Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 static unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95
96 int noacpi;
97 module_param(noacpi, int, 0444);
98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
99
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
104
105
106 /**
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
111 *
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
114 *
115 * LOCKING:
116 * Inherited from caller.
117 */
118
119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
120 {
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
126
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
131
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
136
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
141
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
146 }
147
148 /**
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
152 *
153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
160 {
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
163
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
168
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
172
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
175 }
176
177 static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
192 0,
193 0,
194 0,
195 0,
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
200 ATA_CMD_WRITE_EXT,
201 0,
202 0,
203 0,
204 ATA_CMD_WRITE_FUA_EXT
205 };
206
207 /**
208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
211 *
212 * Examine the device configuration and tf->flags to calculate
213 * the proper read/write commands and protocol to use.
214 *
215 * LOCKING:
216 * caller.
217 */
218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
219 {
220 u8 cmd;
221
222 int index, fua, lba48, write;
223
224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
227
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else {
236 tf->protocol = ATA_PROT_DMA;
237 index = 16;
238 }
239
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
244 }
245 return -1;
246 }
247
248 /**
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
252 *
253 * LOCKING:
254 * None.
255 *
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
259 *
260 * RETURNS:
261 * Block address read from @tf.
262 */
263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
264 {
265 u64 block = 0;
266
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
274
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
280
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
284
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
286 }
287
288 return block;
289 }
290
291 /**
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
299 *
300 * LOCKING:
301 * None.
302 *
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
305 *
306 * RETURNS:
307 *
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
310 */
311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
314 {
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
317
318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
319 /* yay, NCQ */
320 if (!lba_48_ok(block, n_block))
321 return -ERANGE;
322
323 tf->protocol = ATA_PROT_NCQ;
324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
325
326 if (tf->flags & ATA_TFLAG_WRITE)
327 tf->command = ATA_CMD_FPDMA_WRITE;
328 else
329 tf->command = ATA_CMD_FPDMA_READ;
330
331 tf->nsect = tag << 3;
332 tf->hob_feature = (n_block >> 8) & 0xff;
333 tf->feature = n_block & 0xff;
334
335 tf->hob_lbah = (block >> 40) & 0xff;
336 tf->hob_lbam = (block >> 32) & 0xff;
337 tf->hob_lbal = (block >> 24) & 0xff;
338 tf->lbah = (block >> 16) & 0xff;
339 tf->lbam = (block >> 8) & 0xff;
340 tf->lbal = block & 0xff;
341
342 tf->device = 1 << 6;
343 if (tf->flags & ATA_TFLAG_FUA)
344 tf->device |= 1 << 7;
345 } else if (dev->flags & ATA_DFLAG_LBA) {
346 tf->flags |= ATA_TFLAG_LBA;
347
348 if (lba_28_ok(block, n_block)) {
349 /* use LBA28 */
350 tf->device |= (block >> 24) & 0xf;
351 } else if (lba_48_ok(block, n_block)) {
352 if (!(dev->flags & ATA_DFLAG_LBA48))
353 return -ERANGE;
354
355 /* use LBA48 */
356 tf->flags |= ATA_TFLAG_LBA48;
357
358 tf->hob_nsect = (n_block >> 8) & 0xff;
359
360 tf->hob_lbah = (block >> 40) & 0xff;
361 tf->hob_lbam = (block >> 32) & 0xff;
362 tf->hob_lbal = (block >> 24) & 0xff;
363 } else
364 /* request too large even for LBA48 */
365 return -ERANGE;
366
367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
368 return -EINVAL;
369
370 tf->nsect = n_block & 0xff;
371
372 tf->lbah = (block >> 16) & 0xff;
373 tf->lbam = (block >> 8) & 0xff;
374 tf->lbal = block & 0xff;
375
376 tf->device |= ATA_LBA;
377 } else {
378 /* CHS */
379 u32 sect, head, cyl, track;
380
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block, n_block))
383 return -ERANGE;
384
385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
386 return -EINVAL;
387
388 /* Convert LBA to CHS */
389 track = (u32)block / dev->sectors;
390 cyl = track / dev->heads;
391 head = track % dev->heads;
392 sect = (u32)block % dev->sectors + 1;
393
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32)block, track, cyl, head, sect);
396
397 /* Check whether the converted CHS can fit.
398 Cylinder: 0-65535
399 Head: 0-15
400 Sector: 1-255*/
401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
402 return -ERANGE;
403
404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
405 tf->lbal = sect;
406 tf->lbam = cyl;
407 tf->lbah = cyl >> 8;
408 tf->device |= head;
409 }
410
411 return 0;
412 }
413
414 /**
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
419 *
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
422 *
423 * LOCKING:
424 * None.
425 *
426 * RETURNS:
427 * Packed xfer_mask.
428 */
429 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 unsigned int mwdma_mask,
431 unsigned int udma_mask)
432 {
433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
436 }
437
438 /**
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
444 *
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
447 */
448 static void ata_unpack_xfermask(unsigned int xfer_mask,
449 unsigned int *pio_mask,
450 unsigned int *mwdma_mask,
451 unsigned int *udma_mask)
452 {
453 if (pio_mask)
454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
455 if (mwdma_mask)
456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
457 if (udma_mask)
458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
459 }
460
461 static const struct ata_xfer_ent {
462 int shift, bits;
463 u8 base;
464 } ata_xfer_tbl[] = {
465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
468 { -1, },
469 };
470
471 /**
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
474 *
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
477 *
478 * LOCKING:
479 * None.
480 *
481 * RETURNS:
482 * Matching XFER_* value, 0 if no match found.
483 */
484 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
485 {
486 int highbit = fls(xfer_mask) - 1;
487 const struct ata_xfer_ent *ent;
488
489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 return ent->base + highbit - ent->shift;
492 return 0;
493 }
494
495 /**
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
498 *
499 * Return matching xfer_mask for @xfer_mode.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * Matching xfer_mask, 0 if no match found.
506 */
507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
508 {
509 const struct ata_xfer_ent *ent;
510
511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 return 1 << (ent->shift + xfer_mode - ent->base);
514 return 0;
515 }
516
517 /**
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
520 *
521 * Return matching xfer_shift for @xfer_mode.
522 *
523 * LOCKING:
524 * None.
525 *
526 * RETURNS:
527 * Matching xfer_shift, -1 if no match found.
528 */
529 static int ata_xfer_mode2shift(unsigned int xfer_mode)
530 {
531 const struct ata_xfer_ent *ent;
532
533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 return ent->shift;
536 return -1;
537 }
538
539 /**
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
542 *
543 * Determine string which represents the highest speed
544 * (highest bit in @modemask).
545 *
546 * LOCKING:
547 * None.
548 *
549 * RETURNS:
550 * Constant C string representing highest speed listed in
551 * @mode_mask, or the constant C string "<n/a>".
552 */
553 static const char *ata_mode_string(unsigned int xfer_mask)
554 {
555 static const char * const xfer_mode_str[] = {
556 "PIO0",
557 "PIO1",
558 "PIO2",
559 "PIO3",
560 "PIO4",
561 "PIO5",
562 "PIO6",
563 "MWDMA0",
564 "MWDMA1",
565 "MWDMA2",
566 "MWDMA3",
567 "MWDMA4",
568 "UDMA/16",
569 "UDMA/25",
570 "UDMA/33",
571 "UDMA/44",
572 "UDMA/66",
573 "UDMA/100",
574 "UDMA/133",
575 "UDMA7",
576 };
577 int highbit;
578
579 highbit = fls(xfer_mask) - 1;
580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 return xfer_mode_str[highbit];
582 return "<n/a>";
583 }
584
585 static const char *sata_spd_string(unsigned int spd)
586 {
587 static const char * const spd_str[] = {
588 "1.5 Gbps",
589 "3.0 Gbps",
590 };
591
592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
593 return "<unknown>";
594 return spd_str[spd - 1];
595 }
596
597 void ata_dev_disable(struct ata_device *dev)
598 {
599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
600 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
602 ATA_DNXFER_QUIET);
603 dev->class++;
604 }
605 }
606
607 /**
608 * ata_devchk - PATA device presence detection
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
611 *
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
615 *
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
620 *
621 * LOCKING:
622 * caller.
623 */
624
625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
626 {
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
629
630 ap->ops->dev_select(ap, device);
631
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
634
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
637
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
640
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
643
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
646
647 return 0; /* nothing found */
648 }
649
650 /**
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
653 *
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
657 *
658 * LOCKING:
659 * None.
660 *
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
664 */
665
666 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
667 {
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
671 */
672
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
677 }
678
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
683 }
684
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
687 }
688
689 /**
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
693 * @r_err: Value of error register on completion
694 *
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
699 *
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
703 *
704 * LOCKING:
705 * caller.
706 *
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
709 */
710
711 unsigned int
712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
713 {
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
717
718 ap->ops->dev_select(ap, device);
719
720 memset(&tf, 0, sizeof(tf));
721
722 ap->ops->tf_read(ap, &tf);
723 err = tf.feature;
724 if (r_err)
725 *r_err = err;
726
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
736 return ATA_DEV_NONE;
737
738 /* determine if device is ATA or ATAPI */
739 class = ata_dev_classify(&tf);
740
741 if (class == ATA_DEV_UNKNOWN)
742 return ATA_DEV_NONE;
743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
744 return ATA_DEV_NONE;
745 return class;
746 }
747
748 /**
749 * ata_id_string - Convert IDENTIFY DEVICE page into string
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
754 *
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
758 *
759 * LOCKING:
760 * caller.
761 */
762
763 void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
765 {
766 unsigned int c;
767
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
772
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
776
777 ofs++;
778 len -= 2;
779 }
780 }
781
782 /**
783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
788 *
789 * This function is identical to ata_id_string except that it
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
792 *
793 * LOCKING:
794 * caller.
795 */
796 void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
798 {
799 unsigned char *p;
800
801 WARN_ON(!(len & 1));
802
803 ata_id_string(id, s, ofs, len - 1);
804
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
809 }
810
811 static u64 ata_id_n_sectors(const u16 *id)
812 {
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
823 }
824 }
825
826 /**
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
829 * @mode: mode to assume if we cannot tell
830 *
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
835 *
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
838 * presentation.
839 */
840
841 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
842 {
843 unsigned int mask;
844 u8 mode;
845
846 /* Pack the DMA modes */
847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 if (dev->id[53] & 0x04)
849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
850
851 /* Select the mode in use */
852 mode = ata_xfer_mask2mode(mask);
853
854 if (mode != 0) {
855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 ata_mode_string(mask));
857 } else {
858 /* SWDMA perhaps ? */
859 mode = unknown;
860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
861 }
862
863 /* Configure the device reporting */
864 dev->xfer_mode = mode;
865 dev->xfer_shift = ata_xfer_mode2shift(mode);
866 }
867
868 /**
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
872 *
873 * This function performs no actual function.
874 *
875 * May be used as the dev_select() entry in ata_port_operations.
876 *
877 * LOCKING:
878 * caller.
879 */
880 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
881 {
882 }
883
884
885 /**
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
889 *
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
892 * ATA channel. Works with both PIO and MMIO.
893 *
894 * May be used as the dev_select() entry in ata_port_operations.
895 *
896 * LOCKING:
897 * caller.
898 */
899
900 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
901 {
902 u8 tmp;
903
904 if (device == 0)
905 tmp = ATA_DEVICE_OBS;
906 else
907 tmp = ATA_DEVICE_OBS | ATA_DEV1;
908
909 iowrite8(tmp, ap->ioaddr.device_addr);
910 ata_pause(ap); /* needed; also flushes, for mmio */
911 }
912
913 /**
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
919 *
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
922 * ATA channel.
923 *
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
927 *
928 * LOCKING:
929 * caller.
930 */
931
932 void ata_dev_select(struct ata_port *ap, unsigned int device,
933 unsigned int wait, unsigned int can_sleep)
934 {
935 if (ata_msg_probe(ap))
936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device, wait);
938
939 if (wait)
940 ata_wait_idle(ap);
941
942 ap->ops->dev_select(ap, device);
943
944 if (wait) {
945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
946 msleep(150);
947 ata_wait_idle(ap);
948 }
949 }
950
951 /**
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
953 * @id: IDENTIFY DEVICE page to dump
954 *
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
956 * page.
957 *
958 * LOCKING:
959 * caller.
960 */
961
962 static inline void ata_dump_id(const u16 *id)
963 {
964 DPRINTK("49==0x%04x "
965 "53==0x%04x "
966 "63==0x%04x "
967 "64==0x%04x "
968 "75==0x%04x \n",
969 id[49],
970 id[53],
971 id[63],
972 id[64],
973 id[75]);
974 DPRINTK("80==0x%04x "
975 "81==0x%04x "
976 "82==0x%04x "
977 "83==0x%04x "
978 "84==0x%04x \n",
979 id[80],
980 id[81],
981 id[82],
982 id[83],
983 id[84]);
984 DPRINTK("88==0x%04x "
985 "93==0x%04x\n",
986 id[88],
987 id[93]);
988 }
989
990 /**
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
993 *
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
996 *
997 * FIXME: pre IDE drive timing (do we care ?).
998 *
999 * LOCKING:
1000 * None.
1001 *
1002 * RETURNS:
1003 * Computed xfermask
1004 */
1005 static unsigned int ata_id_xfermask(const u16 *id)
1006 {
1007 unsigned int pio_mask, mwdma_mask, udma_mask;
1008
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1012 pio_mask <<= 3;
1013 pio_mask |= 0x7;
1014 } else {
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1017 * a mask.
1018 */
1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1020 if (mode < 5) /* Valid PIO range */
1021 pio_mask = (2 << mode) - 1;
1022 else
1023 pio_mask = 1;
1024
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1030 */
1031 }
1032
1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1034
1035 if (ata_id_is_cfa(id)) {
1036 /*
1037 * Process compact flash extended modes
1038 */
1039 int pio = id[163] & 0x7;
1040 int dma = (id[163] >> 3) & 7;
1041
1042 if (pio)
1043 pio_mask |= (1 << 5);
1044 if (pio > 1)
1045 pio_mask |= (1 << 6);
1046 if (dma)
1047 mwdma_mask |= (1 << 3);
1048 if (dma > 1)
1049 mwdma_mask |= (1 << 4);
1050 }
1051
1052 udma_mask = 0;
1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1055
1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1057 }
1058
1059 /**
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
1062 * @fn: workqueue function to be scheduled
1063 * @data: data for @fn to use
1064 * @delay: delay time for workqueue function
1065 *
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1070 *
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1073 * synchronization.
1074 *
1075 * LOCKING:
1076 * Inherited from caller.
1077 */
1078 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1079 unsigned long delay)
1080 {
1081 int rc;
1082
1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1084 return;
1085
1086 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 ap->port_task_data = data;
1088
1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1090
1091 /* rc == 0 means that another user is using port task */
1092 WARN_ON(rc == 0);
1093 }
1094
1095 /**
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1098 *
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1101 *
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1104 */
1105 void ata_port_flush_task(struct ata_port *ap)
1106 {
1107 unsigned long flags;
1108
1109 DPRINTK("ENTER\n");
1110
1111 spin_lock_irqsave(ap->lock, flags);
1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1113 spin_unlock_irqrestore(ap->lock, flags);
1114
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq);
1117
1118 /*
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1121 * Cancel and flush.
1122 */
1123 if (!cancel_delayed_work(&ap->port_task)) {
1124 if (ata_msg_ctl(ap))
1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1126 __FUNCTION__);
1127 flush_workqueue(ata_wq);
1128 }
1129
1130 spin_lock_irqsave(ap->lock, flags);
1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1132 spin_unlock_irqrestore(ap->lock, flags);
1133
1134 if (ata_msg_ctl(ap))
1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1136 }
1137
1138 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1139 {
1140 struct completion *waiting = qc->private_data;
1141
1142 complete(waiting);
1143 }
1144
1145 /**
1146 * ata_exec_internal_sg - execute libata internal command
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
1149 * @cdb: CDB for packet command
1150 * @dma_dir: Data tranfer direction of the command
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
1153 *
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1159 *
1160 * LOCKING:
1161 * None. Should be called with kernel context, might sleep.
1162 *
1163 * RETURNS:
1164 * Zero on success, AC_ERR_* mask on failure
1165 */
1166 unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 struct ata_taskfile *tf, const u8 *cdb,
1168 int dma_dir, struct scatterlist *sg,
1169 unsigned int n_elem)
1170 {
1171 struct ata_port *ap = dev->ap;
1172 u8 command = tf->command;
1173 struct ata_queued_cmd *qc;
1174 unsigned int tag, preempted_tag;
1175 u32 preempted_sactive, preempted_qc_active;
1176 DECLARE_COMPLETION_ONSTACK(wait);
1177 unsigned long flags;
1178 unsigned int err_mask;
1179 int rc;
1180
1181 spin_lock_irqsave(ap->lock, flags);
1182
1183 /* no internal command while frozen */
1184 if (ap->pflags & ATA_PFLAG_FROZEN) {
1185 spin_unlock_irqrestore(ap->lock, flags);
1186 return AC_ERR_SYSTEM;
1187 }
1188
1189 /* initialize internal qc */
1190
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1195 */
1196 if (ap->ops->error_handler)
1197 tag = ATA_TAG_INTERNAL;
1198 else
1199 tag = 0;
1200
1201 if (test_and_set_bit(tag, &ap->qc_allocated))
1202 BUG();
1203 qc = __ata_qc_from_tag(ap, tag);
1204
1205 qc->tag = tag;
1206 qc->scsicmd = NULL;
1207 qc->ap = ap;
1208 qc->dev = dev;
1209 ata_qc_reinit(qc);
1210
1211 preempted_tag = ap->active_tag;
1212 preempted_sactive = ap->sactive;
1213 preempted_qc_active = ap->qc_active;
1214 ap->active_tag = ATA_TAG_POISON;
1215 ap->sactive = 0;
1216 ap->qc_active = 0;
1217
1218 /* prepare & issue qc */
1219 qc->tf = *tf;
1220 if (cdb)
1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1222 qc->flags |= ATA_QCFLAG_RESULT_TF;
1223 qc->dma_dir = dma_dir;
1224 if (dma_dir != DMA_NONE) {
1225 unsigned int i, buflen = 0;
1226
1227 for (i = 0; i < n_elem; i++)
1228 buflen += sg[i].length;
1229
1230 ata_sg_init(qc, sg, n_elem);
1231 qc->nbytes = buflen;
1232 }
1233
1234 qc->private_data = &wait;
1235 qc->complete_fn = ata_qc_complete_internal;
1236
1237 ata_qc_issue(qc);
1238
1239 spin_unlock_irqrestore(ap->lock, flags);
1240
1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1242
1243 ata_port_flush_task(ap);
1244
1245 if (!rc) {
1246 spin_lock_irqsave(ap->lock, flags);
1247
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
1252 */
1253 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1254 qc->err_mask |= AC_ERR_TIMEOUT;
1255
1256 if (ap->ops->error_handler)
1257 ata_port_freeze(ap);
1258 else
1259 ata_qc_complete(qc);
1260
1261 if (ata_msg_warn(ap))
1262 ata_dev_printk(dev, KERN_WARNING,
1263 "qc timeout (cmd 0x%x)\n", command);
1264 }
1265
1266 spin_unlock_irqrestore(ap->lock, flags);
1267 }
1268
1269 /* do post_internal_cmd */
1270 if (ap->ops->post_internal_cmd)
1271 ap->ops->post_internal_cmd(qc);
1272
1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1274 if (ata_msg_warn(ap))
1275 ata_dev_printk(dev, KERN_WARNING,
1276 "zero err_mask for failed "
1277 "internal command, assuming AC_ERR_OTHER\n");
1278 qc->err_mask |= AC_ERR_OTHER;
1279 }
1280
1281 /* finish up */
1282 spin_lock_irqsave(ap->lock, flags);
1283
1284 *tf = qc->result_tf;
1285 err_mask = qc->err_mask;
1286
1287 ata_qc_free(qc);
1288 ap->active_tag = preempted_tag;
1289 ap->sactive = preempted_sactive;
1290 ap->qc_active = preempted_qc_active;
1291
1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 * Until those drivers are fixed, we detect the condition
1294 * here, fail the command with AC_ERR_SYSTEM and reenable the
1295 * port.
1296 *
1297 * Note that this doesn't change any behavior as internal
1298 * command failure results in disabling the device in the
1299 * higher layer for LLDDs without new reset/EH callbacks.
1300 *
1301 * Kill the following code as soon as those drivers are fixed.
1302 */
1303 if (ap->flags & ATA_FLAG_DISABLED) {
1304 err_mask |= AC_ERR_SYSTEM;
1305 ata_port_probe(ap);
1306 }
1307
1308 spin_unlock_irqrestore(ap->lock, flags);
1309
1310 return err_mask;
1311 }
1312
1313 /**
1314 * ata_exec_internal - execute libata internal command
1315 * @dev: Device to which the command is sent
1316 * @tf: Taskfile registers for the command and the result
1317 * @cdb: CDB for packet command
1318 * @dma_dir: Data tranfer direction of the command
1319 * @buf: Data buffer of the command
1320 * @buflen: Length of data buffer
1321 *
1322 * Wrapper around ata_exec_internal_sg() which takes simple
1323 * buffer instead of sg list.
