Merge branches 'release', 'ejd', 'sony' and 'wmi' into release
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
60 #include <linux/io.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68
69 #include "libata.h"
70
71
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
76
77 static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
80 static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
82 static void ata_dev_xfermask(struct ata_device *dev);
83 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
84
85 unsigned int ata_print_id = 1;
86 static struct workqueue_struct *ata_wq;
87
88 struct workqueue_struct *ata_aux_wq;
89
90 struct ata_force_param {
91 const char *name;
92 unsigned int cbl;
93 int spd_limit;
94 unsigned long xfer_mask;
95 unsigned int horkage_on;
96 unsigned int horkage_off;
97 };
98
99 struct ata_force_ent {
100 int port;
101 int device;
102 struct ata_force_param param;
103 };
104
105 static struct ata_force_ent *ata_force_tbl;
106 static int ata_force_tbl_size;
107
108 static char ata_force_param_buf[PAGE_SIZE] __initdata;
109 /* param_buf is thrown away after initialization, disallow read */
110 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
111 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
112
113 int atapi_enabled = 1;
114 module_param(atapi_enabled, int, 0444);
115 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
116
117 static int atapi_dmadir = 0;
118 module_param(atapi_dmadir, int, 0444);
119 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
120
121 int atapi_passthru16 = 1;
122 module_param(atapi_passthru16, int, 0444);
123 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
124
125 int libata_fua = 0;
126 module_param_named(fua, libata_fua, int, 0444);
127 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
128
129 static int ata_ignore_hpa;
130 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
131 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
132
133 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
134 module_param_named(dma, libata_dma_mask, int, 0444);
135 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
136
137 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
138 module_param(ata_probe_timeout, int, 0444);
139 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
140
141 int libata_noacpi = 0;
142 module_param_named(noacpi, libata_noacpi, int, 0444);
143 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
144
145 int libata_allow_tpm = 0;
146 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
147 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
148
149 MODULE_AUTHOR("Jeff Garzik");
150 MODULE_DESCRIPTION("Library module for ATA devices");
151 MODULE_LICENSE("GPL");
152 MODULE_VERSION(DRV_VERSION);
153
154
155 /**
156 * ata_force_cbl - force cable type according to libata.force
157 * @ap: ATA port of interest
158 *
159 * Force cable type according to libata.force and whine about it.
160 * The last entry which has matching port number is used, so it
161 * can be specified as part of device force parameters. For
162 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
163 * same effect.
164 *
165 * LOCKING:
166 * EH context.
167 */
168 void ata_force_cbl(struct ata_port *ap)
169 {
170 int i;
171
172 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
173 const struct ata_force_ent *fe = &ata_force_tbl[i];
174
175 if (fe->port != -1 && fe->port != ap->print_id)
176 continue;
177
178 if (fe->param.cbl == ATA_CBL_NONE)
179 continue;
180
181 ap->cbl = fe->param.cbl;
182 ata_port_printk(ap, KERN_NOTICE,
183 "FORCE: cable set to %s\n", fe->param.name);
184 return;
185 }
186 }
187
188 /**
189 * ata_force_spd_limit - force SATA spd limit according to libata.force
190 * @link: ATA link of interest
191 *
192 * Force SATA spd limit according to libata.force and whine about
193 * it. When only the port part is specified (e.g. 1:), the limit
194 * applies to all links connected to both the host link and all
195 * fan-out ports connected via PMP. If the device part is
196 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
197 * link not the host link. Device number 15 always points to the
198 * host link whether PMP is attached or not.
199 *
200 * LOCKING:
201 * EH context.
202 */
203 static void ata_force_spd_limit(struct ata_link *link)
204 {
205 int linkno, i;
206
207 if (ata_is_host_link(link))
208 linkno = 15;
209 else
210 linkno = link->pmp;
211
212 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
213 const struct ata_force_ent *fe = &ata_force_tbl[i];
214
215 if (fe->port != -1 && fe->port != link->ap->print_id)
216 continue;
217
218 if (fe->device != -1 && fe->device != linkno)
219 continue;
220
221 if (!fe->param.spd_limit)
222 continue;
223
224 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
225 ata_link_printk(link, KERN_NOTICE,
226 "FORCE: PHY spd limit set to %s\n", fe->param.name);
227 return;
228 }
229 }
230
231 /**
232 * ata_force_xfermask - force xfermask according to libata.force
233 * @dev: ATA device of interest
234 *
235 * Force xfer_mask according to libata.force and whine about it.
236 * For consistency with link selection, device number 15 selects
237 * the first device connected to the host link.
238 *
239 * LOCKING:
240 * EH context.
241 */
242 static void ata_force_xfermask(struct ata_device *dev)
243 {
244 int devno = dev->link->pmp + dev->devno;
245 int alt_devno = devno;
246 int i;
247
248 /* allow n.15 for the first device attached to host port */
249 if (ata_is_host_link(dev->link) && devno == 0)
250 alt_devno = 15;
251
252 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
253 const struct ata_force_ent *fe = &ata_force_tbl[i];
254 unsigned long pio_mask, mwdma_mask, udma_mask;
255
256 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
257 continue;
258
259 if (fe->device != -1 && fe->device != devno &&
260 fe->device != alt_devno)
261 continue;
262
263 if (!fe->param.xfer_mask)
264 continue;
265
266 ata_unpack_xfermask(fe->param.xfer_mask,
267 &pio_mask, &mwdma_mask, &udma_mask);
268 if (udma_mask)
269 dev->udma_mask = udma_mask;
270 else if (mwdma_mask) {
271 dev->udma_mask = 0;
272 dev->mwdma_mask = mwdma_mask;
273 } else {
274 dev->udma_mask = 0;
275 dev->mwdma_mask = 0;
276 dev->pio_mask = pio_mask;
277 }
278
279 ata_dev_printk(dev, KERN_NOTICE,
280 "FORCE: xfer_mask set to %s\n", fe->param.name);
281 return;
282 }
283 }
284
285 /**
286 * ata_force_horkage - force horkage according to libata.force
287 * @dev: ATA device of interest
288 *
289 * Force horkage according to libata.force and whine about it.
290 * For consistency with link selection, device number 15 selects
291 * the first device connected to the host link.
292 *
293 * LOCKING:
294 * EH context.
295 */
296 static void ata_force_horkage(struct ata_device *dev)
297 {
298 int devno = dev->link->pmp + dev->devno;
299 int alt_devno = devno;
300 int i;
301
302 /* allow n.15 for the first device attached to host port */
303 if (ata_is_host_link(dev->link) && devno == 0)
304 alt_devno = 15;
305
306 for (i = 0; i < ata_force_tbl_size; i++) {
307 const struct ata_force_ent *fe = &ata_force_tbl[i];
308
309 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
310 continue;
311
312 if (fe->device != -1 && fe->device != devno &&
313 fe->device != alt_devno)
314 continue;
315
316 if (!(~dev->horkage & fe->param.horkage_on) &&
317 !(dev->horkage & fe->param.horkage_off))
318 continue;
319
320 dev->horkage |= fe->param.horkage_on;
321 dev->horkage &= ~fe->param.horkage_off;
322
323 ata_dev_printk(dev, KERN_NOTICE,
324 "FORCE: horkage modified (%s)\n", fe->param.name);
325 }
326 }
327
328 /**
329 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
330 * @tf: Taskfile to convert
331 * @pmp: Port multiplier port
332 * @is_cmd: This FIS is for command
333 * @fis: Buffer into which data will output
334 *
335 * Converts a standard ATA taskfile to a Serial ATA
336 * FIS structure (Register - Host to Device).
337 *
338 * LOCKING:
339 * Inherited from caller.
340 */
341 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
342 {
343 fis[0] = 0x27; /* Register - Host to Device FIS */
344 fis[1] = pmp & 0xf; /* Port multiplier number*/
345 if (is_cmd)
346 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
347
348 fis[2] = tf->command;
349 fis[3] = tf->feature;
350
351 fis[4] = tf->lbal;
352 fis[5] = tf->lbam;
353 fis[6] = tf->lbah;
354 fis[7] = tf->device;
355
356 fis[8] = tf->hob_lbal;
357 fis[9] = tf->hob_lbam;
358 fis[10] = tf->hob_lbah;
359 fis[11] = tf->hob_feature;
360
361 fis[12] = tf->nsect;
362 fis[13] = tf->hob_nsect;
363 fis[14] = 0;
364 fis[15] = tf->ctl;
365
366 fis[16] = 0;
367 fis[17] = 0;
368 fis[18] = 0;
369 fis[19] = 0;
370 }
371
372 /**
373 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
374 * @fis: Buffer from which data will be input
375 * @tf: Taskfile to output
376 *
377 * Converts a serial ATA FIS structure to a standard ATA taskfile.
378 *
379 * LOCKING:
380 * Inherited from caller.
381 */
382
383 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
384 {
385 tf->command = fis[2]; /* status */
386 tf->feature = fis[3]; /* error */
387
388 tf->lbal = fis[4];
389 tf->lbam = fis[5];
390 tf->lbah = fis[6];
391 tf->device = fis[7];
392
393 tf->hob_lbal = fis[8];
394 tf->hob_lbam = fis[9];
395 tf->hob_lbah = fis[10];
396
397 tf->nsect = fis[12];
398 tf->hob_nsect = fis[13];
399 }
400
401 static const u8 ata_rw_cmds[] = {
402 /* pio multi */
403 ATA_CMD_READ_MULTI,
404 ATA_CMD_WRITE_MULTI,
405 ATA_CMD_READ_MULTI_EXT,
406 ATA_CMD_WRITE_MULTI_EXT,
407 0,
408 0,
409 0,
410 ATA_CMD_WRITE_MULTI_FUA_EXT,
411 /* pio */
412 ATA_CMD_PIO_READ,
413 ATA_CMD_PIO_WRITE,
414 ATA_CMD_PIO_READ_EXT,
415 ATA_CMD_PIO_WRITE_EXT,
416 0,
417 0,
418 0,
419 0,
420 /* dma */
421 ATA_CMD_READ,
422 ATA_CMD_WRITE,
423 ATA_CMD_READ_EXT,
424 ATA_CMD_WRITE_EXT,
425 0,
426 0,
427 0,
428 ATA_CMD_WRITE_FUA_EXT
429 };
430
431 /**
432 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
433 * @tf: command to examine and configure
434 * @dev: device tf belongs to
435 *
436 * Examine the device configuration and tf->flags to calculate
437 * the proper read/write commands and protocol to use.
438 *
439 * LOCKING:
440 * caller.
441 */
442 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
443 {
444 u8 cmd;
445
446 int index, fua, lba48, write;
447
448 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
449 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
450 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
451
452 if (dev->flags & ATA_DFLAG_PIO) {
453 tf->protocol = ATA_PROT_PIO;
454 index = dev->multi_count ? 0 : 8;
455 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
456 /* Unable to use DMA due to host limitation */
457 tf->protocol = ATA_PROT_PIO;
458 index = dev->multi_count ? 0 : 8;
459 } else {
460 tf->protocol = ATA_PROT_DMA;
461 index = 16;
462 }
463
464 cmd = ata_rw_cmds[index + fua + lba48 + write];
465 if (cmd) {
466 tf->command = cmd;
467 return 0;
468 }
469 return -1;
470 }
471
472 /**
473 * ata_tf_read_block - Read block address from ATA taskfile
474 * @tf: ATA taskfile of interest
475 * @dev: ATA device @tf belongs to
476 *
477 * LOCKING:
478 * None.
479 *
480 * Read block address from @tf. This function can handle all
481 * three address formats - LBA, LBA48 and CHS. tf->protocol and
482 * flags select the address format to use.
483 *
484 * RETURNS:
485 * Block address read from @tf.
486 */
487 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
488 {
489 u64 block = 0;
490
491 if (tf->flags & ATA_TFLAG_LBA) {
492 if (tf->flags & ATA_TFLAG_LBA48) {
493 block |= (u64)tf->hob_lbah << 40;
494 block |= (u64)tf->hob_lbam << 32;
495 block |= tf->hob_lbal << 24;
496 } else
497 block |= (tf->device & 0xf) << 24;
498
499 block |= tf->lbah << 16;
500 block |= tf->lbam << 8;
501 block |= tf->lbal;
502 } else {
503 u32 cyl, head, sect;
504
505 cyl = tf->lbam | (tf->lbah << 8);
506 head = tf->device & 0xf;
507 sect = tf->lbal;
508
509 block = (cyl * dev->heads + head) * dev->sectors + sect;
510 }
511
512 return block;
513 }
514
515 /**
516 * ata_build_rw_tf - Build ATA taskfile for given read/write request
517 * @tf: Target ATA taskfile
518 * @dev: ATA device @tf belongs to
519 * @block: Block address
520 * @n_block: Number of blocks
521 * @tf_flags: RW/FUA etc...
522 * @tag: tag
523 *
524 * LOCKING:
525 * None.
526 *
527 * Build ATA taskfile @tf for read/write request described by
528 * @block, @n_block, @tf_flags and @tag on @dev.
529 *
530 * RETURNS:
531 *
532 * 0 on success, -ERANGE if the request is too large for @dev,
533 * -EINVAL if the request is invalid.
534 */
535 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
536 u64 block, u32 n_block, unsigned int tf_flags,
537 unsigned int tag)
538 {
539 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
540 tf->flags |= tf_flags;
541
542 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
543 /* yay, NCQ */
544 if (!lba_48_ok(block, n_block))
545 return -ERANGE;
546
547 tf->protocol = ATA_PROT_NCQ;
548 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
549
550 if (tf->flags & ATA_TFLAG_WRITE)
551 tf->command = ATA_CMD_FPDMA_WRITE;
552 else
553 tf->command = ATA_CMD_FPDMA_READ;
554
555 tf->nsect = tag << 3;
556 tf->hob_feature = (n_block >> 8) & 0xff;
557 tf->feature = n_block & 0xff;
558
559 tf->hob_lbah = (block >> 40) & 0xff;
560 tf->hob_lbam = (block >> 32) & 0xff;
561 tf->hob_lbal = (block >> 24) & 0xff;
562 tf->lbah = (block >> 16) & 0xff;
563 tf->lbam = (block >> 8) & 0xff;
564 tf->lbal = block & 0xff;
565
566 tf->device = 1 << 6;
567 if (tf->flags & ATA_TFLAG_FUA)
568 tf->device |= 1 << 7;
569 } else if (dev->flags & ATA_DFLAG_LBA) {
570 tf->flags |= ATA_TFLAG_LBA;
571
572 if (lba_28_ok(block, n_block)) {
573 /* use LBA28 */
574 tf->device |= (block >> 24) & 0xf;
575 } else if (lba_48_ok(block, n_block)) {
576 if (!(dev->flags & ATA_DFLAG_LBA48))
577 return -ERANGE;
578
579 /* use LBA48 */
580 tf->flags |= ATA_TFLAG_LBA48;
581
582 tf->hob_nsect = (n_block >> 8) & 0xff;
583
584 tf->hob_lbah = (block >> 40) & 0xff;
585 tf->hob_lbam = (block >> 32) & 0xff;
586 tf->hob_lbal = (block >> 24) & 0xff;
587 } else
588 /* request too large even for LBA48 */
589 return -ERANGE;
590
591 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
592 return -EINVAL;
593
594 tf->nsect = n_block & 0xff;
595
596 tf->lbah = (block >> 16) & 0xff;
597 tf->lbam = (block >> 8) & 0xff;
598 tf->lbal = block & 0xff;
599
600 tf->device |= ATA_LBA;
601 } else {
602 /* CHS */
603 u32 sect, head, cyl, track;
604
605 /* The request -may- be too large for CHS addressing. */
606 if (!lba_28_ok(block, n_block))
607 return -ERANGE;
608
609 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
610 return -EINVAL;
611
612 /* Convert LBA to CHS */
613 track = (u32)block / dev->sectors;
614 cyl = track / dev->heads;
615 head = track % dev->heads;
616 sect = (u32)block % dev->sectors + 1;
617
618 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
619 (u32)block, track, cyl, head, sect);
620
621 /* Check whether the converted CHS can fit.
622 Cylinder: 0-65535
623 Head: 0-15
624 Sector: 1-255*/
625 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
626 return -ERANGE;
627
628 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
629 tf->lbal = sect;
630 tf->lbam = cyl;
631 tf->lbah = cyl >> 8;
632 tf->device |= head;
633 }
634
635 return 0;
636 }
637
638 /**
639 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
640 * @pio_mask: pio_mask
641 * @mwdma_mask: mwdma_mask
642 * @udma_mask: udma_mask
643 *
644 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
645 * unsigned int xfer_mask.
646 *
647 * LOCKING:
648 * None.
649 *
650 * RETURNS:
651 * Packed xfer_mask.
652 */
653 unsigned long ata_pack_xfermask(unsigned long pio_mask,
654 unsigned long mwdma_mask,
655 unsigned long udma_mask)
656 {
657 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
658 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
659 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
660 }
661
662 /**
663 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
664 * @xfer_mask: xfer_mask to unpack
665 * @pio_mask: resulting pio_mask
666 * @mwdma_mask: resulting mwdma_mask
667 * @udma_mask: resulting udma_mask
668 *
669 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
670 * Any NULL distination masks will be ignored.
671 */
672 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
673 unsigned long *mwdma_mask, unsigned long *udma_mask)
674 {
675 if (pio_mask)
676 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
677 if (mwdma_mask)
678 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
679 if (udma_mask)
680 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
681 }
682
683 static const struct ata_xfer_ent {
684 int shift, bits;
685 u8 base;
686 } ata_xfer_tbl[] = {
687 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
688 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
689 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
690 { -1, },
691 };
692
693 /**
694 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
695 * @xfer_mask: xfer_mask of interest
696 *
697 * Return matching XFER_* value for @xfer_mask. Only the highest
698 * bit of @xfer_mask is considered.
699 *
700 * LOCKING:
701 * None.
702 *
703 * RETURNS:
704 * Matching XFER_* value, 0xff if no match found.
705 */
706 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
707 {
708 int highbit = fls(xfer_mask) - 1;
709 const struct ata_xfer_ent *ent;
710
711 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
712 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
713 return ent->base + highbit - ent->shift;
714 return 0xff;
715 }
716
717 /**
718 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
719 * @xfer_mode: XFER_* of interest
720 *
721 * Return matching xfer_mask for @xfer_mode.
722 *
723 * LOCKING:
724 * None.
725 *
726 * RETURNS:
727 * Matching xfer_mask, 0 if no match found.
728 */
729 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
730 {
731 const struct ata_xfer_ent *ent;
732
733 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
734 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
735 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
736 & ~((1 << ent->shift) - 1);
737 return 0;
738 }
739
740 /**
741 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
742 * @xfer_mode: XFER_* of interest
743 *
744 * Return matching xfer_shift for @xfer_mode.
745 *
746 * LOCKING:
747 * None.
748 *
749 * RETURNS:
750 * Matching xfer_shift, -1 if no match found.
751 */
752 int ata_xfer_mode2shift(unsigned long xfer_mode)
753 {
754 const struct ata_xfer_ent *ent;
755
756 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
757 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
758 return ent->shift;
759 return -1;
760 }
761
762 /**
763 * ata_mode_string - convert xfer_mask to string
764 * @xfer_mask: mask of bits supported; only highest bit counts.
765 *
766 * Determine string which represents the highest speed
767 * (highest bit in @modemask).
768 *
769 * LOCKING:
770 * None.
771 *
772 * RETURNS:
773 * Constant C string representing highest speed listed in
774 * @mode_mask, or the constant C string "<n/a>".
775 */
776 const char *ata_mode_string(unsigned long xfer_mask)
777 {
778 static const char * const xfer_mode_str[] = {
779 "PIO0",
780 "PIO1",
781 "PIO2",
782 "PIO3",
783 "PIO4",
784 "PIO5",
785 "PIO6",
786 "MWDMA0",
787 "MWDMA1",
788 "MWDMA2",
789 "MWDMA3",
790 "MWDMA4",
791 "UDMA/16",
792 "UDMA/25",
793 "UDMA/33",
794 "UDMA/44",
795 "UDMA/66",
796 "UDMA/100",
797 "UDMA/133",
798 "UDMA7",
799 };
800 int highbit;
801
802 highbit = fls(xfer_mask) - 1;
803 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
804 return xfer_mode_str[highbit];
805 return "<n/a>";
806 }
807
808 static const char *sata_spd_string(unsigned int spd)
809 {
810 static const char * const spd_str[] = {
811 "1.5 Gbps",
812 "3.0 Gbps",
813 };
814
815 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
816 return "<unknown>";
817 return spd_str[spd - 1];
818 }
819
820 void ata_dev_disable(struct ata_device *dev)
821 {
822 if (ata_dev_enabled(dev)) {
823 if (ata_msg_drv(dev->link->ap))
824 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
825 ata_acpi_on_disable(dev);
826 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
827 ATA_DNXFER_QUIET);
828 dev->class++;
829 }
830 }
831
832 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
833 {
834 struct ata_link *link = dev->link;
835 struct ata_port *ap = link->ap;
836 u32 scontrol;
837 unsigned int err_mask;
838 int rc;
839
840 /*
841 * disallow DIPM for drivers which haven't set
842 * ATA_FLAG_IPM. This is because when DIPM is enabled,
843 * phy ready will be set in the interrupt status on
844 * state changes, which will cause some drivers to
845 * think there are errors - additionally drivers will
846 * need to disable hot plug.
847 */
848 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
849 ap->pm_policy = NOT_AVAILABLE;
850 return -EINVAL;
851 }
852
853 /*
854 * For DIPM, we will only enable it for the
855 * min_power setting.
856 *
857 * Why? Because Disks are too stupid to know that
858 * If the host rejects a request to go to SLUMBER
859 * they should retry at PARTIAL, and instead it
860 * just would give up. So, for medium_power to
861 * work at all, we need to only allow HIPM.
862 */
863 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
864 if (rc)
865 return rc;
866
867 switch (policy) {
868 case MIN_POWER:
869 /* no restrictions on IPM transitions */
870 scontrol &= ~(0x3 << 8);
871 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
872 if (rc)
873 return rc;
874
875 /* enable DIPM */
876 if (dev->flags & ATA_DFLAG_DIPM)
877 err_mask = ata_dev_set_feature(dev,
878 SETFEATURES_SATA_ENABLE, SATA_DIPM);
879 break;
880 case MEDIUM_POWER:
881 /* allow IPM to PARTIAL */
882 scontrol &= ~(0x1 << 8);
883 scontrol |= (0x2 << 8);
884 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
885 if (rc)
886 return rc;
887
888 /*
889 * we don't have to disable DIPM since IPM flags
890 * disallow transitions to SLUMBER, which effectively
891 * disable DIPM if it does not support PARTIAL
892 */
893 break;
894 case NOT_AVAILABLE:
895 case MAX_PERFORMANCE:
896 /* disable all IPM transitions */
897 scontrol |= (0x3 << 8);
898 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
899 if (rc)
900 return rc;
901
902 /*
903 * we don't have to disable DIPM since IPM flags
904 * disallow all transitions which effectively
905 * disable DIPM anyway.
906 */
907 break;
908 }
909
910 /* FIXME: handle SET FEATURES failure */
911 (void) err_mask;
912
913 return 0;
914 }
915
916 /**
917 * ata_dev_enable_pm - enable SATA interface power management
918 * @dev: device to enable power management
919 * @policy: the link power management policy
920 *
921 * Enable SATA Interface power management. This will enable
922 * Device Interface Power Management (DIPM) for min_power
923 * policy, and then call driver specific callbacks for
924 * enabling Host Initiated Power management.
925 *
926 * Locking: Caller.
927 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
928 */
929 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
930 {
931 int rc = 0;
932 struct ata_port *ap = dev->link->ap;
933
934 /* set HIPM first, then DIPM */
935 if (ap->ops->enable_pm)
936 rc = ap->ops->enable_pm(ap, policy);
937 if (rc)
938 goto enable_pm_out;
939 rc = ata_dev_set_dipm(dev, policy);
940
941 enable_pm_out:
942 if (rc)
943 ap->pm_policy = MAX_PERFORMANCE;
944 else
945 ap->pm_policy = policy;
946 return /* rc */; /* hopefully we can use 'rc' eventually */
947 }
948
949 #ifdef CONFIG_PM
950 /**
951 * ata_dev_disable_pm - disable SATA interface power management
952 * @dev: device to disable power management
953 *
954 * Disable SATA Interface power management. This will disable
955 * Device Interface Power Management (DIPM) without changing
956 * policy, call driver specific callbacks for disabling Host
957 * Initiated Power management.
958 *
959 * Locking: Caller.
960 * Returns: void
961 */
962 static void ata_dev_disable_pm(struct ata_device *dev)
963 {
964 struct ata_port *ap = dev->link->ap;
965
966 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
967 if (ap->ops->disable_pm)
968 ap->ops->disable_pm(ap);
969 }
970 #endif /* CONFIG_PM */
971
972 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
973 {
974 ap->pm_policy = policy;
975 ap->link.eh_info.action |= ATA_EHI_LPM;
976 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
977 ata_port_schedule_eh(ap);
978 }
979
980 #ifdef CONFIG_PM
981 static void ata_lpm_enable(struct ata_host *host)
982 {
983 struct ata_link *link;
984 struct ata_port *ap;
985 struct ata_device *dev;
986 int i;
987
988 for (i = 0; i < host->n_ports; i++) {
989 ap = host->ports[i];
990 ata_port_for_each_link(link, ap) {
991 ata_link_for_each_dev(dev, link)
992 ata_dev_disable_pm(dev);
993 }
994 }
995 }
996
997 static void ata_lpm_disable(struct ata_host *host)
998 {
999 int i;
1000
1001 for (i = 0; i < host->n_ports; i++) {
1002 struct ata_port *ap = host->ports[i];
1003 ata_lpm_schedule(ap, ap->pm_policy);
1004 }
1005 }
1006 #endif /* CONFIG_PM */
1007
1008
1009 /**
1010 * ata_devchk - PATA device presence detection
1011 * @ap: ATA channel to examine
1012 * @device: Device to examine (starting at zero)
1013 *
1014 * This technique was originally described in
1015 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1016 * later found its way into the ATA/ATAPI spec.
1017 *
1018 * Write a pattern to the ATA shadow registers,
1019 * and if a device is present, it will respond by
1020 * correctly storing and echoing back the
1021 * ATA shadow register contents.
1022 *
1023 * LOCKING:
1024 * caller.
1025 */
1026
1027 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1028 {
1029 struct ata_ioports *ioaddr = &ap->ioaddr;
1030 u8 nsect, lbal;
1031
1032 ap->ops->dev_select(ap, device);
1033
1034 iowrite8(0x55, ioaddr->nsect_addr);
1035 iowrite8(0xaa, ioaddr->lbal_addr);
1036
1037 iowrite8(0xaa, ioaddr->nsect_addr);
1038 iowrite8(0x55, ioaddr->lbal_addr);
1039
1040 iowrite8(0x55, ioaddr->nsect_addr);
1041 iowrite8(0xaa, ioaddr->lbal_addr);
1042
1043 nsect = ioread8(ioaddr->nsect_addr);
1044 lbal = ioread8(ioaddr->lbal_addr);
1045
1046 if ((nsect == 0x55) && (lbal == 0xaa))
1047 return 1; /* we found a device */
1048
1049 return 0; /* nothing found */
1050 }
1051
1052 /**
1053 * ata_dev_classify - determine device type based on ATA-spec signature
1054 * @tf: ATA taskfile register set for device to be identified
1055 *
1056 * Determine from taskfile register contents whether a device is
1057 * ATA or ATAPI, as per "Signature and persistence" section
1058 * of ATA/PI spec (volume 1, sect 5.14).
1059 *
1060 * LOCKING:
1061 * None.
1062 *
1063 * RETURNS:
1064 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1065 * %ATA_DEV_UNKNOWN the event of failure.
1066 */
1067 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1068 {
1069 /* Apple's open source Darwin code hints that some devices only
1070 * put a proper signature into the LBA mid/high registers,
1071 * So, we only check those. It's sufficient for uniqueness.
1072 *
1073 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1074 * signatures for ATA and ATAPI devices attached on SerialATA,
1075 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1076 * spec has never mentioned about using different signatures
1077 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1078 * Multiplier specification began to use 0x69/0x96 to identify
1079 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1080 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1081 * 0x69/0x96 shortly and described them as reserved for
1082 * SerialATA.
1083 *
1084 * We follow the current spec and consider that 0x69/0x96
1085 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1086 */
1087 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1088 DPRINTK("found ATA device by sig\n");
1089 return ATA_DEV_ATA;
1090 }
1091
1092 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1093 DPRINTK("found ATAPI device by sig\n");
1094 return ATA_DEV_ATAPI;
1095 }
1096
1097 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1098 DPRINTK("found PMP device by sig\n");
1099 return ATA_DEV_PMP;
1100 }
1101
1102 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1103 printk(KERN_INFO "ata: SEMB device ignored\n");
1104 return ATA_DEV_SEMB_UNSUP; /* not yet */
1105 }
1106
1107 DPRINTK("unknown device\n");
1108 return ATA_DEV_UNKNOWN;
1109 }
1110
1111 /**
1112 * ata_dev_try_classify - Parse returned ATA device signature
1113 * @dev: ATA device to classify (starting at zero)
1114 * @present: device seems present
1115 * @r_err: Value of error register on completion
1116 *
1117 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1118 * an ATA/ATAPI-defined set of values is placed in the ATA
1119 * shadow registers, indicating the results of device detection
1120 * and diagnostics.
