /* Pack the DMA modes */
1050 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1051 if (dev->id[53] & 0x04)
1052 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1053
1054 /* Select the mode in use */
1055 mode = ata_xfer_mask2mode(mask);
1056
1057 if (mode != 0) {
1058 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1059 ata_mode_string(mask));
1060 } else {
1061 /* SWDMA perhaps ? */
1062 mode = unknown;
1063 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1064 }
1065
1066 /* Configure the device reporting */
1067 dev->xfer_mode = mode;
1068 dev->xfer_shift = ata_xfer_mode2shift(mode);
1069 }
1070
1071 /**
1072 * ata_noop_dev_select - Select device 0/1 on ATA bus
1073 * @ap: ATA channel to manipulate
1074 * @device: ATA device (numbered from zero) to select
1075 *
1076 * This function performs no actual function.
1077 *
1078 * May be used as the dev_select() entry in ata_port_operations.
1079 *
1080 * LOCKING:
1081 * caller.
1082 */
1083 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1084 {
1085 }
1086
1087
1088 /**
1089 * ata_std_dev_select - Select device 0/1 on ATA bus
1090 * @ap: ATA channel to manipulate
1091 * @device: ATA device (numbered from zero) to select
1092 *
1093 * Use the method defined in the ATA specification to
1094 * make either device 0, or device 1, active on the
1095 * ATA channel. Works with both PIO and MMIO.
1096 *
1097 * May be used as the dev_select() entry in ata_port_operations.
1098 *
1099 * LOCKING:
1100 * caller.
1101 */
1102
1103 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1104 {
1105 u8 tmp;
1106
1107 if (device == 0)
1108 tmp = ATA_DEVICE_OBS;
1109 else
1110 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1111
1112 iowrite8(tmp, ap->ioaddr.device_addr);
1113 ata_pause(ap); /* needed; also flushes, for mmio */
1114 }
1115
1116 /**
1117 * ata_dev_select - Select device 0/1 on ATA bus
1118 * @ap: ATA channel to manipulate
1119 * @device: ATA device (numbered from zero) to select
1120 * @wait: non-zero to wait for Status register BSY bit to clear
1121 * @can_sleep: non-zero if context allows sleeping
1122 *
1123 * Use the method defined in the ATA specification to
1124 * make either device 0, or device 1, active on the
1125 * ATA channel.
1126 *
1127 * This is a high-level version of ata_std_dev_select(),
1128 * which additionally provides the services of inserting
1129 * the proper pauses and status polling, where needed.
1130 *
1131 * LOCKING:
1132 * caller.
1133 */
1134
1135 void ata_dev_select(struct ata_port *ap, unsigned int device,
1136 unsigned int wait, unsigned int can_sleep)
1137 {
1138 if (ata_msg_probe(ap))
1139 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1140 "device %u, wait %u\n", device, wait);
1141
1142 if (wait)
1143 ata_wait_idle(ap);
1144
1145 ap->ops->dev_select(ap, device);
1146
1147 if (wait) {
1148 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1149 msleep(150);
1150 ata_wait_idle(ap);
1151 }
1152 }
1153
1154 /**
1155 * ata_dump_id - IDENTIFY DEVICE info debugging output
1156 * @id: IDENTIFY DEVICE page to dump
1157 *
1158 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1159 * page.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
1164
1165 static inline void ata_dump_id(const u16 *id)
1166 {
1167 DPRINTK("49==0x%04x "
1168 "53==0x%04x "
1169 "63==0x%04x "
1170 "64==0x%04x "
1171 "75==0x%04x \n",
1172 id[49],
1173 id[53],
1174 id[63],
1175 id[64],
1176 id[75]);
1177 DPRINTK("80==0x%04x "
1178 "81==0x%04x "
1179 "82==0x%04x "
1180 "83==0x%04x "
1181 "84==0x%04x \n",
1182 id[80],
1183 id[81],
1184 id[82],
1185 id[83],
1186 id[84]);
1187 DPRINTK("88==0x%04x "
1188 "93==0x%04x\n",
1189 id[88],
1190 id[93]);
1191 }
1192
1193 /**
1194 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1195 * @id: IDENTIFY data to compute xfer mask from
1196 *
1197 * Compute the xfermask for this device. This is not as trivial
1198 * as it seems if we must consider early devices correctly.
1199 *
1200 * FIXME: pre IDE drive timing (do we care ?).
1201 *
1202 * LOCKING:
1203 * None.
1204 *
1205 * RETURNS:
1206 * Computed xfermask
1207 */
1208 static unsigned int ata_id_xfermask(const u16 *id)
1209 {
1210 unsigned int pio_mask, mwdma_mask, udma_mask;
1211
1212 /* Usual case. Word 53 indicates word 64 is valid */
1213 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1214 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1215 pio_mask <<= 3;
1216 pio_mask |= 0x7;
1217 } else {
1218 /* If word 64 isn't valid then Word 51 high byte holds
1219 * the PIO timing number for the maximum. Turn it into
1220 * a mask.
1221 */
1222 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1223 if (mode < 5) /* Valid PIO range */
1224 pio_mask = (2 << mode) - 1;
1225 else
1226 pio_mask = 1;
1227
1228 /* But wait.. there's more. Design your standards by
1229 * committee and you too can get a free iordy field to
1230 * process. However its the speeds not the modes that
1231 * are supported... Note drivers using the timing API
1232 * will get this right anyway
1233 */
1234 }
1235
1236 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1237
1238 if (ata_id_is_cfa(id)) {
1239 /*
1240 * Process compact flash extended modes
1241 */
1242 int pio = id[163] & 0x7;
1243 int dma = (id[163] >> 3) & 7;
1244
1245 if (pio)
1246 pio_mask |= (1 << 5);
1247 if (pio > 1)
1248 pio_mask |= (1 << 6);
1249 if (dma)
1250 mwdma_mask |= (1 << 3);
1251 if (dma > 1)
1252 mwdma_mask |= (1 << 4);
1253 }
1254
1255 udma_mask = 0;
1256 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1257 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1258
1259 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1260 }
1261
1262 /**
1263 * ata_port_queue_task - Queue port_task
1264 * @ap: The ata_port to queue port_task for
1265 * @fn: workqueue function to be scheduled
1266 * @data: data for @fn to use
1267 * @delay: delay time for workqueue function
1268 *
1269 * Schedule @fn(@data) for execution after @delay jiffies using
1270 * port_task. There is one port_task per port and it's the
1271 * user(low level driver)'s responsibility to make sure that only
1272 * one task is active at any given time.
1273 *
1274 * libata core layer takes care of synchronization between
1275 * port_task and EH. ata_port_queue_task() may be ignored for EH
1276 * synchronization.
1277 *
1278 * LOCKING:
1279 * Inherited from caller.
1280 */
1281 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1282 unsigned long delay)
1283 {
1284 int rc;
1285
1286 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1287 return;
1288
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
1291
1292 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1293
1294 /* rc == 0 means that another user is using port task */
1295 WARN_ON(rc == 0);
1296 }
1297
1298 /**
1299 * ata_port_flush_task - Flush port_task
1300 * @ap: The ata_port to flush port_task for
1301 *
1302 * After this function completes, port_task is guranteed not to
1303 * be running or scheduled.
1304 *
1305 * LOCKING:
1306 * Kernel thread context (may sleep)
1307 */
1308 void ata_port_flush_task(struct ata_port *ap)
1309 {
1310 unsigned long flags;
1311
1312 DPRINTK("ENTER\n");
1313
1314 spin_lock_irqsave(ap->lock, flags);
1315 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1316 spin_unlock_irqrestore(ap->lock, flags);
1317
1318 DPRINTK("flush #1\n");
1319 flush_workqueue(ata_wq);
1320
1321 /*
1322 * At this point, if a task is running, it's guaranteed to see
1323 * the FLUSH flag; thus, it will never queue pio tasks again.
1324 * Cancel and flush.
1325 */
1326 if (!cancel_delayed_work(&ap->port_task)) {
1327 if (ata_msg_ctl(ap))
1328 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1329 __FUNCTION__);
1330 flush_workqueue(ata_wq);
1331 }
1332
1333 spin_lock_irqsave(ap->lock, flags);
1334 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1335 spin_unlock_irqrestore(ap->lock, flags);
1336
1337 if (ata_msg_ctl(ap))
1338 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1339 }
1340
1341 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1342 {
1343 struct completion *waiting = qc->private_data;
1344
1345 complete(waiting);
1346 }
1347
1348 /**
1349 * ata_exec_internal_sg - execute libata internal command
1350 * @dev: Device to which the command is sent
1351 * @tf: Taskfile registers for the command and the result
1352 * @cdb: CDB for packet command
1353 * @dma_dir: Data tranfer direction of the command
1354 * @sg: sg list for the data buffer of the command
1355 * @n_elem: Number of sg entries
1356 *
1357 * Executes libata internal command with timeout. @tf contains
1358 * command on entry and result on return. Timeout and error
1359 * conditions are reported via return value. No recovery action
1360 * is taken after a command times out. It's caller's duty to
1361 * clean up after timeout.
1362 *
1363 * LOCKING:
1364 * None. Should be called with kernel context, might sleep.
1365 *
1366 * RETURNS:
1367 * Zero on success, AC_ERR_* mask on failure
1368 */
1369 unsigned ata_exec_internal_sg(struct ata_device *dev,
1370 struct ata_taskfile *tf, const u8 *cdb,
1371 int dma_dir, struct scatterlist *sg,
1372 unsigned int n_elem)
1373 {
1374 struct ata_port *ap = dev->ap;
1375 u8 command = tf->command;
1376 struct ata_queued_cmd *qc;
1377 unsigned int tag, preempted_tag;
1378 u32 preempted_sactive, preempted_qc_active;
1379 DECLARE_COMPLETION_ONSTACK(wait);
1380 unsigned long flags;
1381 unsigned int err_mask;
1382 int rc;
1383
1384 spin_lock_irqsave(ap->lock, flags);
1385
1386 /* no internal command while frozen */
1387 if (ap->pflags & ATA_PFLAG_FROZEN) {
1388 spin_unlock_irqrestore(ap->lock, flags);
1389 return AC_ERR_SYSTEM;
1390 }
1391
1392 /* initialize internal qc */
1393
1394 /* XXX: Tag 0 is used for drivers with legacy EH as some
1395 * drivers choke if any other tag is given. This breaks
1396 * ata_tag_internal() test for those drivers. Don't use new
1397 * EH stuff without converting to it.
1398 */
1399 if (ap->ops->error_handler)
1400 tag = ATA_TAG_INTERNAL;
1401 else
1402 tag = 0;
1403
1404 if (test_and_set_bit(tag, &ap->qc_allocated))
1405 BUG();
1406 qc = __ata_qc_from_tag(ap, tag);
1407
1408 qc->tag = tag;
1409 qc->scsicmd = NULL;
1410 qc->ap = ap;
1411 qc->dev = dev;
1412 ata_qc_reinit(qc);
1413
1414 preempted_tag = ap->active_tag;
1415 preempted_sactive = ap->sactive;
1416 preempted_qc_active = ap->qc_active;
1417 ap->active_tag = ATA_TAG_POISON;
1418 ap->sactive = 0;
1419 ap->qc_active = 0;
1420
1421 /* prepare & issue qc */
1422 qc->tf = *tf;
1423 if (cdb)
1424 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1425 qc->flags |= ATA_QCFLAG_RESULT_TF;
1426 qc->dma_dir = dma_dir;
1427 if (dma_dir != DMA_NONE) {
1428 unsigned int i, buflen = 0;
1429
1430 for (i = 0; i < n_elem; i++)
1431 buflen += sg[i].length;
1432
1433 ata_sg_init(qc, sg, n_elem);
1434 qc->nbytes = buflen;
1435 }
1436
1437 qc->private_data = &wait;
1438 qc->complete_fn = ata_qc_complete_internal;
1439
1440 ata_qc_issue(qc);
1441
1442 spin_unlock_irqrestore(ap->lock, flags);
1443
1444 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1445
1446 ata_port_flush_task(ap);
1447
1448 if (!rc) {
1449 spin_lock_irqsave(ap->lock, flags);
1450
1451 /* We're racing with irq here. If we lose, the
1452 * following test prevents us from completing the qc
1453 * twice. If we win, the port is frozen and will be
1454 * cleaned up by ->post_internal_cmd().
1455 */
1456 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1457 qc->err_mask |= AC_ERR_TIMEOUT;
1458
1459 if (ap->ops->error_handler)
1460 ata_port_freeze(ap);
1461 else
1462 ata_qc_complete(qc);
1463
1464 if (ata_msg_warn(ap))
1465 ata_dev_printk(dev, KERN_WARNING,
1466 "qc timeout (cmd 0x%x)\n", command);
1467 }
1468
1469 spin_unlock_irqrestore(ap->lock, flags);
1470 }
1471
1472 /* do post_internal_cmd */
1473 if (ap->ops->post_internal_cmd)
1474 ap->ops->post_internal_cmd(qc);
1475
1476 /* perform minimal error analysis */
1477 if (qc->flags & ATA_QCFLAG_FAILED) {
1478 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1479 qc->err_mask |= AC_ERR_DEV;
1480
1481 if (!qc->err_mask)
1482 qc->err_mask |= AC_ERR_OTHER;
1483
1484 if (qc->err_mask & ~AC_ERR_OTHER)
1485 qc->err_mask &= ~AC_ERR_OTHER;
1486 }
1487
1488 /* finish up */
1489 spin_lock_irqsave(ap->lock, flags);
1490
1491 *tf = qc->result_tf;
1492 err_mask = qc->err_mask;
1493
1494 ata_qc_free(qc);
1495 ap->active_tag = preempted_tag;
1496 ap->sactive = preempted_sactive;
1497 ap->qc_active = preempted_qc_active;
1498
1499 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1500 * Until those drivers are fixed, we detect the condition
1501 * here, fail the command with AC_ERR_SYSTEM and reenable the
1502 * port.
1503 *
1504 * Note that this doesn't change any behavior as internal
1505 * command failure results in disabling the device in the
1506 * higher layer for LLDDs without new reset/EH callbacks.
1507 *
1508 * Kill the following code as soon as those drivers are fixed.
1509 */
1510 if (ap->flags & ATA_FLAG_DISABLED) {
1511 err_mask |= AC_ERR_SYSTEM;
1512 ata_port_probe(ap);
1513 }
1514
1515 spin_unlock_irqrestore(ap->lock, flags);
1516
1517 return err_mask;
1518 }
1519
1520 /**
1521 * ata_exec_internal - execute libata internal command
1522 * @dev: Device to which the command is sent
1523 * @tf: Taskfile registers for the command and the result
1524 * @cdb: CDB for packet command
1525 * @dma_dir: Data tranfer direction of the command
1526 * @buf: Data buffer of the command
1527 * @buflen: Length of data buffer
1528 *
1529 * Wrapper around ata_exec_internal_sg() which takes simple
1530 * buffer instead of sg list.
1531 *
1532 * LOCKING:
1533 * None. Should be called with kernel context, might sleep.
1534 *
1535 * RETURNS:
1536 * Zero on success, AC_ERR_* mask on failure
1537 */
1538 unsigned ata_exec_internal(struct ata_device *dev,
1539 struct ata_taskfile *tf, const u8 *cdb,
1540 int dma_dir, void *buf, unsigned int buflen)
1541 {
1542 struct scatterlist *psg = NULL, sg;
1543 unsigned int n_elem = 0;
1544
1545 if (dma_dir != DMA_NONE) {
1546 WARN_ON(!buf);
1547 sg_init_one(&sg, buf, buflen);
1548 psg = &sg;
1549 n_elem++;
1550 }
1551
1552 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1553 }
1554
1555 /**
1556 * ata_do_simple_cmd - execute simple internal command
1557 * @dev: Device to which the command is sent
1558 * @cmd: Opcode to execute
1559 *
1560 * Execute a 'simple' command, that only consists of the opcode
1561 * 'cmd' itself, without filling any other registers
1562 *
1563 * LOCKING:
1564 * Kernel thread context (may sleep).
1565 *
1566 * RETURNS:
1567 * Zero on success, AC_ERR_* mask on failure
1568 */
1569 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1570 {
1571 struct ata_taskfile tf;
1572
1573 ata_tf_init(dev, &tf);
1574
1575 tf.command = cmd;
1576 tf.flags |= ATA_TFLAG_DEVICE;
1577 tf.protocol = ATA_PROT_NODATA;
1578
1579 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1580 }
1581
1582 /**
1583 * ata_pio_need_iordy - check if iordy needed
1584 * @adev: ATA device
1585 *
1586 * Check if the current speed of the device requires IORDY. Used
1587 * by various controllers for chip configuration.
1588 */
1589
1590 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1591 {
1592 /* Controller doesn't support IORDY. Probably a pointless check
1593 as the caller should know this */
1594 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1595 return 0;
1596 /* PIO3 and higher it is mandatory */
1597 if (adev->pio_mode > XFER_PIO_2)
1598 return 1;
1599 /* We turn it on when possible */
1600 if (ata_id_has_iordy(adev->id))
1601 return 1;
1602 return 0;
1603 }
1604
1605 /**
1606 * ata_pio_mask_no_iordy - Return the non IORDY mask
1607 * @adev: ATA device
1608 *
1609 * Compute the highest mode possible if we are not using iordy. Return
1610 * -1 if no iordy mode is available.
1611 */
1612
1613 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1614 {
1615 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1616 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1617 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1618 /* Is the speed faster than the drive allows non IORDY ? */
1619 if (pio) {
1620 /* This is cycle times not frequency - watch the logic! */
1621 if (pio > 240) /* PIO2 is 240nS per cycle */
1622 return 3 << ATA_SHIFT_PIO;
1623 return 7 << ATA_SHIFT_PIO;
1624 }
1625 }
1626 return 3 << ATA_SHIFT_PIO;
1627 }
1628
1629 /**
1630 * ata_dev_read_id - Read ID data from the specified device
1631 * @dev: target device
1632 * @p_class: pointer to class of the target device (may be changed)
1633 * @flags: ATA_READID_* flags
1634 * @id: buffer to read IDENTIFY data into
1635 *
1636 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1637 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1638 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1639 * for pre-ATA4 drives.
1640 *
1641 * LOCKING:
1642 * Kernel thread context (may sleep)
1643 *
1644 * RETURNS:
1645 * 0 on success, -errno otherwise.
1646 */
1647 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1648 unsigned int flags, u16 *id)
1649 {
1650 struct ata_port *ap = dev->ap;
1651 unsigned int class = *p_class;
1652 struct ata_taskfile tf;
1653 unsigned int err_mask = 0;
1654 const char *reason;
1655 int tried_spinup = 0;
1656 int rc;
1657
1658 if (ata_msg_ctl(ap))
1659 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1660
1661 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1662 retry:
1663 ata_tf_init(dev, &tf);
1664
1665 switch (class) {
1666 case ATA_DEV_ATA:
1667 tf.command = ATA_CMD_ID_ATA;
1668 break;
1669 case ATA_DEV_ATAPI:
1670 tf.command = ATA_CMD_ID_ATAPI;
1671 break;
1672 default:
1673 rc = -ENODEV;
1674 reason = "unsupported class";
1675 goto err_out;
1676 }
1677
1678 tf.protocol = ATA_PROT_PIO;
1679
1680 /* Some devices choke if TF registers contain garbage. Make
1681 * sure those are properly initialized.
1682 */
1683 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1684
1685 /* Device presence detection is unreliable on some
1686 * controllers. Always poll IDENTIFY if available.
1687 */
1688 tf.flags |= ATA_TFLAG_POLLING;
1689
1690 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1691 id, sizeof(id[0]) * ATA_ID_WORDS);
1692 if (err_mask) {
1693 if (err_mask & AC_ERR_NODEV_HINT) {
1694 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1695 ap->print_id, dev->devno);
1696 return -ENOENT;
1697 }
1698
1699 rc = -EIO;
1700 reason = "I/O error";
1701 goto err_out;
1702 }
1703
1704 swap_buf_le16(id, ATA_ID_WORDS);
1705
1706 /* sanity check */
1707 rc = -EINVAL;
1708 reason = "device reports illegal type";
1709
1710 if (class == ATA_DEV_ATA) {
1711 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1712 goto err_out;
1713 } else {
1714 if (ata_id_is_ata(id))
1715 goto err_out;
1716 }
1717
1718 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1719 tried_spinup = 1;
1720 /*
1721 * Drive powered-up in standby mode, and requires a specific
1722 * SET_FEATURES spin-up subcommand before it will accept
1723 * anything other than the original IDENTIFY command.
1724 */
1725 ata_tf_init(dev, &tf);
1726 tf.command = ATA_CMD_SET_FEATURES;
1727 tf.feature = SETFEATURES_SPINUP;
1728 tf.protocol = ATA_PROT_NODATA;
1729 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1730 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1731 if (err_mask) {
1732 rc = -EIO;
1733 reason = "SPINUP failed";
1734 goto err_out;
1735 }
1736 /*
1737 * If the drive initially returned incomplete IDENTIFY info,
1738 * we now must reissue the IDENTIFY command.
1739 */
1740 if (id[2] == 0x37c8)
1741 goto retry;
1742 }
1743
1744 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1745 /*
1746 * The exact sequence expected by certain pre-ATA4 drives is:
1747 * SRST RESET
1748 * IDENTIFY
1749 * INITIALIZE DEVICE PARAMETERS
1750 * anything else..
1751 * Some drives were very specific about that exact sequence.