1324 *
1325 * LOCKING:
1326 * None. Should be called with kernel context, might sleep.
1327 *
1328 * RETURNS:
1329 * Zero on success, AC_ERR_* mask on failure
1330 */
1331 unsigned ata_exec_internal(struct ata_device *dev,
1332 struct ata_taskfile *tf, const u8 *cdb,
1333 int dma_dir, void *buf, unsigned int buflen)
1334 {
1335 struct scatterlist *psg = NULL, sg;
1336 unsigned int n_elem = 0;
1337
1338 if (dma_dir != DMA_NONE) {
1339 WARN_ON(!buf);
1340 sg_init_one(&sg, buf, buflen);
1341 psg = &sg;
1342 n_elem++;
1343 }
1344
1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1346 }
1347
1348 /**
1349 * ata_do_simple_cmd - execute simple internal command
1350 * @dev: Device to which the command is sent
1351 * @cmd: Opcode to execute
1352 *
1353 * Execute a 'simple' command, that only consists of the opcode
1354 * 'cmd' itself, without filling any other registers
1355 *
1356 * LOCKING:
1357 * Kernel thread context (may sleep).
1358 *
1359 * RETURNS:
1360 * Zero on success, AC_ERR_* mask on failure
1361 */
1362 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1363 {
1364 struct ata_taskfile tf;
1365
1366 ata_tf_init(dev, &tf);
1367
1368 tf.command = cmd;
1369 tf.flags |= ATA_TFLAG_DEVICE;
1370 tf.protocol = ATA_PROT_NODATA;
1371
1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1373 }
1374
1375 /**
1376 * ata_pio_need_iordy - check if iordy needed
1377 * @adev: ATA device
1378 *
1379 * Check if the current speed of the device requires IORDY. Used
1380 * by various controllers for chip configuration.
1381 */
1382
1383 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1384 {
1385 int pio;
1386 int speed = adev->pio_mode - XFER_PIO_0;
1387
1388 if (speed < 2)
1389 return 0;
1390 if (speed > 2)
1391 return 1;
1392
1393 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1394
1395 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1396 pio = adev->id[ATA_ID_EIDE_PIO];
1397 /* Is the speed faster than the drive allows non IORDY ? */
1398 if (pio) {
1399 /* This is cycle times not frequency - watch the logic! */
1400 if (pio > 240) /* PIO2 is 240nS per cycle */
1401 return 1;
1402 return 0;
1403 }
1404 }
1405 return 0;
1406 }
1407
1408 /**
1409 * ata_dev_read_id - Read ID data from the specified device
1410 * @dev: target device
1411 * @p_class: pointer to class of the target device (may be changed)
1412 * @flags: ATA_READID_* flags
1413 * @id: buffer to read IDENTIFY data into
1414 *
1415 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1416 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1417 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1418 * for pre-ATA4 drives.
1419 *
1420 * LOCKING:
1421 * Kernel thread context (may sleep)
1422 *
1423 * RETURNS:
1424 * 0 on success, -errno otherwise.
1425 */
1426 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1427 unsigned int flags, u16 *id)
1428 {
1429 struct ata_port *ap = dev->ap;
1430 unsigned int class = *p_class;
1431 struct ata_taskfile tf;
1432 unsigned int err_mask = 0;
1433 const char *reason;
1434 int rc;
1435
1436 if (ata_msg_ctl(ap))
1437 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1438
1439 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1440
1441 retry:
1442 ata_tf_init(dev, &tf);
1443
1444 switch (class) {
1445 case ATA_DEV_ATA:
1446 tf.command = ATA_CMD_ID_ATA;
1447 break;
1448 case ATA_DEV_ATAPI:
1449 tf.command = ATA_CMD_ID_ATAPI;
1450 break;
1451 default:
1452 rc = -ENODEV;
1453 reason = "unsupported class";
1454 goto err_out;
1455 }
1456
1457 tf.protocol = ATA_PROT_PIO;
1458
1459 /* Some devices choke if TF registers contain garbage. Make
1460 * sure those are properly initialized.
1461 */
1462 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1463
1464 /* Device presence detection is unreliable on some
1465 * controllers. Always poll IDENTIFY if available.
1466 */
1467 tf.flags |= ATA_TFLAG_POLLING;
1468
1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1470 id, sizeof(id[0]) * ATA_ID_WORDS);
1471 if (err_mask) {
1472 if (err_mask & AC_ERR_NODEV_HINT) {
1473 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1474 ap->print_id, dev->devno);
1475 return -ENOENT;
1476 }
1477
1478 rc = -EIO;
1479 reason = "I/O error";
1480 goto err_out;
1481 }
1482
1483 swap_buf_le16(id, ATA_ID_WORDS);
1484
1485 /* sanity check */
1486 rc = -EINVAL;
1487 reason = "device reports illegal type";
1488
1489 if (class == ATA_DEV_ATA) {
1490 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1491 goto err_out;
1492 } else {
1493 if (ata_id_is_ata(id))
1494 goto err_out;
1495 }
1496
1497 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1498 /*
1499 * The exact sequence expected by certain pre-ATA4 drives is:
1500 * SRST RESET
1501 * IDENTIFY
1502 * INITIALIZE DEVICE PARAMETERS
1503 * anything else..
1504 * Some drives were very specific about that exact sequence.
1505 */
1506 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1507 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1508 if (err_mask) {
1509 rc = -EIO;
1510 reason = "INIT_DEV_PARAMS failed";
1511 goto err_out;
1512 }
1513
1514 /* current CHS translation info (id[53-58]) might be
1515 * changed. reread the identify device info.
1516 */
1517 flags &= ~ATA_READID_POSTRESET;
1518 goto retry;
1519 }
1520 }
1521
1522 *p_class = class;
1523
1524 return 0;
1525
1526 err_out:
1527 if (ata_msg_warn(ap))
1528 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1529 "(%s, err_mask=0x%x)\n", reason, err_mask);
1530 return rc;
1531 }
1532
1533 static inline u8 ata_dev_knobble(struct ata_device *dev)
1534 {
1535 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1536 }
1537
1538 static void ata_dev_config_ncq(struct ata_device *dev,
1539 char *desc, size_t desc_sz)
1540 {
1541 struct ata_port *ap = dev->ap;
1542 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1543
1544 if (!ata_id_has_ncq(dev->id)) {
1545 desc[0] = '\0';
1546 return;
1547 }
1548 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1549 snprintf(desc, desc_sz, "NCQ (not used)");
1550 return;
1551 }
1552 if (ap->flags & ATA_FLAG_NCQ) {
1553 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1554 dev->flags |= ATA_DFLAG_NCQ;
1555 }
1556
1557 if (hdepth >= ddepth)
1558 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1559 else
1560 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1561 }
1562
1563 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1564 {
1565 int i;
1566
1567 if (ap->scsi_host) {
1568 unsigned int len = 0;
1569
1570 for (i = 0; i < ATA_MAX_DEVICES; i++)
1571 len = max(len, ap->device[i].cdb_len);
1572
1573 ap->scsi_host->max_cmd_len = len;
1574 }
1575 }
1576
1577 /**
1578 * ata_dev_configure - Configure the specified ATA/ATAPI device
1579 * @dev: Target device to configure
1580 *
1581 * Configure @dev according to @dev->id. Generic and low-level
1582 * driver specific fixups are also applied.
1583 *
1584 * LOCKING:
1585 * Kernel thread context (may sleep)
1586 *
1587 * RETURNS:
1588 * 0 on success, -errno otherwise
1589 */
1590 int ata_dev_configure(struct ata_device *dev)
1591 {
1592 struct ata_port *ap = dev->ap;
1593 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1594 const u16 *id = dev->id;
1595 unsigned int xfer_mask;
1596 char revbuf[7]; /* XYZ-99\0 */
1597 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1598 char modelbuf[ATA_ID_PROD_LEN+1];
1599 int rc;
1600
1601 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1602 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1603 __FUNCTION__);
1604 return 0;
1605 }
1606
1607 if (ata_msg_probe(ap))
1608 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1609
1610 /* set _SDD */
1611 rc = ata_acpi_push_id(ap, dev->devno);
1612 if (rc) {
1613 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1614 rc);
1615 }
1616
1617 /* retrieve and execute the ATA task file of _GTF */
1618 ata_acpi_exec_tfs(ap);
1619
1620 /* print device capabilities */
1621 if (ata_msg_probe(ap))
1622 ata_dev_printk(dev, KERN_DEBUG,
1623 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1624 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1625 __FUNCTION__,
1626 id[49], id[82], id[83], id[84],
1627 id[85], id[86], id[87], id[88]);
1628
1629 /* initialize to-be-configured parameters */
1630 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1631 dev->max_sectors = 0;
1632 dev->cdb_len = 0;
1633 dev->n_sectors = 0;
1634 dev->cylinders = 0;
1635 dev->heads = 0;
1636 dev->sectors = 0;
1637
1638 /*
1639 * common ATA, ATAPI feature tests
1640 */
1641
1642 /* find max transfer mode; for printk only */
1643 xfer_mask = ata_id_xfermask(id);
1644
1645 if (ata_msg_probe(ap))
1646 ata_dump_id(id);
1647
1648 /* ATA-specific feature tests */
1649 if (dev->class == ATA_DEV_ATA) {
1650 if (ata_id_is_cfa(id)) {
1651 if (id[162] & 1) /* CPRM may make this media unusable */
1652 ata_dev_printk(dev, KERN_WARNING,
1653 "supports DRM functions and may "
1654 "not be fully accessable.\n");
1655 snprintf(revbuf, 7, "CFA");
1656 }
1657 else
1658 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1659
1660 dev->n_sectors = ata_id_n_sectors(id);
1661
1662 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1663 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1664 sizeof(fwrevbuf));
1665
1666 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1667 sizeof(modelbuf));
1668
1669 if (dev->id[59] & 0x100)
1670 dev->multi_count = dev->id[59] & 0xff;
1671
1672 if (ata_id_has_lba(id)) {
1673 const char *lba_desc;
1674 char ncq_desc[20];
1675
1676 lba_desc = "LBA";
1677 dev->flags |= ATA_DFLAG_LBA;
1678 if (ata_id_has_lba48(id)) {
1679 dev->flags |= ATA_DFLAG_LBA48;
1680 lba_desc = "LBA48";
1681
1682 if (dev->n_sectors >= (1UL << 28) &&
1683 ata_id_has_flush_ext(id))
1684 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1685 }
1686
1687 /* config NCQ */
1688 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1689
1690 /* print device info to dmesg */
1691 if (ata_msg_drv(ap) && print_info) {
1692 ata_dev_printk(dev, KERN_INFO,
1693 "%s: %s, %s, max %s\n",
1694 revbuf, modelbuf, fwrevbuf,
1695 ata_mode_string(xfer_mask));
1696 ata_dev_printk(dev, KERN_INFO,
1697 "%Lu sectors, multi %u: %s %s\n",
1698 (unsigned long long)dev->n_sectors,
1699 dev->multi_count, lba_desc, ncq_desc);
1700 }
1701 } else {
1702 /* CHS */
1703
1704 /* Default translation */
1705 dev->cylinders = id[1];
1706 dev->heads = id[3];
1707 dev->sectors = id[6];
1708
1709 if (ata_id_current_chs_valid(id)) {
1710 /* Current CHS translation is valid. */
1711 dev->cylinders = id[54];
1712 dev->heads = id[55];
1713 dev->sectors = id[56];
1714 }
1715
1716 /* print device info to dmesg */
1717 if (ata_msg_drv(ap) && print_info) {
1718 ata_dev_printk(dev, KERN_INFO,
1719 "%s: %s, %s, max %s\n",
1720 revbuf, modelbuf, fwrevbuf,
1721 ata_mode_string(xfer_mask));
1722 ata_dev_printk(dev, KERN_INFO,
1723 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1724 (unsigned long long)dev->n_sectors,
1725 dev->multi_count, dev->cylinders,
1726 dev->heads, dev->sectors);
1727 }
1728 }
1729
1730 dev->cdb_len = 16;
1731 }
1732
1733 /* ATAPI-specific feature tests */
1734 else if (dev->class == ATA_DEV_ATAPI) {
1735 char *cdb_intr_string = "";
1736
1737 rc = atapi_cdb_len(id);
1738 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1739 if (ata_msg_warn(ap))
1740 ata_dev_printk(dev, KERN_WARNING,
1741 "unsupported CDB len\n");
1742 rc = -EINVAL;
1743 goto err_out_nosup;
1744 }
1745 dev->cdb_len = (unsigned int) rc;
1746
1747 if (ata_id_cdb_intr(dev->id)) {
1748 dev->flags |= ATA_DFLAG_CDB_INTR;
1749 cdb_intr_string = ", CDB intr";
1750 }
1751
1752 /* print device info to dmesg */
1753 if (ata_msg_drv(ap) && print_info)
1754 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1755 ata_mode_string(xfer_mask),
1756 cdb_intr_string);
1757 }
1758
1759 /* determine max_sectors */
1760 dev->max_sectors = ATA_MAX_SECTORS;
1761 if (dev->flags & ATA_DFLAG_LBA48)
1762 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1763
1764 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1765 /* Let the user know. We don't want to disallow opens for
1766 rescue purposes, or in case the vendor is just a blithering
1767 idiot */
1768 if (print_info) {
1769 ata_dev_printk(dev, KERN_WARNING,
1770 "Drive reports diagnostics failure. This may indicate a drive\n");
1771 ata_dev_printk(dev, KERN_WARNING,
1772 "fault or invalid emulation. Contact drive vendor for information.\n");
1773 }
1774 }
1775
1776 ata_set_port_max_cmd_len(ap);
1777
1778 /* limit bridge transfers to udma5, 200 sectors */
1779 if (ata_dev_knobble(dev)) {
1780 if (ata_msg_drv(ap) && print_info)
1781 ata_dev_printk(dev, KERN_INFO,
1782 "applying bridge limits\n");
1783 dev->udma_mask &= ATA_UDMA5;
1784 dev->max_sectors = ATA_MAX_SECTORS;
1785 }
1786
1787 if (ap->ops->dev_config)
1788 ap->ops->dev_config(ap, dev);
1789
1790 if (ata_msg_probe(ap))
1791 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1792 __FUNCTION__, ata_chk_status(ap));
1793 return 0;
1794
1795 err_out_nosup:
1796 if (ata_msg_probe(ap))
1797 ata_dev_printk(dev, KERN_DEBUG,
1798 "%s: EXIT, err\n", __FUNCTION__);
1799 return rc;
1800 }
1801
1802 /**
1803 * ata_bus_probe - Reset and probe ATA bus
1804 * @ap: Bus to probe
1805 *
1806 * Master ATA bus probing function. Initiates a hardware-dependent
1807 * bus reset, then attempts to identify any devices found on
1808 * the bus.
1809 *
1810 * LOCKING:
1811 * PCI/etc. bus probe sem.
1812 *
1813 * RETURNS:
1814 * Zero on success, negative errno otherwise.
1815 */
1816
1817 int ata_bus_probe(struct ata_port *ap)
1818 {
1819 unsigned int classes[ATA_MAX_DEVICES];
1820 int tries[ATA_MAX_DEVICES];
1821 int i, rc;
1822 struct ata_device *dev;
1823
1824 ata_port_probe(ap);
1825
1826 for (i = 0; i < ATA_MAX_DEVICES; i++)
1827 tries[i] = ATA_PROBE_MAX_TRIES;
1828
1829 retry:
1830 /* reset and determine device classes */
1831 ap->ops->phy_reset(ap);
1832
1833 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1834 dev = &ap->device[i];
1835
1836 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1837 dev->class != ATA_DEV_UNKNOWN)
1838 classes[dev->devno] = dev->class;
1839 else
1840 classes[dev->devno] = ATA_DEV_NONE;
1841
1842 dev->class = ATA_DEV_UNKNOWN;
1843 }
1844
1845 ata_port_probe(ap);
1846
1847 /* after the reset the device state is PIO 0 and the controller
1848 state is undefined. Record the mode */
1849
1850 for (i = 0; i < ATA_MAX_DEVICES; i++)
1851 ap->device[i].pio_mode = XFER_PIO_0;
1852
1853 /* read IDENTIFY page and configure devices. We have to do the identify
1854 specific sequence bass-ackwards so that PDIAG- is released by
1855 the slave device */
1856
1857 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
1858 dev = &ap->device[i];
1859
1860 if (tries[i])
1861 dev->class = classes[i];
1862
1863 if (!ata_dev_enabled(dev))
1864 continue;
1865
1866 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1867 dev->id);
1868 if (rc)
1869 goto fail;
1870 }
1871
1872 /* After the identify sequence we can now set up the devices. We do
1873 this in the normal order so that the user doesn't get confused */
1874
1875 for(i = 0; i < ATA_MAX_DEVICES; i++) {
1876 dev = &ap->device[i];
1877 if (!ata_dev_enabled(dev))
1878 continue;
1879
1880 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1881 rc = ata_dev_configure(dev);
1882 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1883 if (rc)
1884 goto fail;
1885 }
1886
1887 /* configure transfer mode */
1888 rc = ata_set_mode(ap, &dev);
1889 if (rc)
1890 goto fail;
1891
1892 for (i = 0; i < ATA_MAX_DEVICES; i++)
1893 if (ata_dev_enabled(&ap->device[i]))
1894 return 0;
1895
1896 /* no device present, disable port */
1897 ata_port_disable(ap);
1898 ap->ops->port_disable(ap);
1899 return -ENODEV;
1900
1901 fail:
1902 tries[dev->devno]--;
1903
1904 switch (rc) {
1905 case -EINVAL:
1906 /* eeek, something went very wrong, give up */
1907 tries[dev->devno] = 0;
1908 break;
1909
1910 case -ENODEV:
1911 /* give it just one more chance */
1912 tries[dev->devno] = min(tries[dev->devno], 1);
1913 case -EIO:
1914 if (tries[dev->devno] == 1) {
1915 /* This is the last chance, better to slow
1916 * down than lose it.
1917 */
1918 sata_down_spd_limit(ap);
1919 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1920 }
1921 }
1922
1923 if (!tries[dev->devno])
1924 ata_dev_disable(dev);
1925
1926 goto retry;
1927 }
1928
1929 /**
1930 * ata_port_probe - Mark port as enabled
1931 * @ap: Port for which we indicate enablement
1932 *
1933 * Modify @ap data structure such that the system
1934 * thinks that the entire port is enabled.
1935 *
1936 * LOCKING: host lock, or some other form of
1937 * serialization.
1938 */
1939
1940 void ata_port_probe(struct ata_port *ap)
1941 {
1942 ap->flags &= ~ATA_FLAG_DISABLED;
1943 }
1944
1945 /**
1946 * sata_print_link_status - Print SATA link status
1947 * @ap: SATA port to printk link status about
1948 *
1949 * This function prints link speed and status of a SATA link.
1950 *
1951 * LOCKING:
1952 * None.
1953 */
1954 static void sata_print_link_status(struct ata_port *ap)
1955 {
1956 u32 sstatus, scontrol, tmp;
1957
1958 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1959 return;
1960 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1961
1962 if (ata_port_online(ap)) {
1963 tmp = (sstatus >> 4) & 0xf;
1964 ata_port_printk(ap, KERN_INFO,
1965 "SATA link up %s (SStatus %X SControl %X)\n",
1966 sata_spd_string(tmp), sstatus, scontrol);
1967 } else {
1968 ata_port_printk(ap, KERN_INFO,
1969 "SATA link down (SStatus %X SControl %X)\n",
1970 sstatus, scontrol);
1971 }
1972 }
1973
1974 /**
1975 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1976 * @ap: SATA port associated with target SATA PHY.
1977 *
1978 * This function issues commands to standard SATA Sxxx
1979 * PHY registers, to wake up the phy (and device), and
1980 * clear any reset condition.
1981 *
1982 * LOCKING:
1983 * PCI/etc. bus probe sem.
1984 *
1985 */
1986 void __sata_phy_reset(struct ata_port *ap)
1987 {
1988 u32 sstatus;
1989 unsigned long timeout = jiffies + (HZ * 5);
1990
1991 if (ap->flags & ATA_FLAG_SATA_RESET) {
1992 /* issue phy wake/reset */
1993 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1994 /* Couldn't find anything in SATA I/II specs, but
1995 * AHCI-1.1 10.4.2 says at least 1 ms. */
1996 mdelay(1);
1997 }
1998 /* phy wake/clear reset */
1999 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2000
2001 /* wait for phy to become ready, if necessary */
2002 do {
2003 msleep(200);
2004 sata_scr_read(ap, SCR_STATUS, &sstatus);
2005 if ((sstatus & 0xf) != 1)
2006 break;
2007 } while (time_before(jiffies, timeout));
2008
2009 /* print link status */
2010 sata_print_link_status(ap);
2011
2012 /* TODO: phy layer with polling, timeouts, etc. */
2013 if (!ata_port_offline(ap))
2014 ata_port_probe(ap);
2015 else
2016 ata_port_disable(ap);
2017
2018 if (ap->flags & ATA_FLAG_DISABLED)
2019 return;
2020
2021 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2022 ata_port_disable(ap);
2023 return;
2024 }
2025
2026 ap->cbl = ATA_CBL_SATA;
2027 }
2028
2029 /**
2030 * sata_phy_reset - Reset SATA bus.