1121 *
1122 * Select the ATA device, and read the values from the ATA shadow
1123 * registers. Then parse according to the Error register value,
1124 * and the spec-defined values examined by ata_dev_classify().
1125 *
1126 * LOCKING:
1127 * caller.
1128 *
1129 * RETURNS:
1130 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1131 */
1132 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
1133 u8 *r_err)
1134 {
1135 struct ata_port *ap = dev->link->ap;
1136 struct ata_taskfile tf;
1137 unsigned int class;
1138 u8 err;
1139
1140 ap->ops->dev_select(ap, dev->devno);
1141
1142 memset(&tf, 0, sizeof(tf));
1143
1144 ap->ops->tf_read(ap, &tf);
1145 err = tf.feature;
1146 if (r_err)
1147 *r_err = err;
1148
1149 /* see if device passed diags: continue and warn later */
1150 if (err == 0)
1151 /* diagnostic fail : do nothing _YET_ */
1152 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1153 else if (err == 1)
1154 /* do nothing */ ;
1155 else if ((dev->devno == 0) && (err == 0x81))
1156 /* do nothing */ ;
1157 else
1158 return ATA_DEV_NONE;
1159
1160 /* determine if device is ATA or ATAPI */
1161 class = ata_dev_classify(&tf);
1162
1163 if (class == ATA_DEV_UNKNOWN) {
1164 /* If the device failed diagnostic, it's likely to
1165 * have reported incorrect device signature too.
1166 * Assume ATA device if the device seems present but
1167 * device signature is invalid with diagnostic
1168 * failure.
1169 */
1170 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1171 class = ATA_DEV_ATA;
1172 else
1173 class = ATA_DEV_NONE;
1174 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
1175 class = ATA_DEV_NONE;
1176
1177 return class;
1178 }
1179
1180 /**
1181 * ata_id_string - Convert IDENTIFY DEVICE page into string
1182 * @id: IDENTIFY DEVICE results we will examine
1183 * @s: string into which data is output
1184 * @ofs: offset into identify device page
1185 * @len: length of string to return. must be an even number.
1186 *
1187 * The strings in the IDENTIFY DEVICE page are broken up into
1188 * 16-bit chunks. Run through the string, and output each
1189 * 8-bit chunk linearly, regardless of platform.
1190 *
1191 * LOCKING:
1192 * caller.
1193 */
1194
1195 void ata_id_string(const u16 *id, unsigned char *s,
1196 unsigned int ofs, unsigned int len)
1197 {
1198 unsigned int c;
1199
1200 while (len > 0) {
1201 c = id[ofs] >> 8;
1202 *s = c;
1203 s++;
1204
1205 c = id[ofs] & 0xff;
1206 *s = c;
1207 s++;
1208
1209 ofs++;
1210 len -= 2;
1211 }
1212 }
1213
1214 /**
1215 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1216 * @id: IDENTIFY DEVICE results we will examine
1217 * @s: string into which data is output
1218 * @ofs: offset into identify device page
1219 * @len: length of string to return. must be an odd number.
1220 *
1221 * This function is identical to ata_id_string except that it
1222 * trims trailing spaces and terminates the resulting string with
1223 * null. @len must be actual maximum length (even number) + 1.
1224 *
1225 * LOCKING:
1226 * caller.
1227 */
1228 void ata_id_c_string(const u16 *id, unsigned char *s,
1229 unsigned int ofs, unsigned int len)
1230 {
1231 unsigned char *p;
1232
1233 WARN_ON(!(len & 1));
1234
1235 ata_id_string(id, s, ofs, len - 1);
1236
1237 p = s + strnlen(s, len - 1);
1238 while (p > s && p[-1] == ' ')
1239 p--;
1240 *p = '\0';
1241 }
1242
1243 static u64 ata_id_n_sectors(const u16 *id)
1244 {
1245 if (ata_id_has_lba(id)) {
1246 if (ata_id_has_lba48(id))
1247 return ata_id_u64(id, 100);
1248 else
1249 return ata_id_u32(id, 60);
1250 } else {
1251 if (ata_id_current_chs_valid(id))
1252 return ata_id_u32(id, 57);
1253 else
1254 return id[1] * id[3] * id[6];
1255 }
1256 }
1257
1258 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1259 {
1260 u64 sectors = 0;
1261
1262 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1263 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1264 sectors |= (tf->hob_lbal & 0xff) << 24;
1265 sectors |= (tf->lbah & 0xff) << 16;
1266 sectors |= (tf->lbam & 0xff) << 8;
1267 sectors |= (tf->lbal & 0xff);
1268
1269 return ++sectors;
1270 }
1271
1272 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1273 {
1274 u64 sectors = 0;
1275
1276 sectors |= (tf->device & 0x0f) << 24;
1277 sectors |= (tf->lbah & 0xff) << 16;
1278 sectors |= (tf->lbam & 0xff) << 8;
1279 sectors |= (tf->lbal & 0xff);
1280
1281 return ++sectors;
1282 }
1283
1284 /**
1285 * ata_read_native_max_address - Read native max address
1286 * @dev: target device
1287 * @max_sectors: out parameter for the result native max address
1288 *
1289 * Perform an LBA48 or LBA28 native size query upon the device in
1290 * question.
1291 *
1292 * RETURNS:
1293 * 0 on success, -EACCES if command is aborted by the drive.
1294 * -EIO on other errors.
1295 */
1296 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1297 {
1298 unsigned int err_mask;
1299 struct ata_taskfile tf;
1300 int lba48 = ata_id_has_lba48(dev->id);
1301
1302 ata_tf_init(dev, &tf);
1303
1304 /* always clear all address registers */
1305 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1306
1307 if (lba48) {
1308 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1309 tf.flags |= ATA_TFLAG_LBA48;
1310 } else
1311 tf.command = ATA_CMD_READ_NATIVE_MAX;
1312
1313 tf.protocol |= ATA_PROT_NODATA;
1314 tf.device |= ATA_LBA;
1315
1316 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1317 if (err_mask) {
1318 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1319 "max address (err_mask=0x%x)\n", err_mask);
1320 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1321 return -EACCES;
1322 return -EIO;
1323 }
1324
1325 if (lba48)
1326 *max_sectors = ata_tf_to_lba48(&tf);
1327 else
1328 *max_sectors = ata_tf_to_lba(&tf);
1329 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1330 (*max_sectors)--;
1331 return 0;
1332 }
1333
1334 /**
1335 * ata_set_max_sectors - Set max sectors
1336 * @dev: target device
1337 * @new_sectors: new max sectors value to set for the device
1338 *
1339 * Set max sectors of @dev to @new_sectors.
1340 *
1341 * RETURNS:
1342 * 0 on success, -EACCES if command is aborted or denied (due to
1343 * previous non-volatile SET_MAX) by the drive. -EIO on other
1344 * errors.
1345 */
1346 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1347 {
1348 unsigned int err_mask;
1349 struct ata_taskfile tf;
1350 int lba48 = ata_id_has_lba48(dev->id);
1351
1352 new_sectors--;
1353
1354 ata_tf_init(dev, &tf);
1355
1356 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1357
1358 if (lba48) {
1359 tf.command = ATA_CMD_SET_MAX_EXT;
1360 tf.flags |= ATA_TFLAG_LBA48;
1361
1362 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1363 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1364 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1365 } else {
1366 tf.command = ATA_CMD_SET_MAX;
1367
1368 tf.device |= (new_sectors >> 24) & 0xf;
1369 }
1370
1371 tf.protocol |= ATA_PROT_NODATA;
1372 tf.device |= ATA_LBA;
1373
1374 tf.lbal = (new_sectors >> 0) & 0xff;
1375 tf.lbam = (new_sectors >> 8) & 0xff;
1376 tf.lbah = (new_sectors >> 16) & 0xff;
1377
1378 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1379 if (err_mask) {
1380 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1381 "max address (err_mask=0x%x)\n", err_mask);
1382 if (err_mask == AC_ERR_DEV &&
1383 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1384 return -EACCES;
1385 return -EIO;
1386 }
1387
1388 return 0;
1389 }
1390
1391 /**
1392 * ata_hpa_resize - Resize a device with an HPA set
1393 * @dev: Device to resize
1394 *
1395 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1396 * it if required to the full size of the media. The caller must check
1397 * the drive has the HPA feature set enabled.
1398 *
1399 * RETURNS:
1400 * 0 on success, -errno on failure.
1401 */
1402 static int ata_hpa_resize(struct ata_device *dev)
1403 {
1404 struct ata_eh_context *ehc = &dev->link->eh_context;
1405 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1406 u64 sectors = ata_id_n_sectors(dev->id);
1407 u64 native_sectors;
1408 int rc;
1409
1410 /* do we need to do it? */
1411 if (dev->class != ATA_DEV_ATA ||
1412 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1413 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1414 return 0;
1415
1416 /* read native max address */
1417 rc = ata_read_native_max_address(dev, &native_sectors);
1418 if (rc) {
1419 /* If HPA isn't going to be unlocked, skip HPA
1420 * resizing from the next try.
1421 */
1422 if (!ata_ignore_hpa) {
1423 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1424 "broken, will skip HPA handling\n");
1425 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1426
1427 /* we can continue if device aborted the command */
1428 if (rc == -EACCES)
1429 rc = 0;
1430 }
1431
1432 return rc;
1433 }
1434
1435 /* nothing to do? */
1436 if (native_sectors <= sectors || !ata_ignore_hpa) {
1437 if (!print_info || native_sectors == sectors)
1438 return 0;
1439
1440 if (native_sectors > sectors)
1441 ata_dev_printk(dev, KERN_INFO,
1442 "HPA detected: current %llu, native %llu\n",
1443 (unsigned long long)sectors,
1444 (unsigned long long)native_sectors);
1445 else if (native_sectors < sectors)
1446 ata_dev_printk(dev, KERN_WARNING,
1447 "native sectors (%llu) is smaller than "
1448 "sectors (%llu)\n",
1449 (unsigned long long)native_sectors,
1450 (unsigned long long)sectors);
1451 return 0;
1452 }
1453
1454 /* let's unlock HPA */
1455 rc = ata_set_max_sectors(dev, native_sectors);
1456 if (rc == -EACCES) {
1457 /* if device aborted the command, skip HPA resizing */
1458 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1459 "(%llu -> %llu), skipping HPA handling\n",
1460 (unsigned long long)sectors,
1461 (unsigned long long)native_sectors);
1462 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1463 return 0;
1464 } else if (rc)
1465 return rc;
1466
1467 /* re-read IDENTIFY data */
1468 rc = ata_dev_reread_id(dev, 0);
1469 if (rc) {
1470 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1471 "data after HPA resizing\n");
1472 return rc;
1473 }
1474
1475 if (print_info) {
1476 u64 new_sectors = ata_id_n_sectors(dev->id);
1477 ata_dev_printk(dev, KERN_INFO,
1478 "HPA unlocked: %llu -> %llu, native %llu\n",
1479 (unsigned long long)sectors,
1480 (unsigned long long)new_sectors,
1481 (unsigned long long)native_sectors);
1482 }
1483
1484 return 0;
1485 }
1486
1487 /**
1488 * ata_noop_dev_select - Select device 0/1 on ATA bus
1489 * @ap: ATA channel to manipulate
1490 * @device: ATA device (numbered from zero) to select
1491 *
1492 * This function performs no actual function.
1493 *
1494 * May be used as the dev_select() entry in ata_port_operations.
1495 *
1496 * LOCKING:
1497 * caller.
1498 */
1499 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1500 {
1501 }
1502
1503
1504 /**
1505 * ata_std_dev_select - Select device 0/1 on ATA bus
1506 * @ap: ATA channel to manipulate
1507 * @device: ATA device (numbered from zero) to select
1508 *
1509 * Use the method defined in the ATA specification to
1510 * make either device 0, or device 1, active on the
1511 * ATA channel. Works with both PIO and MMIO.
1512 *
1513 * May be used as the dev_select() entry in ata_port_operations.
1514 *
1515 * LOCKING:
1516 * caller.
1517 */
1518
1519 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1520 {
1521 u8 tmp;
1522
1523 if (device == 0)
1524 tmp = ATA_DEVICE_OBS;
1525 else
1526 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1527
1528 iowrite8(tmp, ap->ioaddr.device_addr);
1529 ata_pause(ap); /* needed; also flushes, for mmio */
1530 }
1531
1532 /**
1533 * ata_dev_select - Select device 0/1 on ATA bus
1534 * @ap: ATA channel to manipulate
1535 * @device: ATA device (numbered from zero) to select
1536 * @wait: non-zero to wait for Status register BSY bit to clear
1537 * @can_sleep: non-zero if context allows sleeping
1538 *
1539 * Use the method defined in the ATA specification to
1540 * make either device 0, or device 1, active on the
1541 * ATA channel.
1542 *
1543 * This is a high-level version of ata_std_dev_select(),
1544 * which additionally provides the services of inserting
1545 * the proper pauses and status polling, where needed.
1546 *
1547 * LOCKING:
1548 * caller.
1549 */
1550
1551 void ata_dev_select(struct ata_port *ap, unsigned int device,
1552 unsigned int wait, unsigned int can_sleep)
1553 {
1554 if (ata_msg_probe(ap))
1555 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1556 "device %u, wait %u\n", device, wait);
1557
1558 if (wait)
1559 ata_wait_idle(ap);
1560
1561 ap->ops->dev_select(ap, device);
1562
1563 if (wait) {
1564 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1565 msleep(150);
1566 ata_wait_idle(ap);
1567 }
1568 }
1569
1570 /**
1571 * ata_dump_id - IDENTIFY DEVICE info debugging output
1572 * @id: IDENTIFY DEVICE page to dump
1573 *
1574 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1575 * page.
1576 *
1577 * LOCKING:
1578 * caller.
1579 */
1580
1581 static inline void ata_dump_id(const u16 *id)
1582 {
1583 DPRINTK("49==0x%04x "
1584 "53==0x%04x "
1585 "63==0x%04x "
1586 "64==0x%04x "
1587 "75==0x%04x \n",
1588 id[49],
1589 id[53],
1590 id[63],
1591 id[64],
1592 id[75]);
1593 DPRINTK("80==0x%04x "
1594 "81==0x%04x "
1595 "82==0x%04x "
1596 "83==0x%04x "
1597 "84==0x%04x \n",
1598 id[80],
1599 id[81],
1600 id[82],
1601 id[83],
1602 id[84]);
1603 DPRINTK("88==0x%04x "
1604 "93==0x%04x\n",
1605 id[88],
1606 id[93]);
1607 }
1608
1609 /**
1610 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1611 * @id: IDENTIFY data to compute xfer mask from
1612 *
1613 * Compute the xfermask for this device. This is not as trivial
1614 * as it seems if we must consider early devices correctly.
1615 *
1616 * FIXME: pre IDE drive timing (do we care ?).
1617 *
1618 * LOCKING:
1619 * None.
1620 *
1621 * RETURNS:
1622 * Computed xfermask
1623 */
1624 unsigned long ata_id_xfermask(const u16 *id)
1625 {
1626 unsigned long pio_mask, mwdma_mask, udma_mask;
1627
1628 /* Usual case. Word 53 indicates word 64 is valid */
1629 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1630 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1631 pio_mask <<= 3;
1632 pio_mask |= 0x7;
1633 } else {
1634 /* If word 64 isn't valid then Word 51 high byte holds
1635 * the PIO timing number for the maximum. Turn it into
1636 * a mask.
1637 */
1638 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1639 if (mode < 5) /* Valid PIO range */
1640 pio_mask = (2 << mode) - 1;
1641 else
1642 pio_mask = 1;
1643
1644 /* But wait.. there's more. Design your standards by
1645 * committee and you too can get a free iordy field to
1646 * process. However its the speeds not the modes that
1647 * are supported... Note drivers using the timing API
1648 * will get this right anyway
1649 */
1650 }
1651
1652 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1653
1654 if (ata_id_is_cfa(id)) {
1655 /*
1656 * Process compact flash extended modes
1657 */
1658 int pio = id[163] & 0x7;
1659 int dma = (id[163] >> 3) & 7;
1660
1661 if (pio)
1662 pio_mask |= (1 << 5);
1663 if (pio > 1)
1664 pio_mask |= (1 << 6);
1665 if (dma)
1666 mwdma_mask |= (1 << 3);
1667 if (dma > 1)
1668 mwdma_mask |= (1 << 4);
1669 }
1670
1671 udma_mask = 0;
1672 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1673 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1674
1675 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1676 }
1677
1678 /**
1679 * ata_pio_queue_task - Queue port_task
1680 * @ap: The ata_port to queue port_task for
1681 * @fn: workqueue function to be scheduled
1682 * @data: data for @fn to use
1683 * @delay: delay time for workqueue function
1684 *
1685 * Schedule @fn(@data) for execution after @delay jiffies using
1686 * port_task. There is one port_task per port and it's the
1687 * user(low level driver)'s responsibility to make sure that only
1688 * one task is active at any given time.
1689 *
1690 * libata core layer takes care of synchronization between
1691 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1692 * synchronization.
1693 *
1694 * LOCKING:
1695 * Inherited from caller.
1696 */
1697 static void ata_pio_queue_task(struct ata_port *ap, void *data,
1698 unsigned long delay)
1699 {
1700 ap->port_task_data = data;
1701
1702 /* may fail if ata_port_flush_task() in progress */
1703 queue_delayed_work(ata_wq, &ap->port_task, delay);
1704 }
1705
1706 /**
1707 * ata_port_flush_task - Flush port_task
1708 * @ap: The ata_port to flush port_task for
1709 *
1710 * After this function completes, port_task is guranteed not to
1711 * be running or scheduled.
1712 *
1713 * LOCKING:
1714 * Kernel thread context (may sleep)
1715 */
1716 void ata_port_flush_task(struct ata_port *ap)
1717 {
1718 DPRINTK("ENTER\n");
1719
1720 cancel_rearming_delayed_work(&ap->port_task);
1721
1722 if (ata_msg_ctl(ap))
1723 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1724 }
1725
1726 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1727 {
1728 struct completion *waiting = qc->private_data;
1729
1730 complete(waiting);
1731 }
1732
1733 /**
1734 * ata_exec_internal_sg - execute libata internal command
1735 * @dev: Device to which the command is sent
1736 * @tf: Taskfile registers for the command and the result
1737 * @cdb: CDB for packet command
1738 * @dma_dir: Data tranfer direction of the command
1739 * @sgl: sg list for the data buffer of the command
1740 * @n_elem: Number of sg entries
1741 * @timeout: Timeout in msecs (0 for default)
1742 *
1743 * Executes libata internal command with timeout. @tf contains
1744 * command on entry and result on return. Timeout and error
1745 * conditions are reported via return value. No recovery action
1746 * is taken after a command times out. It's caller's duty to
1747 * clean up after timeout.
1748 *
1749 * LOCKING:
1750 * None. Should be called with kernel context, might sleep.
1751 *
1752 * RETURNS:
1753 * Zero on success, AC_ERR_* mask on failure
1754 */
1755 unsigned ata_exec_internal_sg(struct ata_device *dev,
1756 struct ata_taskfile *tf, const u8 *cdb,
1757 int dma_dir, struct scatterlist *sgl,
1758 unsigned int n_elem, unsigned long timeout)
1759 {
1760 struct ata_link *link = dev->link;
1761 struct ata_port *ap = link->ap;
1762 u8 command = tf->command;
1763 struct ata_queued_cmd *qc;
1764 unsigned int tag, preempted_tag;
1765 u32 preempted_sactive, preempted_qc_active;
1766 int preempted_nr_active_links;
1767 DECLARE_COMPLETION_ONSTACK(wait);
1768 unsigned long flags;
1769 unsigned int err_mask;
1770 int rc;
1771
1772 spin_lock_irqsave(ap->lock, flags);
1773
1774 /* no internal command while frozen */
1775 if (ap->pflags & ATA_PFLAG_FROZEN) {
1776 spin_unlock_irqrestore(ap->lock, flags);
1777 return AC_ERR_SYSTEM;
1778 }
1779
1780 /* initialize internal qc */
1781
1782 /* XXX: Tag 0 is used for drivers with legacy EH as some
1783 * drivers choke if any other tag is given. This breaks
1784 * ata_tag_internal() test for those drivers. Don't use new
1785 * EH stuff without converting to it.
1786 */
1787 if (ap->ops->error_handler)
1788 tag = ATA_TAG_INTERNAL;
1789 else
1790 tag = 0;
1791
1792 if (test_and_set_bit(tag, &ap->qc_allocated))
1793 BUG();
1794 qc = __ata_qc_from_tag(ap, tag);
1795
1796 qc->tag = tag;
1797 qc->scsicmd = NULL;
1798 qc->ap = ap;
1799 qc->dev = dev;
1800 ata_qc_reinit(qc);
1801
1802 preempted_tag = link->active_tag;
1803 preempted_sactive = link->sactive;
1804 preempted_qc_active = ap->qc_active;
1805 preempted_nr_active_links = ap->nr_active_links;
1806 link->active_tag = ATA_TAG_POISON;
1807 link->sactive = 0;
1808 ap->qc_active = 0;
1809 ap->nr_active_links = 0;
1810
1811 /* prepare & issue qc */
1812 qc->tf = *tf;
1813 if (cdb)
1814 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1815 qc->flags |= ATA_QCFLAG_RESULT_TF;
1816 qc->dma_dir = dma_dir;
1817 if (dma_dir != DMA_NONE) {
1818 unsigned int i, buflen = 0;
1819 struct scatterlist *sg;
1820
1821 for_each_sg(sgl, sg, n_elem, i)
1822 buflen += sg->length;
1823
1824 ata_sg_init(qc, sgl, n_elem);
1825 qc->nbytes = buflen;
1826 }
1827
1828 qc->private_data = &wait;
1829 qc->complete_fn = ata_qc_complete_internal;
1830
1831 ata_qc_issue(qc);
1832
1833 spin_unlock_irqrestore(ap->lock, flags);
1834
1835 if (!timeout)
1836 timeout = ata_probe_timeout * 1000 / HZ;
1837
1838 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1839
1840 ata_port_flush_task(ap);
1841
1842 if (!rc) {
1843 spin_lock_irqsave(ap->lock, flags);
1844
1845 /* We're racing with irq here. If we lose, the
1846 * following test prevents us from completing the qc
1847 * twice. If we win, the port is frozen and will be
1848 * cleaned up by ->post_internal_cmd().
1849 */
1850 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1851 qc->err_mask |= AC_ERR_TIMEOUT;
1852
1853 if (ap->ops->error_handler)
1854 ata_port_freeze(ap);
1855 else
1856 ata_qc_complete(qc);
1857
1858 if (ata_msg_warn(ap))
1859 ata_dev_printk(dev, KERN_WARNING,
1860 "qc timeout (cmd 0x%x)\n", command);
1861 }
1862
1863 spin_unlock_irqrestore(ap->lock, flags);
1864 }
1865
1866 /* do post_internal_cmd */
1867 if (ap->ops->post_internal_cmd)
1868 ap->ops->post_internal_cmd(qc);
1869
1870 /* perform minimal error analysis */
1871 if (qc->flags & ATA_QCFLAG_FAILED) {
1872 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1873 qc->err_mask |= AC_ERR_DEV;
1874
1875 if (!qc->err_mask)
1876 qc->err_mask |= AC_ERR_OTHER;
1877
1878 if (qc->err_mask & ~AC_ERR_OTHER)
1879 qc->err_mask &= ~AC_ERR_OTHER;
1880 }
1881
1882 /* finish up */
1883 spin_lock_irqsave(ap->lock, flags);
1884
1885 *tf = qc->result_tf;
1886 err_mask = qc->err_mask;
1887
1888 ata_qc_free(qc);
1889 link->active_tag = preempted_tag;
1890 link->sactive = preempted_sactive;
1891 ap->qc_active = preempted_qc_active;
1892 ap->nr_active_links = preempted_nr_active_links;
1893
1894 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1895 * Until those drivers are fixed, we detect the condition
1896 * here, fail the command with AC_ERR_SYSTEM and reenable the
1897 * port.
1898 *
1899 * Note that this doesn't change any behavior as internal
1900 * command failure results in disabling the device in the
1901 * higher layer for LLDDs without new reset/EH callbacks.
1902 *
1903 * Kill the following code as soon as those drivers are fixed.
1904 */
1905 if (ap->flags & ATA_FLAG_DISABLED) {
1906 err_mask |= AC_ERR_SYSTEM;
1907 ata_port_probe(ap);
1908 }
1909
1910 spin_unlock_irqrestore(ap->lock, flags);
1911
1912 return err_mask;
1913 }
1914
1915 /**
1916 * ata_exec_internal - execute libata internal command
1917 * @dev: Device to which the command is sent
1918 * @tf: Taskfile registers for the command and the result
1919 * @cdb: CDB for packet command
1920 * @dma_dir: Data tranfer direction of the command
1921 * @buf: Data buffer of the command
1922 * @buflen: Length of data buffer
1923 * @timeout: Timeout in msecs (0 for default)
1924 *
1925 * Wrapper around ata_exec_internal_sg() which takes simple
1926 * buffer instead of sg list.
1927 *
1928 * LOCKING:
1929 * None. Should be called with kernel context, might sleep.
1930 *
1931 * RETURNS:
1932 * Zero on success, AC_ERR_* mask on failure
1933 */
1934 unsigned ata_exec_internal(struct ata_device *dev,
1935 struct ata_taskfile *tf, const u8 *cdb,
1936 int dma_dir, void *buf, unsigned int buflen,
1937 unsigned long timeout)
1938 {
1939 struct scatterlist *psg = NULL, sg;
1940 unsigned int n_elem = 0;
1941
1942 if (dma_dir != DMA_NONE) {
1943 WARN_ON(!buf);
1944 sg_init_one(&sg, buf, buflen);
1945 psg = &sg;
1946 n_elem++;
1947 }
1948
1949 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1950 timeout);
1951 }
1952
1953 /**
1954 * ata_do_simple_cmd - execute simple internal command
1955 * @dev: Device to which the command is sent
1956 * @cmd: Opcode to execute
1957 *
1958 * Execute a 'simple' command, that only consists of the opcode
1959 * 'cmd' itself, without filling any other registers
1960 *
1961 * LOCKING:
1962 * Kernel thread context (may sleep).
1963 *
1964 * RETURNS:
1965 * Zero on success, AC_ERR_* mask on failure
1966 */
1967 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1968 {
1969 struct ata_taskfile tf;
1970
1971 ata_tf_init(dev, &tf);
1972
1973 tf.command = cmd;
1974 tf.flags |= ATA_TFLAG_DEVICE;
1975 tf.protocol = ATA_PROT_NODATA;
1976
1977 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1978 }
1979
1980 /**
1981 * ata_pio_need_iordy - check if iordy needed
1982 * @adev: ATA device
1983 *
1984 * Check if the current speed of the device requires IORDY. Used
1985 * by various controllers for chip configuration.
1986 */
1987
1988 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1989 {
1990 /* Controller doesn't support IORDY. Probably a pointless check
1991 as the caller should know this */
1992 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1993 return 0;
1994 /* PIO3 and higher it is mandatory */
1995 if (adev->pio_mode > XFER_PIO_2)
1996 return 1;
1997 /* We turn it on when possible */
1998 if (ata_id_has_iordy(adev->id))
1999 return 1;
2000 return 0;
2001 }
2002
2003 /**
2004 * ata_pio_mask_no_iordy - Return the non IORDY mask
2005 * @adev: ATA device
2006 *
2007 * Compute the highest mode possible if we are not using iordy. Return
2008 * -1 if no iordy mode is available.
2009 */
2010
2011 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2012 {
2013 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2014 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2015 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2016 /* Is the speed faster than the drive allows non IORDY ? */
2017 if (pio) {
2018 /* This is cycle times not frequency - watch the logic! */
2019 if (pio > 240) /* PIO2 is 240nS per cycle */
2020 return 3 << ATA_SHIFT_PIO;
2021 return 7 << ATA_SHIFT_PIO;
2022 }
2023 }
2024 return 3 << ATA_SHIFT_PIO;
2025 }
2026
2027 /**
2028 * ata_dev_read_id - Read ID data from the specified device
2029 * @dev: target device
2030 * @p_class: pointer to class of the target device (may be changed)
2031 * @flags: ATA_READID_* flags
2032 * @id: buffer to read IDENTIFY data into
2033 *
2034 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2035 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2036 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2037 * for pre-ATA4 drives.