1752 */
1753 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1754 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1755 if (err_mask) {
1756 rc = -EIO;
1757 reason = "INIT_DEV_PARAMS failed";
1758 goto err_out;
1759 }
1760
1761 /* current CHS translation info (id[53-58]) might be
1762 * changed. reread the identify device info.
1763 */
1764 flags &= ~ATA_READID_POSTRESET;
1765 goto retry;
1766 }
1767 }
1768
1769 *p_class = class;
1770
1771 return 0;
1772
1773 err_out:
1774 if (ata_msg_warn(ap))
1775 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1776 "(%s, err_mask=0x%x)\n", reason, err_mask);
1777 return rc;
1778 }
1779
1780 static inline u8 ata_dev_knobble(struct ata_device *dev)
1781 {
1782 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1783 }
1784
1785 static void ata_dev_config_ncq(struct ata_device *dev,
1786 char *desc, size_t desc_sz)
1787 {
1788 struct ata_port *ap = dev->ap;
1789 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1790
1791 if (!ata_id_has_ncq(dev->id)) {
1792 desc[0] = '\0';
1793 return;
1794 }
1795 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1796 snprintf(desc, desc_sz, "NCQ (not used)");
1797 return;
1798 }
1799 if (ap->flags & ATA_FLAG_NCQ) {
1800 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1801 dev->flags |= ATA_DFLAG_NCQ;
1802 }
1803
1804 if (hdepth >= ddepth)
1805 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1806 else
1807 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1808 }
1809
1810 /**
1811 * ata_dev_configure - Configure the specified ATA/ATAPI device
1812 * @dev: Target device to configure
1813 *
1814 * Configure @dev according to @dev->id. Generic and low-level
1815 * driver specific fixups are also applied.
1816 *
1817 * LOCKING:
1818 * Kernel thread context (may sleep)
1819 *
1820 * RETURNS:
1821 * 0 on success, -errno otherwise
1822 */
1823 int ata_dev_configure(struct ata_device *dev)
1824 {
1825 struct ata_port *ap = dev->ap;
1826 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1827 const u16 *id = dev->id;
1828 unsigned int xfer_mask;
1829 char revbuf[7]; /* XYZ-99\0 */
1830 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1831 char modelbuf[ATA_ID_PROD_LEN+1];
1832 int rc;
1833
1834 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1835 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1836 __FUNCTION__);
1837 return 0;
1838 }
1839
1840 if (ata_msg_probe(ap))
1841 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1842
1843 /* set _SDD */
1844 rc = ata_acpi_push_id(ap, dev->devno);
1845 if (rc) {
1846 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1847 rc);
1848 }
1849
1850 /* retrieve and execute the ATA task file of _GTF */
1851 ata_acpi_exec_tfs(ap);
1852
1853 /* print device capabilities */
1854 if (ata_msg_probe(ap))
1855 ata_dev_printk(dev, KERN_DEBUG,
1856 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1857 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1858 __FUNCTION__,
1859 id[49], id[82], id[83], id[84],
1860 id[85], id[86], id[87], id[88]);
1861
1862 /* initialize to-be-configured parameters */
1863 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1864 dev->max_sectors = 0;
1865 dev->cdb_len = 0;
1866 dev->n_sectors = 0;
1867 dev->cylinders = 0;
1868 dev->heads = 0;
1869 dev->sectors = 0;
1870
1871 /*
1872 * common ATA, ATAPI feature tests
1873 */
1874
1875 /* find max transfer mode; for printk only */
1876 xfer_mask = ata_id_xfermask(id);
1877
1878 if (ata_msg_probe(ap))
1879 ata_dump_id(id);
1880
1881 /* ATA-specific feature tests */
1882 if (dev->class == ATA_DEV_ATA) {
1883 if (ata_id_is_cfa(id)) {
1884 if (id[162] & 1) /* CPRM may make this media unusable */
1885 ata_dev_printk(dev, KERN_WARNING,
1886 "supports DRM functions and may "
1887 "not be fully accessable.\n");
1888 snprintf(revbuf, 7, "CFA");
1889 }
1890 else
1891 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1892
1893 dev->n_sectors = ata_id_n_sectors(id);
1894 dev->n_sectors_boot = dev->n_sectors;
1895
1896 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1897 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1898 sizeof(fwrevbuf));
1899
1900 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1901 sizeof(modelbuf));
1902
1903 if (dev->id[59] & 0x100)
1904 dev->multi_count = dev->id[59] & 0xff;
1905
1906 if (ata_id_has_lba(id)) {
1907 const char *lba_desc;
1908 char ncq_desc[20];
1909
1910 lba_desc = "LBA";
1911 dev->flags |= ATA_DFLAG_LBA;
1912 if (ata_id_has_lba48(id)) {
1913 dev->flags |= ATA_DFLAG_LBA48;
1914 lba_desc = "LBA48";
1915
1916 if (dev->n_sectors >= (1UL << 28) &&
1917 ata_id_has_flush_ext(id))
1918 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1919 }
1920
1921 if (ata_id_hpa_enabled(dev->id))
1922 dev->n_sectors = ata_hpa_resize(dev);
1923
1924 /* config NCQ */
1925 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1926
1927 /* print device info to dmesg */
1928 if (ata_msg_drv(ap) && print_info) {
1929 ata_dev_printk(dev, KERN_INFO,
1930 "%s: %s, %s, max %s\n",
1931 revbuf, modelbuf, fwrevbuf,
1932 ata_mode_string(xfer_mask));
1933 ata_dev_printk(dev, KERN_INFO,
1934 "%Lu sectors, multi %u: %s %s\n",
1935 (unsigned long long)dev->n_sectors,
1936 dev->multi_count, lba_desc, ncq_desc);
1937 }
1938 } else {
1939 /* CHS */
1940
1941 /* Default translation */
1942 dev->cylinders = id[1];
1943 dev->heads = id[3];
1944 dev->sectors = id[6];
1945
1946 if (ata_id_current_chs_valid(id)) {
1947 /* Current CHS translation is valid. */
1948 dev->cylinders = id[54];
1949 dev->heads = id[55];
1950 dev->sectors = id[56];
1951 }
1952
1953 /* print device info to dmesg */
1954 if (ata_msg_drv(ap) && print_info) {
1955 ata_dev_printk(dev, KERN_INFO,
1956 "%s: %s, %s, max %s\n",
1957 revbuf, modelbuf, fwrevbuf,
1958 ata_mode_string(xfer_mask));
1959 ata_dev_printk(dev, KERN_INFO,
1960 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1961 (unsigned long long)dev->n_sectors,
1962 dev->multi_count, dev->cylinders,
1963 dev->heads, dev->sectors);
1964 }
1965 }
1966
1967 dev->cdb_len = 16;
1968 }
1969
1970 /* ATAPI-specific feature tests */
1971 else if (dev->class == ATA_DEV_ATAPI) {
1972 char *cdb_intr_string = "";
1973
1974 rc = atapi_cdb_len(id);
1975 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1976 if (ata_msg_warn(ap))
1977 ata_dev_printk(dev, KERN_WARNING,
1978 "unsupported CDB len\n");
1979 rc = -EINVAL;
1980 goto err_out_nosup;
1981 }
1982 dev->cdb_len = (unsigned int) rc;
1983
1984 if (ata_id_cdb_intr(dev->id)) {
1985 dev->flags |= ATA_DFLAG_CDB_INTR;
1986 cdb_intr_string = ", CDB intr";
1987 }
1988
1989 /* print device info to dmesg */
1990 if (ata_msg_drv(ap) && print_info)
1991 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1992 ata_mode_string(xfer_mask),
1993 cdb_intr_string);
1994 }
1995
1996 /* determine max_sectors */
1997 dev->max_sectors = ATA_MAX_SECTORS;
1998 if (dev->flags & ATA_DFLAG_LBA48)
1999 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2000
2001 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2002 /* Let the user know. We don't want to disallow opens for
2003 rescue purposes, or in case the vendor is just a blithering
2004 idiot */
2005 if (print_info) {
2006 ata_dev_printk(dev, KERN_WARNING,
2007 "Drive reports diagnostics failure. This may indicate a drive\n");
2008 ata_dev_printk(dev, KERN_WARNING,
2009 "fault or invalid emulation. Contact drive vendor for information.\n");
2010 }
2011 }
2012
2013 /* limit bridge transfers to udma5, 200 sectors */
2014 if (ata_dev_knobble(dev)) {
2015 if (ata_msg_drv(ap) && print_info)
2016 ata_dev_printk(dev, KERN_INFO,
2017 "applying bridge limits\n");
2018 dev->udma_mask &= ATA_UDMA5;
2019 dev->max_sectors = ATA_MAX_SECTORS;
2020 }
2021
2022 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2023 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2024 dev->max_sectors);
2025
2026 /* limit ATAPI DMA to R/W commands only */
2027 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2028 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2029
2030 if (ap->ops->dev_config)
2031 ap->ops->dev_config(dev);
2032
2033 if (ata_msg_probe(ap))
2034 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2035 __FUNCTION__, ata_chk_status(ap));
2036 return 0;
2037
2038 err_out_nosup:
2039 if (ata_msg_probe(ap))
2040 ata_dev_printk(dev, KERN_DEBUG,
2041 "%s: EXIT, err\n", __FUNCTION__);
2042 return rc;
2043 }
2044
2045 /**
2046 * ata_cable_40wire - return 40 wire cable type
2047 * @ap: port
2048 *
2049 * Helper method for drivers which want to hardwire 40 wire cable
2050 * detection.
2051 */
2052
2053 int ata_cable_40wire(struct ata_port *ap)
2054 {
2055 return ATA_CBL_PATA40;
2056 }
2057
2058 /**
2059 * ata_cable_80wire - return 80 wire cable type
2060 * @ap: port
2061 *
2062 * Helper method for drivers which want to hardwire 80 wire cable
2063 * detection.
2064 */
2065
2066 int ata_cable_80wire(struct ata_port *ap)
2067 {
2068 return ATA_CBL_PATA80;
2069 }
2070
2071 /**
2072 * ata_cable_unknown - return unknown PATA cable.
2073 * @ap: port
2074 *
2075 * Helper method for drivers which have no PATA cable detection.
2076 */
2077
2078 int ata_cable_unknown(struct ata_port *ap)
2079 {
2080 return ATA_CBL_PATA_UNK;
2081 }
2082
2083 /**
2084 * ata_cable_sata - return SATA cable type
2085 * @ap: port
2086 *
2087 * Helper method for drivers which have SATA cables
2088 */
2089
2090 int ata_cable_sata(struct ata_port *ap)
2091 {
2092 return ATA_CBL_SATA;
2093 }
2094
2095 /**
2096 * ata_bus_probe - Reset and probe ATA bus
2097 * @ap: Bus to probe
2098 *
2099 * Master ATA bus probing function. Initiates a hardware-dependent
2100 * bus reset, then attempts to identify any devices found on
2101 * the bus.
2102 *
2103 * LOCKING:
2104 * PCI/etc. bus probe sem.
2105 *
2106 * RETURNS:
2107 * Zero on success, negative errno otherwise.
2108 */
2109
2110 int ata_bus_probe(struct ata_port *ap)
2111 {
2112 unsigned int classes[ATA_MAX_DEVICES];
2113 int tries[ATA_MAX_DEVICES];
2114 int i, rc;
2115 struct ata_device *dev;
2116
2117 ata_port_probe(ap);
2118
2119 for (i = 0; i < ATA_MAX_DEVICES; i++)
2120 tries[i] = ATA_PROBE_MAX_TRIES;
2121
2122 retry:
2123 /* reset and determine device classes */
2124 ap->ops->phy_reset(ap);
2125
2126 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2127 dev = &ap->device[i];
2128
2129 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2130 dev->class != ATA_DEV_UNKNOWN)
2131 classes[dev->devno] = dev->class;
2132 else
2133 classes[dev->devno] = ATA_DEV_NONE;
2134
2135 dev->class = ATA_DEV_UNKNOWN;
2136 }
2137
2138 ata_port_probe(ap);
2139
2140 /* after the reset the device state is PIO 0 and the controller
2141 state is undefined. Record the mode */
2142
2143 for (i = 0; i < ATA_MAX_DEVICES; i++)
2144 ap->device[i].pio_mode = XFER_PIO_0;
2145
2146 /* read IDENTIFY page and configure devices. We have to do the identify
2147 specific sequence bass-ackwards so that PDIAG- is released by
2148 the slave device */
2149
2150 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2151 dev = &ap->device[i];
2152
2153 if (tries[i])
2154 dev->class = classes[i];
2155
2156 if (!ata_dev_enabled(dev))
2157 continue;
2158
2159 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2160 dev->id);
2161 if (rc)
2162 goto fail;
2163 }
2164
2165 /* Now ask for the cable type as PDIAG- should have been released */
2166 if (ap->ops->cable_detect)
2167 ap->cbl = ap->ops->cable_detect(ap);
2168
2169 /* After the identify sequence we can now set up the devices. We do
2170 this in the normal order so that the user doesn't get confused */
2171
2172 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2173 dev = &ap->device[i];
2174 if (!ata_dev_enabled(dev))
2175 continue;
2176
2177 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2178 rc = ata_dev_configure(dev);
2179 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2180 if (rc)
2181 goto fail;
2182 }
2183
2184 /* configure transfer mode */
2185 rc = ata_set_mode(ap, &dev);
2186 if (rc)
2187 goto fail;
2188
2189 for (i = 0; i < ATA_MAX_DEVICES; i++)
2190 if (ata_dev_enabled(&ap->device[i]))
2191 return 0;
2192
2193 /* no device present, disable port */
2194 ata_port_disable(ap);
2195 ap->ops->port_disable(ap);
2196 return -ENODEV;
2197
2198 fail:
2199 tries[dev->devno]--;
2200
2201 switch (rc) {
2202 case -EINVAL:
2203 /* eeek, something went very wrong, give up */
2204 tries[dev->devno] = 0;
2205 break;
2206
2207 case -ENODEV:
2208 /* give it just one more chance */
2209 tries[dev->devno] = min(tries[dev->devno], 1);
2210 case -EIO:
2211 if (tries[dev->devno] == 1) {
2212 /* This is the last chance, better to slow
2213 * down than lose it.
2214 */
2215 sata_down_spd_limit(ap);
2216 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2217 }
2218 }
2219
2220 if (!tries[dev->devno])
2221 ata_dev_disable(dev);
2222
2223 goto retry;
2224 }
2225
2226 /**
2227 * ata_port_probe - Mark port as enabled
2228 * @ap: Port for which we indicate enablement
2229 *
2230 * Modify @ap data structure such that the system
2231 * thinks that the entire port is enabled.
2232 *
2233 * LOCKING: host lock, or some other form of
2234 * serialization.
2235 */
2236
2237 void ata_port_probe(struct ata_port *ap)
2238 {
2239 ap->flags &= ~ATA_FLAG_DISABLED;
2240 }
2241
2242 /**
2243 * sata_print_link_status - Print SATA link status
2244 * @ap: SATA port to printk link status about
2245 *
2246 * This function prints link speed and status of a SATA link.
2247 *
2248 * LOCKING:
2249 * None.
2250 */
2251 void sata_print_link_status(struct ata_port *ap)
2252 {
2253 u32 sstatus, scontrol, tmp;
2254
2255 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2256 return;
2257 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2258
2259 if (ata_port_online(ap)) {
2260 tmp = (sstatus >> 4) & 0xf;
2261 ata_port_printk(ap, KERN_INFO,
2262 "SATA link up %s (SStatus %X SControl %X)\n",
2263 sata_spd_string(tmp), sstatus, scontrol);
2264 } else {
2265 ata_port_printk(ap, KERN_INFO,
2266 "SATA link down (SStatus %X SControl %X)\n",
2267 sstatus, scontrol);
2268 }
2269 }
2270
2271 /**
2272 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2273 * @ap: SATA port associated with target SATA PHY.
2274 *
2275 * This function issues commands to standard SATA Sxxx
2276 * PHY registers, to wake up the phy (and device), and
2277 * clear any reset condition.
2278 *
2279 * LOCKING:
2280 * PCI/etc. bus probe sem.
2281 *
2282 */
2283 void __sata_phy_reset(struct ata_port *ap)
2284 {
2285 u32 sstatus;
2286 unsigned long timeout = jiffies + (HZ * 5);
2287
2288 if (ap->flags & ATA_FLAG_SATA_RESET) {
2289 /* issue phy wake/reset */
2290 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2291 /* Couldn't find anything in SATA I/II specs, but
2292 * AHCI-1.1 10.4.2 says at least 1 ms. */
2293 mdelay(1);
2294 }
2295 /* phy wake/clear reset */
2296 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2297
2298 /* wait for phy to become ready, if necessary */
2299 do {
2300 msleep(200);
2301 sata_scr_read(ap, SCR_STATUS, &sstatus);
2302 if ((sstatus & 0xf) != 1)
2303 break;
2304 } while (time_before(jiffies, timeout));
2305
2306 /* print link status */
2307 sata_print_link_status(ap);
2308
2309 /* TODO: phy layer with polling, timeouts, etc. */
2310 if (!ata_port_offline(ap))
2311 ata_port_probe(ap);
2312 else
2313 ata_port_disable(ap);
2314
2315 if (ap->flags & ATA_FLAG_DISABLED)
2316 return;
2317
2318 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2319 ata_port_disable(ap);
2320 return;
2321 }
2322
2323 ap->cbl = ATA_CBL_SATA;
2324 }
2325
2326 /**
2327 * sata_phy_reset - Reset SATA bus.
2328 * @ap: SATA port associated with target SATA PHY.
2329 *
2330 * This function resets the SATA bus, and then probes
2331 * the bus for devices.
2332 *
2333 * LOCKING:
2334 * PCI/etc. bus probe sem.
2335 *
2336 */
2337 void sata_phy_reset(struct ata_port *ap)
2338 {
2339 __sata_phy_reset(ap);
2340 if (ap->flags & ATA_FLAG_DISABLED)
2341 return;
2342 ata_bus_reset(ap);
2343 }
2344
2345 /**
2346 * ata_dev_pair - return other device on cable
2347 * @adev: device
2348 *
2349 * Obtain the other device on the same cable, or if none is
2350 * present NULL is returned
2351 */
2352
2353 struct ata_device *ata_dev_pair(struct ata_device *adev)
2354 {
2355 struct ata_port *ap = adev->ap;
2356 struct ata_device *pair = &ap->device[1 - adev->devno];
2357 if (!ata_dev_enabled(pair))
2358 return NULL;
2359 return pair;
2360 }
2361
2362 /**
2363 * ata_port_disable - Disable port.
2364 * @ap: Port to be disabled.
2365 *
2366 * Modify @ap data structure such that the system
2367 * thinks that the entire port is disabled, and should
2368 * never attempt to probe or communicate with devices
2369 * on this port.
2370 *
2371 * LOCKING: host lock, or some other form of
2372 * serialization.
2373 */
2374
2375 void ata_port_disable(struct ata_port *ap)
2376 {
2377 ap->device[0].class = ATA_DEV_NONE;
2378 ap->device[1].class = ATA_DEV_NONE;
2379 ap->flags |= ATA_FLAG_DISABLED;
2380 }
2381
2382 /**
2383 * sata_down_spd_limit - adjust SATA spd limit downward
2384 * @ap: Port to adjust SATA spd limit for
2385 *
2386 * Adjust SATA spd limit of @ap downward. Note that this
2387 * function only adjusts the limit. The change must be applied
2388 * using sata_set_spd().
2389 *
2390 * LOCKING:
2391 * Inherited from caller.
2392 *
2393 * RETURNS:
2394 * 0 on success, negative errno on failure
2395 */
2396 int sata_down_spd_limit(struct ata_port *ap)
2397 {
2398 u32 sstatus, spd, mask;
2399 int rc, highbit;
2400
2401 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2402 if (rc)
2403 return rc;
2404
2405 mask = ap->sata_spd_limit;
2406 if (mask <= 1)
2407 return -EINVAL;
2408 highbit = fls(mask) - 1;
2409 mask &= ~(1 << highbit);
2410
2411 spd = (sstatus >> 4) & 0xf;
2412 if (spd <= 1)
2413 return -EINVAL;
2414 spd--;
2415 mask &= (1 << spd) - 1;
2416 if (!mask)
2417 return -EINVAL;
2418
2419 ap->sata_spd_limit = mask;
2420
2421 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2422 sata_spd_string(fls(mask)));
2423
2424 return 0;
2425 }
2426
2427 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2428 {
2429 u32 spd, limit;
2430
2431 if (ap->sata_spd_limit == UINT_MAX)
2432 limit = 0;
2433 else
2434 limit = fls(ap->sata_spd_limit);
2435
2436 spd = (*scontrol >> 4) & 0xf;
2437 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2438
2439 return spd != limit;
2440 }
2441
2442 /**
2443 * sata_set_spd_needed - is SATA spd configuration needed
2444 * @ap: Port in question
2445 *
2446 * Test whether the spd limit in SControl matches
2447 * @ap->sata_spd_limit. This function is used to determine
2448 * whether hardreset is necessary to apply SATA spd
2449 * configuration.
2450 *
2451 * LOCKING:
2452 * Inherited from caller.
2453 *
2454 * RETURNS:
2455 * 1 if SATA spd configuration is needed, 0 otherwise.
