[PATCH] libata: implement ATA_EHI_PRINTINFO
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
66
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
71
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
74
75 struct workqueue_struct *ata_aux_wq;
76
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
81 int atapi_dmadir = 0;
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
97
98
99 /**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
113 {
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139 }
140
141 /**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
153 {
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168 }
169
170 static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
185 0,
186 0,
187 0,
188 0,
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
198 };
199
200 /**
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
203 *
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
206 *
207 * LOCKING:
208 * caller.
209 */
210 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
211 {
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
214 u8 cmd;
215
216 int index, fua, lba48, write;
217
218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
221
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
224 index = dev->multi_count ? 0 : 8;
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
228 index = dev->multi_count ? 0 : 8;
229 } else {
230 tf->protocol = ATA_PROT_DMA;
231 index = 16;
232 }
233
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
238 }
239 return -1;
240 }
241
242 /**
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
247 *
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
250 *
251 * LOCKING:
252 * None.
253 *
254 * RETURNS:
255 * Packed xfer_mask.
256 */
257 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
260 {
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
264 }
265
266 /**
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
272 *
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
275 */
276 static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
280 {
281 if (pio_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
283 if (mwdma_mask)
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
285 if (udma_mask)
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
287 }
288
289 static const struct ata_xfer_ent {
290 int shift, bits;
291 u8 base;
292 } ata_xfer_tbl[] = {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
296 { -1, },
297 };
298
299 /**
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
302 *
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
305 *
306 * LOCKING:
307 * None.
308 *
309 * RETURNS:
310 * Matching XFER_* value, 0 if no match found.
311 */
312 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
313 {
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
316
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
320 return 0;
321 }
322
323 /**
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
326 *
327 * Return matching xfer_mask for @xfer_mode.
328 *
329 * LOCKING:
330 * None.
331 *
332 * RETURNS:
333 * Matching xfer_mask, 0 if no match found.
334 */
335 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
336 {
337 const struct ata_xfer_ent *ent;
338
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
342 return 0;
343 }
344
345 /**
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
348 *
349 * Return matching xfer_shift for @xfer_mode.
350 *
351 * LOCKING:
352 * None.
353 *
354 * RETURNS:
355 * Matching xfer_shift, -1 if no match found.
356 */
357 static int ata_xfer_mode2shift(unsigned int xfer_mode)
358 {
359 const struct ata_xfer_ent *ent;
360
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
363 return ent->shift;
364 return -1;
365 }
366
367 /**
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
370 *
371 * Determine string which represents the highest speed
372 * (highest bit in @modemask).
373 *
374 * LOCKING:
375 * None.
376 *
377 * RETURNS:
378 * Constant C string representing highest speed listed in
379 * @mode_mask, or the constant C string "<n/a>".
380 */
381 static const char *ata_mode_string(unsigned int xfer_mask)
382 {
383 static const char * const xfer_mode_str[] = {
384 "PIO0",
385 "PIO1",
386 "PIO2",
387 "PIO3",
388 "PIO4",
389 "PIO5",
390 "PIO6",
391 "MWDMA0",
392 "MWDMA1",
393 "MWDMA2",
394 "MWDMA3",
395 "MWDMA4",
396 "UDMA/16",
397 "UDMA/25",
398 "UDMA/33",
399 "UDMA/44",
400 "UDMA/66",
401 "UDMA/100",
402 "UDMA/133",
403 "UDMA7",
404 };
405 int highbit;
406
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
410 return "<n/a>";
411 }
412
413 static const char *sata_spd_string(unsigned int spd)
414 {
415 static const char * const spd_str[] = {
416 "1.5 Gbps",
417 "3.0 Gbps",
418 };
419
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
421 return "<unknown>";
422 return spd_str[spd - 1];
423 }
424
425 void ata_dev_disable(struct ata_device *dev)
426 {
427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
429 dev->class++;
430 }
431 }
432
433 /**
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
437 *
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
441 *
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
446 *
447 * LOCKING:
448 * caller.
449 */
450
451 static unsigned int ata_pio_devchk(struct ata_port *ap,
452 unsigned int device)
453 {
454 struct ata_ioports *ioaddr = &ap->ioaddr;
455 u8 nsect, lbal;
456
457 ap->ops->dev_select(ap, device);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
464
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
467
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
470
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
473
474 return 0; /* nothing found */
475 }
476
477 /**
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
481 *
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
485 *
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
490 *
491 * LOCKING:
492 * caller.
493 */
494
495 static unsigned int ata_mmio_devchk(struct ata_port *ap,
496 unsigned int device)
497 {
498 struct ata_ioports *ioaddr = &ap->ioaddr;
499 u8 nsect, lbal;
500
501 ap->ops->dev_select(ap, device);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
508
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
511
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
514
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
517
518 return 0; /* nothing found */
519 }
520
521 /**
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
525 *
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
529 *
530 * LOCKING:
531 * caller.
532 */
533
534 static unsigned int ata_devchk(struct ata_port *ap,
535 unsigned int device)
536 {
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
540 }
541
542 /**
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
545 *
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
556 */
557
558 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
559 {
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
563 */
564
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
568 return ATA_DEV_ATA;
569 }
570
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
575 }
576
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
579 }
580
581 /**
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
585 * @r_err: Value of error register on completion
586 *
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
590 * and diagnostics.
591 *
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
595 *
596 * LOCKING:
597 * caller.
598 *
599 * RETURNS:
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
601 */
602
603 static unsigned int
604 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
605 {
606 struct ata_taskfile tf;
607 unsigned int class;
608 u8 err;
609
610 ap->ops->dev_select(ap, device);
611
612 memset(&tf, 0, sizeof(tf));
613
614 ap->ops->tf_read(ap, &tf);
615 err = tf.feature;
616 if (r_err)
617 *r_err = err;
618
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
623 else if (err == 1)
624 /* do nothing */ ;
625 else if ((device == 0) && (err == 0x81))
626 /* do nothing */ ;
627 else
628 return ATA_DEV_NONE;
629
630 /* determine if device is ATA or ATAPI */
631 class = ata_dev_classify(&tf);
632
633 if (class == ATA_DEV_UNKNOWN)
634 return ATA_DEV_NONE;
635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
636 return ATA_DEV_NONE;
637 return class;
638 }
639
640 /**
641 * ata_id_string - Convert IDENTIFY DEVICE page into string
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
646 *
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
650 *
651 * LOCKING:
652 * caller.
653 */
654
655 void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
657 {
658 unsigned int c;
659
660 while (len > 0) {
661 c = id[ofs] >> 8;
662 *s = c;
663 s++;
664
665 c = id[ofs] & 0xff;
666 *s = c;
667 s++;
668
669 ofs++;
670 len -= 2;
671 }
672 }
673
674 /**
675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
680 *
681 * This function is identical to ata_id_string except that it
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
684 *
685 * LOCKING:
686 * caller.
687 */
688 void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
690 {
691 unsigned char *p;
692
693 WARN_ON(!(len & 1));
694
695 ata_id_string(id, s, ofs, len - 1);
696
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
699 p--;
700 *p = '\0';
701 }
702
703 static u64 ata_id_n_sectors(const u16 *id)
704 {
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
708 else
709 return ata_id_u32(id, 60);
710 } else {
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
713 else
714 return id[1] * id[3] * id[6];
715 }
716 }
717
718 /**
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
722 *
723 * This function performs no actual function.
724 *
725 * May be used as the dev_select() entry in ata_port_operations.
726 *
727 * LOCKING:
728 * caller.
729 */
730 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
731 {
732 }
733
734
735 /**
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
739 *
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
742 * ATA channel. Works with both PIO and MMIO.
743 *
744 * May be used as the dev_select() entry in ata_port_operations.
745 *
746 * LOCKING:
747 * caller.
748 */
749
750 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
751 {
752 u8 tmp;
753
754 if (device == 0)
755 tmp = ATA_DEVICE_OBS;
756 else
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
758
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
761 } else {
762 outb(tmp, ap->ioaddr.device_addr);
763 }
764 ata_pause(ap); /* needed; also flushes, for mmio */
765 }
766
767 /**
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
773 *
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
776 * ATA channel.
777 *
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
781 *
782 * LOCKING:
783 * caller.
784 */
785
786 void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
788 {
789 if (ata_msg_probe(ap))
790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
791 "device %u, wait %u\n", ap->id, device, wait);
792
793 if (wait)
794 ata_wait_idle(ap);
795
796 ap->ops->dev_select(ap, device);
797
798 if (wait) {
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
800 msleep(150);
801 ata_wait_idle(ap);
802 }
803 }
804
805 /**
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
807 * @id: IDENTIFY DEVICE page to dump
808 *
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
810 * page.
811 *
812 * LOCKING:
813 * caller.
814 */
815
816 static inline void ata_dump_id(const u16 *id)
817 {
818 DPRINTK("49==0x%04x "
819 "53==0x%04x "
820 "63==0x%04x "
821 "64==0x%04x "
822 "75==0x%04x \n",
823 id[49],
824 id[53],
825 id[63],
826 id[64],
827 id[75]);
828 DPRINTK("80==0x%04x "
829 "81==0x%04x "
830 "82==0x%04x "
831 "83==0x%04x "
832 "84==0x%04x \n",
833 id[80],
834 id[81],
835 id[82],
836 id[83],
837 id[84]);
838 DPRINTK("88==0x%04x "
839 "93==0x%04x\n",
840 id[88],
841 id[93]);
842 }
843
844 /**
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
847 *
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
850 *
851 * FIXME: pre IDE drive timing (do we care ?).
852 *
853 * LOCKING:
854 * None.
855 *
856 * RETURNS:
857 * Computed xfermask
858 */
859 static unsigned int ata_id_xfermask(const u16 *id)
860 {
861 unsigned int pio_mask, mwdma_mask, udma_mask;
862
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
866 pio_mask <<= 3;
867 pio_mask |= 0x7;
868 } else {
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
871 * a mask.
872 */
873 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
874 if (mode < 5) /* Valid PIO range */
875 pio_mask = (2 << mode) - 1;
876 else
877 pio_mask = 1;
878
879 /* But wait.. there's more. Design your standards by
880 * committee and you too can get a free iordy field to
881 * process. However its the speeds not the modes that
882 * are supported... Note drivers using the timing API
883 * will get this right anyway
884 */
885 }
886
887 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
888
889 if (ata_id_is_cfa(id)) {
890 /*
891 * Process compact flash extended modes
892 */
893 int pio = id[163] & 0x7;
894 int dma = (id[163] >> 3) & 7;
895
896 if (pio)
897 pio_mask |= (1 << 5);
898 if (pio > 1)
899 pio_mask |= (1 << 6);
900 if (dma)
901 mwdma_mask |= (1 << 3);
902 if (dma > 1)
903 mwdma_mask |= (1 << 4);
904 }
905
906 udma_mask = 0;
907 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
908 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
909
910 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
911 }
912
913 /**
914 * ata_port_queue_task - Queue port_task
915 * @ap: The ata_port to queue port_task for
916 * @fn: workqueue function to be scheduled
917 * @data: data value to pass to workqueue function
918 * @delay: delay time for workqueue function
919 *
920 * Schedule @fn(@data) for execution after @delay jiffies using
921 * port_task. There is one port_task per port and it's the
922 * user(low level driver)'s responsibility to make sure that only
923 * one task is active at any given time.
924 *
925 * libata core layer takes care of synchronization between
926 * port_task and EH. ata_port_queue_task() may be ignored for EH
927 * synchronization.
928 *
929 * LOCKING:
930 * Inherited from caller.
931 */
932 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
933 unsigned long delay)
934 {
935 int rc;
936
937 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
938 return;
939
940 PREPARE_WORK(&ap->port_task, fn, data);
941
942 if (!delay)
943 rc = queue_work(ata_wq, &ap->port_task);
944 else
945 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
946
947 /* rc == 0 means that another user is using port task */
948 WARN_ON(rc == 0);
949 }
950
951 /**
952 * ata_port_flush_task - Flush port_task
953 * @ap: The ata_port to flush port_task for
954 *
955 * After this function completes, port_task is guranteed not to
956 * be running or scheduled.
957 *
958 * LOCKING:
959 * Kernel thread context (may sleep)
960 */
961 void ata_port_flush_task(struct ata_port *ap)
962 {
963 unsigned long flags;
964
965 DPRINTK("ENTER\n");
966
967 spin_lock_irqsave(ap->lock, flags);
968 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
969 spin_unlock_irqrestore(ap->lock, flags);
970
971 DPRINTK("flush #1\n");
972 flush_workqueue(ata_wq);
973
974 /*
975 * At this point, if a task is running, it's guaranteed to see
976 * the FLUSH flag; thus, it will never queue pio tasks again.
977 * Cancel and flush.
978 */
979 if (!cancel_delayed_work(&ap->port_task)) {
980 if (ata_msg_ctl(ap))
981 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
982 __FUNCTION__);
983 flush_workqueue(ata_wq);
984 }
985
986 spin_lock_irqsave(ap->lock, flags);
987 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
988 spin_unlock_irqrestore(ap->lock, flags);
989
990 if (ata_msg_ctl(ap))
991 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
992 }
993
994 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
995 {
996 struct completion *waiting = qc->private_data;
997
998 complete(waiting);
999 }
1000
1001 /**
1002 * ata_exec_internal - execute libata internal command
1003 * @dev: Device to which the command is sent
1004 * @tf: Taskfile registers for the command and the result
1005 * @cdb: CDB for packet command
1006 * @dma_dir: Data tranfer direction of the command
1007 * @buf: Data buffer of the command
1008 * @buflen: Length of data buffer
1009 *
1010 * Executes libata internal command with timeout. @tf contains
1011 * command on entry and result on return. Timeout and error
1012 * conditions are reported via return value. No recovery action
1013 * is taken after a command times out. It's caller's duty to
1014 * clean up after timeout.
1015 *
1016 * LOCKING:
1017 * None. Should be called with kernel context, might sleep.
1018 *
1019 * RETURNS:
1020 * Zero on success, AC_ERR_* mask on failure
1021 */
1022 unsigned ata_exec_internal(struct ata_device *dev,
1023 struct ata_taskfile *tf, const u8 *cdb,
1024 int dma_dir, void *buf, unsigned int buflen)
1025 {
1026 struct ata_port *ap = dev->ap;
1027 u8 command = tf->command;
1028 struct ata_queued_cmd *qc;
1029 unsigned int tag, preempted_tag;
1030 u32 preempted_sactive, preempted_qc_active;
1031 DECLARE_COMPLETION_ONSTACK(wait);
1032 unsigned long flags;
1033 unsigned int err_mask;
1034 int rc;
1035
1036 spin_lock_irqsave(ap->lock, flags);
1037
1038 /* no internal command while frozen */
1039 if (ap->pflags & ATA_PFLAG_FROZEN) {
1040 spin_unlock_irqrestore(ap->lock, flags);
1041 return AC_ERR_SYSTEM;
1042 }
1043
1044 /* initialize internal qc */
1045
1046 /* XXX: Tag 0 is used for drivers with legacy EH as some
1047 * drivers choke if any other tag is given. This breaks
1048 * ata_tag_internal() test for those drivers. Don't use new
1049 * EH stuff without converting to it.
1050 */
1051 if (ap->ops->error_handler)
1052 tag = ATA_TAG_INTERNAL;
1053 else
1054 tag = 0;
1055
1056 if (test_and_set_bit(tag, &ap->qc_allocated))
1057 BUG();
1058 qc = __ata_qc_from_tag(ap, tag);
1059
1060 qc->tag = tag;
1061 qc->scsicmd = NULL;
1062 qc->ap = ap;
1063 qc->dev = dev;
1064 ata_qc_reinit(qc);
1065
1066 preempted_tag = ap->active_tag;
1067 preempted_sactive = ap->sactive;
1068 preempted_qc_active = ap->qc_active;
1069 ap->active_tag = ATA_TAG_POISON;
1070 ap->sactive = 0;
1071 ap->qc_active = 0;
1072
1073 /* prepare & issue qc */
1074 qc->tf = *tf;
1075 if (cdb)
1076 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1077 qc->flags |= ATA_QCFLAG_RESULT_TF;
1078 qc->dma_dir = dma_dir;
1079 if (dma_dir != DMA_NONE) {
1080 ata_sg_init_one(qc, buf, buflen);
1081 qc->nsect = buflen / ATA_SECT_SIZE;
1082 }
1083
1084 qc->private_data = &wait;
1085 qc->complete_fn = ata_qc_complete_internal;
1086
1087 ata_qc_issue(qc);
1088
1089 spin_unlock_irqrestore(ap->lock, flags);
1090
1091 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1092
1093 ata_port_flush_task(ap);
1094
1095 if (!rc) {
1096 spin_lock_irqsave(ap->lock, flags);
1097
1098 /* We're racing with irq here. If we lose, the
1099 * following test prevents us from completing the qc
1100 * twice. If we win, the port is frozen and will be
1101 * cleaned up by ->post_internal_cmd().
1102 */
1103 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1104 qc->err_mask |= AC_ERR_TIMEOUT;
1105
1106 if (ap->ops->error_handler)
1107 ata_port_freeze(ap);
1108 else
1109 ata_qc_complete(qc);
1110
1111 if (ata_msg_warn(ap))
1112 ata_dev_printk(dev, KERN_WARNING,
1113 "qc timeout (cmd 0x%x)\n", command);
1114 }
1115
1116 spin_unlock_irqrestore(ap->lock, flags);
1117 }
1118
1119 /* do post_internal_cmd */
1120 if (ap->ops->post_internal_cmd)
1121 ap->ops->post_internal_cmd(qc);
1122
1123 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1124 if (ata_msg_warn(ap))
1125 ata_dev_printk(dev, KERN_WARNING,
1126 "zero err_mask for failed "
1127 "internal command, assuming AC_ERR_OTHER\n");
1128 qc->err_mask |= AC_ERR_OTHER;
1129 }
1130
1131 /* finish up */
1132 spin_lock_irqsave(ap->lock, flags);
1133
1134 *tf = qc->result_tf;
1135 err_mask = qc->err_mask;
1136
1137 ata_qc_free(qc);
1138 ap->active_tag = preempted_tag;
1139 ap->sactive = preempted_sactive;
1140 ap->qc_active = preempted_qc_active;
1141
1142 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1143 * Until those drivers are fixed, we detect the condition
1144 * here, fail the command with AC_ERR_SYSTEM and reenable the
1145 * port.
1146 *
1147 * Note that this doesn't change any behavior as internal
1148 * command failure results in disabling the device in the
1149 * higher layer for LLDDs without new reset/EH callbacks.
1150 *
1151 * Kill the following code as soon as those drivers are fixed.
1152 */
1153 if (ap->flags & ATA_FLAG_DISABLED) {
1154 err_mask |= AC_ERR_SYSTEM;
1155 ata_port_probe(ap);
1156 }
1157
1158 spin_unlock_irqrestore(ap->lock, flags);
1159
1160 return err_mask;
1161 }
1162
1163 /**
1164 * ata_do_simple_cmd - execute simple internal command
1165 * @dev: Device to which the command is sent
1166 * @cmd: Opcode to execute
1167 *
1168 * Execute a 'simple' command, that only consists of the opcode
1169 * 'cmd' itself, without filling any other registers
1170 *
1171 * LOCKING:
1172 * Kernel thread context (may sleep).
1173 *
1174 * RETURNS:
1175 * Zero on success, AC_ERR_* mask on failure
1176 */
1177 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1178 {
1179 struct ata_taskfile tf;
1180
1181 ata_tf_init(dev, &tf);
1182
1183 tf.command = cmd;
1184 tf.flags |= ATA_TFLAG_DEVICE;
1185 tf.protocol = ATA_PROT_NODATA;
1186
1187 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1188 }
1189
1190 /**
1191 * ata_pio_need_iordy - check if iordy needed
1192 * @adev: ATA device
1193 *
1194 * Check if the current speed of the device requires IORDY. Used
1195 * by various controllers for chip configuration.
1196 */
1197
1198 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1199 {
1200 int pio;
1201 int speed = adev->pio_mode - XFER_PIO_0;
1202
1203 if (speed < 2)
1204 return 0;
1205 if (speed > 2)
1206 return 1;
1207
1208 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1209
1210 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1211 pio = adev->id[ATA_ID_EIDE_PIO];
1212 /* Is the speed faster than the drive allows non IORDY ? */
1213 if (pio) {
1214 /* This is cycle times not frequency - watch the logic! */
1215 if (pio > 240) /* PIO2 is 240nS per cycle */
1216 return 1;
1217 return 0;
1218 }
1219 }
1220 return 0;
1221 }
1222
1223 /**
1224 * ata_dev_read_id - Read ID data from the specified device
1225 * @dev: target device
1226 * @p_class: pointer to class of the target device (may be changed)
1227 * @post_reset: is this read ID post-reset?
1228 * @id: buffer to read IDENTIFY data into
1229 *
1230 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1231 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1232 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1233 * for pre-ATA4 drives.