2038 *
2039 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2040 * now we abort if we hit that case.
2041 *
2042 * LOCKING:
2043 * Kernel thread context (may sleep)
2044 *
2045 * RETURNS:
2046 * 0 on success, -errno otherwise.
2047 */
2048 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2049 unsigned int flags, u16 *id)
2050 {
2051 struct ata_port *ap = dev->link->ap;
2052 unsigned int class = *p_class;
2053 struct ata_taskfile tf;
2054 unsigned int err_mask = 0;
2055 const char *reason;
2056 int may_fallback = 1, tried_spinup = 0;
2057 int rc;
2058
2059 if (ata_msg_ctl(ap))
2060 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2061
2062 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
2063 retry:
2064 ata_tf_init(dev, &tf);
2065
2066 switch (class) {
2067 case ATA_DEV_ATA:
2068 tf.command = ATA_CMD_ID_ATA;
2069 break;
2070 case ATA_DEV_ATAPI:
2071 tf.command = ATA_CMD_ID_ATAPI;
2072 break;
2073 default:
2074 rc = -ENODEV;
2075 reason = "unsupported class";
2076 goto err_out;
2077 }
2078
2079 tf.protocol = ATA_PROT_PIO;
2080
2081 /* Some devices choke if TF registers contain garbage. Make
2082 * sure those are properly initialized.
2083 */
2084 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2085
2086 /* Device presence detection is unreliable on some
2087 * controllers. Always poll IDENTIFY if available.
2088 */
2089 tf.flags |= ATA_TFLAG_POLLING;
2090
2091 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2092 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2093 if (err_mask) {
2094 if (err_mask & AC_ERR_NODEV_HINT) {
2095 DPRINTK("ata%u.%d: NODEV after polling detection\n",
2096 ap->print_id, dev->devno);
2097 return -ENOENT;
2098 }
2099
2100 /* Device or controller might have reported the wrong
2101 * device class. Give a shot at the other IDENTIFY if
2102 * the current one is aborted by the device.
2103 */
2104 if (may_fallback &&
2105 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2106 may_fallback = 0;
2107
2108 if (class == ATA_DEV_ATA)
2109 class = ATA_DEV_ATAPI;
2110 else
2111 class = ATA_DEV_ATA;
2112 goto retry;
2113 }
2114
2115 rc = -EIO;
2116 reason = "I/O error";
2117 goto err_out;
2118 }
2119
2120 /* Falling back doesn't make sense if ID data was read
2121 * successfully at least once.
2122 */
2123 may_fallback = 0;
2124
2125 swap_buf_le16(id, ATA_ID_WORDS);
2126
2127 /* sanity check */
2128 rc = -EINVAL;
2129 reason = "device reports invalid type";
2130
2131 if (class == ATA_DEV_ATA) {
2132 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2133 goto err_out;
2134 } else {
2135 if (ata_id_is_ata(id))
2136 goto err_out;
2137 }
2138
2139 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2140 tried_spinup = 1;
2141 /*
2142 * Drive powered-up in standby mode, and requires a specific
2143 * SET_FEATURES spin-up subcommand before it will accept
2144 * anything other than the original IDENTIFY command.
2145 */
2146 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2147 if (err_mask && id[2] != 0x738c) {
2148 rc = -EIO;
2149 reason = "SPINUP failed";
2150 goto err_out;
2151 }
2152 /*
2153 * If the drive initially returned incomplete IDENTIFY info,
2154 * we now must reissue the IDENTIFY command.
2155 */
2156 if (id[2] == 0x37c8)
2157 goto retry;
2158 }
2159
2160 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2161 /*
2162 * The exact sequence expected by certain pre-ATA4 drives is:
2163 * SRST RESET
2164 * IDENTIFY (optional in early ATA)
2165 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2166 * anything else..
2167 * Some drives were very specific about that exact sequence.
2168 *
2169 * Note that ATA4 says lba is mandatory so the second check
2170 * shoud never trigger.
2171 */
2172 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2173 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2174 if (err_mask) {
2175 rc = -EIO;
2176 reason = "INIT_DEV_PARAMS failed";
2177 goto err_out;
2178 }
2179
2180 /* current CHS translation info (id[53-58]) might be
2181 * changed. reread the identify device info.
2182 */
2183 flags &= ~ATA_READID_POSTRESET;
2184 goto retry;
2185 }
2186 }
2187
2188 *p_class = class;
2189
2190 return 0;
2191
2192 err_out:
2193 if (ata_msg_warn(ap))
2194 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2195 "(%s, err_mask=0x%x)\n", reason, err_mask);
2196 return rc;
2197 }
2198
2199 static inline u8 ata_dev_knobble(struct ata_device *dev)
2200 {
2201 struct ata_port *ap = dev->link->ap;
2202 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2203 }
2204
2205 static void ata_dev_config_ncq(struct ata_device *dev,
2206 char *desc, size_t desc_sz)
2207 {
2208 struct ata_port *ap = dev->link->ap;
2209 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2210
2211 if (!ata_id_has_ncq(dev->id)) {
2212 desc[0] = '\0';
2213 return;
2214 }
2215 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2216 snprintf(desc, desc_sz, "NCQ (not used)");
2217 return;
2218 }
2219 if (ap->flags & ATA_FLAG_NCQ) {
2220 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2221 dev->flags |= ATA_DFLAG_NCQ;
2222 }
2223
2224 if (hdepth >= ddepth)
2225 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2226 else
2227 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2228 }
2229
2230 /**
2231 * ata_dev_configure - Configure the specified ATA/ATAPI device
2232 * @dev: Target device to configure
2233 *
2234 * Configure @dev according to @dev->id. Generic and low-level
2235 * driver specific fixups are also applied.
2236 *
2237 * LOCKING:
2238 * Kernel thread context (may sleep)
2239 *
2240 * RETURNS:
2241 * 0 on success, -errno otherwise
2242 */
2243 int ata_dev_configure(struct ata_device *dev)
2244 {
2245 struct ata_port *ap = dev->link->ap;
2246 struct ata_eh_context *ehc = &dev->link->eh_context;
2247 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2248 const u16 *id = dev->id;
2249 unsigned long xfer_mask;
2250 char revbuf[7]; /* XYZ-99\0 */
2251 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2252 char modelbuf[ATA_ID_PROD_LEN+1];
2253 int rc;
2254
2255 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2256 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2257 __func__);
2258 return 0;
2259 }
2260
2261 if (ata_msg_probe(ap))
2262 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2263
2264 /* set horkage */
2265 dev->horkage |= ata_dev_blacklisted(dev);
2266 ata_force_horkage(dev);
2267
2268 /* let ACPI work its magic */
2269 rc = ata_acpi_on_devcfg(dev);
2270 if (rc)
2271 return rc;
2272
2273 /* massage HPA, do it early as it might change IDENTIFY data */
2274 rc = ata_hpa_resize(dev);
2275 if (rc)
2276 return rc;
2277
2278 /* print device capabilities */
2279 if (ata_msg_probe(ap))
2280 ata_dev_printk(dev, KERN_DEBUG,
2281 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2282 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2283 __func__,
2284 id[49], id[82], id[83], id[84],
2285 id[85], id[86], id[87], id[88]);
2286
2287 /* initialize to-be-configured parameters */
2288 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2289 dev->max_sectors = 0;
2290 dev->cdb_len = 0;
2291 dev->n_sectors = 0;
2292 dev->cylinders = 0;
2293 dev->heads = 0;
2294 dev->sectors = 0;
2295
2296 /*
2297 * common ATA, ATAPI feature tests
2298 */
2299
2300 /* find max transfer mode; for printk only */
2301 xfer_mask = ata_id_xfermask(id);
2302
2303 if (ata_msg_probe(ap))
2304 ata_dump_id(id);
2305
2306 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2307 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2308 sizeof(fwrevbuf));
2309
2310 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2311 sizeof(modelbuf));
2312
2313 /* ATA-specific feature tests */
2314 if (dev->class == ATA_DEV_ATA) {
2315 if (ata_id_is_cfa(id)) {
2316 if (id[162] & 1) /* CPRM may make this media unusable */
2317 ata_dev_printk(dev, KERN_WARNING,
2318 "supports DRM functions and may "
2319 "not be fully accessable.\n");
2320 snprintf(revbuf, 7, "CFA");
2321 } else {
2322 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2323 /* Warn the user if the device has TPM extensions */
2324 if (ata_id_has_tpm(id))
2325 ata_dev_printk(dev, KERN_WARNING,
2326 "supports DRM functions and may "
2327 "not be fully accessable.\n");
2328 }
2329
2330 dev->n_sectors = ata_id_n_sectors(id);
2331
2332 if (dev->id[59] & 0x100)
2333 dev->multi_count = dev->id[59] & 0xff;
2334
2335 if (ata_id_has_lba(id)) {
2336 const char *lba_desc;
2337 char ncq_desc[20];
2338
2339 lba_desc = "LBA";
2340 dev->flags |= ATA_DFLAG_LBA;
2341 if (ata_id_has_lba48(id)) {
2342 dev->flags |= ATA_DFLAG_LBA48;
2343 lba_desc = "LBA48";
2344
2345 if (dev->n_sectors >= (1UL << 28) &&
2346 ata_id_has_flush_ext(id))
2347 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2348 }
2349
2350 /* config NCQ */
2351 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2352
2353 /* print device info to dmesg */
2354 if (ata_msg_drv(ap) && print_info) {
2355 ata_dev_printk(dev, KERN_INFO,
2356 "%s: %s, %s, max %s\n",
2357 revbuf, modelbuf, fwrevbuf,
2358 ata_mode_string(xfer_mask));
2359 ata_dev_printk(dev, KERN_INFO,
2360 "%Lu sectors, multi %u: %s %s\n",
2361 (unsigned long long)dev->n_sectors,
2362 dev->multi_count, lba_desc, ncq_desc);
2363 }
2364 } else {
2365 /* CHS */
2366
2367 /* Default translation */
2368 dev->cylinders = id[1];
2369 dev->heads = id[3];
2370 dev->sectors = id[6];
2371
2372 if (ata_id_current_chs_valid(id)) {
2373 /* Current CHS translation is valid. */
2374 dev->cylinders = id[54];
2375 dev->heads = id[55];
2376 dev->sectors = id[56];
2377 }
2378
2379 /* print device info to dmesg */
2380 if (ata_msg_drv(ap) && print_info) {
2381 ata_dev_printk(dev, KERN_INFO,
2382 "%s: %s, %s, max %s\n",
2383 revbuf, modelbuf, fwrevbuf,
2384 ata_mode_string(xfer_mask));
2385 ata_dev_printk(dev, KERN_INFO,
2386 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2387 (unsigned long long)dev->n_sectors,
2388 dev->multi_count, dev->cylinders,
2389 dev->heads, dev->sectors);
2390 }
2391 }
2392
2393 dev->cdb_len = 16;
2394 }
2395
2396 /* ATAPI-specific feature tests */
2397 else if (dev->class == ATA_DEV_ATAPI) {
2398 const char *cdb_intr_string = "";
2399 const char *atapi_an_string = "";
2400 const char *dma_dir_string = "";
2401 u32 sntf;
2402
2403 rc = atapi_cdb_len(id);
2404 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2405 if (ata_msg_warn(ap))
2406 ata_dev_printk(dev, KERN_WARNING,
2407 "unsupported CDB len\n");
2408 rc = -EINVAL;
2409 goto err_out_nosup;
2410 }
2411 dev->cdb_len = (unsigned int) rc;
2412
2413 /* Enable ATAPI AN if both the host and device have
2414 * the support. If PMP is attached, SNTF is required
2415 * to enable ATAPI AN to discern between PHY status
2416 * changed notifications and ATAPI ANs.
2417 */
2418 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2419 (!ap->nr_pmp_links ||
2420 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2421 unsigned int err_mask;
2422
2423 /* issue SET feature command to turn this on */
2424 err_mask = ata_dev_set_feature(dev,
2425 SETFEATURES_SATA_ENABLE, SATA_AN);
2426 if (err_mask)
2427 ata_dev_printk(dev, KERN_ERR,
2428 "failed to enable ATAPI AN "
2429 "(err_mask=0x%x)\n", err_mask);
2430 else {
2431 dev->flags |= ATA_DFLAG_AN;
2432 atapi_an_string = ", ATAPI AN";
2433 }
2434 }
2435
2436 if (ata_id_cdb_intr(dev->id)) {
2437 dev->flags |= ATA_DFLAG_CDB_INTR;
2438 cdb_intr_string = ", CDB intr";
2439 }
2440
2441 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2442 dev->flags |= ATA_DFLAG_DMADIR;
2443 dma_dir_string = ", DMADIR";
2444 }
2445
2446 /* print device info to dmesg */
2447 if (ata_msg_drv(ap) && print_info)
2448 ata_dev_printk(dev, KERN_INFO,
2449 "ATAPI: %s, %s, max %s%s%s%s\n",
2450 modelbuf, fwrevbuf,
2451 ata_mode_string(xfer_mask),
2452 cdb_intr_string, atapi_an_string,
2453 dma_dir_string);
2454 }
2455
2456 /* determine max_sectors */
2457 dev->max_sectors = ATA_MAX_SECTORS;
2458 if (dev->flags & ATA_DFLAG_LBA48)
2459 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2460
2461 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2462 if (ata_id_has_hipm(dev->id))
2463 dev->flags |= ATA_DFLAG_HIPM;
2464 if (ata_id_has_dipm(dev->id))
2465 dev->flags |= ATA_DFLAG_DIPM;
2466 }
2467
2468 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2469 200 sectors */
2470 if (ata_dev_knobble(dev)) {
2471 if (ata_msg_drv(ap) && print_info)
2472 ata_dev_printk(dev, KERN_INFO,
2473 "applying bridge limits\n");
2474 dev->udma_mask &= ATA_UDMA5;
2475 dev->max_sectors = ATA_MAX_SECTORS;
2476 }
2477
2478 if ((dev->class == ATA_DEV_ATAPI) &&
2479 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2480 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2481 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2482 }
2483
2484 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2485 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2486 dev->max_sectors);
2487
2488 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2489 dev->horkage |= ATA_HORKAGE_IPM;
2490
2491 /* reset link pm_policy for this port to no pm */
2492 ap->pm_policy = MAX_PERFORMANCE;
2493 }
2494
2495 if (ap->ops->dev_config)
2496 ap->ops->dev_config(dev);
2497
2498 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2499 /* Let the user know. We don't want to disallow opens for
2500 rescue purposes, or in case the vendor is just a blithering
2501 idiot. Do this after the dev_config call as some controllers
2502 with buggy firmware may want to avoid reporting false device
2503 bugs */
2504
2505 if (print_info) {
2506 ata_dev_printk(dev, KERN_WARNING,
2507 "Drive reports diagnostics failure. This may indicate a drive\n");
2508 ata_dev_printk(dev, KERN_WARNING,
2509 "fault or invalid emulation. Contact drive vendor for information.\n");
2510 }
2511 }
2512
2513 if (ata_msg_probe(ap))
2514 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2515 __func__, ata_chk_status(ap));
2516 return 0;
2517
2518 err_out_nosup:
2519 if (ata_msg_probe(ap))
2520 ata_dev_printk(dev, KERN_DEBUG,
2521 "%s: EXIT, err\n", __func__);
2522 return rc;
2523 }
2524
2525 /**
2526 * ata_cable_40wire - return 40 wire cable type
2527 * @ap: port
2528 *
2529 * Helper method for drivers which want to hardwire 40 wire cable
2530 * detection.
2531 */
2532
2533 int ata_cable_40wire(struct ata_port *ap)
2534 {
2535 return ATA_CBL_PATA40;
2536 }
2537
2538 /**
2539 * ata_cable_80wire - return 80 wire cable type
2540 * @ap: port
2541 *
2542 * Helper method for drivers which want to hardwire 80 wire cable
2543 * detection.
2544 */
2545
2546 int ata_cable_80wire(struct ata_port *ap)
2547 {
2548 return ATA_CBL_PATA80;
2549 }
2550
2551 /**
2552 * ata_cable_unknown - return unknown PATA cable.
2553 * @ap: port
2554 *
2555 * Helper method for drivers which have no PATA cable detection.
2556 */
2557
2558 int ata_cable_unknown(struct ata_port *ap)
2559 {
2560 return ATA_CBL_PATA_UNK;
2561 }
2562
2563 /**
2564 * ata_cable_ignore - return ignored PATA cable.
2565 * @ap: port
2566 *
2567 * Helper method for drivers which don't use cable type to limit
2568 * transfer mode.
2569 */
2570 int ata_cable_ignore(struct ata_port *ap)
2571 {
2572 return ATA_CBL_PATA_IGN;
2573 }
2574
2575 /**
2576 * ata_cable_sata - return SATA cable type
2577 * @ap: port
2578 *
2579 * Helper method for drivers which have SATA cables
2580 */
2581
2582 int ata_cable_sata(struct ata_port *ap)
2583 {
2584 return ATA_CBL_SATA;
2585 }
2586
2587 /**
2588 * ata_bus_probe - Reset and probe ATA bus
2589 * @ap: Bus to probe
2590 *
2591 * Master ATA bus probing function. Initiates a hardware-dependent
2592 * bus reset, then attempts to identify any devices found on
2593 * the bus.
2594 *
2595 * LOCKING:
2596 * PCI/etc. bus probe sem.
2597 *
2598 * RETURNS:
2599 * Zero on success, negative errno otherwise.
2600 */
2601
2602 int ata_bus_probe(struct ata_port *ap)
2603 {
2604 unsigned int classes[ATA_MAX_DEVICES];
2605 int tries[ATA_MAX_DEVICES];
2606 int rc;
2607 struct ata_device *dev;
2608
2609 ata_port_probe(ap);
2610
2611 ata_link_for_each_dev(dev, &ap->link)
2612 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2613
2614 retry:
2615 ata_link_for_each_dev(dev, &ap->link) {
2616 /* If we issue an SRST then an ATA drive (not ATAPI)
2617 * may change configuration and be in PIO0 timing. If
2618 * we do a hard reset (or are coming from power on)
2619 * this is true for ATA or ATAPI. Until we've set a
2620 * suitable controller mode we should not touch the
2621 * bus as we may be talking too fast.
2622 */
2623 dev->pio_mode = XFER_PIO_0;
2624
2625 /* If the controller has a pio mode setup function
2626 * then use it to set the chipset to rights. Don't
2627 * touch the DMA setup as that will be dealt with when
2628 * configuring devices.
2629 */
2630 if (ap->ops->set_piomode)
2631 ap->ops->set_piomode(ap, dev);
2632 }
2633
2634 /* reset and determine device classes */
2635 ap->ops->phy_reset(ap);
2636
2637 ata_link_for_each_dev(dev, &ap->link) {
2638 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2639 dev->class != ATA_DEV_UNKNOWN)
2640 classes[dev->devno] = dev->class;
2641 else
2642 classes[dev->devno] = ATA_DEV_NONE;
2643
2644 dev->class = ATA_DEV_UNKNOWN;
2645 }
2646
2647 ata_port_probe(ap);
2648
2649 /* read IDENTIFY page and configure devices. We have to do the identify
2650 specific sequence bass-ackwards so that PDIAG- is released by
2651 the slave device */
2652
2653 ata_link_for_each_dev(dev, &ap->link) {
2654 if (tries[dev->devno])
2655 dev->class = classes[dev->devno];
2656
2657 if (!ata_dev_enabled(dev))
2658 continue;
2659
2660 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2661 dev->id);
2662 if (rc)
2663 goto fail;
2664 }
2665
2666 /* Now ask for the cable type as PDIAG- should have been released */
2667 if (ap->ops->cable_detect)
2668 ap->cbl = ap->ops->cable_detect(ap);
2669
2670 /* We may have SATA bridge glue hiding here irrespective of the
2671 reported cable types and sensed types */
2672 ata_link_for_each_dev(dev, &ap->link) {
2673 if (!ata_dev_enabled(dev))
2674 continue;
2675 /* SATA drives indicate we have a bridge. We don't know which
2676 end of the link the bridge is which is a problem */
2677 if (ata_id_is_sata(dev->id))
2678 ap->cbl = ATA_CBL_SATA;
2679 }
2680
2681 /* After the identify sequence we can now set up the devices. We do
2682 this in the normal order so that the user doesn't get confused */
2683
2684 ata_link_for_each_dev(dev, &ap->link) {
2685 if (!ata_dev_enabled(dev))
2686 continue;
2687
2688 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2689 rc = ata_dev_configure(dev);
2690 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2691 if (rc)
2692 goto fail;
2693 }
2694
2695 /* configure transfer mode */
2696 rc = ata_set_mode(&ap->link, &dev);
2697 if (rc)
2698 goto fail;
2699
2700 ata_link_for_each_dev(dev, &ap->link)
2701 if (ata_dev_enabled(dev))
2702 return 0;
2703
2704 /* no device present, disable port */
2705 ata_port_disable(ap);
2706 return -ENODEV;
2707
2708 fail:
2709 tries[dev->devno]--;
2710
2711 switch (rc) {
2712 case -EINVAL:
2713 /* eeek, something went very wrong, give up */
2714 tries[dev->devno] = 0;
2715 break;
2716
2717 case -ENODEV:
2718 /* give it just one more chance */
2719 tries[dev->devno] = min(tries[dev->devno], 1);
2720 case -EIO:
2721 if (tries[dev->devno] == 1) {
2722 /* This is the last chance, better to slow
2723 * down than lose it.
2724 */
2725 sata_down_spd_limit(&ap->link);
2726 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2727 }
2728 }
2729
2730 if (!tries[dev->devno])
2731 ata_dev_disable(dev);
2732
2733 goto retry;
2734 }
2735
2736 /**
2737 * ata_port_probe - Mark port as enabled
2738 * @ap: Port for which we indicate enablement
2739 *
2740 * Modify @ap data structure such that the system
2741 * thinks that the entire port is enabled.
2742 *
2743 * LOCKING: host lock, or some other form of
2744 * serialization.
2745 */
2746
2747 void ata_port_probe(struct ata_port *ap)
2748 {
2749 ap->flags &= ~ATA_FLAG_DISABLED;
2750 }
2751
2752 /**
2753 * sata_print_link_status - Print SATA link status
2754 * @link: SATA link to printk link status about
2755 *
2756 * This function prints link speed and status of a SATA link.
2757 *
2758 * LOCKING:
2759 * None.
2760 */
2761 void sata_print_link_status(struct ata_link *link)
2762 {
2763 u32 sstatus, scontrol, tmp;
2764
2765 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2766 return;
2767 sata_scr_read(link, SCR_CONTROL, &scontrol);
2768
2769 if (ata_link_online(link)) {
2770 tmp = (sstatus >> 4) & 0xf;
2771 ata_link_printk(link, KERN_INFO,
2772 "SATA link up %s (SStatus %X SControl %X)\n",
2773 sata_spd_string(tmp), sstatus, scontrol);
2774 } else {
2775 ata_link_printk(link, KERN_INFO,
2776 "SATA link down (SStatus %X SControl %X)\n",
2777 sstatus, scontrol);
2778 }
2779 }
2780
2781 /**
2782 * ata_dev_pair - return other device on cable
2783 * @adev: device
2784 *
2785 * Obtain the other device on the same cable, or if none is
2786 * present NULL is returned
2787 */
2788
2789 struct ata_device *ata_dev_pair(struct ata_device *adev)
2790 {
2791 struct ata_link *link = adev->link;
2792 struct ata_device *pair = &link->device[1 - adev->devno];
2793 if (!ata_dev_enabled(pair))
2794 return NULL;
2795 return pair;
2796 }
2797
2798 /**
2799 * ata_port_disable - Disable port.
2800 * @ap: Port to be disabled.
2801 *
2802 * Modify @ap data structure such that the system
2803 * thinks that the entire port is disabled, and should
2804 * never attempt to probe or communicate with devices
2805 * on this port.
2806 *
2807 * LOCKING: host lock, or some other form of
2808 * serialization.
2809 */
2810
2811 void ata_port_disable(struct ata_port *ap)
2812 {
2813 ap->link.device[0].class = ATA_DEV_NONE;
2814 ap->link.device[1].class = ATA_DEV_NONE;
2815 ap->flags |= ATA_FLAG_DISABLED;
2816 }
2817
2818 /**
2819 * sata_down_spd_limit - adjust SATA spd limit downward
2820 * @link: Link to adjust SATA spd limit for
2821 *
2822 * Adjust SATA spd limit of @link downward. Note that this
2823 * function only adjusts the limit. The change must be applied
2824 * using sata_set_spd().
2825 *
2826 * LOCKING:
2827 * Inherited from caller.
2828 *
2829 * RETURNS:
2830 * 0 on success, negative errno on failure
2831 */
2832 int sata_down_spd_limit(struct ata_link *link)
2833 {
2834 u32 sstatus, spd, mask;
2835 int rc, highbit;
2836
2837 if (!sata_scr_valid(link))
2838 return -EOPNOTSUPP;
2839
2840 /* If SCR can be read, use it to determine the current SPD.
2841 * If not, use cached value in link->sata_spd.
2842 */
2843 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2844 if (rc == 0)
2845 spd = (sstatus >> 4) & 0xf;
2846 else
2847 spd = link->sata_spd;
2848
2849 mask = link->sata_spd_limit;
2850 if (mask <= 1)
2851 return -EINVAL;
2852
2853 /* unconditionally mask off the highest bit */
2854 highbit = fls(mask) - 1;
2855 mask &= ~(1 << highbit);
2856
2857 /* Mask off all speeds higher than or equal to the current
2858 * one. Force 1.5Gbps if current SPD is not available.
2859 */
2860 if (spd > 1)
2861 mask &= (1 << (spd - 1)) - 1;
2862 else
2863 mask &= 1;
2864
2865 /* were we already at the bottom? */
2866 if (!mask)
2867 return -EINVAL;
2868
2869 link->sata_spd_limit = mask;
2870
2871 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2872 sata_spd_string(fls(mask)));
2873
2874 return 0;
2875 }
2876
2877 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2878 {
2879 struct ata_link *host_link = &link->ap->link;
2880 u32 limit, target, spd;
2881
2882 limit = link->sata_spd_limit;
2883
2884 /* Don't configure downstream link faster than upstream link.
2885 * It doesn't speed up anything and some PMPs choke on such
2886 * configuration.
2887 */
2888 if (!ata_is_host_link(link) && host_link->sata_spd)
2889 limit &= (1 << host_link->sata_spd) - 1;
2890
2891 if (limit == UINT_MAX)
2892 target = 0;
2893 else
2894 target = fls(limit);
2895
2896 spd = (*scontrol >> 4) & 0xf;
2897 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2898
2899 return spd != target;
2900 }
2901
2902 /**
2903 * sata_set_spd_needed - is SATA spd configuration needed
2904 * @link: Link in question
2905 *
2906 * Test whether the spd limit in SControl matches
2907 * @link->sata_spd_limit. This function is used to determine
2908 * whether hardreset is necessary to apply SATA spd
2909 * configuration.
2910 *
2911 * LOCKING:
2912 * Inherited from caller.
2913 *
2914 * RETURNS:
2915 * 1 if SATA spd configuration is needed, 0 otherwise.
2916 */
2917 int sata_set_spd_needed(struct ata_link *link)
2918 {
2919 u32 scontrol;
2920
2921 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2922 return 1;
2923
2924 return __sata_set_spd_needed(link, &scontrol);
2925 }
2926
2927 /**
2928 * sata_set_spd - set SATA spd according to spd limit
2929 * @link: Link to set SATA spd for
2930 *
2931 * Set SATA spd of @link according to sata_spd_limit.
2932 *
2933 * LOCKING:
2934 * Inherited from caller.
2935 *
2936 * RETURNS:
2937 * 0 if spd doesn't need to be changed, 1 if spd has been
2938 * changed. Negative errno if SCR registers are inaccessible.
2939 */
2940 int sata_set_spd(struct ata_link *link)
2941 {
2942 u32 scontrol;
2943 int rc;
2944
2945 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2946 return rc;
2947
2948 if (!__sata_set_spd_needed(link, &scontrol))
2949 return 0;
2950
2951 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2952 return rc;
2953
2954 return 1;
2955 }
2956
2957 /*
2958 * This mode timing computation functionality is ported over from
2959 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2960 */
2961 /*
2962 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2963 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2964 * for UDMA6, which is currently supported only by Maxtor drives.