2031 * @ap: SATA port associated with target SATA PHY.
2032 *
2033 * This function resets the SATA bus, and then probes
2034 * the bus for devices.
2035 *
2036 * LOCKING:
2037 * PCI/etc. bus probe sem.
2038 *
2039 */
2040 void sata_phy_reset(struct ata_port *ap)
2041 {
2042 __sata_phy_reset(ap);
2043 if (ap->flags & ATA_FLAG_DISABLED)
2044 return;
2045 ata_bus_reset(ap);
2046 }
2047
2048 /**
2049 * ata_dev_pair - return other device on cable
2050 * @adev: device
2051 *
2052 * Obtain the other device on the same cable, or if none is
2053 * present NULL is returned
2054 */
2055
2056 struct ata_device *ata_dev_pair(struct ata_device *adev)
2057 {
2058 struct ata_port *ap = adev->ap;
2059 struct ata_device *pair = &ap->device[1 - adev->devno];
2060 if (!ata_dev_enabled(pair))
2061 return NULL;
2062 return pair;
2063 }
2064
2065 /**
2066 * ata_port_disable - Disable port.
2067 * @ap: Port to be disabled.
2068 *
2069 * Modify @ap data structure such that the system
2070 * thinks that the entire port is disabled, and should
2071 * never attempt to probe or communicate with devices
2072 * on this port.
2073 *
2074 * LOCKING: host lock, or some other form of
2075 * serialization.
2076 */
2077
2078 void ata_port_disable(struct ata_port *ap)
2079 {
2080 ap->device[0].class = ATA_DEV_NONE;
2081 ap->device[1].class = ATA_DEV_NONE;
2082 ap->flags |= ATA_FLAG_DISABLED;
2083 }
2084
2085 /**
2086 * sata_down_spd_limit - adjust SATA spd limit downward
2087 * @ap: Port to adjust SATA spd limit for
2088 *
2089 * Adjust SATA spd limit of @ap downward. Note that this
2090 * function only adjusts the limit. The change must be applied
2091 * using sata_set_spd().
2092 *
2093 * LOCKING:
2094 * Inherited from caller.
2095 *
2096 * RETURNS:
2097 * 0 on success, negative errno on failure
2098 */
2099 int sata_down_spd_limit(struct ata_port *ap)
2100 {
2101 u32 sstatus, spd, mask;
2102 int rc, highbit;
2103
2104 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2105 if (rc)
2106 return rc;
2107
2108 mask = ap->sata_spd_limit;
2109 if (mask <= 1)
2110 return -EINVAL;
2111 highbit = fls(mask) - 1;
2112 mask &= ~(1 << highbit);
2113
2114 spd = (sstatus >> 4) & 0xf;
2115 if (spd <= 1)
2116 return -EINVAL;
2117 spd--;
2118 mask &= (1 << spd) - 1;
2119 if (!mask)
2120 return -EINVAL;
2121
2122 ap->sata_spd_limit = mask;
2123
2124 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2125 sata_spd_string(fls(mask)));
2126
2127 return 0;
2128 }
2129
2130 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2131 {
2132 u32 spd, limit;
2133
2134 if (ap->sata_spd_limit == UINT_MAX)
2135 limit = 0;
2136 else
2137 limit = fls(ap->sata_spd_limit);
2138
2139 spd = (*scontrol >> 4) & 0xf;
2140 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2141
2142 return spd != limit;
2143 }
2144
2145 /**
2146 * sata_set_spd_needed - is SATA spd configuration needed
2147 * @ap: Port in question
2148 *
2149 * Test whether the spd limit in SControl matches
2150 * @ap->sata_spd_limit. This function is used to determine
2151 * whether hardreset is necessary to apply SATA spd
2152 * configuration.
2153 *
2154 * LOCKING:
2155 * Inherited from caller.
2156 *
2157 * RETURNS:
2158 * 1 if SATA spd configuration is needed, 0 otherwise.
2159 */
2160 int sata_set_spd_needed(struct ata_port *ap)
2161 {
2162 u32 scontrol;
2163
2164 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2165 return 0;
2166
2167 return __sata_set_spd_needed(ap, &scontrol);
2168 }
2169
2170 /**
2171 * sata_set_spd - set SATA spd according to spd limit
2172 * @ap: Port to set SATA spd for
2173 *
2174 * Set SATA spd of @ap according to sata_spd_limit.
2175 *
2176 * LOCKING:
2177 * Inherited from caller.
2178 *
2179 * RETURNS:
2180 * 0 if spd doesn't need to be changed, 1 if spd has been
2181 * changed. Negative errno if SCR registers are inaccessible.
2182 */
2183 int sata_set_spd(struct ata_port *ap)
2184 {
2185 u32 scontrol;
2186 int rc;
2187
2188 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2189 return rc;
2190
2191 if (!__sata_set_spd_needed(ap, &scontrol))
2192 return 0;
2193
2194 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2195 return rc;
2196
2197 return 1;
2198 }
2199
2200 /*
2201 * This mode timing computation functionality is ported over from
2202 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2203 */
2204 /*
2205 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2206 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2207 * for UDMA6, which is currently supported only by Maxtor drives.
2208 *
2209 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2210 */
2211
2212 static const struct ata_timing ata_timing[] = {
2213
2214 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2215 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2216 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2217 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2218
2219 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2220 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2221 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2222 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2223 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2224
2225 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2226
2227 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2228 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2229 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2230
2231 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2232 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2233 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2234
2235 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2236 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2237 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2238 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2239
2240 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2241 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2242 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2243
2244 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2245
2246 { 0xFF }
2247 };
2248
2249 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2250 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2251
2252 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2253 {
2254 q->setup = EZ(t->setup * 1000, T);
2255 q->act8b = EZ(t->act8b * 1000, T);
2256 q->rec8b = EZ(t->rec8b * 1000, T);
2257 q->cyc8b = EZ(t->cyc8b * 1000, T);
2258 q->active = EZ(t->active * 1000, T);
2259 q->recover = EZ(t->recover * 1000, T);
2260 q->cycle = EZ(t->cycle * 1000, T);
2261 q->udma = EZ(t->udma * 1000, UT);
2262 }
2263
2264 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2265 struct ata_timing *m, unsigned int what)
2266 {
2267 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2268 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2269 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2270 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2271 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2272 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2273 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2274 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2275 }
2276
2277 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2278 {
2279 const struct ata_timing *t;
2280
2281 for (t = ata_timing; t->mode != speed; t++)
2282 if (t->mode == 0xFF)
2283 return NULL;
2284 return t;
2285 }
2286
2287 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2288 struct ata_timing *t, int T, int UT)
2289 {
2290 const struct ata_timing *s;
2291 struct ata_timing p;
2292
2293 /*
2294 * Find the mode.
2295 */
2296
2297 if (!(s = ata_timing_find_mode(speed)))
2298 return -EINVAL;
2299
2300 memcpy(t, s, sizeof(*s));
2301
2302 /*
2303 * If the drive is an EIDE drive, it can tell us it needs extended
2304 * PIO/MW_DMA cycle timing.
2305 */
2306
2307 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2308 memset(&p, 0, sizeof(p));
2309 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2310 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2311 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2312 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2313 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2314 }
2315 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2316 }
2317
2318 /*
2319 * Convert the timing to bus clock counts.
2320 */
2321
2322 ata_timing_quantize(t, t, T, UT);
2323
2324 /*
2325 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2326 * S.M.A.R.T * and some other commands. We have to ensure that the
2327 * DMA cycle timing is slower/equal than the fastest PIO timing.
2328 */
2329
2330 if (speed > XFER_PIO_6) {
2331 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2332 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2333 }
2334
2335 /*
2336 * Lengthen active & recovery time so that cycle time is correct.
2337 */
2338
2339 if (t->act8b + t->rec8b < t->cyc8b) {
2340 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2341 t->rec8b = t->cyc8b - t->act8b;
2342 }
2343
2344 if (t->active + t->recover < t->cycle) {
2345 t->active += (t->cycle - (t->active + t->recover)) / 2;
2346 t->recover = t->cycle - t->active;
2347 }
2348
2349 return 0;
2350 }
2351
2352 /**
2353 * ata_down_xfermask_limit - adjust dev xfer masks downward
2354 * @dev: Device to adjust xfer masks
2355 * @sel: ATA_DNXFER_* selector
2356 *
2357 * Adjust xfer masks of @dev downward. Note that this function
2358 * does not apply the change. Invoking ata_set_mode() afterwards
2359 * will apply the limit.
2360 *
2361 * LOCKING:
2362 * Inherited from caller.
2363 *
2364 * RETURNS:
2365 * 0 on success, negative errno on failure
2366 */
2367 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2368 {
2369 char buf[32];
2370 unsigned int orig_mask, xfer_mask;
2371 unsigned int pio_mask, mwdma_mask, udma_mask;
2372 int quiet, highbit;
2373
2374 quiet = !!(sel & ATA_DNXFER_QUIET);
2375 sel &= ~ATA_DNXFER_QUIET;
2376
2377 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2378 dev->mwdma_mask,
2379 dev->udma_mask);
2380 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2381
2382 switch (sel) {
2383 case ATA_DNXFER_PIO:
2384 highbit = fls(pio_mask) - 1;
2385 pio_mask &= ~(1 << highbit);
2386 break;
2387
2388 case ATA_DNXFER_DMA:
2389 if (udma_mask) {
2390 highbit = fls(udma_mask) - 1;
2391 udma_mask &= ~(1 << highbit);
2392 if (!udma_mask)
2393 return -ENOENT;
2394 } else if (mwdma_mask) {
2395 highbit = fls(mwdma_mask) - 1;
2396 mwdma_mask &= ~(1 << highbit);
2397 if (!mwdma_mask)
2398 return -ENOENT;
2399 }
2400 break;
2401
2402 case ATA_DNXFER_40C:
2403 udma_mask &= ATA_UDMA_MASK_40C;
2404 break;
2405
2406 case ATA_DNXFER_FORCE_PIO0:
2407 pio_mask &= 1;
2408 case ATA_DNXFER_FORCE_PIO:
2409 mwdma_mask = 0;
2410 udma_mask = 0;
2411 break;
2412
2413 default:
2414 BUG();
2415 }
2416
2417 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2418
2419 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2420 return -ENOENT;
2421
2422 if (!quiet) {
2423 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2424 snprintf(buf, sizeof(buf), "%s:%s",
2425 ata_mode_string(xfer_mask),
2426 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2427 else
2428 snprintf(buf, sizeof(buf), "%s",
2429 ata_mode_string(xfer_mask));
2430
2431 ata_dev_printk(dev, KERN_WARNING,
2432 "limiting speed to %s\n", buf);
2433 }
2434
2435 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2436 &dev->udma_mask);
2437
2438 return 0;
2439 }
2440
2441 static int ata_dev_set_mode(struct ata_device *dev)
2442 {
2443 struct ata_eh_context *ehc = &dev->ap->eh_context;
2444 unsigned int err_mask;
2445 int rc;
2446
2447 dev->flags &= ~ATA_DFLAG_PIO;
2448 if (dev->xfer_shift == ATA_SHIFT_PIO)
2449 dev->flags |= ATA_DFLAG_PIO;
2450
2451 err_mask = ata_dev_set_xfermode(dev);
2452 /* Old CFA may refuse this command, which is just fine */
2453 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2454 err_mask &= ~AC_ERR_DEV;
2455
2456 if (err_mask) {
2457 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2458 "(err_mask=0x%x)\n", err_mask);
2459 return -EIO;
2460 }
2461
2462 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2463 rc = ata_dev_revalidate(dev, 0);
2464 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2465 if (rc)
2466 return rc;
2467
2468 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2469 dev->xfer_shift, (int)dev->xfer_mode);
2470
2471 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2472 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2473 return 0;
2474 }
2475
2476 /**
2477 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2478 * @ap: port on which timings will be programmed
2479 * @r_failed_dev: out paramter for failed device
2480 *
2481 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2482 * ata_set_mode() fails, pointer to the failing device is
2483 * returned in @r_failed_dev.
2484 *
2485 * LOCKING:
2486 * PCI/etc. bus probe sem.
2487 *
2488 * RETURNS:
2489 * 0 on success, negative errno otherwise
2490 */
2491 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2492 {
2493 struct ata_device *dev;
2494 int i, rc = 0, used_dma = 0, found = 0;
2495
2496 /* has private set_mode? */
2497 if (ap->ops->set_mode)
2498 return ap->ops->set_mode(ap, r_failed_dev);
2499
2500 /* step 1: calculate xfer_mask */
2501 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2502 unsigned int pio_mask, dma_mask;
2503
2504 dev = &ap->device[i];
2505
2506 if (!ata_dev_enabled(dev))
2507 continue;
2508
2509 ata_dev_xfermask(dev);
2510
2511 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2512 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2513 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2514 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2515
2516 found = 1;
2517 if (dev->dma_mode)
2518 used_dma = 1;
2519 }
2520 if (!found)
2521 goto out;
2522
2523 /* step 2: always set host PIO timings */
2524 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2525 dev = &ap->device[i];
2526 if (!ata_dev_enabled(dev))
2527 continue;
2528
2529 if (!dev->pio_mode) {
2530 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2531 rc = -EINVAL;
2532 goto out;
2533 }
2534
2535 dev->xfer_mode = dev->pio_mode;
2536 dev->xfer_shift = ATA_SHIFT_PIO;
2537 if (ap->ops->set_piomode)
2538 ap->ops->set_piomode(ap, dev);
2539 }
2540
2541 /* step 3: set host DMA timings */
2542 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2543 dev = &ap->device[i];
2544
2545 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2546 continue;
2547
2548 dev->xfer_mode = dev->dma_mode;
2549 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2550 if (ap->ops->set_dmamode)
2551 ap->ops->set_dmamode(ap, dev);
2552 }
2553
2554 /* step 4: update devices' xfer mode */
2555 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2556 dev = &ap->device[i];
2557
2558 /* don't update suspended devices' xfer mode */
2559 if (!ata_dev_ready(dev))
2560 continue;
2561
2562 rc = ata_dev_set_mode(dev);
2563 if (rc)
2564 goto out;
2565 }
2566
2567 /* Record simplex status. If we selected DMA then the other
2568 * host channels are not permitted to do so.
2569 */
2570 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2571 ap->host->simplex_claimed = ap;
2572
2573 /* step5: chip specific finalisation */
2574 if (ap->ops->post_set_mode)
2575 ap->ops->post_set_mode(ap);
2576 out:
2577 if (rc)
2578 *r_failed_dev = dev;
2579 return rc;
2580 }
2581
2582 /**
2583 * ata_tf_to_host - issue ATA taskfile to host controller
2584 * @ap: port to which command is being issued
2585 * @tf: ATA taskfile register set
2586 *
2587 * Issues ATA taskfile register set to ATA host controller,
2588 * with proper synchronization with interrupt handler and
2589 * other threads.
2590 *
2591 * LOCKING:
2592 * spin_lock_irqsave(host lock)
2593 */
2594
2595 static inline void ata_tf_to_host(struct ata_port *ap,
2596 const struct ata_taskfile *tf)
2597 {
2598 ap->ops->tf_load(ap, tf);
2599 ap->ops->exec_command(ap, tf);
2600 }
2601
2602 /**
2603 * ata_busy_sleep - sleep until BSY clears, or timeout
2604 * @ap: port containing status register to be polled
2605 * @tmout_pat: impatience timeout
2606 * @tmout: overall timeout
2607 *
2608 * Sleep until ATA Status register bit BSY clears,
2609 * or a timeout occurs.
2610 *
2611 * LOCKING:
2612 * Kernel thread context (may sleep).
2613 *
2614 * RETURNS:
2615 * 0 on success, -errno otherwise.
2616 */
2617 int ata_busy_sleep(struct ata_port *ap,
2618 unsigned long tmout_pat, unsigned long tmout)
2619 {
2620 unsigned long timer_start, timeout;
2621 u8 status;
2622
2623 status = ata_busy_wait(ap, ATA_BUSY, 300);
2624 timer_start = jiffies;
2625 timeout = timer_start + tmout_pat;
2626 while (status != 0xff && (status & ATA_BUSY) &&
2627 time_before(jiffies, timeout)) {
2628 msleep(50);
2629 status = ata_busy_wait(ap, ATA_BUSY, 3);
2630 }
2631
2632 if (status != 0xff && (status & ATA_BUSY))
2633 ata_port_printk(ap, KERN_WARNING,
2634 "port is slow to respond, please be patient "
2635 "(Status 0x%x)\n", status);
2636
2637 timeout = timer_start + tmout;
2638 while (status != 0xff && (status & ATA_BUSY) &&
2639 time_before(jiffies, timeout)) {
2640 msleep(50);
2641 status = ata_chk_status(ap);
2642 }
2643
2644 if (status == 0xff)
2645 return -ENODEV;
2646
2647 if (status & ATA_BUSY) {
2648 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2649 "(%lu secs, Status 0x%x)\n",
2650 tmout / HZ, status);
2651 return -EBUSY;
2652 }
2653
2654 return 0;
2655 }
2656
2657 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2658 {
2659 struct ata_ioports *ioaddr = &ap->ioaddr;
2660 unsigned int dev0 = devmask & (1 << 0);
2661 unsigned int dev1 = devmask & (1 << 1);
2662 unsigned long timeout;
2663
2664 /* if device 0 was found in ata_devchk, wait for its
2665 * BSY bit to clear
2666 */
2667 if (dev0)
2668 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2669
2670 /* if device 1 was found in ata_devchk, wait for
2671 * register access, then wait for BSY to clear
2672 */
2673 timeout = jiffies + ATA_TMOUT_BOOT;
2674 while (dev1) {
2675 u8 nsect, lbal;
2676
2677 ap->ops->dev_select(ap, 1);
2678 nsect = ioread8(ioaddr->nsect_addr);
2679 lbal = ioread8(ioaddr->lbal_addr);
2680 if ((nsect == 1) && (lbal == 1))
2681 break;
2682 if (time_after(jiffies, timeout)) {
2683 dev1 = 0;
2684 break;
2685 }
2686 msleep(50); /* give drive a breather */
2687 }
2688 if (dev1)
2689 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2690
2691 /* is all this really necessary? */
2692 ap->ops->dev_select(ap, 0);
2693 if (dev1)
2694 ap->ops->dev_select(ap, 1);
2695 if (dev0)
2696 ap->ops->dev_select(ap, 0);
2697 }
2698
2699 static unsigned int ata_bus_softreset(struct ata_port *ap,
2700 unsigned int devmask)
2701 {
2702 struct ata_ioports *ioaddr = &ap->ioaddr;
2703
2704 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2705
2706 /* software reset. causes dev0 to be selected */
2707 iowrite8(ap->ctl, ioaddr->ctl_addr);
2708 udelay(20); /* FIXME: flush */
2709 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2710 udelay(20); /* FIXME: flush */
2711 iowrite8(ap->ctl, ioaddr->ctl_addr);
2712
2713 /* spec mandates ">= 2ms" before checking status.
2714 * We wait 150ms, because that was the magic delay used for
2715 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2716 * between when the ATA command register is written, and then
2717 * status is checked. Because waiting for "a while" before
2718 * checking status is fine, post SRST, we perform this magic
2719 * delay here as well.
2720 *
2721 * Old drivers/ide uses the 2mS rule and then waits for ready
2722 */
2723 msleep(150);
2724
2725 /* Before we perform post reset processing we want to see if
2726 * the bus shows 0xFF because the odd clown forgets the D7
2727 * pulldown resistor.
2728 */
2729 if (ata_check_status(ap) == 0xFF)
2730 return 0;
2731
2732 ata_bus_post_reset(ap, devmask);
2733
2734 return 0;
2735 }
2736
2737 /**
2738 * ata_bus_reset - reset host port and associated ATA channel
2739 * @ap: port to reset
2740 *
2741 * This is typically the first time we actually start issuing
2742 * commands to the ATA channel. We wait for BSY to clear, then
2743 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2744 * result. Determine what devices, if any, are on the channel
2745 * by looking at the device 0/1 error register. Look at the signature
2746 * stored in each device's taskfile registers, to determine if
2747 * the device is ATA or ATAPI.
2748 *
2749 * LOCKING:
2750 * PCI/etc. bus probe sem.
2751 * Obtains host lock.
2752 *
2753 * SIDE EFFECTS:
2754 * Sets ATA_FLAG_DISABLED if bus reset fails.