1234 *
1235 * LOCKING:
1236 * Kernel thread context (may sleep)
1237 *
1238 * RETURNS:
1239 * 0 on success, -errno otherwise.
1240 */
1241 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1242 int post_reset, u16 *id)
1243 {
1244 struct ata_port *ap = dev->ap;
1245 unsigned int class = *p_class;
1246 struct ata_taskfile tf;
1247 unsigned int err_mask = 0;
1248 const char *reason;
1249 int rc;
1250
1251 if (ata_msg_ctl(ap))
1252 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1253 __FUNCTION__, ap->id, dev->devno);
1254
1255 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1256
1257 retry:
1258 ata_tf_init(dev, &tf);
1259
1260 switch (class) {
1261 case ATA_DEV_ATA:
1262 tf.command = ATA_CMD_ID_ATA;
1263 break;
1264 case ATA_DEV_ATAPI:
1265 tf.command = ATA_CMD_ID_ATAPI;
1266 break;
1267 default:
1268 rc = -ENODEV;
1269 reason = "unsupported class";
1270 goto err_out;
1271 }
1272
1273 tf.protocol = ATA_PROT_PIO;
1274
1275 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1276 id, sizeof(id[0]) * ATA_ID_WORDS);
1277 if (err_mask) {
1278 rc = -EIO;
1279 reason = "I/O error";
1280 goto err_out;
1281 }
1282
1283 swap_buf_le16(id, ATA_ID_WORDS);
1284
1285 /* sanity check */
1286 rc = -EINVAL;
1287 reason = "device reports illegal type";
1288
1289 if (class == ATA_DEV_ATA) {
1290 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1291 goto err_out;
1292 } else {
1293 if (ata_id_is_ata(id))
1294 goto err_out;
1295 }
1296
1297 if (post_reset && class == ATA_DEV_ATA) {
1298 /*
1299 * The exact sequence expected by certain pre-ATA4 drives is:
1300 * SRST RESET
1301 * IDENTIFY
1302 * INITIALIZE DEVICE PARAMETERS
1303 * anything else..
1304 * Some drives were very specific about that exact sequence.
1305 */
1306 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1307 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1308 if (err_mask) {
1309 rc = -EIO;
1310 reason = "INIT_DEV_PARAMS failed";
1311 goto err_out;
1312 }
1313
1314 /* current CHS translation info (id[53-58]) might be
1315 * changed. reread the identify device info.
1316 */
1317 post_reset = 0;
1318 goto retry;
1319 }
1320 }
1321
1322 *p_class = class;
1323
1324 return 0;
1325
1326 err_out:
1327 if (ata_msg_warn(ap))
1328 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1329 "(%s, err_mask=0x%x)\n", reason, err_mask);
1330 return rc;
1331 }
1332
1333 static inline u8 ata_dev_knobble(struct ata_device *dev)
1334 {
1335 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1336 }
1337
1338 static void ata_dev_config_ncq(struct ata_device *dev,
1339 char *desc, size_t desc_sz)
1340 {
1341 struct ata_port *ap = dev->ap;
1342 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1343
1344 if (!ata_id_has_ncq(dev->id)) {
1345 desc[0] = '\0';
1346 return;
1347 }
1348 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1349 snprintf(desc, desc_sz, "NCQ (not used)");
1350 return;
1351 }
1352 if (ap->flags & ATA_FLAG_NCQ) {
1353 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1354 dev->flags |= ATA_DFLAG_NCQ;
1355 }
1356
1357 if (hdepth >= ddepth)
1358 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1359 else
1360 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1361 }
1362
1363 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1364 {
1365 int i;
1366
1367 if (ap->scsi_host) {
1368 unsigned int len = 0;
1369
1370 for (i = 0; i < ATA_MAX_DEVICES; i++)
1371 len = max(len, ap->device[i].cdb_len);
1372
1373 ap->scsi_host->max_cmd_len = len;
1374 }
1375 }
1376
1377 /**
1378 * ata_dev_configure - Configure the specified ATA/ATAPI device
1379 * @dev: Target device to configure
1380 *
1381 * Configure @dev according to @dev->id. Generic and low-level
1382 * driver specific fixups are also applied.
1383 *
1384 * LOCKING:
1385 * Kernel thread context (may sleep)
1386 *
1387 * RETURNS:
1388 * 0 on success, -errno otherwise
1389 */
1390 int ata_dev_configure(struct ata_device *dev)
1391 {
1392 struct ata_port *ap = dev->ap;
1393 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1394 const u16 *id = dev->id;
1395 unsigned int xfer_mask;
1396 char revbuf[7]; /* XYZ-99\0 */
1397 int rc;
1398
1399 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1400 ata_dev_printk(dev, KERN_INFO,
1401 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1402 __FUNCTION__, ap->id, dev->devno);
1403 return 0;
1404 }
1405
1406 if (ata_msg_probe(ap))
1407 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1408 __FUNCTION__, ap->id, dev->devno);
1409
1410 /* print device capabilities */
1411 if (ata_msg_probe(ap))
1412 ata_dev_printk(dev, KERN_DEBUG,
1413 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1414 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1415 __FUNCTION__,
1416 id[49], id[82], id[83], id[84],
1417 id[85], id[86], id[87], id[88]);
1418
1419 /* initialize to-be-configured parameters */
1420 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1421 dev->max_sectors = 0;
1422 dev->cdb_len = 0;
1423 dev->n_sectors = 0;
1424 dev->cylinders = 0;
1425 dev->heads = 0;
1426 dev->sectors = 0;
1427
1428 /*
1429 * common ATA, ATAPI feature tests
1430 */
1431
1432 /* find max transfer mode; for printk only */
1433 xfer_mask = ata_id_xfermask(id);
1434
1435 if (ata_msg_probe(ap))
1436 ata_dump_id(id);
1437
1438 /* ATA-specific feature tests */
1439 if (dev->class == ATA_DEV_ATA) {
1440 if (ata_id_is_cfa(id)) {
1441 if (id[162] & 1) /* CPRM may make this media unusable */
1442 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1443 ap->id, dev->devno);
1444 snprintf(revbuf, 7, "CFA");
1445 }
1446 else
1447 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1448
1449 dev->n_sectors = ata_id_n_sectors(id);
1450
1451 if (ata_id_has_lba(id)) {
1452 const char *lba_desc;
1453 char ncq_desc[20];
1454
1455 lba_desc = "LBA";
1456 dev->flags |= ATA_DFLAG_LBA;
1457 if (ata_id_has_lba48(id)) {
1458 dev->flags |= ATA_DFLAG_LBA48;
1459 lba_desc = "LBA48";
1460 }
1461
1462 /* config NCQ */
1463 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1464
1465 /* print device info to dmesg */
1466 if (ata_msg_drv(ap) && print_info)
1467 ata_dev_printk(dev, KERN_INFO, "%s, "
1468 "max %s, %Lu sectors: %s %s\n",
1469 revbuf,
1470 ata_mode_string(xfer_mask),
1471 (unsigned long long)dev->n_sectors,
1472 lba_desc, ncq_desc);
1473 } else {
1474 /* CHS */
1475
1476 /* Default translation */
1477 dev->cylinders = id[1];
1478 dev->heads = id[3];
1479 dev->sectors = id[6];
1480
1481 if (ata_id_current_chs_valid(id)) {
1482 /* Current CHS translation is valid. */
1483 dev->cylinders = id[54];
1484 dev->heads = id[55];
1485 dev->sectors = id[56];
1486 }
1487
1488 /* print device info to dmesg */
1489 if (ata_msg_drv(ap) && print_info)
1490 ata_dev_printk(dev, KERN_INFO, "%s, "
1491 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1492 revbuf,
1493 ata_mode_string(xfer_mask),
1494 (unsigned long long)dev->n_sectors,
1495 dev->cylinders, dev->heads,
1496 dev->sectors);
1497 }
1498
1499 if (dev->id[59] & 0x100) {
1500 dev->multi_count = dev->id[59] & 0xff;
1501 if (ata_msg_drv(ap) && print_info)
1502 ata_dev_printk(dev, KERN_INFO,
1503 "ata%u: dev %u multi count %u\n",
1504 ap->id, dev->devno, dev->multi_count);
1505 }
1506
1507 dev->cdb_len = 16;
1508 }
1509
1510 /* ATAPI-specific feature tests */
1511 else if (dev->class == ATA_DEV_ATAPI) {
1512 char *cdb_intr_string = "";
1513
1514 rc = atapi_cdb_len(id);
1515 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1516 if (ata_msg_warn(ap))
1517 ata_dev_printk(dev, KERN_WARNING,
1518 "unsupported CDB len\n");
1519 rc = -EINVAL;
1520 goto err_out_nosup;
1521 }
1522 dev->cdb_len = (unsigned int) rc;
1523
1524 if (ata_id_cdb_intr(dev->id)) {
1525 dev->flags |= ATA_DFLAG_CDB_INTR;
1526 cdb_intr_string = ", CDB intr";
1527 }
1528
1529 /* print device info to dmesg */
1530 if (ata_msg_drv(ap) && print_info)
1531 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1532 ata_mode_string(xfer_mask),
1533 cdb_intr_string);
1534 }
1535
1536 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1537 /* Let the user know. We don't want to disallow opens for
1538 rescue purposes, or in case the vendor is just a blithering
1539 idiot */
1540 if (print_info) {
1541 ata_dev_printk(dev, KERN_WARNING,
1542 "Drive reports diagnostics failure. This may indicate a drive\n");
1543 ata_dev_printk(dev, KERN_WARNING,
1544 "fault or invalid emulation. Contact drive vendor for information.\n");
1545 }
1546 }
1547
1548 ata_set_port_max_cmd_len(ap);
1549
1550 /* limit bridge transfers to udma5, 200 sectors */
1551 if (ata_dev_knobble(dev)) {
1552 if (ata_msg_drv(ap) && print_info)
1553 ata_dev_printk(dev, KERN_INFO,
1554 "applying bridge limits\n");
1555 dev->udma_mask &= ATA_UDMA5;
1556 dev->max_sectors = ATA_MAX_SECTORS;
1557 }
1558
1559 if (ap->ops->dev_config)
1560 ap->ops->dev_config(ap, dev);
1561
1562 if (ata_msg_probe(ap))
1563 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1564 __FUNCTION__, ata_chk_status(ap));
1565 return 0;
1566
1567 err_out_nosup:
1568 if (ata_msg_probe(ap))
1569 ata_dev_printk(dev, KERN_DEBUG,
1570 "%s: EXIT, err\n", __FUNCTION__);
1571 return rc;
1572 }
1573
1574 /**
1575 * ata_bus_probe - Reset and probe ATA bus
1576 * @ap: Bus to probe
1577 *
1578 * Master ATA bus probing function. Initiates a hardware-dependent
1579 * bus reset, then attempts to identify any devices found on
1580 * the bus.
1581 *
1582 * LOCKING:
1583 * PCI/etc. bus probe sem.
1584 *
1585 * RETURNS:
1586 * Zero on success, negative errno otherwise.
1587 */
1588
1589 int ata_bus_probe(struct ata_port *ap)
1590 {
1591 unsigned int classes[ATA_MAX_DEVICES];
1592 int tries[ATA_MAX_DEVICES];
1593 int i, rc, down_xfermask;
1594 struct ata_device *dev;
1595
1596 ata_port_probe(ap);
1597
1598 for (i = 0; i < ATA_MAX_DEVICES; i++)
1599 tries[i] = ATA_PROBE_MAX_TRIES;
1600
1601 retry:
1602 down_xfermask = 0;
1603
1604 /* reset and determine device classes */
1605 ap->ops->phy_reset(ap);
1606
1607 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1608 dev = &ap->device[i];
1609
1610 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1611 dev->class != ATA_DEV_UNKNOWN)
1612 classes[dev->devno] = dev->class;
1613 else
1614 classes[dev->devno] = ATA_DEV_NONE;
1615
1616 dev->class = ATA_DEV_UNKNOWN;
1617 }
1618
1619 ata_port_probe(ap);
1620
1621 /* after the reset the device state is PIO 0 and the controller
1622 state is undefined. Record the mode */
1623
1624 for (i = 0; i < ATA_MAX_DEVICES; i++)
1625 ap->device[i].pio_mode = XFER_PIO_0;
1626
1627 /* read IDENTIFY page and configure devices */
1628 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1629 dev = &ap->device[i];
1630
1631 if (tries[i])
1632 dev->class = classes[i];
1633
1634 if (!ata_dev_enabled(dev))
1635 continue;
1636
1637 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1638 if (rc)
1639 goto fail;
1640
1641 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1642 rc = ata_dev_configure(dev);
1643 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1644 if (rc)
1645 goto fail;
1646 }
1647
1648 /* configure transfer mode */
1649 rc = ata_set_mode(ap, &dev);
1650 if (rc) {
1651 down_xfermask = 1;
1652 goto fail;
1653 }
1654
1655 for (i = 0; i < ATA_MAX_DEVICES; i++)
1656 if (ata_dev_enabled(&ap->device[i]))
1657 return 0;
1658
1659 /* no device present, disable port */
1660 ata_port_disable(ap);
1661 ap->ops->port_disable(ap);
1662 return -ENODEV;
1663
1664 fail:
1665 switch (rc) {
1666 case -EINVAL:
1667 case -ENODEV:
1668 tries[dev->devno] = 0;
1669 break;
1670 case -EIO:
1671 sata_down_spd_limit(ap);
1672 /* fall through */
1673 default:
1674 tries[dev->devno]--;
1675 if (down_xfermask &&
1676 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1677 tries[dev->devno] = 0;
1678 }
1679
1680 if (!tries[dev->devno]) {
1681 ata_down_xfermask_limit(dev, 1);
1682 ata_dev_disable(dev);
1683 }
1684
1685 goto retry;
1686 }
1687
1688 /**
1689 * ata_port_probe - Mark port as enabled
1690 * @ap: Port for which we indicate enablement
1691 *
1692 * Modify @ap data structure such that the system
1693 * thinks that the entire port is enabled.
1694 *
1695 * LOCKING: host lock, or some other form of
1696 * serialization.
1697 */
1698
1699 void ata_port_probe(struct ata_port *ap)
1700 {
1701 ap->flags &= ~ATA_FLAG_DISABLED;
1702 }
1703
1704 /**
1705 * sata_print_link_status - Print SATA link status
1706 * @ap: SATA port to printk link status about
1707 *
1708 * This function prints link speed and status of a SATA link.
1709 *
1710 * LOCKING:
1711 * None.
1712 */
1713 static void sata_print_link_status(struct ata_port *ap)
1714 {
1715 u32 sstatus, scontrol, tmp;
1716
1717 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1718 return;
1719 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1720
1721 if (ata_port_online(ap)) {
1722 tmp = (sstatus >> 4) & 0xf;
1723 ata_port_printk(ap, KERN_INFO,
1724 "SATA link up %s (SStatus %X SControl %X)\n",
1725 sata_spd_string(tmp), sstatus, scontrol);
1726 } else {
1727 ata_port_printk(ap, KERN_INFO,
1728 "SATA link down (SStatus %X SControl %X)\n",
1729 sstatus, scontrol);
1730 }
1731 }
1732
1733 /**
1734 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1735 * @ap: SATA port associated with target SATA PHY.
1736 *
1737 * This function issues commands to standard SATA Sxxx
1738 * PHY registers, to wake up the phy (and device), and
1739 * clear any reset condition.
1740 *
1741 * LOCKING:
1742 * PCI/etc. bus probe sem.
1743 *
1744 */
1745 void __sata_phy_reset(struct ata_port *ap)
1746 {
1747 u32 sstatus;
1748 unsigned long timeout = jiffies + (HZ * 5);
1749
1750 if (ap->flags & ATA_FLAG_SATA_RESET) {
1751 /* issue phy wake/reset */
1752 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1753 /* Couldn't find anything in SATA I/II specs, but
1754 * AHCI-1.1 10.4.2 says at least 1 ms. */
1755 mdelay(1);
1756 }
1757 /* phy wake/clear reset */
1758 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1759
1760 /* wait for phy to become ready, if necessary */
1761 do {
1762 msleep(200);
1763 sata_scr_read(ap, SCR_STATUS, &sstatus);
1764 if ((sstatus & 0xf) != 1)
1765 break;
1766 } while (time_before(jiffies, timeout));
1767
1768 /* print link status */
1769 sata_print_link_status(ap);
1770
1771 /* TODO: phy layer with polling, timeouts, etc. */
1772 if (!ata_port_offline(ap))
1773 ata_port_probe(ap);
1774 else
1775 ata_port_disable(ap);
1776
1777 if (ap->flags & ATA_FLAG_DISABLED)
1778 return;
1779
1780 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1781 ata_port_disable(ap);
1782 return;
1783 }
1784
1785 ap->cbl = ATA_CBL_SATA;
1786 }
1787
1788 /**
1789 * sata_phy_reset - Reset SATA bus.
1790 * @ap: SATA port associated with target SATA PHY.
1791 *
1792 * This function resets the SATA bus, and then probes
1793 * the bus for devices.
1794 *
1795 * LOCKING:
1796 * PCI/etc. bus probe sem.
1797 *
1798 */
1799 void sata_phy_reset(struct ata_port *ap)
1800 {
1801 __sata_phy_reset(ap);
1802 if (ap->flags & ATA_FLAG_DISABLED)
1803 return;
1804 ata_bus_reset(ap);
1805 }
1806
1807 /**
1808 * ata_dev_pair - return other device on cable
1809 * @adev: device
1810 *
1811 * Obtain the other device on the same cable, or if none is
1812 * present NULL is returned
1813 */
1814
1815 struct ata_device *ata_dev_pair(struct ata_device *adev)
1816 {
1817 struct ata_port *ap = adev->ap;
1818 struct ata_device *pair = &ap->device[1 - adev->devno];
1819 if (!ata_dev_enabled(pair))
1820 return NULL;
1821 return pair;
1822 }
1823
1824 /**
1825 * ata_port_disable - Disable port.
1826 * @ap: Port to be disabled.
1827 *
1828 * Modify @ap data structure such that the system
1829 * thinks that the entire port is disabled, and should
1830 * never attempt to probe or communicate with devices
1831 * on this port.
1832 *
1833 * LOCKING: host lock, or some other form of
1834 * serialization.
1835 */
1836
1837 void ata_port_disable(struct ata_port *ap)
1838 {
1839 ap->device[0].class = ATA_DEV_NONE;
1840 ap->device[1].class = ATA_DEV_NONE;
1841 ap->flags |= ATA_FLAG_DISABLED;
1842 }
1843
1844 /**
1845 * sata_down_spd_limit - adjust SATA spd limit downward
1846 * @ap: Port to adjust SATA spd limit for
1847 *
1848 * Adjust SATA spd limit of @ap downward. Note that this
1849 * function only adjusts the limit. The change must be applied
1850 * using sata_set_spd().
1851 *
1852 * LOCKING:
1853 * Inherited from caller.
1854 *
1855 * RETURNS:
1856 * 0 on success, negative errno on failure
1857 */
1858 int sata_down_spd_limit(struct ata_port *ap)
1859 {
1860 u32 sstatus, spd, mask;
1861 int rc, highbit;
1862
1863 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1864 if (rc)
1865 return rc;
1866
1867 mask = ap->sata_spd_limit;
1868 if (mask <= 1)
1869 return -EINVAL;
1870 highbit = fls(mask) - 1;
1871 mask &= ~(1 << highbit);
1872
1873 spd = (sstatus >> 4) & 0xf;
1874 if (spd <= 1)
1875 return -EINVAL;
1876 spd--;
1877 mask &= (1 << spd) - 1;
1878 if (!mask)
1879 return -EINVAL;
1880
1881 ap->sata_spd_limit = mask;
1882
1883 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1884 sata_spd_string(fls(mask)));
1885
1886 return 0;
1887 }
1888
1889 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1890 {
1891 u32 spd, limit;
1892
1893 if (ap->sata_spd_limit == UINT_MAX)
1894 limit = 0;
1895 else
1896 limit = fls(ap->sata_spd_limit);
1897
1898 spd = (*scontrol >> 4) & 0xf;
1899 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1900
1901 return spd != limit;
1902 }
1903
1904 /**
1905 * sata_set_spd_needed - is SATA spd configuration needed
1906 * @ap: Port in question
1907 *
1908 * Test whether the spd limit in SControl matches
1909 * @ap->sata_spd_limit. This function is used to determine
1910 * whether hardreset is necessary to apply SATA spd
1911 * configuration.
1912 *
1913 * LOCKING:
1914 * Inherited from caller.
1915 *
1916 * RETURNS:
1917 * 1 if SATA spd configuration is needed, 0 otherwise.
1918 */
1919 int sata_set_spd_needed(struct ata_port *ap)
1920 {
1921 u32 scontrol;
1922
1923 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1924 return 0;
1925
1926 return __sata_set_spd_needed(ap, &scontrol);
1927 }
1928
1929 /**
1930 * sata_set_spd - set SATA spd according to spd limit
1931 * @ap: Port to set SATA spd for
1932 *
1933 * Set SATA spd of @ap according to sata_spd_limit.