2965 *
2966 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2967 */
2968
2969 static const struct ata_timing ata_timing[] = {
2970 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2971 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2972 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2973 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2974 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2975 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2976 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2977 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2978
2979 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2980 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2981 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2982
2983 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2984 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2985 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2986 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2987 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2988
2989 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2990 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2991 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2992 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2993 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2994 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2995 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2996 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2997
2998 { 0xFF }
2999 };
3000
3001 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3002 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3003
3004 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3005 {
3006 q->setup = EZ(t->setup * 1000, T);
3007 q->act8b = EZ(t->act8b * 1000, T);
3008 q->rec8b = EZ(t->rec8b * 1000, T);
3009 q->cyc8b = EZ(t->cyc8b * 1000, T);
3010 q->active = EZ(t->active * 1000, T);
3011 q->recover = EZ(t->recover * 1000, T);
3012 q->cycle = EZ(t->cycle * 1000, T);
3013 q->udma = EZ(t->udma * 1000, UT);
3014 }
3015
3016 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3017 struct ata_timing *m, unsigned int what)
3018 {
3019 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3020 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3021 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3022 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3023 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3024 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3025 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3026 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3027 }
3028
3029 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3030 {
3031 const struct ata_timing *t = ata_timing;
3032
3033 while (xfer_mode > t->mode)
3034 t++;
3035
3036 if (xfer_mode == t->mode)
3037 return t;
3038 return NULL;
3039 }
3040
3041 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3042 struct ata_timing *t, int T, int UT)
3043 {
3044 const struct ata_timing *s;
3045 struct ata_timing p;
3046
3047 /*
3048 * Find the mode.
3049 */
3050
3051 if (!(s = ata_timing_find_mode(speed)))
3052 return -EINVAL;
3053
3054 memcpy(t, s, sizeof(*s));
3055
3056 /*
3057 * If the drive is an EIDE drive, it can tell us it needs extended
3058 * PIO/MW_DMA cycle timing.
3059 */
3060
3061 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3062 memset(&p, 0, sizeof(p));
3063 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3064 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3065 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3066 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3067 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3068 }
3069 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3070 }
3071
3072 /*
3073 * Convert the timing to bus clock counts.
3074 */
3075
3076 ata_timing_quantize(t, t, T, UT);
3077
3078 /*
3079 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3080 * S.M.A.R.T * and some other commands. We have to ensure that the
3081 * DMA cycle timing is slower/equal than the fastest PIO timing.
3082 */
3083
3084 if (speed > XFER_PIO_6) {
3085 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3086 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3087 }
3088
3089 /*
3090 * Lengthen active & recovery time so that cycle time is correct.
3091 */
3092
3093 if (t->act8b + t->rec8b < t->cyc8b) {
3094 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3095 t->rec8b = t->cyc8b - t->act8b;
3096 }
3097
3098 if (t->active + t->recover < t->cycle) {
3099 t->active += (t->cycle - (t->active + t->recover)) / 2;
3100 t->recover = t->cycle - t->active;
3101 }
3102
3103 /* In a few cases quantisation may produce enough errors to
3104 leave t->cycle too low for the sum of active and recovery
3105 if so we must correct this */
3106 if (t->active + t->recover > t->cycle)
3107 t->cycle = t->active + t->recover;
3108
3109 return 0;
3110 }
3111
3112 /**
3113 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3114 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3115 * @cycle: cycle duration in ns
3116 *
3117 * Return matching xfer mode for @cycle. The returned mode is of
3118 * the transfer type specified by @xfer_shift. If @cycle is too
3119 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3120 * than the fastest known mode, the fasted mode is returned.
3121 *
3122 * LOCKING:
3123 * None.
3124 *
3125 * RETURNS:
3126 * Matching xfer_mode, 0xff if no match found.
3127 */
3128 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3129 {
3130 u8 base_mode = 0xff, last_mode = 0xff;
3131 const struct ata_xfer_ent *ent;
3132 const struct ata_timing *t;
3133
3134 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3135 if (ent->shift == xfer_shift)
3136 base_mode = ent->base;
3137
3138 for (t = ata_timing_find_mode(base_mode);
3139 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3140 unsigned short this_cycle;
3141
3142 switch (xfer_shift) {
3143 case ATA_SHIFT_PIO:
3144 case ATA_SHIFT_MWDMA:
3145 this_cycle = t->cycle;
3146 break;
3147 case ATA_SHIFT_UDMA:
3148 this_cycle = t->udma;
3149 break;
3150 default:
3151 return 0xff;
3152 }
3153
3154 if (cycle > this_cycle)
3155 break;
3156
3157 last_mode = t->mode;
3158 }
3159
3160 return last_mode;
3161 }
3162
3163 /**
3164 * ata_down_xfermask_limit - adjust dev xfer masks downward
3165 * @dev: Device to adjust xfer masks
3166 * @sel: ATA_DNXFER_* selector
3167 *
3168 * Adjust xfer masks of @dev downward. Note that this function
3169 * does not apply the change. Invoking ata_set_mode() afterwards
3170 * will apply the limit.
3171 *
3172 * LOCKING:
3173 * Inherited from caller.
3174 *
3175 * RETURNS:
3176 * 0 on success, negative errno on failure
3177 */
3178 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3179 {
3180 char buf[32];
3181 unsigned long orig_mask, xfer_mask;
3182 unsigned long pio_mask, mwdma_mask, udma_mask;
3183 int quiet, highbit;
3184
3185 quiet = !!(sel & ATA_DNXFER_QUIET);
3186 sel &= ~ATA_DNXFER_QUIET;
3187
3188 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3189 dev->mwdma_mask,
3190 dev->udma_mask);
3191 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3192
3193 switch (sel) {
3194 case ATA_DNXFER_PIO:
3195 highbit = fls(pio_mask) - 1;
3196 pio_mask &= ~(1 << highbit);
3197 break;
3198
3199 case ATA_DNXFER_DMA:
3200 if (udma_mask) {
3201 highbit = fls(udma_mask) - 1;
3202 udma_mask &= ~(1 << highbit);
3203 if (!udma_mask)
3204 return -ENOENT;
3205 } else if (mwdma_mask) {
3206 highbit = fls(mwdma_mask) - 1;
3207 mwdma_mask &= ~(1 << highbit);
3208 if (!mwdma_mask)
3209 return -ENOENT;
3210 }
3211 break;
3212
3213 case ATA_DNXFER_40C:
3214 udma_mask &= ATA_UDMA_MASK_40C;
3215 break;
3216
3217 case ATA_DNXFER_FORCE_PIO0:
3218 pio_mask &= 1;
3219 case ATA_DNXFER_FORCE_PIO:
3220 mwdma_mask = 0;
3221 udma_mask = 0;
3222 break;
3223
3224 default:
3225 BUG();
3226 }
3227
3228 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3229
3230 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3231 return -ENOENT;
3232
3233 if (!quiet) {
3234 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3235 snprintf(buf, sizeof(buf), "%s:%s",
3236 ata_mode_string(xfer_mask),
3237 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3238 else
3239 snprintf(buf, sizeof(buf), "%s",
3240 ata_mode_string(xfer_mask));
3241
3242 ata_dev_printk(dev, KERN_WARNING,
3243 "limiting speed to %s\n", buf);
3244 }
3245
3246 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3247 &dev->udma_mask);
3248
3249 return 0;
3250 }
3251
3252 static int ata_dev_set_mode(struct ata_device *dev)
3253 {
3254 struct ata_eh_context *ehc = &dev->link->eh_context;
3255 const char *dev_err_whine = "";
3256 int ign_dev_err = 0;
3257 unsigned int err_mask;
3258 int rc;
3259
3260 dev->flags &= ~ATA_DFLAG_PIO;
3261 if (dev->xfer_shift == ATA_SHIFT_PIO)
3262 dev->flags |= ATA_DFLAG_PIO;
3263
3264 err_mask = ata_dev_set_xfermode(dev);
3265
3266 if (err_mask & ~AC_ERR_DEV)
3267 goto fail;
3268
3269 /* revalidate */
3270 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3271 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3272 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3273 if (rc)
3274 return rc;
3275
3276 /* Old CFA may refuse this command, which is just fine */
3277 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3278 ign_dev_err = 1;
3279
3280 /* Some very old devices and some bad newer ones fail any kind of
3281 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3282 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3283 dev->pio_mode <= XFER_PIO_2)
3284 ign_dev_err = 1;
3285
3286 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3287 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3288 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3289 dev->dma_mode == XFER_MW_DMA_0 &&
3290 (dev->id[63] >> 8) & 1)
3291 ign_dev_err = 1;
3292
3293 /* if the device is actually configured correctly, ignore dev err */
3294 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3295 ign_dev_err = 1;
3296
3297 if (err_mask & AC_ERR_DEV) {
3298 if (!ign_dev_err)
3299 goto fail;
3300 else
3301 dev_err_whine = " (device error ignored)";
3302 }
3303
3304 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3305 dev->xfer_shift, (int)dev->xfer_mode);
3306
3307 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3308 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3309 dev_err_whine);
3310
3311 return 0;
3312
3313 fail:
3314 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3315 "(err_mask=0x%x)\n", err_mask);
3316 return -EIO;
3317 }
3318
3319 /**
3320 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3321 * @link: link on which timings will be programmed
3322 * @r_failed_dev: out parameter for failed device
3323 *
3324 * Standard implementation of the function used to tune and set
3325 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3326 * ata_dev_set_mode() fails, pointer to the failing device is
3327 * returned in @r_failed_dev.
3328 *
3329 * LOCKING:
3330 * PCI/etc. bus probe sem.
3331 *
3332 * RETURNS:
3333 * 0 on success, negative errno otherwise
3334 */
3335
3336 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3337 {
3338 struct ata_port *ap = link->ap;
3339 struct ata_device *dev;
3340 int rc = 0, used_dma = 0, found = 0;
3341
3342 /* step 1: calculate xfer_mask */
3343 ata_link_for_each_dev(dev, link) {
3344 unsigned long pio_mask, dma_mask;
3345 unsigned int mode_mask;
3346
3347 if (!ata_dev_enabled(dev))
3348 continue;
3349
3350 mode_mask = ATA_DMA_MASK_ATA;
3351 if (dev->class == ATA_DEV_ATAPI)
3352 mode_mask = ATA_DMA_MASK_ATAPI;
3353 else if (ata_id_is_cfa(dev->id))
3354 mode_mask = ATA_DMA_MASK_CFA;
3355
3356 ata_dev_xfermask(dev);
3357 ata_force_xfermask(dev);
3358
3359 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3360 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3361
3362 if (libata_dma_mask & mode_mask)
3363 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3364 else
3365 dma_mask = 0;
3366
3367 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3368 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3369
3370 found = 1;
3371 if (dev->dma_mode != 0xff)
3372 used_dma = 1;
3373 }
3374 if (!found)
3375 goto out;
3376
3377 /* step 2: always set host PIO timings */
3378 ata_link_for_each_dev(dev, link) {
3379 if (!ata_dev_enabled(dev))
3380 continue;
3381
3382 if (dev->pio_mode == 0xff) {
3383 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3384 rc = -EINVAL;
3385 goto out;
3386 }
3387
3388 dev->xfer_mode = dev->pio_mode;
3389 dev->xfer_shift = ATA_SHIFT_PIO;
3390 if (ap->ops->set_piomode)
3391 ap->ops->set_piomode(ap, dev);
3392 }
3393
3394 /* step 3: set host DMA timings */
3395 ata_link_for_each_dev(dev, link) {
3396 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3397 continue;
3398
3399 dev->xfer_mode = dev->dma_mode;
3400 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3401 if (ap->ops->set_dmamode)
3402 ap->ops->set_dmamode(ap, dev);
3403 }
3404
3405 /* step 4: update devices' xfer mode */
3406 ata_link_for_each_dev(dev, link) {
3407 /* don't update suspended devices' xfer mode */
3408 if (!ata_dev_enabled(dev))
3409 continue;
3410
3411 rc = ata_dev_set_mode(dev);
3412 if (rc)
3413 goto out;
3414 }
3415
3416 /* Record simplex status. If we selected DMA then the other
3417 * host channels are not permitted to do so.
3418 */
3419 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3420 ap->host->simplex_claimed = ap;
3421
3422 out:
3423 if (rc)
3424 *r_failed_dev = dev;
3425 return rc;
3426 }
3427
3428 /**
3429 * ata_tf_to_host - issue ATA taskfile to host controller
3430 * @ap: port to which command is being issued
3431 * @tf: ATA taskfile register set
3432 *
3433 * Issues ATA taskfile register set to ATA host controller,
3434 * with proper synchronization with interrupt handler and
3435 * other threads.
3436 *
3437 * LOCKING:
3438 * spin_lock_irqsave(host lock)
3439 */
3440
3441 static inline void ata_tf_to_host(struct ata_port *ap,
3442 const struct ata_taskfile *tf)
3443 {
3444 ap->ops->tf_load(ap, tf);
3445 ap->ops->exec_command(ap, tf);
3446 }
3447
3448 /**
3449 * ata_busy_sleep - sleep until BSY clears, or timeout
3450 * @ap: port containing status register to be polled
3451 * @tmout_pat: impatience timeout
3452 * @tmout: overall timeout
3453 *
3454 * Sleep until ATA Status register bit BSY clears,
3455 * or a timeout occurs.
3456 *
3457 * LOCKING:
3458 * Kernel thread context (may sleep).
3459 *
3460 * RETURNS:
3461 * 0 on success, -errno otherwise.
3462 */
3463 int ata_busy_sleep(struct ata_port *ap,
3464 unsigned long tmout_pat, unsigned long tmout)
3465 {
3466 unsigned long timer_start, timeout;
3467 u8 status;
3468
3469 status = ata_busy_wait(ap, ATA_BUSY, 300);
3470 timer_start = jiffies;
3471 timeout = timer_start + tmout_pat;
3472 while (status != 0xff && (status & ATA_BUSY) &&
3473 time_before(jiffies, timeout)) {
3474 msleep(50);
3475 status = ata_busy_wait(ap, ATA_BUSY, 3);
3476 }
3477
3478 if (status != 0xff && (status & ATA_BUSY))
3479 ata_port_printk(ap, KERN_WARNING,
3480 "port is slow to respond, please be patient "
3481 "(Status 0x%x)\n", status);
3482
3483 timeout = timer_start + tmout;
3484 while (status != 0xff && (status & ATA_BUSY) &&
3485 time_before(jiffies, timeout)) {
3486 msleep(50);
3487 status = ata_chk_status(ap);
3488 }
3489
3490 if (status == 0xff)
3491 return -ENODEV;
3492
3493 if (status & ATA_BUSY) {
3494 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3495 "(%lu secs, Status 0x%x)\n",
3496 tmout / HZ, status);
3497 return -EBUSY;
3498 }
3499
3500 return 0;
3501 }
3502
3503 /**
3504 * ata_wait_after_reset - wait before checking status after reset
3505 * @ap: port containing status register to be polled
3506 * @deadline: deadline jiffies for the operation
3507 *
3508 * After reset, we need to pause a while before reading status.
3509 * Also, certain combination of controller and device report 0xff
3510 * for some duration (e.g. until SATA PHY is up and running)
3511 * which is interpreted as empty port in ATA world. This
3512 * function also waits for such devices to get out of 0xff
3513 * status.
3514 *
3515 * LOCKING:
3516 * Kernel thread context (may sleep).
3517 */
3518 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3519 {
3520 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3521
3522 if (time_before(until, deadline))
3523 deadline = until;
3524
3525 /* Spec mandates ">= 2ms" before checking status. We wait
3526 * 150ms, because that was the magic delay used for ATAPI
3527 * devices in Hale Landis's ATADRVR, for the period of time
3528 * between when the ATA command register is written, and then
3529 * status is checked. Because waiting for "a while" before
3530 * checking status is fine, post SRST, we perform this magic
3531 * delay here as well.
3532 *
3533 * Old drivers/ide uses the 2mS rule and then waits for ready.
3534 */
3535 msleep(150);
3536
3537 /* Wait for 0xff to clear. Some SATA devices take a long time
3538 * to clear 0xff after reset. For example, HHD424020F7SV00
3539 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3540 * than that.
3541 *
3542 * Note that some PATA controllers (pata_ali) explode if
3543 * status register is read more than once when there's no
3544 * device attached.
3545 */
3546 if (ap->flags & ATA_FLAG_SATA) {
3547 while (1) {
3548 u8 status = ata_chk_status(ap);
3549
3550 if (status != 0xff || time_after(jiffies, deadline))
3551 return;
3552
3553 msleep(50);
3554 }
3555 }
3556 }
3557
3558 /**
3559 * ata_wait_ready - sleep until BSY clears, or timeout
3560 * @ap: port containing status register to be polled
3561 * @deadline: deadline jiffies for the operation
3562 *
3563 * Sleep until ATA Status register bit BSY clears, or timeout
3564 * occurs.
3565 *
3566 * LOCKING:
3567 * Kernel thread context (may sleep).
3568 *
3569 * RETURNS:
3570 * 0 on success, -errno otherwise.
3571 */
3572 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3573 {
3574 unsigned long start = jiffies;
3575 int warned = 0;
3576
3577 while (1) {
3578 u8 status = ata_chk_status(ap);
3579 unsigned long now = jiffies;
3580
3581 if (!(status & ATA_BUSY))
3582 return 0;
3583 if (!ata_link_online(&ap->link) && status == 0xff)
3584 return -ENODEV;
3585 if (time_after(now, deadline))
3586 return -EBUSY;
3587
3588 if (!warned && time_after(now, start + 5 * HZ) &&
3589 (deadline - now > 3 * HZ)) {
3590 ata_port_printk(ap, KERN_WARNING,
3591 "port is slow to respond, please be patient "
3592 "(Status 0x%x)\n", status);
3593 warned = 1;
3594 }
3595
3596 msleep(50);
3597 }
3598 }
3599
3600 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3601 unsigned long deadline)
3602 {
3603 struct ata_ioports *ioaddr = &ap->ioaddr;
3604 unsigned int dev0 = devmask & (1 << 0);
3605 unsigned int dev1 = devmask & (1 << 1);
3606 int rc, ret = 0;
3607
3608 /* if device 0 was found in ata_devchk, wait for its
3609 * BSY bit to clear
3610 */
3611 if (dev0) {
3612 rc = ata_wait_ready(ap, deadline);
3613 if (rc) {
3614 if (rc != -ENODEV)
3615 return rc;
3616 ret = rc;
3617 }
3618 }
3619
3620 /* if device 1 was found in ata_devchk, wait for register
3621 * access briefly, then wait for BSY to clear.
3622 */
3623 if (dev1) {
3624 int i;
3625
3626 ap->ops->dev_select(ap, 1);
3627
3628 /* Wait for register access. Some ATAPI devices fail
3629 * to set nsect/lbal after reset, so don't waste too
3630 * much time on it. We're gonna wait for !BSY anyway.
3631 */
3632 for (i = 0; i < 2; i++) {
3633 u8 nsect, lbal;
3634
3635 nsect = ioread8(ioaddr->nsect_addr);
3636 lbal = ioread8(ioaddr->lbal_addr);
3637 if ((nsect == 1) && (lbal == 1))
3638 break;
3639 msleep(50); /* give drive a breather */
3640 }
3641
3642 rc = ata_wait_ready(ap, deadline);
3643 if (rc) {
3644 if (rc != -ENODEV)
3645 return rc;
3646 ret = rc;
3647 }
3648 }
3649
3650 /* is all this really necessary? */
3651 ap->ops->dev_select(ap, 0);
3652 if (dev1)
3653 ap->ops->dev_select(ap, 1);
3654 if (dev0)
3655 ap->ops->dev_select(ap, 0);
3656
3657 return ret;
3658 }
3659
3660 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3661 unsigned long deadline)
3662 {
3663 struct ata_ioports *ioaddr = &ap->ioaddr;
3664
3665 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3666
3667 /* software reset. causes dev0 to be selected */
3668 iowrite8(ap->ctl, ioaddr->ctl_addr);
3669 udelay(20); /* FIXME: flush */
3670 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3671 udelay(20); /* FIXME: flush */
3672 iowrite8(ap->ctl, ioaddr->ctl_addr);
3673
3674 /* wait a while before checking status */
3675 ata_wait_after_reset(ap, deadline);
3676
3677 /* Before we perform post reset processing we want to see if
3678 * the bus shows 0xFF because the odd clown forgets the D7
3679 * pulldown resistor.
3680 */
3681 if (ata_chk_status(ap) == 0xFF)
3682 return -ENODEV;
3683
3684 return ata_bus_post_reset(ap, devmask, deadline);
3685 }
3686
3687 /**
3688 * ata_bus_reset - reset host port and associated ATA channel
3689 * @ap: port to reset
3690 *
3691 * This is typically the first time we actually start issuing
3692 * commands to the ATA channel. We wait for BSY to clear, then
3693 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3694 * result. Determine what devices, if any, are on the channel
3695 * by looking at the device 0/1 error register. Look at the signature
3696 * stored in each device's taskfile registers, to determine if
3697 * the device is ATA or ATAPI.
3698 *
3699 * LOCKING:
3700 * PCI/etc. bus probe sem.
3701 * Obtains host lock.
3702 *
3703 * SIDE EFFECTS:
3704 * Sets ATA_FLAG_DISABLED if bus reset fails.
3705 */
3706
3707 void ata_bus_reset(struct ata_port *ap)
3708 {
3709 struct ata_device *device = ap->link.device;
3710 struct ata_ioports *ioaddr = &ap->ioaddr;
3711 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3712 u8 err;
3713 unsigned int dev0, dev1 = 0, devmask = 0;
3714 int rc;
3715
3716 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3717
3718 /* determine if device 0/1 are present */
3719 if (ap->flags & ATA_FLAG_SATA_RESET)
3720 dev0 = 1;
3721 else {
3722 dev0 = ata_devchk(ap, 0);
3723 if (slave_possible)
3724 dev1 = ata_devchk(ap, 1);
3725 }
3726
3727 if (dev0)
3728 devmask |= (1 << 0);
3729 if (dev1)
3730 devmask |= (1 << 1);
3731
3732 /* select device 0 again */
3733 ap->ops->dev_select(ap, 0);
3734
3735 /* issue bus reset */
3736 if (ap->flags & ATA_FLAG_SRST) {
3737 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3738 if (rc && rc != -ENODEV)
3739 goto err_out;
3740 }
3741
3742 /*
3743 * determine by signature whether we have ATA or ATAPI devices
3744 */
3745 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3746 if ((slave_possible) && (err != 0x81))
3747 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3748
3749 /* is double-select really necessary? */
3750 if (device[1].class != ATA_DEV_NONE)
3751 ap->ops->dev_select(ap, 1);
3752 if (device[0].class != ATA_DEV_NONE)
3753 ap->ops->dev_select(ap, 0);
3754
3755 /* if no devices were detected, disable this port */
3756 if ((device[0].class == ATA_DEV_NONE) &&
3757 (device[1].class == ATA_DEV_NONE))
3758 goto err_out;
3759
3760 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3761 /* set up device control for ATA_FLAG_SATA_RESET */
3762 iowrite8(ap->ctl, ioaddr->ctl_addr);
3763 }
3764
3765 DPRINTK("EXIT\n");
3766 return;
3767
3768 err_out:
3769 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3770 ata_port_disable(ap);
3771
3772 DPRINTK("EXIT\n");
3773 }
3774
3775 /**
3776 * sata_link_debounce - debounce SATA phy status
3777 * @link: ATA link to debounce SATA phy status for
3778 * @params: timing parameters { interval, duratinon, timeout } in msec
3779 * @deadline: deadline jiffies for the operation
3780 *
3781 * Make sure SStatus of @link reaches stable state, determined by
3782 * holding the same value where DET is not 1 for @duration polled
3783 * every @interval, before @timeout. Timeout constraints the
3784 * beginning of the stable state. Because DET gets stuck at 1 on
3785 * some controllers after hot unplugging, this functions waits
3786 * until timeout then returns 0 if DET is stable at 1.
3787 *
3788 * @timeout is further limited by @deadline. The sooner of the
3789 * two is used.
3790 *
3791 * LOCKING:
3792 * Kernel thread context (may sleep)
3793 *
3794 * RETURNS:
3795 * 0 on success, -errno on failure.
3796 */
3797 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3798 unsigned long deadline)
3799 {
3800 unsigned long interval_msec = params[0];
3801 unsigned long duration = msecs_to_jiffies(params[1]);
3802 unsigned long last_jiffies, t;
3803 u32 last, cur;
3804 int rc;
3805
3806 t = jiffies + msecs_to_jiffies(params[2]);
3807 if (time_before(t, deadline))
3808 deadline = t;
3809
3810 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3811 return rc;
3812 cur &= 0xf;
3813
3814 last = cur;
3815 last_jiffies = jiffies;
3816
3817 while (1) {
3818 msleep(interval_msec);
3819 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3820 return rc;
3821 cur &= 0xf;
3822
3823 /* DET stable? */
3824 if (cur == last) {
3825 if (cur == 1 && time_before(jiffies, deadline))
3826 continue;
3827 if (time_after(jiffies, last_jiffies + duration))
3828 return 0;
3829 continue;
3830 }
3831
3832 /* unstable, start over */
3833 last = cur;
3834 last_jiffies = jiffies;
3835
3836 /* Check deadline. If debouncing failed, return
3837 * -EPIPE to tell upper layer to lower link speed.
3838 */
3839 if (time_after(jiffies, deadline))
3840 return -EPIPE;
3841 }
3842 }
3843
3844 /**
3845 * sata_link_resume - resume SATA link
3846 * @link: ATA link to resume SATA
3847 * @params: timing parameters { interval, duratinon, timeout } in msec
3848 * @deadline: deadline jiffies for the operation
3849 *
3850 * Resume SATA phy @link and debounce it.
3851 *
3852 * LOCKING:
3853 * Kernel thread context (may sleep)
3854 *
3855 * RETURNS:
3856 * 0 on success, -errno on failure.
3857 */
3858 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3859 unsigned long deadline)
3860 {
3861 u32 scontrol;
3862 int rc;
3863
3864 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3865 return rc;
3866
3867 scontrol = (scontrol & 0x0f0) | 0x300;
3868
3869 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3870 return rc;
3871
3872 /* Some PHYs react badly if SStatus is pounded immediately
3873 * after resuming. Delay 200ms before debouncing.
3874 */
3875 msleep(200);
3876
3877 return sata_link_debounce(link, params, deadline);
3878 }
3879
3880 /**
3881 * ata_std_prereset - prepare for reset
3882 * @link: ATA link to be reset
3883 * @deadline: deadline jiffies for the operation
3884 *
3885 * @link is about to be reset. Initialize it. Failure from
3886 * prereset makes libata abort whole reset sequence and give up
3887 * that port, so prereset should be best-effort. It does its
3888 * best to prepare for reset sequence but if things go wrong, it
3889 * should just whine, not fail.
3890 *
3891 * LOCKING:
3892 * Kernel thread context (may sleep)
3893 *
3894 * RETURNS:
3895 * 0 on success, -errno otherwise.
3896 */
3897 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3898 {
3899 struct ata_port *ap = link->ap;
3900 struct ata_eh_context *ehc = &link->eh_context;
3901 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3902 int rc;
3903
3904 /* handle link resume */
3905 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3906 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3907 ehc->i.action |= ATA_EH_HARDRESET;
3908
3909 /* Some PMPs don't work with only SRST, force hardreset if PMP
3910 * is supported.
3911 */
3912 if (ap->flags & ATA_FLAG_PMP)
3913 ehc->i.action |= ATA_EH_HARDRESET;
3914
3915 /* if we're about to do hardreset, nothing more to do */
3916 if (ehc->i.action & ATA_EH_HARDRESET)
3917 return 0;
3918
3919 /* if SATA, resume link */
3920 if (ap->flags & ATA_FLAG_SATA) {
3921 rc = sata_link_resume(link, timing, deadline);
3922 /* whine about phy resume failure but proceed */
3923 if (rc && rc != -EOPNOTSUPP)
3924 ata_link_printk(link, KERN_WARNING, "failed to resume "
3925 "link for reset (errno=%d)\n", rc);
3926 }
3927
3928 /* Wait for !BSY if the controller can wait for the first D2H
3929 * Reg FIS and we don't know that no device is attached.
3930 */
3931 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3932 rc = ata_wait_ready(ap, deadline);
3933 if (rc && rc != -ENODEV) {
3934 ata_link_printk(link, KERN_WARNING, "device not ready "
3935 "(errno=%d), forcing hardreset\n", rc);
3936 ehc->i.action |= ATA_EH_HARDRESET;
3937 }
3938 }
3939
3940 return 0;
3941 }
3942
3943 /**
3944 * ata_std_softreset - reset host port via ATA SRST
3945 * @link: ATA link to reset
3946 * @classes: resulting classes of attached devices
3947 * @deadline: deadline jiffies for the operation
3948 *
3949 * Reset host port using ATA SRST.
3950 *
3951 * LOCKING:
3952 * Kernel thread context (may sleep)
3953 *
3954 * RETURNS:
3955 * 0 on success, -errno otherwise.