2755 */
2756
2757 void ata_bus_reset(struct ata_port *ap)
2758 {
2759 struct ata_ioports *ioaddr = &ap->ioaddr;
2760 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2761 u8 err;
2762 unsigned int dev0, dev1 = 0, devmask = 0;
2763
2764 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2765
2766 /* determine if device 0/1 are present */
2767 if (ap->flags & ATA_FLAG_SATA_RESET)
2768 dev0 = 1;
2769 else {
2770 dev0 = ata_devchk(ap, 0);
2771 if (slave_possible)
2772 dev1 = ata_devchk(ap, 1);
2773 }
2774
2775 if (dev0)
2776 devmask |= (1 << 0);
2777 if (dev1)
2778 devmask |= (1 << 1);
2779
2780 /* select device 0 again */
2781 ap->ops->dev_select(ap, 0);
2782
2783 /* issue bus reset */
2784 if (ap->flags & ATA_FLAG_SRST)
2785 if (ata_bus_softreset(ap, devmask))
2786 goto err_out;
2787
2788 /*
2789 * determine by signature whether we have ATA or ATAPI devices
2790 */
2791 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2792 if ((slave_possible) && (err != 0x81))
2793 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2794
2795 /* re-enable interrupts */
2796 ap->ops->irq_on(ap);
2797
2798 /* is double-select really necessary? */
2799 if (ap->device[1].class != ATA_DEV_NONE)
2800 ap->ops->dev_select(ap, 1);
2801 if (ap->device[0].class != ATA_DEV_NONE)
2802 ap->ops->dev_select(ap, 0);
2803
2804 /* if no devices were detected, disable this port */
2805 if ((ap->device[0].class == ATA_DEV_NONE) &&
2806 (ap->device[1].class == ATA_DEV_NONE))
2807 goto err_out;
2808
2809 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2810 /* set up device control for ATA_FLAG_SATA_RESET */
2811 iowrite8(ap->ctl, ioaddr->ctl_addr);
2812 }
2813
2814 DPRINTK("EXIT\n");
2815 return;
2816
2817 err_out:
2818 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2819 ap->ops->port_disable(ap);
2820
2821 DPRINTK("EXIT\n");
2822 }
2823
2824 /**
2825 * sata_phy_debounce - debounce SATA phy status
2826 * @ap: ATA port to debounce SATA phy status for
2827 * @params: timing parameters { interval, duratinon, timeout } in msec
2828 *
2829 * Make sure SStatus of @ap reaches stable state, determined by
2830 * holding the same value where DET is not 1 for @duration polled
2831 * every @interval, before @timeout. Timeout constraints the
2832 * beginning of the stable state. Because, after hot unplugging,
2833 * DET gets stuck at 1 on some controllers, this functions waits
2834 * until timeout then returns 0 if DET is stable at 1.
2835 *
2836 * LOCKING:
2837 * Kernel thread context (may sleep)
2838 *
2839 * RETURNS:
2840 * 0 on success, -errno on failure.
2841 */
2842 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2843 {
2844 unsigned long interval_msec = params[0];
2845 unsigned long duration = params[1] * HZ / 1000;
2846 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2847 unsigned long last_jiffies;
2848 u32 last, cur;
2849 int rc;
2850
2851 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2852 return rc;
2853 cur &= 0xf;
2854
2855 last = cur;
2856 last_jiffies = jiffies;
2857
2858 while (1) {
2859 msleep(interval_msec);
2860 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2861 return rc;
2862 cur &= 0xf;
2863
2864 /* DET stable? */
2865 if (cur == last) {
2866 if (cur == 1 && time_before(jiffies, timeout))
2867 continue;
2868 if (time_after(jiffies, last_jiffies + duration))
2869 return 0;
2870 continue;
2871 }
2872
2873 /* unstable, start over */
2874 last = cur;
2875 last_jiffies = jiffies;
2876
2877 /* check timeout */
2878 if (time_after(jiffies, timeout))
2879 return -EBUSY;
2880 }
2881 }
2882
2883 /**
2884 * sata_phy_resume - resume SATA phy
2885 * @ap: ATA port to resume SATA phy for
2886 * @params: timing parameters { interval, duratinon, timeout } in msec
2887 *
2888 * Resume SATA phy of @ap and debounce it.
2889 *
2890 * LOCKING:
2891 * Kernel thread context (may sleep)
2892 *
2893 * RETURNS:
2894 * 0 on success, -errno on failure.
2895 */
2896 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2897 {
2898 u32 scontrol;
2899 int rc;
2900
2901 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2902 return rc;
2903
2904 scontrol = (scontrol & 0x0f0) | 0x300;
2905
2906 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2907 return rc;
2908
2909 /* Some PHYs react badly if SStatus is pounded immediately
2910 * after resuming. Delay 200ms before debouncing.
2911 */
2912 msleep(200);
2913
2914 return sata_phy_debounce(ap, params);
2915 }
2916
2917 static void ata_wait_spinup(struct ata_port *ap)
2918 {
2919 struct ata_eh_context *ehc = &ap->eh_context;
2920 unsigned long end, secs;
2921 int rc;
2922
2923 /* first, debounce phy if SATA */
2924 if (ap->cbl == ATA_CBL_SATA) {
2925 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2926
2927 /* if debounced successfully and offline, no need to wait */
2928 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2929 return;
2930 }
2931
2932 /* okay, let's give the drive time to spin up */
2933 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2934 secs = ((end - jiffies) + HZ - 1) / HZ;
2935
2936 if (time_after(jiffies, end))
2937 return;
2938
2939 if (secs > 5)
2940 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2941 "(%lu secs)\n", secs);
2942
2943 schedule_timeout_uninterruptible(end - jiffies);
2944 }
2945
2946 /**
2947 * ata_std_prereset - prepare for reset
2948 * @ap: ATA port to be reset
2949 *
2950 * @ap is about to be reset. Initialize it.
2951 *
2952 * LOCKING:
2953 * Kernel thread context (may sleep)
2954 *
2955 * RETURNS:
2956 * 0 on success, -errno otherwise.
2957 */
2958 int ata_std_prereset(struct ata_port *ap)
2959 {
2960 struct ata_eh_context *ehc = &ap->eh_context;
2961 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2962 int rc;
2963
2964 /* handle link resume & hotplug spinup */
2965 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2966 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2967 ehc->i.action |= ATA_EH_HARDRESET;
2968
2969 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2970 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2971 ata_wait_spinup(ap);
2972
2973 /* if we're about to do hardreset, nothing more to do */
2974 if (ehc->i.action & ATA_EH_HARDRESET)
2975 return 0;
2976
2977 /* if SATA, resume phy */
2978 if (ap->cbl == ATA_CBL_SATA) {
2979 rc = sata_phy_resume(ap, timing);
2980 if (rc && rc != -EOPNOTSUPP) {
2981 /* phy resume failed */
2982 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2983 "link for reset (errno=%d)\n", rc);
2984 return rc;
2985 }
2986 }
2987
2988 /* Wait for !BSY if the controller can wait for the first D2H
2989 * Reg FIS and we don't know that no device is attached.
2990 */
2991 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2992 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2993
2994 return 0;
2995 }
2996
2997 /**
2998 * ata_std_softreset - reset host port via ATA SRST
2999 * @ap: port to reset
3000 * @classes: resulting classes of attached devices
3001 *
3002 * Reset host port using ATA SRST.
3003 *
3004 * LOCKING:
3005 * Kernel thread context (may sleep)
3006 *
3007 * RETURNS:
3008 * 0 on success, -errno otherwise.
3009 */
3010 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3011 {
3012 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3013 unsigned int devmask = 0, err_mask;
3014 u8 err;
3015
3016 DPRINTK("ENTER\n");
3017
3018 if (ata_port_offline(ap)) {
3019 classes[0] = ATA_DEV_NONE;
3020 goto out;
3021 }
3022
3023 /* determine if device 0/1 are present */
3024 if (ata_devchk(ap, 0))
3025 devmask |= (1 << 0);
3026 if (slave_possible && ata_devchk(ap, 1))
3027 devmask |= (1 << 1);
3028
3029 /* select device 0 again */
3030 ap->ops->dev_select(ap, 0);
3031
3032 /* issue bus reset */
3033 DPRINTK("about to softreset, devmask=%x\n", devmask);
3034 err_mask = ata_bus_softreset(ap, devmask);
3035 if (err_mask) {
3036 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3037 err_mask);
3038 return -EIO;
3039 }
3040
3041 /* determine by signature whether we have ATA or ATAPI devices */
3042 classes[0] = ata_dev_try_classify(ap, 0, &err);
3043 if (slave_possible && err != 0x81)
3044 classes[1] = ata_dev_try_classify(ap, 1, &err);
3045
3046 out:
3047 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3048 return 0;
3049 }
3050
3051 /**
3052 * sata_port_hardreset - reset port via SATA phy reset
3053 * @ap: port to reset
3054 * @timing: timing parameters { interval, duratinon, timeout } in msec
3055 *
3056 * SATA phy-reset host port using DET bits of SControl register.
3057 *
3058 * LOCKING:
3059 * Kernel thread context (may sleep)
3060 *
3061 * RETURNS:
3062 * 0 on success, -errno otherwise.
3063 */
3064 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3065 {
3066 u32 scontrol;
3067 int rc;
3068
3069 DPRINTK("ENTER\n");
3070
3071 if (sata_set_spd_needed(ap)) {
3072 /* SATA spec says nothing about how to reconfigure
3073 * spd. To be on the safe side, turn off phy during
3074 * reconfiguration. This works for at least ICH7 AHCI
3075 * and Sil3124.
3076 */
3077 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3078 goto out;
3079
3080 scontrol = (scontrol & 0x0f0) | 0x304;
3081
3082 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3083 goto out;
3084
3085 sata_set_spd(ap);
3086 }
3087
3088 /* issue phy wake/reset */
3089 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3090 goto out;
3091
3092 scontrol = (scontrol & 0x0f0) | 0x301;
3093
3094 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3095 goto out;
3096
3097 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3098 * 10.4.2 says at least 1 ms.
3099 */
3100 msleep(1);
3101
3102 /* bring phy back */
3103 rc = sata_phy_resume(ap, timing);
3104 out:
3105 DPRINTK("EXIT, rc=%d\n", rc);
3106 return rc;
3107 }
3108
3109 /**
3110 * sata_std_hardreset - reset host port via SATA phy reset
3111 * @ap: port to reset
3112 * @class: resulting class of attached device
3113 *
3114 * SATA phy-reset host port using DET bits of SControl register,
3115 * wait for !BSY and classify the attached device.
3116 *
3117 * LOCKING:
3118 * Kernel thread context (may sleep)
3119 *
3120 * RETURNS:
3121 * 0 on success, -errno otherwise.
3122 */
3123 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3124 {
3125 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3126 int rc;
3127
3128 DPRINTK("ENTER\n");
3129
3130 /* do hardreset */
3131 rc = sata_port_hardreset(ap, timing);
3132 if (rc) {
3133 ata_port_printk(ap, KERN_ERR,
3134 "COMRESET failed (errno=%d)\n", rc);
3135 return rc;
3136 }
3137
3138 /* TODO: phy layer with polling, timeouts, etc. */
3139 if (ata_port_offline(ap)) {
3140 *class = ATA_DEV_NONE;
3141 DPRINTK("EXIT, link offline\n");
3142 return 0;
3143 }
3144
3145 /* wait a while before checking status, see SRST for more info */
3146 msleep(150);
3147
3148 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3149 ata_port_printk(ap, KERN_ERR,
3150 "COMRESET failed (device not ready)\n");
3151 return -EIO;
3152 }
3153
3154 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3155
3156 *class = ata_dev_try_classify(ap, 0, NULL);
3157
3158 DPRINTK("EXIT, class=%u\n", *class);
3159 return 0;
3160 }
3161
3162 /**
3163 * ata_std_postreset - standard postreset callback
3164 * @ap: the target ata_port
3165 * @classes: classes of attached devices
3166 *
3167 * This function is invoked after a successful reset. Note that
3168 * the device might have been reset more than once using
3169 * different reset methods before postreset is invoked.
3170 *
3171 * LOCKING:
3172 * Kernel thread context (may sleep)
3173 */
3174 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3175 {
3176 u32 serror;
3177
3178 DPRINTK("ENTER\n");
3179
3180 /* print link status */
3181 sata_print_link_status(ap);
3182
3183 /* clear SError */
3184 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3185 sata_scr_write(ap, SCR_ERROR, serror);
3186
3187 /* re-enable interrupts */
3188 if (!ap->ops->error_handler)
3189 ap->ops->irq_on(ap);
3190
3191 /* is double-select really necessary? */
3192 if (classes[0] != ATA_DEV_NONE)
3193 ap->ops->dev_select(ap, 1);
3194 if (classes[1] != ATA_DEV_NONE)
3195 ap->ops->dev_select(ap, 0);
3196
3197 /* bail out if no device is present */
3198 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3199 DPRINTK("EXIT, no device\n");
3200 return;
3201 }
3202
3203 /* set up device control */
3204 if (ap->ioaddr.ctl_addr)
3205 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3206
3207 DPRINTK("EXIT\n");
3208 }
3209
3210 /**
3211 * ata_dev_same_device - Determine whether new ID matches configured device
3212 * @dev: device to compare against
3213 * @new_class: class of the new device
3214 * @new_id: IDENTIFY page of the new device
3215 *
3216 * Compare @new_class and @new_id against @dev and determine
3217 * whether @dev is the device indicated by @new_class and
3218 * @new_id.
3219 *
3220 * LOCKING:
3221 * None.
3222 *
3223 * RETURNS:
3224 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3225 */
3226 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3227 const u16 *new_id)
3228 {
3229 const u16 *old_id = dev->id;
3230 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3231 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3232 u64 new_n_sectors;
3233
3234 if (dev->class != new_class) {
3235 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3236 dev->class, new_class);
3237 return 0;
3238 }
3239
3240 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3241 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3242 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3243 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3244 new_n_sectors = ata_id_n_sectors(new_id);
3245
3246 if (strcmp(model[0], model[1])) {
3247 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3248 "'%s' != '%s'\n", model[0], model[1]);
3249 return 0;
3250 }
3251
3252 if (strcmp(serial[0], serial[1])) {
3253 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3254 "'%s' != '%s'\n", serial[0], serial[1]);
3255 return 0;
3256 }
3257
3258 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3259 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3260 "%llu != %llu\n",
3261 (unsigned long long)dev->n_sectors,
3262 (unsigned long long)new_n_sectors);
3263 return 0;
3264 }
3265
3266 return 1;
3267 }
3268
3269 /**
3270 * ata_dev_revalidate - Revalidate ATA device
3271 * @dev: device to revalidate
3272 * @readid_flags: read ID flags
3273 *
3274 * Re-read IDENTIFY page and make sure @dev is still attached to
3275 * the port.
3276 *
3277 * LOCKING:
3278 * Kernel thread context (may sleep)
3279 *
3280 * RETURNS:
3281 * 0 on success, negative errno otherwise
3282 */
3283 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3284 {
3285 unsigned int class = dev->class;
3286 u16 *id = (void *)dev->ap->sector_buf;
3287 int rc;
3288
3289 if (!ata_dev_enabled(dev)) {
3290 rc = -ENODEV;
3291 goto fail;
3292 }
3293
3294 /* read ID data */
3295 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3296 if (rc)
3297 goto fail;
3298
3299 /* is the device still there? */
3300 if (!ata_dev_same_device(dev, class, id)) {
3301 rc = -ENODEV;
3302 goto fail;
3303 }
3304
3305 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3306
3307 /* configure device according to the new ID */
3308 rc = ata_dev_configure(dev);
3309 if (rc == 0)
3310 return 0;
3311
3312 fail:
3313 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3314 return rc;
3315 }
3316
3317 struct ata_blacklist_entry {
3318 const char *model_num;
3319 const char *model_rev;
3320 unsigned long horkage;
3321 };
3322
3323 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3324 /* Devices with DMA related problems under Linux */
3325 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3326 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3327 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3328 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3329 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3330 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3331 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3332 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3333 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3334 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3335 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3336 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3337 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3338 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3339 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3340 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3341 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3342 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3343 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3344 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3345 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3346 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3347 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3348 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3349 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3350 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3351 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3352 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3353 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3354
3355 /* Devices we expect to fail diagnostics */
3356
3357 /* Devices where NCQ should be avoided */
3358 /* NCQ is slow */
3359 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3360 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3361 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3362
3363 /* Devices with NCQ limits */
3364
3365 /* End Marker */
3366 { }
3367 };
3368
3369 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3370 {
3371 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3372 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3373 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3374
3375 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3376 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3377
3378 while (ad->model_num) {
3379 if (!strcmp(ad->model_num, model_num)) {
3380 if (ad->model_rev == NULL)
3381 return ad->horkage;
3382 if (!strcmp(ad->model_rev, model_rev))
3383 return ad->horkage;
3384 }
3385 ad++;
3386 }
3387 return 0;
3388 }
3389
3390 static int ata_dma_blacklisted(const struct ata_device *dev)
3391 {
3392 /* We don't support polling DMA.
3393 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3394 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3395 */
3396 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3397 (dev->flags & ATA_DFLAG_CDB_INTR))
3398 return 1;
3399 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3400 }
3401
3402 /**
3403 * ata_dev_xfermask - Compute supported xfermask of the given device
3404 * @dev: Device to compute xfermask for
3405 *
3406 * Compute supported xfermask of @dev and store it in
3407 * dev->*_mask. This function is responsible for applying all
3408 * known limits including host controller limits, device
3409 * blacklist, etc...
3410 *
3411 * LOCKING:
3412 * None.
3413 */
3414 static void ata_dev_xfermask(struct ata_device *dev)
3415 {
3416 struct ata_port *ap = dev->ap;
3417 struct ata_host *host = ap->host;
3418 unsigned long xfer_mask;
3419
3420 /* controller modes available */
3421 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3422 ap->mwdma_mask, ap->udma_mask);
3423
3424 /* Apply cable rule here. Don't apply it early because when
3425 * we handle hot plug the cable type can itself change.
3426 */
3427 if (ap->cbl == ATA_CBL_PATA40)
3428 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3429 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3430 * host side are checked drive side as well. Cases where we know a
3431 * 40wire cable is used safely for 80 are not checked here.
3432 */
3433 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3434 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3435
3436
3437 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3438 dev->mwdma_mask, dev->udma_mask);
3439 xfer_mask &= ata_id_xfermask(dev->id);
3440
3441 /*
3442 * CFA Advanced TrueIDE timings are not allowed on a shared
3443 * cable
3444 */
3445 if (ata_dev_pair(dev)) {
3446 /* No PIO5 or PIO6 */
3447 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3448 /* No MWDMA3 or MWDMA 4 */
3449 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3450 }
3451
3452 if (ata_dma_blacklisted(dev)) {
3453 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3454 ata_dev_printk(dev, KERN_WARNING,
3455 "device is on DMA blacklist, disabling DMA\n");
3456 }
3457
3458 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed != ap) {
3459 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3460 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3461 "other device, disabling DMA\n");
3462 }
3463
3464 if (ap->ops->mode_filter)
3465 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3466
3467 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3468 &dev->mwdma_mask, &dev->udma_mask);
3469 }
3470
3471 /**
3472 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3473 * @dev: Device to which command will be sent
3474 *
3475 * Issue SET FEATURES - XFER MODE command to device @dev
3476 * on port @ap.
3477 *
3478 * LOCKING:
3479 * PCI/etc. bus probe sem.
3480 *
3481 * RETURNS:
3482 * 0 on success, AC_ERR_* mask otherwise.
3483 */
3484
3485 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3486 {
3487 struct ata_taskfile tf;
3488 unsigned int err_mask;
3489
3490 /* set up set-features taskfile */
3491 DPRINTK("set features - xfer mode\n");
3492
3493 ata_tf_init(dev, &tf);
3494 tf.command = ATA_CMD_SET_FEATURES;
3495 tf.feature = SETFEATURES_XFER;
3496 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3497 tf.protocol = ATA_PROT_NODATA;
3498 tf.nsect = dev->xfer_mode;
3499
3500 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3501
3502 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3503 return err_mask;
3504 }
3505
3506 /**
3507 * ata_dev_init_params - Issue INIT DEV PARAMS command
3508 * @dev: Device to which command will be sent
3509 * @heads: Number of heads (taskfile parameter)
3510 * @sectors: Number of sectors (taskfile parameter)
3511 *
3512 * LOCKING:
3513 * Kernel thread context (may sleep)
3514 *
3515 * RETURNS:
3516 * 0 on success, AC_ERR_* mask otherwise.
3517 */
3518 static unsigned int ata_dev_init_params(struct ata_device *dev,
3519 u16 heads, u16 sectors)
3520 {
3521 struct ata_taskfile tf;
3522 unsigned int err_mask;
3523
3524 /* Number of sectors per track 1-255. Number of heads 1-16 */
3525 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3526 return AC_ERR_INVALID;
3527
3528 /* set up init dev params taskfile */
3529 DPRINTK("init dev params \n");
3530
3531 ata_tf_init(dev, &tf);
3532 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3533 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3534 tf.protocol = ATA_PROT_NODATA;
3535 tf.nsect = sectors;
3536 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3537
3538 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3539
3540 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3541 return err_mask;
3542 }
3543
3544 /**
3545 * ata_sg_clean - Unmap DMA memory associated with command
3546 * @qc: Command containing DMA memory to be released
3547 *
3548 * Unmap all mapped DMA memory associated with this command.