1934 *
1935 * LOCKING:
1936 * Inherited from caller.
1937 *
1938 * RETURNS:
1939 * 0 if spd doesn't need to be changed, 1 if spd has been
1940 * changed. Negative errno if SCR registers are inaccessible.
1941 */
1942 int sata_set_spd(struct ata_port *ap)
1943 {
1944 u32 scontrol;
1945 int rc;
1946
1947 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1948 return rc;
1949
1950 if (!__sata_set_spd_needed(ap, &scontrol))
1951 return 0;
1952
1953 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1954 return rc;
1955
1956 return 1;
1957 }
1958
1959 /*
1960 * This mode timing computation functionality is ported over from
1961 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1962 */
1963 /*
1964 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1965 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1966 * for UDMA6, which is currently supported only by Maxtor drives.
1967 *
1968 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
1969 */
1970
1971 static const struct ata_timing ata_timing[] = {
1972
1973 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1974 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1975 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1976 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1977
1978 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1979 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
1980 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1981 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1982 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1983
1984 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1985
1986 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1987 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1988 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1989
1990 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1991 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1992 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1993
1994 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1995 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
1996 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1997 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1998
1999 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2000 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2001 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2002
2003 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2004
2005 { 0xFF }
2006 };
2007
2008 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2009 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2010
2011 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2012 {
2013 q->setup = EZ(t->setup * 1000, T);
2014 q->act8b = EZ(t->act8b * 1000, T);
2015 q->rec8b = EZ(t->rec8b * 1000, T);
2016 q->cyc8b = EZ(t->cyc8b * 1000, T);
2017 q->active = EZ(t->active * 1000, T);
2018 q->recover = EZ(t->recover * 1000, T);
2019 q->cycle = EZ(t->cycle * 1000, T);
2020 q->udma = EZ(t->udma * 1000, UT);
2021 }
2022
2023 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2024 struct ata_timing *m, unsigned int what)
2025 {
2026 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2027 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2028 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2029 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2030 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2031 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2032 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2033 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2034 }
2035
2036 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2037 {
2038 const struct ata_timing *t;
2039
2040 for (t = ata_timing; t->mode != speed; t++)
2041 if (t->mode == 0xFF)
2042 return NULL;
2043 return t;
2044 }
2045
2046 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2047 struct ata_timing *t, int T, int UT)
2048 {
2049 const struct ata_timing *s;
2050 struct ata_timing p;
2051
2052 /*
2053 * Find the mode.
2054 */
2055
2056 if (!(s = ata_timing_find_mode(speed)))
2057 return -EINVAL;
2058
2059 memcpy(t, s, sizeof(*s));
2060
2061 /*
2062 * If the drive is an EIDE drive, it can tell us it needs extended
2063 * PIO/MW_DMA cycle timing.
2064 */
2065
2066 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2067 memset(&p, 0, sizeof(p));
2068 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2069 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2070 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2071 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2072 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2073 }
2074 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2075 }
2076
2077 /*
2078 * Convert the timing to bus clock counts.
2079 */
2080
2081 ata_timing_quantize(t, t, T, UT);
2082
2083 /*
2084 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2085 * S.M.A.R.T * and some other commands. We have to ensure that the
2086 * DMA cycle timing is slower/equal than the fastest PIO timing.
2087 */
2088
2089 if (speed > XFER_PIO_4) {
2090 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2091 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2092 }
2093
2094 /*
2095 * Lengthen active & recovery time so that cycle time is correct.
2096 */
2097
2098 if (t->act8b + t->rec8b < t->cyc8b) {
2099 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2100 t->rec8b = t->cyc8b - t->act8b;
2101 }
2102
2103 if (t->active + t->recover < t->cycle) {
2104 t->active += (t->cycle - (t->active + t->recover)) / 2;
2105 t->recover = t->cycle - t->active;
2106 }
2107
2108 return 0;
2109 }
2110
2111 /**
2112 * ata_down_xfermask_limit - adjust dev xfer masks downward
2113 * @dev: Device to adjust xfer masks
2114 * @force_pio0: Force PIO0
2115 *
2116 * Adjust xfer masks of @dev downward. Note that this function
2117 * does not apply the change. Invoking ata_set_mode() afterwards
2118 * will apply the limit.
2119 *
2120 * LOCKING:
2121 * Inherited from caller.
2122 *
2123 * RETURNS:
2124 * 0 on success, negative errno on failure
2125 */
2126 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2127 {
2128 unsigned long xfer_mask;
2129 int highbit;
2130
2131 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2132 dev->udma_mask);
2133
2134 if (!xfer_mask)
2135 goto fail;
2136 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2137 if (xfer_mask & ATA_MASK_UDMA)
2138 xfer_mask &= ~ATA_MASK_MWDMA;
2139
2140 highbit = fls(xfer_mask) - 1;
2141 xfer_mask &= ~(1 << highbit);
2142 if (force_pio0)
2143 xfer_mask &= 1 << ATA_SHIFT_PIO;
2144 if (!xfer_mask)
2145 goto fail;
2146
2147 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2148 &dev->udma_mask);
2149
2150 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2151 ata_mode_string(xfer_mask));
2152
2153 return 0;
2154
2155 fail:
2156 return -EINVAL;
2157 }
2158
2159 static int ata_dev_set_mode(struct ata_device *dev)
2160 {
2161 unsigned int err_mask;
2162 int rc;
2163
2164 dev->flags &= ~ATA_DFLAG_PIO;
2165 if (dev->xfer_shift == ATA_SHIFT_PIO)
2166 dev->flags |= ATA_DFLAG_PIO;
2167
2168 err_mask = ata_dev_set_xfermode(dev);
2169 if (err_mask) {
2170 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2171 "(err_mask=0x%x)\n", err_mask);
2172 return -EIO;
2173 }
2174
2175 rc = ata_dev_revalidate(dev, 0);
2176 if (rc)
2177 return rc;
2178
2179 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2180 dev->xfer_shift, (int)dev->xfer_mode);
2181
2182 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2183 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2184 return 0;
2185 }
2186
2187 /**
2188 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2189 * @ap: port on which timings will be programmed
2190 * @r_failed_dev: out paramter for failed device
2191 *
2192 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2193 * ata_set_mode() fails, pointer to the failing device is
2194 * returned in @r_failed_dev.
2195 *
2196 * LOCKING:
2197 * PCI/etc. bus probe sem.
2198 *
2199 * RETURNS:
2200 * 0 on success, negative errno otherwise
2201 */
2202 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2203 {
2204 struct ata_device *dev;
2205 int i, rc = 0, used_dma = 0, found = 0;
2206
2207 /* has private set_mode? */
2208 if (ap->ops->set_mode) {
2209 /* FIXME: make ->set_mode handle no device case and
2210 * return error code and failing device on failure.
2211 */
2212 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2213 if (ata_dev_ready(&ap->device[i])) {
2214 ap->ops->set_mode(ap);
2215 break;
2216 }
2217 }
2218 return 0;
2219 }
2220
2221 /* step 1: calculate xfer_mask */
2222 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2223 unsigned int pio_mask, dma_mask;
2224
2225 dev = &ap->device[i];
2226
2227 if (!ata_dev_enabled(dev))
2228 continue;
2229
2230 ata_dev_xfermask(dev);
2231
2232 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2233 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2234 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2235 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2236
2237 found = 1;
2238 if (dev->dma_mode)
2239 used_dma = 1;
2240 }
2241 if (!found)
2242 goto out;
2243
2244 /* step 2: always set host PIO timings */
2245 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2246 dev = &ap->device[i];
2247 if (!ata_dev_enabled(dev))
2248 continue;
2249
2250 if (!dev->pio_mode) {
2251 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2252 rc = -EINVAL;
2253 goto out;
2254 }
2255
2256 dev->xfer_mode = dev->pio_mode;
2257 dev->xfer_shift = ATA_SHIFT_PIO;
2258 if (ap->ops->set_piomode)
2259 ap->ops->set_piomode(ap, dev);
2260 }
2261
2262 /* step 3: set host DMA timings */
2263 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2264 dev = &ap->device[i];
2265
2266 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2267 continue;
2268
2269 dev->xfer_mode = dev->dma_mode;
2270 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2271 if (ap->ops->set_dmamode)
2272 ap->ops->set_dmamode(ap, dev);
2273 }
2274
2275 /* step 4: update devices' xfer mode */
2276 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2277 dev = &ap->device[i];
2278
2279 /* don't udpate suspended devices' xfer mode */
2280 if (!ata_dev_ready(dev))
2281 continue;
2282
2283 rc = ata_dev_set_mode(dev);
2284 if (rc)
2285 goto out;
2286 }
2287
2288 /* Record simplex status. If we selected DMA then the other
2289 * host channels are not permitted to do so.
2290 */
2291 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2292 ap->host->simplex_claimed = 1;
2293
2294 /* step5: chip specific finalisation */
2295 if (ap->ops->post_set_mode)
2296 ap->ops->post_set_mode(ap);
2297
2298 out:
2299 if (rc)
2300 *r_failed_dev = dev;
2301 return rc;
2302 }
2303
2304 /**
2305 * ata_tf_to_host - issue ATA taskfile to host controller
2306 * @ap: port to which command is being issued
2307 * @tf: ATA taskfile register set
2308 *
2309 * Issues ATA taskfile register set to ATA host controller,
2310 * with proper synchronization with interrupt handler and
2311 * other threads.
2312 *
2313 * LOCKING:
2314 * spin_lock_irqsave(host lock)
2315 */
2316
2317 static inline void ata_tf_to_host(struct ata_port *ap,
2318 const struct ata_taskfile *tf)
2319 {
2320 ap->ops->tf_load(ap, tf);
2321 ap->ops->exec_command(ap, tf);
2322 }
2323
2324 /**
2325 * ata_busy_sleep - sleep until BSY clears, or timeout
2326 * @ap: port containing status register to be polled
2327 * @tmout_pat: impatience timeout
2328 * @tmout: overall timeout
2329 *
2330 * Sleep until ATA Status register bit BSY clears,
2331 * or a timeout occurs.
2332 *
2333 * LOCKING:
2334 * Kernel thread context (may sleep).
2335 *
2336 * RETURNS:
2337 * 0 on success, -errno otherwise.
2338 */
2339 int ata_busy_sleep(struct ata_port *ap,
2340 unsigned long tmout_pat, unsigned long tmout)
2341 {
2342 unsigned long timer_start, timeout;
2343 u8 status;
2344
2345 status = ata_busy_wait(ap, ATA_BUSY, 300);
2346 timer_start = jiffies;
2347 timeout = timer_start + tmout_pat;
2348 while (status != 0xff && (status & ATA_BUSY) &&
2349 time_before(jiffies, timeout)) {
2350 msleep(50);
2351 status = ata_busy_wait(ap, ATA_BUSY, 3);
2352 }
2353
2354 if (status != 0xff && (status & ATA_BUSY))
2355 ata_port_printk(ap, KERN_WARNING,
2356 "port is slow to respond, please be patient "
2357 "(Status 0x%x)\n", status);
2358
2359 timeout = timer_start + tmout;
2360 while (status != 0xff && (status & ATA_BUSY) &&
2361 time_before(jiffies, timeout)) {
2362 msleep(50);
2363 status = ata_chk_status(ap);
2364 }
2365
2366 if (status == 0xff)
2367 return -ENODEV;
2368
2369 if (status & ATA_BUSY) {
2370 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2371 "(%lu secs, Status 0x%x)\n",
2372 tmout / HZ, status);
2373 return -EBUSY;
2374 }
2375
2376 return 0;
2377 }
2378
2379 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2380 {
2381 struct ata_ioports *ioaddr = &ap->ioaddr;
2382 unsigned int dev0 = devmask & (1 << 0);
2383 unsigned int dev1 = devmask & (1 << 1);
2384 unsigned long timeout;
2385
2386 /* if device 0 was found in ata_devchk, wait for its
2387 * BSY bit to clear
2388 */
2389 if (dev0)
2390 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2391
2392 /* if device 1 was found in ata_devchk, wait for
2393 * register access, then wait for BSY to clear
2394 */
2395 timeout = jiffies + ATA_TMOUT_BOOT;
2396 while (dev1) {
2397 u8 nsect, lbal;
2398
2399 ap->ops->dev_select(ap, 1);
2400 if (ap->flags & ATA_FLAG_MMIO) {
2401 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2402 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2403 } else {
2404 nsect = inb(ioaddr->nsect_addr);
2405 lbal = inb(ioaddr->lbal_addr);
2406 }
2407 if ((nsect == 1) && (lbal == 1))
2408 break;
2409 if (time_after(jiffies, timeout)) {
2410 dev1 = 0;
2411 break;
2412 }
2413 msleep(50); /* give drive a breather */
2414 }
2415 if (dev1)
2416 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2417
2418 /* is all this really necessary? */
2419 ap->ops->dev_select(ap, 0);
2420 if (dev1)
2421 ap->ops->dev_select(ap, 1);
2422 if (dev0)
2423 ap->ops->dev_select(ap, 0);
2424 }
2425
2426 static unsigned int ata_bus_softreset(struct ata_port *ap,
2427 unsigned int devmask)
2428 {
2429 struct ata_ioports *ioaddr = &ap->ioaddr;
2430
2431 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2432
2433 /* software reset. causes dev0 to be selected */
2434 if (ap->flags & ATA_FLAG_MMIO) {
2435 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2436 udelay(20); /* FIXME: flush */
2437 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2438 udelay(20); /* FIXME: flush */
2439 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2440 } else {
2441 outb(ap->ctl, ioaddr->ctl_addr);
2442 udelay(10);
2443 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2444 udelay(10);
2445 outb(ap->ctl, ioaddr->ctl_addr);
2446 }
2447
2448 /* spec mandates ">= 2ms" before checking status.
2449 * We wait 150ms, because that was the magic delay used for
2450 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2451 * between when the ATA command register is written, and then
2452 * status is checked. Because waiting for "a while" before
2453 * checking status is fine, post SRST, we perform this magic
2454 * delay here as well.
2455 *
2456 * Old drivers/ide uses the 2mS rule and then waits for ready
2457 */
2458 msleep(150);
2459
2460 /* Before we perform post reset processing we want to see if
2461 * the bus shows 0xFF because the odd clown forgets the D7
2462 * pulldown resistor.
2463 */
2464 if (ata_check_status(ap) == 0xFF)
2465 return 0;
2466
2467 ata_bus_post_reset(ap, devmask);
2468
2469 return 0;
2470 }
2471
2472 /**
2473 * ata_bus_reset - reset host port and associated ATA channel
2474 * @ap: port to reset
2475 *
2476 * This is typically the first time we actually start issuing
2477 * commands to the ATA channel. We wait for BSY to clear, then
2478 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2479 * result. Determine what devices, if any, are on the channel
2480 * by looking at the device 0/1 error register. Look at the signature
2481 * stored in each device's taskfile registers, to determine if
2482 * the device is ATA or ATAPI.
2483 *
2484 * LOCKING:
2485 * PCI/etc. bus probe sem.
2486 * Obtains host lock.
2487 *
2488 * SIDE EFFECTS:
2489 * Sets ATA_FLAG_DISABLED if bus reset fails.
2490 */
2491
2492 void ata_bus_reset(struct ata_port *ap)
2493 {
2494 struct ata_ioports *ioaddr = &ap->ioaddr;
2495 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2496 u8 err;
2497 unsigned int dev0, dev1 = 0, devmask = 0;
2498
2499 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2500
2501 /* determine if device 0/1 are present */
2502 if (ap->flags & ATA_FLAG_SATA_RESET)
2503 dev0 = 1;
2504 else {
2505 dev0 = ata_devchk(ap, 0);
2506 if (slave_possible)
2507 dev1 = ata_devchk(ap, 1);
2508 }
2509
2510 if (dev0)
2511 devmask |= (1 << 0);
2512 if (dev1)
2513 devmask |= (1 << 1);
2514
2515 /* select device 0 again */
2516 ap->ops->dev_select(ap, 0);
2517
2518 /* issue bus reset */
2519 if (ap->flags & ATA_FLAG_SRST)
2520 if (ata_bus_softreset(ap, devmask))
2521 goto err_out;
2522
2523 /*
2524 * determine by signature whether we have ATA or ATAPI devices
2525 */
2526 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2527 if ((slave_possible) && (err != 0x81))
2528 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2529
2530 /* re-enable interrupts */
2531 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2532 ata_irq_on(ap);
2533
2534 /* is double-select really necessary? */
2535 if (ap->device[1].class != ATA_DEV_NONE)
2536 ap->ops->dev_select(ap, 1);
2537 if (ap->device[0].class != ATA_DEV_NONE)
2538 ap->ops->dev_select(ap, 0);
2539
2540 /* if no devices were detected, disable this port */
2541 if ((ap->device[0].class == ATA_DEV_NONE) &&
2542 (ap->device[1].class == ATA_DEV_NONE))
2543 goto err_out;
2544
2545 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2546 /* set up device control for ATA_FLAG_SATA_RESET */
2547 if (ap->flags & ATA_FLAG_MMIO)
2548 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2549 else
2550 outb(ap->ctl, ioaddr->ctl_addr);
2551 }
2552
2553 DPRINTK("EXIT\n");
2554 return;
2555
2556 err_out:
2557 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2558 ap->ops->port_disable(ap);
2559
2560 DPRINTK("EXIT\n");
2561 }
2562
2563 /**
2564 * sata_phy_debounce - debounce SATA phy status
2565 * @ap: ATA port to debounce SATA phy status for
2566 * @params: timing parameters { interval, duratinon, timeout } in msec
2567 *
2568 * Make sure SStatus of @ap reaches stable state, determined by
2569 * holding the same value where DET is not 1 for @duration polled
2570 * every @interval, before @timeout. Timeout constraints the
2571 * beginning of the stable state. Because, after hot unplugging,
2572 * DET gets stuck at 1 on some controllers, this functions waits
2573 * until timeout then returns 0 if DET is stable at 1.
2574 *
2575 * LOCKING:
2576 * Kernel thread context (may sleep)
2577 *
2578 * RETURNS:
2579 * 0 on success, -errno on failure.
2580 */
2581 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2582 {
2583 unsigned long interval_msec = params[0];
2584 unsigned long duration = params[1] * HZ / 1000;
2585 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2586 unsigned long last_jiffies;
2587 u32 last, cur;
2588 int rc;
2589
2590 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2591 return rc;
2592 cur &= 0xf;
2593
2594 last = cur;
2595 last_jiffies = jiffies;
2596
2597 while (1) {
2598 msleep(interval_msec);
2599 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2600 return rc;
2601 cur &= 0xf;
2602
2603 /* DET stable? */
2604 if (cur == last) {
2605 if (cur == 1 && time_before(jiffies, timeout))
2606 continue;
2607 if (time_after(jiffies, last_jiffies + duration))
2608 return 0;
2609 continue;
2610 }
2611
2612 /* unstable, start over */
2613 last = cur;
2614 last_jiffies = jiffies;
2615
2616 /* check timeout */
2617 if (time_after(jiffies, timeout))
2618 return -EBUSY;
2619 }
2620 }
2621
2622 /**
2623 * sata_phy_resume - resume SATA phy
2624 * @ap: ATA port to resume SATA phy for
2625 * @params: timing parameters { interval, duratinon, timeout } in msec
2626 *
2627 * Resume SATA phy of @ap and debounce it.
2628 *
2629 * LOCKING:
2630 * Kernel thread context (may sleep)
2631 *
2632 * RETURNS:
2633 * 0 on success, -errno on failure.
2634 */
2635 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2636 {
2637 u32 scontrol;
2638 int rc;
2639
2640 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2641 return rc;
2642
2643 scontrol = (scontrol & 0x0f0) | 0x300;
2644
2645 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2646 return rc;
2647
2648 /* Some PHYs react badly if SStatus is pounded immediately
2649 * after resuming. Delay 200ms before debouncing.
2650 */
2651 msleep(200);
2652
2653 return sata_phy_debounce(ap, params);
2654 }
2655
2656 static void ata_wait_spinup(struct ata_port *ap)
2657 {
2658 struct ata_eh_context *ehc = &ap->eh_context;
2659 unsigned long end, secs;
2660 int rc;
2661
2662 /* first, debounce phy if SATA */
2663 if (ap->cbl == ATA_CBL_SATA) {
2664 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2665
2666 /* if debounced successfully and offline, no need to wait */
2667 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2668 return;
2669 }
2670
2671 /* okay, let's give the drive time to spin up */
2672 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2673 secs = ((end - jiffies) + HZ - 1) / HZ;
2674
2675 if (time_after(jiffies, end))
2676 return;
2677
2678 if (secs > 5)
2679 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2680 "(%lu secs)\n", secs);
2681
2682 schedule_timeout_uninterruptible(end - jiffies);
2683 }
2684
2685 /**
2686 * ata_std_prereset - prepare for reset
2687 * @ap: ATA port to be reset
2688 *
2689 * @ap is about to be reset. Initialize it.