3956 */
3957 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3958 unsigned long deadline)
3959 {
3960 struct ata_port *ap = link->ap;
3961 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3962 unsigned int devmask = 0;
3963 int rc;
3964 u8 err;
3965
3966 DPRINTK("ENTER\n");
3967
3968 if (ata_link_offline(link)) {
3969 classes[0] = ATA_DEV_NONE;
3970 goto out;
3971 }
3972
3973 /* determine if device 0/1 are present */
3974 if (ata_devchk(ap, 0))
3975 devmask |= (1 << 0);
3976 if (slave_possible && ata_devchk(ap, 1))
3977 devmask |= (1 << 1);
3978
3979 /* select device 0 again */
3980 ap->ops->dev_select(ap, 0);
3981
3982 /* issue bus reset */
3983 DPRINTK("about to softreset, devmask=%x\n", devmask);
3984 rc = ata_bus_softreset(ap, devmask, deadline);
3985 /* if link is occupied, -ENODEV too is an error */
3986 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3987 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3988 return rc;
3989 }
3990
3991 /* determine by signature whether we have ATA or ATAPI devices */
3992 classes[0] = ata_dev_try_classify(&link->device[0],
3993 devmask & (1 << 0), &err);
3994 if (slave_possible && err != 0x81)
3995 classes[1] = ata_dev_try_classify(&link->device[1],
3996 devmask & (1 << 1), &err);
3997
3998 out:
3999 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
4000 return 0;
4001 }
4002
4003 /**
4004 * sata_link_hardreset - reset link via SATA phy reset
4005 * @link: link to reset
4006 * @timing: timing parameters { interval, duratinon, timeout } in msec
4007 * @deadline: deadline jiffies for the operation
4008 *
4009 * SATA phy-reset @link using DET bits of SControl register.
4010 *
4011 * LOCKING:
4012 * Kernel thread context (may sleep)
4013 *
4014 * RETURNS:
4015 * 0 on success, -errno otherwise.
4016 */
4017 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4018 unsigned long deadline)
4019 {
4020 u32 scontrol;
4021 int rc;
4022
4023 DPRINTK("ENTER\n");
4024
4025 if (sata_set_spd_needed(link)) {
4026 /* SATA spec says nothing about how to reconfigure
4027 * spd. To be on the safe side, turn off phy during
4028 * reconfiguration. This works for at least ICH7 AHCI
4029 * and Sil3124.
4030 */
4031 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4032 goto out;
4033
4034 scontrol = (scontrol & 0x0f0) | 0x304;
4035
4036 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4037 goto out;
4038
4039 sata_set_spd(link);
4040 }
4041
4042 /* issue phy wake/reset */
4043 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4044 goto out;
4045
4046 scontrol = (scontrol & 0x0f0) | 0x301;
4047
4048 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4049 goto out;
4050
4051 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4052 * 10.4.2 says at least 1 ms.
4053 */
4054 msleep(1);
4055
4056 /* bring link back */
4057 rc = sata_link_resume(link, timing, deadline);
4058 out:
4059 DPRINTK("EXIT, rc=%d\n", rc);
4060 return rc;
4061 }
4062
4063 /**
4064 * sata_std_hardreset - reset host port via SATA phy reset
4065 * @link: link to reset
4066 * @class: resulting class of attached device
4067 * @deadline: deadline jiffies for the operation
4068 *
4069 * SATA phy-reset host port using DET bits of SControl register,
4070 * wait for !BSY and classify the attached device.
4071 *
4072 * LOCKING:
4073 * Kernel thread context (may sleep)
4074 *
4075 * RETURNS:
4076 * 0 on success, -errno otherwise.
4077 */
4078 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4079 unsigned long deadline)
4080 {
4081 struct ata_port *ap = link->ap;
4082 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4083 int rc;
4084
4085 DPRINTK("ENTER\n");
4086
4087 /* do hardreset */
4088 rc = sata_link_hardreset(link, timing, deadline);
4089 if (rc) {
4090 ata_link_printk(link, KERN_ERR,
4091 "COMRESET failed (errno=%d)\n", rc);
4092 return rc;
4093 }
4094
4095 /* TODO: phy layer with polling, timeouts, etc. */
4096 if (ata_link_offline(link)) {
4097 *class = ATA_DEV_NONE;
4098 DPRINTK("EXIT, link offline\n");
4099 return 0;
4100 }
4101
4102 /* wait a while before checking status */
4103 ata_wait_after_reset(ap, deadline);
4104
4105 /* If PMP is supported, we have to do follow-up SRST. Note
4106 * that some PMPs don't send D2H Reg FIS after hardreset at
4107 * all if the first port is empty. Wait for it just for a
4108 * second and request follow-up SRST.
4109 */
4110 if (ap->flags & ATA_FLAG_PMP) {
4111 ata_wait_ready(ap, jiffies + HZ);
4112 return -EAGAIN;
4113 }
4114
4115 rc = ata_wait_ready(ap, deadline);
4116 /* link occupied, -ENODEV too is an error */
4117 if (rc) {
4118 ata_link_printk(link, KERN_ERR,
4119 "COMRESET failed (errno=%d)\n", rc);
4120 return rc;
4121 }
4122
4123 ap->ops->dev_select(ap, 0); /* probably unnecessary */
4124
4125 *class = ata_dev_try_classify(link->device, 1, NULL);
4126
4127 DPRINTK("EXIT, class=%u\n", *class);
4128 return 0;
4129 }
4130
4131 /**
4132 * ata_std_postreset - standard postreset callback
4133 * @link: the target ata_link
4134 * @classes: classes of attached devices
4135 *
4136 * This function is invoked after a successful reset. Note that
4137 * the device might have been reset more than once using
4138 * different reset methods before postreset is invoked.
4139 *
4140 * LOCKING:
4141 * Kernel thread context (may sleep)
4142 */
4143 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4144 {
4145 struct ata_port *ap = link->ap;
4146 u32 serror;
4147
4148 DPRINTK("ENTER\n");
4149
4150 /* print link status */
4151 sata_print_link_status(link);
4152
4153 /* clear SError */
4154 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
4155 sata_scr_write(link, SCR_ERROR, serror);
4156 link->eh_info.serror = 0;
4157
4158 /* is double-select really necessary? */
4159 if (classes[0] != ATA_DEV_NONE)
4160 ap->ops->dev_select(ap, 1);
4161 if (classes[1] != ATA_DEV_NONE)
4162 ap->ops->dev_select(ap, 0);
4163
4164 /* bail out if no device is present */
4165 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
4166 DPRINTK("EXIT, no device\n");
4167 return;
4168 }
4169
4170 /* set up device control */
4171 if (ap->ioaddr.ctl_addr)
4172 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
4173
4174 DPRINTK("EXIT\n");
4175 }
4176
4177 /**
4178 * ata_dev_same_device - Determine whether new ID matches configured device
4179 * @dev: device to compare against
4180 * @new_class: class of the new device
4181 * @new_id: IDENTIFY page of the new device
4182 *
4183 * Compare @new_class and @new_id against @dev and determine
4184 * whether @dev is the device indicated by @new_class and
4185 * @new_id.
4186 *
4187 * LOCKING:
4188 * None.
4189 *
4190 * RETURNS:
4191 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4192 */
4193 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4194 const u16 *new_id)
4195 {
4196 const u16 *old_id = dev->id;
4197 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4198 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4199
4200 if (dev->class != new_class) {
4201 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4202 dev->class, new_class);
4203 return 0;
4204 }
4205
4206 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4207 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4208 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4209 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4210
4211 if (strcmp(model[0], model[1])) {
4212 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4213 "'%s' != '%s'\n", model[0], model[1]);
4214 return 0;
4215 }
4216
4217 if (strcmp(serial[0], serial[1])) {
4218 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4219 "'%s' != '%s'\n", serial[0], serial[1]);
4220 return 0;
4221 }
4222
4223 return 1;
4224 }
4225
4226 /**
4227 * ata_dev_reread_id - Re-read IDENTIFY data
4228 * @dev: target ATA device
4229 * @readid_flags: read ID flags
4230 *
4231 * Re-read IDENTIFY page and make sure @dev is still attached to
4232 * the port.
4233 *
4234 * LOCKING:
4235 * Kernel thread context (may sleep)
4236 *
4237 * RETURNS:
4238 * 0 on success, negative errno otherwise
4239 */
4240 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4241 {
4242 unsigned int class = dev->class;
4243 u16 *id = (void *)dev->link->ap->sector_buf;
4244 int rc;
4245
4246 /* read ID data */
4247 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4248 if (rc)
4249 return rc;
4250
4251 /* is the device still there? */
4252 if (!ata_dev_same_device(dev, class, id))
4253 return -ENODEV;
4254
4255 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4256 return 0;
4257 }
4258
4259 /**
4260 * ata_dev_revalidate - Revalidate ATA device
4261 * @dev: device to revalidate
4262 * @new_class: new class code
4263 * @readid_flags: read ID flags
4264 *
4265 * Re-read IDENTIFY page, make sure @dev is still attached to the
4266 * port and reconfigure it according to the new IDENTIFY page.
4267 *
4268 * LOCKING:
4269 * Kernel thread context (may sleep)
4270 *
4271 * RETURNS:
4272 * 0 on success, negative errno otherwise
4273 */
4274 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4275 unsigned int readid_flags)
4276 {
4277 u64 n_sectors = dev->n_sectors;
4278 int rc;
4279
4280 if (!ata_dev_enabled(dev))
4281 return -ENODEV;
4282
4283 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4284 if (ata_class_enabled(new_class) &&
4285 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4286 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4287 dev->class, new_class);
4288 rc = -ENODEV;
4289 goto fail;
4290 }
4291
4292 /* re-read ID */
4293 rc = ata_dev_reread_id(dev, readid_flags);
4294 if (rc)
4295 goto fail;
4296
4297 /* configure device according to the new ID */
4298 rc = ata_dev_configure(dev);
4299 if (rc)
4300 goto fail;
4301
4302 /* verify n_sectors hasn't changed */
4303 if (dev->class == ATA_DEV_ATA && n_sectors &&
4304 dev->n_sectors != n_sectors) {
4305 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4306 "%llu != %llu\n",
4307 (unsigned long long)n_sectors,
4308 (unsigned long long)dev->n_sectors);
4309
4310 /* restore original n_sectors */
4311 dev->n_sectors = n_sectors;
4312
4313 rc = -ENODEV;
4314 goto fail;
4315 }
4316
4317 return 0;
4318
4319 fail:
4320 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4321 return rc;
4322 }
4323
4324 struct ata_blacklist_entry {
4325 const char *model_num;
4326 const char *model_rev;
4327 unsigned long horkage;
4328 };
4329
4330 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4331 /* Devices with DMA related problems under Linux */
4332 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4333 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4334 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4335 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4336 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4337 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4338 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4339 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4340 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4341 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4342 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4343 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4344 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4345 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4346 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4347 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4348 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4349 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4350 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4351 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4352 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4353 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4354 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4355 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4356 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4357 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4358 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4359 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4360 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4361 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4362 /* Odd clown on sil3726/4726 PMPs */
4363 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4364 ATA_HORKAGE_SKIP_PM },
4365
4366 /* Weird ATAPI devices */
4367 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4368
4369 /* Devices we expect to fail diagnostics */
4370
4371 /* Devices where NCQ should be avoided */
4372 /* NCQ is slow */
4373 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4374 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4375 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4376 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4377 /* NCQ is broken */
4378 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4379 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4380 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4381 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4382
4383 /* Blacklist entries taken from Silicon Image 3124/3132
4384 Windows driver .inf file - also several Linux problem reports */
4385 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4386 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4387 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4388
4389 /* devices which puke on READ_NATIVE_MAX */
4390 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4391 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4392 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4393 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4394
4395 /* Devices which report 1 sector over size HPA */
4396 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4397 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4398 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4399
4400 /* Devices which get the IVB wrong */
4401 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4402 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4403 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4404 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4405 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4406
4407 /* End Marker */
4408 { }
4409 };
4410
4411 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4412 {
4413 const char *p;
4414 int len;
4415
4416 /*
4417 * check for trailing wildcard: *\0
4418 */
4419 p = strchr(patt, wildchar);
4420 if (p && ((*(p + 1)) == 0))
4421 len = p - patt;
4422 else {
4423 len = strlen(name);
4424 if (!len) {
4425 if (!*patt)
4426 return 0;
4427 return -1;
4428 }
4429 }
4430
4431 return strncmp(patt, name, len);
4432 }
4433
4434 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4435 {
4436 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4437 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4438 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4439
4440 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4441 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4442
4443 while (ad->model_num) {
4444 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4445 if (ad->model_rev == NULL)
4446 return ad->horkage;
4447 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4448 return ad->horkage;
4449 }
4450 ad++;
4451 }
4452 return 0;
4453 }
4454
4455 static int ata_dma_blacklisted(const struct ata_device *dev)
4456 {
4457 /* We don't support polling DMA.
4458 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4459 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4460 */
4461 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4462 (dev->flags & ATA_DFLAG_CDB_INTR))
4463 return 1;
4464 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4465 }
4466
4467 /**
4468 * ata_is_40wire - check drive side detection
4469 * @dev: device
4470 *
4471 * Perform drive side detection decoding, allowing for device vendors
4472 * who can't follow the documentation.
4473 */
4474
4475 static int ata_is_40wire(struct ata_device *dev)
4476 {
4477 if (dev->horkage & ATA_HORKAGE_IVB)
4478 return ata_drive_40wire_relaxed(dev->id);
4479 return ata_drive_40wire(dev->id);
4480 }
4481
4482 /**
4483 * ata_dev_xfermask - Compute supported xfermask of the given device
4484 * @dev: Device to compute xfermask for
4485 *
4486 * Compute supported xfermask of @dev and store it in
4487 * dev->*_mask. This function is responsible for applying all
4488 * known limits including host controller limits, device
4489 * blacklist, etc...
4490 *
4491 * LOCKING:
4492 * None.
4493 */
4494 static void ata_dev_xfermask(struct ata_device *dev)
4495 {
4496 struct ata_link *link = dev->link;
4497 struct ata_port *ap = link->ap;
4498 struct ata_host *host = ap->host;
4499 unsigned long xfer_mask;
4500
4501 /* controller modes available */
4502 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4503 ap->mwdma_mask, ap->udma_mask);
4504
4505 /* drive modes available */
4506 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4507 dev->mwdma_mask, dev->udma_mask);
4508 xfer_mask &= ata_id_xfermask(dev->id);
4509
4510 /*
4511 * CFA Advanced TrueIDE timings are not allowed on a shared
4512 * cable
4513 */
4514 if (ata_dev_pair(dev)) {
4515 /* No PIO5 or PIO6 */
4516 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4517 /* No MWDMA3 or MWDMA 4 */
4518 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4519 }
4520
4521 if (ata_dma_blacklisted(dev)) {
4522 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4523 ata_dev_printk(dev, KERN_WARNING,
4524 "device is on DMA blacklist, disabling DMA\n");
4525 }
4526
4527 if ((host->flags & ATA_HOST_SIMPLEX) &&
4528 host->simplex_claimed && host->simplex_claimed != ap) {
4529 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4530 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4531 "other device, disabling DMA\n");
4532 }
4533
4534 if (ap->flags & ATA_FLAG_NO_IORDY)
4535 xfer_mask &= ata_pio_mask_no_iordy(dev);
4536
4537 if (ap->ops->mode_filter)
4538 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4539
4540 /* Apply cable rule here. Don't apply it early because when
4541 * we handle hot plug the cable type can itself change.
4542 * Check this last so that we know if the transfer rate was
4543 * solely limited by the cable.
4544 * Unknown or 80 wire cables reported host side are checked
4545 * drive side as well. Cases where we know a 40wire cable
4546 * is used safely for 80 are not checked here.
4547 */
4548 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4549 /* UDMA/44 or higher would be available */
4550 if ((ap->cbl == ATA_CBL_PATA40) ||
4551 (ata_is_40wire(dev) &&
4552 (ap->cbl == ATA_CBL_PATA_UNK ||
4553 ap->cbl == ATA_CBL_PATA80))) {
4554 ata_dev_printk(dev, KERN_WARNING,
4555 "limited to UDMA/33 due to 40-wire cable\n");
4556 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4557 }
4558
4559 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4560 &dev->mwdma_mask, &dev->udma_mask);
4561 }
4562
4563 /**
4564 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4565 * @dev: Device to which command will be sent
4566 *
4567 * Issue SET FEATURES - XFER MODE command to device @dev
4568 * on port @ap.
4569 *
4570 * LOCKING:
4571 * PCI/etc. bus probe sem.
4572 *
4573 * RETURNS:
4574 * 0 on success, AC_ERR_* mask otherwise.
4575 */
4576
4577 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4578 {
4579 struct ata_taskfile tf;
4580 unsigned int err_mask;
4581
4582 /* set up set-features taskfile */
4583 DPRINTK("set features - xfer mode\n");
4584
4585 /* Some controllers and ATAPI devices show flaky interrupt
4586 * behavior after setting xfer mode. Use polling instead.
4587 */
4588 ata_tf_init(dev, &tf);
4589 tf.command = ATA_CMD_SET_FEATURES;
4590 tf.feature = SETFEATURES_XFER;
4591 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4592 tf.protocol = ATA_PROT_NODATA;
4593 /* If we are using IORDY we must send the mode setting command */
4594 if (ata_pio_need_iordy(dev))
4595 tf.nsect = dev->xfer_mode;
4596 /* If the device has IORDY and the controller does not - turn it off */
4597 else if (ata_id_has_iordy(dev->id))
4598 tf.nsect = 0x01;
4599 else /* In the ancient relic department - skip all of this */
4600 return 0;
4601
4602 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4603
4604 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4605 return err_mask;
4606 }
4607 /**
4608 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4609 * @dev: Device to which command will be sent
4610 * @enable: Whether to enable or disable the feature
4611 * @feature: The sector count represents the feature to set
4612 *
4613 * Issue SET FEATURES - SATA FEATURES command to device @dev
4614 * on port @ap with sector count
4615 *
4616 * LOCKING:
4617 * PCI/etc. bus probe sem.
4618 *
4619 * RETURNS:
4620 * 0 on success, AC_ERR_* mask otherwise.
4621 */
4622 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4623 u8 feature)
4624 {
4625 struct ata_taskfile tf;
4626 unsigned int err_mask;
4627
4628 /* set up set-features taskfile */
4629 DPRINTK("set features - SATA features\n");
4630
4631 ata_tf_init(dev, &tf);
4632 tf.command = ATA_CMD_SET_FEATURES;
4633 tf.feature = enable;
4634 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4635 tf.protocol = ATA_PROT_NODATA;
4636 tf.nsect = feature;
4637
4638 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4639
4640 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4641 return err_mask;
4642 }
4643
4644 /**
4645 * ata_dev_init_params - Issue INIT DEV PARAMS command
4646 * @dev: Device to which command will be sent
4647 * @heads: Number of heads (taskfile parameter)
4648 * @sectors: Number of sectors (taskfile parameter)
4649 *
4650 * LOCKING:
4651 * Kernel thread context (may sleep)
4652 *
4653 * RETURNS:
4654 * 0 on success, AC_ERR_* mask otherwise.
4655 */
4656 static unsigned int ata_dev_init_params(struct ata_device *dev,
4657 u16 heads, u16 sectors)
4658 {
4659 struct ata_taskfile tf;
4660 unsigned int err_mask;
4661
4662 /* Number of sectors per track 1-255. Number of heads 1-16 */
4663 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4664 return AC_ERR_INVALID;
4665
4666 /* set up init dev params taskfile */
4667 DPRINTK("init dev params \n");
4668
4669 ata_tf_init(dev, &tf);
4670 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4671 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4672 tf.protocol = ATA_PROT_NODATA;
4673 tf.nsect = sectors;
4674 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4675
4676 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4677 /* A clean abort indicates an original or just out of spec drive
4678 and we should continue as we issue the setup based on the
4679 drive reported working geometry */
4680 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4681 err_mask = 0;
4682
4683 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4684 return err_mask;
4685 }
4686
4687 /**
4688 * ata_sg_clean - Unmap DMA memory associated with command
4689 * @qc: Command containing DMA memory to be released
4690 *
4691 * Unmap all mapped DMA memory associated with this command.
4692 *
4693 * LOCKING:
4694 * spin_lock_irqsave(host lock)
4695 */
4696 void ata_sg_clean(struct ata_queued_cmd *qc)
4697 {
4698 struct ata_port *ap = qc->ap;
4699 struct scatterlist *sg = qc->sg;
4700 int dir = qc->dma_dir;
4701
4702 WARN_ON(sg == NULL);
4703
4704 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4705
4706 if (qc->n_elem)
4707 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4708
4709 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4710 qc->sg = NULL;
4711 }
4712
4713 /**
4714 * ata_fill_sg - Fill PCI IDE PRD table
4715 * @qc: Metadata associated with taskfile to be transferred
4716 *
4717 * Fill PCI IDE PRD (scatter-gather) table with segments
4718 * associated with the current disk command.
4719 *
4720 * LOCKING:
4721 * spin_lock_irqsave(host lock)
4722 *
4723 */
4724 static void ata_fill_sg(struct ata_queued_cmd *qc)
4725 {
4726 struct ata_port *ap = qc->ap;
4727 struct scatterlist *sg;
4728 unsigned int si, pi;
4729
4730 pi = 0;
4731 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4732 u32 addr, offset;
4733 u32 sg_len, len;
4734
4735 /* determine if physical DMA addr spans 64K boundary.
4736 * Note h/w doesn't support 64-bit, so we unconditionally
4737 * truncate dma_addr_t to u32.
4738 */
4739 addr = (u32) sg_dma_address(sg);
4740 sg_len = sg_dma_len(sg);
4741
4742 while (sg_len) {
4743 offset = addr & 0xffff;
4744 len = sg_len;
4745 if ((offset + sg_len) > 0x10000)
4746 len = 0x10000 - offset;
4747
4748 ap->prd[pi].addr = cpu_to_le32(addr);
4749 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
4750 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4751
4752 pi++;
4753 sg_len -= len;
4754 addr += len;
4755 }
4756 }
4757
4758 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4759 }
4760
4761 /**
4762 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4763 * @qc: Metadata associated with taskfile to be transferred
4764 *
4765 * Fill PCI IDE PRD (scatter-gather) table with segments
4766 * associated with the current disk command. Perform the fill
4767 * so that we avoid writing any length 64K records for
4768 * controllers that don't follow the spec.
4769 *
4770 * LOCKING:
4771 * spin_lock_irqsave(host lock)
4772 *
4773 */
4774 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4775 {
4776 struct ata_port *ap = qc->ap;
4777 struct scatterlist *sg;
4778 unsigned int si, pi;
4779
4780 pi = 0;
4781 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4782 u32 addr, offset;
4783 u32 sg_len, len, blen;
4784
4785 /* determine if physical DMA addr spans 64K boundary.
4786 * Note h/w doesn't support 64-bit, so we unconditionally
4787 * truncate dma_addr_t to u32.
4788 */
4789 addr = (u32) sg_dma_address(sg);
4790 sg_len = sg_dma_len(sg);
4791
4792 while (sg_len) {
4793 offset = addr & 0xffff;
4794 len = sg_len;
4795 if ((offset + sg_len) > 0x10000)
4796 len = 0x10000 - offset;
4797
4798 blen = len & 0xffff;
4799 ap->prd[pi].addr = cpu_to_le32(addr);
4800 if (blen == 0) {
4801 /* Some PATA chipsets like the CS5530 can't
4802 cope with 0x0000 meaning 64K as the spec says */
4803 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
4804 blen = 0x8000;
4805 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
4806 }
4807 ap->prd[pi].flags_len = cpu_to_le32(blen);
4808 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4809
4810 pi++;
4811 sg_len -= len;
4812 addr += len;
4813 }
4814 }
4815
4816 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4817 }
4818
4819 /**
4820 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4821 * @qc: Metadata associated with taskfile to check
4822 *
4823 * Allow low-level driver to filter ATA PACKET commands, returning
4824 * a status indicating whether or not it is OK to use DMA for the
4825 * supplied PACKET command.
4826 *
4827 * LOCKING:
4828 * spin_lock_irqsave(host lock)
4829 *
4830 * RETURNS: 0 when ATAPI DMA can be used
4831 * nonzero otherwise
4832 */
4833 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4834 {
4835 struct ata_port *ap = qc->ap;
4836
4837 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4838 * few ATAPI devices choke on such DMA requests.
4839 */
4840 if (unlikely(qc->nbytes & 15))
4841 return 1;
4842
4843 if (ap->ops->check_atapi_dma)
4844 return ap->ops->check_atapi_dma(qc);
4845
4846 return 0;
4847 }
4848
4849 /**
4850 * ata_std_qc_defer - Check whether a qc needs to be deferred
4851 * @qc: ATA command in question
4852 *
4853 * Non-NCQ commands cannot run with any other command, NCQ or
4854 * not. As upper layer only knows the queue depth, we are
4855 * responsible for maintaining exclusion. This function checks
4856 * whether a new command @qc can be issued.
4857 *
4858 * LOCKING:
4859 * spin_lock_irqsave(host lock)
4860 *
4861 * RETURNS:
4862 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4863 */
4864 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4865 {
4866 struct ata_link *link = qc->dev->link;
4867
4868 if (qc->tf.protocol == ATA_PROT_NCQ) {
4869 if (!ata_tag_valid(link->active_tag))
4870 return 0;
4871 } else {
4872 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4873 return 0;
4874 }
4875
4876 return ATA_DEFER_LINK;
4877 }
4878
4879 /**
4880 * ata_qc_prep - Prepare taskfile for submission
4881 * @qc: Metadata associated with taskfile to be prepared
4882 *
4883 * Prepare ATA taskfile for submission.
4884 *
4885 * LOCKING:
4886 * spin_lock_irqsave(host lock)
4887 */
4888 void ata_qc_prep(struct ata_queued_cmd *qc)
4889 {
4890 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4891 return;
4892
4893 ata_fill_sg(qc);
4894 }
4895
4896 /**
4897 * ata_dumb_qc_prep - Prepare taskfile for submission
4898 * @qc: Metadata associated with taskfile to be prepared
4899 *
4900 * Prepare ATA taskfile for submission.
4901 *
4902 * LOCKING:
4903 * spin_lock_irqsave(host lock)
4904 */
4905 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4906 {
4907 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4908 return;
4909
4910 ata_fill_sg_dumb(qc);
4911 }
4912
4913 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4914
4915 /**
4916 * ata_sg_init - Associate command with scatter-gather table.
4917 * @qc: Command to be associated
4918 * @sg: Scatter-gather table.
4919 * @n_elem: Number of elements in s/g table.
4920 *
4921 * Initialize the data-related elements of queued_cmd @qc
4922 * to point to a scatter-gather table @sg, containing @n_elem
4923 * elements.
4924 *
4925 * LOCKING:
4926 * spin_lock_irqsave(host lock)
4927 */
4928 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4929 unsigned int n_elem)
4930 {
4931 qc->sg = sg;
4932 qc->n_elem = n_elem;
4933 qc->cursg = qc->sg;
4934 }
4935
4936 /**
4937 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4938 * @qc: Command with scatter-gather table to be mapped.
4939 *
4940 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4941 *
4942 * LOCKING:
4943 * spin_lock_irqsave(host lock)
4944 *
4945 * RETURNS:
4946 * Zero on success, negative on error.
4947 *
4948 */
4949 static int ata_sg_setup(struct ata_queued_cmd *qc)
4950 {
4951 struct ata_port *ap = qc->ap;
4952 unsigned int n_elem;
4953
4954 VPRINTK("ENTER, ata%u\n", ap->print_id);
4955
4956 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4957 if (n_elem < 1)
4958 return -1;
4959
4960 DPRINTK("%d sg elements mapped\n", n_elem);
4961
4962 qc->n_elem = n_elem;
4963 qc->flags |= ATA_QCFLAG_DMAMAP;
4964
4965 return 0;
4966 }
4967
4968 /**
4969 * swap_buf_le16 - swap halves of 16-bit words in place
4970 * @buf: Buffer to swap
4971 * @buf_words: Number of 16-bit words in buffer.
4972 *
4973 * Swap halves of 16-bit words if needed to convert from
4974 * little-endian byte order to native cpu byte order, or
4975 * vice-versa.
4976 *
4977 * LOCKING:
4978 * Inherited from caller.
4979 */
4980 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4981 {
4982 #ifdef __BIG_ENDIAN
4983 unsigned int i;
4984
4985 for (i = 0; i < buf_words; i++)
4986 buf[i] = le16_to_cpu(buf[i]);
4987 #endif /* __BIG_ENDIAN */
4988 }
4989
4990 /**
4991 * ata_data_xfer - Transfer data by PIO
4992 * @dev: device to target
4993 * @buf: data buffer
4994 * @buflen: buffer length
4995 * @rw: read/write
4996 *
4997 * Transfer data from/to the device data register by PIO.
4998 *
4999 * LOCKING:
5000 * Inherited from caller.
5001 *
5002 * RETURNS:
5003 * Bytes consumed.