3549 *
3550 * LOCKING:
3551 * spin_lock_irqsave(host lock)
3552 */
3553 void ata_sg_clean(struct ata_queued_cmd *qc)
3554 {
3555 struct ata_port *ap = qc->ap;
3556 struct scatterlist *sg = qc->__sg;
3557 int dir = qc->dma_dir;
3558 void *pad_buf = NULL;
3559
3560 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3561 WARN_ON(sg == NULL);
3562
3563 if (qc->flags & ATA_QCFLAG_SINGLE)
3564 WARN_ON(qc->n_elem > 1);
3565
3566 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3567
3568 /* if we padded the buffer out to 32-bit bound, and data
3569 * xfer direction is from-device, we must copy from the
3570 * pad buffer back into the supplied buffer
3571 */
3572 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3573 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3574
3575 if (qc->flags & ATA_QCFLAG_SG) {
3576 if (qc->n_elem)
3577 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3578 /* restore last sg */
3579 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3580 if (pad_buf) {
3581 struct scatterlist *psg = &qc->pad_sgent;
3582 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3583 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3584 kunmap_atomic(addr, KM_IRQ0);
3585 }
3586 } else {
3587 if (qc->n_elem)
3588 dma_unmap_single(ap->dev,
3589 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3590 dir);
3591 /* restore sg */
3592 sg->length += qc->pad_len;
3593 if (pad_buf)
3594 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3595 pad_buf, qc->pad_len);
3596 }
3597
3598 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3599 qc->__sg = NULL;
3600 }
3601
3602 /**
3603 * ata_fill_sg - Fill PCI IDE PRD table
3604 * @qc: Metadata associated with taskfile to be transferred
3605 *
3606 * Fill PCI IDE PRD (scatter-gather) table with segments
3607 * associated with the current disk command.
3608 *
3609 * LOCKING:
3610 * spin_lock_irqsave(host lock)
3611 *
3612 */
3613 static void ata_fill_sg(struct ata_queued_cmd *qc)
3614 {
3615 struct ata_port *ap = qc->ap;
3616 struct scatterlist *sg;
3617 unsigned int idx;
3618
3619 WARN_ON(qc->__sg == NULL);
3620 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3621
3622 idx = 0;
3623 ata_for_each_sg(sg, qc) {
3624 u32 addr, offset;
3625 u32 sg_len, len;
3626
3627 /* determine if physical DMA addr spans 64K boundary.
3628 * Note h/w doesn't support 64-bit, so we unconditionally
3629 * truncate dma_addr_t to u32.
3630 */
3631 addr = (u32) sg_dma_address(sg);
3632 sg_len = sg_dma_len(sg);
3633
3634 while (sg_len) {
3635 offset = addr & 0xffff;
3636 len = sg_len;
3637 if ((offset + sg_len) > 0x10000)
3638 len = 0x10000 - offset;
3639
3640 ap->prd[idx].addr = cpu_to_le32(addr);
3641 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3642 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3643
3644 idx++;
3645 sg_len -= len;
3646 addr += len;
3647 }
3648 }
3649
3650 if (idx)
3651 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3652 }
3653 /**
3654 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3655 * @qc: Metadata associated with taskfile to check
3656 *
3657 * Allow low-level driver to filter ATA PACKET commands, returning
3658 * a status indicating whether or not it is OK to use DMA for the
3659 * supplied PACKET command.
3660 *
3661 * LOCKING:
3662 * spin_lock_irqsave(host lock)
3663 *
3664 * RETURNS: 0 when ATAPI DMA can be used
3665 * nonzero otherwise
3666 */
3667 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3668 {
3669 struct ata_port *ap = qc->ap;
3670 int rc = 0; /* Assume ATAPI DMA is OK by default */
3671
3672 if (ap->ops->check_atapi_dma)
3673 rc = ap->ops->check_atapi_dma(qc);
3674
3675 return rc;
3676 }
3677 /**
3678 * ata_qc_prep - Prepare taskfile for submission
3679 * @qc: Metadata associated with taskfile to be prepared
3680 *
3681 * Prepare ATA taskfile for submission.
3682 *
3683 * LOCKING:
3684 * spin_lock_irqsave(host lock)
3685 */
3686 void ata_qc_prep(struct ata_queued_cmd *qc)
3687 {
3688 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3689 return;
3690
3691 ata_fill_sg(qc);
3692 }
3693
3694 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3695
3696 /**
3697 * ata_sg_init_one - Associate command with memory buffer
3698 * @qc: Command to be associated
3699 * @buf: Memory buffer
3700 * @buflen: Length of memory buffer, in bytes.
3701 *
3702 * Initialize the data-related elements of queued_cmd @qc
3703 * to point to a single memory buffer, @buf of byte length @buflen.
3704 *
3705 * LOCKING:
3706 * spin_lock_irqsave(host lock)
3707 */
3708
3709 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3710 {
3711 qc->flags |= ATA_QCFLAG_SINGLE;
3712
3713 qc->__sg = &qc->sgent;
3714 qc->n_elem = 1;
3715 qc->orig_n_elem = 1;
3716 qc->buf_virt = buf;
3717 qc->nbytes = buflen;
3718
3719 sg_init_one(&qc->sgent, buf, buflen);
3720 }
3721
3722 /**
3723 * ata_sg_init - Associate command with scatter-gather table.
3724 * @qc: Command to be associated
3725 * @sg: Scatter-gather table.
3726 * @n_elem: Number of elements in s/g table.
3727 *
3728 * Initialize the data-related elements of queued_cmd @qc
3729 * to point to a scatter-gather table @sg, containing @n_elem
3730 * elements.
3731 *
3732 * LOCKING:
3733 * spin_lock_irqsave(host lock)
3734 */
3735
3736 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3737 unsigned int n_elem)
3738 {
3739 qc->flags |= ATA_QCFLAG_SG;
3740 qc->__sg = sg;
3741 qc->n_elem = n_elem;
3742 qc->orig_n_elem = n_elem;
3743 }
3744
3745 /**
3746 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3747 * @qc: Command with memory buffer to be mapped.
3748 *
3749 * DMA-map the memory buffer associated with queued_cmd @qc.
3750 *
3751 * LOCKING:
3752 * spin_lock_irqsave(host lock)
3753 *
3754 * RETURNS:
3755 * Zero on success, negative on error.
3756 */
3757
3758 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3759 {
3760 struct ata_port *ap = qc->ap;
3761 int dir = qc->dma_dir;
3762 struct scatterlist *sg = qc->__sg;
3763 dma_addr_t dma_address;
3764 int trim_sg = 0;
3765
3766 /* we must lengthen transfers to end on a 32-bit boundary */
3767 qc->pad_len = sg->length & 3;
3768 if (qc->pad_len) {
3769 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3770 struct scatterlist *psg = &qc->pad_sgent;
3771
3772 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3773
3774 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3775
3776 if (qc->tf.flags & ATA_TFLAG_WRITE)
3777 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3778 qc->pad_len);
3779
3780 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3781 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3782 /* trim sg */
3783 sg->length -= qc->pad_len;
3784 if (sg->length == 0)
3785 trim_sg = 1;
3786
3787 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3788 sg->length, qc->pad_len);
3789 }
3790
3791 if (trim_sg) {
3792 qc->n_elem--;
3793 goto skip_map;
3794 }
3795
3796 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3797 sg->length, dir);
3798 if (dma_mapping_error(dma_address)) {
3799 /* restore sg */
3800 sg->length += qc->pad_len;
3801 return -1;
3802 }
3803
3804 sg_dma_address(sg) = dma_address;
3805 sg_dma_len(sg) = sg->length;
3806
3807 skip_map:
3808 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3809 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3810
3811 return 0;
3812 }
3813
3814 /**
3815 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3816 * @qc: Command with scatter-gather table to be mapped.
3817 *
3818 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3819 *
3820 * LOCKING:
3821 * spin_lock_irqsave(host lock)
3822 *
3823 * RETURNS:
3824 * Zero on success, negative on error.
3825 *
3826 */
3827
3828 static int ata_sg_setup(struct ata_queued_cmd *qc)
3829 {
3830 struct ata_port *ap = qc->ap;
3831 struct scatterlist *sg = qc->__sg;
3832 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3833 int n_elem, pre_n_elem, dir, trim_sg = 0;
3834
3835 VPRINTK("ENTER, ata%u\n", ap->print_id);
3836 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3837
3838 /* we must lengthen transfers to end on a 32-bit boundary */
3839 qc->pad_len = lsg->length & 3;
3840 if (qc->pad_len) {
3841 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3842 struct scatterlist *psg = &qc->pad_sgent;
3843 unsigned int offset;
3844
3845 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3846
3847 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3848
3849 /*
3850 * psg->page/offset are used to copy to-be-written
3851 * data in this function or read data in ata_sg_clean.
3852 */
3853 offset = lsg->offset + lsg->length - qc->pad_len;
3854 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3855 psg->offset = offset_in_page(offset);
3856
3857 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3858 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3859 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3860 kunmap_atomic(addr, KM_IRQ0);
3861 }
3862
3863 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3864 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3865 /* trim last sg */
3866 lsg->length -= qc->pad_len;
3867 if (lsg->length == 0)
3868 trim_sg = 1;
3869
3870 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3871 qc->n_elem - 1, lsg->length, qc->pad_len);
3872 }
3873
3874 pre_n_elem = qc->n_elem;
3875 if (trim_sg && pre_n_elem)
3876 pre_n_elem--;
3877
3878 if (!pre_n_elem) {
3879 n_elem = 0;
3880 goto skip_map;
3881 }
3882
3883 dir = qc->dma_dir;
3884 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3885 if (n_elem < 1) {
3886 /* restore last sg */
3887 lsg->length += qc->pad_len;
3888 return -1;
3889 }
3890
3891 DPRINTK("%d sg elements mapped\n", n_elem);
3892
3893 skip_map:
3894 qc->n_elem = n_elem;
3895
3896 return 0;
3897 }
3898
3899 /**
3900 * swap_buf_le16 - swap halves of 16-bit words in place
3901 * @buf: Buffer to swap
3902 * @buf_words: Number of 16-bit words in buffer.
3903 *
3904 * Swap halves of 16-bit words if needed to convert from
3905 * little-endian byte order to native cpu byte order, or
3906 * vice-versa.
3907 *
3908 * LOCKING:
3909 * Inherited from caller.
3910 */
3911 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3912 {
3913 #ifdef __BIG_ENDIAN
3914 unsigned int i;
3915
3916 for (i = 0; i < buf_words; i++)
3917 buf[i] = le16_to_cpu(buf[i]);
3918 #endif /* __BIG_ENDIAN */
3919 }
3920
3921 /**
3922 * ata_data_xfer - Transfer data by PIO
3923 * @adev: device to target
3924 * @buf: data buffer
3925 * @buflen: buffer length
3926 * @write_data: read/write
3927 *
3928 * Transfer data from/to the device data register by PIO.
3929 *
3930 * LOCKING:
3931 * Inherited from caller.
3932 */
3933 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3934 unsigned int buflen, int write_data)
3935 {
3936 struct ata_port *ap = adev->ap;
3937 unsigned int words = buflen >> 1;
3938
3939 /* Transfer multiple of 2 bytes */
3940 if (write_data)
3941 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3942 else
3943 ioread16_rep(ap->ioaddr.data_addr, buf, words);
3944
3945 /* Transfer trailing 1 byte, if any. */
3946 if (unlikely(buflen & 0x01)) {
3947 u16 align_buf[1] = { 0 };
3948 unsigned char *trailing_buf = buf + buflen - 1;
3949
3950 if (write_data) {
3951 memcpy(align_buf, trailing_buf, 1);
3952 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3953 } else {
3954 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3955 memcpy(trailing_buf, align_buf, 1);
3956 }
3957 }
3958 }
3959
3960 /**
3961 * ata_data_xfer_noirq - Transfer data by PIO
3962 * @adev: device to target
3963 * @buf: data buffer
3964 * @buflen: buffer length
3965 * @write_data: read/write
3966 *
3967 * Transfer data from/to the device data register by PIO. Do the
3968 * transfer with interrupts disabled.
3969 *
3970 * LOCKING:
3971 * Inherited from caller.
3972 */
3973 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3974 unsigned int buflen, int write_data)
3975 {
3976 unsigned long flags;
3977 local_irq_save(flags);
3978 ata_data_xfer(adev, buf, buflen, write_data);
3979 local_irq_restore(flags);
3980 }
3981
3982
3983 /**
3984 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3985 * @qc: Command on going
3986 *
3987 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3988 *
3989 * LOCKING:
3990 * Inherited from caller.
3991 */
3992
3993 static void ata_pio_sector(struct ata_queued_cmd *qc)
3994 {
3995 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3996 struct scatterlist *sg = qc->__sg;
3997 struct ata_port *ap = qc->ap;
3998 struct page *page;
3999 unsigned int offset;
4000 unsigned char *buf;
4001
4002 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
4003 ap->hsm_task_state = HSM_ST_LAST;
4004
4005 page = sg[qc->cursg].page;
4006 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4007
4008 /* get the current page and offset */
4009 page = nth_page(page, (offset >> PAGE_SHIFT));
4010 offset %= PAGE_SIZE;
4011
4012 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4013
4014 if (PageHighMem(page)) {
4015 unsigned long flags;
4016
4017 /* FIXME: use a bounce buffer */
4018 local_irq_save(flags);
4019 buf = kmap_atomic(page, KM_IRQ0);
4020
4021 /* do the actual data transfer */
4022 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4023
4024 kunmap_atomic(buf, KM_IRQ0);
4025 local_irq_restore(flags);
4026 } else {
4027 buf = page_address(page);
4028 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4029 }
4030
4031 qc->curbytes += ATA_SECT_SIZE;
4032 qc->cursg_ofs += ATA_SECT_SIZE;
4033
4034 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4035 qc->cursg++;
4036 qc->cursg_ofs = 0;
4037 }
4038 }
4039
4040 /**
4041 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4042 * @qc: Command on going
4043 *
4044 * Transfer one or many ATA_SECT_SIZE of data from/to the
4045 * ATA device for the DRQ request.
4046 *
4047 * LOCKING:
4048 * Inherited from caller.
4049 */
4050
4051 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4052 {
4053 if (is_multi_taskfile(&qc->tf)) {
4054 /* READ/WRITE MULTIPLE */
4055 unsigned int nsect;
4056
4057 WARN_ON(qc->dev->multi_count == 0);
4058
4059 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4060 qc->dev->multi_count);
4061 while (nsect--)
4062 ata_pio_sector(qc);
4063 } else
4064 ata_pio_sector(qc);
4065 }
4066
4067 /**
4068 * atapi_send_cdb - Write CDB bytes to hardware
4069 * @ap: Port to which ATAPI device is attached.
4070 * @qc: Taskfile currently active
4071 *
4072 * When device has indicated its readiness to accept
4073 * a CDB, this function is called. Send the CDB.
4074 *
4075 * LOCKING:
4076 * caller.
4077 */
4078
4079 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4080 {
4081 /* send SCSI cdb */
4082 DPRINTK("send cdb\n");
4083 WARN_ON(qc->dev->cdb_len < 12);
4084
4085 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4086 ata_altstatus(ap); /* flush */
4087
4088 switch (qc->tf.protocol) {
4089 case ATA_PROT_ATAPI:
4090 ap->hsm_task_state = HSM_ST;
4091 break;
4092 case ATA_PROT_ATAPI_NODATA:
4093 ap->hsm_task_state = HSM_ST_LAST;
4094 break;
4095 case ATA_PROT_ATAPI_DMA:
4096 ap->hsm_task_state = HSM_ST_LAST;
4097 /* initiate bmdma */
4098 ap->ops->bmdma_start(qc);
4099 break;
4100 }
4101 }
4102
4103 /**
4104 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4105 * @qc: Command on going
4106 * @bytes: number of bytes
4107 *
4108 * Transfer Transfer data from/to the ATAPI device.
4109 *
4110 * LOCKING:
4111 * Inherited from caller.
4112 *
4113 */
4114
4115 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4116 {
4117 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4118 struct scatterlist *sg = qc->__sg;
4119 struct ata_port *ap = qc->ap;
4120 struct page *page;
4121 unsigned char *buf;
4122 unsigned int offset, count;
4123
4124 if (qc->curbytes + bytes >= qc->nbytes)
4125 ap->hsm_task_state = HSM_ST_LAST;
4126
4127 next_sg:
4128 if (unlikely(qc->cursg >= qc->n_elem)) {
4129 /*
4130 * The end of qc->sg is reached and the device expects
4131 * more data to transfer. In order not to overrun qc->sg
4132 * and fulfill length specified in the byte count register,
4133 * - for read case, discard trailing data from the device
4134 * - for write case, padding zero data to the device
4135 */
4136 u16 pad_buf[1] = { 0 };
4137 unsigned int words = bytes >> 1;
4138 unsigned int i;
4139
4140 if (words) /* warning if bytes > 1 */
4141 ata_dev_printk(qc->dev, KERN_WARNING,
4142 "%u bytes trailing data\n", bytes);
4143
4144 for (i = 0; i < words; i++)
4145 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4146
4147 ap->hsm_task_state = HSM_ST_LAST;
4148 return;
4149 }
4150
4151 sg = &qc->__sg[qc->cursg];
4152
4153 page = sg->page;
4154 offset = sg->offset + qc->cursg_ofs;
4155
4156 /* get the current page and offset */
4157 page = nth_page(page, (offset >> PAGE_SHIFT));
4158 offset %= PAGE_SIZE;
4159
4160 /* don't overrun current sg */
4161 count = min(sg->length - qc->cursg_ofs, bytes);
4162
4163 /* don't cross page boundaries */
4164 count = min(count, (unsigned int)PAGE_SIZE - offset);
4165
4166 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4167
4168 if (PageHighMem(page)) {
4169 unsigned long flags;
4170
4171 /* FIXME: use bounce buffer */
4172 local_irq_save(flags);
4173 buf = kmap_atomic(page, KM_IRQ0);
4174
4175 /* do the actual data transfer */
4176 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4177
4178 kunmap_atomic(buf, KM_IRQ0);
4179 local_irq_restore(flags);
4180 } else {
4181 buf = page_address(page);
4182 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4183 }
4184
4185 bytes -= count;
4186 qc->curbytes += count;
4187 qc->cursg_ofs += count;
4188
4189 if (qc->cursg_ofs == sg->length) {
4190 qc->cursg++;
4191 qc->cursg_ofs = 0;
4192 }
4193
4194 if (bytes)
4195 goto next_sg;
4196 }
4197
4198 /**
4199 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4200 * @qc: Command on going
4201 *
4202 * Transfer Transfer data from/to the ATAPI device.
4203 *
4204 * LOCKING:
4205 * Inherited from caller.
4206 */
4207
4208 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4209 {
4210 struct ata_port *ap = qc->ap;
4211 struct ata_device *dev = qc->dev;
4212 unsigned int ireason, bc_lo, bc_hi, bytes;
4213 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4214
4215 /* Abuse qc->result_tf for temp storage of intermediate TF
4216 * here to save some kernel stack usage.
4217 * For normal completion, qc->result_tf is not relevant. For
4218 * error, qc->result_tf is later overwritten by ata_qc_complete().
4219 * So, the correctness of qc->result_tf is not affected.
4220 */
4221 ap->ops->tf_read(ap, &qc->result_tf);
4222 ireason = qc->result_tf.nsect;
4223 bc_lo = qc->result_tf.lbam;
4224 bc_hi = qc->result_tf.lbah;
4225 bytes = (bc_hi << 8) | bc_lo;
4226
4227 /* shall be cleared to zero, indicating xfer of data */
4228 if (ireason & (1 << 0))
4229 goto err_out;
4230
4231 /* make sure transfer direction matches expected */
4232 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4233 if (do_write != i_write)
4234 goto err_out;
4235
4236 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4237
4238 __atapi_pio_bytes(qc, bytes);
4239
4240 return;
4241
4242 err_out:
4243 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4244 qc->err_mask |= AC_ERR_HSM;
4245 ap->hsm_task_state = HSM_ST_ERR;
4246 }
4247
4248 /**
4249 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4250 * @ap: the target ata_port
4251 * @qc: qc on going
4252 *
4253 * RETURNS:
4254 * 1 if ok in workqueue, 0 otherwise.
4255 */
4256
4257 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4258 {
4259 if (qc->tf.flags & ATA_TFLAG_POLLING)
4260 return 1;
4261
4262 if (ap->hsm_task_state == HSM_ST_FIRST) {
4263 if (qc->tf.protocol == ATA_PROT_PIO &&
4264 (qc->tf.flags & ATA_TFLAG_WRITE))
4265 return 1;
4266
4267 if (is_atapi_taskfile(&qc->tf) &&
4268 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4269 return 1;
4270 }
4271
4272 return 0;
4273 }
4274
4275 /**
4276 * ata_hsm_qc_complete - finish a qc running on standard HSM
4277 * @qc: Command to complete
4278 * @in_wq: 1 if called from workqueue, 0 otherwise
4279 *
4280 * Finish @qc which is running on standard HSM.
4281 *
4282 * LOCKING:
4283 * If @in_wq is zero, spin_lock_irqsave(host lock).
4284 * Otherwise, none on entry and grabs host lock.
4285 */
4286 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4287 {
4288 struct ata_port *ap = qc->ap;
4289 unsigned long flags;
4290
4291 if (ap->ops->error_handler) {
4292 if (in_wq) {
4293 spin_lock_irqsave(ap->lock, flags);
4294
4295 /* EH might have kicked in while host lock is
4296 * released.