2690 *
2691 * LOCKING:
2692 * Kernel thread context (may sleep)
2693 *
2694 * RETURNS:
2695 * 0 on success, -errno otherwise.
2696 */
2697 int ata_std_prereset(struct ata_port *ap)
2698 {
2699 struct ata_eh_context *ehc = &ap->eh_context;
2700 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2701 int rc;
2702
2703 /* handle link resume & hotplug spinup */
2704 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2705 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2706 ehc->i.action |= ATA_EH_HARDRESET;
2707
2708 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2709 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2710 ata_wait_spinup(ap);
2711
2712 /* if we're about to do hardreset, nothing more to do */
2713 if (ehc->i.action & ATA_EH_HARDRESET)
2714 return 0;
2715
2716 /* if SATA, resume phy */
2717 if (ap->cbl == ATA_CBL_SATA) {
2718 rc = sata_phy_resume(ap, timing);
2719 if (rc && rc != -EOPNOTSUPP) {
2720 /* phy resume failed */
2721 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2722 "link for reset (errno=%d)\n", rc);
2723 return rc;
2724 }
2725 }
2726
2727 /* Wait for !BSY if the controller can wait for the first D2H
2728 * Reg FIS and we don't know that no device is attached.
2729 */
2730 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2731 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2732
2733 return 0;
2734 }
2735
2736 /**
2737 * ata_std_softreset - reset host port via ATA SRST
2738 * @ap: port to reset
2739 * @classes: resulting classes of attached devices
2740 *
2741 * Reset host port using ATA SRST.
2742 *
2743 * LOCKING:
2744 * Kernel thread context (may sleep)
2745 *
2746 * RETURNS:
2747 * 0 on success, -errno otherwise.
2748 */
2749 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2750 {
2751 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2752 unsigned int devmask = 0, err_mask;
2753 u8 err;
2754
2755 DPRINTK("ENTER\n");
2756
2757 if (ata_port_offline(ap)) {
2758 classes[0] = ATA_DEV_NONE;
2759 goto out;
2760 }
2761
2762 /* determine if device 0/1 are present */
2763 if (ata_devchk(ap, 0))
2764 devmask |= (1 << 0);
2765 if (slave_possible && ata_devchk(ap, 1))
2766 devmask |= (1 << 1);
2767
2768 /* select device 0 again */
2769 ap->ops->dev_select(ap, 0);
2770
2771 /* issue bus reset */
2772 DPRINTK("about to softreset, devmask=%x\n", devmask);
2773 err_mask = ata_bus_softreset(ap, devmask);
2774 if (err_mask) {
2775 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2776 err_mask);
2777 return -EIO;
2778 }
2779
2780 /* determine by signature whether we have ATA or ATAPI devices */
2781 classes[0] = ata_dev_try_classify(ap, 0, &err);
2782 if (slave_possible && err != 0x81)
2783 classes[1] = ata_dev_try_classify(ap, 1, &err);
2784
2785 out:
2786 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2787 return 0;
2788 }
2789
2790 /**
2791 * sata_port_hardreset - reset port via SATA phy reset
2792 * @ap: port to reset
2793 * @timing: timing parameters { interval, duratinon, timeout } in msec
2794 *
2795 * SATA phy-reset host port using DET bits of SControl register.
2796 *
2797 * LOCKING:
2798 * Kernel thread context (may sleep)
2799 *
2800 * RETURNS:
2801 * 0 on success, -errno otherwise.
2802 */
2803 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
2804 {
2805 u32 scontrol;
2806 int rc;
2807
2808 DPRINTK("ENTER\n");
2809
2810 if (sata_set_spd_needed(ap)) {
2811 /* SATA spec says nothing about how to reconfigure
2812 * spd. To be on the safe side, turn off phy during
2813 * reconfiguration. This works for at least ICH7 AHCI
2814 * and Sil3124.
2815 */
2816 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2817 goto out;
2818
2819 scontrol = (scontrol & 0x0f0) | 0x304;
2820
2821 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2822 goto out;
2823
2824 sata_set_spd(ap);
2825 }
2826
2827 /* issue phy wake/reset */
2828 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2829 goto out;
2830
2831 scontrol = (scontrol & 0x0f0) | 0x301;
2832
2833 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2834 goto out;
2835
2836 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2837 * 10.4.2 says at least 1 ms.
2838 */
2839 msleep(1);
2840
2841 /* bring phy back */
2842 rc = sata_phy_resume(ap, timing);
2843 out:
2844 DPRINTK("EXIT, rc=%d\n", rc);
2845 return rc;
2846 }
2847
2848 /**
2849 * sata_std_hardreset - reset host port via SATA phy reset
2850 * @ap: port to reset
2851 * @class: resulting class of attached device
2852 *
2853 * SATA phy-reset host port using DET bits of SControl register,
2854 * wait for !BSY and classify the attached device.
2855 *
2856 * LOCKING:
2857 * Kernel thread context (may sleep)
2858 *
2859 * RETURNS:
2860 * 0 on success, -errno otherwise.
2861 */
2862 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2863 {
2864 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
2865 int rc;
2866
2867 DPRINTK("ENTER\n");
2868
2869 /* do hardreset */
2870 rc = sata_port_hardreset(ap, timing);
2871 if (rc) {
2872 ata_port_printk(ap, KERN_ERR,
2873 "COMRESET failed (errno=%d)\n", rc);
2874 return rc;
2875 }
2876
2877 /* TODO: phy layer with polling, timeouts, etc. */
2878 if (ata_port_offline(ap)) {
2879 *class = ATA_DEV_NONE;
2880 DPRINTK("EXIT, link offline\n");
2881 return 0;
2882 }
2883
2884 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2885 ata_port_printk(ap, KERN_ERR,
2886 "COMRESET failed (device not ready)\n");
2887 return -EIO;
2888 }
2889
2890 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2891
2892 *class = ata_dev_try_classify(ap, 0, NULL);
2893
2894 DPRINTK("EXIT, class=%u\n", *class);
2895 return 0;
2896 }
2897
2898 /**
2899 * ata_std_postreset - standard postreset callback
2900 * @ap: the target ata_port
2901 * @classes: classes of attached devices
2902 *
2903 * This function is invoked after a successful reset. Note that
2904 * the device might have been reset more than once using
2905 * different reset methods before postreset is invoked.
2906 *
2907 * LOCKING:
2908 * Kernel thread context (may sleep)
2909 */
2910 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2911 {
2912 u32 serror;
2913
2914 DPRINTK("ENTER\n");
2915
2916 /* print link status */
2917 sata_print_link_status(ap);
2918
2919 /* clear SError */
2920 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2921 sata_scr_write(ap, SCR_ERROR, serror);
2922
2923 /* re-enable interrupts */
2924 if (!ap->ops->error_handler) {
2925 /* FIXME: hack. create a hook instead */
2926 if (ap->ioaddr.ctl_addr)
2927 ata_irq_on(ap);
2928 }
2929
2930 /* is double-select really necessary? */
2931 if (classes[0] != ATA_DEV_NONE)
2932 ap->ops->dev_select(ap, 1);
2933 if (classes[1] != ATA_DEV_NONE)
2934 ap->ops->dev_select(ap, 0);
2935
2936 /* bail out if no device is present */
2937 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2938 DPRINTK("EXIT, no device\n");
2939 return;
2940 }
2941
2942 /* set up device control */
2943 if (ap->ioaddr.ctl_addr) {
2944 if (ap->flags & ATA_FLAG_MMIO)
2945 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2946 else
2947 outb(ap->ctl, ap->ioaddr.ctl_addr);
2948 }
2949
2950 DPRINTK("EXIT\n");
2951 }
2952
2953 /**
2954 * ata_dev_same_device - Determine whether new ID matches configured device
2955 * @dev: device to compare against
2956 * @new_class: class of the new device
2957 * @new_id: IDENTIFY page of the new device
2958 *
2959 * Compare @new_class and @new_id against @dev and determine
2960 * whether @dev is the device indicated by @new_class and
2961 * @new_id.
2962 *
2963 * LOCKING:
2964 * None.
2965 *
2966 * RETURNS:
2967 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2968 */
2969 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2970 const u16 *new_id)
2971 {
2972 const u16 *old_id = dev->id;
2973 unsigned char model[2][41], serial[2][21];
2974 u64 new_n_sectors;
2975
2976 if (dev->class != new_class) {
2977 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2978 dev->class, new_class);
2979 return 0;
2980 }
2981
2982 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2983 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2984 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2985 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2986 new_n_sectors = ata_id_n_sectors(new_id);
2987
2988 if (strcmp(model[0], model[1])) {
2989 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2990 "'%s' != '%s'\n", model[0], model[1]);
2991 return 0;
2992 }
2993
2994 if (strcmp(serial[0], serial[1])) {
2995 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2996 "'%s' != '%s'\n", serial[0], serial[1]);
2997 return 0;
2998 }
2999
3000 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3001 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3002 "%llu != %llu\n",
3003 (unsigned long long)dev->n_sectors,
3004 (unsigned long long)new_n_sectors);
3005 return 0;
3006 }
3007
3008 return 1;
3009 }
3010
3011 /**
3012 * ata_dev_revalidate - Revalidate ATA device
3013 * @dev: device to revalidate
3014 * @post_reset: is this revalidation after reset?
3015 *
3016 * Re-read IDENTIFY page and make sure @dev is still attached to
3017 * the port.
3018 *
3019 * LOCKING:
3020 * Kernel thread context (may sleep)
3021 *
3022 * RETURNS:
3023 * 0 on success, negative errno otherwise
3024 */
3025 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
3026 {
3027 unsigned int class = dev->class;
3028 u16 *id = (void *)dev->ap->sector_buf;
3029 int rc;
3030
3031 if (!ata_dev_enabled(dev)) {
3032 rc = -ENODEV;
3033 goto fail;
3034 }
3035
3036 /* read ID data */
3037 rc = ata_dev_read_id(dev, &class, post_reset, id);
3038 if (rc)
3039 goto fail;
3040
3041 /* is the device still there? */
3042 if (!ata_dev_same_device(dev, class, id)) {
3043 rc = -ENODEV;
3044 goto fail;
3045 }
3046
3047 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3048
3049 /* configure device according to the new ID */
3050 rc = ata_dev_configure(dev);
3051 if (rc == 0)
3052 return 0;
3053
3054 fail:
3055 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3056 return rc;
3057 }
3058
3059 struct ata_blacklist_entry {
3060 const char *model_num;
3061 const char *model_rev;
3062 unsigned long horkage;
3063 };
3064
3065 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3066 /* Devices with DMA related problems under Linux */
3067 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3068 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3069 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3070 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3071 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3072 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3073 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3074 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3075 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3076 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3077 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3078 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3079 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3080 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3081 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3082 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3083 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3084 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3085 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3086 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3087 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3088 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3089 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3090 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3091 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3092 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3093 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3094 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3095 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3096 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3097
3098 /* Devices we expect to fail diagnostics */
3099
3100 /* Devices where NCQ should be avoided */
3101 /* NCQ is slow */
3102 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3103
3104 /* Devices with NCQ limits */
3105
3106 /* End Marker */
3107 { }
3108 };
3109
3110 static int ata_strim(char *s, size_t len)
3111 {
3112 len = strnlen(s, len);
3113
3114 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3115 while ((len > 0) && (s[len - 1] == ' ')) {
3116 len--;
3117 s[len] = 0;
3118 }
3119 return len;
3120 }
3121
3122 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3123 {
3124 unsigned char model_num[40];
3125 unsigned char model_rev[16];
3126 unsigned int nlen, rlen;
3127 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3128
3129 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3130 sizeof(model_num));
3131 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3132 sizeof(model_rev));
3133 nlen = ata_strim(model_num, sizeof(model_num));
3134 rlen = ata_strim(model_rev, sizeof(model_rev));
3135
3136 while (ad->model_num) {
3137 if (!strncmp(ad->model_num, model_num, nlen)) {
3138 if (ad->model_rev == NULL)
3139 return ad->horkage;
3140 if (!strncmp(ad->model_rev, model_rev, rlen))
3141 return ad->horkage;
3142 }
3143 ad++;
3144 }
3145 return 0;
3146 }
3147
3148 static int ata_dma_blacklisted(const struct ata_device *dev)
3149 {
3150 /* We don't support polling DMA.
3151 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3152 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3153 */
3154 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3155 (dev->flags & ATA_DFLAG_CDB_INTR))
3156 return 1;
3157 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3158 }
3159
3160 /**
3161 * ata_dev_xfermask - Compute supported xfermask of the given device
3162 * @dev: Device to compute xfermask for
3163 *
3164 * Compute supported xfermask of @dev and store it in
3165 * dev->*_mask. This function is responsible for applying all
3166 * known limits including host controller limits, device
3167 * blacklist, etc...
3168 *
3169 * LOCKING:
3170 * None.
3171 */
3172 static void ata_dev_xfermask(struct ata_device *dev)
3173 {
3174 struct ata_port *ap = dev->ap;
3175 struct ata_host *host = ap->host;
3176 unsigned long xfer_mask;
3177
3178 /* controller modes available */
3179 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3180 ap->mwdma_mask, ap->udma_mask);
3181
3182 /* Apply cable rule here. Don't apply it early because when
3183 * we handle hot plug the cable type can itself change.
3184 */
3185 if (ap->cbl == ATA_CBL_PATA40)
3186 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3187 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3188 * host side are checked drive side as well. Cases where we know a
3189 * 40wire cable is used safely for 80 are not checked here.
3190 */
3191 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3192 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3193
3194
3195 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3196 dev->mwdma_mask, dev->udma_mask);
3197 xfer_mask &= ata_id_xfermask(dev->id);
3198
3199 /*
3200 * CFA Advanced TrueIDE timings are not allowed on a shared
3201 * cable
3202 */
3203 if (ata_dev_pair(dev)) {
3204 /* No PIO5 or PIO6 */
3205 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3206 /* No MWDMA3 or MWDMA 4 */
3207 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3208 }
3209
3210 if (ata_dma_blacklisted(dev)) {
3211 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3212 ata_dev_printk(dev, KERN_WARNING,
3213 "device is on DMA blacklist, disabling DMA\n");
3214 }
3215
3216 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3217 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3218 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3219 "other device, disabling DMA\n");
3220 }
3221
3222 if (ap->ops->mode_filter)
3223 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3224
3225 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3226 &dev->mwdma_mask, &dev->udma_mask);
3227 }
3228
3229 /**
3230 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3231 * @dev: Device to which command will be sent
3232 *
3233 * Issue SET FEATURES - XFER MODE command to device @dev
3234 * on port @ap.
3235 *
3236 * LOCKING:
3237 * PCI/etc. bus probe sem.
3238 *
3239 * RETURNS:
3240 * 0 on success, AC_ERR_* mask otherwise.
3241 */
3242
3243 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3244 {
3245 struct ata_taskfile tf;
3246 unsigned int err_mask;
3247
3248 /* set up set-features taskfile */
3249 DPRINTK("set features - xfer mode\n");
3250
3251 ata_tf_init(dev, &tf);
3252 tf.command = ATA_CMD_SET_FEATURES;
3253 tf.feature = SETFEATURES_XFER;
3254 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3255 tf.protocol = ATA_PROT_NODATA;
3256 tf.nsect = dev->xfer_mode;
3257
3258 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3259
3260 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3261 return err_mask;
3262 }
3263
3264 /**
3265 * ata_dev_init_params - Issue INIT DEV PARAMS command
3266 * @dev: Device to which command will be sent
3267 * @heads: Number of heads (taskfile parameter)
3268 * @sectors: Number of sectors (taskfile parameter)
3269 *
3270 * LOCKING:
3271 * Kernel thread context (may sleep)
3272 *
3273 * RETURNS:
3274 * 0 on success, AC_ERR_* mask otherwise.
3275 */
3276 static unsigned int ata_dev_init_params(struct ata_device *dev,
3277 u16 heads, u16 sectors)
3278 {
3279 struct ata_taskfile tf;
3280 unsigned int err_mask;
3281
3282 /* Number of sectors per track 1-255. Number of heads 1-16 */
3283 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3284 return AC_ERR_INVALID;
3285
3286 /* set up init dev params taskfile */
3287 DPRINTK("init dev params \n");
3288
3289 ata_tf_init(dev, &tf);
3290 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3291 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3292 tf.protocol = ATA_PROT_NODATA;
3293 tf.nsect = sectors;
3294 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3295
3296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3297
3298 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3299 return err_mask;
3300 }
3301
3302 /**
3303 * ata_sg_clean - Unmap DMA memory associated with command
3304 * @qc: Command containing DMA memory to be released
3305 *
3306 * Unmap all mapped DMA memory associated with this command.
3307 *
3308 * LOCKING:
3309 * spin_lock_irqsave(host lock)
3310 */
3311
3312 static void ata_sg_clean(struct ata_queued_cmd *qc)
3313 {
3314 struct ata_port *ap = qc->ap;
3315 struct scatterlist *sg = qc->__sg;
3316 int dir = qc->dma_dir;
3317 void *pad_buf = NULL;
3318
3319 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3320 WARN_ON(sg == NULL);
3321
3322 if (qc->flags & ATA_QCFLAG_SINGLE)
3323 WARN_ON(qc->n_elem > 1);
3324
3325 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3326
3327 /* if we padded the buffer out to 32-bit bound, and data
3328 * xfer direction is from-device, we must copy from the
3329 * pad buffer back into the supplied buffer
3330 */
3331 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3332 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3333
3334 if (qc->flags & ATA_QCFLAG_SG) {
3335 if (qc->n_elem)
3336 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3337 /* restore last sg */
3338 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3339 if (pad_buf) {
3340 struct scatterlist *psg = &qc->pad_sgent;
3341 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3342 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3343 kunmap_atomic(addr, KM_IRQ0);
3344 }
3345 } else {
3346 if (qc->n_elem)
3347 dma_unmap_single(ap->dev,
3348 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3349 dir);
3350 /* restore sg */
3351 sg->length += qc->pad_len;
3352 if (pad_buf)
3353 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3354 pad_buf, qc->pad_len);
3355 }
3356
3357 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3358 qc->__sg = NULL;
3359 }
3360
3361 /**
3362 * ata_fill_sg - Fill PCI IDE PRD table
3363 * @qc: Metadata associated with taskfile to be transferred
3364 *
3365 * Fill PCI IDE PRD (scatter-gather) table with segments
3366 * associated with the current disk command.
3367 *
3368 * LOCKING:
3369 * spin_lock_irqsave(host lock)
3370 *
3371 */
3372 static void ata_fill_sg(struct ata_queued_cmd *qc)
3373 {
3374 struct ata_port *ap = qc->ap;
3375 struct scatterlist *sg;
3376 unsigned int idx;
3377
3378 WARN_ON(qc->__sg == NULL);
3379 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3380
3381 idx = 0;
3382 ata_for_each_sg(sg, qc) {
3383 u32 addr, offset;
3384 u32 sg_len, len;
3385
3386 /* determine if physical DMA addr spans 64K boundary.
3387 * Note h/w doesn't support 64-bit, so we unconditionally
3388 * truncate dma_addr_t to u32.
3389 */
3390 addr = (u32) sg_dma_address(sg);
3391 sg_len = sg_dma_len(sg);
3392
3393 while (sg_len) {
3394 offset = addr & 0xffff;
3395 len = sg_len;
3396 if ((offset + sg_len) > 0x10000)
3397 len = 0x10000 - offset;
3398
3399 ap->prd[idx].addr = cpu_to_le32(addr);
3400 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3401 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3402
3403 idx++;
3404 sg_len -= len;
3405 addr += len;
3406 }
3407 }
3408
3409 if (idx)
3410 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3411 }
3412 /**
3413 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3414 * @qc: Metadata associated with taskfile to check
3415 *
3416 * Allow low-level driver to filter ATA PACKET commands, returning
3417 * a status indicating whether or not it is OK to use DMA for the
3418 * supplied PACKET command.
3419 *
3420 * LOCKING:
3421 * spin_lock_irqsave(host lock)
3422 *
3423 * RETURNS: 0 when ATAPI DMA can be used
3424 * nonzero otherwise
3425 */
3426 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3427 {
3428 struct ata_port *ap = qc->ap;
3429 int rc = 0; /* Assume ATAPI DMA is OK by default */
3430
3431 if (ap->ops->check_atapi_dma)
3432 rc = ap->ops->check_atapi_dma(qc);
3433
3434 return rc;
3435 }
3436 /**
3437 * ata_qc_prep - Prepare taskfile for submission
3438 * @qc: Metadata associated with taskfile to be prepared
3439 *
3440 * Prepare ATA taskfile for submission.