2456 */
2457 int sata_set_spd_needed(struct ata_port *ap)
2458 {
2459 u32 scontrol;
2460
2461 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2462 return 0;
2463
2464 return __sata_set_spd_needed(ap, &scontrol);
2465 }
2466
2467 /**
2468 * sata_set_spd - set SATA spd according to spd limit
2469 * @ap: Port to set SATA spd for
2470 *
2471 * Set SATA spd of @ap according to sata_spd_limit.
2472 *
2473 * LOCKING:
2474 * Inherited from caller.
2475 *
2476 * RETURNS:
2477 * 0 if spd doesn't need to be changed, 1 if spd has been
2478 * changed. Negative errno if SCR registers are inaccessible.
2479 */
2480 int sata_set_spd(struct ata_port *ap)
2481 {
2482 u32 scontrol;
2483 int rc;
2484
2485 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2486 return rc;
2487
2488 if (!__sata_set_spd_needed(ap, &scontrol))
2489 return 0;
2490
2491 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2492 return rc;
2493
2494 return 1;
2495 }
2496
2497 /*
2498 * This mode timing computation functionality is ported over from
2499 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2500 */
2501 /*
2502 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2503 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2504 * for UDMA6, which is currently supported only by Maxtor drives.
2505 *
2506 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2507 */
2508
2509 static const struct ata_timing ata_timing[] = {
2510
2511 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2512 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2513 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2514 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2515
2516 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2517 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2518 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2519 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2520 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2521
2522 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2523
2524 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2525 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2526 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2527
2528 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2529 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2530 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2531
2532 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2533 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2534 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2535 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2536
2537 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2538 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2539 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2540
2541 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2542
2543 { 0xFF }
2544 };
2545
2546 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2547 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2548
2549 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2550 {
2551 q->setup = EZ(t->setup * 1000, T);
2552 q->act8b = EZ(t->act8b * 1000, T);
2553 q->rec8b = EZ(t->rec8b * 1000, T);
2554 q->cyc8b = EZ(t->cyc8b * 1000, T);
2555 q->active = EZ(t->active * 1000, T);
2556 q->recover = EZ(t->recover * 1000, T);
2557 q->cycle = EZ(t->cycle * 1000, T);
2558 q->udma = EZ(t->udma * 1000, UT);
2559 }
2560
2561 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2562 struct ata_timing *m, unsigned int what)
2563 {
2564 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2565 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2566 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2567 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2568 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2569 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2570 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2571 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2572 }
2573
2574 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2575 {
2576 const struct ata_timing *t;
2577
2578 for (t = ata_timing; t->mode != speed; t++)
2579 if (t->mode == 0xFF)
2580 return NULL;
2581 return t;
2582 }
2583
2584 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2585 struct ata_timing *t, int T, int UT)
2586 {
2587 const struct ata_timing *s;
2588 struct ata_timing p;
2589
2590 /*
2591 * Find the mode.
2592 */
2593
2594 if (!(s = ata_timing_find_mode(speed)))
2595 return -EINVAL;
2596
2597 memcpy(t, s, sizeof(*s));
2598
2599 /*
2600 * If the drive is an EIDE drive, it can tell us it needs extended
2601 * PIO/MW_DMA cycle timing.
2602 */
2603
2604 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2605 memset(&p, 0, sizeof(p));
2606 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2607 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2608 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2609 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2610 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2611 }
2612 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2613 }
2614
2615 /*
2616 * Convert the timing to bus clock counts.
2617 */
2618
2619 ata_timing_quantize(t, t, T, UT);
2620
2621 /*
2622 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2623 * S.M.A.R.T * and some other commands. We have to ensure that the
2624 * DMA cycle timing is slower/equal than the fastest PIO timing.
2625 */
2626
2627 if (speed > XFER_PIO_6) {
2628 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2629 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2630 }
2631
2632 /*
2633 * Lengthen active & recovery time so that cycle time is correct.
2634 */
2635
2636 if (t->act8b + t->rec8b < t->cyc8b) {
2637 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2638 t->rec8b = t->cyc8b - t->act8b;
2639 }
2640
2641 if (t->active + t->recover < t->cycle) {
2642 t->active += (t->cycle - (t->active + t->recover)) / 2;
2643 t->recover = t->cycle - t->active;
2644 }
2645
2646 /* In a few cases quantisation may produce enough errors to
2647 leave t->cycle too low for the sum of active and recovery
2648 if so we must correct this */
2649 if (t->active + t->recover > t->cycle)
2650 t->cycle = t->active + t->recover;
2651
2652 return 0;
2653 }
2654
2655 /**
2656 * ata_down_xfermask_limit - adjust dev xfer masks downward
2657 * @dev: Device to adjust xfer masks
2658 * @sel: ATA_DNXFER_* selector
2659 *
2660 * Adjust xfer masks of @dev downward. Note that this function
2661 * does not apply the change. Invoking ata_set_mode() afterwards
2662 * will apply the limit.
2663 *
2664 * LOCKING:
2665 * Inherited from caller.
2666 *
2667 * RETURNS:
2668 * 0 on success, negative errno on failure
2669 */
2670 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2671 {
2672 char buf[32];
2673 unsigned int orig_mask, xfer_mask;
2674 unsigned int pio_mask, mwdma_mask, udma_mask;
2675 int quiet, highbit;
2676
2677 quiet = !!(sel & ATA_DNXFER_QUIET);
2678 sel &= ~ATA_DNXFER_QUIET;
2679
2680 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2681 dev->mwdma_mask,
2682 dev->udma_mask);
2683 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2684
2685 switch (sel) {
2686 case ATA_DNXFER_PIO:
2687 highbit = fls(pio_mask) - 1;
2688 pio_mask &= ~(1 << highbit);
2689 break;
2690
2691 case ATA_DNXFER_DMA:
2692 if (udma_mask) {
2693 highbit = fls(udma_mask) - 1;
2694 udma_mask &= ~(1 << highbit);
2695 if (!udma_mask)
2696 return -ENOENT;
2697 } else if (mwdma_mask) {
2698 highbit = fls(mwdma_mask) - 1;
2699 mwdma_mask &= ~(1 << highbit);
2700 if (!mwdma_mask)
2701 return -ENOENT;
2702 }
2703 break;
2704
2705 case ATA_DNXFER_40C:
2706 udma_mask &= ATA_UDMA_MASK_40C;
2707 break;
2708
2709 case ATA_DNXFER_FORCE_PIO0:
2710 pio_mask &= 1;
2711 case ATA_DNXFER_FORCE_PIO:
2712 mwdma_mask = 0;
2713 udma_mask = 0;
2714 break;
2715
2716 default:
2717 BUG();
2718 }
2719
2720 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2721
2722 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2723 return -ENOENT;
2724
2725 if (!quiet) {
2726 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2727 snprintf(buf, sizeof(buf), "%s:%s",
2728 ata_mode_string(xfer_mask),
2729 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2730 else
2731 snprintf(buf, sizeof(buf), "%s",
2732 ata_mode_string(xfer_mask));
2733
2734 ata_dev_printk(dev, KERN_WARNING,
2735 "limiting speed to %s\n", buf);
2736 }
2737
2738 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2739 &dev->udma_mask);
2740
2741 return 0;
2742 }
2743
2744 static int ata_dev_set_mode(struct ata_device *dev)
2745 {
2746 struct ata_eh_context *ehc = &dev->ap->eh_context;
2747 unsigned int err_mask;
2748 int rc;
2749
2750 dev->flags &= ~ATA_DFLAG_PIO;
2751 if (dev->xfer_shift == ATA_SHIFT_PIO)
2752 dev->flags |= ATA_DFLAG_PIO;
2753
2754 err_mask = ata_dev_set_xfermode(dev);
2755 /* Old CFA may refuse this command, which is just fine */
2756 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2757 err_mask &= ~AC_ERR_DEV;
2758
2759 if (err_mask) {
2760 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2761 "(err_mask=0x%x)\n", err_mask);
2762 return -EIO;
2763 }
2764
2765 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2766 rc = ata_dev_revalidate(dev, 0);
2767 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2768 if (rc)
2769 return rc;
2770
2771 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2772 dev->xfer_shift, (int)dev->xfer_mode);
2773
2774 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2775 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2776 return 0;
2777 }
2778
2779 /**
2780 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2781 * @ap: port on which timings will be programmed
2782 * @r_failed_dev: out paramter for failed device
2783 *
2784 * Standard implementation of the function used to tune and set
2785 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2786 * ata_dev_set_mode() fails, pointer to the failing device is
2787 * returned in @r_failed_dev.
2788 *
2789 * LOCKING:
2790 * PCI/etc. bus probe sem.
2791 *
2792 * RETURNS:
2793 * 0 on success, negative errno otherwise
2794 */
2795
2796 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2797 {
2798 struct ata_device *dev;
2799 int i, rc = 0, used_dma = 0, found = 0;
2800
2801
2802 /* step 1: calculate xfer_mask */
2803 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2804 unsigned int pio_mask, dma_mask;
2805
2806 dev = &ap->device[i];
2807
2808 if (!ata_dev_enabled(dev))
2809 continue;
2810
2811 ata_dev_xfermask(dev);
2812
2813 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2814 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2815 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2816 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2817
2818 found = 1;
2819 if (dev->dma_mode)
2820 used_dma = 1;
2821 }
2822 if (!found)
2823 goto out;
2824
2825 /* step 2: always set host PIO timings */
2826 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2827 dev = &ap->device[i];
2828 if (!ata_dev_enabled(dev))
2829 continue;
2830
2831 if (!dev->pio_mode) {
2832 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2833 rc = -EINVAL;
2834 goto out;
2835 }
2836
2837 dev->xfer_mode = dev->pio_mode;
2838 dev->xfer_shift = ATA_SHIFT_PIO;
2839 if (ap->ops->set_piomode)
2840 ap->ops->set_piomode(ap, dev);
2841 }
2842
2843 /* step 3: set host DMA timings */
2844 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2845 dev = &ap->device[i];
2846
2847 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2848 continue;
2849
2850 dev->xfer_mode = dev->dma_mode;
2851 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2852 if (ap->ops->set_dmamode)
2853 ap->ops->set_dmamode(ap, dev);
2854 }
2855
2856 /* step 4: update devices' xfer mode */
2857 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2858 dev = &ap->device[i];
2859
2860 /* don't update suspended devices' xfer mode */
2861 if (!ata_dev_ready(dev))
2862 continue;
2863
2864 rc = ata_dev_set_mode(dev);
2865 if (rc)
2866 goto out;
2867 }
2868
2869 /* Record simplex status. If we selected DMA then the other
2870 * host channels are not permitted to do so.
2871 */
2872 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2873 ap->host->simplex_claimed = ap;
2874
2875 /* step5: chip specific finalisation */
2876 if (ap->ops->post_set_mode)
2877 ap->ops->post_set_mode(ap);
2878 out:
2879 if (rc)
2880 *r_failed_dev = dev;
2881 return rc;
2882 }
2883
2884 /**
2885 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2886 * @ap: port on which timings will be programmed
2887 * @r_failed_dev: out paramter for failed device
2888 *
2889 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2890 * ata_set_mode() fails, pointer to the failing device is
2891 * returned in @r_failed_dev.
2892 *
2893 * LOCKING:
2894 * PCI/etc. bus probe sem.
2895 *
2896 * RETURNS:
2897 * 0 on success, negative errno otherwise
2898 */
2899 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2900 {
2901 /* has private set_mode? */
2902 if (ap->ops->set_mode)
2903 return ap->ops->set_mode(ap, r_failed_dev);
2904 return ata_do_set_mode(ap, r_failed_dev);
2905 }
2906
2907 /**
2908 * ata_tf_to_host - issue ATA taskfile to host controller
2909 * @ap: port to which command is being issued
2910 * @tf: ATA taskfile register set
2911 *
2912 * Issues ATA taskfile register set to ATA host controller,
2913 * with proper synchronization with interrupt handler and
2914 * other threads.
2915 *
2916 * LOCKING:
2917 * spin_lock_irqsave(host lock)
2918 */
2919
2920 static inline void ata_tf_to_host(struct ata_port *ap,
2921 const struct ata_taskfile *tf)
2922 {
2923 ap->ops->tf_load(ap, tf);
2924 ap->ops->exec_command(ap, tf);
2925 }
2926
2927 /**
2928 * ata_busy_sleep - sleep until BSY clears, or timeout
2929 * @ap: port containing status register to be polled
2930 * @tmout_pat: impatience timeout
2931 * @tmout: overall timeout
2932 *
2933 * Sleep until ATA Status register bit BSY clears,
2934 * or a timeout occurs.
2935 *
2936 * LOCKING:
2937 * Kernel thread context (may sleep).
2938 *
2939 * RETURNS:
2940 * 0 on success, -errno otherwise.
2941 */
2942 int ata_busy_sleep(struct ata_port *ap,
2943 unsigned long tmout_pat, unsigned long tmout)
2944 {
2945 unsigned long timer_start, timeout;
2946 u8 status;
2947
2948 status = ata_busy_wait(ap, ATA_BUSY, 300);
2949 timer_start = jiffies;
2950 timeout = timer_start + tmout_pat;
2951 while (status != 0xff && (status & ATA_BUSY) &&
2952 time_before(jiffies, timeout)) {
2953 msleep(50);
2954 status = ata_busy_wait(ap, ATA_BUSY, 3);
2955 }
2956
2957 if (status != 0xff && (status & ATA_BUSY))
2958 ata_port_printk(ap, KERN_WARNING,
2959 "port is slow to respond, please be patient "
2960 "(Status 0x%x)\n", status);
2961
2962 timeout = timer_start + tmout;
2963 while (status != 0xff && (status & ATA_BUSY) &&
2964 time_before(jiffies, timeout)) {
2965 msleep(50);
2966 status = ata_chk_status(ap);
2967 }
2968
2969 if (status == 0xff)
2970 return -ENODEV;
2971
2972 if (status & ATA_BUSY) {
2973 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2974 "(%lu secs, Status 0x%x)\n",
2975 tmout / HZ, status);
2976 return -EBUSY;
2977 }
2978
2979 return 0;
2980 }
2981
2982 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2983 {
2984 struct ata_ioports *ioaddr = &ap->ioaddr;
2985 unsigned int dev0 = devmask & (1 << 0);
2986 unsigned int dev1 = devmask & (1 << 1);
2987 unsigned long timeout;
2988
2989 /* if device 0 was found in ata_devchk, wait for its
2990 * BSY bit to clear
2991 */
2992 if (dev0)
2993 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2994
2995 /* if device 1 was found in ata_devchk, wait for
2996 * register access, then wait for BSY to clear
2997 */
2998 timeout = jiffies + ATA_TMOUT_BOOT;
2999 while (dev1) {
3000 u8 nsect, lbal;
3001
3002 ap->ops->dev_select(ap, 1);
3003 nsect = ioread8(ioaddr->nsect_addr);
3004 lbal = ioread8(ioaddr->lbal_addr);
3005 if ((nsect == 1) && (lbal == 1))
3006 break;
3007 if (time_after(jiffies, timeout)) {
3008 dev1 = 0;
3009 break;
3010 }
3011 msleep(50); /* give drive a breather */
3012 }
3013 if (dev1)
3014 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3015
3016 /* is all this really necessary? */
3017 ap->ops->dev_select(ap, 0);
3018 if (dev1)
3019 ap->ops->dev_select(ap, 1);
3020 if (dev0)
3021 ap->ops->dev_select(ap, 0);
3022 }
3023
3024 static unsigned int ata_bus_softreset(struct ata_port *ap,
3025 unsigned int devmask)
3026 {
3027 struct ata_ioports *ioaddr = &ap->ioaddr;
3028
3029 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3030
3031 /* software reset. causes dev0 to be selected */
3032 iowrite8(ap->ctl, ioaddr->ctl_addr);
3033 udelay(20); /* FIXME: flush */
3034 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3035 udelay(20); /* FIXME: flush */
3036 iowrite8(ap->ctl, ioaddr->ctl_addr);
3037
3038 /* spec mandates ">= 2ms" before checking status.
3039 * We wait 150ms, because that was the magic delay used for
3040 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3041 * between when the ATA command register is written, and then
3042 * status is checked. Because waiting for "a while" before
3043 * checking status is fine, post SRST, we perform this magic
3044 * delay here as well.
3045 *
3046 * Old drivers/ide uses the 2mS rule and then waits for ready
3047 */
3048 msleep(150);
3049
3050 /* Before we perform post reset processing we want to see if
3051 * the bus shows 0xFF because the odd clown forgets the D7
3052 * pulldown resistor.
3053 */
3054 if (ata_check_status(ap) == 0xFF)
3055 return 0;
3056
3057 ata_bus_post_reset(ap, devmask);
3058
3059 return 0;
3060 }
3061
3062 /**
3063 * ata_bus_reset - reset host port and associated ATA channel
3064 * @ap: port to reset
3065 *
3066 * This is typically the first time we actually start issuing
3067 * commands to the ATA channel. We wait for BSY to clear, then
3068 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3069 * result. Determine what devices, if any, are on the channel
3070 * by looking at the device 0/1 error register. Look at the signature
3071 * stored in each device's taskfile registers, to determine if
3072 * the device is ATA or ATAPI.
3073 *
3074 * LOCKING:
3075 * PCI/etc. bus probe sem.
3076 * Obtains host lock.
3077 *
3078 * SIDE EFFECTS:
3079 * Sets ATA_FLAG_DISABLED if bus reset fails.
3080 */
3081
3082 void ata_bus_reset(struct ata_port *ap)
3083 {
3084 struct ata_ioports *ioaddr = &ap->ioaddr;
3085 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3086 u8 err;
3087 unsigned int dev0, dev1 = 0, devmask = 0;
3088
3089 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3090
3091 /* determine if device 0/1 are present */
3092 if (ap->flags & ATA_FLAG_SATA_RESET)
3093 dev0 = 1;
3094 else {
3095 dev0 = ata_devchk(ap, 0);
3096 if (slave_possible)
3097 dev1 = ata_devchk(ap, 1);
3098 }
3099
3100 if (dev0)
3101 devmask |= (1 << 0);
3102 if (dev1)
3103 devmask |= (1 << 1);
3104
3105 /* select device 0 again */
3106 ap->ops->dev_select(ap, 0);
3107
3108 /* issue bus reset */
3109 if (ap->flags & ATA_FLAG_SRST)
3110 if (ata_bus_softreset(ap, devmask))
3111 goto err_out;
3112
3113 /*
3114 * determine by signature whether we have ATA or ATAPI devices
3115 */
3116 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3117 if ((slave_possible) && (err != 0x81))
3118 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3119
3120 /* re-enable interrupts */
3121 ap->ops->irq_on(ap);
3122
3123 /* is double-select really necessary? */
3124 if (ap->device[1].class != ATA_DEV_NONE)
3125 ap->ops->dev_select(ap, 1);
3126 if (ap->device[0].class != ATA_DEV_NONE)
3127 ap->ops->dev_select(ap, 0);
3128
3129 /* if no devices were detected, disable this port */
3130 if ((ap->device[0].class == ATA_DEV_NONE) &&
3131 (ap->device[1].class == ATA_DEV_NONE))
3132 goto err_out;
3133
3134 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3135 /* set up device control for ATA_FLAG_SATA_RESET */
3136 iowrite8(ap->ctl, ioaddr->ctl_addr);
3137 }
3138
3139 DPRINTK("EXIT\n");
3140 return;
3141
3142 err_out:
3143 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3144 ap->ops->port_disable(ap);
3145
3146 DPRINTK("EXIT\n");
3147 }
3148
3149 /**
3150 * sata_phy_debounce - debounce SATA phy status
3151 * @ap: ATA port to debounce SATA phy status for
3152 * @params: timing parameters { interval, duratinon, timeout } in msec
3153 *
3154 * Make sure SStatus of @ap reaches stable state, determined by
3155 * holding the same value where DET is not 1 for @duration polled
3156 * every @interval, before @timeout. Timeout constraints the
3157 * beginning of the stable state. Because, after hot unplugging,
3158 * DET gets stuck at 1 on some controllers, this functions waits
3159 * until timeout then returns 0 if DET is stable at 1.
3160 *
3161 * LOCKING:
3162 * Kernel thread context (may sleep)
3163 *
3164 * RETURNS:
3165 * 0 on success, -errno on failure.
3166 */
3167 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
3168 {
3169 unsigned long interval_msec = params[0];
3170 unsigned long duration = params[1] * HZ / 1000;
3171 unsigned long timeout = jiffies + params[2] * HZ / 1000;
3172 unsigned long last_jiffies;
3173 u32 last, cur;
3174 int rc;
3175
3176 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3177 return rc;
3178 cur &= 0xf;
3179
3180 last = cur;
3181 last_jiffies = jiffies;
3182
3183 while (1) {
3184 msleep(interval_msec);
3185 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3186 return rc;
3187 cur &= 0xf;
3188
3189 /* DET stable? */
3190 if (cur == last) {
3191 if (cur == 1 && time_before(jiffies, timeout))
3192 continue;
3193 if (time_after(jiffies, last_jiffies + duration))
3194 return 0;
3195 continue;
3196 }
3197
3198 /* unstable, start over */
3199 last = cur;
3200 last_jiffies = jiffies;
3201
3202 /* check timeout */
3203 if (time_after(jiffies, timeout))
3204 return -EBUSY;
3205 }
3206 }
3207
3208 /**
3209 * sata_phy_resume - resume SATA phy
3210 * @ap: ATA port to resume SATA phy for
3211 * @params: timing parameters { interval, duratinon, timeout } in msec
3212 *
3213 * Resume SATA phy of @ap and debounce it.