5004 */
5005 unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
5006 unsigned int buflen, int rw)
5007 {
5008 struct ata_port *ap = dev->link->ap;
5009 void __iomem *data_addr = ap->ioaddr.data_addr;
5010 unsigned int words = buflen >> 1;
5011
5012 /* Transfer multiple of 2 bytes */
5013 if (rw == READ)
5014 ioread16_rep(data_addr, buf, words);
5015 else
5016 iowrite16_rep(data_addr, buf, words);
5017
5018 /* Transfer trailing 1 byte, if any. */
5019 if (unlikely(buflen & 0x01)) {
5020 __le16 align_buf[1] = { 0 };
5021 unsigned char *trailing_buf = buf + buflen - 1;
5022
5023 if (rw == READ) {
5024 align_buf[0] = cpu_to_le16(ioread16(data_addr));
5025 memcpy(trailing_buf, align_buf, 1);
5026 } else {
5027 memcpy(align_buf, trailing_buf, 1);
5028 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
5029 }
5030 words++;
5031 }
5032
5033 return words << 1;
5034 }
5035
5036 /**
5037 * ata_data_xfer_noirq - Transfer data by PIO
5038 * @dev: device to target
5039 * @buf: data buffer
5040 * @buflen: buffer length
5041 * @rw: read/write
5042 *
5043 * Transfer data from/to the device data register by PIO. Do the
5044 * transfer with interrupts disabled.
5045 *
5046 * LOCKING:
5047 * Inherited from caller.
5048 *
5049 * RETURNS:
5050 * Bytes consumed.
5051 */
5052 unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
5053 unsigned int buflen, int rw)
5054 {
5055 unsigned long flags;
5056 unsigned int consumed;
5057
5058 local_irq_save(flags);
5059 consumed = ata_data_xfer(dev, buf, buflen, rw);
5060 local_irq_restore(flags);
5061
5062 return consumed;
5063 }
5064
5065
5066 /**
5067 * ata_pio_sector - Transfer a sector of data.
5068 * @qc: Command on going
5069 *
5070 * Transfer qc->sect_size bytes of data from/to the ATA device.
5071 *
5072 * LOCKING:
5073 * Inherited from caller.
5074 */
5075
5076 static void ata_pio_sector(struct ata_queued_cmd *qc)
5077 {
5078 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5079 struct ata_port *ap = qc->ap;
5080 struct page *page;
5081 unsigned int offset;
5082 unsigned char *buf;
5083
5084 if (qc->curbytes == qc->nbytes - qc->sect_size)
5085 ap->hsm_task_state = HSM_ST_LAST;
5086
5087 page = sg_page(qc->cursg);
5088 offset = qc->cursg->offset + qc->cursg_ofs;
5089
5090 /* get the current page and offset */
5091 page = nth_page(page, (offset >> PAGE_SHIFT));
5092 offset %= PAGE_SIZE;
5093
5094 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5095
5096 if (PageHighMem(page)) {
5097 unsigned long flags;
5098
5099 /* FIXME: use a bounce buffer */
5100 local_irq_save(flags);
5101 buf = kmap_atomic(page, KM_IRQ0);
5102
5103 /* do the actual data transfer */
5104 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5105
5106 kunmap_atomic(buf, KM_IRQ0);
5107 local_irq_restore(flags);
5108 } else {
5109 buf = page_address(page);
5110 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5111 }
5112
5113 qc->curbytes += qc->sect_size;
5114 qc->cursg_ofs += qc->sect_size;
5115
5116 if (qc->cursg_ofs == qc->cursg->length) {
5117 qc->cursg = sg_next(qc->cursg);
5118 qc->cursg_ofs = 0;
5119 }
5120 }
5121
5122 /**
5123 * ata_pio_sectors - Transfer one or many sectors.
5124 * @qc: Command on going
5125 *
5126 * Transfer one or many sectors of data from/to the
5127 * ATA device for the DRQ request.
5128 *
5129 * LOCKING:
5130 * Inherited from caller.
5131 */
5132
5133 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5134 {
5135 if (is_multi_taskfile(&qc->tf)) {
5136 /* READ/WRITE MULTIPLE */
5137 unsigned int nsect;
5138
5139 WARN_ON(qc->dev->multi_count == 0);
5140
5141 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5142 qc->dev->multi_count);
5143 while (nsect--)
5144 ata_pio_sector(qc);
5145 } else
5146 ata_pio_sector(qc);
5147
5148 ata_altstatus(qc->ap); /* flush */
5149 }
5150
5151 /**
5152 * atapi_send_cdb - Write CDB bytes to hardware
5153 * @ap: Port to which ATAPI device is attached.
5154 * @qc: Taskfile currently active
5155 *
5156 * When device has indicated its readiness to accept
5157 * a CDB, this function is called. Send the CDB.
5158 *
5159 * LOCKING:
5160 * caller.
5161 */
5162
5163 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5164 {
5165 /* send SCSI cdb */
5166 DPRINTK("send cdb\n");
5167 WARN_ON(qc->dev->cdb_len < 12);
5168
5169 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5170 ata_altstatus(ap); /* flush */
5171
5172 switch (qc->tf.protocol) {
5173 case ATAPI_PROT_PIO:
5174 ap->hsm_task_state = HSM_ST;
5175 break;
5176 case ATAPI_PROT_NODATA:
5177 ap->hsm_task_state = HSM_ST_LAST;
5178 break;
5179 case ATAPI_PROT_DMA:
5180 ap->hsm_task_state = HSM_ST_LAST;
5181 /* initiate bmdma */
5182 ap->ops->bmdma_start(qc);
5183 break;
5184 }
5185 }
5186
5187 /**
5188 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5189 * @qc: Command on going
5190 * @bytes: number of bytes
5191 *
5192 * Transfer Transfer data from/to the ATAPI device.
5193 *
5194 * LOCKING:
5195 * Inherited from caller.
5196 *
5197 */
5198 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5199 {
5200 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
5201 struct ata_port *ap = qc->ap;
5202 struct ata_device *dev = qc->dev;
5203 struct ata_eh_info *ehi = &dev->link->eh_info;
5204 struct scatterlist *sg;
5205 struct page *page;
5206 unsigned char *buf;
5207 unsigned int offset, count, consumed;
5208
5209 next_sg:
5210 sg = qc->cursg;
5211 if (unlikely(!sg)) {
5212 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
5213 "buf=%u cur=%u bytes=%u",
5214 qc->nbytes, qc->curbytes, bytes);
5215 return -1;
5216 }
5217
5218 page = sg_page(sg);
5219 offset = sg->offset + qc->cursg_ofs;
5220
5221 /* get the current page and offset */
5222 page = nth_page(page, (offset >> PAGE_SHIFT));
5223 offset %= PAGE_SIZE;
5224
5225 /* don't overrun current sg */
5226 count = min(sg->length - qc->cursg_ofs, bytes);
5227
5228 /* don't cross page boundaries */
5229 count = min(count, (unsigned int)PAGE_SIZE - offset);
5230
5231 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5232
5233 if (PageHighMem(page)) {
5234 unsigned long flags;
5235
5236 /* FIXME: use bounce buffer */
5237 local_irq_save(flags);
5238 buf = kmap_atomic(page, KM_IRQ0);
5239
5240 /* do the actual data transfer */
5241 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5242
5243 kunmap_atomic(buf, KM_IRQ0);
5244 local_irq_restore(flags);
5245 } else {
5246 buf = page_address(page);
5247 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5248 }
5249
5250 bytes -= min(bytes, consumed);
5251 qc->curbytes += count;
5252 qc->cursg_ofs += count;
5253
5254 if (qc->cursg_ofs == sg->length) {
5255 qc->cursg = sg_next(qc->cursg);
5256 qc->cursg_ofs = 0;
5257 }
5258
5259 /* consumed can be larger than count only for the last transfer */
5260 WARN_ON(qc->cursg && count != consumed);
5261
5262 if (bytes)
5263 goto next_sg;
5264 return 0;
5265 }
5266
5267 /**
5268 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5269 * @qc: Command on going
5270 *
5271 * Transfer Transfer data from/to the ATAPI device.
5272 *
5273 * LOCKING:
5274 * Inherited from caller.
5275 */
5276
5277 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5278 {
5279 struct ata_port *ap = qc->ap;
5280 struct ata_device *dev = qc->dev;
5281 struct ata_eh_info *ehi = &dev->link->eh_info;
5282 unsigned int ireason, bc_lo, bc_hi, bytes;
5283 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5284
5285 /* Abuse qc->result_tf for temp storage of intermediate TF
5286 * here to save some kernel stack usage.
5287 * For normal completion, qc->result_tf is not relevant. For
5288 * error, qc->result_tf is later overwritten by ata_qc_complete().
5289 * So, the correctness of qc->result_tf is not affected.
5290 */
5291 ap->ops->tf_read(ap, &qc->result_tf);
5292 ireason = qc->result_tf.nsect;
5293 bc_lo = qc->result_tf.lbam;
5294 bc_hi = qc->result_tf.lbah;
5295 bytes = (bc_hi << 8) | bc_lo;
5296
5297 /* shall be cleared to zero, indicating xfer of data */
5298 if (unlikely(ireason & (1 << 0)))
5299 goto atapi_check;
5300
5301 /* make sure transfer direction matches expected */
5302 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5303 if (unlikely(do_write != i_write))
5304 goto atapi_check;
5305
5306 if (unlikely(!bytes))
5307 goto atapi_check;
5308
5309 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5310
5311 if (unlikely(__atapi_pio_bytes(qc, bytes)))
5312 goto err_out;
5313 ata_altstatus(ap); /* flush */
5314
5315 return;
5316
5317 atapi_check:
5318 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
5319 ireason, bytes);
5320 err_out:
5321 qc->err_mask |= AC_ERR_HSM;
5322 ap->hsm_task_state = HSM_ST_ERR;
5323 }
5324
5325 /**
5326 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5327 * @ap: the target ata_port
5328 * @qc: qc on going
5329 *
5330 * RETURNS:
5331 * 1 if ok in workqueue, 0 otherwise.
5332 */
5333
5334 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5335 {
5336 if (qc->tf.flags & ATA_TFLAG_POLLING)
5337 return 1;
5338
5339 if (ap->hsm_task_state == HSM_ST_FIRST) {
5340 if (qc->tf.protocol == ATA_PROT_PIO &&
5341 (qc->tf.flags & ATA_TFLAG_WRITE))
5342 return 1;
5343
5344 if (ata_is_atapi(qc->tf.protocol) &&
5345 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5346 return 1;
5347 }
5348
5349 return 0;
5350 }
5351
5352 /**
5353 * ata_hsm_qc_complete - finish a qc running on standard HSM
5354 * @qc: Command to complete
5355 * @in_wq: 1 if called from workqueue, 0 otherwise
5356 *
5357 * Finish @qc which is running on standard HSM.
5358 *
5359 * LOCKING:
5360 * If @in_wq is zero, spin_lock_irqsave(host lock).
5361 * Otherwise, none on entry and grabs host lock.
5362 */
5363 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5364 {
5365 struct ata_port *ap = qc->ap;
5366 unsigned long flags;
5367
5368 if (ap->ops->error_handler) {
5369 if (in_wq) {
5370 spin_lock_irqsave(ap->lock, flags);
5371
5372 /* EH might have kicked in while host lock is
5373 * released.
5374 */
5375 qc = ata_qc_from_tag(ap, qc->tag);
5376 if (qc) {
5377 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5378 ap->ops->irq_on(ap);
5379 ata_qc_complete(qc);
5380 } else
5381 ata_port_freeze(ap);
5382 }
5383
5384 spin_unlock_irqrestore(ap->lock, flags);
5385 } else {
5386 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5387 ata_qc_complete(qc);
5388 else
5389 ata_port_freeze(ap);
5390 }
5391 } else {
5392 if (in_wq) {
5393 spin_lock_irqsave(ap->lock, flags);
5394 ap->ops->irq_on(ap);
5395 ata_qc_complete(qc);
5396 spin_unlock_irqrestore(ap->lock, flags);
5397 } else
5398 ata_qc_complete(qc);
5399 }
5400 }
5401
5402 /**
5403 * ata_hsm_move - move the HSM to the next state.
5404 * @ap: the target ata_port
5405 * @qc: qc on going
5406 * @status: current device status
5407 * @in_wq: 1 if called from workqueue, 0 otherwise
5408 *
5409 * RETURNS:
5410 * 1 when poll next status needed, 0 otherwise.
5411 */
5412 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5413 u8 status, int in_wq)
5414 {
5415 unsigned long flags = 0;
5416 int poll_next;
5417
5418 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5419
5420 /* Make sure ata_qc_issue_prot() does not throw things
5421 * like DMA polling into the workqueue. Notice that
5422 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5423 */
5424 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5425
5426 fsm_start:
5427 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5428 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5429
5430 switch (ap->hsm_task_state) {
5431 case HSM_ST_FIRST:
5432 /* Send first data block or PACKET CDB */
5433
5434 /* If polling, we will stay in the work queue after
5435 * sending the data. Otherwise, interrupt handler
5436 * takes over after sending the data.
5437 */
5438 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5439
5440 /* check device status */
5441 if (unlikely((status & ATA_DRQ) == 0)) {
5442 /* handle BSY=0, DRQ=0 as error */
5443 if (likely(status & (ATA_ERR | ATA_DF)))
5444 /* device stops HSM for abort/error */
5445 qc->err_mask |= AC_ERR_DEV;
5446 else
5447 /* HSM violation. Let EH handle this */
5448 qc->err_mask |= AC_ERR_HSM;
5449
5450 ap->hsm_task_state = HSM_ST_ERR;
5451 goto fsm_start;
5452 }
5453
5454 /* Device should not ask for data transfer (DRQ=1)
5455 * when it finds something wrong.
5456 * We ignore DRQ here and stop the HSM by
5457 * changing hsm_task_state to HSM_ST_ERR and
5458 * let the EH abort the command or reset the device.
5459 */
5460 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5461 /* Some ATAPI tape drives forget to clear the ERR bit
5462 * when doing the next command (mostly request sense).
5463 * We ignore ERR here to workaround and proceed sending
5464 * the CDB.
5465 */
5466 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5467 ata_port_printk(ap, KERN_WARNING,
5468 "DRQ=1 with device error, "
5469 "dev_stat 0x%X\n", status);
5470 qc->err_mask |= AC_ERR_HSM;
5471 ap->hsm_task_state = HSM_ST_ERR;
5472 goto fsm_start;
5473 }
5474 }
5475
5476 /* Send the CDB (atapi) or the first data block (ata pio out).
5477 * During the state transition, interrupt handler shouldn't
5478 * be invoked before the data transfer is complete and
5479 * hsm_task_state is changed. Hence, the following locking.
5480 */
5481 if (in_wq)
5482 spin_lock_irqsave(ap->lock, flags);
5483
5484 if (qc->tf.protocol == ATA_PROT_PIO) {
5485 /* PIO data out protocol.
5486 * send first data block.
5487 */
5488
5489 /* ata_pio_sectors() might change the state
5490 * to HSM_ST_LAST. so, the state is changed here
5491 * before ata_pio_sectors().
5492 */
5493 ap->hsm_task_state = HSM_ST;
5494 ata_pio_sectors(qc);
5495 } else
5496 /* send CDB */
5497 atapi_send_cdb(ap, qc);
5498
5499 if (in_wq)
5500 spin_unlock_irqrestore(ap->lock, flags);
5501
5502 /* if polling, ata_pio_task() handles the rest.
5503 * otherwise, interrupt handler takes over from here.
5504 */
5505 break;
5506
5507 case HSM_ST:
5508 /* complete command or read/write the data register */
5509 if (qc->tf.protocol == ATAPI_PROT_PIO) {
5510 /* ATAPI PIO protocol */
5511 if ((status & ATA_DRQ) == 0) {
5512 /* No more data to transfer or device error.
5513 * Device error will be tagged in HSM_ST_LAST.
5514 */
5515 ap->hsm_task_state = HSM_ST_LAST;
5516 goto fsm_start;
5517 }
5518
5519 /* Device should not ask for data transfer (DRQ=1)
5520 * when it finds something wrong.
5521 * We ignore DRQ here and stop the HSM by
5522 * changing hsm_task_state to HSM_ST_ERR and
5523 * let the EH abort the command or reset the device.
5524 */
5525 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5526 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5527 "device error, dev_stat 0x%X\n",
5528 status);
5529 qc->err_mask |= AC_ERR_HSM;
5530 ap->hsm_task_state = HSM_ST_ERR;
5531 goto fsm_start;
5532 }
5533
5534 atapi_pio_bytes(qc);
5535
5536 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5537 /* bad ireason reported by device */
5538 goto fsm_start;
5539
5540 } else {
5541 /* ATA PIO protocol */
5542 if (unlikely((status & ATA_DRQ) == 0)) {
5543 /* handle BSY=0, DRQ=0 as error */
5544 if (likely(status & (ATA_ERR | ATA_DF)))
5545 /* device stops HSM for abort/error */
5546 qc->err_mask |= AC_ERR_DEV;
5547 else
5548 /* HSM violation. Let EH handle this.
5549 * Phantom devices also trigger this
5550 * condition. Mark hint.
5551 */
5552 qc->err_mask |= AC_ERR_HSM |
5553 AC_ERR_NODEV_HINT;
5554
5555 ap->hsm_task_state = HSM_ST_ERR;
5556 goto fsm_start;
5557 }
5558
5559 /* For PIO reads, some devices may ask for
5560 * data transfer (DRQ=1) alone with ERR=1.
5561 * We respect DRQ here and transfer one
5562 * block of junk data before changing the
5563 * hsm_task_state to HSM_ST_ERR.
5564 *
5565 * For PIO writes, ERR=1 DRQ=1 doesn't make
5566 * sense since the data block has been
5567 * transferred to the device.
5568 */
5569 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5570 /* data might be corrputed */
5571 qc->err_mask |= AC_ERR_DEV;
5572
5573 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5574 ata_pio_sectors(qc);
5575 status = ata_wait_idle(ap);
5576 }
5577
5578 if (status & (ATA_BUSY | ATA_DRQ))
5579 qc->err_mask |= AC_ERR_HSM;
5580
5581 /* ata_pio_sectors() might change the
5582 * state to HSM_ST_LAST. so, the state
5583 * is changed after ata_pio_sectors().
5584 */
5585 ap->hsm_task_state = HSM_ST_ERR;
5586 goto fsm_start;
5587 }
5588
5589 ata_pio_sectors(qc);
5590
5591 if (ap->hsm_task_state == HSM_ST_LAST &&
5592 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5593 /* all data read */
5594 status = ata_wait_idle(ap);
5595 goto fsm_start;
5596 }
5597 }
5598
5599 poll_next = 1;
5600 break;
5601
5602 case HSM_ST_LAST:
5603 if (unlikely(!ata_ok(status))) {
5604 qc->err_mask |= __ac_err_mask(status);
5605 ap->hsm_task_state = HSM_ST_ERR;
5606 goto fsm_start;
5607 }
5608
5609 /* no more data to transfer */
5610 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5611 ap->print_id, qc->dev->devno, status);
5612
5613 WARN_ON(qc->err_mask);
5614
5615 ap->hsm_task_state = HSM_ST_IDLE;
5616
5617 /* complete taskfile transaction */
5618 ata_hsm_qc_complete(qc, in_wq);
5619
5620 poll_next = 0;
5621 break;
5622
5623 case HSM_ST_ERR:
5624 /* make sure qc->err_mask is available to
5625 * know what's wrong and recover
5626 */
5627 WARN_ON(qc->err_mask == 0);
5628
5629 ap->hsm_task_state = HSM_ST_IDLE;
5630
5631 /* complete taskfile transaction */
5632 ata_hsm_qc_complete(qc, in_wq);
5633
5634 poll_next = 0;
5635 break;
5636 default:
5637 poll_next = 0;
5638 BUG();
5639 }
5640
5641 return poll_next;
5642 }
5643
5644 static void ata_pio_task(struct work_struct *work)
5645 {
5646 struct ata_port *ap =
5647 container_of(work, struct ata_port, port_task.work);
5648 struct ata_queued_cmd *qc = ap->port_task_data;
5649 u8 status;
5650 int poll_next;
5651
5652 fsm_start:
5653 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5654
5655 /*
5656 * This is purely heuristic. This is a fast path.
5657 * Sometimes when we enter, BSY will be cleared in
5658 * a chk-status or two. If not, the drive is probably seeking
5659 * or something. Snooze for a couple msecs, then
5660 * chk-status again. If still busy, queue delayed work.
5661 */
5662 status = ata_busy_wait(ap, ATA_BUSY, 5);
5663 if (status & ATA_BUSY) {
5664 msleep(2);
5665 status = ata_busy_wait(ap, ATA_BUSY, 10);
5666 if (status & ATA_BUSY) {
5667 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
5668 return;
5669 }
5670 }
5671
5672 /* move the HSM */
5673 poll_next = ata_hsm_move(ap, qc, status, 1);
5674
5675 /* another command or interrupt handler
5676 * may be running at this point.
5677 */
5678 if (poll_next)
5679 goto fsm_start;
5680 }
5681
5682 /**
5683 * ata_qc_new - Request an available ATA command, for queueing
5684 * @ap: Port associated with device @dev
5685 * @dev: Device from whom we request an available command structure
5686 *
5687 * LOCKING:
5688 * None.
5689 */
5690
5691 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5692 {
5693 struct ata_queued_cmd *qc = NULL;
5694 unsigned int i;
5695
5696 /* no command while frozen */
5697 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5698 return NULL;
5699
5700 /* the last tag is reserved for internal command. */
5701 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5702 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5703 qc = __ata_qc_from_tag(ap, i);
5704 break;
5705 }
5706
5707 if (qc)
5708 qc->tag = i;
5709
5710 return qc;
5711 }
5712
5713 /**
5714 * ata_qc_new_init - Request an available ATA command, and initialize it
5715 * @dev: Device from whom we request an available command structure
5716 *
5717 * LOCKING:
5718 * None.
5719 */
5720
5721 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5722 {
5723 struct ata_port *ap = dev->link->ap;
5724 struct ata_queued_cmd *qc;
5725
5726 qc = ata_qc_new(ap);
5727 if (qc) {
5728 qc->scsicmd = NULL;
5729 qc->ap = ap;
5730 qc->dev = dev;
5731
5732 ata_qc_reinit(qc);
5733 }
5734
5735 return qc;
5736 }
5737
5738 /**
5739 * ata_qc_free - free unused ata_queued_cmd
5740 * @qc: Command to complete
5741 *
5742 * Designed to free unused ata_queued_cmd object
5743 * in case something prevents using it.
5744 *
5745 * LOCKING:
5746 * spin_lock_irqsave(host lock)
5747 */
5748 void ata_qc_free(struct ata_queued_cmd *qc)
5749 {
5750 struct ata_port *ap = qc->ap;
5751 unsigned int tag;
5752
5753 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5754
5755 qc->flags = 0;
5756 tag = qc->tag;
5757 if (likely(ata_tag_valid(tag))) {
5758 qc->tag = ATA_TAG_POISON;
5759 clear_bit(tag, &ap->qc_allocated);
5760 }
5761 }
5762
5763 void __ata_qc_complete(struct ata_queued_cmd *qc)
5764 {
5765 struct ata_port *ap = qc->ap;
5766 struct ata_link *link = qc->dev->link;
5767
5768 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5769 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5770
5771 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5772 ata_sg_clean(qc);
5773
5774 /* command should be marked inactive atomically with qc completion */
5775 if (qc->tf.protocol == ATA_PROT_NCQ) {
5776 link->sactive &= ~(1 << qc->tag);
5777 if (!link->sactive)
5778 ap->nr_active_links--;
5779 } else {
5780 link->active_tag = ATA_TAG_POISON;
5781 ap->nr_active_links--;
5782 }
5783
5784 /* clear exclusive status */
5785 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5786 ap->excl_link == link))
5787 ap->excl_link = NULL;
5788
5789 /* atapi: mark qc as inactive to prevent the interrupt handler
5790 * from completing the command twice later, before the error handler
5791 * is called. (when rc != 0 and atapi request sense is needed)
5792 */
5793 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5794 ap->qc_active &= ~(1 << qc->tag);
5795
5796 /* call completion callback */
5797 qc->complete_fn(qc);
5798 }
5799
5800 static void fill_result_tf(struct ata_queued_cmd *qc)
5801 {
5802 struct ata_port *ap = qc->ap;
5803
5804 qc->result_tf.flags = qc->tf.flags;
5805 ap->ops->tf_read(ap, &qc->result_tf);
5806 }
5807
5808 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5809 {
5810 struct ata_device *dev = qc->dev;
5811
5812 if (ata_tag_internal(qc->tag))
5813 return;
5814
5815 if (ata_is_nodata(qc->tf.protocol))
5816 return;
5817
5818 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5819 return;
5820
5821 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5822 }
5823
5824 /**
5825 * ata_qc_complete - Complete an active ATA command
5826 * @qc: Command to complete
5827 * @err_mask: ATA Status register contents
5828 *
5829 * Indicate to the mid and upper layers that an ATA
5830 * command has completed, with either an ok or not-ok status.
5831 *
5832 * LOCKING:
5833 * spin_lock_irqsave(host lock)
5834 */
5835 void ata_qc_complete(struct ata_queued_cmd *qc)
5836 {
5837 struct ata_port *ap = qc->ap;
5838
5839 /* XXX: New EH and old EH use different mechanisms to
5840 * synchronize EH with regular execution path.
5841 *
5842 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5843 * Normal execution path is responsible for not accessing a
5844 * failed qc. libata core enforces the rule by returning NULL
5845 * from ata_qc_from_tag() for failed qcs.
5846 *
5847 * Old EH depends on ata_qc_complete() nullifying completion
5848 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5849 * not synchronize with interrupt handler. Only PIO task is
5850 * taken care of.
5851 */
5852 if (ap->ops->error_handler) {
5853 struct ata_device *dev = qc->dev;
5854 struct ata_eh_info *ehi = &dev->link->eh_info;
5855
5856 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5857
5858 if (unlikely(qc->err_mask))
5859 qc->flags |= ATA_QCFLAG_FAILED;
5860
5861 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5862 if (!ata_tag_internal(qc->tag)) {
5863 /* always fill result TF for failed qc */
5864 fill_result_tf(qc);
5865 ata_qc_schedule_eh(qc);
5866 return;
5867 }
5868 }
5869
5870 /* read result TF if requested */
5871 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5872 fill_result_tf(qc);
5873
5874 /* Some commands need post-processing after successful
5875 * completion.
5876 */
5877 switch (qc->tf.command) {
5878 case ATA_CMD_SET_FEATURES:
5879 if (qc->tf.feature != SETFEATURES_WC_ON &&
5880 qc->tf.feature != SETFEATURES_WC_OFF)
5881 break;
5882 /* fall through */
5883 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5884 case ATA_CMD_SET_MULTI: /* multi_count changed */
5885 /* revalidate device */
5886 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5887 ata_port_schedule_eh(ap);
5888 break;
5889
5890 case ATA_CMD_SLEEP:
5891 dev->flags |= ATA_DFLAG_SLEEPING;
5892 break;
5893 }
5894
5895 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5896 ata_verify_xfer(qc);
5897
5898 __ata_qc_complete(qc);
5899 } else {
5900 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5901 return;
5902
5903 /* read result TF if failed or requested */
5904 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5905 fill_result_tf(qc);
5906
5907 __ata_qc_complete(qc);
5908 }
5909 }
5910
5911 /**
5912 * ata_qc_complete_multiple - Complete multiple qcs successfully
5913 * @ap: port in question
5914 * @qc_active: new qc_active mask
5915 * @finish_qc: LLDD callback invoked before completing a qc
5916 *
5917 * Complete in-flight commands. This functions is meant to be
5918 * called from low-level driver's interrupt routine to complete
5919 * requests normally. ap->qc_active and @qc_active is compared
5920 * and commands are completed accordingly.
5921 *
5922 * LOCKING:
5923 * spin_lock_irqsave(host lock)
5924 *
5925 * RETURNS:
5926 * Number of completed commands on success, -errno otherwise.
5927 */
5928 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5929 void (*finish_qc)(struct ata_queued_cmd *))
5930 {
5931 int nr_done = 0;
5932 u32 done_mask;
5933 int i;
5934
5935 done_mask = ap->qc_active ^ qc_active;
5936
5937 if (unlikely(done_mask & qc_active)) {
5938 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5939 "(%08x->%08x)\n", ap->qc_active, qc_active);
5940 return -EINVAL;
5941 }
5942
5943 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5944 struct ata_queued_cmd *qc;
5945
5946 if (!(done_mask & (1 << i)))
5947 continue;
5948
5949 if ((qc = ata_qc_from_tag(ap, i))) {
5950 if (finish_qc)
5951 finish_qc(qc);
5952 ata_qc_complete(qc);
5953 nr_done++;
5954 }
5955 }
5956
5957 return nr_done;
5958 }
5959
5960 /**
5961 * ata_qc_issue - issue taskfile to device
5962 * @qc: command to issue to device
5963 *
5964 * Prepare an ATA command to submission to device.
5965 * This includes mapping the data into a DMA-able
5966 * area, filling in the S/G table, and finally
5967 * writing the taskfile to hardware, starting the command.