3441 *
3442 * LOCKING:
3443 * spin_lock_irqsave(host lock)
3444 */
3445 void ata_qc_prep(struct ata_queued_cmd *qc)
3446 {
3447 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3448 return;
3449
3450 ata_fill_sg(qc);
3451 }
3452
3453 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3454
3455 /**
3456 * ata_sg_init_one - Associate command with memory buffer
3457 * @qc: Command to be associated
3458 * @buf: Memory buffer
3459 * @buflen: Length of memory buffer, in bytes.
3460 *
3461 * Initialize the data-related elements of queued_cmd @qc
3462 * to point to a single memory buffer, @buf of byte length @buflen.
3463 *
3464 * LOCKING:
3465 * spin_lock_irqsave(host lock)
3466 */
3467
3468 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3469 {
3470 struct scatterlist *sg;
3471
3472 qc->flags |= ATA_QCFLAG_SINGLE;
3473
3474 memset(&qc->sgent, 0, sizeof(qc->sgent));
3475 qc->__sg = &qc->sgent;
3476 qc->n_elem = 1;
3477 qc->orig_n_elem = 1;
3478 qc->buf_virt = buf;
3479 qc->nbytes = buflen;
3480
3481 sg = qc->__sg;
3482 sg_init_one(sg, buf, buflen);
3483 }
3484
3485 /**
3486 * ata_sg_init - Associate command with scatter-gather table.
3487 * @qc: Command to be associated
3488 * @sg: Scatter-gather table.
3489 * @n_elem: Number of elements in s/g table.
3490 *
3491 * Initialize the data-related elements of queued_cmd @qc
3492 * to point to a scatter-gather table @sg, containing @n_elem
3493 * elements.
3494 *
3495 * LOCKING:
3496 * spin_lock_irqsave(host lock)
3497 */
3498
3499 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3500 unsigned int n_elem)
3501 {
3502 qc->flags |= ATA_QCFLAG_SG;
3503 qc->__sg = sg;
3504 qc->n_elem = n_elem;
3505 qc->orig_n_elem = n_elem;
3506 }
3507
3508 /**
3509 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3510 * @qc: Command with memory buffer to be mapped.
3511 *
3512 * DMA-map the memory buffer associated with queued_cmd @qc.
3513 *
3514 * LOCKING:
3515 * spin_lock_irqsave(host lock)
3516 *
3517 * RETURNS:
3518 * Zero on success, negative on error.
3519 */
3520
3521 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3522 {
3523 struct ata_port *ap = qc->ap;
3524 int dir = qc->dma_dir;
3525 struct scatterlist *sg = qc->__sg;
3526 dma_addr_t dma_address;
3527 int trim_sg = 0;
3528
3529 /* we must lengthen transfers to end on a 32-bit boundary */
3530 qc->pad_len = sg->length & 3;
3531 if (qc->pad_len) {
3532 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3533 struct scatterlist *psg = &qc->pad_sgent;
3534
3535 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3536
3537 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3538
3539 if (qc->tf.flags & ATA_TFLAG_WRITE)
3540 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3541 qc->pad_len);
3542
3543 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3544 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3545 /* trim sg */
3546 sg->length -= qc->pad_len;
3547 if (sg->length == 0)
3548 trim_sg = 1;
3549
3550 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3551 sg->length, qc->pad_len);
3552 }
3553
3554 if (trim_sg) {
3555 qc->n_elem--;
3556 goto skip_map;
3557 }
3558
3559 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3560 sg->length, dir);
3561 if (dma_mapping_error(dma_address)) {
3562 /* restore sg */
3563 sg->length += qc->pad_len;
3564 return -1;
3565 }
3566
3567 sg_dma_address(sg) = dma_address;
3568 sg_dma_len(sg) = sg->length;
3569
3570 skip_map:
3571 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3572 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3573
3574 return 0;
3575 }
3576
3577 /**
3578 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3579 * @qc: Command with scatter-gather table to be mapped.
3580 *
3581 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3582 *
3583 * LOCKING:
3584 * spin_lock_irqsave(host lock)
3585 *
3586 * RETURNS:
3587 * Zero on success, negative on error.
3588 *
3589 */
3590
3591 static int ata_sg_setup(struct ata_queued_cmd *qc)
3592 {
3593 struct ata_port *ap = qc->ap;
3594 struct scatterlist *sg = qc->__sg;
3595 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3596 int n_elem, pre_n_elem, dir, trim_sg = 0;
3597
3598 VPRINTK("ENTER, ata%u\n", ap->id);
3599 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3600
3601 /* we must lengthen transfers to end on a 32-bit boundary */
3602 qc->pad_len = lsg->length & 3;
3603 if (qc->pad_len) {
3604 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3605 struct scatterlist *psg = &qc->pad_sgent;
3606 unsigned int offset;
3607
3608 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3609
3610 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3611
3612 /*
3613 * psg->page/offset are used to copy to-be-written
3614 * data in this function or read data in ata_sg_clean.
3615 */
3616 offset = lsg->offset + lsg->length - qc->pad_len;
3617 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3618 psg->offset = offset_in_page(offset);
3619
3620 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3621 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3622 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3623 kunmap_atomic(addr, KM_IRQ0);
3624 }
3625
3626 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3627 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3628 /* trim last sg */
3629 lsg->length -= qc->pad_len;
3630 if (lsg->length == 0)
3631 trim_sg = 1;
3632
3633 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3634 qc->n_elem - 1, lsg->length, qc->pad_len);
3635 }
3636
3637 pre_n_elem = qc->n_elem;
3638 if (trim_sg && pre_n_elem)
3639 pre_n_elem--;
3640
3641 if (!pre_n_elem) {
3642 n_elem = 0;
3643 goto skip_map;
3644 }
3645
3646 dir = qc->dma_dir;
3647 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3648 if (n_elem < 1) {
3649 /* restore last sg */
3650 lsg->length += qc->pad_len;
3651 return -1;
3652 }
3653
3654 DPRINTK("%d sg elements mapped\n", n_elem);
3655
3656 skip_map:
3657 qc->n_elem = n_elem;
3658
3659 return 0;
3660 }
3661
3662 /**
3663 * swap_buf_le16 - swap halves of 16-bit words in place
3664 * @buf: Buffer to swap
3665 * @buf_words: Number of 16-bit words in buffer.
3666 *
3667 * Swap halves of 16-bit words if needed to convert from
3668 * little-endian byte order to native cpu byte order, or
3669 * vice-versa.
3670 *
3671 * LOCKING:
3672 * Inherited from caller.
3673 */
3674 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3675 {
3676 #ifdef __BIG_ENDIAN
3677 unsigned int i;
3678
3679 for (i = 0; i < buf_words; i++)
3680 buf[i] = le16_to_cpu(buf[i]);
3681 #endif /* __BIG_ENDIAN */
3682 }
3683
3684 /**
3685 * ata_mmio_data_xfer - Transfer data by MMIO
3686 * @adev: device for this I/O
3687 * @buf: data buffer
3688 * @buflen: buffer length
3689 * @write_data: read/write
3690 *
3691 * Transfer data from/to the device data register by MMIO.
3692 *
3693 * LOCKING:
3694 * Inherited from caller.
3695 */
3696
3697 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3698 unsigned int buflen, int write_data)
3699 {
3700 struct ata_port *ap = adev->ap;
3701 unsigned int i;
3702 unsigned int words = buflen >> 1;
3703 u16 *buf16 = (u16 *) buf;
3704 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3705
3706 /* Transfer multiple of 2 bytes */
3707 if (write_data) {
3708 for (i = 0; i < words; i++)
3709 writew(le16_to_cpu(buf16[i]), mmio);
3710 } else {
3711 for (i = 0; i < words; i++)
3712 buf16[i] = cpu_to_le16(readw(mmio));
3713 }
3714
3715 /* Transfer trailing 1 byte, if any. */
3716 if (unlikely(buflen & 0x01)) {
3717 u16 align_buf[1] = { 0 };
3718 unsigned char *trailing_buf = buf + buflen - 1;
3719
3720 if (write_data) {
3721 memcpy(align_buf, trailing_buf, 1);
3722 writew(le16_to_cpu(align_buf[0]), mmio);
3723 } else {
3724 align_buf[0] = cpu_to_le16(readw(mmio));
3725 memcpy(trailing_buf, align_buf, 1);
3726 }
3727 }
3728 }
3729
3730 /**
3731 * ata_pio_data_xfer - Transfer data by PIO
3732 * @adev: device to target
3733 * @buf: data buffer
3734 * @buflen: buffer length
3735 * @write_data: read/write
3736 *
3737 * Transfer data from/to the device data register by PIO.
3738 *
3739 * LOCKING:
3740 * Inherited from caller.
3741 */
3742
3743 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3744 unsigned int buflen, int write_data)
3745 {
3746 struct ata_port *ap = adev->ap;
3747 unsigned int words = buflen >> 1;
3748
3749 /* Transfer multiple of 2 bytes */
3750 if (write_data)
3751 outsw(ap->ioaddr.data_addr, buf, words);
3752 else
3753 insw(ap->ioaddr.data_addr, buf, words);
3754
3755 /* Transfer trailing 1 byte, if any. */
3756 if (unlikely(buflen & 0x01)) {
3757 u16 align_buf[1] = { 0 };
3758 unsigned char *trailing_buf = buf + buflen - 1;
3759
3760 if (write_data) {
3761 memcpy(align_buf, trailing_buf, 1);
3762 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3763 } else {
3764 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3765 memcpy(trailing_buf, align_buf, 1);
3766 }
3767 }
3768 }
3769
3770 /**
3771 * ata_pio_data_xfer_noirq - Transfer data by PIO
3772 * @adev: device to target
3773 * @buf: data buffer
3774 * @buflen: buffer length
3775 * @write_data: read/write
3776 *
3777 * Transfer data from/to the device data register by PIO. Do the
3778 * transfer with interrupts disabled.
3779 *
3780 * LOCKING:
3781 * Inherited from caller.
3782 */
3783
3784 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3785 unsigned int buflen, int write_data)
3786 {
3787 unsigned long flags;
3788 local_irq_save(flags);
3789 ata_pio_data_xfer(adev, buf, buflen, write_data);
3790 local_irq_restore(flags);
3791 }
3792
3793
3794 /**
3795 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3796 * @qc: Command on going
3797 *
3798 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3799 *
3800 * LOCKING:
3801 * Inherited from caller.
3802 */
3803
3804 static void ata_pio_sector(struct ata_queued_cmd *qc)
3805 {
3806 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3807 struct scatterlist *sg = qc->__sg;
3808 struct ata_port *ap = qc->ap;
3809 struct page *page;
3810 unsigned int offset;
3811 unsigned char *buf;
3812
3813 if (qc->cursect == (qc->nsect - 1))
3814 ap->hsm_task_state = HSM_ST_LAST;
3815
3816 page = sg[qc->cursg].page;
3817 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3818
3819 /* get the current page and offset */
3820 page = nth_page(page, (offset >> PAGE_SHIFT));
3821 offset %= PAGE_SIZE;
3822
3823 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3824
3825 if (PageHighMem(page)) {
3826 unsigned long flags;
3827
3828 /* FIXME: use a bounce buffer */
3829 local_irq_save(flags);
3830 buf = kmap_atomic(page, KM_IRQ0);
3831
3832 /* do the actual data transfer */
3833 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3834
3835 kunmap_atomic(buf, KM_IRQ0);
3836 local_irq_restore(flags);
3837 } else {
3838 buf = page_address(page);
3839 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3840 }
3841
3842 qc->cursect++;
3843 qc->cursg_ofs++;
3844
3845 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3846 qc->cursg++;
3847 qc->cursg_ofs = 0;
3848 }
3849 }
3850
3851 /**
3852 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3853 * @qc: Command on going
3854 *
3855 * Transfer one or many ATA_SECT_SIZE of data from/to the
3856 * ATA device for the DRQ request.
3857 *
3858 * LOCKING:
3859 * Inherited from caller.
3860 */
3861
3862 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3863 {
3864 if (is_multi_taskfile(&qc->tf)) {
3865 /* READ/WRITE MULTIPLE */
3866 unsigned int nsect;
3867
3868 WARN_ON(qc->dev->multi_count == 0);
3869
3870 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3871 while (nsect--)
3872 ata_pio_sector(qc);
3873 } else
3874 ata_pio_sector(qc);
3875 }
3876
3877 /**
3878 * atapi_send_cdb - Write CDB bytes to hardware
3879 * @ap: Port to which ATAPI device is attached.
3880 * @qc: Taskfile currently active
3881 *
3882 * When device has indicated its readiness to accept
3883 * a CDB, this function is called. Send the CDB.
3884 *
3885 * LOCKING:
3886 * caller.
3887 */
3888
3889 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3890 {
3891 /* send SCSI cdb */
3892 DPRINTK("send cdb\n");
3893 WARN_ON(qc->dev->cdb_len < 12);
3894
3895 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3896 ata_altstatus(ap); /* flush */
3897
3898 switch (qc->tf.protocol) {
3899 case ATA_PROT_ATAPI:
3900 ap->hsm_task_state = HSM_ST;
3901 break;
3902 case ATA_PROT_ATAPI_NODATA:
3903 ap->hsm_task_state = HSM_ST_LAST;
3904 break;
3905 case ATA_PROT_ATAPI_DMA:
3906 ap->hsm_task_state = HSM_ST_LAST;
3907 /* initiate bmdma */
3908 ap->ops->bmdma_start(qc);
3909 break;
3910 }
3911 }
3912
3913 /**
3914 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3915 * @qc: Command on going
3916 * @bytes: number of bytes
3917 *
3918 * Transfer Transfer data from/to the ATAPI device.
3919 *
3920 * LOCKING:
3921 * Inherited from caller.
3922 *
3923 */
3924
3925 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3926 {
3927 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3928 struct scatterlist *sg = qc->__sg;
3929 struct ata_port *ap = qc->ap;
3930 struct page *page;
3931 unsigned char *buf;
3932 unsigned int offset, count;
3933
3934 if (qc->curbytes + bytes >= qc->nbytes)
3935 ap->hsm_task_state = HSM_ST_LAST;
3936
3937 next_sg:
3938 if (unlikely(qc->cursg >= qc->n_elem)) {
3939 /*
3940 * The end of qc->sg is reached and the device expects
3941 * more data to transfer. In order not to overrun qc->sg
3942 * and fulfill length specified in the byte count register,
3943 * - for read case, discard trailing data from the device
3944 * - for write case, padding zero data to the device
3945 */
3946 u16 pad_buf[1] = { 0 };
3947 unsigned int words = bytes >> 1;
3948 unsigned int i;
3949
3950 if (words) /* warning if bytes > 1 */
3951 ata_dev_printk(qc->dev, KERN_WARNING,
3952 "%u bytes trailing data\n", bytes);
3953
3954 for (i = 0; i < words; i++)
3955 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3956
3957 ap->hsm_task_state = HSM_ST_LAST;
3958 return;
3959 }
3960
3961 sg = &qc->__sg[qc->cursg];
3962
3963 page = sg->page;
3964 offset = sg->offset + qc->cursg_ofs;
3965
3966 /* get the current page and offset */
3967 page = nth_page(page, (offset >> PAGE_SHIFT));
3968 offset %= PAGE_SIZE;
3969
3970 /* don't overrun current sg */
3971 count = min(sg->length - qc->cursg_ofs, bytes);
3972
3973 /* don't cross page boundaries */
3974 count = min(count, (unsigned int)PAGE_SIZE - offset);
3975
3976 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3977
3978 if (PageHighMem(page)) {
3979 unsigned long flags;
3980
3981 /* FIXME: use bounce buffer */
3982 local_irq_save(flags);
3983 buf = kmap_atomic(page, KM_IRQ0);
3984
3985 /* do the actual data transfer */
3986 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3987
3988 kunmap_atomic(buf, KM_IRQ0);
3989 local_irq_restore(flags);
3990 } else {
3991 buf = page_address(page);
3992 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3993 }
3994
3995 bytes -= count;
3996 qc->curbytes += count;
3997 qc->cursg_ofs += count;
3998
3999 if (qc->cursg_ofs == sg->length) {
4000 qc->cursg++;
4001 qc->cursg_ofs = 0;
4002 }
4003
4004 if (bytes)
4005 goto next_sg;
4006 }
4007
4008 /**
4009 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4010 * @qc: Command on going
4011 *
4012 * Transfer Transfer data from/to the ATAPI device.
4013 *
4014 * LOCKING:
4015 * Inherited from caller.
4016 */
4017
4018 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4019 {
4020 struct ata_port *ap = qc->ap;
4021 struct ata_device *dev = qc->dev;
4022 unsigned int ireason, bc_lo, bc_hi, bytes;
4023 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4024
4025 /* Abuse qc->result_tf for temp storage of intermediate TF
4026 * here to save some kernel stack usage.
4027 * For normal completion, qc->result_tf is not relevant. For
4028 * error, qc->result_tf is later overwritten by ata_qc_complete().
4029 * So, the correctness of qc->result_tf is not affected.
4030 */
4031 ap->ops->tf_read(ap, &qc->result_tf);
4032 ireason = qc->result_tf.nsect;
4033 bc_lo = qc->result_tf.lbam;
4034 bc_hi = qc->result_tf.lbah;
4035 bytes = (bc_hi << 8) | bc_lo;
4036
4037 /* shall be cleared to zero, indicating xfer of data */
4038 if (ireason & (1 << 0))
4039 goto err_out;
4040
4041 /* make sure transfer direction matches expected */
4042 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4043 if (do_write != i_write)
4044 goto err_out;
4045
4046 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4047
4048 __atapi_pio_bytes(qc, bytes);
4049
4050 return;
4051
4052 err_out:
4053 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4054 qc->err_mask |= AC_ERR_HSM;
4055 ap->hsm_task_state = HSM_ST_ERR;
4056 }
4057
4058 /**
4059 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4060 * @ap: the target ata_port
4061 * @qc: qc on going
4062 *
4063 * RETURNS:
4064 * 1 if ok in workqueue, 0 otherwise.
4065 */
4066
4067 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4068 {
4069 if (qc->tf.flags & ATA_TFLAG_POLLING)
4070 return 1;
4071
4072 if (ap->hsm_task_state == HSM_ST_FIRST) {
4073 if (qc->tf.protocol == ATA_PROT_PIO &&
4074 (qc->tf.flags & ATA_TFLAG_WRITE))
4075 return 1;
4076
4077 if (is_atapi_taskfile(&qc->tf) &&
4078 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4079 return 1;
4080 }
4081
4082 return 0;
4083 }
4084
4085 /**
4086 * ata_hsm_qc_complete - finish a qc running on standard HSM
4087 * @qc: Command to complete
4088 * @in_wq: 1 if called from workqueue, 0 otherwise
4089 *
4090 * Finish @qc which is running on standard HSM.
4091 *
4092 * LOCKING:
4093 * If @in_wq is zero, spin_lock_irqsave(host lock).
4094 * Otherwise, none on entry and grabs host lock.
4095 */
4096 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4097 {
4098 struct ata_port *ap = qc->ap;
4099 unsigned long flags;
4100
4101 if (ap->ops->error_handler) {
4102 if (in_wq) {
4103 spin_lock_irqsave(ap->lock, flags);
4104
4105 /* EH might have kicked in while host lock is
4106 * released.
4107 */
4108 qc = ata_qc_from_tag(ap, qc->tag);
4109 if (qc) {
4110 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4111 ata_irq_on(ap);
4112 ata_qc_complete(qc);
4113 } else
4114 ata_port_freeze(ap);
4115 }
4116
4117 spin_unlock_irqrestore(ap->lock, flags);
4118 } else {
4119 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4120 ata_qc_complete(qc);
4121 else
4122 ata_port_freeze(ap);
4123 }
4124 } else {
4125 if (in_wq) {
4126 spin_lock_irqsave(ap->lock, flags);
4127 ata_irq_on(ap);
4128 ata_qc_complete(qc);
4129 spin_unlock_irqrestore(ap->lock, flags);
4130 } else
4131 ata_qc_complete(qc);
4132 }
4133
4134 ata_altstatus(ap); /* flush */
4135 }
4136
4137 /**
4138 * ata_hsm_move - move the HSM to the next state.
4139 * @ap: the target ata_port
4140 * @qc: qc on going
4141 * @status: current device status
4142 * @in_wq: 1 if called from workqueue, 0 otherwise
4143 *
4144 * RETURNS:
4145 * 1 when poll next status needed, 0 otherwise.
4146 */
4147 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4148 u8 status, int in_wq)
4149 {
4150 unsigned long flags = 0;
4151 int poll_next;
4152
4153 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4154
4155 /* Make sure ata_qc_issue_prot() does not throw things
4156 * like DMA polling into the workqueue. Notice that
4157 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4158 */
4159 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4160
4161 fsm_start:
4162 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4163 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4164
4165 switch (ap->hsm_task_state) {
4166 case HSM_ST_FIRST:
4167 /* Send first data block or PACKET CDB */
4168
4169 /* If polling, we will stay in the work queue after
4170 * sending the data. Otherwise, interrupt handler
4171 * takes over after sending the data.