3214 *
3215 * LOCKING:
3216 * Kernel thread context (may sleep)
3217 *
3218 * RETURNS:
3219 * 0 on success, -errno on failure.
3220 */
3221 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
3222 {
3223 u32 scontrol;
3224 int rc;
3225
3226 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3227 return rc;
3228
3229 scontrol = (scontrol & 0x0f0) | 0x300;
3230
3231 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3232 return rc;
3233
3234 /* Some PHYs react badly if SStatus is pounded immediately
3235 * after resuming. Delay 200ms before debouncing.
3236 */
3237 msleep(200);
3238
3239 return sata_phy_debounce(ap, params);
3240 }
3241
3242 static void ata_wait_spinup(struct ata_port *ap)
3243 {
3244 struct ata_eh_context *ehc = &ap->eh_context;
3245 unsigned long end, secs;
3246 int rc;
3247
3248 /* first, debounce phy if SATA */
3249 if (ap->cbl == ATA_CBL_SATA) {
3250 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
3251
3252 /* if debounced successfully and offline, no need to wait */
3253 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
3254 return;
3255 }
3256
3257 /* okay, let's give the drive time to spin up */
3258 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
3259 secs = ((end - jiffies) + HZ - 1) / HZ;
3260
3261 if (time_after(jiffies, end))
3262 return;
3263
3264 if (secs > 5)
3265 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
3266 "(%lu secs)\n", secs);
3267
3268 schedule_timeout_uninterruptible(end - jiffies);
3269 }
3270
3271 /**
3272 * ata_std_prereset - prepare for reset
3273 * @ap: ATA port to be reset
3274 *
3275 * @ap is about to be reset. Initialize it.
3276 *
3277 * LOCKING:
3278 * Kernel thread context (may sleep)
3279 *
3280 * RETURNS:
3281 * 0 on success, -errno otherwise.
3282 */
3283 int ata_std_prereset(struct ata_port *ap)
3284 {
3285 struct ata_eh_context *ehc = &ap->eh_context;
3286 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3287 int rc;
3288
3289 /* handle link resume & hotplug spinup */
3290 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3291 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3292 ehc->i.action |= ATA_EH_HARDRESET;
3293
3294 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
3295 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
3296 ata_wait_spinup(ap);
3297
3298 /* if we're about to do hardreset, nothing more to do */
3299 if (ehc->i.action & ATA_EH_HARDRESET)
3300 return 0;
3301
3302 /* if SATA, resume phy */
3303 if (ap->cbl == ATA_CBL_SATA) {
3304 rc = sata_phy_resume(ap, timing);
3305 if (rc && rc != -EOPNOTSUPP) {
3306 /* phy resume failed */
3307 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3308 "link for reset (errno=%d)\n", rc);
3309 return rc;
3310 }
3311 }
3312
3313 /* Wait for !BSY if the controller can wait for the first D2H
3314 * Reg FIS and we don't know that no device is attached.
3315 */
3316 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
3317 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3318
3319 return 0;
3320 }
3321
3322 /**
3323 * ata_std_softreset - reset host port via ATA SRST
3324 * @ap: port to reset
3325 * @classes: resulting classes of attached devices
3326 *
3327 * Reset host port using ATA SRST.
3328 *
3329 * LOCKING:
3330 * Kernel thread context (may sleep)
3331 *
3332 * RETURNS:
3333 * 0 on success, -errno otherwise.
3334 */
3335 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3336 {
3337 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3338 unsigned int devmask = 0, err_mask;
3339 u8 err;
3340
3341 DPRINTK("ENTER\n");
3342
3343 if (ata_port_offline(ap)) {
3344 classes[0] = ATA_DEV_NONE;
3345 goto out;
3346 }
3347
3348 /* determine if device 0/1 are present */
3349 if (ata_devchk(ap, 0))
3350 devmask |= (1 << 0);
3351 if (slave_possible && ata_devchk(ap, 1))
3352 devmask |= (1 << 1);
3353
3354 /* select device 0 again */
3355 ap->ops->dev_select(ap, 0);
3356
3357 /* issue bus reset */
3358 DPRINTK("about to softreset, devmask=%x\n", devmask);
3359 err_mask = ata_bus_softreset(ap, devmask);
3360 if (err_mask) {
3361 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3362 err_mask);
3363 return -EIO;
3364 }
3365
3366 /* determine by signature whether we have ATA or ATAPI devices */
3367 classes[0] = ata_dev_try_classify(ap, 0, &err);
3368 if (slave_possible && err != 0x81)
3369 classes[1] = ata_dev_try_classify(ap, 1, &err);
3370
3371 out:
3372 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3373 return 0;
3374 }
3375
3376 /**
3377 * sata_port_hardreset - reset port via SATA phy reset
3378 * @ap: port to reset
3379 * @timing: timing parameters { interval, duratinon, timeout } in msec
3380 *
3381 * SATA phy-reset host port using DET bits of SControl register.
3382 *
3383 * LOCKING:
3384 * Kernel thread context (may sleep)
3385 *
3386 * RETURNS:
3387 * 0 on success, -errno otherwise.
3388 */
3389 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3390 {
3391 u32 scontrol;
3392 int rc;
3393
3394 DPRINTK("ENTER\n");
3395
3396 if (sata_set_spd_needed(ap)) {
3397 /* SATA spec says nothing about how to reconfigure
3398 * spd. To be on the safe side, turn off phy during
3399 * reconfiguration. This works for at least ICH7 AHCI
3400 * and Sil3124.
3401 */
3402 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3403 goto out;
3404
3405 scontrol = (scontrol & 0x0f0) | 0x304;
3406
3407 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3408 goto out;
3409
3410 sata_set_spd(ap);
3411 }
3412
3413 /* issue phy wake/reset */
3414 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3415 goto out;
3416
3417 scontrol = (scontrol & 0x0f0) | 0x301;
3418
3419 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3420 goto out;
3421
3422 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3423 * 10.4.2 says at least 1 ms.
3424 */
3425 msleep(1);
3426
3427 /* bring phy back */
3428 rc = sata_phy_resume(ap, timing);
3429 out:
3430 DPRINTK("EXIT, rc=%d\n", rc);
3431 return rc;
3432 }
3433
3434 /**
3435 * sata_std_hardreset - reset host port via SATA phy reset
3436 * @ap: port to reset
3437 * @class: resulting class of attached device
3438 *
3439 * SATA phy-reset host port using DET bits of SControl register,
3440 * wait for !BSY and classify the attached device.
3441 *
3442 * LOCKING:
3443 * Kernel thread context (may sleep)
3444 *
3445 * RETURNS:
3446 * 0 on success, -errno otherwise.
3447 */
3448 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3449 {
3450 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3451 int rc;
3452
3453 DPRINTK("ENTER\n");
3454
3455 /* do hardreset */
3456 rc = sata_port_hardreset(ap, timing);
3457 if (rc) {
3458 ata_port_printk(ap, KERN_ERR,
3459 "COMRESET failed (errno=%d)\n", rc);
3460 return rc;
3461 }
3462
3463 /* TODO: phy layer with polling, timeouts, etc. */
3464 if (ata_port_offline(ap)) {
3465 *class = ATA_DEV_NONE;
3466 DPRINTK("EXIT, link offline\n");
3467 return 0;
3468 }
3469
3470 /* wait a while before checking status, see SRST for more info */
3471 msleep(150);
3472
3473 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3474 ata_port_printk(ap, KERN_ERR,
3475 "COMRESET failed (device not ready)\n");
3476 return -EIO;
3477 }
3478
3479 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3480
3481 *class = ata_dev_try_classify(ap, 0, NULL);
3482
3483 DPRINTK("EXIT, class=%u\n", *class);
3484 return 0;
3485 }
3486
3487 /**
3488 * ata_std_postreset - standard postreset callback
3489 * @ap: the target ata_port
3490 * @classes: classes of attached devices
3491 *
3492 * This function is invoked after a successful reset. Note that
3493 * the device might have been reset more than once using
3494 * different reset methods before postreset is invoked.
3495 *
3496 * LOCKING:
3497 * Kernel thread context (may sleep)
3498 */
3499 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3500 {
3501 u32 serror;
3502
3503 DPRINTK("ENTER\n");
3504
3505 /* print link status */
3506 sata_print_link_status(ap);
3507
3508 /* clear SError */
3509 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3510 sata_scr_write(ap, SCR_ERROR, serror);
3511
3512 /* re-enable interrupts */
3513 if (!ap->ops->error_handler)
3514 ap->ops->irq_on(ap);
3515
3516 /* is double-select really necessary? */
3517 if (classes[0] != ATA_DEV_NONE)
3518 ap->ops->dev_select(ap, 1);
3519 if (classes[1] != ATA_DEV_NONE)
3520 ap->ops->dev_select(ap, 0);
3521
3522 /* bail out if no device is present */
3523 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3524 DPRINTK("EXIT, no device\n");
3525 return;
3526 }
3527
3528 /* set up device control */
3529 if (ap->ioaddr.ctl_addr)
3530 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3531
3532 DPRINTK("EXIT\n");
3533 }
3534
3535 /**
3536 * ata_dev_same_device - Determine whether new ID matches configured device
3537 * @dev: device to compare against
3538 * @new_class: class of the new device
3539 * @new_id: IDENTIFY page of the new device
3540 *
3541 * Compare @new_class and @new_id against @dev and determine
3542 * whether @dev is the device indicated by @new_class and
3543 * @new_id.
3544 *
3545 * LOCKING:
3546 * None.
3547 *
3548 * RETURNS:
3549 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3550 */
3551 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3552 const u16 *new_id)
3553 {
3554 const u16 *old_id = dev->id;
3555 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3556 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3557 u64 new_n_sectors;
3558
3559 if (dev->class != new_class) {
3560 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3561 dev->class, new_class);
3562 return 0;
3563 }
3564
3565 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3566 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3567 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3568 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3569 new_n_sectors = ata_id_n_sectors(new_id);
3570
3571 if (strcmp(model[0], model[1])) {
3572 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3573 "'%s' != '%s'\n", model[0], model[1]);
3574 return 0;
3575 }
3576
3577 if (strcmp(serial[0], serial[1])) {
3578 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3579 "'%s' != '%s'\n", serial[0], serial[1]);
3580 return 0;
3581 }
3582
3583 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3584 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3585 "%llu != %llu\n",
3586 (unsigned long long)dev->n_sectors,
3587 (unsigned long long)new_n_sectors);
3588 /* Are we the boot time size - if so we appear to be the
3589 same disk at this point and our HPA got reapplied */
3590 if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
3591 && ata_id_hpa_enabled(new_id))
3592 return 1;
3593 return 0;
3594 }
3595
3596 return 1;
3597 }
3598
3599 /**
3600 * ata_dev_revalidate - Revalidate ATA device
3601 * @dev: device to revalidate
3602 * @readid_flags: read ID flags
3603 *
3604 * Re-read IDENTIFY page and make sure @dev is still attached to
3605 * the port.
3606 *
3607 * LOCKING:
3608 * Kernel thread context (may sleep)
3609 *
3610 * RETURNS:
3611 * 0 on success, negative errno otherwise
3612 */
3613 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3614 {
3615 unsigned int class = dev->class;
3616 u16 *id = (void *)dev->ap->sector_buf;
3617 int rc;
3618
3619 if (!ata_dev_enabled(dev)) {
3620 rc = -ENODEV;
3621 goto fail;
3622 }
3623
3624 /* read ID data */
3625 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3626 if (rc)
3627 goto fail;
3628
3629 /* is the device still there? */
3630 if (!ata_dev_same_device(dev, class, id)) {
3631 rc = -ENODEV;
3632 goto fail;
3633 }
3634
3635 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3636
3637 /* configure device according to the new ID */
3638 rc = ata_dev_configure(dev);
3639 if (rc == 0)
3640 return 0;
3641
3642 fail:
3643 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3644 return rc;
3645 }
3646
3647 struct ata_blacklist_entry {
3648 const char *model_num;
3649 const char *model_rev;
3650 unsigned long horkage;
3651 };
3652
3653 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3654 /* Devices with DMA related problems under Linux */
3655 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3656 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3657 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3658 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3659 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3660 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3661 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3662 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3663 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3664 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3665 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3666 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3667 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3668 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3669 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3670 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3671 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3672 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3673 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3674 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3675 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3676 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3677 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3678 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3679 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3680 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3681 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3682 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3683 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3684
3685 /* Weird ATAPI devices */
3686 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3687 ATA_HORKAGE_DMA_RW_ONLY },
3688
3689 /* Devices we expect to fail diagnostics */
3690
3691 /* Devices where NCQ should be avoided */
3692 /* NCQ is slow */
3693 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3694 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3695 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3696 /* NCQ is broken */
3697 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3698 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3699 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3700 /* Blacklist entries taken from Silicon Image 3124/3132
3701 Windows driver .inf file - also several Linux problem reports */
3702 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3703 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3704 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3705
3706 /* Devices with NCQ limits */
3707
3708 /* End Marker */
3709 { }
3710 };
3711
3712 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3713 {
3714 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3715 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3716 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3717
3718 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3719 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3720
3721 while (ad->model_num) {
3722 if (!strcmp(ad->model_num, model_num)) {
3723 if (ad->model_rev == NULL)
3724 return ad->horkage;
3725 if (!strcmp(ad->model_rev, model_rev))
3726 return ad->horkage;
3727 }
3728 ad++;
3729 }
3730 return 0;
3731 }
3732
3733 static int ata_dma_blacklisted(const struct ata_device *dev)
3734 {
3735 /* We don't support polling DMA.
3736 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3737 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3738 */
3739 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3740 (dev->flags & ATA_DFLAG_CDB_INTR))
3741 return 1;
3742 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3743 }
3744
3745 /**
3746 * ata_dev_xfermask - Compute supported xfermask of the given device
3747 * @dev: Device to compute xfermask for
3748 *
3749 * Compute supported xfermask of @dev and store it in
3750 * dev->*_mask. This function is responsible for applying all
3751 * known limits including host controller limits, device
3752 * blacklist, etc...
3753 *
3754 * LOCKING:
3755 * None.
3756 */
3757 static void ata_dev_xfermask(struct ata_device *dev)
3758 {
3759 struct ata_port *ap = dev->ap;
3760 struct ata_host *host = ap->host;
3761 unsigned long xfer_mask;
3762
3763 /* controller modes available */
3764 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3765 ap->mwdma_mask, ap->udma_mask);
3766
3767 /* drive modes available */
3768 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3769 dev->mwdma_mask, dev->udma_mask);
3770 xfer_mask &= ata_id_xfermask(dev->id);
3771
3772 /*
3773 * CFA Advanced TrueIDE timings are not allowed on a shared
3774 * cable
3775 */
3776 if (ata_dev_pair(dev)) {
3777 /* No PIO5 or PIO6 */
3778 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3779 /* No MWDMA3 or MWDMA 4 */
3780 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3781 }
3782
3783 if (ata_dma_blacklisted(dev)) {
3784 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3785 ata_dev_printk(dev, KERN_WARNING,
3786 "device is on DMA blacklist, disabling DMA\n");
3787 }
3788
3789 if ((host->flags & ATA_HOST_SIMPLEX) &&
3790 host->simplex_claimed && host->simplex_claimed != ap) {
3791 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3792 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3793 "other device, disabling DMA\n");
3794 }
3795
3796 if (ap->flags & ATA_FLAG_NO_IORDY)
3797 xfer_mask &= ata_pio_mask_no_iordy(dev);
3798
3799 if (ap->ops->mode_filter)
3800 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3801
3802 /* Apply cable rule here. Don't apply it early because when
3803 * we handle hot plug the cable type can itself change.
3804 * Check this last so that we know if the transfer rate was
3805 * solely limited by the cable.
3806 * Unknown or 80 wire cables reported host side are checked
3807 * drive side as well. Cases where we know a 40wire cable
3808 * is used safely for 80 are not checked here.
3809 */
3810 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3811 /* UDMA/44 or higher would be available */
3812 if((ap->cbl == ATA_CBL_PATA40) ||
3813 (ata_drive_40wire(dev->id) &&
3814 (ap->cbl == ATA_CBL_PATA_UNK ||
3815 ap->cbl == ATA_CBL_PATA80))) {
3816 ata_dev_printk(dev, KERN_WARNING,
3817 "limited to UDMA/33 due to 40-wire cable\n");
3818 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3819 }
3820
3821 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3822 &dev->mwdma_mask, &dev->udma_mask);
3823 }
3824
3825 /**
3826 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3827 * @dev: Device to which command will be sent
3828 *
3829 * Issue SET FEATURES - XFER MODE command to device @dev
3830 * on port @ap.
3831 *
3832 * LOCKING:
3833 * PCI/etc. bus probe sem.
3834 *
3835 * RETURNS:
3836 * 0 on success, AC_ERR_* mask otherwise.
3837 */
3838
3839 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3840 {
3841 struct ata_taskfile tf;
3842 unsigned int err_mask;
3843
3844 /* set up set-features taskfile */
3845 DPRINTK("set features - xfer mode\n");
3846
3847 ata_tf_init(dev, &tf);
3848 tf.command = ATA_CMD_SET_FEATURES;
3849 tf.feature = SETFEATURES_XFER;
3850 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3851 tf.protocol = ATA_PROT_NODATA;
3852 tf.nsect = dev->xfer_mode;
3853
3854 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3855
3856 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3857 return err_mask;
3858 }
3859
3860 /**
3861 * ata_dev_init_params - Issue INIT DEV PARAMS command
3862 * @dev: Device to which command will be sent
3863 * @heads: Number of heads (taskfile parameter)
3864 * @sectors: Number of sectors (taskfile parameter)
3865 *
3866 * LOCKING:
3867 * Kernel thread context (may sleep)
3868 *
3869 * RETURNS:
3870 * 0 on success, AC_ERR_* mask otherwise.
3871 */
3872 static unsigned int ata_dev_init_params(struct ata_device *dev,
3873 u16 heads, u16 sectors)
3874 {
3875 struct ata_taskfile tf;
3876 unsigned int err_mask;
3877
3878 /* Number of sectors per track 1-255. Number of heads 1-16 */
3879 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3880 return AC_ERR_INVALID;
3881
3882 /* set up init dev params taskfile */
3883 DPRINTK("init dev params \n");
3884
3885 ata_tf_init(dev, &tf);
3886 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3887 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3888 tf.protocol = ATA_PROT_NODATA;
3889 tf.nsect = sectors;
3890 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3891
3892 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3893
3894 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3895 return err_mask;
3896 }
3897
3898 /**
3899 * ata_sg_clean - Unmap DMA memory associated with command
3900 * @qc: Command containing DMA memory to be released
3901 *
3902 * Unmap all mapped DMA memory associated with this command.
3903 *
3904 * LOCKING:
3905 * spin_lock_irqsave(host lock)
3906 */
3907 void ata_sg_clean(struct ata_queued_cmd *qc)
3908 {
3909 struct ata_port *ap = qc->ap;
3910 struct scatterlist *sg = qc->__sg;
3911 int dir = qc->dma_dir;
3912 void *pad_buf = NULL;
3913
3914 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3915 WARN_ON(sg == NULL);
3916
3917 if (qc->flags & ATA_QCFLAG_SINGLE)
3918 WARN_ON(qc->n_elem > 1);
3919
3920 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3921
3922 /* if we padded the buffer out to 32-bit bound, and data
3923 * xfer direction is from-device, we must copy from the
3924 * pad buffer back into the supplied buffer
3925 */
3926 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3927 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3928
3929 if (qc->flags & ATA_QCFLAG_SG) {
3930 if (qc->n_elem)
3931 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3932 /* restore last sg */
3933 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3934 if (pad_buf) {
3935 struct scatterlist *psg = &qc->pad_sgent;
3936 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3937 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3938 kunmap_atomic(addr, KM_IRQ0);
3939 }
3940 } else {
3941 if (qc->n_elem)
3942 dma_unmap_single(ap->dev,
3943 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3944 dir);
3945 /* restore sg */
3946 sg->length += qc->pad_len;
3947 if (pad_buf)
3948 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3949 pad_buf, qc->pad_len);
3950 }
3951
3952 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3953 qc->__sg = NULL;
3954 }
3955
3956 /**
3957 * ata_fill_sg - Fill PCI IDE PRD table
3958 * @qc: Metadata associated with taskfile to be transferred
3959 *
3960 * Fill PCI IDE PRD (scatter-gather) table with segments
3961 * associated with the current disk command.
3962 *
3963 * LOCKING:
3964 * spin_lock_irqsave(host lock)
3965 *
3966 */
3967 static void ata_fill_sg(struct ata_queued_cmd *qc)
3968 {
3969 struct ata_port *ap = qc->ap;
3970 struct scatterlist *sg;
3971 unsigned int idx;
3972
3973 WARN_ON(qc->__sg == NULL);
3974 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3975
3976 idx = 0;
3977 ata_for_each_sg(sg, qc) {
3978 u32 addr, offset;
3979 u32 sg_len, len;
3980
3981 /* determine if physical DMA addr spans 64K boundary.
3982 * Note h/w doesn't support 64-bit, so we unconditionally
3983 * truncate dma_addr_t to u32.