4297 */
4298 qc = ata_qc_from_tag(ap, qc->tag);
4299 if (qc) {
4300 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4301 ap->ops->irq_on(ap);
4302 ata_qc_complete(qc);
4303 } else
4304 ata_port_freeze(ap);
4305 }
4306
4307 spin_unlock_irqrestore(ap->lock, flags);
4308 } else {
4309 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4310 ata_qc_complete(qc);
4311 else
4312 ata_port_freeze(ap);
4313 }
4314 } else {
4315 if (in_wq) {
4316 spin_lock_irqsave(ap->lock, flags);
4317 ap->ops->irq_on(ap);
4318 ata_qc_complete(qc);
4319 spin_unlock_irqrestore(ap->lock, flags);
4320 } else
4321 ata_qc_complete(qc);
4322 }
4323
4324 ata_altstatus(ap); /* flush */
4325 }
4326
4327 /**
4328 * ata_hsm_move - move the HSM to the next state.
4329 * @ap: the target ata_port
4330 * @qc: qc on going
4331 * @status: current device status
4332 * @in_wq: 1 if called from workqueue, 0 otherwise
4333 *
4334 * RETURNS:
4335 * 1 when poll next status needed, 0 otherwise.
4336 */
4337 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4338 u8 status, int in_wq)
4339 {
4340 unsigned long flags = 0;
4341 int poll_next;
4342
4343 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4344
4345 /* Make sure ata_qc_issue_prot() does not throw things
4346 * like DMA polling into the workqueue. Notice that
4347 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4348 */
4349 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4350
4351 fsm_start:
4352 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4353 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4354
4355 switch (ap->hsm_task_state) {
4356 case HSM_ST_FIRST:
4357 /* Send first data block or PACKET CDB */
4358
4359 /* If polling, we will stay in the work queue after
4360 * sending the data. Otherwise, interrupt handler
4361 * takes over after sending the data.
4362 */
4363 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4364
4365 /* check device status */
4366 if (unlikely((status & ATA_DRQ) == 0)) {
4367 /* handle BSY=0, DRQ=0 as error */
4368 if (likely(status & (ATA_ERR | ATA_DF)))
4369 /* device stops HSM for abort/error */
4370 qc->err_mask |= AC_ERR_DEV;
4371 else
4372 /* HSM violation. Let EH handle this */
4373 qc->err_mask |= AC_ERR_HSM;
4374
4375 ap->hsm_task_state = HSM_ST_ERR;
4376 goto fsm_start;
4377 }
4378
4379 /* Device should not ask for data transfer (DRQ=1)
4380 * when it finds something wrong.
4381 * We ignore DRQ here and stop the HSM by
4382 * changing hsm_task_state to HSM_ST_ERR and
4383 * let the EH abort the command or reset the device.
4384 */
4385 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4386 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4387 "error, dev_stat 0x%X\n", status);
4388 qc->err_mask |= AC_ERR_HSM;
4389 ap->hsm_task_state = HSM_ST_ERR;
4390 goto fsm_start;
4391 }
4392
4393 /* Send the CDB (atapi) or the first data block (ata pio out).
4394 * During the state transition, interrupt handler shouldn't
4395 * be invoked before the data transfer is complete and
4396 * hsm_task_state is changed. Hence, the following locking.
4397 */
4398 if (in_wq)
4399 spin_lock_irqsave(ap->lock, flags);
4400
4401 if (qc->tf.protocol == ATA_PROT_PIO) {
4402 /* PIO data out protocol.
4403 * send first data block.
4404 */
4405
4406 /* ata_pio_sectors() might change the state
4407 * to HSM_ST_LAST. so, the state is changed here
4408 * before ata_pio_sectors().
4409 */
4410 ap->hsm_task_state = HSM_ST;
4411 ata_pio_sectors(qc);
4412 ata_altstatus(ap); /* flush */
4413 } else
4414 /* send CDB */
4415 atapi_send_cdb(ap, qc);
4416
4417 if (in_wq)
4418 spin_unlock_irqrestore(ap->lock, flags);
4419
4420 /* if polling, ata_pio_task() handles the rest.
4421 * otherwise, interrupt handler takes over from here.
4422 */
4423 break;
4424
4425 case HSM_ST:
4426 /* complete command or read/write the data register */
4427 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4428 /* ATAPI PIO protocol */
4429 if ((status & ATA_DRQ) == 0) {
4430 /* No more data to transfer or device error.
4431 * Device error will be tagged in HSM_ST_LAST.
4432 */
4433 ap->hsm_task_state = HSM_ST_LAST;
4434 goto fsm_start;
4435 }
4436
4437 /* Device should not ask for data transfer (DRQ=1)
4438 * when it finds something wrong.
4439 * We ignore DRQ here and stop the HSM by
4440 * changing hsm_task_state to HSM_ST_ERR and
4441 * let the EH abort the command or reset the device.
4442 */
4443 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4444 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4445 "device error, dev_stat 0x%X\n",
4446 status);
4447 qc->err_mask |= AC_ERR_HSM;
4448 ap->hsm_task_state = HSM_ST_ERR;
4449 goto fsm_start;
4450 }
4451
4452 atapi_pio_bytes(qc);
4453
4454 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4455 /* bad ireason reported by device */
4456 goto fsm_start;
4457
4458 } else {
4459 /* ATA PIO protocol */
4460 if (unlikely((status & ATA_DRQ) == 0)) {
4461 /* handle BSY=0, DRQ=0 as error */
4462 if (likely(status & (ATA_ERR | ATA_DF)))
4463 /* device stops HSM for abort/error */
4464 qc->err_mask |= AC_ERR_DEV;
4465 else
4466 /* HSM violation. Let EH handle this.
4467 * Phantom devices also trigger this
4468 * condition. Mark hint.
4469 */
4470 qc->err_mask |= AC_ERR_HSM |
4471 AC_ERR_NODEV_HINT;
4472
4473 ap->hsm_task_state = HSM_ST_ERR;
4474 goto fsm_start;
4475 }
4476
4477 /* For PIO reads, some devices may ask for
4478 * data transfer (DRQ=1) alone with ERR=1.
4479 * We respect DRQ here and transfer one
4480 * block of junk data before changing the
4481 * hsm_task_state to HSM_ST_ERR.
4482 *
4483 * For PIO writes, ERR=1 DRQ=1 doesn't make
4484 * sense since the data block has been
4485 * transferred to the device.
4486 */
4487 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4488 /* data might be corrputed */
4489 qc->err_mask |= AC_ERR_DEV;
4490
4491 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4492 ata_pio_sectors(qc);
4493 ata_altstatus(ap);
4494 status = ata_wait_idle(ap);
4495 }
4496
4497 if (status & (ATA_BUSY | ATA_DRQ))
4498 qc->err_mask |= AC_ERR_HSM;
4499
4500 /* ata_pio_sectors() might change the
4501 * state to HSM_ST_LAST. so, the state
4502 * is changed after ata_pio_sectors().
4503 */
4504 ap->hsm_task_state = HSM_ST_ERR;
4505 goto fsm_start;
4506 }
4507
4508 ata_pio_sectors(qc);
4509
4510 if (ap->hsm_task_state == HSM_ST_LAST &&
4511 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4512 /* all data read */
4513 ata_altstatus(ap);
4514 status = ata_wait_idle(ap);
4515 goto fsm_start;
4516 }
4517 }
4518
4519 ata_altstatus(ap); /* flush */
4520 poll_next = 1;
4521 break;
4522
4523 case HSM_ST_LAST:
4524 if (unlikely(!ata_ok(status))) {
4525 qc->err_mask |= __ac_err_mask(status);
4526 ap->hsm_task_state = HSM_ST_ERR;
4527 goto fsm_start;
4528 }
4529
4530 /* no more data to transfer */
4531 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4532 ap->print_id, qc->dev->devno, status);
4533
4534 WARN_ON(qc->err_mask);
4535
4536 ap->hsm_task_state = HSM_ST_IDLE;
4537
4538 /* complete taskfile transaction */
4539 ata_hsm_qc_complete(qc, in_wq);
4540
4541 poll_next = 0;
4542 break;
4543
4544 case HSM_ST_ERR:
4545 /* make sure qc->err_mask is available to
4546 * know what's wrong and recover
4547 */
4548 WARN_ON(qc->err_mask == 0);
4549
4550 ap->hsm_task_state = HSM_ST_IDLE;
4551
4552 /* complete taskfile transaction */
4553 ata_hsm_qc_complete(qc, in_wq);
4554
4555 poll_next = 0;
4556 break;
4557 default:
4558 poll_next = 0;
4559 BUG();
4560 }
4561
4562 return poll_next;
4563 }
4564
4565 static void ata_pio_task(struct work_struct *work)
4566 {
4567 struct ata_port *ap =
4568 container_of(work, struct ata_port, port_task.work);
4569 struct ata_queued_cmd *qc = ap->port_task_data;
4570 u8 status;
4571 int poll_next;
4572
4573 fsm_start:
4574 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4575
4576 /*
4577 * This is purely heuristic. This is a fast path.
4578 * Sometimes when we enter, BSY will be cleared in
4579 * a chk-status or two. If not, the drive is probably seeking
4580 * or something. Snooze for a couple msecs, then
4581 * chk-status again. If still busy, queue delayed work.
4582 */
4583 status = ata_busy_wait(ap, ATA_BUSY, 5);
4584 if (status & ATA_BUSY) {
4585 msleep(2);
4586 status = ata_busy_wait(ap, ATA_BUSY, 10);
4587 if (status & ATA_BUSY) {
4588 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4589 return;
4590 }
4591 }
4592
4593 /* move the HSM */
4594 poll_next = ata_hsm_move(ap, qc, status, 1);
4595
4596 /* another command or interrupt handler
4597 * may be running at this point.
4598 */
4599 if (poll_next)
4600 goto fsm_start;
4601 }
4602
4603 /**
4604 * ata_qc_new - Request an available ATA command, for queueing
4605 * @ap: Port associated with device @dev
4606 * @dev: Device from whom we request an available command structure
4607 *
4608 * LOCKING:
4609 * None.
4610 */
4611
4612 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4613 {
4614 struct ata_queued_cmd *qc = NULL;
4615 unsigned int i;
4616
4617 /* no command while frozen */
4618 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4619 return NULL;
4620
4621 /* the last tag is reserved for internal command. */
4622 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4623 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4624 qc = __ata_qc_from_tag(ap, i);
4625 break;
4626 }
4627
4628 if (qc)
4629 qc->tag = i;
4630
4631 return qc;
4632 }
4633
4634 /**
4635 * ata_qc_new_init - Request an available ATA command, and initialize it
4636 * @dev: Device from whom we request an available command structure
4637 *
4638 * LOCKING:
4639 * None.
4640 */
4641
4642 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4643 {
4644 struct ata_port *ap = dev->ap;
4645 struct ata_queued_cmd *qc;
4646
4647 qc = ata_qc_new(ap);
4648 if (qc) {
4649 qc->scsicmd = NULL;
4650 qc->ap = ap;
4651 qc->dev = dev;
4652
4653 ata_qc_reinit(qc);
4654 }
4655
4656 return qc;
4657 }
4658
4659 /**
4660 * ata_qc_free - free unused ata_queued_cmd
4661 * @qc: Command to complete
4662 *
4663 * Designed to free unused ata_queued_cmd object
4664 * in case something prevents using it.
4665 *
4666 * LOCKING:
4667 * spin_lock_irqsave(host lock)
4668 */
4669 void ata_qc_free(struct ata_queued_cmd *qc)
4670 {
4671 struct ata_port *ap = qc->ap;
4672 unsigned int tag;
4673
4674 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4675
4676 qc->flags = 0;
4677 tag = qc->tag;
4678 if (likely(ata_tag_valid(tag))) {
4679 qc->tag = ATA_TAG_POISON;
4680 clear_bit(tag, &ap->qc_allocated);
4681 }
4682 }
4683
4684 void __ata_qc_complete(struct ata_queued_cmd *qc)
4685 {
4686 struct ata_port *ap = qc->ap;
4687
4688 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4689 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4690
4691 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4692 ata_sg_clean(qc);
4693
4694 /* command should be marked inactive atomically with qc completion */
4695 if (qc->tf.protocol == ATA_PROT_NCQ)
4696 ap->sactive &= ~(1 << qc->tag);
4697 else
4698 ap->active_tag = ATA_TAG_POISON;
4699
4700 /* atapi: mark qc as inactive to prevent the interrupt handler
4701 * from completing the command twice later, before the error handler
4702 * is called. (when rc != 0 and atapi request sense is needed)
4703 */
4704 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4705 ap->qc_active &= ~(1 << qc->tag);
4706
4707 /* call completion callback */
4708 qc->complete_fn(qc);
4709 }
4710
4711 static void fill_result_tf(struct ata_queued_cmd *qc)
4712 {
4713 struct ata_port *ap = qc->ap;
4714
4715 ap->ops->tf_read(ap, &qc->result_tf);
4716 qc->result_tf.flags = qc->tf.flags;
4717 }
4718
4719 /**
4720 * ata_qc_complete - Complete an active ATA command
4721 * @qc: Command to complete
4722 * @err_mask: ATA Status register contents
4723 *
4724 * Indicate to the mid and upper layers that an ATA
4725 * command has completed, with either an ok or not-ok status.
4726 *
4727 * LOCKING:
4728 * spin_lock_irqsave(host lock)
4729 */
4730 void ata_qc_complete(struct ata_queued_cmd *qc)
4731 {
4732 struct ata_port *ap = qc->ap;
4733
4734 /* XXX: New EH and old EH use different mechanisms to
4735 * synchronize EH with regular execution path.
4736 *
4737 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4738 * Normal execution path is responsible for not accessing a
4739 * failed qc. libata core enforces the rule by returning NULL
4740 * from ata_qc_from_tag() for failed qcs.
4741 *
4742 * Old EH depends on ata_qc_complete() nullifying completion
4743 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4744 * not synchronize with interrupt handler. Only PIO task is
4745 * taken care of.
4746 */
4747 if (ap->ops->error_handler) {
4748 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4749
4750 if (unlikely(qc->err_mask))
4751 qc->flags |= ATA_QCFLAG_FAILED;
4752
4753 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4754 if (!ata_tag_internal(qc->tag)) {
4755 /* always fill result TF for failed qc */
4756 fill_result_tf(qc);
4757 ata_qc_schedule_eh(qc);
4758 return;
4759 }
4760 }
4761
4762 /* read result TF if requested */
4763 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4764 fill_result_tf(qc);
4765
4766 __ata_qc_complete(qc);
4767 } else {
4768 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4769 return;
4770
4771 /* read result TF if failed or requested */
4772 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4773 fill_result_tf(qc);
4774
4775 __ata_qc_complete(qc);
4776 }
4777 }
4778
4779 /**
4780 * ata_qc_complete_multiple - Complete multiple qcs successfully
4781 * @ap: port in question
4782 * @qc_active: new qc_active mask
4783 * @finish_qc: LLDD callback invoked before completing a qc
4784 *
4785 * Complete in-flight commands. This functions is meant to be
4786 * called from low-level driver's interrupt routine to complete
4787 * requests normally. ap->qc_active and @qc_active is compared
4788 * and commands are completed accordingly.
4789 *
4790 * LOCKING:
4791 * spin_lock_irqsave(host lock)
4792 *
4793 * RETURNS:
4794 * Number of completed commands on success, -errno otherwise.
4795 */
4796 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4797 void (*finish_qc)(struct ata_queued_cmd *))
4798 {
4799 int nr_done = 0;
4800 u32 done_mask;
4801 int i;
4802
4803 done_mask = ap->qc_active ^ qc_active;
4804
4805 if (unlikely(done_mask & qc_active)) {
4806 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4807 "(%08x->%08x)\n", ap->qc_active, qc_active);
4808 return -EINVAL;
4809 }
4810
4811 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4812 struct ata_queued_cmd *qc;
4813
4814 if (!(done_mask & (1 << i)))
4815 continue;
4816
4817 if ((qc = ata_qc_from_tag(ap, i))) {
4818 if (finish_qc)
4819 finish_qc(qc);
4820 ata_qc_complete(qc);
4821 nr_done++;
4822 }
4823 }
4824
4825 return nr_done;
4826 }
4827
4828 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4829 {
4830 struct ata_port *ap = qc->ap;
4831
4832 switch (qc->tf.protocol) {
4833 case ATA_PROT_NCQ:
4834 case ATA_PROT_DMA:
4835 case ATA_PROT_ATAPI_DMA:
4836 return 1;
4837
4838 case ATA_PROT_ATAPI:
4839 case ATA_PROT_PIO:
4840 if (ap->flags & ATA_FLAG_PIO_DMA)
4841 return 1;
4842
4843 /* fall through */
4844
4845 default:
4846 return 0;
4847 }
4848
4849 /* never reached */
4850 }
4851
4852 /**
4853 * ata_qc_issue - issue taskfile to device
4854 * @qc: command to issue to device
4855 *
4856 * Prepare an ATA command to submission to device.
4857 * This includes mapping the data into a DMA-able
4858 * area, filling in the S/G table, and finally
4859 * writing the taskfile to hardware, starting the command.
4860 *
4861 * LOCKING:
4862 * spin_lock_irqsave(host lock)
4863 */
4864 void ata_qc_issue(struct ata_queued_cmd *qc)
4865 {
4866 struct ata_port *ap = qc->ap;
4867
4868 /* Make sure only one non-NCQ command is outstanding. The
4869 * check is skipped for old EH because it reuses active qc to
4870 * request ATAPI sense.
4871 */
4872 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4873
4874 if (qc->tf.protocol == ATA_PROT_NCQ) {
4875 WARN_ON(ap->sactive & (1 << qc->tag));
4876 ap->sactive |= 1 << qc->tag;
4877 } else {
4878 WARN_ON(ap->sactive);
4879 ap->active_tag = qc->tag;
4880 }
4881
4882 qc->flags |= ATA_QCFLAG_ACTIVE;
4883 ap->qc_active |= 1 << qc->tag;
4884
4885 if (ata_should_dma_map(qc)) {
4886 if (qc->flags & ATA_QCFLAG_SG) {
4887 if (ata_sg_setup(qc))
4888 goto sg_err;
4889 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4890 if (ata_sg_setup_one(qc))
4891 goto sg_err;
4892 }
4893 } else {
4894 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4895 }
4896
4897 ap->ops->qc_prep(qc);
4898
4899 qc->err_mask |= ap->ops->qc_issue(qc);
4900 if (unlikely(qc->err_mask))
4901 goto err;
4902 return;
4903
4904 sg_err:
4905 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4906 qc->err_mask |= AC_ERR_SYSTEM;
4907 err:
4908 ata_qc_complete(qc);
4909 }
4910
4911 /**
4912 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4913 * @qc: command to issue to device
4914 *
4915 * Using various libata functions and hooks, this function
4916 * starts an ATA command. ATA commands are grouped into
4917 * classes called "protocols", and issuing each type of protocol
4918 * is slightly different.
4919 *
4920 * May be used as the qc_issue() entry in ata_port_operations.
4921 *
4922 * LOCKING:
4923 * spin_lock_irqsave(host lock)
4924 *
4925 * RETURNS:
4926 * Zero on success, AC_ERR_* mask on failure
4927 */
4928
4929 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4930 {
4931 struct ata_port *ap = qc->ap;
4932
4933 /* Use polling pio if the LLD doesn't handle
4934 * interrupt driven pio and atapi CDB interrupt.
4935 */
4936 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4937 switch (qc->tf.protocol) {
4938 case ATA_PROT_PIO:
4939 case ATA_PROT_NODATA:
4940 case ATA_PROT_ATAPI:
4941 case ATA_PROT_ATAPI_NODATA:
4942 qc->tf.flags |= ATA_TFLAG_POLLING;
4943 break;
4944 case ATA_PROT_ATAPI_DMA:
4945 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4946 /* see ata_dma_blacklisted() */
4947 BUG();
4948 break;
4949 default:
4950 break;
4951 }
4952 }
4953
4954 /* Some controllers show flaky interrupt behavior after
4955 * setting xfer mode. Use polling instead.
4956 */
4957 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4958 qc->tf.feature == SETFEATURES_XFER) &&
4959 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4960 qc->tf.flags |= ATA_TFLAG_POLLING;
4961
4962 /* select the device */
4963 ata_dev_select(ap, qc->dev->devno, 1, 0);
4964
4965 /* start the command */
4966 switch (qc->tf.protocol) {
4967 case ATA_PROT_NODATA:
4968 if (qc->tf.flags & ATA_TFLAG_POLLING)
4969 ata_qc_set_polling(qc);
4970
4971 ata_tf_to_host(ap, &qc->tf);
4972 ap->hsm_task_state = HSM_ST_LAST;
4973
4974 if (qc->tf.flags & ATA_TFLAG_POLLING)
4975 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4976
4977 break;
4978
4979 case ATA_PROT_DMA:
4980 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4981
4982 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4983 ap->ops->bmdma_setup(qc); /* set up bmdma */
4984 ap->ops->bmdma_start(qc); /* initiate bmdma */
4985 ap->hsm_task_state = HSM_ST_LAST;
4986 break;
4987
4988 case ATA_PROT_PIO:
4989 if (qc->tf.flags & ATA_TFLAG_POLLING)
4990 ata_qc_set_polling(qc);
4991
4992 ata_tf_to_host(ap, &qc->tf);
4993
4994 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4995 /* PIO data out protocol */
4996 ap->hsm_task_state = HSM_ST_FIRST;
4997 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4998
4999 /* always send first data block using
5000 * the ata_pio_task() codepath.