5968 *
5969 * LOCKING:
5970 * spin_lock_irqsave(host lock)
5971 */
5972 void ata_qc_issue(struct ata_queued_cmd *qc)
5973 {
5974 struct ata_port *ap = qc->ap;
5975 struct ata_link *link = qc->dev->link;
5976 u8 prot = qc->tf.protocol;
5977
5978 /* Make sure only one non-NCQ command is outstanding. The
5979 * check is skipped for old EH because it reuses active qc to
5980 * request ATAPI sense.
5981 */
5982 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5983
5984 if (ata_is_ncq(prot)) {
5985 WARN_ON(link->sactive & (1 << qc->tag));
5986
5987 if (!link->sactive)
5988 ap->nr_active_links++;
5989 link->sactive |= 1 << qc->tag;
5990 } else {
5991 WARN_ON(link->sactive);
5992
5993 ap->nr_active_links++;
5994 link->active_tag = qc->tag;
5995 }
5996
5997 qc->flags |= ATA_QCFLAG_ACTIVE;
5998 ap->qc_active |= 1 << qc->tag;
5999
6000 /* We guarantee to LLDs that they will have at least one
6001 * non-zero sg if the command is a data command.
6002 */
6003 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
6004
6005 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
6006 (ap->flags & ATA_FLAG_PIO_DMA)))
6007 if (ata_sg_setup(qc))
6008 goto sg_err;
6009
6010 /* if device is sleeping, schedule softreset and abort the link */
6011 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6012 link->eh_info.action |= ATA_EH_SOFTRESET;
6013 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6014 ata_link_abort(link);
6015 return;
6016 }
6017
6018 ap->ops->qc_prep(qc);
6019
6020 qc->err_mask |= ap->ops->qc_issue(qc);
6021 if (unlikely(qc->err_mask))
6022 goto err;
6023 return;
6024
6025 sg_err:
6026 qc->err_mask |= AC_ERR_SYSTEM;
6027 err:
6028 ata_qc_complete(qc);
6029 }
6030
6031 /**
6032 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6033 * @qc: command to issue to device
6034 *
6035 * Using various libata functions and hooks, this function
6036 * starts an ATA command. ATA commands are grouped into
6037 * classes called "protocols", and issuing each type of protocol
6038 * is slightly different.
6039 *
6040 * May be used as the qc_issue() entry in ata_port_operations.
6041 *
6042 * LOCKING:
6043 * spin_lock_irqsave(host lock)
6044 *
6045 * RETURNS:
6046 * Zero on success, AC_ERR_* mask on failure
6047 */
6048
6049 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6050 {
6051 struct ata_port *ap = qc->ap;
6052
6053 /* Use polling pio if the LLD doesn't handle
6054 * interrupt driven pio and atapi CDB interrupt.
6055 */
6056 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6057 switch (qc->tf.protocol) {
6058 case ATA_PROT_PIO:
6059 case ATA_PROT_NODATA:
6060 case ATAPI_PROT_PIO:
6061 case ATAPI_PROT_NODATA:
6062 qc->tf.flags |= ATA_TFLAG_POLLING;
6063 break;
6064 case ATAPI_PROT_DMA:
6065 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6066 /* see ata_dma_blacklisted() */
6067 BUG();
6068 break;
6069 default:
6070 break;
6071 }
6072 }
6073
6074 /* select the device */
6075 ata_dev_select(ap, qc->dev->devno, 1, 0);
6076
6077 /* start the command */
6078 switch (qc->tf.protocol) {
6079 case ATA_PROT_NODATA:
6080 if (qc->tf.flags & ATA_TFLAG_POLLING)
6081 ata_qc_set_polling(qc);
6082
6083 ata_tf_to_host(ap, &qc->tf);
6084 ap->hsm_task_state = HSM_ST_LAST;
6085
6086 if (qc->tf.flags & ATA_TFLAG_POLLING)
6087 ata_pio_queue_task(ap, qc, 0);
6088
6089 break;
6090
6091 case ATA_PROT_DMA:
6092 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6093
6094 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6095 ap->ops->bmdma_setup(qc); /* set up bmdma */
6096 ap->ops->bmdma_start(qc); /* initiate bmdma */
6097 ap->hsm_task_state = HSM_ST_LAST;
6098 break;
6099
6100 case ATA_PROT_PIO:
6101 if (qc->tf.flags & ATA_TFLAG_POLLING)
6102 ata_qc_set_polling(qc);
6103
6104 ata_tf_to_host(ap, &qc->tf);
6105
6106 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6107 /* PIO data out protocol */
6108 ap->hsm_task_state = HSM_ST_FIRST;
6109 ata_pio_queue_task(ap, qc, 0);
6110
6111 /* always send first data block using
6112 * the ata_pio_task() codepath.
6113 */
6114 } else {
6115 /* PIO data in protocol */
6116 ap->hsm_task_state = HSM_ST;
6117
6118 if (qc->tf.flags & ATA_TFLAG_POLLING)
6119 ata_pio_queue_task(ap, qc, 0);
6120
6121 /* if polling, ata_pio_task() handles the rest.
6122 * otherwise, interrupt handler takes over from here.
6123 */
6124 }
6125
6126 break;
6127
6128 case ATAPI_PROT_PIO:
6129 case ATAPI_PROT_NODATA:
6130 if (qc->tf.flags & ATA_TFLAG_POLLING)
6131 ata_qc_set_polling(qc);
6132
6133 ata_tf_to_host(ap, &qc->tf);
6134
6135 ap->hsm_task_state = HSM_ST_FIRST;
6136
6137 /* send cdb by polling if no cdb interrupt */
6138 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6139 (qc->tf.flags & ATA_TFLAG_POLLING))
6140 ata_pio_queue_task(ap, qc, 0);
6141 break;
6142
6143 case ATAPI_PROT_DMA:
6144 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6145
6146 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6147 ap->ops->bmdma_setup(qc); /* set up bmdma */
6148 ap->hsm_task_state = HSM_ST_FIRST;
6149
6150 /* send cdb by polling if no cdb interrupt */
6151 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6152 ata_pio_queue_task(ap, qc, 0);
6153 break;
6154
6155 default:
6156 WARN_ON(1);
6157 return AC_ERR_SYSTEM;
6158 }
6159
6160 return 0;
6161 }
6162
6163 /**
6164 * ata_host_intr - Handle host interrupt for given (port, task)
6165 * @ap: Port on which interrupt arrived (possibly...)
6166 * @qc: Taskfile currently active in engine
6167 *
6168 * Handle host interrupt for given queued command. Currently,
6169 * only DMA interrupts are handled. All other commands are
6170 * handled via polling with interrupts disabled (nIEN bit).
6171 *
6172 * LOCKING:
6173 * spin_lock_irqsave(host lock)
6174 *
6175 * RETURNS:
6176 * One if interrupt was handled, zero if not (shared irq).
6177 */
6178
6179 inline unsigned int ata_host_intr(struct ata_port *ap,
6180 struct ata_queued_cmd *qc)
6181 {
6182 struct ata_eh_info *ehi = &ap->link.eh_info;
6183 u8 status, host_stat = 0;
6184
6185 VPRINTK("ata%u: protocol %d task_state %d\n",
6186 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6187
6188 /* Check whether we are expecting interrupt in this state */
6189 switch (ap->hsm_task_state) {
6190 case HSM_ST_FIRST:
6191 /* Some pre-ATAPI-4 devices assert INTRQ
6192 * at this state when ready to receive CDB.
6193 */
6194
6195 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6196 * The flag was turned on only for atapi devices. No
6197 * need to check ata_is_atapi(qc->tf.protocol) again.
6198 */
6199 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6200 goto idle_irq;
6201 break;
6202 case HSM_ST_LAST:
6203 if (qc->tf.protocol == ATA_PROT_DMA ||
6204 qc->tf.protocol == ATAPI_PROT_DMA) {
6205 /* check status of DMA engine */
6206 host_stat = ap->ops->bmdma_status(ap);
6207 VPRINTK("ata%u: host_stat 0x%X\n",
6208 ap->print_id, host_stat);
6209
6210 /* if it's not our irq... */
6211 if (!(host_stat & ATA_DMA_INTR))
6212 goto idle_irq;
6213
6214 /* before we do anything else, clear DMA-Start bit */
6215 ap->ops->bmdma_stop(qc);
6216
6217 if (unlikely(host_stat & ATA_DMA_ERR)) {
6218 /* error when transfering data to/from memory */
6219 qc->err_mask |= AC_ERR_HOST_BUS;
6220 ap->hsm_task_state = HSM_ST_ERR;
6221 }
6222 }
6223 break;
6224 case HSM_ST:
6225 break;
6226 default:
6227 goto idle_irq;
6228 }
6229
6230 /* check altstatus */
6231 status = ata_altstatus(ap);
6232 if (status & ATA_BUSY)
6233 goto idle_irq;
6234
6235 /* check main status, clearing INTRQ */
6236 status = ata_chk_status(ap);
6237 if (unlikely(status & ATA_BUSY))
6238 goto idle_irq;
6239
6240 /* ack bmdma irq events */
6241 ap->ops->irq_clear(ap);
6242
6243 ata_hsm_move(ap, qc, status, 0);
6244
6245 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6246 qc->tf.protocol == ATAPI_PROT_DMA))
6247 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6248
6249 return 1; /* irq handled */
6250
6251 idle_irq:
6252 ap->stats.idle_irq++;
6253
6254 #ifdef ATA_IRQ_TRAP
6255 if ((ap->stats.idle_irq % 1000) == 0) {
6256 ata_chk_status(ap);
6257 ap->ops->irq_clear(ap);
6258 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6259 return 1;
6260 }
6261 #endif
6262 return 0; /* irq not handled */
6263 }
6264
6265 /**
6266 * ata_interrupt - Default ATA host interrupt handler
6267 * @irq: irq line (unused)
6268 * @dev_instance: pointer to our ata_host information structure
6269 *
6270 * Default interrupt handler for PCI IDE devices. Calls
6271 * ata_host_intr() for each port that is not disabled.
6272 *
6273 * LOCKING:
6274 * Obtains host lock during operation.
6275 *
6276 * RETURNS:
6277 * IRQ_NONE or IRQ_HANDLED.
6278 */
6279
6280 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6281 {
6282 struct ata_host *host = dev_instance;
6283 unsigned int i;
6284 unsigned int handled = 0;
6285 unsigned long flags;
6286
6287 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6288 spin_lock_irqsave(&host->lock, flags);
6289
6290 for (i = 0; i < host->n_ports; i++) {
6291 struct ata_port *ap;
6292
6293 ap = host->ports[i];
6294 if (ap &&
6295 !(ap->flags & ATA_FLAG_DISABLED)) {
6296 struct ata_queued_cmd *qc;
6297
6298 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6299 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6300 (qc->flags & ATA_QCFLAG_ACTIVE))
6301 handled |= ata_host_intr(ap, qc);
6302 }
6303 }
6304
6305 spin_unlock_irqrestore(&host->lock, flags);
6306
6307 return IRQ_RETVAL(handled);
6308 }
6309
6310 /**
6311 * sata_scr_valid - test whether SCRs are accessible
6312 * @link: ATA link to test SCR accessibility for
6313 *
6314 * Test whether SCRs are accessible for @link.
6315 *
6316 * LOCKING:
6317 * None.
6318 *
6319 * RETURNS:
6320 * 1 if SCRs are accessible, 0 otherwise.
6321 */
6322 int sata_scr_valid(struct ata_link *link)
6323 {
6324 struct ata_port *ap = link->ap;
6325
6326 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6327 }
6328
6329 /**
6330 * sata_scr_read - read SCR register of the specified port
6331 * @link: ATA link to read SCR for
6332 * @reg: SCR to read
6333 * @val: Place to store read value
6334 *
6335 * Read SCR register @reg of @link into *@val. This function is
6336 * guaranteed to succeed if @link is ap->link, the cable type of
6337 * the port is SATA and the port implements ->scr_read.
6338 *
6339 * LOCKING:
6340 * None if @link is ap->link. Kernel thread context otherwise.
6341 *
6342 * RETURNS:
6343 * 0 on success, negative errno on failure.
6344 */
6345 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6346 {
6347 if (ata_is_host_link(link)) {
6348 struct ata_port *ap = link->ap;
6349
6350 if (sata_scr_valid(link))
6351 return ap->ops->scr_read(ap, reg, val);
6352 return -EOPNOTSUPP;
6353 }
6354
6355 return sata_pmp_scr_read(link, reg, val);
6356 }
6357
6358 /**
6359 * sata_scr_write - write SCR register of the specified port
6360 * @link: ATA link to write SCR for
6361 * @reg: SCR to write
6362 * @val: value to write
6363 *
6364 * Write @val to SCR register @reg of @link. This function is
6365 * guaranteed to succeed if @link is ap->link, the cable type of
6366 * the port is SATA and the port implements ->scr_read.
6367 *
6368 * LOCKING:
6369 * None if @link is ap->link. Kernel thread context otherwise.
6370 *
6371 * RETURNS:
6372 * 0 on success, negative errno on failure.
6373 */
6374 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6375 {
6376 if (ata_is_host_link(link)) {
6377 struct ata_port *ap = link->ap;
6378
6379 if (sata_scr_valid(link))
6380 return ap->ops->scr_write(ap, reg, val);
6381 return -EOPNOTSUPP;
6382 }
6383
6384 return sata_pmp_scr_write(link, reg, val);
6385 }
6386
6387 /**
6388 * sata_scr_write_flush - write SCR register of the specified port and flush
6389 * @link: ATA link to write SCR for
6390 * @reg: SCR to write
6391 * @val: value to write
6392 *
6393 * This function is identical to sata_scr_write() except that this
6394 * function performs flush after writing to the register.
6395 *
6396 * LOCKING:
6397 * None if @link is ap->link. Kernel thread context otherwise.
6398 *
6399 * RETURNS:
6400 * 0 on success, negative errno on failure.
6401 */
6402 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6403 {
6404 if (ata_is_host_link(link)) {
6405 struct ata_port *ap = link->ap;
6406 int rc;
6407
6408 if (sata_scr_valid(link)) {
6409 rc = ap->ops->scr_write(ap, reg, val);
6410 if (rc == 0)
6411 rc = ap->ops->scr_read(ap, reg, &val);
6412 return rc;
6413 }
6414 return -EOPNOTSUPP;
6415 }
6416
6417 return sata_pmp_scr_write(link, reg, val);
6418 }
6419
6420 /**
6421 * ata_link_online - test whether the given link is online
6422 * @link: ATA link to test
6423 *
6424 * Test whether @link is online. Note that this function returns
6425 * 0 if online status of @link cannot be obtained, so
6426 * ata_link_online(link) != !ata_link_offline(link).
6427 *
6428 * LOCKING:
6429 * None.
6430 *
6431 * RETURNS:
6432 * 1 if the port online status is available and online.
6433 */
6434 int ata_link_online(struct ata_link *link)
6435 {
6436 u32 sstatus;
6437
6438 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6439 (sstatus & 0xf) == 0x3)
6440 return 1;
6441 return 0;
6442 }
6443
6444 /**
6445 * ata_link_offline - test whether the given link is offline
6446 * @link: ATA link to test
6447 *
6448 * Test whether @link is offline. Note that this function
6449 * returns 0 if offline status of @link cannot be obtained, so
6450 * ata_link_online(link) != !ata_link_offline(link).
6451 *
6452 * LOCKING:
6453 * None.
6454 *
6455 * RETURNS:
6456 * 1 if the port offline status is available and offline.
6457 */
6458 int ata_link_offline(struct ata_link *link)
6459 {
6460 u32 sstatus;
6461
6462 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6463 (sstatus & 0xf) != 0x3)
6464 return 1;
6465 return 0;
6466 }
6467
6468 int ata_flush_cache(struct ata_device *dev)
6469 {
6470 unsigned int err_mask;
6471 u8 cmd;
6472
6473 if (!ata_try_flush_cache(dev))
6474 return 0;
6475
6476 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6477 cmd = ATA_CMD_FLUSH_EXT;
6478 else
6479 cmd = ATA_CMD_FLUSH;
6480
6481 /* This is wrong. On a failed flush we get back the LBA of the lost
6482 sector and we should (assuming it wasn't aborted as unknown) issue
6483 a further flush command to continue the writeback until it
6484 does not error */
6485 err_mask = ata_do_simple_cmd(dev, cmd);
6486 if (err_mask) {
6487 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6488 return -EIO;
6489 }
6490
6491 return 0;
6492 }
6493
6494 #ifdef CONFIG_PM
6495 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6496 unsigned int action, unsigned int ehi_flags,
6497 int wait)
6498 {
6499 unsigned long flags;
6500 int i, rc;
6501
6502 for (i = 0; i < host->n_ports; i++) {
6503 struct ata_port *ap = host->ports[i];
6504 struct ata_link *link;
6505
6506 /* Previous resume operation might still be in
6507 * progress. Wait for PM_PENDING to clear.
6508 */
6509 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6510 ata_port_wait_eh(ap);
6511 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6512 }
6513
6514 /* request PM ops to EH */
6515 spin_lock_irqsave(ap->lock, flags);
6516
6517 ap->pm_mesg = mesg;
6518 if (wait) {
6519 rc = 0;
6520 ap->pm_result = &rc;
6521 }
6522
6523 ap->pflags |= ATA_PFLAG_PM_PENDING;
6524 __ata_port_for_each_link(link, ap) {
6525 link->eh_info.action |= action;
6526 link->eh_info.flags |= ehi_flags;
6527 }
6528
6529 ata_port_schedule_eh(ap);
6530
6531 spin_unlock_irqrestore(ap->lock, flags);
6532
6533 /* wait and check result */
6534 if (wait) {
6535 ata_port_wait_eh(ap);
6536 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6537 if (rc)
6538 return rc;
6539 }
6540 }
6541
6542 return 0;
6543 }
6544
6545 /**
6546 * ata_host_suspend - suspend host
6547 * @host: host to suspend
6548 * @mesg: PM message
6549 *
6550 * Suspend @host. Actual operation is performed by EH. This
6551 * function requests EH to perform PM operations and waits for EH
6552 * to finish.
6553 *
6554 * LOCKING:
6555 * Kernel thread context (may sleep).
6556 *
6557 * RETURNS:
6558 * 0 on success, -errno on failure.
6559 */
6560 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6561 {
6562 int rc;
6563
6564 /*
6565 * disable link pm on all ports before requesting
6566 * any pm activity
6567 */
6568 ata_lpm_enable(host);
6569
6570 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6571 if (rc == 0)
6572 host->dev->power.power_state = mesg;
6573 return rc;
6574 }
6575
6576 /**
6577 * ata_host_resume - resume host
6578 * @host: host to resume
6579 *
6580 * Resume @host. Actual operation is performed by EH. This
6581 * function requests EH to perform PM operations and returns.
6582 * Note that all resume operations are performed parallely.
6583 *
6584 * LOCKING:
6585 * Kernel thread context (may sleep).
6586 */
6587 void ata_host_resume(struct ata_host *host)
6588 {
6589 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6590 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6591 host->dev->power.power_state = PMSG_ON;
6592
6593 /* reenable link pm */
6594 ata_lpm_disable(host);
6595 }
6596 #endif
6597
6598 /**
6599 * ata_port_start - Set port up for dma.
6600 * @ap: Port to initialize
6601 *
6602 * Called just after data structures for each port are
6603 * initialized. Allocates space for PRD table.
6604 *
6605 * May be used as the port_start() entry in ata_port_operations.
6606 *
6607 * LOCKING:
6608 * Inherited from caller.
6609 */
6610 int ata_port_start(struct ata_port *ap)
6611 {
6612 struct device *dev = ap->dev;
6613
6614 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6615 GFP_KERNEL);
6616 if (!ap->prd)
6617 return -ENOMEM;
6618
6619 return 0;
6620 }
6621
6622 /**
6623 * ata_dev_init - Initialize an ata_device structure
6624 * @dev: Device structure to initialize
6625 *
6626 * Initialize @dev in preparation for probing.
6627 *
6628 * LOCKING:
6629 * Inherited from caller.
6630 */
6631 void ata_dev_init(struct ata_device *dev)
6632 {
6633 struct ata_link *link = dev->link;
6634 struct ata_port *ap = link->ap;
6635 unsigned long flags;
6636
6637 /* SATA spd limit is bound to the first device */
6638 link->sata_spd_limit = link->hw_sata_spd_limit;
6639 link->sata_spd = 0;
6640
6641 /* High bits of dev->flags are used to record warm plug
6642 * requests which occur asynchronously. Synchronize using
6643 * host lock.
6644 */
6645 spin_lock_irqsave(ap->lock, flags);
6646 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6647 dev->horkage = 0;
6648 spin_unlock_irqrestore(ap->lock, flags);
6649
6650 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6651 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6652 dev->pio_mask = UINT_MAX;
6653 dev->mwdma_mask = UINT_MAX;
6654 dev->udma_mask = UINT_MAX;
6655 }
6656
6657 /**
6658 * ata_link_init - Initialize an ata_link structure
6659 * @ap: ATA port link is attached to
6660 * @link: Link structure to initialize
6661 * @pmp: Port multiplier port number
6662 *
6663 * Initialize @link.
6664 *
6665 * LOCKING:
6666 * Kernel thread context (may sleep)
6667 */
6668 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6669 {
6670 int i;
6671
6672 /* clear everything except for devices */
6673 memset(link, 0, offsetof(struct ata_link, device[0]));
6674
6675 link->ap = ap;
6676 link->pmp = pmp;
6677 link->active_tag = ATA_TAG_POISON;
6678 link->hw_sata_spd_limit = UINT_MAX;
6679
6680 /* can't use iterator, ap isn't initialized yet */
6681 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6682 struct ata_device *dev = &link->device[i];
6683
6684 dev->link = link;
6685 dev->devno = dev - link->device;
6686 ata_dev_init(dev);
6687 }
6688 }
6689
6690 /**
6691 * sata_link_init_spd - Initialize link->sata_spd_limit
6692 * @link: Link to configure sata_spd_limit for
6693 *
6694 * Initialize @link->[hw_]sata_spd_limit to the currently
6695 * configured value.
6696 *
6697 * LOCKING:
6698 * Kernel thread context (may sleep).
6699 *
6700 * RETURNS:
6701 * 0 on success, -errno on failure.
6702 */
6703 int sata_link_init_spd(struct ata_link *link)
6704 {
6705 u32 scontrol;
6706 u8 spd;
6707 int rc;
6708
6709 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6710 if (rc)
6711 return rc;
6712
6713 spd = (scontrol >> 4) & 0xf;
6714 if (spd)
6715 link->hw_sata_spd_limit &= (1 << spd) - 1;
6716
6717 ata_force_spd_limit(link);
6718
6719 link->sata_spd_limit = link->hw_sata_spd_limit;
6720
6721 return 0;
6722 }
6723
6724 /**
6725 * ata_port_alloc - allocate and initialize basic ATA port resources
6726 * @host: ATA host this allocated port belongs to
6727 *
6728 * Allocate and initialize basic ATA port resources.
6729 *
6730 * RETURNS:
6731 * Allocate ATA port on success, NULL on failure.
6732 *
6733 * LOCKING:
6734 * Inherited from calling layer (may sleep).
6735 */
6736 struct ata_port *ata_port_alloc(struct ata_host *host)
6737 {
6738 struct ata_port *ap;
6739
6740 DPRINTK("ENTER\n");
6741
6742 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6743 if (!ap)
6744 return NULL;
6745
6746 ap->pflags |= ATA_PFLAG_INITIALIZING;
6747 ap->lock = &host->lock;
6748 ap->flags = ATA_FLAG_DISABLED;
6749 ap->print_id = -1;
6750 ap->ctl = ATA_DEVCTL_OBS;
6751 ap->host = host;
6752 ap->dev = host->dev;
6753 ap->last_ctl = 0xFF;
6754
6755 #if defined(ATA_VERBOSE_DEBUG)
6756 /* turn on all debugging levels */
6757 ap->msg_enable = 0x00FF;
6758 #elif defined(ATA_DEBUG)
6759 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6760 #else
6761 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6762 #endif
6763
6764 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
6765 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6766 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6767 INIT_LIST_HEAD(&ap->eh_done_q);
6768 init_waitqueue_head(&ap->eh_wait_q);
6769 init_timer_deferrable(&ap->fastdrain_timer);
6770 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6771 ap->fastdrain_timer.data = (unsigned long)ap;
6772
6773 ap->cbl = ATA_CBL_NONE;
6774
6775 ata_link_init(ap, &ap->link, 0);
6776
6777 #ifdef ATA_IRQ_TRAP
6778 ap->stats.unhandled_irq = 1;
6779 ap->stats.idle_irq = 1;
6780 #endif
6781 return ap;
6782 }
6783
6784 static void ata_host_release(struct device *gendev, void *res)
6785 {
6786 struct ata_host *host = dev_get_drvdata(gendev);
6787 int i;
6788
6789 for (i = 0; i < host->n_ports; i++) {
6790 struct ata_port *ap = host->ports[i];
6791
6792 if (!ap)
6793 continue;
6794
6795 if (ap->scsi_host)
6796 scsi_host_put(ap->scsi_host);
6797
6798 kfree(ap->pmp_link);
6799 kfree(ap);
6800 host->ports[i] = NULL;
6801 }
6802
6803 dev_set_drvdata(gendev, NULL);
6804 }
6805
6806 /**
6807 * ata_host_alloc - allocate and init basic ATA host resources
6808 * @dev: generic device this host is associated with
6809 * @max_ports: maximum number of ATA ports associated with this host
6810 *
6811 * Allocate and initialize basic ATA host resources. LLD calls
6812 * this function to allocate a host, initializes it fully and
6813 * attaches it using ata_host_register().
6814 *
6815 * @max_ports ports are allocated and host->n_ports is
6816 * initialized to @max_ports. The caller is allowed to decrease
6817 * host->n_ports before calling ata_host_register(). The unused
6818 * ports will be automatically freed on registration.
6819 *
6820 * RETURNS:
6821 * Allocate ATA host on success, NULL on failure.
6822 *
6823 * LOCKING:
6824 * Inherited from calling layer (may sleep).
6825 */
6826 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6827 {
6828 struct ata_host *host;
6829 size_t sz;
6830 int i;
6831
6832 DPRINTK("ENTER\n");
6833
6834 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6835 return NULL;
6836
6837 /* alloc a container for our list of ATA ports (buses) */
6838 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6839 /* alloc a container for our list of ATA ports (buses) */
6840 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6841 if (!host)
6842 goto err_out;
6843
6844 devres_add(dev, host);
6845 dev_set_drvdata(dev, host);
6846
6847 spin_lock_init(&host->lock);
6848 host->dev = dev;
6849 host->n_ports = max_ports;
6850
6851 /* allocate ports bound to this host */
6852 for (i = 0; i < max_ports; i++) {
6853 struct ata_port *ap;
6854
6855 ap = ata_port_alloc(host);
6856 if (!ap)
6857 goto err_out;
6858
6859 ap->port_no = i;
6860 host->ports[i] = ap;
6861 }
6862
6863 devres_remove_group(dev, NULL);
6864 return host;
6865
6866 err_out:
6867 devres_release_group(dev, NULL);
6868 return NULL;
6869 }
6870
6871 /**
6872 * ata_host_alloc_pinfo - alloc host and init with port_info array
6873 * @dev: generic device this host is associated with
6874 * @ppi: array of ATA port_info to initialize host with
6875 * @n_ports: number of ATA ports attached to this host
6876 *
6877 * Allocate ATA host and initialize with info from @ppi. If NULL
6878 * terminated, @ppi may contain fewer entries than @n_ports. The
6879 * last entry will be used for the remaining ports.
6880 *
6881 * RETURNS:
6882 * Allocate ATA host on success, NULL on failure.
6883 *
6884 * LOCKING:
6885 * Inherited from calling layer (may sleep).
6886 */
6887 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6888 const struct ata_port_info * const * ppi,
6889 int n_ports)
6890 {
6891 const struct ata_port_info *pi;
6892 struct ata_host *host;
6893 int i, j;
6894
6895 host = ata_host_alloc(dev, n_ports);
6896 if (!host)
6897 return NULL;
6898
6899 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6900 struct ata_port *ap = host->ports[i];
6901
6902 if (ppi[j])
6903 pi = ppi[j++];
6904
6905 ap->pio_mask = pi->pio_mask;
6906 ap->mwdma_mask = pi->mwdma_mask;
6907 ap->udma_mask = pi->udma_mask;
6908 ap->flags |= pi->flags;
6909 ap->link.flags |= pi->link_flags;
6910 ap->ops = pi->port_ops;
6911
6912 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6913 host->ops = pi->port_ops;
6914 if (!host->private_data && pi->private_data)
6915 host->private_data = pi->private_data;
6916 }
6917
6918 return host;
6919 }
6920
6921 static void ata_host_stop(struct device *gendev, void *res)
6922 {
6923 struct ata_host *host = dev_get_drvdata(gendev);
6924 int i;
6925
6926 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6927
6928 for (i = 0; i < host->n_ports; i++) {
6929 struct ata_port *ap = host->ports[i];
6930
6931 if (ap->ops->port_stop)
6932 ap->ops->port_stop(ap);
6933 }
6934
6935 if (host->ops->host_stop)
6936 host->ops->host_stop(host);
6937 }
6938
6939 /**
6940 * ata_host_start - start and freeze ports of an ATA host
6941 * @host: ATA host to start ports for
6942 *
6943 * Start and then freeze ports of @host. Started status is
6944 * recorded in host->flags, so this function can be called
6945 * multiple times. Ports are guaranteed to get started only
6946 * once. If host->ops isn't initialized yet, its set to the
6947 * first non-dummy port ops.