3984 */
3985 addr = (u32) sg_dma_address(sg);
3986 sg_len = sg_dma_len(sg);
3987
3988 while (sg_len) {
3989 offset = addr & 0xffff;
3990 len = sg_len;
3991 if ((offset + sg_len) > 0x10000)
3992 len = 0x10000 - offset;
3993
3994 ap->prd[idx].addr = cpu_to_le32(addr);
3995 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3996 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3997
3998 idx++;
3999 sg_len -= len;
4000 addr += len;
4001 }
4002 }
4003
4004 if (idx)
4005 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4006 }
4007 /**
4008 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4009 * @qc: Metadata associated with taskfile to check
4010 *
4011 * Allow low-level driver to filter ATA PACKET commands, returning
4012 * a status indicating whether or not it is OK to use DMA for the
4013 * supplied PACKET command.
4014 *
4015 * LOCKING:
4016 * spin_lock_irqsave(host lock)
4017 *
4018 * RETURNS: 0 when ATAPI DMA can be used
4019 * nonzero otherwise
4020 */
4021 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4022 {
4023 struct ata_port *ap = qc->ap;
4024 int rc = 0; /* Assume ATAPI DMA is OK by default */
4025
4026 /* some drives can only do ATAPI DMA on read/write */
4027 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4028 struct scsi_cmnd *cmd = qc->scsicmd;
4029 u8 *scsicmd = cmd->cmnd;
4030
4031 switch (scsicmd[0]) {
4032 case READ_10:
4033 case WRITE_10:
4034 case READ_12:
4035 case WRITE_12:
4036 case READ_6:
4037 case WRITE_6:
4038 /* atapi dma maybe ok */
4039 break;
4040 default:
4041 /* turn off atapi dma */
4042 return 1;
4043 }
4044 }
4045
4046 if (ap->ops->check_atapi_dma)
4047 rc = ap->ops->check_atapi_dma(qc);
4048
4049 return rc;
4050 }
4051 /**
4052 * ata_qc_prep - Prepare taskfile for submission
4053 * @qc: Metadata associated with taskfile to be prepared
4054 *
4055 * Prepare ATA taskfile for submission.
4056 *
4057 * LOCKING:
4058 * spin_lock_irqsave(host lock)
4059 */
4060 void ata_qc_prep(struct ata_queued_cmd *qc)
4061 {
4062 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4063 return;
4064
4065 ata_fill_sg(qc);
4066 }
4067
4068 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4069
4070 /**
4071 * ata_sg_init_one - Associate command with memory buffer
4072 * @qc: Command to be associated
4073 * @buf: Memory buffer
4074 * @buflen: Length of memory buffer, in bytes.
4075 *
4076 * Initialize the data-related elements of queued_cmd @qc
4077 * to point to a single memory buffer, @buf of byte length @buflen.
4078 *
4079 * LOCKING:
4080 * spin_lock_irqsave(host lock)
4081 */
4082
4083 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4084 {
4085 qc->flags |= ATA_QCFLAG_SINGLE;
4086
4087 qc->__sg = &qc->sgent;
4088 qc->n_elem = 1;
4089 qc->orig_n_elem = 1;
4090 qc->buf_virt = buf;
4091 qc->nbytes = buflen;
4092
4093 sg_init_one(&qc->sgent, buf, buflen);
4094 }
4095
4096 /**
4097 * ata_sg_init - Associate command with scatter-gather table.
4098 * @qc: Command to be associated
4099 * @sg: Scatter-gather table.
4100 * @n_elem: Number of elements in s/g table.
4101 *
4102 * Initialize the data-related elements of queued_cmd @qc
4103 * to point to a scatter-gather table @sg, containing @n_elem
4104 * elements.
4105 *
4106 * LOCKING:
4107 * spin_lock_irqsave(host lock)
4108 */
4109
4110 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4111 unsigned int n_elem)
4112 {
4113 qc->flags |= ATA_QCFLAG_SG;
4114 qc->__sg = sg;
4115 qc->n_elem = n_elem;
4116 qc->orig_n_elem = n_elem;
4117 }
4118
4119 /**
4120 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4121 * @qc: Command with memory buffer to be mapped.
4122 *
4123 * DMA-map the memory buffer associated with queued_cmd @qc.
4124 *
4125 * LOCKING:
4126 * spin_lock_irqsave(host lock)
4127 *
4128 * RETURNS:
4129 * Zero on success, negative on error.
4130 */
4131
4132 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4133 {
4134 struct ata_port *ap = qc->ap;
4135 int dir = qc->dma_dir;
4136 struct scatterlist *sg = qc->__sg;
4137 dma_addr_t dma_address;
4138 int trim_sg = 0;
4139
4140 /* we must lengthen transfers to end on a 32-bit boundary */
4141 qc->pad_len = sg->length & 3;
4142 if (qc->pad_len) {
4143 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4144 struct scatterlist *psg = &qc->pad_sgent;
4145
4146 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4147
4148 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4149
4150 if (qc->tf.flags & ATA_TFLAG_WRITE)
4151 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4152 qc->pad_len);
4153
4154 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4155 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4156 /* trim sg */
4157 sg->length -= qc->pad_len;
4158 if (sg->length == 0)
4159 trim_sg = 1;
4160
4161 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4162 sg->length, qc->pad_len);
4163 }
4164
4165 if (trim_sg) {
4166 qc->n_elem--;
4167 goto skip_map;
4168 }
4169
4170 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4171 sg->length, dir);
4172 if (dma_mapping_error(dma_address)) {
4173 /* restore sg */
4174 sg->length += qc->pad_len;
4175 return -1;
4176 }
4177
4178 sg_dma_address(sg) = dma_address;
4179 sg_dma_len(sg) = sg->length;
4180
4181 skip_map:
4182 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4183 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4184
4185 return 0;
4186 }
4187
4188 /**
4189 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4190 * @qc: Command with scatter-gather table to be mapped.
4191 *
4192 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4193 *
4194 * LOCKING:
4195 * spin_lock_irqsave(host lock)
4196 *
4197 * RETURNS:
4198 * Zero on success, negative on error.
4199 *
4200 */
4201
4202 static int ata_sg_setup(struct ata_queued_cmd *qc)
4203 {
4204 struct ata_port *ap = qc->ap;
4205 struct scatterlist *sg = qc->__sg;
4206 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4207 int n_elem, pre_n_elem, dir, trim_sg = 0;
4208
4209 VPRINTK("ENTER, ata%u\n", ap->print_id);
4210 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4211
4212 /* we must lengthen transfers to end on a 32-bit boundary */
4213 qc->pad_len = lsg->length & 3;
4214 if (qc->pad_len) {
4215 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4216 struct scatterlist *psg = &qc->pad_sgent;
4217 unsigned int offset;
4218
4219 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4220
4221 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4222
4223 /*
4224 * psg->page/offset are used to copy to-be-written
4225 * data in this function or read data in ata_sg_clean.
4226 */
4227 offset = lsg->offset + lsg->length - qc->pad_len;
4228 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4229 psg->offset = offset_in_page(offset);
4230
4231 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4232 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4233 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4234 kunmap_atomic(addr, KM_IRQ0);
4235 }
4236
4237 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4238 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4239 /* trim last sg */
4240 lsg->length -= qc->pad_len;
4241 if (lsg->length == 0)
4242 trim_sg = 1;
4243
4244 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4245 qc->n_elem - 1, lsg->length, qc->pad_len);
4246 }
4247
4248 pre_n_elem = qc->n_elem;
4249 if (trim_sg && pre_n_elem)
4250 pre_n_elem--;
4251
4252 if (!pre_n_elem) {
4253 n_elem = 0;
4254 goto skip_map;
4255 }
4256
4257 dir = qc->dma_dir;
4258 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4259 if (n_elem < 1) {
4260 /* restore last sg */
4261 lsg->length += qc->pad_len;
4262 return -1;
4263 }
4264
4265 DPRINTK("%d sg elements mapped\n", n_elem);
4266
4267 skip_map:
4268 qc->n_elem = n_elem;
4269
4270 return 0;
4271 }
4272
4273 /**
4274 * swap_buf_le16 - swap halves of 16-bit words in place
4275 * @buf: Buffer to swap
4276 * @buf_words: Number of 16-bit words in buffer.
4277 *
4278 * Swap halves of 16-bit words if needed to convert from
4279 * little-endian byte order to native cpu byte order, or
4280 * vice-versa.
4281 *
4282 * LOCKING:
4283 * Inherited from caller.
4284 */
4285 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4286 {
4287 #ifdef __BIG_ENDIAN
4288 unsigned int i;
4289
4290 for (i = 0; i < buf_words; i++)
4291 buf[i] = le16_to_cpu(buf[i]);
4292 #endif /* __BIG_ENDIAN */
4293 }
4294
4295 /**
4296 * ata_data_xfer - Transfer data by PIO
4297 * @adev: device to target
4298 * @buf: data buffer
4299 * @buflen: buffer length
4300 * @write_data: read/write
4301 *
4302 * Transfer data from/to the device data register by PIO.
4303 *
4304 * LOCKING:
4305 * Inherited from caller.
4306 */
4307 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4308 unsigned int buflen, int write_data)
4309 {
4310 struct ata_port *ap = adev->ap;
4311 unsigned int words = buflen >> 1;
4312
4313 /* Transfer multiple of 2 bytes */
4314 if (write_data)
4315 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4316 else
4317 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4318
4319 /* Transfer trailing 1 byte, if any. */
4320 if (unlikely(buflen & 0x01)) {
4321 u16 align_buf[1] = { 0 };
4322 unsigned char *trailing_buf = buf + buflen - 1;
4323
4324 if (write_data) {
4325 memcpy(align_buf, trailing_buf, 1);
4326 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4327 } else {
4328 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4329 memcpy(trailing_buf, align_buf, 1);
4330 }
4331 }
4332 }
4333
4334 /**
4335 * ata_data_xfer_noirq - Transfer data by PIO
4336 * @adev: device to target
4337 * @buf: data buffer
4338 * @buflen: buffer length
4339 * @write_data: read/write
4340 *
4341 * Transfer data from/to the device data register by PIO. Do the
4342 * transfer with interrupts disabled.
4343 *
4344 * LOCKING:
4345 * Inherited from caller.
4346 */
4347 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4348 unsigned int buflen, int write_data)
4349 {
4350 unsigned long flags;
4351 local_irq_save(flags);
4352 ata_data_xfer(adev, buf, buflen, write_data);
4353 local_irq_restore(flags);
4354 }
4355
4356
4357 /**
4358 * ata_pio_sector - Transfer a sector of data.
4359 * @qc: Command on going
4360 *
4361 * Transfer qc->sect_size bytes of data from/to the ATA device.
4362 *
4363 * LOCKING:
4364 * Inherited from caller.
4365 */
4366
4367 static void ata_pio_sector(struct ata_queued_cmd *qc)
4368 {
4369 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4370 struct scatterlist *sg = qc->__sg;
4371 struct ata_port *ap = qc->ap;
4372 struct page *page;
4373 unsigned int offset;
4374 unsigned char *buf;
4375
4376 if (qc->curbytes == qc->nbytes - qc->sect_size)
4377 ap->hsm_task_state = HSM_ST_LAST;
4378
4379 page = sg[qc->cursg].page;
4380 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4381
4382 /* get the current page and offset */
4383 page = nth_page(page, (offset >> PAGE_SHIFT));
4384 offset %= PAGE_SIZE;
4385
4386 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4387
4388 if (PageHighMem(page)) {
4389 unsigned long flags;
4390
4391 /* FIXME: use a bounce buffer */
4392 local_irq_save(flags);
4393 buf = kmap_atomic(page, KM_IRQ0);
4394
4395 /* do the actual data transfer */
4396 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4397
4398 kunmap_atomic(buf, KM_IRQ0);
4399 local_irq_restore(flags);
4400 } else {
4401 buf = page_address(page);
4402 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4403 }
4404
4405 qc->curbytes += qc->sect_size;
4406 qc->cursg_ofs += qc->sect_size;
4407
4408 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4409 qc->cursg++;
4410 qc->cursg_ofs = 0;
4411 }
4412 }
4413
4414 /**
4415 * ata_pio_sectors - Transfer one or many sectors.
4416 * @qc: Command on going
4417 *
4418 * Transfer one or many sectors of data from/to the
4419 * ATA device for the DRQ request.
4420 *
4421 * LOCKING:
4422 * Inherited from caller.
4423 */
4424
4425 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4426 {
4427 if (is_multi_taskfile(&qc->tf)) {
4428 /* READ/WRITE MULTIPLE */
4429 unsigned int nsect;
4430
4431 WARN_ON(qc->dev->multi_count == 0);
4432
4433 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4434 qc->dev->multi_count);
4435 while (nsect--)
4436 ata_pio_sector(qc);
4437 } else
4438 ata_pio_sector(qc);
4439 }
4440
4441 /**
4442 * atapi_send_cdb - Write CDB bytes to hardware
4443 * @ap: Port to which ATAPI device is attached.
4444 * @qc: Taskfile currently active
4445 *
4446 * When device has indicated its readiness to accept
4447 * a CDB, this function is called. Send the CDB.
4448 *
4449 * LOCKING:
4450 * caller.
4451 */
4452
4453 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4454 {
4455 /* send SCSI cdb */
4456 DPRINTK("send cdb\n");
4457 WARN_ON(qc->dev->cdb_len < 12);
4458
4459 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4460 ata_altstatus(ap); /* flush */
4461
4462 switch (qc->tf.protocol) {
4463 case ATA_PROT_ATAPI:
4464 ap->hsm_task_state = HSM_ST;
4465 break;
4466 case ATA_PROT_ATAPI_NODATA:
4467 ap->hsm_task_state = HSM_ST_LAST;
4468 break;
4469 case ATA_PROT_ATAPI_DMA:
4470 ap->hsm_task_state = HSM_ST_LAST;
4471 /* initiate bmdma */
4472 ap->ops->bmdma_start(qc);
4473 break;
4474 }
4475 }
4476
4477 /**
4478 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4479 * @qc: Command on going
4480 * @bytes: number of bytes
4481 *
4482 * Transfer Transfer data from/to the ATAPI device.
4483 *
4484 * LOCKING:
4485 * Inherited from caller.
4486 *
4487 */
4488
4489 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4490 {
4491 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4492 struct scatterlist *sg = qc->__sg;
4493 struct ata_port *ap = qc->ap;
4494 struct page *page;
4495 unsigned char *buf;
4496 unsigned int offset, count;
4497
4498 if (qc->curbytes + bytes >= qc->nbytes)
4499 ap->hsm_task_state = HSM_ST_LAST;
4500
4501 next_sg:
4502 if (unlikely(qc->cursg >= qc->n_elem)) {
4503 /*
4504 * The end of qc->sg is reached and the device expects
4505 * more data to transfer. In order not to overrun qc->sg
4506 * and fulfill length specified in the byte count register,
4507 * - for read case, discard trailing data from the device
4508 * - for write case, padding zero data to the device
4509 */
4510 u16 pad_buf[1] = { 0 };
4511 unsigned int words = bytes >> 1;
4512 unsigned int i;
4513
4514 if (words) /* warning if bytes > 1 */
4515 ata_dev_printk(qc->dev, KERN_WARNING,
4516 "%u bytes trailing data\n", bytes);
4517
4518 for (i = 0; i < words; i++)
4519 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4520
4521 ap->hsm_task_state = HSM_ST_LAST;
4522 return;
4523 }
4524
4525 sg = &qc->__sg[qc->cursg];
4526
4527 page = sg->page;
4528 offset = sg->offset + qc->cursg_ofs;
4529
4530 /* get the current page and offset */
4531 page = nth_page(page, (offset >> PAGE_SHIFT));
4532 offset %= PAGE_SIZE;
4533
4534 /* don't overrun current sg */
4535 count = min(sg->length - qc->cursg_ofs, bytes);
4536
4537 /* don't cross page boundaries */
4538 count = min(count, (unsigned int)PAGE_SIZE - offset);
4539
4540 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4541
4542 if (PageHighMem(page)) {
4543 unsigned long flags;
4544
4545 /* FIXME: use bounce buffer */
4546 local_irq_save(flags);
4547 buf = kmap_atomic(page, KM_IRQ0);
4548
4549 /* do the actual data transfer */
4550 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4551
4552 kunmap_atomic(buf, KM_IRQ0);
4553 local_irq_restore(flags);
4554 } else {
4555 buf = page_address(page);
4556 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4557 }
4558
4559 bytes -= count;
4560 qc->curbytes += count;
4561 qc->cursg_ofs += count;
4562
4563 if (qc->cursg_ofs == sg->length) {
4564 qc->cursg++;
4565 qc->cursg_ofs = 0;
4566 }
4567
4568 if (bytes)
4569 goto next_sg;
4570 }
4571
4572 /**
4573 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4574 * @qc: Command on going
4575 *
4576 * Transfer Transfer data from/to the ATAPI device.
4577 *
4578 * LOCKING:
4579 * Inherited from caller.
4580 */
4581
4582 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4583 {
4584 struct ata_port *ap = qc->ap;
4585 struct ata_device *dev = qc->dev;
4586 unsigned int ireason, bc_lo, bc_hi, bytes;
4587 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4588
4589 /* Abuse qc->result_tf for temp storage of intermediate TF
4590 * here to save some kernel stack usage.
4591 * For normal completion, qc->result_tf is not relevant. For
4592 * error, qc->result_tf is later overwritten by ata_qc_complete().
4593 * So, the correctness of qc->result_tf is not affected.
4594 */
4595 ap->ops->tf_read(ap, &qc->result_tf);
4596 ireason = qc->result_tf.nsect;
4597 bc_lo = qc->result_tf.lbam;
4598 bc_hi = qc->result_tf.lbah;
4599 bytes = (bc_hi << 8) | bc_lo;
4600
4601 /* shall be cleared to zero, indicating xfer of data */
4602 if (ireason & (1 << 0))
4603 goto err_out;
4604
4605 /* make sure transfer direction matches expected */
4606 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4607 if (do_write != i_write)
4608 goto err_out;
4609
4610 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4611
4612 __atapi_pio_bytes(qc, bytes);
4613
4614 return;
4615
4616 err_out:
4617 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4618 qc->err_mask |= AC_ERR_HSM;
4619 ap->hsm_task_state = HSM_ST_ERR;
4620 }
4621
4622 /**
4623 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4624 * @ap: the target ata_port
4625 * @qc: qc on going
4626 *
4627 * RETURNS:
4628 * 1 if ok in workqueue, 0 otherwise.
4629 */
4630
4631 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4632 {
4633 if (qc->tf.flags & ATA_TFLAG_POLLING)
4634 return 1;
4635
4636 if (ap->hsm_task_state == HSM_ST_FIRST) {
4637 if (qc->tf.protocol == ATA_PROT_PIO &&
4638 (qc->tf.flags & ATA_TFLAG_WRITE))
4639 return 1;
4640
4641 if (is_atapi_taskfile(&qc->tf) &&
4642 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4643 return 1;
4644 }
4645
4646 return 0;
4647 }
4648
4649 /**
4650 * ata_hsm_qc_complete - finish a qc running on standard HSM
4651 * @qc: Command to complete
4652 * @in_wq: 1 if called from workqueue, 0 otherwise
4653 *
4654 * Finish @qc which is running on standard HSM.
4655 *
4656 * LOCKING:
4657 * If @in_wq is zero, spin_lock_irqsave(host lock).
4658 * Otherwise, none on entry and grabs host lock.
4659 */
4660 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4661 {
4662 struct ata_port *ap = qc->ap;
4663 unsigned long flags;
4664
4665 if (ap->ops->error_handler) {
4666 if (in_wq) {
4667 spin_lock_irqsave(ap->lock, flags);
4668
4669 /* EH might have kicked in while host lock is
4670 * released.
4671 */
4672 qc = ata_qc_from_tag(ap, qc->tag);
4673 if (qc) {
4674 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4675 ap->ops->irq_on(ap);
4676 ata_qc_complete(qc);
4677 } else
4678 ata_port_freeze(ap);
4679 }
4680
4681 spin_unlock_irqrestore(ap->lock, flags);
4682 } else {
4683 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4684 ata_qc_complete(qc);
4685 else
4686 ata_port_freeze(ap);
4687 }
4688 } else {
4689 if (in_wq) {
4690 spin_lock_irqsave(ap->lock, flags);
4691 ap->ops->irq_on(ap);
4692 ata_qc_complete(qc);
4693 spin_unlock_irqrestore(ap->lock, flags);
4694 } else
4695 ata_qc_complete(qc);
4696 }
4697
4698 ata_altstatus(ap); /* flush */
4699 }
4700
4701 /**
4702 * ata_hsm_move - move the HSM to the next state.
4703 * @ap: the target ata_port
4704 * @qc: qc on going
4705 * @status: current device status
4706 * @in_wq: 1 if called from workqueue, 0 otherwise
4707 *
4708 * RETURNS:
4709 * 1 when poll next status needed, 0 otherwise.
4710 */
4711 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4712 u8 status, int in_wq)
4713 {
4714 unsigned long flags = 0;
4715 int poll_next;
4716
4717 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4718
4719 /* Make sure ata_qc_issue_prot() does not throw things
4720 * like DMA polling into the workqueue. Notice that
4721 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4722 */
4723 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4724
4725 fsm_start:
4726 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4727 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4728
4729 switch (ap->hsm_task_state) {
4730 case HSM_ST_FIRST:
4731 /* Send first data block or PACKET CDB */
4732
4733 /* If polling, we will stay in the work queue after
4734 * sending the data. Otherwise, interrupt handler
4735 * takes over after sending the data.