4172 */
4173 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4174
4175 /* check device status */
4176 if (unlikely((status & ATA_DRQ) == 0)) {
4177 /* handle BSY=0, DRQ=0 as error */
4178 if (likely(status & (ATA_ERR | ATA_DF)))
4179 /* device stops HSM for abort/error */
4180 qc->err_mask |= AC_ERR_DEV;
4181 else
4182 /* HSM violation. Let EH handle this */
4183 qc->err_mask |= AC_ERR_HSM;
4184
4185 ap->hsm_task_state = HSM_ST_ERR;
4186 goto fsm_start;
4187 }
4188
4189 /* Device should not ask for data transfer (DRQ=1)
4190 * when it finds something wrong.
4191 * We ignore DRQ here and stop the HSM by
4192 * changing hsm_task_state to HSM_ST_ERR and
4193 * let the EH abort the command or reset the device.
4194 */
4195 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4196 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4197 ap->id, status);
4198 qc->err_mask |= AC_ERR_HSM;
4199 ap->hsm_task_state = HSM_ST_ERR;
4200 goto fsm_start;
4201 }
4202
4203 /* Send the CDB (atapi) or the first data block (ata pio out).
4204 * During the state transition, interrupt handler shouldn't
4205 * be invoked before the data transfer is complete and
4206 * hsm_task_state is changed. Hence, the following locking.
4207 */
4208 if (in_wq)
4209 spin_lock_irqsave(ap->lock, flags);
4210
4211 if (qc->tf.protocol == ATA_PROT_PIO) {
4212 /* PIO data out protocol.
4213 * send first data block.
4214 */
4215
4216 /* ata_pio_sectors() might change the state
4217 * to HSM_ST_LAST. so, the state is changed here
4218 * before ata_pio_sectors().
4219 */
4220 ap->hsm_task_state = HSM_ST;
4221 ata_pio_sectors(qc);
4222 ata_altstatus(ap); /* flush */
4223 } else
4224 /* send CDB */
4225 atapi_send_cdb(ap, qc);
4226
4227 if (in_wq)
4228 spin_unlock_irqrestore(ap->lock, flags);
4229
4230 /* if polling, ata_pio_task() handles the rest.
4231 * otherwise, interrupt handler takes over from here.
4232 */
4233 break;
4234
4235 case HSM_ST:
4236 /* complete command or read/write the data register */
4237 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4238 /* ATAPI PIO protocol */
4239 if ((status & ATA_DRQ) == 0) {
4240 /* No more data to transfer or device error.
4241 * Device error will be tagged in HSM_ST_LAST.
4242 */
4243 ap->hsm_task_state = HSM_ST_LAST;
4244 goto fsm_start;
4245 }
4246
4247 /* Device should not ask for data transfer (DRQ=1)
4248 * when it finds something wrong.
4249 * We ignore DRQ here and stop the HSM by
4250 * changing hsm_task_state to HSM_ST_ERR and
4251 * let the EH abort the command or reset the device.
4252 */
4253 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4254 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4255 ap->id, status);
4256 qc->err_mask |= AC_ERR_HSM;
4257 ap->hsm_task_state = HSM_ST_ERR;
4258 goto fsm_start;
4259 }
4260
4261 atapi_pio_bytes(qc);
4262
4263 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4264 /* bad ireason reported by device */
4265 goto fsm_start;
4266
4267 } else {
4268 /* ATA PIO protocol */
4269 if (unlikely((status & ATA_DRQ) == 0)) {
4270 /* handle BSY=0, DRQ=0 as error */
4271 if (likely(status & (ATA_ERR | ATA_DF)))
4272 /* device stops HSM for abort/error */
4273 qc->err_mask |= AC_ERR_DEV;
4274 else
4275 /* HSM violation. Let EH handle this */
4276 qc->err_mask |= AC_ERR_HSM;
4277
4278 ap->hsm_task_state = HSM_ST_ERR;
4279 goto fsm_start;
4280 }
4281
4282 /* For PIO reads, some devices may ask for
4283 * data transfer (DRQ=1) alone with ERR=1.
4284 * We respect DRQ here and transfer one
4285 * block of junk data before changing the
4286 * hsm_task_state to HSM_ST_ERR.
4287 *
4288 * For PIO writes, ERR=1 DRQ=1 doesn't make
4289 * sense since the data block has been
4290 * transferred to the device.
4291 */
4292 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4293 /* data might be corrputed */
4294 qc->err_mask |= AC_ERR_DEV;
4295
4296 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4297 ata_pio_sectors(qc);
4298 ata_altstatus(ap);
4299 status = ata_wait_idle(ap);
4300 }
4301
4302 if (status & (ATA_BUSY | ATA_DRQ))
4303 qc->err_mask |= AC_ERR_HSM;
4304
4305 /* ata_pio_sectors() might change the
4306 * state to HSM_ST_LAST. so, the state
4307 * is changed after ata_pio_sectors().
4308 */
4309 ap->hsm_task_state = HSM_ST_ERR;
4310 goto fsm_start;
4311 }
4312
4313 ata_pio_sectors(qc);
4314
4315 if (ap->hsm_task_state == HSM_ST_LAST &&
4316 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4317 /* all data read */
4318 ata_altstatus(ap);
4319 status = ata_wait_idle(ap);
4320 goto fsm_start;
4321 }
4322 }
4323
4324 ata_altstatus(ap); /* flush */
4325 poll_next = 1;
4326 break;
4327
4328 case HSM_ST_LAST:
4329 if (unlikely(!ata_ok(status))) {
4330 qc->err_mask |= __ac_err_mask(status);
4331 ap->hsm_task_state = HSM_ST_ERR;
4332 goto fsm_start;
4333 }
4334
4335 /* no more data to transfer */
4336 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4337 ap->id, qc->dev->devno, status);
4338
4339 WARN_ON(qc->err_mask);
4340
4341 ap->hsm_task_state = HSM_ST_IDLE;
4342
4343 /* complete taskfile transaction */
4344 ata_hsm_qc_complete(qc, in_wq);
4345
4346 poll_next = 0;
4347 break;
4348
4349 case HSM_ST_ERR:
4350 /* make sure qc->err_mask is available to
4351 * know what's wrong and recover
4352 */
4353 WARN_ON(qc->err_mask == 0);
4354
4355 ap->hsm_task_state = HSM_ST_IDLE;
4356
4357 /* complete taskfile transaction */
4358 ata_hsm_qc_complete(qc, in_wq);
4359
4360 poll_next = 0;
4361 break;
4362 default:
4363 poll_next = 0;
4364 BUG();
4365 }
4366
4367 return poll_next;
4368 }
4369
4370 static void ata_pio_task(void *_data)
4371 {
4372 struct ata_queued_cmd *qc = _data;
4373 struct ata_port *ap = qc->ap;
4374 u8 status;
4375 int poll_next;
4376
4377 fsm_start:
4378 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4379
4380 /*
4381 * This is purely heuristic. This is a fast path.
4382 * Sometimes when we enter, BSY will be cleared in
4383 * a chk-status or two. If not, the drive is probably seeking
4384 * or something. Snooze for a couple msecs, then
4385 * chk-status again. If still busy, queue delayed work.
4386 */
4387 status = ata_busy_wait(ap, ATA_BUSY, 5);
4388 if (status & ATA_BUSY) {
4389 msleep(2);
4390 status = ata_busy_wait(ap, ATA_BUSY, 10);
4391 if (status & ATA_BUSY) {
4392 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4393 return;
4394 }
4395 }
4396
4397 /* move the HSM */
4398 poll_next = ata_hsm_move(ap, qc, status, 1);
4399
4400 /* another command or interrupt handler
4401 * may be running at this point.
4402 */
4403 if (poll_next)
4404 goto fsm_start;
4405 }
4406
4407 /**
4408 * ata_qc_new - Request an available ATA command, for queueing
4409 * @ap: Port associated with device @dev
4410 * @dev: Device from whom we request an available command structure
4411 *
4412 * LOCKING:
4413 * None.
4414 */
4415
4416 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4417 {
4418 struct ata_queued_cmd *qc = NULL;
4419 unsigned int i;
4420
4421 /* no command while frozen */
4422 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4423 return NULL;
4424
4425 /* the last tag is reserved for internal command. */
4426 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4427 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4428 qc = __ata_qc_from_tag(ap, i);
4429 break;
4430 }
4431
4432 if (qc)
4433 qc->tag = i;
4434
4435 return qc;
4436 }
4437
4438 /**
4439 * ata_qc_new_init - Request an available ATA command, and initialize it
4440 * @dev: Device from whom we request an available command structure
4441 *
4442 * LOCKING:
4443 * None.
4444 */
4445
4446 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4447 {
4448 struct ata_port *ap = dev->ap;
4449 struct ata_queued_cmd *qc;
4450
4451 qc = ata_qc_new(ap);
4452 if (qc) {
4453 qc->scsicmd = NULL;
4454 qc->ap = ap;
4455 qc->dev = dev;
4456
4457 ata_qc_reinit(qc);
4458 }
4459
4460 return qc;
4461 }
4462
4463 /**
4464 * ata_qc_free - free unused ata_queued_cmd
4465 * @qc: Command to complete
4466 *
4467 * Designed to free unused ata_queued_cmd object
4468 * in case something prevents using it.
4469 *
4470 * LOCKING:
4471 * spin_lock_irqsave(host lock)
4472 */
4473 void ata_qc_free(struct ata_queued_cmd *qc)
4474 {
4475 struct ata_port *ap = qc->ap;
4476 unsigned int tag;
4477
4478 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4479
4480 qc->flags = 0;
4481 tag = qc->tag;
4482 if (likely(ata_tag_valid(tag))) {
4483 qc->tag = ATA_TAG_POISON;
4484 clear_bit(tag, &ap->qc_allocated);
4485 }
4486 }
4487
4488 void __ata_qc_complete(struct ata_queued_cmd *qc)
4489 {
4490 struct ata_port *ap = qc->ap;
4491
4492 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4493 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4494
4495 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4496 ata_sg_clean(qc);
4497
4498 /* command should be marked inactive atomically with qc completion */
4499 if (qc->tf.protocol == ATA_PROT_NCQ)
4500 ap->sactive &= ~(1 << qc->tag);
4501 else
4502 ap->active_tag = ATA_TAG_POISON;
4503
4504 /* atapi: mark qc as inactive to prevent the interrupt handler
4505 * from completing the command twice later, before the error handler
4506 * is called. (when rc != 0 and atapi request sense is needed)
4507 */
4508 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4509 ap->qc_active &= ~(1 << qc->tag);
4510
4511 /* call completion callback */
4512 qc->complete_fn(qc);
4513 }
4514
4515 /**
4516 * ata_qc_complete - Complete an active ATA command
4517 * @qc: Command to complete
4518 * @err_mask: ATA Status register contents
4519 *
4520 * Indicate to the mid and upper layers that an ATA
4521 * command has completed, with either an ok or not-ok status.
4522 *
4523 * LOCKING:
4524 * spin_lock_irqsave(host lock)
4525 */
4526 void ata_qc_complete(struct ata_queued_cmd *qc)
4527 {
4528 struct ata_port *ap = qc->ap;
4529
4530 /* XXX: New EH and old EH use different mechanisms to
4531 * synchronize EH with regular execution path.
4532 *
4533 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4534 * Normal execution path is responsible for not accessing a
4535 * failed qc. libata core enforces the rule by returning NULL
4536 * from ata_qc_from_tag() for failed qcs.
4537 *
4538 * Old EH depends on ata_qc_complete() nullifying completion
4539 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4540 * not synchronize with interrupt handler. Only PIO task is
4541 * taken care of.
4542 */
4543 if (ap->ops->error_handler) {
4544 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4545
4546 if (unlikely(qc->err_mask))
4547 qc->flags |= ATA_QCFLAG_FAILED;
4548
4549 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4550 if (!ata_tag_internal(qc->tag)) {
4551 /* always fill result TF for failed qc */
4552 ap->ops->tf_read(ap, &qc->result_tf);
4553 ata_qc_schedule_eh(qc);
4554 return;
4555 }
4556 }
4557
4558 /* read result TF if requested */
4559 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4560 ap->ops->tf_read(ap, &qc->result_tf);
4561
4562 __ata_qc_complete(qc);
4563 } else {
4564 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4565 return;
4566
4567 /* read result TF if failed or requested */
4568 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4569 ap->ops->tf_read(ap, &qc->result_tf);
4570
4571 __ata_qc_complete(qc);
4572 }
4573 }
4574
4575 /**
4576 * ata_qc_complete_multiple - Complete multiple qcs successfully
4577 * @ap: port in question
4578 * @qc_active: new qc_active mask
4579 * @finish_qc: LLDD callback invoked before completing a qc
4580 *
4581 * Complete in-flight commands. This functions is meant to be
4582 * called from low-level driver's interrupt routine to complete
4583 * requests normally. ap->qc_active and @qc_active is compared
4584 * and commands are completed accordingly.
4585 *
4586 * LOCKING:
4587 * spin_lock_irqsave(host lock)
4588 *
4589 * RETURNS:
4590 * Number of completed commands on success, -errno otherwise.
4591 */
4592 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4593 void (*finish_qc)(struct ata_queued_cmd *))
4594 {
4595 int nr_done = 0;
4596 u32 done_mask;
4597 int i;
4598
4599 done_mask = ap->qc_active ^ qc_active;
4600
4601 if (unlikely(done_mask & qc_active)) {
4602 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4603 "(%08x->%08x)\n", ap->qc_active, qc_active);
4604 return -EINVAL;
4605 }
4606
4607 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4608 struct ata_queued_cmd *qc;
4609
4610 if (!(done_mask & (1 << i)))
4611 continue;
4612
4613 if ((qc = ata_qc_from_tag(ap, i))) {
4614 if (finish_qc)
4615 finish_qc(qc);
4616 ata_qc_complete(qc);
4617 nr_done++;
4618 }
4619 }
4620
4621 return nr_done;
4622 }
4623
4624 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4625 {
4626 struct ata_port *ap = qc->ap;
4627
4628 switch (qc->tf.protocol) {
4629 case ATA_PROT_NCQ:
4630 case ATA_PROT_DMA:
4631 case ATA_PROT_ATAPI_DMA:
4632 return 1;
4633
4634 case ATA_PROT_ATAPI:
4635 case ATA_PROT_PIO:
4636 if (ap->flags & ATA_FLAG_PIO_DMA)
4637 return 1;
4638
4639 /* fall through */
4640
4641 default:
4642 return 0;
4643 }
4644
4645 /* never reached */
4646 }
4647
4648 /**
4649 * ata_qc_issue - issue taskfile to device
4650 * @qc: command to issue to device
4651 *
4652 * Prepare an ATA command to submission to device.
4653 * This includes mapping the data into a DMA-able
4654 * area, filling in the S/G table, and finally
4655 * writing the taskfile to hardware, starting the command.
4656 *
4657 * LOCKING:
4658 * spin_lock_irqsave(host lock)
4659 */
4660 void ata_qc_issue(struct ata_queued_cmd *qc)
4661 {
4662 struct ata_port *ap = qc->ap;
4663
4664 /* Make sure only one non-NCQ command is outstanding. The
4665 * check is skipped for old EH because it reuses active qc to
4666 * request ATAPI sense.
4667 */
4668 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4669
4670 if (qc->tf.protocol == ATA_PROT_NCQ) {
4671 WARN_ON(ap->sactive & (1 << qc->tag));
4672 ap->sactive |= 1 << qc->tag;
4673 } else {
4674 WARN_ON(ap->sactive);
4675 ap->active_tag = qc->tag;
4676 }
4677
4678 qc->flags |= ATA_QCFLAG_ACTIVE;
4679 ap->qc_active |= 1 << qc->tag;
4680
4681 if (ata_should_dma_map(qc)) {
4682 if (qc->flags & ATA_QCFLAG_SG) {
4683 if (ata_sg_setup(qc))
4684 goto sg_err;
4685 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4686 if (ata_sg_setup_one(qc))
4687 goto sg_err;
4688 }
4689 } else {
4690 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4691 }
4692
4693 ap->ops->qc_prep(qc);
4694
4695 qc->err_mask |= ap->ops->qc_issue(qc);
4696 if (unlikely(qc->err_mask))
4697 goto err;
4698 return;
4699
4700 sg_err:
4701 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4702 qc->err_mask |= AC_ERR_SYSTEM;
4703 err:
4704 ata_qc_complete(qc);
4705 }
4706
4707 /**
4708 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4709 * @qc: command to issue to device
4710 *
4711 * Using various libata functions and hooks, this function
4712 * starts an ATA command. ATA commands are grouped into
4713 * classes called "protocols", and issuing each type of protocol
4714 * is slightly different.
4715 *
4716 * May be used as the qc_issue() entry in ata_port_operations.
4717 *
4718 * LOCKING:
4719 * spin_lock_irqsave(host lock)
4720 *
4721 * RETURNS:
4722 * Zero on success, AC_ERR_* mask on failure
4723 */
4724
4725 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4726 {
4727 struct ata_port *ap = qc->ap;
4728
4729 /* Use polling pio if the LLD doesn't handle
4730 * interrupt driven pio and atapi CDB interrupt.
4731 */
4732 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4733 switch (qc->tf.protocol) {
4734 case ATA_PROT_PIO:
4735 case ATA_PROT_ATAPI:
4736 case ATA_PROT_ATAPI_NODATA:
4737 qc->tf.flags |= ATA_TFLAG_POLLING;
4738 break;
4739 case ATA_PROT_ATAPI_DMA:
4740 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4741 /* see ata_dma_blacklisted() */
4742 BUG();
4743 break;
4744 default:
4745 break;
4746 }
4747 }
4748
4749 /* select the device */
4750 ata_dev_select(ap, qc->dev->devno, 1, 0);
4751
4752 /* start the command */
4753 switch (qc->tf.protocol) {
4754 case ATA_PROT_NODATA:
4755 if (qc->tf.flags & ATA_TFLAG_POLLING)
4756 ata_qc_set_polling(qc);
4757
4758 ata_tf_to_host(ap, &qc->tf);
4759 ap->hsm_task_state = HSM_ST_LAST;
4760
4761 if (qc->tf.flags & ATA_TFLAG_POLLING)
4762 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4763
4764 break;
4765
4766 case ATA_PROT_DMA:
4767 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4768
4769 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4770 ap->ops->bmdma_setup(qc); /* set up bmdma */
4771 ap->ops->bmdma_start(qc); /* initiate bmdma */
4772 ap->hsm_task_state = HSM_ST_LAST;
4773 break;
4774
4775 case ATA_PROT_PIO:
4776 if (qc->tf.flags & ATA_TFLAG_POLLING)
4777 ata_qc_set_polling(qc);
4778
4779 ata_tf_to_host(ap, &qc->tf);
4780
4781 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4782 /* PIO data out protocol */
4783 ap->hsm_task_state = HSM_ST_FIRST;
4784 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4785
4786 /* always send first data block using
4787 * the ata_pio_task() codepath.
4788 */
4789 } else {
4790 /* PIO data in protocol */
4791 ap->hsm_task_state = HSM_ST;
4792
4793 if (qc->tf.flags & ATA_TFLAG_POLLING)
4794 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4795
4796 /* if polling, ata_pio_task() handles the rest.
4797 * otherwise, interrupt handler takes over from here.
4798 */
4799 }
4800
4801 break;
4802
4803 case ATA_PROT_ATAPI:
4804 case ATA_PROT_ATAPI_NODATA:
4805 if (qc->tf.flags & ATA_TFLAG_POLLING)
4806 ata_qc_set_polling(qc);
4807
4808 ata_tf_to_host(ap, &qc->tf);
4809
4810 ap->hsm_task_state = HSM_ST_FIRST;
4811
4812 /* send cdb by polling if no cdb interrupt */
4813 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4814 (qc->tf.flags & ATA_TFLAG_POLLING))
4815 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4816 break;
4817
4818 case ATA_PROT_ATAPI_DMA:
4819 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4820
4821 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4822 ap->ops->bmdma_setup(qc); /* set up bmdma */
4823 ap->hsm_task_state = HSM_ST_FIRST;
4824
4825 /* send cdb by polling if no cdb interrupt */
4826 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4827 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4828 break;
4829
4830 default:
4831 WARN_ON(1);
4832 return AC_ERR_SYSTEM;
4833 }
4834
4835 return 0;
4836 }
4837
4838 /**
4839 * ata_host_intr - Handle host interrupt for given (port, task)
4840 * @ap: Port on which interrupt arrived (possibly...)
4841 * @qc: Taskfile currently active in engine
4842 *
4843 * Handle host interrupt for given queued command. Currently,
4844 * only DMA interrupts are handled. All other commands are
4845 * handled via polling with interrupts disabled (nIEN bit).
4846 *
4847 * LOCKING:
4848 * spin_lock_irqsave(host lock)
4849 *
4850 * RETURNS:
4851 * One if interrupt was handled, zero if not (shared irq).