6948 *
6949 * LOCKING:
6950 * Inherited from calling layer (may sleep).
6951 *
6952 * RETURNS:
6953 * 0 if all ports are started successfully, -errno otherwise.
6954 */
6955 int ata_host_start(struct ata_host *host)
6956 {
6957 int have_stop = 0;
6958 void *start_dr = NULL;
6959 int i, rc;
6960
6961 if (host->flags & ATA_HOST_STARTED)
6962 return 0;
6963
6964 for (i = 0; i < host->n_ports; i++) {
6965 struct ata_port *ap = host->ports[i];
6966
6967 if (!host->ops && !ata_port_is_dummy(ap))
6968 host->ops = ap->ops;
6969
6970 if (ap->ops->port_stop)
6971 have_stop = 1;
6972 }
6973
6974 if (host->ops->host_stop)
6975 have_stop = 1;
6976
6977 if (have_stop) {
6978 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6979 if (!start_dr)
6980 return -ENOMEM;
6981 }
6982
6983 for (i = 0; i < host->n_ports; i++) {
6984 struct ata_port *ap = host->ports[i];
6985
6986 if (ap->ops->port_start) {
6987 rc = ap->ops->port_start(ap);
6988 if (rc) {
6989 if (rc != -ENODEV)
6990 dev_printk(KERN_ERR, host->dev,
6991 "failed to start port %d "
6992 "(errno=%d)\n", i, rc);
6993 goto err_out;
6994 }
6995 }
6996 ata_eh_freeze_port(ap);
6997 }
6998
6999 if (start_dr)
7000 devres_add(host->dev, start_dr);
7001 host->flags |= ATA_HOST_STARTED;
7002 return 0;
7003
7004 err_out:
7005 while (--i >= 0) {
7006 struct ata_port *ap = host->ports[i];
7007
7008 if (ap->ops->port_stop)
7009 ap->ops->port_stop(ap);
7010 }
7011 devres_free(start_dr);
7012 return rc;
7013 }
7014
7015 /**
7016 * ata_sas_host_init - Initialize a host struct
7017 * @host: host to initialize
7018 * @dev: device host is attached to
7019 * @flags: host flags
7020 * @ops: port_ops
7021 *
7022 * LOCKING:
7023 * PCI/etc. bus probe sem.
7024 *
7025 */
7026 /* KILLME - the only user left is ipr */
7027 void ata_host_init(struct ata_host *host, struct device *dev,
7028 unsigned long flags, const struct ata_port_operations *ops)
7029 {
7030 spin_lock_init(&host->lock);
7031 host->dev = dev;
7032 host->flags = flags;
7033 host->ops = ops;
7034 }
7035
7036 /**
7037 * ata_host_register - register initialized ATA host
7038 * @host: ATA host to register
7039 * @sht: template for SCSI host
7040 *
7041 * Register initialized ATA host. @host is allocated using
7042 * ata_host_alloc() and fully initialized by LLD. This function
7043 * starts ports, registers @host with ATA and SCSI layers and
7044 * probe registered devices.
7045 *
7046 * LOCKING:
7047 * Inherited from calling layer (may sleep).
7048 *
7049 * RETURNS:
7050 * 0 on success, -errno otherwise.
7051 */
7052 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7053 {
7054 int i, rc;
7055
7056 /* host must have been started */
7057 if (!(host->flags & ATA_HOST_STARTED)) {
7058 dev_printk(KERN_ERR, host->dev,
7059 "BUG: trying to register unstarted host\n");
7060 WARN_ON(1);
7061 return -EINVAL;
7062 }
7063
7064 /* Blow away unused ports. This happens when LLD can't
7065 * determine the exact number of ports to allocate at
7066 * allocation time.
7067 */
7068 for (i = host->n_ports; host->ports[i]; i++)
7069 kfree(host->ports[i]);
7070
7071 /* give ports names and add SCSI hosts */
7072 for (i = 0; i < host->n_ports; i++)
7073 host->ports[i]->print_id = ata_print_id++;
7074
7075 rc = ata_scsi_add_hosts(host, sht);
7076 if (rc)
7077 return rc;
7078
7079 /* associate with ACPI nodes */
7080 ata_acpi_associate(host);
7081
7082 /* set cable, sata_spd_limit and report */
7083 for (i = 0; i < host->n_ports; i++) {
7084 struct ata_port *ap = host->ports[i];
7085 unsigned long xfer_mask;
7086
7087 /* set SATA cable type if still unset */
7088 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7089 ap->cbl = ATA_CBL_SATA;
7090
7091 /* init sata_spd_limit to the current value */
7092 sata_link_init_spd(&ap->link);
7093
7094 /* print per-port info to dmesg */
7095 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7096 ap->udma_mask);
7097
7098 if (!ata_port_is_dummy(ap)) {
7099 ata_port_printk(ap, KERN_INFO,
7100 "%cATA max %s %s\n",
7101 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7102 ata_mode_string(xfer_mask),
7103 ap->link.eh_info.desc);
7104 ata_ehi_clear_desc(&ap->link.eh_info);
7105 } else
7106 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7107 }
7108
7109 /* perform each probe synchronously */
7110 DPRINTK("probe begin\n");
7111 for (i = 0; i < host->n_ports; i++) {
7112 struct ata_port *ap = host->ports[i];
7113
7114 /* probe */
7115 if (ap->ops->error_handler) {
7116 struct ata_eh_info *ehi = &ap->link.eh_info;
7117 unsigned long flags;
7118
7119 ata_port_probe(ap);
7120
7121 /* kick EH for boot probing */
7122 spin_lock_irqsave(ap->lock, flags);
7123
7124 ehi->probe_mask =
7125 (1 << ata_link_max_devices(&ap->link)) - 1;
7126 ehi->action |= ATA_EH_SOFTRESET;
7127 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7128
7129 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7130 ap->pflags |= ATA_PFLAG_LOADING;
7131 ata_port_schedule_eh(ap);
7132
7133 spin_unlock_irqrestore(ap->lock, flags);
7134
7135 /* wait for EH to finish */
7136 ata_port_wait_eh(ap);
7137 } else {
7138 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7139 rc = ata_bus_probe(ap);
7140 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7141
7142 if (rc) {
7143 /* FIXME: do something useful here?
7144 * Current libata behavior will
7145 * tear down everything when
7146 * the module is removed
7147 * or the h/w is unplugged.
7148 */
7149 }
7150 }
7151 }
7152
7153 /* probes are done, now scan each port's disk(s) */
7154 DPRINTK("host probe begin\n");
7155 for (i = 0; i < host->n_ports; i++) {
7156 struct ata_port *ap = host->ports[i];
7157
7158 ata_scsi_scan_host(ap, 1);
7159 ata_lpm_schedule(ap, ap->pm_policy);
7160 }
7161
7162 return 0;
7163 }
7164
7165 /**
7166 * ata_host_activate - start host, request IRQ and register it
7167 * @host: target ATA host
7168 * @irq: IRQ to request
7169 * @irq_handler: irq_handler used when requesting IRQ
7170 * @irq_flags: irq_flags used when requesting IRQ
7171 * @sht: scsi_host_template to use when registering the host
7172 *
7173 * After allocating an ATA host and initializing it, most libata
7174 * LLDs perform three steps to activate the host - start host,
7175 * request IRQ and register it. This helper takes necessasry
7176 * arguments and performs the three steps in one go.
7177 *
7178 * An invalid IRQ skips the IRQ registration and expects the host to
7179 * have set polling mode on the port. In this case, @irq_handler
7180 * should be NULL.
7181 *
7182 * LOCKING:
7183 * Inherited from calling layer (may sleep).
7184 *
7185 * RETURNS:
7186 * 0 on success, -errno otherwise.
7187 */
7188 int ata_host_activate(struct ata_host *host, int irq,
7189 irq_handler_t irq_handler, unsigned long irq_flags,
7190 struct scsi_host_template *sht)
7191 {
7192 int i, rc;
7193
7194 rc = ata_host_start(host);
7195 if (rc)
7196 return rc;
7197
7198 /* Special case for polling mode */
7199 if (!irq) {
7200 WARN_ON(irq_handler);
7201 return ata_host_register(host, sht);
7202 }
7203
7204 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7205 dev_driver_string(host->dev), host);
7206 if (rc)
7207 return rc;
7208
7209 for (i = 0; i < host->n_ports; i++)
7210 ata_port_desc(host->ports[i], "irq %d", irq);
7211
7212 rc = ata_host_register(host, sht);
7213 /* if failed, just free the IRQ and leave ports alone */
7214 if (rc)
7215 devm_free_irq(host->dev, irq, host);
7216
7217 return rc;
7218 }
7219
7220 /**
7221 * ata_port_detach - Detach ATA port in prepration of device removal
7222 * @ap: ATA port to be detached
7223 *
7224 * Detach all ATA devices and the associated SCSI devices of @ap;
7225 * then, remove the associated SCSI host. @ap is guaranteed to
7226 * be quiescent on return from this function.
7227 *
7228 * LOCKING:
7229 * Kernel thread context (may sleep).
7230 */
7231 static void ata_port_detach(struct ata_port *ap)
7232 {
7233 unsigned long flags;
7234 struct ata_link *link;
7235 struct ata_device *dev;
7236
7237 if (!ap->ops->error_handler)
7238 goto skip_eh;
7239
7240 /* tell EH we're leaving & flush EH */
7241 spin_lock_irqsave(ap->lock, flags);
7242 ap->pflags |= ATA_PFLAG_UNLOADING;
7243 spin_unlock_irqrestore(ap->lock, flags);
7244
7245 ata_port_wait_eh(ap);
7246
7247 /* EH is now guaranteed to see UNLOADING - EH context belongs
7248 * to us. Disable all existing devices.
7249 */
7250 ata_port_for_each_link(link, ap) {
7251 ata_link_for_each_dev(dev, link)
7252 ata_dev_disable(dev);
7253 }
7254
7255 /* Final freeze & EH. All in-flight commands are aborted. EH
7256 * will be skipped and retrials will be terminated with bad
7257 * target.
7258 */
7259 spin_lock_irqsave(ap->lock, flags);
7260 ata_port_freeze(ap); /* won't be thawed */
7261 spin_unlock_irqrestore(ap->lock, flags);
7262
7263 ata_port_wait_eh(ap);
7264 cancel_rearming_delayed_work(&ap->hotplug_task);
7265
7266 skip_eh:
7267 /* remove the associated SCSI host */
7268 scsi_remove_host(ap->scsi_host);
7269 }
7270
7271 /**
7272 * ata_host_detach - Detach all ports of an ATA host
7273 * @host: Host to detach
7274 *
7275 * Detach all ports of @host.
7276 *
7277 * LOCKING:
7278 * Kernel thread context (may sleep).
7279 */
7280 void ata_host_detach(struct ata_host *host)
7281 {
7282 int i;
7283
7284 for (i = 0; i < host->n_ports; i++)
7285 ata_port_detach(host->ports[i]);
7286
7287 /* the host is dead now, dissociate ACPI */
7288 ata_acpi_dissociate(host);
7289 }
7290
7291 /**
7292 * ata_std_ports - initialize ioaddr with standard port offsets.
7293 * @ioaddr: IO address structure to be initialized
7294 *
7295 * Utility function which initializes data_addr, error_addr,
7296 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7297 * device_addr, status_addr, and command_addr to standard offsets
7298 * relative to cmd_addr.
7299 *
7300 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7301 */
7302
7303 void ata_std_ports(struct ata_ioports *ioaddr)
7304 {
7305 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7306 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7307 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7308 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7309 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7310 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7311 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7312 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7313 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7314 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7315 }
7316
7317
7318 #ifdef CONFIG_PCI
7319
7320 /**
7321 * ata_pci_remove_one - PCI layer callback for device removal
7322 * @pdev: PCI device that was removed
7323 *
7324 * PCI layer indicates to libata via this hook that hot-unplug or
7325 * module unload event has occurred. Detach all ports. Resource
7326 * release is handled via devres.
7327 *
7328 * LOCKING:
7329 * Inherited from PCI layer (may sleep).
7330 */
7331 void ata_pci_remove_one(struct pci_dev *pdev)
7332 {
7333 struct device *dev = &pdev->dev;
7334 struct ata_host *host = dev_get_drvdata(dev);
7335
7336 ata_host_detach(host);
7337 }
7338
7339 /* move to PCI subsystem */
7340 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7341 {
7342 unsigned long tmp = 0;
7343
7344 switch (bits->width) {
7345 case 1: {
7346 u8 tmp8 = 0;
7347 pci_read_config_byte(pdev, bits->reg, &tmp8);
7348 tmp = tmp8;
7349 break;
7350 }
7351 case 2: {
7352 u16 tmp16 = 0;
7353 pci_read_config_word(pdev, bits->reg, &tmp16);
7354 tmp = tmp16;
7355 break;
7356 }
7357 case 4: {
7358 u32 tmp32 = 0;
7359 pci_read_config_dword(pdev, bits->reg, &tmp32);
7360 tmp = tmp32;
7361 break;
7362 }
7363
7364 default:
7365 return -EINVAL;
7366 }
7367
7368 tmp &= bits->mask;
7369
7370 return (tmp == bits->val) ? 1 : 0;
7371 }
7372
7373 #ifdef CONFIG_PM
7374 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7375 {
7376 pci_save_state(pdev);
7377 pci_disable_device(pdev);
7378
7379 if (mesg.event & PM_EVENT_SLEEP)
7380 pci_set_power_state(pdev, PCI_D3hot);
7381 }
7382
7383 int ata_pci_device_do_resume(struct pci_dev *pdev)
7384 {
7385 int rc;
7386
7387 pci_set_power_state(pdev, PCI_D0);
7388 pci_restore_state(pdev);
7389
7390 rc = pcim_enable_device(pdev);
7391 if (rc) {
7392 dev_printk(KERN_ERR, &pdev->dev,
7393 "failed to enable device after resume (%d)\n", rc);
7394 return rc;
7395 }
7396
7397 pci_set_master(pdev);
7398 return 0;
7399 }
7400
7401 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7402 {
7403 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7404 int rc = 0;
7405
7406 rc = ata_host_suspend(host, mesg);
7407 if (rc)
7408 return rc;
7409
7410 ata_pci_device_do_suspend(pdev, mesg);
7411
7412 return 0;
7413 }
7414
7415 int ata_pci_device_resume(struct pci_dev *pdev)
7416 {
7417 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7418 int rc;
7419
7420 rc = ata_pci_device_do_resume(pdev);
7421 if (rc == 0)
7422 ata_host_resume(host);
7423 return rc;
7424 }
7425 #endif /* CONFIG_PM */
7426
7427 #endif /* CONFIG_PCI */
7428
7429 static int __init ata_parse_force_one(char **cur,
7430 struct ata_force_ent *force_ent,
7431 const char **reason)
7432 {
7433 /* FIXME: Currently, there's no way to tag init const data and
7434 * using __initdata causes build failure on some versions of
7435 * gcc. Once __initdataconst is implemented, add const to the
7436 * following structure.
7437 */
7438 static struct ata_force_param force_tbl[] __initdata = {
7439 { "40c", .cbl = ATA_CBL_PATA40 },
7440 { "80c", .cbl = ATA_CBL_PATA80 },
7441 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
7442 { "unk", .cbl = ATA_CBL_PATA_UNK },
7443 { "ign", .cbl = ATA_CBL_PATA_IGN },
7444 { "sata", .cbl = ATA_CBL_SATA },
7445 { "1.5Gbps", .spd_limit = 1 },
7446 { "3.0Gbps", .spd_limit = 2 },
7447 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
7448 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
7449 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
7450 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
7451 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
7452 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
7453 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
7454 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
7455 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
7456 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
7457 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
7458 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
7459 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
7460 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
7461 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7462 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7463 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7464 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7465 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7466 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7467 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7468 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7469 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7470 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7471 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7472 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7473 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7474 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7475 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7476 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7477 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7478 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7479 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7480 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7481 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7482 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
7483 };
7484 char *start = *cur, *p = *cur;
7485 char *id, *val, *endp;
7486 const struct ata_force_param *match_fp = NULL;
7487 int nr_matches = 0, i;
7488
7489 /* find where this param ends and update *cur */
7490 while (*p != '\0' && *p != ',')
7491 p++;
7492
7493 if (*p == '\0')
7494 *cur = p;
7495 else
7496 *cur = p + 1;
7497
7498 *p = '\0';
7499
7500 /* parse */
7501 p = strchr(start, ':');
7502 if (!p) {
7503 val = strstrip(start);
7504 goto parse_val;
7505 }
7506 *p = '\0';
7507
7508 id = strstrip(start);
7509 val = strstrip(p + 1);
7510
7511 /* parse id */
7512 p = strchr(id, '.');
7513 if (p) {
7514 *p++ = '\0';
7515 force_ent->device = simple_strtoul(p, &endp, 10);
7516 if (p == endp || *endp != '\0') {
7517 *reason = "invalid device";
7518 return -EINVAL;
7519 }
7520 }
7521
7522 force_ent->port = simple_strtoul(id, &endp, 10);
7523 if (p == endp || *endp != '\0') {
7524 *reason = "invalid port/link";
7525 return -EINVAL;
7526 }
7527
7528 parse_val:
7529 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7530 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
7531 const struct ata_force_param *fp = &force_tbl[i];
7532
7533 if (strncasecmp(val, fp->name, strlen(val)))
7534 continue;
7535
7536 nr_matches++;
7537 match_fp = fp;
7538
7539 if (strcasecmp(val, fp->name) == 0) {
7540 nr_matches = 1;
7541 break;
7542 }
7543 }
7544
7545 if (!nr_matches) {
7546 *reason = "unknown value";
7547 return -EINVAL;
7548 }
7549 if (nr_matches > 1) {
7550 *reason = "ambigious value";
7551 return -EINVAL;
7552 }
7553
7554 force_ent->param = *match_fp;
7555
7556 return 0;
7557 }
7558
7559 static void __init ata_parse_force_param(void)
7560 {
7561 int idx = 0, size = 1;
7562 int last_port = -1, last_device = -1;
7563 char *p, *cur, *next;
7564
7565 /* calculate maximum number of params and allocate force_tbl */
7566 for (p = ata_force_param_buf; *p; p++)
7567 if (*p == ',')
7568 size++;
7569
7570 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
7571 if (!ata_force_tbl) {
7572 printk(KERN_WARNING "ata: failed to extend force table, "
7573 "libata.force ignored\n");
7574 return;
7575 }
7576
7577 /* parse and populate the table */
7578 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7579 const char *reason = "";
7580 struct ata_force_ent te = { .port = -1, .device = -1 };
7581
7582 next = cur;
7583 if (ata_parse_force_one(&next, &te, &reason)) {
7584 printk(KERN_WARNING "ata: failed to parse force "
7585 "parameter \"%s\" (%s)\n",
7586 cur, reason);
7587 continue;
7588 }
7589
7590 if (te.port == -1) {
7591 te.port = last_port;
7592 te.device = last_device;
7593 }
7594
7595 ata_force_tbl[idx++] = te;
7596
7597 last_port = te.port;
7598 last_device = te.device;
7599 }
7600
7601 ata_force_tbl_size = idx;
7602 }
7603
7604 static int __init ata_init(void)
7605 {
7606 ata_probe_timeout *= HZ;
7607
7608 ata_parse_force_param();
7609
7610 ata_wq = create_workqueue("ata");
7611 if (!ata_wq)
7612 return -ENOMEM;
7613
7614 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7615 if (!ata_aux_wq) {
7616 destroy_workqueue(ata_wq);
7617 return -ENOMEM;
7618 }
7619
7620 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7621 return 0;
7622 }
7623
7624 static void __exit ata_exit(void)
7625 {
7626 kfree(ata_force_tbl);
7627 destroy_workqueue(ata_wq);
7628 destroy_workqueue(ata_aux_wq);
7629 }
7630
7631 subsys_initcall(ata_init);
7632 module_exit(ata_exit);
7633
7634 static unsigned long ratelimit_time;
7635 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7636
7637 int ata_ratelimit(void)
7638 {
7639 int rc;
7640 unsigned long flags;
7641
7642 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7643
7644 if (time_after(jiffies, ratelimit_time)) {
7645 rc = 1;
7646 ratelimit_time = jiffies + (HZ/5);
7647 } else
7648 rc = 0;
7649
7650 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7651
7652 return rc;
7653 }
7654
7655 /**
7656 * ata_wait_register - wait until register value changes
7657 * @reg: IO-mapped register
7658 * @mask: Mask to apply to read register value
7659 * @val: Wait condition
7660 * @interval_msec: polling interval in milliseconds
7661 * @timeout_msec: timeout in milliseconds
7662 *
7663 * Waiting for some bits of register to change is a common
7664 * operation for ATA controllers. This function reads 32bit LE
7665 * IO-mapped register @reg and tests for the following condition.
7666 *
7667 * (*@reg & mask) != val
7668 *
7669 * If the condition is met, it returns; otherwise, the process is
7670 * repeated after @interval_msec until timeout.
7671 *
7672 * LOCKING:
7673 * Kernel thread context (may sleep)
7674 *
7675 * RETURNS:
7676 * The final register value.
7677 */
7678 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7679 unsigned long interval_msec,
7680 unsigned long timeout_msec)
7681 {
7682 unsigned long timeout;
7683 u32 tmp;
7684
7685 tmp = ioread32(reg);
7686
7687 /* Calculate timeout _after_ the first read to make sure
7688 * preceding writes reach the controller before starting to
7689 * eat away the timeout.
7690 */
7691 timeout = jiffies + (timeout_msec * HZ) / 1000;
7692
7693 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7694 msleep(interval_msec);
7695 tmp = ioread32(reg);
7696 }
7697
7698 return tmp;
7699 }
7700
7701 /*
7702 * Dummy port_ops
7703 */
7704 static void ata_dummy_noret(struct ata_port *ap) { }
7705 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7706 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7707
7708 static u8 ata_dummy_check_status(struct ata_port *ap)
7709 {
7710 return ATA_DRDY;
7711 }
7712
7713 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7714 {
7715 return AC_ERR_SYSTEM;
7716 }
7717
7718 const struct ata_port_operations ata_dummy_port_ops = {
7719 .check_status = ata_dummy_check_status,
7720 .check_altstatus = ata_dummy_check_status,
7721 .dev_select = ata_noop_dev_select,
7722 .qc_prep = ata_noop_qc_prep,
7723 .qc_issue = ata_dummy_qc_issue,
7724 .freeze = ata_dummy_noret,
7725 .thaw = ata_dummy_noret,
7726 .error_handler = ata_dummy_noret,
7727 .post_internal_cmd = ata_dummy_qc_noret,
7728 .irq_clear = ata_dummy_noret,
7729 .port_start = ata_dummy_ret0,
7730 .port_stop = ata_dummy_noret,
7731 };
7732
7733 const struct ata_port_info ata_dummy_port_info = {
7734 .port_ops = &ata_dummy_port_ops,
7735 };
7736
7737 /*
7738 * libata is essentially a library of internal helper functions for
7739 * low-level ATA host controller drivers. As such, the API/ABI is
7740 * likely to change as new drivers are added and updated.
7741 * Do not depend on ABI/API stability.
7742 */
7743 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7744 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7745 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7746 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7747 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7748 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7749 EXPORT_SYMBOL_GPL(ata_std_ports);
7750 EXPORT_SYMBOL_GPL(ata_host_init);
7751 EXPORT_SYMBOL_GPL(ata_host_alloc);
7752 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7753 EXPORT_SYMBOL_GPL(ata_host_start);
7754 EXPORT_SYMBOL_GPL(ata_host_register);
7755 EXPORT_SYMBOL_GPL(ata_host_activate);
7756 EXPORT_SYMBOL_GPL(ata_host_detach);
7757 EXPORT_SYMBOL_GPL(ata_sg_init);
7758 EXPORT_SYMBOL_GPL(ata_hsm_move);
7759 EXPORT_SYMBOL_GPL(ata_qc_complete);
7760 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7761 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7762 EXPORT_SYMBOL_GPL(ata_tf_load);
7763 EXPORT_SYMBOL_GPL(ata_tf_read);
7764 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7765 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7766 EXPORT_SYMBOL_GPL(sata_print_link_status);
7767 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7768 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7769 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7770 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7771 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7772 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7773 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7774 EXPORT_SYMBOL_GPL(ata_mode_string);
7775 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7776 EXPORT_SYMBOL_GPL(ata_check_status);
7777 EXPORT_SYMBOL_GPL(ata_altstatus);
7778 EXPORT_SYMBOL_GPL(ata_exec_command);
7779 EXPORT_SYMBOL_GPL(ata_port_start);
7780 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7781 EXPORT_SYMBOL_GPL(ata_interrupt);
7782 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7783 EXPORT_SYMBOL_GPL(ata_data_xfer);
7784 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7785 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7786 EXPORT_SYMBOL_GPL(ata_qc_prep);
7787 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7788 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7789 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7790 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7791 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7792 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7793 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7794 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7795 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7796 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7797 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7798 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7799 EXPORT_SYMBOL_GPL(ata_port_probe);
7800 EXPORT_SYMBOL_GPL(ata_dev_disable);
7801 EXPORT_SYMBOL_GPL(sata_set_spd);
7802 EXPORT_SYMBOL_GPL(sata_link_debounce);
7803 EXPORT_SYMBOL_GPL(sata_link_resume);
7804 EXPORT_SYMBOL_GPL(ata_bus_reset);
7805 EXPORT_SYMBOL_GPL(ata_std_prereset);
7806 EXPORT_SYMBOL_GPL(ata_std_softreset);
7807 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7808 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7809 EXPORT_SYMBOL_GPL(ata_std_postreset);
7810 EXPORT_SYMBOL_GPL(ata_dev_classify);
7811 EXPORT_SYMBOL_GPL(ata_dev_pair);
7812 EXPORT_SYMBOL_GPL(ata_port_disable);
7813 EXPORT_SYMBOL_GPL(ata_ratelimit);
7814 EXPORT_SYMBOL_GPL(ata_wait_register);
7815 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7816 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7817 EXPORT_SYMBOL_GPL(ata_wait_ready);
7818 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7819 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7820 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7821 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7822 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7823 EXPORT_SYMBOL_GPL(ata_host_intr);
7824 EXPORT_SYMBOL_GPL(sata_scr_valid);
7825 EXPORT_SYMBOL_GPL(sata_scr_read);
7826 EXPORT_SYMBOL_GPL(sata_scr_write);
7827 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7828 EXPORT_SYMBOL_GPL(ata_link_online);
7829 EXPORT_SYMBOL_GPL(ata_link_offline);
7830 #ifdef CONFIG_PM
7831 EXPORT_SYMBOL_GPL(ata_host_suspend);
7832 EXPORT_SYMBOL_GPL(ata_host_resume);
7833 #endif /* CONFIG_PM */
7834 EXPORT_SYMBOL_GPL(ata_id_string);
7835 EXPORT_SYMBOL_GPL(ata_id_c_string);
7836 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7837
7838 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7839 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7840 EXPORT_SYMBOL_GPL(ata_timing_compute);
7841 EXPORT_SYMBOL_GPL(ata_timing_merge);
7842 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7843
7844 #ifdef CONFIG_PCI
7845 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7846 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7847 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7848 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7849 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host);
7850 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7851 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7852 #ifdef CONFIG_PM
7853 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7854 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7855 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7856 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7857 #endif /* CONFIG_PM */
7858 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7859 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7860 #endif /* CONFIG_PCI */
7861
7862 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7863 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7864 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7865 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7866 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7867
7868 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7869 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7870 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7871 EXPORT_SYMBOL_GPL(ata_port_desc);
7872 #ifdef CONFIG_PCI
7873 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7874 #endif /* CONFIG_PCI */
7875 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7876 EXPORT_SYMBOL_GPL(ata_link_abort);
7877 EXPORT_SYMBOL_GPL(ata_port_abort);
7878 EXPORT_SYMBOL_GPL(ata_port_freeze);
7879 EXPORT_SYMBOL_GPL(sata_async_notification);
7880 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7881 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7882 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7883 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7884 EXPORT_SYMBOL_GPL(ata_do_eh);
7885 EXPORT_SYMBOL_GPL(ata_irq_on);
7886 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7887
7888 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7889 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7890 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7891 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7892 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.183563 seconds and 6 git commands to generate.