4736 */
4737 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4738
4739 /* check device status */
4740 if (unlikely((status & ATA_DRQ) == 0)) {
4741 /* handle BSY=0, DRQ=0 as error */
4742 if (likely(status & (ATA_ERR | ATA_DF)))
4743 /* device stops HSM for abort/error */
4744 qc->err_mask |= AC_ERR_DEV;
4745 else
4746 /* HSM violation. Let EH handle this */
4747 qc->err_mask |= AC_ERR_HSM;
4748
4749 ap->hsm_task_state = HSM_ST_ERR;
4750 goto fsm_start;
4751 }
4752
4753 /* Device should not ask for data transfer (DRQ=1)
4754 * when it finds something wrong.
4755 * We ignore DRQ here and stop the HSM by
4756 * changing hsm_task_state to HSM_ST_ERR and
4757 * let the EH abort the command or reset the device.
4758 */
4759 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4760 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4761 "error, dev_stat 0x%X\n", status);
4762 qc->err_mask |= AC_ERR_HSM;
4763 ap->hsm_task_state = HSM_ST_ERR;
4764 goto fsm_start;
4765 }
4766
4767 /* Send the CDB (atapi) or the first data block (ata pio out).
4768 * During the state transition, interrupt handler shouldn't
4769 * be invoked before the data transfer is complete and
4770 * hsm_task_state is changed. Hence, the following locking.
4771 */
4772 if (in_wq)
4773 spin_lock_irqsave(ap->lock, flags);
4774
4775 if (qc->tf.protocol == ATA_PROT_PIO) {
4776 /* PIO data out protocol.
4777 * send first data block.
4778 */
4779
4780 /* ata_pio_sectors() might change the state
4781 * to HSM_ST_LAST. so, the state is changed here
4782 * before ata_pio_sectors().
4783 */
4784 ap->hsm_task_state = HSM_ST;
4785 ata_pio_sectors(qc);
4786 ata_altstatus(ap); /* flush */
4787 } else
4788 /* send CDB */
4789 atapi_send_cdb(ap, qc);
4790
4791 if (in_wq)
4792 spin_unlock_irqrestore(ap->lock, flags);
4793
4794 /* if polling, ata_pio_task() handles the rest.
4795 * otherwise, interrupt handler takes over from here.
4796 */
4797 break;
4798
4799 case HSM_ST:
4800 /* complete command or read/write the data register */
4801 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4802 /* ATAPI PIO protocol */
4803 if ((status & ATA_DRQ) == 0) {
4804 /* No more data to transfer or device error.
4805 * Device error will be tagged in HSM_ST_LAST.
4806 */
4807 ap->hsm_task_state = HSM_ST_LAST;
4808 goto fsm_start;
4809 }
4810
4811 /* Device should not ask for data transfer (DRQ=1)
4812 * when it finds something wrong.
4813 * We ignore DRQ here and stop the HSM by
4814 * changing hsm_task_state to HSM_ST_ERR and
4815 * let the EH abort the command or reset the device.
4816 */
4817 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4818 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4819 "device error, dev_stat 0x%X\n",
4820 status);
4821 qc->err_mask |= AC_ERR_HSM;
4822 ap->hsm_task_state = HSM_ST_ERR;
4823 goto fsm_start;
4824 }
4825
4826 atapi_pio_bytes(qc);
4827
4828 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4829 /* bad ireason reported by device */
4830 goto fsm_start;
4831
4832 } else {
4833 /* ATA PIO protocol */
4834 if (unlikely((status & ATA_DRQ) == 0)) {
4835 /* handle BSY=0, DRQ=0 as error */
4836 if (likely(status & (ATA_ERR | ATA_DF)))
4837 /* device stops HSM for abort/error */
4838 qc->err_mask |= AC_ERR_DEV;
4839 else
4840 /* HSM violation. Let EH handle this.
4841 * Phantom devices also trigger this
4842 * condition. Mark hint.
4843 */
4844 qc->err_mask |= AC_ERR_HSM |
4845 AC_ERR_NODEV_HINT;
4846
4847 ap->hsm_task_state = HSM_ST_ERR;
4848 goto fsm_start;
4849 }
4850
4851 /* For PIO reads, some devices may ask for
4852 * data transfer (DRQ=1) alone with ERR=1.
4853 * We respect DRQ here and transfer one
4854 * block of junk data before changing the
4855 * hsm_task_state to HSM_ST_ERR.
4856 *
4857 * For PIO writes, ERR=1 DRQ=1 doesn't make
4858 * sense since the data block has been
4859 * transferred to the device.
4860 */
4861 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4862 /* data might be corrputed */
4863 qc->err_mask |= AC_ERR_DEV;
4864
4865 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4866 ata_pio_sectors(qc);
4867 ata_altstatus(ap);
4868 status = ata_wait_idle(ap);
4869 }
4870
4871 if (status & (ATA_BUSY | ATA_DRQ))
4872 qc->err_mask |= AC_ERR_HSM;
4873
4874 /* ata_pio_sectors() might change the
4875 * state to HSM_ST_LAST. so, the state
4876 * is changed after ata_pio_sectors().
4877 */
4878 ap->hsm_task_state = HSM_ST_ERR;
4879 goto fsm_start;
4880 }
4881
4882 ata_pio_sectors(qc);
4883
4884 if (ap->hsm_task_state == HSM_ST_LAST &&
4885 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4886 /* all data read */
4887 ata_altstatus(ap);
4888 status = ata_wait_idle(ap);
4889 goto fsm_start;
4890 }
4891 }
4892
4893 ata_altstatus(ap); /* flush */
4894 poll_next = 1;
4895 break;
4896
4897 case HSM_ST_LAST:
4898 if (unlikely(!ata_ok(status))) {
4899 qc->err_mask |= __ac_err_mask(status);
4900 ap->hsm_task_state = HSM_ST_ERR;
4901 goto fsm_start;
4902 }
4903
4904 /* no more data to transfer */
4905 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4906 ap->print_id, qc->dev->devno, status);
4907
4908 WARN_ON(qc->err_mask);
4909
4910 ap->hsm_task_state = HSM_ST_IDLE;
4911
4912 /* complete taskfile transaction */
4913 ata_hsm_qc_complete(qc, in_wq);
4914
4915 poll_next = 0;
4916 break;
4917
4918 case HSM_ST_ERR:
4919 /* make sure qc->err_mask is available to
4920 * know what's wrong and recover
4921 */
4922 WARN_ON(qc->err_mask == 0);
4923
4924 ap->hsm_task_state = HSM_ST_IDLE;
4925
4926 /* complete taskfile transaction */
4927 ata_hsm_qc_complete(qc, in_wq);
4928
4929 poll_next = 0;
4930 break;
4931 default:
4932 poll_next = 0;
4933 BUG();
4934 }
4935
4936 return poll_next;
4937 }
4938
4939 static void ata_pio_task(struct work_struct *work)
4940 {
4941 struct ata_port *ap =
4942 container_of(work, struct ata_port, port_task.work);
4943 struct ata_queued_cmd *qc = ap->port_task_data;
4944 u8 status;
4945 int poll_next;
4946
4947 fsm_start:
4948 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4949
4950 /*
4951 * This is purely heuristic. This is a fast path.
4952 * Sometimes when we enter, BSY will be cleared in
4953 * a chk-status or two. If not, the drive is probably seeking
4954 * or something. Snooze for a couple msecs, then
4955 * chk-status again. If still busy, queue delayed work.
4956 */
4957 status = ata_busy_wait(ap, ATA_BUSY, 5);
4958 if (status & ATA_BUSY) {
4959 msleep(2);
4960 status = ata_busy_wait(ap, ATA_BUSY, 10);
4961 if (status & ATA_BUSY) {
4962 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4963 return;
4964 }
4965 }
4966
4967 /* move the HSM */
4968 poll_next = ata_hsm_move(ap, qc, status, 1);
4969
4970 /* another command or interrupt handler
4971 * may be running at this point.
4972 */
4973 if (poll_next)
4974 goto fsm_start;
4975 }
4976
4977 /**
4978 * ata_qc_new - Request an available ATA command, for queueing
4979 * @ap: Port associated with device @dev
4980 * @dev: Device from whom we request an available command structure
4981 *
4982 * LOCKING:
4983 * None.
4984 */
4985
4986 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4987 {
4988 struct ata_queued_cmd *qc = NULL;
4989 unsigned int i;
4990
4991 /* no command while frozen */
4992 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4993 return NULL;
4994
4995 /* the last tag is reserved for internal command. */
4996 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4997 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4998 qc = __ata_qc_from_tag(ap, i);
4999 break;
5000 }
5001
5002 if (qc)
5003 qc->tag = i;
5004
5005 return qc;
5006 }
5007
5008 /**
5009 * ata_qc_new_init - Request an available ATA command, and initialize it
5010 * @dev: Device from whom we request an available command structure
5011 *
5012 * LOCKING:
5013 * None.
5014 */
5015
5016 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5017 {
5018 struct ata_port *ap = dev->ap;
5019 struct ata_queued_cmd *qc;
5020
5021 qc = ata_qc_new(ap);
5022 if (qc) {
5023 qc->scsicmd = NULL;
5024 qc->ap = ap;
5025 qc->dev = dev;
5026
5027 ata_qc_reinit(qc);
5028 }
5029
5030 return qc;
5031 }
5032
5033 /**
5034 * ata_qc_free - free unused ata_queued_cmd
5035 * @qc: Command to complete
5036 *
5037 * Designed to free unused ata_queued_cmd object
5038 * in case something prevents using it.
5039 *
5040 * LOCKING:
5041 * spin_lock_irqsave(host lock)
5042 */
5043 void ata_qc_free(struct ata_queued_cmd *qc)
5044 {
5045 struct ata_port *ap = qc->ap;
5046 unsigned int tag;
5047
5048 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5049
5050 qc->flags = 0;
5051 tag = qc->tag;
5052 if (likely(ata_tag_valid(tag))) {
5053 qc->tag = ATA_TAG_POISON;
5054 clear_bit(tag, &ap->qc_allocated);
5055 }
5056 }
5057
5058 void __ata_qc_complete(struct ata_queued_cmd *qc)
5059 {
5060 struct ata_port *ap = qc->ap;
5061
5062 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5063 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5064
5065 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5066 ata_sg_clean(qc);
5067
5068 /* command should be marked inactive atomically with qc completion */
5069 if (qc->tf.protocol == ATA_PROT_NCQ)
5070 ap->sactive &= ~(1 << qc->tag);
5071 else
5072 ap->active_tag = ATA_TAG_POISON;
5073
5074 /* atapi: mark qc as inactive to prevent the interrupt handler
5075 * from completing the command twice later, before the error handler
5076 * is called. (when rc != 0 and atapi request sense is needed)
5077 */
5078 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5079 ap->qc_active &= ~(1 << qc->tag);
5080
5081 /* call completion callback */
5082 qc->complete_fn(qc);
5083 }
5084
5085 static void fill_result_tf(struct ata_queued_cmd *qc)
5086 {
5087 struct ata_port *ap = qc->ap;
5088
5089 qc->result_tf.flags = qc->tf.flags;
5090 ap->ops->tf_read(ap, &qc->result_tf);
5091 }
5092
5093 /**
5094 * ata_qc_complete - Complete an active ATA command
5095 * @qc: Command to complete
5096 * @err_mask: ATA Status register contents
5097 *
5098 * Indicate to the mid and upper layers that an ATA
5099 * command has completed, with either an ok or not-ok status.
5100 *
5101 * LOCKING:
5102 * spin_lock_irqsave(host lock)
5103 */
5104 void ata_qc_complete(struct ata_queued_cmd *qc)
5105 {
5106 struct ata_port *ap = qc->ap;
5107
5108 /* XXX: New EH and old EH use different mechanisms to
5109 * synchronize EH with regular execution path.
5110 *
5111 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5112 * Normal execution path is responsible for not accessing a
5113 * failed qc. libata core enforces the rule by returning NULL
5114 * from ata_qc_from_tag() for failed qcs.
5115 *
5116 * Old EH depends on ata_qc_complete() nullifying completion
5117 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5118 * not synchronize with interrupt handler. Only PIO task is
5119 * taken care of.
5120 */
5121 if (ap->ops->error_handler) {
5122 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5123
5124 if (unlikely(qc->err_mask))
5125 qc->flags |= ATA_QCFLAG_FAILED;
5126
5127 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5128 if (!ata_tag_internal(qc->tag)) {
5129 /* always fill result TF for failed qc */
5130 fill_result_tf(qc);
5131 ata_qc_schedule_eh(qc);
5132 return;
5133 }
5134 }
5135
5136 /* read result TF if requested */
5137 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5138 fill_result_tf(qc);
5139
5140 __ata_qc_complete(qc);
5141 } else {
5142 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5143 return;
5144
5145 /* read result TF if failed or requested */
5146 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5147 fill_result_tf(qc);
5148
5149 __ata_qc_complete(qc);
5150 }
5151 }
5152
5153 /**
5154 * ata_qc_complete_multiple - Complete multiple qcs successfully
5155 * @ap: port in question
5156 * @qc_active: new qc_active mask
5157 * @finish_qc: LLDD callback invoked before completing a qc
5158 *
5159 * Complete in-flight commands. This functions is meant to be
5160 * called from low-level driver's interrupt routine to complete
5161 * requests normally. ap->qc_active and @qc_active is compared
5162 * and commands are completed accordingly.
5163 *
5164 * LOCKING:
5165 * spin_lock_irqsave(host lock)
5166 *
5167 * RETURNS:
5168 * Number of completed commands on success, -errno otherwise.
5169 */
5170 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5171 void (*finish_qc)(struct ata_queued_cmd *))
5172 {
5173 int nr_done = 0;
5174 u32 done_mask;
5175 int i;
5176
5177 done_mask = ap->qc_active ^ qc_active;
5178
5179 if (unlikely(done_mask & qc_active)) {
5180 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5181 "(%08x->%08x)\n", ap->qc_active, qc_active);
5182 return -EINVAL;
5183 }
5184
5185 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5186 struct ata_queued_cmd *qc;
5187
5188 if (!(done_mask & (1 << i)))
5189 continue;
5190
5191 if ((qc = ata_qc_from_tag(ap, i))) {
5192 if (finish_qc)
5193 finish_qc(qc);
5194 ata_qc_complete(qc);
5195 nr_done++;
5196 }
5197 }
5198
5199 return nr_done;
5200 }
5201
5202 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5203 {
5204 struct ata_port *ap = qc->ap;
5205
5206 switch (qc->tf.protocol) {
5207 case ATA_PROT_NCQ:
5208 case ATA_PROT_DMA:
5209 case ATA_PROT_ATAPI_DMA:
5210 return 1;
5211
5212 case ATA_PROT_ATAPI:
5213 case ATA_PROT_PIO:
5214 if (ap->flags & ATA_FLAG_PIO_DMA)
5215 return 1;
5216
5217 /* fall through */
5218
5219 default:
5220 return 0;
5221 }
5222
5223 /* never reached */
5224 }
5225
5226 /**
5227 * ata_qc_issue - issue taskfile to device
5228 * @qc: command to issue to device
5229 *
5230 * Prepare an ATA command to submission to device.
5231 * This includes mapping the data into a DMA-able
5232 * area, filling in the S/G table, and finally
5233 * writing the taskfile to hardware, starting the command.
5234 *
5235 * LOCKING:
5236 * spin_lock_irqsave(host lock)
5237 */
5238 void ata_qc_issue(struct ata_queued_cmd *qc)
5239 {
5240 struct ata_port *ap = qc->ap;
5241
5242 /* Make sure only one non-NCQ command is outstanding. The
5243 * check is skipped for old EH because it reuses active qc to
5244 * request ATAPI sense.
5245 */
5246 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5247
5248 if (qc->tf.protocol == ATA_PROT_NCQ) {
5249 WARN_ON(ap->sactive & (1 << qc->tag));
5250 ap->sactive |= 1 << qc->tag;
5251 } else {
5252 WARN_ON(ap->sactive);
5253 ap->active_tag = qc->tag;
5254 }
5255
5256 qc->flags |= ATA_QCFLAG_ACTIVE;
5257 ap->qc_active |= 1 << qc->tag;
5258
5259 if (ata_should_dma_map(qc)) {
5260 if (qc->flags & ATA_QCFLAG_SG) {
5261 if (ata_sg_setup(qc))
5262 goto sg_err;
5263 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5264 if (ata_sg_setup_one(qc))
5265 goto sg_err;
5266 }
5267 } else {
5268 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5269 }
5270
5271 ap->ops->qc_prep(qc);
5272
5273 qc->err_mask |= ap->ops->qc_issue(qc);
5274 if (unlikely(qc->err_mask))
5275 goto err;
5276 return;
5277
5278 sg_err:
5279 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5280 qc->err_mask |= AC_ERR_SYSTEM;
5281 err:
5282 ata_qc_complete(qc);
5283 }
5284
5285 /**
5286 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5287 * @qc: command to issue to device
5288 *
5289 * Using various libata functions and hooks, this function
5290 * starts an ATA command. ATA commands are grouped into
5291 * classes called "protocols", and issuing each type of protocol
5292 * is slightly different.
5293 *
5294 * May be used as the qc_issue() entry in ata_port_operations.
5295 *
5296 * LOCKING:
5297 * spin_lock_irqsave(host lock)
5298 *
5299 * RETURNS:
5300 * Zero on success, AC_ERR_* mask on failure
5301 */
5302
5303 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5304 {
5305 struct ata_port *ap = qc->ap;
5306
5307 /* Use polling pio if the LLD doesn't handle
5308 * interrupt driven pio and atapi CDB interrupt.
5309 */
5310 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5311 switch (qc->tf.protocol) {
5312 case ATA_PROT_PIO:
5313 case ATA_PROT_NODATA:
5314 case ATA_PROT_ATAPI:
5315 case ATA_PROT_ATAPI_NODATA:
5316 qc->tf.flags |= ATA_TFLAG_POLLING;
5317 break;
5318 case ATA_PROT_ATAPI_DMA:
5319 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5320 /* see ata_dma_blacklisted() */
5321 BUG();
5322 break;
5323 default:
5324 break;
5325 }
5326 }
5327
5328 /* Some controllers show flaky interrupt behavior after
5329 * setting xfer mode. Use polling instead.
5330 */
5331 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5332 qc->tf.feature == SETFEATURES_XFER) &&
5333 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5334 qc->tf.flags |= ATA_TFLAG_POLLING;
5335
5336 /* select the device */
5337 ata_dev_select(ap, qc->dev->devno, 1, 0);
5338
5339 /* start the command */
5340 switch (qc->tf.protocol) {
5341 case ATA_PROT_NODATA:
5342 if (qc->tf.flags & ATA_TFLAG_POLLING)
5343 ata_qc_set_polling(qc);
5344
5345 ata_tf_to_host(ap, &qc->tf);
5346 ap->hsm_task_state = HSM_ST_LAST;
5347
5348 if (qc->tf.flags & ATA_TFLAG_POLLING)
5349 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5350
5351 break;
5352
5353 case ATA_PROT_DMA:
5354 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5355
5356 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5357 ap->ops->bmdma_setup(qc); /* set up bmdma */
5358 ap->ops->bmdma_start(qc); /* initiate bmdma */
5359 ap->hsm_task_state = HSM_ST_LAST;
5360 break;
5361
5362 case ATA_PROT_PIO:
5363 if (qc->tf.flags & ATA_TFLAG_POLLING)
5364 ata_qc_set_polling(qc);
5365
5366 ata_tf_to_host(ap, &qc->tf);
5367
5368 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5369 /* PIO data out protocol */
5370 ap->hsm_task_state = HSM_ST_FIRST;
5371 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5372
5373 /* always send first data block using
5374 * the ata_pio_task() codepath.
5375 */
5376 } else {
5377 /* PIO data in protocol */
5378 ap->hsm_task_state = HSM_ST;
5379
5380 if (qc->tf.flags & ATA_TFLAG_POLLING)
5381 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5382
5383 /* if polling, ata_pio_task() handles the rest.
5384 * otherwise, interrupt handler takes over from here.
5385 */
5386 }
5387
5388 break;
5389
5390 case ATA_PROT_ATAPI:
5391 case ATA_PROT_ATAPI_NODATA:
5392 if (qc->tf.flags & ATA_TFLAG_POLLING)
5393 ata_qc_set_polling(qc);
5394
5395 ata_tf_to_host(ap, &qc->tf);
5396
5397 ap->hsm_task_state = HSM_ST_FIRST;
5398
5399 /* send cdb by polling if no cdb interrupt */
5400 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5401 (qc->tf.flags & ATA_TFLAG_POLLING))
5402 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5403 break;
5404
5405 case ATA_PROT_ATAPI_DMA:
5406 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5407
5408 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5409 ap->ops->bmdma_setup(qc); /* set up bmdma */
5410 ap->hsm_task_state = HSM_ST_FIRST;
5411
5412 /* send cdb by polling if no cdb interrupt */
5413 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5414 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5415 break;
5416
5417 default:
5418 WARN_ON(1);
5419 return AC_ERR_SYSTEM;
5420 }
5421
5422 return 0;
5423 }
5424
5425 /**
5426 * ata_host_intr - Handle host interrupt for given (port, task)
5427 * @ap: Port on which interrupt arrived (possibly...)
5428 * @qc: Taskfile currently active in engine
5429 *
5430 * Handle host interrupt for given queued command. Currently,
5431 * only DMA interrupts are handled. All other commands are
5432 * handled via polling with interrupts disabled (nIEN bit).
5433 *
5434 * LOCKING:
5435 * spin_lock_irqsave(host lock)
5436 *
5437 * RETURNS:
5438 * One if interrupt was handled, zero if not (shared irq).