4852 */
4853
4854 inline unsigned int ata_host_intr (struct ata_port *ap,
4855 struct ata_queued_cmd *qc)
4856 {
4857 u8 status, host_stat = 0;
4858
4859 VPRINTK("ata%u: protocol %d task_state %d\n",
4860 ap->id, qc->tf.protocol, ap->hsm_task_state);
4861
4862 /* Check whether we are expecting interrupt in this state */
4863 switch (ap->hsm_task_state) {
4864 case HSM_ST_FIRST:
4865 /* Some pre-ATAPI-4 devices assert INTRQ
4866 * at this state when ready to receive CDB.
4867 */
4868
4869 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4870 * The flag was turned on only for atapi devices.
4871 * No need to check is_atapi_taskfile(&qc->tf) again.
4872 */
4873 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4874 goto idle_irq;
4875 break;
4876 case HSM_ST_LAST:
4877 if (qc->tf.protocol == ATA_PROT_DMA ||
4878 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4879 /* check status of DMA engine */
4880 host_stat = ap->ops->bmdma_status(ap);
4881 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4882
4883 /* if it's not our irq... */
4884 if (!(host_stat & ATA_DMA_INTR))
4885 goto idle_irq;
4886
4887 /* before we do anything else, clear DMA-Start bit */
4888 ap->ops->bmdma_stop(qc);
4889
4890 if (unlikely(host_stat & ATA_DMA_ERR)) {
4891 /* error when transfering data to/from memory */
4892 qc->err_mask |= AC_ERR_HOST_BUS;
4893 ap->hsm_task_state = HSM_ST_ERR;
4894 }
4895 }
4896 break;
4897 case HSM_ST:
4898 break;
4899 default:
4900 goto idle_irq;
4901 }
4902
4903 /* check altstatus */
4904 status = ata_altstatus(ap);
4905 if (status & ATA_BUSY)
4906 goto idle_irq;
4907
4908 /* check main status, clearing INTRQ */
4909 status = ata_chk_status(ap);
4910 if (unlikely(status & ATA_BUSY))
4911 goto idle_irq;
4912
4913 /* ack bmdma irq events */
4914 ap->ops->irq_clear(ap);
4915
4916 ata_hsm_move(ap, qc, status, 0);
4917 return 1; /* irq handled */
4918
4919 idle_irq:
4920 ap->stats.idle_irq++;
4921
4922 #ifdef ATA_IRQ_TRAP
4923 if ((ap->stats.idle_irq % 1000) == 0) {
4924 ata_irq_ack(ap, 0); /* debug trap */
4925 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4926 return 1;
4927 }
4928 #endif
4929 return 0; /* irq not handled */
4930 }
4931
4932 /**
4933 * ata_interrupt - Default ATA host interrupt handler
4934 * @irq: irq line (unused)
4935 * @dev_instance: pointer to our ata_host information structure
4936 *
4937 * Default interrupt handler for PCI IDE devices. Calls
4938 * ata_host_intr() for each port that is not disabled.
4939 *
4940 * LOCKING:
4941 * Obtains host lock during operation.
4942 *
4943 * RETURNS:
4944 * IRQ_NONE or IRQ_HANDLED.
4945 */
4946
4947 irqreturn_t ata_interrupt (int irq, void *dev_instance)
4948 {
4949 struct ata_host *host = dev_instance;
4950 unsigned int i;
4951 unsigned int handled = 0;
4952 unsigned long flags;
4953
4954 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4955 spin_lock_irqsave(&host->lock, flags);
4956
4957 for (i = 0; i < host->n_ports; i++) {
4958 struct ata_port *ap;
4959
4960 ap = host->ports[i];
4961 if (ap &&
4962 !(ap->flags & ATA_FLAG_DISABLED)) {
4963 struct ata_queued_cmd *qc;
4964
4965 qc = ata_qc_from_tag(ap, ap->active_tag);
4966 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4967 (qc->flags & ATA_QCFLAG_ACTIVE))
4968 handled |= ata_host_intr(ap, qc);
4969 }
4970 }
4971
4972 spin_unlock_irqrestore(&host->lock, flags);
4973
4974 return IRQ_RETVAL(handled);
4975 }
4976
4977 /**
4978 * sata_scr_valid - test whether SCRs are accessible
4979 * @ap: ATA port to test SCR accessibility for
4980 *
4981 * Test whether SCRs are accessible for @ap.
4982 *
4983 * LOCKING:
4984 * None.
4985 *
4986 * RETURNS:
4987 * 1 if SCRs are accessible, 0 otherwise.
4988 */
4989 int sata_scr_valid(struct ata_port *ap)
4990 {
4991 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4992 }
4993
4994 /**
4995 * sata_scr_read - read SCR register of the specified port
4996 * @ap: ATA port to read SCR for
4997 * @reg: SCR to read
4998 * @val: Place to store read value
4999 *
5000 * Read SCR register @reg of @ap into *@val. This function is
5001 * guaranteed to succeed if the cable type of the port is SATA
5002 * and the port implements ->scr_read.
5003 *
5004 * LOCKING:
5005 * None.
5006 *
5007 * RETURNS:
5008 * 0 on success, negative errno on failure.
5009 */
5010 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5011 {
5012 if (sata_scr_valid(ap)) {
5013 *val = ap->ops->scr_read(ap, reg);
5014 return 0;
5015 }
5016 return -EOPNOTSUPP;
5017 }
5018
5019 /**
5020 * sata_scr_write - write SCR register of the specified port
5021 * @ap: ATA port to write SCR for
5022 * @reg: SCR to write
5023 * @val: value to write
5024 *
5025 * Write @val to SCR register @reg of @ap. This function is
5026 * guaranteed to succeed if the cable type of the port is SATA
5027 * and the port implements ->scr_read.
5028 *
5029 * LOCKING:
5030 * None.
5031 *
5032 * RETURNS:
5033 * 0 on success, negative errno on failure.
5034 */
5035 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5036 {
5037 if (sata_scr_valid(ap)) {
5038 ap->ops->scr_write(ap, reg, val);
5039 return 0;
5040 }
5041 return -EOPNOTSUPP;
5042 }
5043
5044 /**
5045 * sata_scr_write_flush - write SCR register of the specified port and flush
5046 * @ap: ATA port to write SCR for
5047 * @reg: SCR to write
5048 * @val: value to write
5049 *
5050 * This function is identical to sata_scr_write() except that this
5051 * function performs flush after writing to the register.
5052 *
5053 * LOCKING:
5054 * None.
5055 *
5056 * RETURNS:
5057 * 0 on success, negative errno on failure.
5058 */
5059 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5060 {
5061 if (sata_scr_valid(ap)) {
5062 ap->ops->scr_write(ap, reg, val);
5063 ap->ops->scr_read(ap, reg);
5064 return 0;
5065 }
5066 return -EOPNOTSUPP;
5067 }
5068
5069 /**
5070 * ata_port_online - test whether the given port is online
5071 * @ap: ATA port to test
5072 *
5073 * Test whether @ap is online. Note that this function returns 0
5074 * if online status of @ap cannot be obtained, so
5075 * ata_port_online(ap) != !ata_port_offline(ap).
5076 *
5077 * LOCKING:
5078 * None.
5079 *
5080 * RETURNS:
5081 * 1 if the port online status is available and online.
5082 */
5083 int ata_port_online(struct ata_port *ap)
5084 {
5085 u32 sstatus;
5086
5087 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5088 return 1;
5089 return 0;
5090 }
5091
5092 /**
5093 * ata_port_offline - test whether the given port is offline
5094 * @ap: ATA port to test
5095 *
5096 * Test whether @ap is offline. Note that this function returns
5097 * 0 if offline status of @ap cannot be obtained, so
5098 * ata_port_online(ap) != !ata_port_offline(ap).
5099 *
5100 * LOCKING:
5101 * None.
5102 *
5103 * RETURNS:
5104 * 1 if the port offline status is available and offline.
5105 */
5106 int ata_port_offline(struct ata_port *ap)
5107 {
5108 u32 sstatus;
5109
5110 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5111 return 1;
5112 return 0;
5113 }
5114
5115 int ata_flush_cache(struct ata_device *dev)
5116 {
5117 unsigned int err_mask;
5118 u8 cmd;
5119
5120 if (!ata_try_flush_cache(dev))
5121 return 0;
5122
5123 if (ata_id_has_flush_ext(dev->id))
5124 cmd = ATA_CMD_FLUSH_EXT;
5125 else
5126 cmd = ATA_CMD_FLUSH;
5127
5128 err_mask = ata_do_simple_cmd(dev, cmd);
5129 if (err_mask) {
5130 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5131 return -EIO;
5132 }
5133
5134 return 0;
5135 }
5136
5137 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5138 unsigned int action, unsigned int ehi_flags,
5139 int wait)
5140 {
5141 unsigned long flags;
5142 int i, rc;
5143
5144 for (i = 0; i < host->n_ports; i++) {
5145 struct ata_port *ap = host->ports[i];
5146
5147 /* Previous resume operation might still be in
5148 * progress. Wait for PM_PENDING to clear.
5149 */
5150 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5151 ata_port_wait_eh(ap);
5152 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5153 }
5154
5155 /* request PM ops to EH */
5156 spin_lock_irqsave(ap->lock, flags);
5157
5158 ap->pm_mesg = mesg;
5159 if (wait) {
5160 rc = 0;
5161 ap->pm_result = &rc;
5162 }
5163
5164 ap->pflags |= ATA_PFLAG_PM_PENDING;
5165 ap->eh_info.action |= action;
5166 ap->eh_info.flags |= ehi_flags;
5167
5168 ata_port_schedule_eh(ap);
5169
5170 spin_unlock_irqrestore(ap->lock, flags);
5171
5172 /* wait and check result */
5173 if (wait) {
5174 ata_port_wait_eh(ap);
5175 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5176 if (rc)
5177 return rc;
5178 }
5179 }
5180
5181 return 0;
5182 }
5183
5184 /**
5185 * ata_host_suspend - suspend host
5186 * @host: host to suspend
5187 * @mesg: PM message
5188 *
5189 * Suspend @host. Actual operation is performed by EH. This
5190 * function requests EH to perform PM operations and waits for EH
5191 * to finish.
5192 *
5193 * LOCKING:
5194 * Kernel thread context (may sleep).
5195 *
5196 * RETURNS:
5197 * 0 on success, -errno on failure.
5198 */
5199 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5200 {
5201 int i, j, rc;
5202
5203 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5204 if (rc)
5205 goto fail;
5206
5207 /* EH is quiescent now. Fail if we have any ready device.
5208 * This happens if hotplug occurs between completion of device
5209 * suspension and here.
5210 */
5211 for (i = 0; i < host->n_ports; i++) {
5212 struct ata_port *ap = host->ports[i];
5213
5214 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5215 struct ata_device *dev = &ap->device[j];
5216
5217 if (ata_dev_ready(dev)) {
5218 ata_port_printk(ap, KERN_WARNING,
5219 "suspend failed, device %d "
5220 "still active\n", dev->devno);
5221 rc = -EBUSY;
5222 goto fail;
5223 }
5224 }
5225 }
5226
5227 host->dev->power.power_state = mesg;
5228 return 0;
5229
5230 fail:
5231 ata_host_resume(host);
5232 return rc;
5233 }
5234
5235 /**
5236 * ata_host_resume - resume host
5237 * @host: host to resume
5238 *
5239 * Resume @host. Actual operation is performed by EH. This
5240 * function requests EH to perform PM operations and returns.
5241 * Note that all resume operations are performed parallely.
5242 *
5243 * LOCKING:
5244 * Kernel thread context (may sleep).
5245 */
5246 void ata_host_resume(struct ata_host *host)
5247 {
5248 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5249 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5250 host->dev->power.power_state = PMSG_ON;
5251 }
5252
5253 /**
5254 * ata_port_start - Set port up for dma.
5255 * @ap: Port to initialize
5256 *
5257 * Called just after data structures for each port are
5258 * initialized. Allocates space for PRD table.
5259 *
5260 * May be used as the port_start() entry in ata_port_operations.
5261 *
5262 * LOCKING:
5263 * Inherited from caller.
5264 */
5265
5266 int ata_port_start (struct ata_port *ap)
5267 {
5268 struct device *dev = ap->dev;
5269 int rc;
5270
5271 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5272 if (!ap->prd)
5273 return -ENOMEM;
5274
5275 rc = ata_pad_alloc(ap, dev);
5276 if (rc) {
5277 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5278 return rc;
5279 }
5280
5281 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5282
5283 return 0;
5284 }
5285
5286
5287 /**
5288 * ata_port_stop - Undo ata_port_start()
5289 * @ap: Port to shut down
5290 *
5291 * Frees the PRD table.
5292 *
5293 * May be used as the port_stop() entry in ata_port_operations.
5294 *
5295 * LOCKING:
5296 * Inherited from caller.
5297 */
5298
5299 void ata_port_stop (struct ata_port *ap)
5300 {
5301 struct device *dev = ap->dev;
5302
5303 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5304 ata_pad_free(ap, dev);
5305 }
5306
5307 void ata_host_stop (struct ata_host *host)
5308 {
5309 if (host->mmio_base)
5310 iounmap(host->mmio_base);
5311 }
5312
5313 /**
5314 * ata_dev_init - Initialize an ata_device structure
5315 * @dev: Device structure to initialize
5316 *
5317 * Initialize @dev in preparation for probing.
5318 *
5319 * LOCKING:
5320 * Inherited from caller.
5321 */
5322 void ata_dev_init(struct ata_device *dev)
5323 {
5324 struct ata_port *ap = dev->ap;
5325 unsigned long flags;
5326
5327 /* SATA spd limit is bound to the first device */
5328 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5329
5330 /* High bits of dev->flags are used to record warm plug
5331 * requests which occur asynchronously. Synchronize using
5332 * host lock.
5333 */
5334 spin_lock_irqsave(ap->lock, flags);
5335 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5336 spin_unlock_irqrestore(ap->lock, flags);
5337
5338 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5339 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5340 dev->pio_mask = UINT_MAX;
5341 dev->mwdma_mask = UINT_MAX;
5342 dev->udma_mask = UINT_MAX;
5343 }
5344
5345 /**
5346 * ata_port_init - Initialize an ata_port structure
5347 * @ap: Structure to initialize
5348 * @host: Collection of hosts to which @ap belongs
5349 * @ent: Probe information provided by low-level driver
5350 * @port_no: Port number associated with this ata_port
5351 *
5352 * Initialize a new ata_port structure.
5353 *
5354 * LOCKING:
5355 * Inherited from caller.
5356 */
5357 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5358 const struct ata_probe_ent *ent, unsigned int port_no)
5359 {
5360 unsigned int i;
5361
5362 ap->lock = &host->lock;
5363 ap->flags = ATA_FLAG_DISABLED;
5364 ap->id = ata_unique_id++;
5365 ap->ctl = ATA_DEVCTL_OBS;
5366 ap->host = host;
5367 ap->dev = ent->dev;
5368 ap->port_no = port_no;
5369 if (port_no == 1 && ent->pinfo2) {
5370 ap->pio_mask = ent->pinfo2->pio_mask;
5371 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5372 ap->udma_mask = ent->pinfo2->udma_mask;
5373 ap->flags |= ent->pinfo2->flags;
5374 ap->ops = ent->pinfo2->port_ops;
5375 } else {
5376 ap->pio_mask = ent->pio_mask;
5377 ap->mwdma_mask = ent->mwdma_mask;
5378 ap->udma_mask = ent->udma_mask;
5379 ap->flags |= ent->port_flags;
5380 ap->ops = ent->port_ops;
5381 }
5382 ap->hw_sata_spd_limit = UINT_MAX;
5383 ap->active_tag = ATA_TAG_POISON;
5384 ap->last_ctl = 0xFF;
5385
5386 #if defined(ATA_VERBOSE_DEBUG)
5387 /* turn on all debugging levels */
5388 ap->msg_enable = 0x00FF;
5389 #elif defined(ATA_DEBUG)
5390 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5391 #else
5392 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5393 #endif
5394
5395 INIT_WORK(&ap->port_task, NULL, NULL);
5396 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5397 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5398 INIT_LIST_HEAD(&ap->eh_done_q);
5399 init_waitqueue_head(&ap->eh_wait_q);
5400
5401 /* set cable type */
5402 ap->cbl = ATA_CBL_NONE;
5403 if (ap->flags & ATA_FLAG_SATA)
5404 ap->cbl = ATA_CBL_SATA;
5405
5406 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5407 struct ata_device *dev = &ap->device[i];
5408 dev->ap = ap;
5409 dev->devno = i;
5410 ata_dev_init(dev);
5411 }
5412
5413 #ifdef ATA_IRQ_TRAP
5414 ap->stats.unhandled_irq = 1;
5415 ap->stats.idle_irq = 1;
5416 #endif
5417
5418 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5419 }
5420
5421 /**
5422 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5423 * @ap: ATA port to initialize SCSI host for
5424 * @shost: SCSI host associated with @ap
5425 *
5426 * Initialize SCSI host @shost associated with ATA port @ap.
5427 *
5428 * LOCKING:
5429 * Inherited from caller.
5430 */
5431 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5432 {
5433 ap->scsi_host = shost;
5434
5435 shost->unique_id = ap->id;
5436 shost->max_id = 16;
5437 shost->max_lun = 1;
5438 shost->max_channel = 1;
5439 shost->max_cmd_len = 12;
5440 }
5441
5442 /**
5443 * ata_port_add - Attach low-level ATA driver to system
5444 * @ent: Information provided by low-level driver
5445 * @host: Collections of ports to which we add
5446 * @port_no: Port number associated with this host
5447 *
5448 * Attach low-level ATA driver to system.
5449 *
5450 * LOCKING:
5451 * PCI/etc. bus probe sem.
5452 *
5453 * RETURNS:
5454 * New ata_port on success, for NULL on error.
5455 */
5456 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5457 struct ata_host *host,
5458 unsigned int port_no)
5459 {
5460 struct Scsi_Host *shost;
5461 struct ata_port *ap;
5462
5463 DPRINTK("ENTER\n");
5464
5465 if (!ent->port_ops->error_handler &&
5466 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5467 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5468 port_no);
5469 return NULL;
5470 }
5471
5472 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5473 if (!shost)
5474 return NULL;
5475
5476 shost->transportt = &ata_scsi_transport_template;
5477
5478 ap = ata_shost_to_port(shost);
5479
5480 ata_port_init(ap, host, ent, port_no);
5481 ata_port_init_shost(ap, shost);
5482
5483 return ap;
5484 }
5485
5486 /**
5487 * ata_sas_host_init - Initialize a host struct
5488 * @host: host to initialize
5489 * @dev: device host is attached to
5490 * @flags: host flags
5491 * @ops: port_ops
5492 *
5493 * LOCKING:
5494 * PCI/etc. bus probe sem.
5495 *
5496 */
5497
5498 void ata_host_init(struct ata_host *host, struct device *dev,
5499 unsigned long flags, const struct ata_port_operations *ops)
5500 {
5501 spin_lock_init(&host->lock);
5502 host->dev = dev;
5503 host->flags = flags;
5504 host->ops = ops;
5505 }
5506
5507 /**
5508 * ata_device_add - Register hardware device with ATA and SCSI layers
5509 * @ent: Probe information describing hardware device to be registered
5510 *
5511 * This function processes the information provided in the probe
5512 * information struct @ent, allocates the necessary ATA and SCSI
5513 * host information structures, initializes them, and registers
5514 * everything with requisite kernel subsystems.
5515 *
5516 * This function requests irqs, probes the ATA bus, and probes
5517 * the SCSI bus.
5518 *
5519 * LOCKING:
5520 * PCI/etc. bus probe sem.
5521 *
5522 * RETURNS:
5523 * Number of ports registered. Zero on error (no ports registered).