5001 */
5002 } else {
5003 /* PIO data in protocol */
5004 ap->hsm_task_state = HSM_ST;
5005
5006 if (qc->tf.flags & ATA_TFLAG_POLLING)
5007 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5008
5009 /* if polling, ata_pio_task() handles the rest.
5010 * otherwise, interrupt handler takes over from here.
5011 */
5012 }
5013
5014 break;
5015
5016 case ATA_PROT_ATAPI:
5017 case ATA_PROT_ATAPI_NODATA:
5018 if (qc->tf.flags & ATA_TFLAG_POLLING)
5019 ata_qc_set_polling(qc);
5020
5021 ata_tf_to_host(ap, &qc->tf);
5022
5023 ap->hsm_task_state = HSM_ST_FIRST;
5024
5025 /* send cdb by polling if no cdb interrupt */
5026 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5027 (qc->tf.flags & ATA_TFLAG_POLLING))
5028 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5029 break;
5030
5031 case ATA_PROT_ATAPI_DMA:
5032 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5033
5034 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5035 ap->ops->bmdma_setup(qc); /* set up bmdma */
5036 ap->hsm_task_state = HSM_ST_FIRST;
5037
5038 /* send cdb by polling if no cdb interrupt */
5039 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5040 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5041 break;
5042
5043 default:
5044 WARN_ON(1);
5045 return AC_ERR_SYSTEM;
5046 }
5047
5048 return 0;
5049 }
5050
5051 /**
5052 * ata_host_intr - Handle host interrupt for given (port, task)
5053 * @ap: Port on which interrupt arrived (possibly...)
5054 * @qc: Taskfile currently active in engine
5055 *
5056 * Handle host interrupt for given queued command. Currently,
5057 * only DMA interrupts are handled. All other commands are
5058 * handled via polling with interrupts disabled (nIEN bit).
5059 *
5060 * LOCKING:
5061 * spin_lock_irqsave(host lock)
5062 *
5063 * RETURNS:
5064 * One if interrupt was handled, zero if not (shared irq).
5065 */
5066
5067 inline unsigned int ata_host_intr (struct ata_port *ap,
5068 struct ata_queued_cmd *qc)
5069 {
5070 struct ata_eh_info *ehi = &ap->eh_info;
5071 u8 status, host_stat = 0;
5072
5073 VPRINTK("ata%u: protocol %d task_state %d\n",
5074 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5075
5076 /* Check whether we are expecting interrupt in this state */
5077 switch (ap->hsm_task_state) {
5078 case HSM_ST_FIRST:
5079 /* Some pre-ATAPI-4 devices assert INTRQ
5080 * at this state when ready to receive CDB.
5081 */
5082
5083 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5084 * The flag was turned on only for atapi devices.
5085 * No need to check is_atapi_taskfile(&qc->tf) again.
5086 */
5087 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5088 goto idle_irq;
5089 break;
5090 case HSM_ST_LAST:
5091 if (qc->tf.protocol == ATA_PROT_DMA ||
5092 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5093 /* check status of DMA engine */
5094 host_stat = ap->ops->bmdma_status(ap);
5095 VPRINTK("ata%u: host_stat 0x%X\n",
5096 ap->print_id, host_stat);
5097
5098 /* if it's not our irq... */
5099 if (!(host_stat & ATA_DMA_INTR))
5100 goto idle_irq;
5101
5102 /* before we do anything else, clear DMA-Start bit */
5103 ap->ops->bmdma_stop(qc);
5104
5105 if (unlikely(host_stat & ATA_DMA_ERR)) {
5106 /* error when transfering data to/from memory */
5107 qc->err_mask |= AC_ERR_HOST_BUS;
5108 ap->hsm_task_state = HSM_ST_ERR;
5109 }
5110 }
5111 break;
5112 case HSM_ST:
5113 break;
5114 default:
5115 goto idle_irq;
5116 }
5117
5118 /* check altstatus */
5119 status = ata_altstatus(ap);
5120 if (status & ATA_BUSY)
5121 goto idle_irq;
5122
5123 /* check main status, clearing INTRQ */
5124 status = ata_chk_status(ap);
5125 if (unlikely(status & ATA_BUSY))
5126 goto idle_irq;
5127
5128 /* ack bmdma irq events */
5129 ap->ops->irq_clear(ap);
5130
5131 ata_hsm_move(ap, qc, status, 0);
5132
5133 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5134 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5135 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5136
5137 return 1; /* irq handled */
5138
5139 idle_irq:
5140 ap->stats.idle_irq++;
5141
5142 #ifdef ATA_IRQ_TRAP
5143 if ((ap->stats.idle_irq % 1000) == 0) {
5144 ap->ops->irq_ack(ap, 0); /* debug trap */
5145 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5146 return 1;
5147 }
5148 #endif
5149 return 0; /* irq not handled */
5150 }
5151
5152 /**
5153 * ata_interrupt - Default ATA host interrupt handler
5154 * @irq: irq line (unused)
5155 * @dev_instance: pointer to our ata_host information structure
5156 *
5157 * Default interrupt handler for PCI IDE devices. Calls
5158 * ata_host_intr() for each port that is not disabled.
5159 *
5160 * LOCKING:
5161 * Obtains host lock during operation.
5162 *
5163 * RETURNS:
5164 * IRQ_NONE or IRQ_HANDLED.
5165 */
5166
5167 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5168 {
5169 struct ata_host *host = dev_instance;
5170 unsigned int i;
5171 unsigned int handled = 0;
5172 unsigned long flags;
5173
5174 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5175 spin_lock_irqsave(&host->lock, flags);
5176
5177 for (i = 0; i < host->n_ports; i++) {
5178 struct ata_port *ap;
5179
5180 ap = host->ports[i];
5181 if (ap &&
5182 !(ap->flags & ATA_FLAG_DISABLED)) {
5183 struct ata_queued_cmd *qc;
5184
5185 qc = ata_qc_from_tag(ap, ap->active_tag);
5186 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5187 (qc->flags & ATA_QCFLAG_ACTIVE))
5188 handled |= ata_host_intr(ap, qc);
5189 }
5190 }
5191
5192 spin_unlock_irqrestore(&host->lock, flags);
5193
5194 return IRQ_RETVAL(handled);
5195 }
5196
5197 /**
5198 * sata_scr_valid - test whether SCRs are accessible
5199 * @ap: ATA port to test SCR accessibility for
5200 *
5201 * Test whether SCRs are accessible for @ap.
5202 *
5203 * LOCKING:
5204 * None.
5205 *
5206 * RETURNS:
5207 * 1 if SCRs are accessible, 0 otherwise.
5208 */
5209 int sata_scr_valid(struct ata_port *ap)
5210 {
5211 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5212 }
5213
5214 /**
5215 * sata_scr_read - read SCR register of the specified port
5216 * @ap: ATA port to read SCR for
5217 * @reg: SCR to read
5218 * @val: Place to store read value
5219 *
5220 * Read SCR register @reg of @ap into *@val. This function is
5221 * guaranteed to succeed if the cable type of the port is SATA
5222 * and the port implements ->scr_read.
5223 *
5224 * LOCKING:
5225 * None.
5226 *
5227 * RETURNS:
5228 * 0 on success, negative errno on failure.
5229 */
5230 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5231 {
5232 if (sata_scr_valid(ap)) {
5233 *val = ap->ops->scr_read(ap, reg);
5234 return 0;
5235 }
5236 return -EOPNOTSUPP;
5237 }
5238
5239 /**
5240 * sata_scr_write - write SCR register of the specified port
5241 * @ap: ATA port to write SCR for
5242 * @reg: SCR to write
5243 * @val: value to write
5244 *
5245 * Write @val to SCR register @reg of @ap. This function is
5246 * guaranteed to succeed if the cable type of the port is SATA
5247 * and the port implements ->scr_read.
5248 *
5249 * LOCKING:
5250 * None.
5251 *
5252 * RETURNS:
5253 * 0 on success, negative errno on failure.
5254 */
5255 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5256 {
5257 if (sata_scr_valid(ap)) {
5258 ap->ops->scr_write(ap, reg, val);
5259 return 0;
5260 }
5261 return -EOPNOTSUPP;
5262 }
5263
5264 /**
5265 * sata_scr_write_flush - write SCR register of the specified port and flush
5266 * @ap: ATA port to write SCR for
5267 * @reg: SCR to write
5268 * @val: value to write
5269 *
5270 * This function is identical to sata_scr_write() except that this
5271 * function performs flush after writing to the register.
5272 *
5273 * LOCKING:
5274 * None.
5275 *
5276 * RETURNS:
5277 * 0 on success, negative errno on failure.
5278 */
5279 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5280 {
5281 if (sata_scr_valid(ap)) {
5282 ap->ops->scr_write(ap, reg, val);
5283 ap->ops->scr_read(ap, reg);
5284 return 0;
5285 }
5286 return -EOPNOTSUPP;
5287 }
5288
5289 /**
5290 * ata_port_online - test whether the given port is online
5291 * @ap: ATA port to test
5292 *
5293 * Test whether @ap is online. Note that this function returns 0
5294 * if online status of @ap cannot be obtained, so
5295 * ata_port_online(ap) != !ata_port_offline(ap).
5296 *
5297 * LOCKING:
5298 * None.
5299 *
5300 * RETURNS:
5301 * 1 if the port online status is available and online.
5302 */
5303 int ata_port_online(struct ata_port *ap)
5304 {
5305 u32 sstatus;
5306
5307 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5308 return 1;
5309 return 0;
5310 }
5311
5312 /**
5313 * ata_port_offline - test whether the given port is offline
5314 * @ap: ATA port to test
5315 *
5316 * Test whether @ap is offline. Note that this function returns
5317 * 0 if offline status of @ap cannot be obtained, so
5318 * ata_port_online(ap) != !ata_port_offline(ap).
5319 *
5320 * LOCKING:
5321 * None.
5322 *
5323 * RETURNS:
5324 * 1 if the port offline status is available and offline.
5325 */
5326 int ata_port_offline(struct ata_port *ap)
5327 {
5328 u32 sstatus;
5329
5330 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5331 return 1;
5332 return 0;
5333 }
5334
5335 int ata_flush_cache(struct ata_device *dev)
5336 {
5337 unsigned int err_mask;
5338 u8 cmd;
5339
5340 if (!ata_try_flush_cache(dev))
5341 return 0;
5342
5343 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5344 cmd = ATA_CMD_FLUSH_EXT;
5345 else
5346 cmd = ATA_CMD_FLUSH;
5347
5348 err_mask = ata_do_simple_cmd(dev, cmd);
5349 if (err_mask) {
5350 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5351 return -EIO;
5352 }
5353
5354 return 0;
5355 }
5356
5357 #ifdef CONFIG_PM
5358 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5359 unsigned int action, unsigned int ehi_flags,
5360 int wait)
5361 {
5362 unsigned long flags;
5363 int i, rc;
5364
5365 for (i = 0; i < host->n_ports; i++) {
5366 struct ata_port *ap = host->ports[i];
5367
5368 /* Previous resume operation might still be in
5369 * progress. Wait for PM_PENDING to clear.
5370 */
5371 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5372 ata_port_wait_eh(ap);
5373 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5374 }
5375
5376 /* request PM ops to EH */
5377 spin_lock_irqsave(ap->lock, flags);
5378
5379 ap->pm_mesg = mesg;
5380 if (wait) {
5381 rc = 0;
5382 ap->pm_result = &rc;
5383 }
5384
5385 ap->pflags |= ATA_PFLAG_PM_PENDING;
5386 ap->eh_info.action |= action;
5387 ap->eh_info.flags |= ehi_flags;
5388
5389 ata_port_schedule_eh(ap);
5390
5391 spin_unlock_irqrestore(ap->lock, flags);
5392
5393 /* wait and check result */
5394 if (wait) {
5395 ata_port_wait_eh(ap);
5396 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5397 if (rc)
5398 return rc;
5399 }
5400 }
5401
5402 return 0;
5403 }
5404
5405 /**
5406 * ata_host_suspend - suspend host
5407 * @host: host to suspend
5408 * @mesg: PM message
5409 *
5410 * Suspend @host. Actual operation is performed by EH. This
5411 * function requests EH to perform PM operations and waits for EH
5412 * to finish.
5413 *
5414 * LOCKING:
5415 * Kernel thread context (may sleep).
5416 *
5417 * RETURNS:
5418 * 0 on success, -errno on failure.
5419 */
5420 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5421 {
5422 int i, j, rc;
5423
5424 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5425 if (rc)
5426 goto fail;
5427
5428 /* EH is quiescent now. Fail if we have any ready device.
5429 * This happens if hotplug occurs between completion of device
5430 * suspension and here.
5431 */
5432 for (i = 0; i < host->n_ports; i++) {
5433 struct ata_port *ap = host->ports[i];
5434
5435 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5436 struct ata_device *dev = &ap->device[j];
5437
5438 if (ata_dev_ready(dev)) {
5439 ata_port_printk(ap, KERN_WARNING,
5440 "suspend failed, device %d "
5441 "still active\n", dev->devno);
5442 rc = -EBUSY;
5443 goto fail;
5444 }
5445 }
5446 }
5447
5448 host->dev->power.power_state = mesg;
5449 return 0;
5450
5451 fail:
5452 ata_host_resume(host);
5453 return rc;
5454 }
5455
5456 /**
5457 * ata_host_resume - resume host
5458 * @host: host to resume
5459 *
5460 * Resume @host. Actual operation is performed by EH. This
5461 * function requests EH to perform PM operations and returns.
5462 * Note that all resume operations are performed parallely.
5463 *
5464 * LOCKING:
5465 * Kernel thread context (may sleep).
5466 */
5467 void ata_host_resume(struct ata_host *host)
5468 {
5469 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5470 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5471 host->dev->power.power_state = PMSG_ON;
5472 }
5473 #endif
5474
5475 /**
5476 * ata_port_start - Set port up for dma.
5477 * @ap: Port to initialize
5478 *
5479 * Called just after data structures for each port are
5480 * initialized. Allocates space for PRD table.
5481 *
5482 * May be used as the port_start() entry in ata_port_operations.
5483 *
5484 * LOCKING:
5485 * Inherited from caller.
5486 */
5487 int ata_port_start(struct ata_port *ap)
5488 {
5489 struct device *dev = ap->dev;
5490 int rc;
5491
5492 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5493 GFP_KERNEL);
5494 if (!ap->prd)
5495 return -ENOMEM;
5496
5497 rc = ata_pad_alloc(ap, dev);
5498 if (rc)
5499 return rc;
5500
5501 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5502 (unsigned long long)ap->prd_dma);
5503 return 0;
5504 }
5505
5506 /**
5507 * ata_dev_init - Initialize an ata_device structure
5508 * @dev: Device structure to initialize
5509 *
5510 * Initialize @dev in preparation for probing.
5511 *
5512 * LOCKING:
5513 * Inherited from caller.
5514 */
5515 void ata_dev_init(struct ata_device *dev)
5516 {
5517 struct ata_port *ap = dev->ap;
5518 unsigned long flags;
5519
5520 /* SATA spd limit is bound to the first device */
5521 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5522
5523 /* High bits of dev->flags are used to record warm plug
5524 * requests which occur asynchronously. Synchronize using
5525 * host lock.
5526 */
5527 spin_lock_irqsave(ap->lock, flags);
5528 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5529 spin_unlock_irqrestore(ap->lock, flags);
5530
5531 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5532 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5533 dev->pio_mask = UINT_MAX;
5534 dev->mwdma_mask = UINT_MAX;
5535 dev->udma_mask = UINT_MAX;
5536 }
5537
5538 /**
5539 * ata_port_init - Initialize an ata_port structure
5540 * @ap: Structure to initialize
5541 * @host: Collection of hosts to which @ap belongs
5542 * @ent: Probe information provided by low-level driver
5543 * @port_no: Port number associated with this ata_port
5544 *
5545 * Initialize a new ata_port structure.
5546 *
5547 * LOCKING:
5548 * Inherited from caller.
5549 */
5550 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5551 const struct ata_probe_ent *ent, unsigned int port_no)
5552 {
5553 unsigned int i;
5554
5555 ap->lock = &host->lock;
5556 ap->flags = ATA_FLAG_DISABLED;
5557 ap->print_id = ata_print_id++;
5558 ap->ctl = ATA_DEVCTL_OBS;
5559 ap->host = host;
5560 ap->dev = ent->dev;
5561 ap->port_no = port_no;
5562 if (port_no == 1 && ent->pinfo2) {
5563 ap->pio_mask = ent->pinfo2->pio_mask;
5564 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5565 ap->udma_mask = ent->pinfo2->udma_mask;
5566 ap->flags |= ent->pinfo2->flags;
5567 ap->ops = ent->pinfo2->port_ops;
5568 } else {
5569 ap->pio_mask = ent->pio_mask;
5570 ap->mwdma_mask = ent->mwdma_mask;
5571 ap->udma_mask = ent->udma_mask;
5572 ap->flags |= ent->port_flags;
5573 ap->ops = ent->port_ops;
5574 }
5575 ap->hw_sata_spd_limit = UINT_MAX;
5576 ap->active_tag = ATA_TAG_POISON;
5577 ap->last_ctl = 0xFF;
5578
5579 #if defined(ATA_VERBOSE_DEBUG)
5580 /* turn on all debugging levels */
5581 ap->msg_enable = 0x00FF;
5582 #elif defined(ATA_DEBUG)
5583 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5584 #else
5585 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5586 #endif
5587
5588 INIT_DELAYED_WORK(&ap->port_task, NULL);
5589 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5590 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5591 INIT_LIST_HEAD(&ap->eh_done_q);
5592 init_waitqueue_head(&ap->eh_wait_q);
5593
5594 /* set cable type */
5595 ap->cbl = ATA_CBL_NONE;
5596 if (ap->flags & ATA_FLAG_SATA)
5597 ap->cbl = ATA_CBL_SATA;
5598
5599 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5600 struct ata_device *dev = &ap->device[i];
5601 dev->ap = ap;
5602 dev->devno = i;
5603 ata_dev_init(dev);
5604 }
5605
5606 #ifdef ATA_IRQ_TRAP
5607 ap->stats.unhandled_irq = 1;
5608 ap->stats.idle_irq = 1;
5609 #endif
5610
5611 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5612 }
5613
5614 /**
5615 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5616 * @ap: ATA port to initialize SCSI host for
5617 * @shost: SCSI host associated with @ap
5618 *
5619 * Initialize SCSI host @shost associated with ATA port @ap.
5620 *
5621 * LOCKING:
5622 * Inherited from caller.
5623 */
5624 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5625 {
5626 ap->scsi_host = shost;
5627
5628 shost->unique_id = ap->print_id;
5629 shost->max_id = 16;
5630 shost->max_lun = 1;
5631 shost->max_channel = 1;
5632 shost->max_cmd_len = 12;
5633 }
5634
5635 /**
5636 * ata_port_add - Attach low-level ATA driver to system
5637 * @ent: Information provided by low-level driver
5638 * @host: Collections of ports to which we add
5639 * @port_no: Port number associated with this host
5640 *
5641 * Attach low-level ATA driver to system.
5642 *
5643 * LOCKING:
5644 * PCI/etc. bus probe sem.
5645 *
5646 * RETURNS:
5647 * New ata_port on success, for NULL on error.
5648 */
5649 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5650 struct ata_host *host,
5651 unsigned int port_no)
5652 {
5653 struct Scsi_Host *shost;
5654 struct ata_port *ap;
5655
5656 DPRINTK("ENTER\n");
5657
5658 if (!ent->port_ops->error_handler &&
5659 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5660 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5661 port_no);
5662 return NULL;
5663 }
5664
5665 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5666 if (!shost)
5667 return NULL;
5668
5669 shost->transportt = &ata_scsi_transport_template;
5670
5671 ap = ata_shost_to_port(shost);
5672
5673 ata_port_init(ap, host, ent, port_no);
5674 ata_port_init_shost(ap, shost);
5675
5676 return ap;
5677 }
5678
5679 static void ata_host_release(struct device *gendev, void *res)
5680 {
5681 struct ata_host *host = dev_get_drvdata(gendev);
5682 int i;
5683
5684 for (i = 0; i < host->n_ports; i++) {
5685 struct ata_port *ap = host->ports[i];
5686
5687 if (!ap)
5688 continue;
5689
5690 if (ap->ops->port_stop)
5691 ap->ops->port_stop(ap);
5692
5693 scsi_host_put(ap->scsi_host);
5694 }
5695
5696 if (host->ops->host_stop)
5697 host->ops->host_stop(host);
5698
5699 dev_set_drvdata(gendev, NULL);
5700 }
5701
5702 /**
5703 * ata_sas_host_init - Initialize a host struct
5704 * @host: host to initialize
5705 * @dev: device host is attached to
5706 * @flags: host flags
5707 * @ops: port_ops
5708 *
5709 * LOCKING:
5710 * PCI/etc. bus probe sem.
5711 *
5712 */
5713
5714 void ata_host_init(struct ata_host *host, struct device *dev,
5715 unsigned long flags, const struct ata_port_operations *ops)
5716 {
5717 spin_lock_init(&host->lock);
5718 host->dev = dev;
5719 host->flags = flags;
5720 host->ops = ops;
5721 }
5722
5723 /**
5724 * ata_device_add - Register hardware device with ATA and SCSI layers
5725 * @ent: Probe information describing hardware device to be registered
5726 *
5727 * This function processes the information provided in the probe
5728 * information struct @ent, allocates the necessary ATA and SCSI
5729 * host information structures, initializes them, and registers
5730 * everything with requisite kernel subsystems.