5439 */
5440
5441 inline unsigned int ata_host_intr (struct ata_port *ap,
5442 struct ata_queued_cmd *qc)
5443 {
5444 struct ata_eh_info *ehi = &ap->eh_info;
5445 u8 status, host_stat = 0;
5446
5447 VPRINTK("ata%u: protocol %d task_state %d\n",
5448 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5449
5450 /* Check whether we are expecting interrupt in this state */
5451 switch (ap->hsm_task_state) {
5452 case HSM_ST_FIRST:
5453 /* Some pre-ATAPI-4 devices assert INTRQ
5454 * at this state when ready to receive CDB.
5455 */
5456
5457 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5458 * The flag was turned on only for atapi devices.
5459 * No need to check is_atapi_taskfile(&qc->tf) again.
5460 */
5461 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5462 goto idle_irq;
5463 break;
5464 case HSM_ST_LAST:
5465 if (qc->tf.protocol == ATA_PROT_DMA ||
5466 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5467 /* check status of DMA engine */
5468 host_stat = ap->ops->bmdma_status(ap);
5469 VPRINTK("ata%u: host_stat 0x%X\n",
5470 ap->print_id, host_stat);
5471
5472 /* if it's not our irq... */
5473 if (!(host_stat & ATA_DMA_INTR))
5474 goto idle_irq;
5475
5476 /* before we do anything else, clear DMA-Start bit */
5477 ap->ops->bmdma_stop(qc);
5478
5479 if (unlikely(host_stat & ATA_DMA_ERR)) {
5480 /* error when transfering data to/from memory */
5481 qc->err_mask |= AC_ERR_HOST_BUS;
5482 ap->hsm_task_state = HSM_ST_ERR;
5483 }
5484 }
5485 break;
5486 case HSM_ST:
5487 break;
5488 default:
5489 goto idle_irq;
5490 }
5491
5492 /* check altstatus */
5493 status = ata_altstatus(ap);
5494 if (status & ATA_BUSY)
5495 goto idle_irq;
5496
5497 /* check main status, clearing INTRQ */
5498 status = ata_chk_status(ap);
5499 if (unlikely(status & ATA_BUSY))
5500 goto idle_irq;
5501
5502 /* ack bmdma irq events */
5503 ap->ops->irq_clear(ap);
5504
5505 ata_hsm_move(ap, qc, status, 0);
5506
5507 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5508 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5509 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5510
5511 return 1; /* irq handled */
5512
5513 idle_irq:
5514 ap->stats.idle_irq++;
5515
5516 #ifdef ATA_IRQ_TRAP
5517 if ((ap->stats.idle_irq % 1000) == 0) {
5518 ap->ops->irq_ack(ap, 0); /* debug trap */
5519 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5520 return 1;
5521 }
5522 #endif
5523 return 0; /* irq not handled */
5524 }
5525
5526 /**
5527 * ata_interrupt - Default ATA host interrupt handler
5528 * @irq: irq line (unused)
5529 * @dev_instance: pointer to our ata_host information structure
5530 *
5531 * Default interrupt handler for PCI IDE devices. Calls
5532 * ata_host_intr() for each port that is not disabled.
5533 *
5534 * LOCKING:
5535 * Obtains host lock during operation.
5536 *
5537 * RETURNS:
5538 * IRQ_NONE or IRQ_HANDLED.
5539 */
5540
5541 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5542 {
5543 struct ata_host *host = dev_instance;
5544 unsigned int i;
5545 unsigned int handled = 0;
5546 unsigned long flags;
5547
5548 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5549 spin_lock_irqsave(&host->lock, flags);
5550
5551 for (i = 0; i < host->n_ports; i++) {
5552 struct ata_port *ap;
5553
5554 ap = host->ports[i];
5555 if (ap &&
5556 !(ap->flags & ATA_FLAG_DISABLED)) {
5557 struct ata_queued_cmd *qc;
5558
5559 qc = ata_qc_from_tag(ap, ap->active_tag);
5560 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5561 (qc->flags & ATA_QCFLAG_ACTIVE))
5562 handled |= ata_host_intr(ap, qc);
5563 }
5564 }
5565
5566 spin_unlock_irqrestore(&host->lock, flags);
5567
5568 return IRQ_RETVAL(handled);
5569 }
5570
5571 /**
5572 * sata_scr_valid - test whether SCRs are accessible
5573 * @ap: ATA port to test SCR accessibility for
5574 *
5575 * Test whether SCRs are accessible for @ap.
5576 *
5577 * LOCKING:
5578 * None.
5579 *
5580 * RETURNS:
5581 * 1 if SCRs are accessible, 0 otherwise.
5582 */
5583 int sata_scr_valid(struct ata_port *ap)
5584 {
5585 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5586 }
5587
5588 /**
5589 * sata_scr_read - read SCR register of the specified port
5590 * @ap: ATA port to read SCR for
5591 * @reg: SCR to read
5592 * @val: Place to store read value
5593 *
5594 * Read SCR register @reg of @ap into *@val. This function is
5595 * guaranteed to succeed if the cable type of the port is SATA
5596 * and the port implements ->scr_read.
5597 *
5598 * LOCKING:
5599 * None.
5600 *
5601 * RETURNS:
5602 * 0 on success, negative errno on failure.
5603 */
5604 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5605 {
5606 if (sata_scr_valid(ap)) {
5607 *val = ap->ops->scr_read(ap, reg);
5608 return 0;
5609 }
5610 return -EOPNOTSUPP;
5611 }
5612
5613 /**
5614 * sata_scr_write - write SCR register of the specified port
5615 * @ap: ATA port to write SCR for
5616 * @reg: SCR to write
5617 * @val: value to write
5618 *
5619 * Write @val to SCR register @reg of @ap. This function is
5620 * guaranteed to succeed if the cable type of the port is SATA
5621 * and the port implements ->scr_read.
5622 *
5623 * LOCKING:
5624 * None.
5625 *
5626 * RETURNS:
5627 * 0 on success, negative errno on failure.
5628 */
5629 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5630 {
5631 if (sata_scr_valid(ap)) {
5632 ap->ops->scr_write(ap, reg, val);
5633 return 0;
5634 }
5635 return -EOPNOTSUPP;
5636 }
5637
5638 /**
5639 * sata_scr_write_flush - write SCR register of the specified port and flush
5640 * @ap: ATA port to write SCR for
5641 * @reg: SCR to write
5642 * @val: value to write
5643 *
5644 * This function is identical to sata_scr_write() except that this
5645 * function performs flush after writing to the register.
5646 *
5647 * LOCKING:
5648 * None.
5649 *
5650 * RETURNS:
5651 * 0 on success, negative errno on failure.
5652 */
5653 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5654 {
5655 if (sata_scr_valid(ap)) {
5656 ap->ops->scr_write(ap, reg, val);
5657 ap->ops->scr_read(ap, reg);
5658 return 0;
5659 }
5660 return -EOPNOTSUPP;
5661 }
5662
5663 /**
5664 * ata_port_online - test whether the given port is online
5665 * @ap: ATA port to test
5666 *
5667 * Test whether @ap is online. Note that this function returns 0
5668 * if online status of @ap cannot be obtained, so
5669 * ata_port_online(ap) != !ata_port_offline(ap).
5670 *
5671 * LOCKING:
5672 * None.
5673 *
5674 * RETURNS:
5675 * 1 if the port online status is available and online.
5676 */
5677 int ata_port_online(struct ata_port *ap)
5678 {
5679 u32 sstatus;
5680
5681 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5682 return 1;
5683 return 0;
5684 }
5685
5686 /**
5687 * ata_port_offline - test whether the given port is offline
5688 * @ap: ATA port to test
5689 *
5690 * Test whether @ap is offline. Note that this function returns
5691 * 0 if offline status of @ap cannot be obtained, so
5692 * ata_port_online(ap) != !ata_port_offline(ap).
5693 *
5694 * LOCKING:
5695 * None.
5696 *
5697 * RETURNS:
5698 * 1 if the port offline status is available and offline.
5699 */
5700 int ata_port_offline(struct ata_port *ap)
5701 {
5702 u32 sstatus;
5703
5704 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5705 return 1;
5706 return 0;
5707 }
5708
5709 int ata_flush_cache(struct ata_device *dev)
5710 {
5711 unsigned int err_mask;
5712 u8 cmd;
5713
5714 if (!ata_try_flush_cache(dev))
5715 return 0;
5716
5717 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5718 cmd = ATA_CMD_FLUSH_EXT;
5719 else
5720 cmd = ATA_CMD_FLUSH;
5721
5722 err_mask = ata_do_simple_cmd(dev, cmd);
5723 if (err_mask) {
5724 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5725 return -EIO;
5726 }
5727
5728 return 0;
5729 }
5730
5731 #ifdef CONFIG_PM
5732 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5733 unsigned int action, unsigned int ehi_flags,
5734 int wait)
5735 {
5736 unsigned long flags;
5737 int i, rc;
5738
5739 for (i = 0; i < host->n_ports; i++) {
5740 struct ata_port *ap = host->ports[i];
5741
5742 /* Previous resume operation might still be in
5743 * progress. Wait for PM_PENDING to clear.
5744 */
5745 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5746 ata_port_wait_eh(ap);
5747 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5748 }
5749
5750 /* request PM ops to EH */
5751 spin_lock_irqsave(ap->lock, flags);
5752
5753 ap->pm_mesg = mesg;
5754 if (wait) {
5755 rc = 0;
5756 ap->pm_result = &rc;
5757 }
5758
5759 ap->pflags |= ATA_PFLAG_PM_PENDING;
5760 ap->eh_info.action |= action;
5761 ap->eh_info.flags |= ehi_flags;
5762
5763 ata_port_schedule_eh(ap);
5764
5765 spin_unlock_irqrestore(ap->lock, flags);
5766
5767 /* wait and check result */
5768 if (wait) {
5769 ata_port_wait_eh(ap);
5770 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5771 if (rc)
5772 return rc;
5773 }
5774 }
5775
5776 return 0;
5777 }
5778
5779 /**
5780 * ata_host_suspend - suspend host
5781 * @host: host to suspend
5782 * @mesg: PM message
5783 *
5784 * Suspend @host. Actual operation is performed by EH. This
5785 * function requests EH to perform PM operations and waits for EH
5786 * to finish.
5787 *
5788 * LOCKING:
5789 * Kernel thread context (may sleep).
5790 *
5791 * RETURNS:
5792 * 0 on success, -errno on failure.
5793 */
5794 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5795 {
5796 int i, j, rc;
5797
5798 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5799 if (rc)
5800 goto fail;
5801
5802 /* EH is quiescent now. Fail if we have any ready device.
5803 * This happens if hotplug occurs between completion of device
5804 * suspension and here.
5805 */
5806 for (i = 0; i < host->n_ports; i++) {
5807 struct ata_port *ap = host->ports[i];
5808
5809 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5810 struct ata_device *dev = &ap->device[j];
5811
5812 if (ata_dev_ready(dev)) {
5813 ata_port_printk(ap, KERN_WARNING,
5814 "suspend failed, device %d "
5815 "still active\n", dev->devno);
5816 rc = -EBUSY;
5817 goto fail;
5818 }
5819 }
5820 }
5821
5822 host->dev->power.power_state = mesg;
5823 return 0;
5824
5825 fail:
5826 ata_host_resume(host);
5827 return rc;
5828 }
5829
5830 /**
5831 * ata_host_resume - resume host
5832 * @host: host to resume
5833 *
5834 * Resume @host. Actual operation is performed by EH. This
5835 * function requests EH to perform PM operations and returns.
5836 * Note that all resume operations are performed parallely.
5837 *
5838 * LOCKING:
5839 * Kernel thread context (may sleep).
5840 */
5841 void ata_host_resume(struct ata_host *host)
5842 {
5843 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5844 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5845 host->dev->power.power_state = PMSG_ON;
5846 }
5847 #endif
5848
5849 /**
5850 * ata_port_start - Set port up for dma.
5851 * @ap: Port to initialize
5852 *
5853 * Called just after data structures for each port are
5854 * initialized. Allocates space for PRD table.
5855 *
5856 * May be used as the port_start() entry in ata_port_operations.
5857 *
5858 * LOCKING:
5859 * Inherited from caller.
5860 */
5861 int ata_port_start(struct ata_port *ap)
5862 {
5863 struct device *dev = ap->dev;
5864 int rc;
5865
5866 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5867 GFP_KERNEL);
5868 if (!ap->prd)
5869 return -ENOMEM;
5870
5871 rc = ata_pad_alloc(ap, dev);
5872 if (rc)
5873 return rc;
5874
5875 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5876 (unsigned long long)ap->prd_dma);
5877 return 0;
5878 }
5879
5880 /**
5881 * ata_dev_init - Initialize an ata_device structure
5882 * @dev: Device structure to initialize
5883 *
5884 * Initialize @dev in preparation for probing.
5885 *
5886 * LOCKING:
5887 * Inherited from caller.
5888 */
5889 void ata_dev_init(struct ata_device *dev)
5890 {
5891 struct ata_port *ap = dev->ap;
5892 unsigned long flags;
5893
5894 /* SATA spd limit is bound to the first device */
5895 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5896
5897 /* High bits of dev->flags are used to record warm plug
5898 * requests which occur asynchronously. Synchronize using
5899 * host lock.
5900 */
5901 spin_lock_irqsave(ap->lock, flags);
5902 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5903 spin_unlock_irqrestore(ap->lock, flags);
5904
5905 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5906 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5907 dev->pio_mask = UINT_MAX;
5908 dev->mwdma_mask = UINT_MAX;
5909 dev->udma_mask = UINT_MAX;
5910 }
5911
5912 /**
5913 * ata_port_alloc - allocate and initialize basic ATA port resources
5914 * @host: ATA host this allocated port belongs to
5915 *
5916 * Allocate and initialize basic ATA port resources.
5917 *
5918 * RETURNS:
5919 * Allocate ATA port on success, NULL on failure.
5920 *
5921 * LOCKING:
5922 * Inherited from calling layer (may sleep).
5923 */
5924 struct ata_port *ata_port_alloc(struct ata_host *host)
5925 {
5926 struct ata_port *ap;
5927 unsigned int i;
5928
5929 DPRINTK("ENTER\n");
5930
5931 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5932 if (!ap)
5933 return NULL;
5934
5935 ap->lock = &host->lock;
5936 ap->flags = ATA_FLAG_DISABLED;
5937 ap->print_id = -1;
5938 ap->ctl = ATA_DEVCTL_OBS;
5939 ap->host = host;
5940 ap->dev = host->dev;
5941
5942 ap->hw_sata_spd_limit = UINT_MAX;
5943 ap->active_tag = ATA_TAG_POISON;
5944 ap->last_ctl = 0xFF;
5945
5946 #if defined(ATA_VERBOSE_DEBUG)
5947 /* turn on all debugging levels */
5948 ap->msg_enable = 0x00FF;
5949 #elif defined(ATA_DEBUG)
5950 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5951 #else
5952 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5953 #endif
5954
5955 INIT_DELAYED_WORK(&ap->port_task, NULL);
5956 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5957 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5958 INIT_LIST_HEAD(&ap->eh_done_q);
5959 init_waitqueue_head(&ap->eh_wait_q);
5960
5961 ap->cbl = ATA_CBL_NONE;
5962
5963 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5964 struct ata_device *dev = &ap->device[i];
5965 dev->ap = ap;
5966 dev->devno = i;
5967 ata_dev_init(dev);
5968 }
5969
5970 #ifdef ATA_IRQ_TRAP
5971 ap->stats.unhandled_irq = 1;
5972 ap->stats.idle_irq = 1;
5973 #endif
5974 return ap;
5975 }
5976
5977 static void ata_host_release(struct device *gendev, void *res)
5978 {
5979 struct ata_host *host = dev_get_drvdata(gendev);
5980 int i;
5981
5982 for (i = 0; i < host->n_ports; i++) {
5983 struct ata_port *ap = host->ports[i];
5984
5985 if (!ap)
5986 continue;
5987
5988 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
5989 ap->ops->port_stop(ap);
5990 }
5991
5992 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
5993 host->ops->host_stop(host);
5994
5995 for (i = 0; i < host->n_ports; i++) {
5996 struct ata_port *ap = host->ports[i];
5997
5998 if (!ap)
5999 continue;
6000
6001 if (ap->scsi_host)
6002 scsi_host_put(ap->scsi_host);
6003
6004 kfree(ap);
6005 host->ports[i] = NULL;
6006 }
6007
6008 dev_set_drvdata(gendev, NULL);
6009 }
6010
6011 /**
6012 * ata_host_alloc - allocate and init basic ATA host resources
6013 * @dev: generic device this host is associated with
6014 * @max_ports: maximum number of ATA ports associated with this host
6015 *
6016 * Allocate and initialize basic ATA host resources. LLD calls
6017 * this function to allocate a host, initializes it fully and
6018 * attaches it using ata_host_register().
6019 *
6020 * @max_ports ports are allocated and host->n_ports is
6021 * initialized to @max_ports. The caller is allowed to decrease
6022 * host->n_ports before calling ata_host_register(). The unused
6023 * ports will be automatically freed on registration.
6024 *
6025 * RETURNS:
6026 * Allocate ATA host on success, NULL on failure.
6027 *
6028 * LOCKING:
6029 * Inherited from calling layer (may sleep).
6030 */
6031 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6032 {
6033 struct ata_host *host;
6034 size_t sz;
6035 int i;
6036
6037 DPRINTK("ENTER\n");
6038
6039 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6040 return NULL;
6041
6042 /* alloc a container for our list of ATA ports (buses) */
6043 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6044 /* alloc a container for our list of ATA ports (buses) */
6045 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6046 if (!host)
6047 goto err_out;
6048
6049 devres_add(dev, host);
6050 dev_set_drvdata(dev, host);
6051
6052 spin_lock_init(&host->lock);
6053 host->dev = dev;
6054 host->n_ports = max_ports;
6055
6056 /* allocate ports bound to this host */
6057 for (i = 0; i < max_ports; i++) {
6058 struct ata_port *ap;
6059
6060 ap = ata_port_alloc(host);
6061 if (!ap)
6062 goto err_out;
6063
6064 ap->port_no = i;
6065 host->ports[i] = ap;
6066 }
6067
6068 devres_remove_group(dev, NULL);
6069 return host;
6070
6071 err_out:
6072 devres_release_group(dev, NULL);
6073 return NULL;
6074 }
6075
6076 /**
6077 * ata_host_alloc_pinfo - alloc host and init with port_info array
6078 * @dev: generic device this host is associated with
6079 * @ppi: array of ATA port_info to initialize host with
6080 * @n_ports: number of ATA ports attached to this host
6081 *
6082 * Allocate ATA host and initialize with info from @ppi. If NULL
6083 * terminated, @ppi may contain fewer entries than @n_ports. The
6084 * last entry will be used for the remaining ports.
6085 *
6086 * RETURNS:
6087 * Allocate ATA host on success, NULL on failure.
6088 *
6089 * LOCKING:
6090 * Inherited from calling layer (may sleep).
6091 */
6092 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6093 const struct ata_port_info * const * ppi,
6094 int n_ports)
6095 {
6096 const struct ata_port_info *pi;
6097 struct ata_host *host;
6098 int i, j;
6099
6100 host = ata_host_alloc(dev, n_ports);
6101 if (!host)
6102 return NULL;
6103
6104 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6105 struct ata_port *ap = host->ports[i];
6106
6107 if (ppi[j])
6108 pi = ppi[j++];
6109
6110 ap->pio_mask = pi->pio_mask;
6111 ap->mwdma_mask = pi->mwdma_mask;
6112 ap->udma_mask = pi->udma_mask;
6113 ap->flags |= pi->flags;
6114 ap->ops = pi->port_ops;
6115
6116 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6117 host->ops = pi->port_ops;
6118 if (!host->private_data && pi->private_data)
6119 host->private_data = pi->private_data;
6120 }
6121
6122 return host;
6123 }
6124
6125 /**
6126 * ata_host_start - start and freeze ports of an ATA host
6127 * @host: ATA host to start ports for
6128 *
6129 * Start and then freeze ports of @host. Started status is
6130 * recorded in host->flags, so this function can be called
6131 * multiple times. Ports are guaranteed to get started only
6132 * once. If host->ops isn't initialized yet, its set to the
6133 * first non-dummy port ops.
6134 *
6135 * LOCKING:
6136 * Inherited from calling layer (may sleep).
6137 *
6138 * RETURNS:
6139 * 0 if all ports are started successfully, -errno otherwise.
6140 */
6141 int ata_host_start(struct ata_host *host)
6142 {
6143 int i, rc;
6144
6145 if (host->flags & ATA_HOST_STARTED)
6146 return 0;
6147
6148 for (i = 0; i < host->n_ports; i++) {
6149 struct ata_port *ap = host->ports[i];
6150
6151 if (!host->ops && !ata_port_is_dummy(ap))
6152 host->ops = ap->ops;
6153
6154 if (ap->ops->port_start) {
6155 rc = ap->ops->port_start(ap);
6156 if (rc) {
6157 ata_port_printk(ap, KERN_ERR, "failed to "
6158 "start port (errno=%d)\n", rc);
6159 goto err_out;
6160 }
6161 }
6162
6163 ata_eh_freeze_port(ap);
6164 }
6165
6166 host->flags |= ATA_HOST_STARTED;
6167 return 0;
6168
6169 err_out:
6170 while (--i >= 0) {
6171 struct ata_port *ap = host->ports[i];
6172
6173 if (ap->ops->port_stop)
6174 ap->ops->port_stop(ap);
6175 }
6176 return rc;
6177 }
6178
6179 /**
6180 * ata_sas_host_init - Initialize a host struct
6181 * @host: host to initialize
6182 * @dev: device host is attached to
6183 * @flags: host flags
6184 * @ops: port_ops
6185 *
6186 * LOCKING:
6187 * PCI/etc. bus probe sem.