5524 */
5525 int ata_device_add(const struct ata_probe_ent *ent)
5526 {
5527 unsigned int i;
5528 struct device *dev = ent->dev;
5529 struct ata_host *host;
5530 int rc;
5531
5532 DPRINTK("ENTER\n");
5533
5534 if (ent->irq == 0) {
5535 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5536 return 0;
5537 }
5538 /* alloc a container for our list of ATA ports (buses) */
5539 host = kzalloc(sizeof(struct ata_host) +
5540 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5541 if (!host)
5542 return 0;
5543
5544 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5545 host->n_ports = ent->n_ports;
5546 host->irq = ent->irq;
5547 host->irq2 = ent->irq2;
5548 host->mmio_base = ent->mmio_base;
5549 host->private_data = ent->private_data;
5550
5551 /* register each port bound to this device */
5552 for (i = 0; i < host->n_ports; i++) {
5553 struct ata_port *ap;
5554 unsigned long xfer_mode_mask;
5555 int irq_line = ent->irq;
5556
5557 ap = ata_port_add(ent, host, i);
5558 host->ports[i] = ap;
5559 if (!ap)
5560 goto err_out;
5561
5562 /* dummy? */
5563 if (ent->dummy_port_mask & (1 << i)) {
5564 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5565 ap->ops = &ata_dummy_port_ops;
5566 continue;
5567 }
5568
5569 /* start port */
5570 rc = ap->ops->port_start(ap);
5571 if (rc) {
5572 host->ports[i] = NULL;
5573 scsi_host_put(ap->scsi_host);
5574 goto err_out;
5575 }
5576
5577 /* Report the secondary IRQ for second channel legacy */
5578 if (i == 1 && ent->irq2)
5579 irq_line = ent->irq2;
5580
5581 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5582 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5583 (ap->pio_mask << ATA_SHIFT_PIO);
5584
5585 /* print per-port info to dmesg */
5586 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5587 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5588 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5589 ata_mode_string(xfer_mode_mask),
5590 ap->ioaddr.cmd_addr,
5591 ap->ioaddr.ctl_addr,
5592 ap->ioaddr.bmdma_addr,
5593 irq_line);
5594
5595 ata_chk_status(ap);
5596 host->ops->irq_clear(ap);
5597 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5598 }
5599
5600 /* obtain irq, that may be shared between channels */
5601 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5602 DRV_NAME, host);
5603 if (rc) {
5604 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5605 ent->irq, rc);
5606 goto err_out;
5607 }
5608
5609 /* do we have a second IRQ for the other channel, eg legacy mode */
5610 if (ent->irq2) {
5611 /* We will get weird core code crashes later if this is true
5612 so trap it now */
5613 BUG_ON(ent->irq == ent->irq2);
5614
5615 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5616 DRV_NAME, host);
5617 if (rc) {
5618 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5619 ent->irq2, rc);
5620 goto err_out_free_irq;
5621 }
5622 }
5623
5624 /* perform each probe synchronously */
5625 DPRINTK("probe begin\n");
5626 for (i = 0; i < host->n_ports; i++) {
5627 struct ata_port *ap = host->ports[i];
5628 u32 scontrol;
5629 int rc;
5630
5631 /* init sata_spd_limit to the current value */
5632 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5633 int spd = (scontrol >> 4) & 0xf;
5634 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5635 }
5636 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5637
5638 rc = scsi_add_host(ap->scsi_host, dev);
5639 if (rc) {
5640 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5641 /* FIXME: do something useful here */
5642 /* FIXME: handle unconditional calls to
5643 * scsi_scan_host and ata_host_remove, below,
5644 * at the very least
5645 */
5646 }
5647
5648 if (ap->ops->error_handler) {
5649 struct ata_eh_info *ehi = &ap->eh_info;
5650 unsigned long flags;
5651
5652 ata_port_probe(ap);
5653
5654 /* kick EH for boot probing */
5655 spin_lock_irqsave(ap->lock, flags);
5656
5657 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5658 ehi->action |= ATA_EH_SOFTRESET;
5659 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5660
5661 ap->pflags |= ATA_PFLAG_LOADING;
5662 ata_port_schedule_eh(ap);
5663
5664 spin_unlock_irqrestore(ap->lock, flags);
5665
5666 /* wait for EH to finish */
5667 ata_port_wait_eh(ap);
5668 } else {
5669 DPRINTK("ata%u: bus probe begin\n", ap->id);
5670 rc = ata_bus_probe(ap);
5671 DPRINTK("ata%u: bus probe end\n", ap->id);
5672
5673 if (rc) {
5674 /* FIXME: do something useful here?
5675 * Current libata behavior will
5676 * tear down everything when
5677 * the module is removed
5678 * or the h/w is unplugged.
5679 */
5680 }
5681 }
5682 }
5683
5684 /* probes are done, now scan each port's disk(s) */
5685 DPRINTK("host probe begin\n");
5686 for (i = 0; i < host->n_ports; i++) {
5687 struct ata_port *ap = host->ports[i];
5688
5689 ata_scsi_scan_host(ap);
5690 }
5691
5692 dev_set_drvdata(dev, host);
5693
5694 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5695 return ent->n_ports; /* success */
5696
5697 err_out_free_irq:
5698 free_irq(ent->irq, host);
5699 err_out:
5700 for (i = 0; i < host->n_ports; i++) {
5701 struct ata_port *ap = host->ports[i];
5702 if (ap) {
5703 ap->ops->port_stop(ap);
5704 scsi_host_put(ap->scsi_host);
5705 }
5706 }
5707
5708 kfree(host);
5709 VPRINTK("EXIT, returning 0\n");
5710 return 0;
5711 }
5712
5713 /**
5714 * ata_port_detach - Detach ATA port in prepration of device removal
5715 * @ap: ATA port to be detached
5716 *
5717 * Detach all ATA devices and the associated SCSI devices of @ap;
5718 * then, remove the associated SCSI host. @ap is guaranteed to
5719 * be quiescent on return from this function.
5720 *
5721 * LOCKING:
5722 * Kernel thread context (may sleep).
5723 */
5724 void ata_port_detach(struct ata_port *ap)
5725 {
5726 unsigned long flags;
5727 int i;
5728
5729 if (!ap->ops->error_handler)
5730 goto skip_eh;
5731
5732 /* tell EH we're leaving & flush EH */
5733 spin_lock_irqsave(ap->lock, flags);
5734 ap->pflags |= ATA_PFLAG_UNLOADING;
5735 spin_unlock_irqrestore(ap->lock, flags);
5736
5737 ata_port_wait_eh(ap);
5738
5739 /* EH is now guaranteed to see UNLOADING, so no new device
5740 * will be attached. Disable all existing devices.
5741 */
5742 spin_lock_irqsave(ap->lock, flags);
5743
5744 for (i = 0; i < ATA_MAX_DEVICES; i++)
5745 ata_dev_disable(&ap->device[i]);
5746
5747 spin_unlock_irqrestore(ap->lock, flags);
5748
5749 /* Final freeze & EH. All in-flight commands are aborted. EH
5750 * will be skipped and retrials will be terminated with bad
5751 * target.
5752 */
5753 spin_lock_irqsave(ap->lock, flags);
5754 ata_port_freeze(ap); /* won't be thawed */
5755 spin_unlock_irqrestore(ap->lock, flags);
5756
5757 ata_port_wait_eh(ap);
5758
5759 /* Flush hotplug task. The sequence is similar to
5760 * ata_port_flush_task().
5761 */
5762 flush_workqueue(ata_aux_wq);
5763 cancel_delayed_work(&ap->hotplug_task);
5764 flush_workqueue(ata_aux_wq);
5765
5766 skip_eh:
5767 /* remove the associated SCSI host */
5768 scsi_remove_host(ap->scsi_host);
5769 }
5770
5771 /**
5772 * ata_host_remove - PCI layer callback for device removal
5773 * @host: ATA host set that was removed
5774 *
5775 * Unregister all objects associated with this host set. Free those
5776 * objects.
5777 *
5778 * LOCKING:
5779 * Inherited from calling layer (may sleep).
5780 */
5781
5782 void ata_host_remove(struct ata_host *host)
5783 {
5784 unsigned int i;
5785
5786 for (i = 0; i < host->n_ports; i++)
5787 ata_port_detach(host->ports[i]);
5788
5789 free_irq(host->irq, host);
5790 if (host->irq2)
5791 free_irq(host->irq2, host);
5792
5793 for (i = 0; i < host->n_ports; i++) {
5794 struct ata_port *ap = host->ports[i];
5795
5796 ata_scsi_release(ap->scsi_host);
5797
5798 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5799 struct ata_ioports *ioaddr = &ap->ioaddr;
5800
5801 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5802 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5803 release_region(ATA_PRIMARY_CMD, 8);
5804 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5805 release_region(ATA_SECONDARY_CMD, 8);
5806 }
5807
5808 scsi_host_put(ap->scsi_host);
5809 }
5810
5811 if (host->ops->host_stop)
5812 host->ops->host_stop(host);
5813
5814 kfree(host);
5815 }
5816
5817 /**
5818 * ata_scsi_release - SCSI layer callback hook for host unload
5819 * @shost: libata host to be unloaded
5820 *
5821 * Performs all duties necessary to shut down a libata port...
5822 * Kill port kthread, disable port, and release resources.
5823 *
5824 * LOCKING:
5825 * Inherited from SCSI layer.
5826 *
5827 * RETURNS:
5828 * One.
5829 */
5830
5831 int ata_scsi_release(struct Scsi_Host *shost)
5832 {
5833 struct ata_port *ap = ata_shost_to_port(shost);
5834
5835 DPRINTK("ENTER\n");
5836
5837 ap->ops->port_disable(ap);
5838 ap->ops->port_stop(ap);
5839
5840 DPRINTK("EXIT\n");
5841 return 1;
5842 }
5843
5844 struct ata_probe_ent *
5845 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5846 {
5847 struct ata_probe_ent *probe_ent;
5848
5849 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5850 if (!probe_ent) {
5851 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5852 kobject_name(&(dev->kobj)));
5853 return NULL;
5854 }
5855
5856 INIT_LIST_HEAD(&probe_ent->node);
5857 probe_ent->dev = dev;
5858
5859 probe_ent->sht = port->sht;
5860 probe_ent->port_flags = port->flags;
5861 probe_ent->pio_mask = port->pio_mask;
5862 probe_ent->mwdma_mask = port->mwdma_mask;
5863 probe_ent->udma_mask = port->udma_mask;
5864 probe_ent->port_ops = port->port_ops;
5865 probe_ent->private_data = port->private_data;
5866
5867 return probe_ent;
5868 }
5869
5870 /**
5871 * ata_std_ports - initialize ioaddr with standard port offsets.
5872 * @ioaddr: IO address structure to be initialized
5873 *
5874 * Utility function which initializes data_addr, error_addr,
5875 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5876 * device_addr, status_addr, and command_addr to standard offsets
5877 * relative to cmd_addr.
5878 *
5879 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5880 */
5881
5882 void ata_std_ports(struct ata_ioports *ioaddr)
5883 {
5884 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5885 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5886 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5887 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5888 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5889 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5890 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5891 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5892 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5893 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5894 }
5895
5896
5897 #ifdef CONFIG_PCI
5898
5899 void ata_pci_host_stop (struct ata_host *host)
5900 {
5901 struct pci_dev *pdev = to_pci_dev(host->dev);
5902
5903 pci_iounmap(pdev, host->mmio_base);
5904 }
5905
5906 /**
5907 * ata_pci_remove_one - PCI layer callback for device removal
5908 * @pdev: PCI device that was removed
5909 *
5910 * PCI layer indicates to libata via this hook that
5911 * hot-unplug or module unload event has occurred.
5912 * Handle this by unregistering all objects associated
5913 * with this PCI device. Free those objects. Then finally
5914 * release PCI resources and disable device.
5915 *
5916 * LOCKING:
5917 * Inherited from PCI layer (may sleep).
5918 */
5919
5920 void ata_pci_remove_one (struct pci_dev *pdev)
5921 {
5922 struct device *dev = pci_dev_to_dev(pdev);
5923 struct ata_host *host = dev_get_drvdata(dev);
5924
5925 ata_host_remove(host);
5926
5927 pci_release_regions(pdev);
5928 pci_disable_device(pdev);
5929 dev_set_drvdata(dev, NULL);
5930 }
5931
5932 /* move to PCI subsystem */
5933 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5934 {
5935 unsigned long tmp = 0;
5936
5937 switch (bits->width) {
5938 case 1: {
5939 u8 tmp8 = 0;
5940 pci_read_config_byte(pdev, bits->reg, &tmp8);
5941 tmp = tmp8;
5942 break;
5943 }
5944 case 2: {
5945 u16 tmp16 = 0;
5946 pci_read_config_word(pdev, bits->reg, &tmp16);
5947 tmp = tmp16;
5948 break;
5949 }
5950 case 4: {
5951 u32 tmp32 = 0;
5952 pci_read_config_dword(pdev, bits->reg, &tmp32);
5953 tmp = tmp32;
5954 break;
5955 }
5956
5957 default:
5958 return -EINVAL;
5959 }
5960
5961 tmp &= bits->mask;
5962
5963 return (tmp == bits->val) ? 1 : 0;
5964 }
5965
5966 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5967 {
5968 pci_save_state(pdev);
5969
5970 if (mesg.event == PM_EVENT_SUSPEND) {
5971 pci_disable_device(pdev);
5972 pci_set_power_state(pdev, PCI_D3hot);
5973 }
5974 }
5975
5976 void ata_pci_device_do_resume(struct pci_dev *pdev)
5977 {
5978 pci_set_power_state(pdev, PCI_D0);
5979 pci_restore_state(pdev);
5980 pci_enable_device(pdev);
5981 pci_set_master(pdev);
5982 }
5983
5984 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5985 {
5986 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5987 int rc = 0;
5988
5989 rc = ata_host_suspend(host, mesg);
5990 if (rc)
5991 return rc;
5992
5993 ata_pci_device_do_suspend(pdev, mesg);
5994
5995 return 0;
5996 }
5997
5998 int ata_pci_device_resume(struct pci_dev *pdev)
5999 {
6000 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6001
6002 ata_pci_device_do_resume(pdev);
6003 ata_host_resume(host);
6004 return 0;
6005 }
6006 #endif /* CONFIG_PCI */
6007
6008
6009 static int __init ata_init(void)
6010 {
6011 ata_probe_timeout *= HZ;
6012 ata_wq = create_workqueue("ata");
6013 if (!ata_wq)
6014 return -ENOMEM;
6015
6016 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6017 if (!ata_aux_wq) {
6018 destroy_workqueue(ata_wq);
6019 return -ENOMEM;
6020 }
6021
6022 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6023 return 0;
6024 }
6025
6026 static void __exit ata_exit(void)
6027 {
6028 destroy_workqueue(ata_wq);
6029 destroy_workqueue(ata_aux_wq);
6030 }
6031
6032 subsys_initcall(ata_init);
6033 module_exit(ata_exit);
6034
6035 static unsigned long ratelimit_time;
6036 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6037
6038 int ata_ratelimit(void)
6039 {
6040 int rc;
6041 unsigned long flags;
6042
6043 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6044
6045 if (time_after(jiffies, ratelimit_time)) {
6046 rc = 1;
6047 ratelimit_time = jiffies + (HZ/5);
6048 } else
6049 rc = 0;
6050
6051 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6052
6053 return rc;
6054 }
6055
6056 /**
6057 * ata_wait_register - wait until register value changes
6058 * @reg: IO-mapped register
6059 * @mask: Mask to apply to read register value
6060 * @val: Wait condition
6061 * @interval_msec: polling interval in milliseconds
6062 * @timeout_msec: timeout in milliseconds
6063 *
6064 * Waiting for some bits of register to change is a common
6065 * operation for ATA controllers. This function reads 32bit LE
6066 * IO-mapped register @reg and tests for the following condition.
6067 *
6068 * (*@reg & mask) != val
6069 *
6070 * If the condition is met, it returns; otherwise, the process is
6071 * repeated after @interval_msec until timeout.
6072 *
6073 * LOCKING:
6074 * Kernel thread context (may sleep)
6075 *
6076 * RETURNS:
6077 * The final register value.
6078 */
6079 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6080 unsigned long interval_msec,
6081 unsigned long timeout_msec)
6082 {
6083 unsigned long timeout;
6084 u32 tmp;
6085
6086 tmp = ioread32(reg);
6087
6088 /* Calculate timeout _after_ the first read to make sure
6089 * preceding writes reach the controller before starting to
6090 * eat away the timeout.
6091 */
6092 timeout = jiffies + (timeout_msec * HZ) / 1000;
6093
6094 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6095 msleep(interval_msec);
6096 tmp = ioread32(reg);
6097 }
6098
6099 return tmp;
6100 }
6101
6102 /*
6103 * Dummy port_ops
6104 */
6105 static void ata_dummy_noret(struct ata_port *ap) { }
6106 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6107 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6108
6109 static u8 ata_dummy_check_status(struct ata_port *ap)
6110 {
6111 return ATA_DRDY;
6112 }
6113
6114 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6115 {
6116 return AC_ERR_SYSTEM;
6117 }
6118
6119 const struct ata_port_operations ata_dummy_port_ops = {
6120 .port_disable = ata_port_disable,
6121 .check_status = ata_dummy_check_status,
6122 .check_altstatus = ata_dummy_check_status,
6123 .dev_select = ata_noop_dev_select,
6124 .qc_prep = ata_noop_qc_prep,
6125 .qc_issue = ata_dummy_qc_issue,
6126 .freeze = ata_dummy_noret,
6127 .thaw = ata_dummy_noret,
6128 .error_handler = ata_dummy_noret,
6129 .post_internal_cmd = ata_dummy_qc_noret,
6130 .irq_clear = ata_dummy_noret,
6131 .port_start = ata_dummy_ret0,
6132 .port_stop = ata_dummy_noret,
6133 };
6134
6135 /*
6136 * libata is essentially a library of internal helper functions for
6137 * low-level ATA host controller drivers. As such, the API/ABI is
6138 * likely to change as new drivers are added and updated.
6139 * Do not depend on ABI/API stability.
6140 */
6141
6142 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6143 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6144 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6145 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6146 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6147 EXPORT_SYMBOL_GPL(ata_std_ports);
6148 EXPORT_SYMBOL_GPL(ata_host_init);
6149 EXPORT_SYMBOL_GPL(ata_device_add);
6150 EXPORT_SYMBOL_GPL(ata_port_detach);
6151 EXPORT_SYMBOL_GPL(ata_host_remove);
6152 EXPORT_SYMBOL_GPL(ata_sg_init);
6153 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6154 EXPORT_SYMBOL_GPL(ata_hsm_move);
6155 EXPORT_SYMBOL_GPL(ata_qc_complete);
6156 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6157 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6158 EXPORT_SYMBOL_GPL(ata_tf_load);
6159 EXPORT_SYMBOL_GPL(ata_tf_read);
6160 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6161 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6162 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6163 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6164 EXPORT_SYMBOL_GPL(ata_check_status);
6165 EXPORT_SYMBOL_GPL(ata_altstatus);
6166 EXPORT_SYMBOL_GPL(ata_exec_command);
6167 EXPORT_SYMBOL_GPL(ata_port_start);
6168 EXPORT_SYMBOL_GPL(ata_port_stop);
6169 EXPORT_SYMBOL_GPL(ata_host_stop);
6170 EXPORT_SYMBOL_GPL(ata_interrupt);
6171 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6172 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6173 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6174 EXPORT_SYMBOL_GPL(ata_qc_prep);
6175 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6176 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6177 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6178 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6179 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6180 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6181 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6182 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6183 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6184 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6185 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6186 EXPORT_SYMBOL_GPL(ata_port_probe);
6187 EXPORT_SYMBOL_GPL(sata_set_spd);
6188 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6189 EXPORT_SYMBOL_GPL(sata_phy_resume);
6190 EXPORT_SYMBOL_GPL(sata_phy_reset);
6191 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6192 EXPORT_SYMBOL_GPL(ata_bus_reset);
6193 EXPORT_SYMBOL_GPL(ata_std_prereset);
6194 EXPORT_SYMBOL_GPL(ata_std_softreset);
6195 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6196 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6197 EXPORT_SYMBOL_GPL(ata_std_postreset);
6198 EXPORT_SYMBOL_GPL(ata_dev_classify);
6199 EXPORT_SYMBOL_GPL(ata_dev_pair);
6200 EXPORT_SYMBOL_GPL(ata_port_disable);
6201 EXPORT_SYMBOL_GPL(ata_ratelimit);
6202 EXPORT_SYMBOL_GPL(ata_wait_register);
6203 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6204 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6205 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6206 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6207 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6208 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6209 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6210 EXPORT_SYMBOL_GPL(ata_scsi_release);
6211 EXPORT_SYMBOL_GPL(ata_host_intr);
6212 EXPORT_SYMBOL_GPL(sata_scr_valid);
6213 EXPORT_SYMBOL_GPL(sata_scr_read);
6214 EXPORT_SYMBOL_GPL(sata_scr_write);
6215 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6216 EXPORT_SYMBOL_GPL(ata_port_online);
6217 EXPORT_SYMBOL_GPL(ata_port_offline);
6218 EXPORT_SYMBOL_GPL(ata_host_suspend);
6219 EXPORT_SYMBOL_GPL(ata_host_resume);
6220 EXPORT_SYMBOL_GPL(ata_id_string);
6221 EXPORT_SYMBOL_GPL(ata_id_c_string);
6222 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6223 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6224
6225 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6226 EXPORT_SYMBOL_GPL(ata_timing_compute);
6227 EXPORT_SYMBOL_GPL(ata_timing_merge);
6228
6229 #ifdef CONFIG_PCI
6230 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6231 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6232 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6233 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6234 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6235 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6236 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6237 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6238 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6239 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6240 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6241 #endif /* CONFIG_PCI */
6242
6243 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6244 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6245
6246 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6247 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6248 EXPORT_SYMBOL_GPL(ata_port_abort);
6249 EXPORT_SYMBOL_GPL(ata_port_freeze);
6250 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6251 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6252 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6253 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6254 EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.150459 seconds and 6 git commands to generate.