5731 *
5732 * This function requests irqs, probes the ATA bus, and probes
5733 * the SCSI bus.
5734 *
5735 * LOCKING:
5736 * PCI/etc. bus probe sem.
5737 *
5738 * RETURNS:
5739 * Number of ports registered. Zero on error (no ports registered).
5740 */
5741 int ata_device_add(const struct ata_probe_ent *ent)
5742 {
5743 unsigned int i;
5744 struct device *dev = ent->dev;
5745 struct ata_host *host;
5746 int rc;
5747
5748 DPRINTK("ENTER\n");
5749
5750 if (ent->irq == 0) {
5751 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5752 return 0;
5753 }
5754
5755 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5756 return 0;
5757
5758 /* alloc a container for our list of ATA ports (buses) */
5759 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5760 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5761 if (!host)
5762 goto err_out;
5763 devres_add(dev, host);
5764 dev_set_drvdata(dev, host);
5765
5766 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5767 host->n_ports = ent->n_ports;
5768 host->irq = ent->irq;
5769 host->irq2 = ent->irq2;
5770 host->iomap = ent->iomap;
5771 host->private_data = ent->private_data;
5772
5773 /* register each port bound to this device */
5774 for (i = 0; i < host->n_ports; i++) {
5775 struct ata_port *ap;
5776 unsigned long xfer_mode_mask;
5777 int irq_line = ent->irq;
5778
5779 ap = ata_port_add(ent, host, i);
5780 host->ports[i] = ap;
5781 if (!ap)
5782 goto err_out;
5783
5784 /* dummy? */
5785 if (ent->dummy_port_mask & (1 << i)) {
5786 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5787 ap->ops = &ata_dummy_port_ops;
5788 continue;
5789 }
5790
5791 /* start port */
5792 rc = ap->ops->port_start(ap);
5793 if (rc) {
5794 host->ports[i] = NULL;
5795 scsi_host_put(ap->scsi_host);
5796 goto err_out;
5797 }
5798
5799 /* Report the secondary IRQ for second channel legacy */
5800 if (i == 1 && ent->irq2)
5801 irq_line = ent->irq2;
5802
5803 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5804 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5805 (ap->pio_mask << ATA_SHIFT_PIO);
5806
5807 /* print per-port info to dmesg */
5808 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5809 "ctl 0x%p bmdma 0x%p irq %d\n",
5810 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5811 ata_mode_string(xfer_mode_mask),
5812 ap->ioaddr.cmd_addr,
5813 ap->ioaddr.ctl_addr,
5814 ap->ioaddr.bmdma_addr,
5815 irq_line);
5816
5817 /* freeze port before requesting IRQ */
5818 ata_eh_freeze_port(ap);
5819 }
5820
5821 /* obtain irq, that may be shared between channels */
5822 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5823 ent->irq_flags, DRV_NAME, host);
5824 if (rc) {
5825 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5826 ent->irq, rc);
5827 goto err_out;
5828 }
5829
5830 /* do we have a second IRQ for the other channel, eg legacy mode */
5831 if (ent->irq2) {
5832 /* We will get weird core code crashes later if this is true
5833 so trap it now */
5834 BUG_ON(ent->irq == ent->irq2);
5835
5836 rc = devm_request_irq(dev, ent->irq2,
5837 ent->port_ops->irq_handler, ent->irq_flags,
5838 DRV_NAME, host);
5839 if (rc) {
5840 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5841 ent->irq2, rc);
5842 goto err_out;
5843 }
5844 }
5845
5846 /* resource acquisition complete */
5847 devres_remove_group(dev, ata_device_add);
5848
5849 /* perform each probe synchronously */
5850 DPRINTK("probe begin\n");
5851 for (i = 0; i < host->n_ports; i++) {
5852 struct ata_port *ap = host->ports[i];
5853 u32 scontrol;
5854 int rc;
5855
5856 /* init sata_spd_limit to the current value */
5857 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5858 int spd = (scontrol >> 4) & 0xf;
5859 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5860 }
5861 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5862
5863 rc = scsi_add_host(ap->scsi_host, dev);
5864 if (rc) {
5865 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5866 /* FIXME: do something useful here */
5867 /* FIXME: handle unconditional calls to
5868 * scsi_scan_host and ata_host_remove, below,
5869 * at the very least
5870 */
5871 }
5872
5873 if (ap->ops->error_handler) {
5874 struct ata_eh_info *ehi = &ap->eh_info;
5875 unsigned long flags;
5876
5877 ata_port_probe(ap);
5878
5879 /* kick EH for boot probing */
5880 spin_lock_irqsave(ap->lock, flags);
5881
5882 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5883 ehi->action |= ATA_EH_SOFTRESET;
5884 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5885
5886 ap->pflags |= ATA_PFLAG_LOADING;
5887 ata_port_schedule_eh(ap);
5888
5889 spin_unlock_irqrestore(ap->lock, flags);
5890
5891 /* wait for EH to finish */
5892 ata_port_wait_eh(ap);
5893 } else {
5894 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5895 rc = ata_bus_probe(ap);
5896 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5897
5898 if (rc) {
5899 /* FIXME: do something useful here?
5900 * Current libata behavior will
5901 * tear down everything when
5902 * the module is removed
5903 * or the h/w is unplugged.
5904 */
5905 }
5906 }
5907 }
5908
5909 /* probes are done, now scan each port's disk(s) */
5910 DPRINTK("host probe begin\n");
5911 for (i = 0; i < host->n_ports; i++) {
5912 struct ata_port *ap = host->ports[i];
5913
5914 ata_scsi_scan_host(ap);
5915 }
5916
5917 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5918 return ent->n_ports; /* success */
5919
5920 err_out:
5921 devres_release_group(dev, ata_device_add);
5922 VPRINTK("EXIT, returning %d\n", rc);
5923 return 0;
5924 }
5925
5926 /**
5927 * ata_port_detach - Detach ATA port in prepration of device removal
5928 * @ap: ATA port to be detached
5929 *
5930 * Detach all ATA devices and the associated SCSI devices of @ap;
5931 * then, remove the associated SCSI host. @ap is guaranteed to
5932 * be quiescent on return from this function.
5933 *
5934 * LOCKING:
5935 * Kernel thread context (may sleep).
5936 */
5937 void ata_port_detach(struct ata_port *ap)
5938 {
5939 unsigned long flags;
5940 int i;
5941
5942 if (!ap->ops->error_handler)
5943 goto skip_eh;
5944
5945 /* tell EH we're leaving & flush EH */
5946 spin_lock_irqsave(ap->lock, flags);
5947 ap->pflags |= ATA_PFLAG_UNLOADING;
5948 spin_unlock_irqrestore(ap->lock, flags);
5949
5950 ata_port_wait_eh(ap);
5951
5952 /* EH is now guaranteed to see UNLOADING, so no new device
5953 * will be attached. Disable all existing devices.
5954 */
5955 spin_lock_irqsave(ap->lock, flags);
5956
5957 for (i = 0; i < ATA_MAX_DEVICES; i++)
5958 ata_dev_disable(&ap->device[i]);
5959
5960 spin_unlock_irqrestore(ap->lock, flags);
5961
5962 /* Final freeze & EH. All in-flight commands are aborted. EH
5963 * will be skipped and retrials will be terminated with bad
5964 * target.
5965 */
5966 spin_lock_irqsave(ap->lock, flags);
5967 ata_port_freeze(ap); /* won't be thawed */
5968 spin_unlock_irqrestore(ap->lock, flags);
5969
5970 ata_port_wait_eh(ap);
5971
5972 /* Flush hotplug task. The sequence is similar to
5973 * ata_port_flush_task().
5974 */
5975 flush_workqueue(ata_aux_wq);
5976 cancel_delayed_work(&ap->hotplug_task);
5977 flush_workqueue(ata_aux_wq);
5978
5979 skip_eh:
5980 /* remove the associated SCSI host */
5981 scsi_remove_host(ap->scsi_host);
5982 }
5983
5984 /**
5985 * ata_host_detach - Detach all ports of an ATA host
5986 * @host: Host to detach
5987 *
5988 * Detach all ports of @host.
5989 *
5990 * LOCKING:
5991 * Kernel thread context (may sleep).
5992 */
5993 void ata_host_detach(struct ata_host *host)
5994 {
5995 int i;
5996
5997 for (i = 0; i < host->n_ports; i++)
5998 ata_port_detach(host->ports[i]);
5999 }
6000
6001 struct ata_probe_ent *
6002 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6003 {
6004 struct ata_probe_ent *probe_ent;
6005
6006 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
6007 if (!probe_ent) {
6008 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6009 kobject_name(&(dev->kobj)));
6010 return NULL;
6011 }
6012
6013 INIT_LIST_HEAD(&probe_ent->node);
6014 probe_ent->dev = dev;
6015
6016 probe_ent->sht = port->sht;
6017 probe_ent->port_flags = port->flags;
6018 probe_ent->pio_mask = port->pio_mask;
6019 probe_ent->mwdma_mask = port->mwdma_mask;
6020 probe_ent->udma_mask = port->udma_mask;
6021 probe_ent->port_ops = port->port_ops;
6022 probe_ent->private_data = port->private_data;
6023
6024 return probe_ent;
6025 }
6026
6027 /**
6028 * ata_std_ports - initialize ioaddr with standard port offsets.
6029 * @ioaddr: IO address structure to be initialized
6030 *
6031 * Utility function which initializes data_addr, error_addr,
6032 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6033 * device_addr, status_addr, and command_addr to standard offsets
6034 * relative to cmd_addr.
6035 *
6036 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6037 */
6038
6039 void ata_std_ports(struct ata_ioports *ioaddr)
6040 {
6041 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6042 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6043 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6044 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6045 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6046 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6047 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6048 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6049 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6050 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6051 }
6052
6053
6054 #ifdef CONFIG_PCI
6055
6056 /**
6057 * ata_pci_remove_one - PCI layer callback for device removal
6058 * @pdev: PCI device that was removed
6059 *
6060 * PCI layer indicates to libata via this hook that hot-unplug or
6061 * module unload event has occurred. Detach all ports. Resource
6062 * release is handled via devres.
6063 *
6064 * LOCKING:
6065 * Inherited from PCI layer (may sleep).
6066 */
6067 void ata_pci_remove_one(struct pci_dev *pdev)
6068 {
6069 struct device *dev = pci_dev_to_dev(pdev);
6070 struct ata_host *host = dev_get_drvdata(dev);
6071
6072 ata_host_detach(host);
6073 }
6074
6075 /* move to PCI subsystem */
6076 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6077 {
6078 unsigned long tmp = 0;
6079
6080 switch (bits->width) {
6081 case 1: {
6082 u8 tmp8 = 0;
6083 pci_read_config_byte(pdev, bits->reg, &tmp8);
6084 tmp = tmp8;
6085 break;
6086 }
6087 case 2: {
6088 u16 tmp16 = 0;
6089 pci_read_config_word(pdev, bits->reg, &tmp16);
6090 tmp = tmp16;
6091 break;
6092 }
6093 case 4: {
6094 u32 tmp32 = 0;
6095 pci_read_config_dword(pdev, bits->reg, &tmp32);
6096 tmp = tmp32;
6097 break;
6098 }
6099
6100 default:
6101 return -EINVAL;
6102 }
6103
6104 tmp &= bits->mask;
6105
6106 return (tmp == bits->val) ? 1 : 0;
6107 }
6108
6109 #ifdef CONFIG_PM
6110 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6111 {
6112 pci_save_state(pdev);
6113 pci_disable_device(pdev);
6114
6115 if (mesg.event == PM_EVENT_SUSPEND)
6116 pci_set_power_state(pdev, PCI_D3hot);
6117 }
6118
6119 int ata_pci_device_do_resume(struct pci_dev *pdev)
6120 {
6121 int rc;
6122
6123 pci_set_power_state(pdev, PCI_D0);
6124 pci_restore_state(pdev);
6125
6126 rc = pcim_enable_device(pdev);
6127 if (rc) {
6128 dev_printk(KERN_ERR, &pdev->dev,
6129 "failed to enable device after resume (%d)\n", rc);
6130 return rc;
6131 }
6132
6133 pci_set_master(pdev);
6134 return 0;
6135 }
6136
6137 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6138 {
6139 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6140 int rc = 0;
6141
6142 rc = ata_host_suspend(host, mesg);
6143 if (rc)
6144 return rc;
6145
6146 ata_pci_device_do_suspend(pdev, mesg);
6147
6148 return 0;
6149 }
6150
6151 int ata_pci_device_resume(struct pci_dev *pdev)
6152 {
6153 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6154 int rc;
6155
6156 rc = ata_pci_device_do_resume(pdev);
6157 if (rc == 0)
6158 ata_host_resume(host);
6159 return rc;
6160 }
6161 #endif /* CONFIG_PM */
6162
6163 #endif /* CONFIG_PCI */
6164
6165
6166 static int __init ata_init(void)
6167 {
6168 ata_probe_timeout *= HZ;
6169 ata_wq = create_workqueue("ata");
6170 if (!ata_wq)
6171 return -ENOMEM;
6172
6173 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6174 if (!ata_aux_wq) {
6175 destroy_workqueue(ata_wq);
6176 return -ENOMEM;
6177 }
6178
6179 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6180 return 0;
6181 }
6182
6183 static void __exit ata_exit(void)
6184 {
6185 destroy_workqueue(ata_wq);
6186 destroy_workqueue(ata_aux_wq);
6187 }
6188
6189 subsys_initcall(ata_init);
6190 module_exit(ata_exit);
6191
6192 static unsigned long ratelimit_time;
6193 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6194
6195 int ata_ratelimit(void)
6196 {
6197 int rc;
6198 unsigned long flags;
6199
6200 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6201
6202 if (time_after(jiffies, ratelimit_time)) {
6203 rc = 1;
6204 ratelimit_time = jiffies + (HZ/5);
6205 } else
6206 rc = 0;
6207
6208 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6209
6210 return rc;
6211 }
6212
6213 /**
6214 * ata_wait_register - wait until register value changes
6215 * @reg: IO-mapped register
6216 * @mask: Mask to apply to read register value
6217 * @val: Wait condition
6218 * @interval_msec: polling interval in milliseconds
6219 * @timeout_msec: timeout in milliseconds
6220 *
6221 * Waiting for some bits of register to change is a common
6222 * operation for ATA controllers. This function reads 32bit LE
6223 * IO-mapped register @reg and tests for the following condition.
6224 *
6225 * (*@reg & mask) != val
6226 *
6227 * If the condition is met, it returns; otherwise, the process is
6228 * repeated after @interval_msec until timeout.
6229 *
6230 * LOCKING:
6231 * Kernel thread context (may sleep)
6232 *
6233 * RETURNS:
6234 * The final register value.
6235 */
6236 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6237 unsigned long interval_msec,
6238 unsigned long timeout_msec)
6239 {
6240 unsigned long timeout;
6241 u32 tmp;
6242
6243 tmp = ioread32(reg);
6244
6245 /* Calculate timeout _after_ the first read to make sure
6246 * preceding writes reach the controller before starting to
6247 * eat away the timeout.
6248 */
6249 timeout = jiffies + (timeout_msec * HZ) / 1000;
6250
6251 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6252 msleep(interval_msec);
6253 tmp = ioread32(reg);
6254 }
6255
6256 return tmp;
6257 }
6258
6259 /*
6260 * Dummy port_ops
6261 */
6262 static void ata_dummy_noret(struct ata_port *ap) { }
6263 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6264 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6265
6266 static u8 ata_dummy_check_status(struct ata_port *ap)
6267 {
6268 return ATA_DRDY;
6269 }
6270
6271 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6272 {
6273 return AC_ERR_SYSTEM;
6274 }
6275
6276 const struct ata_port_operations ata_dummy_port_ops = {
6277 .port_disable = ata_port_disable,
6278 .check_status = ata_dummy_check_status,
6279 .check_altstatus = ata_dummy_check_status,
6280 .dev_select = ata_noop_dev_select,
6281 .qc_prep = ata_noop_qc_prep,
6282 .qc_issue = ata_dummy_qc_issue,
6283 .freeze = ata_dummy_noret,
6284 .thaw = ata_dummy_noret,
6285 .error_handler = ata_dummy_noret,
6286 .post_internal_cmd = ata_dummy_qc_noret,
6287 .irq_clear = ata_dummy_noret,
6288 .port_start = ata_dummy_ret0,
6289 .port_stop = ata_dummy_noret,
6290 };
6291
6292 /*
6293 * libata is essentially a library of internal helper functions for
6294 * low-level ATA host controller drivers. As such, the API/ABI is
6295 * likely to change as new drivers are added and updated.
6296 * Do not depend on ABI/API stability.
6297 */
6298
6299 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6300 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6301 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6302 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6303 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6304 EXPORT_SYMBOL_GPL(ata_std_ports);
6305 EXPORT_SYMBOL_GPL(ata_host_init);
6306 EXPORT_SYMBOL_GPL(ata_device_add);
6307 EXPORT_SYMBOL_GPL(ata_host_detach);
6308 EXPORT_SYMBOL_GPL(ata_sg_init);
6309 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6310 EXPORT_SYMBOL_GPL(ata_hsm_move);
6311 EXPORT_SYMBOL_GPL(ata_qc_complete);
6312 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6313 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6314 EXPORT_SYMBOL_GPL(ata_tf_load);
6315 EXPORT_SYMBOL_GPL(ata_tf_read);
6316 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6317 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6318 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6319 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6320 EXPORT_SYMBOL_GPL(ata_check_status);
6321 EXPORT_SYMBOL_GPL(ata_altstatus);
6322 EXPORT_SYMBOL_GPL(ata_exec_command);
6323 EXPORT_SYMBOL_GPL(ata_port_start);
6324 EXPORT_SYMBOL_GPL(ata_interrupt);
6325 EXPORT_SYMBOL_GPL(ata_data_xfer);
6326 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6327 EXPORT_SYMBOL_GPL(ata_qc_prep);
6328 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6329 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6330 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6331 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6332 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6333 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6334 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6335 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6336 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6337 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6338 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6339 EXPORT_SYMBOL_GPL(ata_port_probe);
6340 EXPORT_SYMBOL_GPL(ata_dev_disable);
6341 EXPORT_SYMBOL_GPL(sata_set_spd);
6342 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6343 EXPORT_SYMBOL_GPL(sata_phy_resume);
6344 EXPORT_SYMBOL_GPL(sata_phy_reset);
6345 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6346 EXPORT_SYMBOL_GPL(ata_bus_reset);
6347 EXPORT_SYMBOL_GPL(ata_std_prereset);
6348 EXPORT_SYMBOL_GPL(ata_std_softreset);
6349 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6350 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6351 EXPORT_SYMBOL_GPL(ata_std_postreset);
6352 EXPORT_SYMBOL_GPL(ata_dev_classify);
6353 EXPORT_SYMBOL_GPL(ata_dev_pair);
6354 EXPORT_SYMBOL_GPL(ata_port_disable);
6355 EXPORT_SYMBOL_GPL(ata_ratelimit);
6356 EXPORT_SYMBOL_GPL(ata_wait_register);
6357 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6358 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6359 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6360 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6361 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6362 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6363 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6364 EXPORT_SYMBOL_GPL(ata_host_intr);
6365 EXPORT_SYMBOL_GPL(sata_scr_valid);
6366 EXPORT_SYMBOL_GPL(sata_scr_read);
6367 EXPORT_SYMBOL_GPL(sata_scr_write);
6368 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6369 EXPORT_SYMBOL_GPL(ata_port_online);
6370 EXPORT_SYMBOL_GPL(ata_port_offline);
6371 #ifdef CONFIG_PM
6372 EXPORT_SYMBOL_GPL(ata_host_suspend);
6373 EXPORT_SYMBOL_GPL(ata_host_resume);
6374 #endif /* CONFIG_PM */
6375 EXPORT_SYMBOL_GPL(ata_id_string);
6376 EXPORT_SYMBOL_GPL(ata_id_c_string);
6377 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6378 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6379 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6380
6381 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6382 EXPORT_SYMBOL_GPL(ata_timing_compute);
6383 EXPORT_SYMBOL_GPL(ata_timing_merge);
6384
6385 #ifdef CONFIG_PCI
6386 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6387 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6388 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6389 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6390 #ifdef CONFIG_PM
6391 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6392 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6393 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6394 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6395 #endif /* CONFIG_PM */
6396 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6397 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6398 #endif /* CONFIG_PCI */
6399
6400 #ifdef CONFIG_PM
6401 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6402 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6403 #endif /* CONFIG_PM */
6404
6405 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6406 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6407 EXPORT_SYMBOL_GPL(ata_port_abort);
6408 EXPORT_SYMBOL_GPL(ata_port_freeze);
6409 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6410 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6411 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6412 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6413 EXPORT_SYMBOL_GPL(ata_do_eh);
6414 EXPORT_SYMBOL_GPL(ata_irq_on);
6415 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6416 EXPORT_SYMBOL_GPL(ata_irq_ack);
6417 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6418 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
This page took 0.263912 seconds and 6 git commands to generate.