6188 *
6189 */
6190 /* KILLME - the only user left is ipr */
6191 void ata_host_init(struct ata_host *host, struct device *dev,
6192 unsigned long flags, const struct ata_port_operations *ops)
6193 {
6194 spin_lock_init(&host->lock);
6195 host->dev = dev;
6196 host->flags = flags;
6197 host->ops = ops;
6198 }
6199
6200 /**
6201 * ata_host_register - register initialized ATA host
6202 * @host: ATA host to register
6203 * @sht: template for SCSI host
6204 *
6205 * Register initialized ATA host. @host is allocated using
6206 * ata_host_alloc() and fully initialized by LLD. This function
6207 * starts ports, registers @host with ATA and SCSI layers and
6208 * probe registered devices.
6209 *
6210 * LOCKING:
6211 * Inherited from calling layer (may sleep).
6212 *
6213 * RETURNS:
6214 * 0 on success, -errno otherwise.
6215 */
6216 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6217 {
6218 int i, rc;
6219
6220 /* host must have been started */
6221 if (!(host->flags & ATA_HOST_STARTED)) {
6222 dev_printk(KERN_ERR, host->dev,
6223 "BUG: trying to register unstarted host\n");
6224 WARN_ON(1);
6225 return -EINVAL;
6226 }
6227
6228 /* Blow away unused ports. This happens when LLD can't
6229 * determine the exact number of ports to allocate at
6230 * allocation time.
6231 */
6232 for (i = host->n_ports; host->ports[i]; i++)
6233 kfree(host->ports[i]);
6234
6235 /* give ports names and add SCSI hosts */
6236 for (i = 0; i < host->n_ports; i++)
6237 host->ports[i]->print_id = ata_print_id++;
6238
6239 rc = ata_scsi_add_hosts(host, sht);
6240 if (rc)
6241 return rc;
6242
6243 /* set cable, sata_spd_limit and report */
6244 for (i = 0; i < host->n_ports; i++) {
6245 struct ata_port *ap = host->ports[i];
6246 int irq_line;
6247 u32 scontrol;
6248 unsigned long xfer_mask;
6249
6250 /* set SATA cable type if still unset */
6251 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6252 ap->cbl = ATA_CBL_SATA;
6253
6254 /* init sata_spd_limit to the current value */
6255 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6256 int spd = (scontrol >> 4) & 0xf;
6257 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6258 }
6259 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6260
6261 /* report the secondary IRQ for second channel legacy */
6262 irq_line = host->irq;
6263 if (i == 1 && host->irq2)
6264 irq_line = host->irq2;
6265
6266 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6267 ap->udma_mask);
6268
6269 /* print per-port info to dmesg */
6270 if (!ata_port_is_dummy(ap))
6271 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6272 "ctl 0x%p bmdma 0x%p irq %d\n",
6273 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6274 ata_mode_string(xfer_mask),
6275 ap->ioaddr.cmd_addr,
6276 ap->ioaddr.ctl_addr,
6277 ap->ioaddr.bmdma_addr,
6278 irq_line);
6279 else
6280 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6281 }
6282
6283 /* perform each probe synchronously */
6284 DPRINTK("probe begin\n");
6285 for (i = 0; i < host->n_ports; i++) {
6286 struct ata_port *ap = host->ports[i];
6287 int rc;
6288
6289 /* probe */
6290 if (ap->ops->error_handler) {
6291 struct ata_eh_info *ehi = &ap->eh_info;
6292 unsigned long flags;
6293
6294 ata_port_probe(ap);
6295
6296 /* kick EH for boot probing */
6297 spin_lock_irqsave(ap->lock, flags);
6298
6299 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6300 ehi->action |= ATA_EH_SOFTRESET;
6301 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6302
6303 ap->pflags |= ATA_PFLAG_LOADING;
6304 ata_port_schedule_eh(ap);
6305
6306 spin_unlock_irqrestore(ap->lock, flags);
6307
6308 /* wait for EH to finish */
6309 ata_port_wait_eh(ap);
6310 } else {
6311 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6312 rc = ata_bus_probe(ap);
6313 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6314
6315 if (rc) {
6316 /* FIXME: do something useful here?
6317 * Current libata behavior will
6318 * tear down everything when
6319 * the module is removed
6320 * or the h/w is unplugged.
6321 */
6322 }
6323 }
6324 }
6325
6326 /* probes are done, now scan each port's disk(s) */
6327 DPRINTK("host probe begin\n");
6328 for (i = 0; i < host->n_ports; i++) {
6329 struct ata_port *ap = host->ports[i];
6330
6331 ata_scsi_scan_host(ap);
6332 }
6333
6334 return 0;
6335 }
6336
6337 /**
6338 * ata_host_activate - start host, request IRQ and register it
6339 * @host: target ATA host
6340 * @irq: IRQ to request
6341 * @irq_handler: irq_handler used when requesting IRQ
6342 * @irq_flags: irq_flags used when requesting IRQ
6343 * @sht: scsi_host_template to use when registering the host
6344 *
6345 * After allocating an ATA host and initializing it, most libata
6346 * LLDs perform three steps to activate the host - start host,
6347 * request IRQ and register it. This helper takes necessasry
6348 * arguments and performs the three steps in one go.
6349 *
6350 * LOCKING:
6351 * Inherited from calling layer (may sleep).
6352 *
6353 * RETURNS:
6354 * 0 on success, -errno otherwise.
6355 */
6356 int ata_host_activate(struct ata_host *host, int irq,
6357 irq_handler_t irq_handler, unsigned long irq_flags,
6358 struct scsi_host_template *sht)
6359 {
6360 int rc;
6361
6362 rc = ata_host_start(host);
6363 if (rc)
6364 return rc;
6365
6366 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6367 dev_driver_string(host->dev), host);
6368 if (rc)
6369 return rc;
6370
6371 rc = ata_host_register(host, sht);
6372 /* if failed, just free the IRQ and leave ports alone */
6373 if (rc)
6374 devm_free_irq(host->dev, irq, host);
6375
6376 return rc;
6377 }
6378
6379 /**
6380 * ata_port_detach - Detach ATA port in prepration of device removal
6381 * @ap: ATA port to be detached
6382 *
6383 * Detach all ATA devices and the associated SCSI devices of @ap;
6384 * then, remove the associated SCSI host. @ap is guaranteed to
6385 * be quiescent on return from this function.
6386 *
6387 * LOCKING:
6388 * Kernel thread context (may sleep).
6389 */
6390 void ata_port_detach(struct ata_port *ap)
6391 {
6392 unsigned long flags;
6393 int i;
6394
6395 if (!ap->ops->error_handler)
6396 goto skip_eh;
6397
6398 /* tell EH we're leaving & flush EH */
6399 spin_lock_irqsave(ap->lock, flags);
6400 ap->pflags |= ATA_PFLAG_UNLOADING;
6401 spin_unlock_irqrestore(ap->lock, flags);
6402
6403 ata_port_wait_eh(ap);
6404
6405 /* EH is now guaranteed to see UNLOADING, so no new device
6406 * will be attached. Disable all existing devices.
6407 */
6408 spin_lock_irqsave(ap->lock, flags);
6409
6410 for (i = 0; i < ATA_MAX_DEVICES; i++)
6411 ata_dev_disable(&ap->device[i]);
6412
6413 spin_unlock_irqrestore(ap->lock, flags);
6414
6415 /* Final freeze & EH. All in-flight commands are aborted. EH
6416 * will be skipped and retrials will be terminated with bad
6417 * target.
6418 */
6419 spin_lock_irqsave(ap->lock, flags);
6420 ata_port_freeze(ap); /* won't be thawed */
6421 spin_unlock_irqrestore(ap->lock, flags);
6422
6423 ata_port_wait_eh(ap);
6424
6425 /* Flush hotplug task. The sequence is similar to
6426 * ata_port_flush_task().
6427 */
6428 flush_workqueue(ata_aux_wq);
6429 cancel_delayed_work(&ap->hotplug_task);
6430 flush_workqueue(ata_aux_wq);
6431
6432 skip_eh:
6433 /* remove the associated SCSI host */
6434 scsi_remove_host(ap->scsi_host);
6435 }
6436
6437 /**
6438 * ata_host_detach - Detach all ports of an ATA host
6439 * @host: Host to detach
6440 *
6441 * Detach all ports of @host.
6442 *
6443 * LOCKING:
6444 * Kernel thread context (may sleep).
6445 */
6446 void ata_host_detach(struct ata_host *host)
6447 {
6448 int i;
6449
6450 for (i = 0; i < host->n_ports; i++)
6451 ata_port_detach(host->ports[i]);
6452 }
6453
6454 /**
6455 * ata_std_ports - initialize ioaddr with standard port offsets.
6456 * @ioaddr: IO address structure to be initialized
6457 *
6458 * Utility function which initializes data_addr, error_addr,
6459 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6460 * device_addr, status_addr, and command_addr to standard offsets
6461 * relative to cmd_addr.
6462 *
6463 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6464 */
6465
6466 void ata_std_ports(struct ata_ioports *ioaddr)
6467 {
6468 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6469 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6470 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6471 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6472 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6473 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6474 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6475 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6476 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6477 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6478 }
6479
6480
6481 #ifdef CONFIG_PCI
6482
6483 /**
6484 * ata_pci_remove_one - PCI layer callback for device removal
6485 * @pdev: PCI device that was removed
6486 *
6487 * PCI layer indicates to libata via this hook that hot-unplug or
6488 * module unload event has occurred. Detach all ports. Resource
6489 * release is handled via devres.
6490 *
6491 * LOCKING:
6492 * Inherited from PCI layer (may sleep).
6493 */
6494 void ata_pci_remove_one(struct pci_dev *pdev)
6495 {
6496 struct device *dev = pci_dev_to_dev(pdev);
6497 struct ata_host *host = dev_get_drvdata(dev);
6498
6499 ata_host_detach(host);
6500 }
6501
6502 /* move to PCI subsystem */
6503 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6504 {
6505 unsigned long tmp = 0;
6506
6507 switch (bits->width) {
6508 case 1: {
6509 u8 tmp8 = 0;
6510 pci_read_config_byte(pdev, bits->reg, &tmp8);
6511 tmp = tmp8;
6512 break;
6513 }
6514 case 2: {
6515 u16 tmp16 = 0;
6516 pci_read_config_word(pdev, bits->reg, &tmp16);
6517 tmp = tmp16;
6518 break;
6519 }
6520 case 4: {
6521 u32 tmp32 = 0;
6522 pci_read_config_dword(pdev, bits->reg, &tmp32);
6523 tmp = tmp32;
6524 break;
6525 }
6526
6527 default:
6528 return -EINVAL;
6529 }
6530
6531 tmp &= bits->mask;
6532
6533 return (tmp == bits->val) ? 1 : 0;
6534 }
6535
6536 #ifdef CONFIG_PM
6537 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6538 {
6539 pci_save_state(pdev);
6540 pci_disable_device(pdev);
6541
6542 if (mesg.event == PM_EVENT_SUSPEND)
6543 pci_set_power_state(pdev, PCI_D3hot);
6544 }
6545
6546 int ata_pci_device_do_resume(struct pci_dev *pdev)
6547 {
6548 int rc;
6549
6550 pci_set_power_state(pdev, PCI_D0);
6551 pci_restore_state(pdev);
6552
6553 rc = pcim_enable_device(pdev);
6554 if (rc) {
6555 dev_printk(KERN_ERR, &pdev->dev,
6556 "failed to enable device after resume (%d)\n", rc);
6557 return rc;
6558 }
6559
6560 pci_set_master(pdev);
6561 return 0;
6562 }
6563
6564 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6565 {
6566 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6567 int rc = 0;
6568
6569 rc = ata_host_suspend(host, mesg);
6570 if (rc)
6571 return rc;
6572
6573 ata_pci_device_do_suspend(pdev, mesg);
6574
6575 return 0;
6576 }
6577
6578 int ata_pci_device_resume(struct pci_dev *pdev)
6579 {
6580 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6581 int rc;
6582
6583 rc = ata_pci_device_do_resume(pdev);
6584 if (rc == 0)
6585 ata_host_resume(host);
6586 return rc;
6587 }
6588 #endif /* CONFIG_PM */
6589
6590 #endif /* CONFIG_PCI */
6591
6592
6593 static int __init ata_init(void)
6594 {
6595 ata_probe_timeout *= HZ;
6596 ata_wq = create_workqueue("ata");
6597 if (!ata_wq)
6598 return -ENOMEM;
6599
6600 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6601 if (!ata_aux_wq) {
6602 destroy_workqueue(ata_wq);
6603 return -ENOMEM;
6604 }
6605
6606 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6607 return 0;
6608 }
6609
6610 static void __exit ata_exit(void)
6611 {
6612 destroy_workqueue(ata_wq);
6613 destroy_workqueue(ata_aux_wq);
6614 }
6615
6616 subsys_initcall(ata_init);
6617 module_exit(ata_exit);
6618
6619 static unsigned long ratelimit_time;
6620 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6621
6622 int ata_ratelimit(void)
6623 {
6624 int rc;
6625 unsigned long flags;
6626
6627 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6628
6629 if (time_after(jiffies, ratelimit_time)) {
6630 rc = 1;
6631 ratelimit_time = jiffies + (HZ/5);
6632 } else
6633 rc = 0;
6634
6635 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6636
6637 return rc;
6638 }
6639
6640 /**
6641 * ata_wait_register - wait until register value changes
6642 * @reg: IO-mapped register
6643 * @mask: Mask to apply to read register value
6644 * @val: Wait condition
6645 * @interval_msec: polling interval in milliseconds
6646 * @timeout_msec: timeout in milliseconds
6647 *
6648 * Waiting for some bits of register to change is a common
6649 * operation for ATA controllers. This function reads 32bit LE
6650 * IO-mapped register @reg and tests for the following condition.
6651 *
6652 * (*@reg & mask) != val
6653 *
6654 * If the condition is met, it returns; otherwise, the process is
6655 * repeated after @interval_msec until timeout.
6656 *
6657 * LOCKING:
6658 * Kernel thread context (may sleep)
6659 *
6660 * RETURNS:
6661 * The final register value.
6662 */
6663 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6664 unsigned long interval_msec,
6665 unsigned long timeout_msec)
6666 {
6667 unsigned long timeout;
6668 u32 tmp;
6669
6670 tmp = ioread32(reg);
6671
6672 /* Calculate timeout _after_ the first read to make sure
6673 * preceding writes reach the controller before starting to
6674 * eat away the timeout.
6675 */
6676 timeout = jiffies + (timeout_msec * HZ) / 1000;
6677
6678 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6679 msleep(interval_msec);
6680 tmp = ioread32(reg);
6681 }
6682
6683 return tmp;
6684 }
6685
6686 /*
6687 * Dummy port_ops
6688 */
6689 static void ata_dummy_noret(struct ata_port *ap) { }
6690 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6691 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6692
6693 static u8 ata_dummy_check_status(struct ata_port *ap)
6694 {
6695 return ATA_DRDY;
6696 }
6697
6698 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6699 {
6700 return AC_ERR_SYSTEM;
6701 }
6702
6703 const struct ata_port_operations ata_dummy_port_ops = {
6704 .port_disable = ata_port_disable,
6705 .check_status = ata_dummy_check_status,
6706 .check_altstatus = ata_dummy_check_status,
6707 .dev_select = ata_noop_dev_select,
6708 .qc_prep = ata_noop_qc_prep,
6709 .qc_issue = ata_dummy_qc_issue,
6710 .freeze = ata_dummy_noret,
6711 .thaw = ata_dummy_noret,
6712 .error_handler = ata_dummy_noret,
6713 .post_internal_cmd = ata_dummy_qc_noret,
6714 .irq_clear = ata_dummy_noret,
6715 .port_start = ata_dummy_ret0,
6716 .port_stop = ata_dummy_noret,
6717 };
6718
6719 const struct ata_port_info ata_dummy_port_info = {
6720 .port_ops = &ata_dummy_port_ops,
6721 };
6722
6723 /*
6724 * libata is essentially a library of internal helper functions for
6725 * low-level ATA host controller drivers. As such, the API/ABI is
6726 * likely to change as new drivers are added and updated.
6727 * Do not depend on ABI/API stability.
6728 */
6729
6730 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6731 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6732 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6733 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6734 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6735 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6736 EXPORT_SYMBOL_GPL(ata_std_ports);
6737 EXPORT_SYMBOL_GPL(ata_host_init);
6738 EXPORT_SYMBOL_GPL(ata_host_alloc);
6739 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6740 EXPORT_SYMBOL_GPL(ata_host_start);
6741 EXPORT_SYMBOL_GPL(ata_host_register);
6742 EXPORT_SYMBOL_GPL(ata_host_activate);
6743 EXPORT_SYMBOL_GPL(ata_host_detach);
6744 EXPORT_SYMBOL_GPL(ata_sg_init);
6745 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6746 EXPORT_SYMBOL_GPL(ata_hsm_move);
6747 EXPORT_SYMBOL_GPL(ata_qc_complete);
6748 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6749 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6750 EXPORT_SYMBOL_GPL(ata_tf_load);
6751 EXPORT_SYMBOL_GPL(ata_tf_read);
6752 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6753 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6754 EXPORT_SYMBOL_GPL(sata_print_link_status);
6755 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6756 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6757 EXPORT_SYMBOL_GPL(ata_check_status);
6758 EXPORT_SYMBOL_GPL(ata_altstatus);
6759 EXPORT_SYMBOL_GPL(ata_exec_command);
6760 EXPORT_SYMBOL_GPL(ata_port_start);
6761 EXPORT_SYMBOL_GPL(ata_interrupt);
6762 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6763 EXPORT_SYMBOL_GPL(ata_data_xfer);
6764 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6765 EXPORT_SYMBOL_GPL(ata_qc_prep);
6766 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6767 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6768 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6769 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6770 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6771 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6772 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6773 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6774 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6775 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6776 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6777 EXPORT_SYMBOL_GPL(ata_port_probe);
6778 EXPORT_SYMBOL_GPL(ata_dev_disable);
6779 EXPORT_SYMBOL_GPL(sata_set_spd);
6780 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6781 EXPORT_SYMBOL_GPL(sata_phy_resume);
6782 EXPORT_SYMBOL_GPL(sata_phy_reset);
6783 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6784 EXPORT_SYMBOL_GPL(ata_bus_reset);
6785 EXPORT_SYMBOL_GPL(ata_std_prereset);
6786 EXPORT_SYMBOL_GPL(ata_std_softreset);
6787 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6788 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6789 EXPORT_SYMBOL_GPL(ata_std_postreset);
6790 EXPORT_SYMBOL_GPL(ata_dev_classify);
6791 EXPORT_SYMBOL_GPL(ata_dev_pair);
6792 EXPORT_SYMBOL_GPL(ata_port_disable);
6793 EXPORT_SYMBOL_GPL(ata_ratelimit);
6794 EXPORT_SYMBOL_GPL(ata_wait_register);
6795 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6796 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6797 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6798 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6799 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6800 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6801 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6802 EXPORT_SYMBOL_GPL(ata_host_intr);
6803 EXPORT_SYMBOL_GPL(sata_scr_valid);
6804 EXPORT_SYMBOL_GPL(sata_scr_read);
6805 EXPORT_SYMBOL_GPL(sata_scr_write);
6806 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6807 EXPORT_SYMBOL_GPL(ata_port_online);
6808 EXPORT_SYMBOL_GPL(ata_port_offline);
6809 #ifdef CONFIG_PM
6810 EXPORT_SYMBOL_GPL(ata_host_suspend);
6811 EXPORT_SYMBOL_GPL(ata_host_resume);
6812 #endif /* CONFIG_PM */
6813 EXPORT_SYMBOL_GPL(ata_id_string);
6814 EXPORT_SYMBOL_GPL(ata_id_c_string);
6815 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6816 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6817 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6818
6819 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6820 EXPORT_SYMBOL_GPL(ata_timing_compute);
6821 EXPORT_SYMBOL_GPL(ata_timing_merge);
6822
6823 #ifdef CONFIG_PCI
6824 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6825 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6826 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6827 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6828 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6829 #ifdef CONFIG_PM
6830 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6831 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6832 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6833 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6834 #endif /* CONFIG_PM */
6835 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6836 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6837 #endif /* CONFIG_PCI */
6838
6839 #ifdef CONFIG_PM
6840 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6841 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6842 #endif /* CONFIG_PM */
6843
6844 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6845 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6846 EXPORT_SYMBOL_GPL(ata_port_abort);
6847 EXPORT_SYMBOL_GPL(ata_port_freeze);
6848 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6849 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6850 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6851 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6852 EXPORT_SYMBOL_GPL(ata_do_eh);
6853 EXPORT_SYMBOL_GPL(ata_irq_on);
6854 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6855 EXPORT_SYMBOL_GPL(ata_irq_ack);
6856 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6857 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6858
6859 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6860 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6861 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6862 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.160693 seconds and 6 git commands to generate.