Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/fbdev-2.6
[deliverable/linux.git] / drivers / ata / pata_hpt366.c
1 /*
2 * Libata driver for the highpoint 366 and 368 UDMA66 ATA controllers.
3 *
4 * This driver is heavily based upon:
5 *
6 * linux/drivers/ide/pci/hpt366.c Version 0.36 April 25, 2003
7 *
8 * Copyright (C) 1999-2003 Andre Hedrick <andre@linux-ide.org>
9 * Portions Copyright (C) 2001 Sun Microsystems, Inc.
10 * Portions Copyright (C) 2003 Red Hat Inc
11 *
12 *
13 * TODO
14 * Look into engine reset on timeout errors. Should not be required.
15 */
16
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/init.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <scsi/scsi_host.h>
25 #include <linux/libata.h>
26
27 #define DRV_NAME "pata_hpt366"
28 #define DRV_VERSION "0.6.9"
29
30 struct hpt_clock {
31 u8 xfer_mode;
32 u32 timing;
33 };
34
35 /* key for bus clock timings
36 * bit
37 * 0:3 data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
38 * cycles = value + 1
39 * 4:7 data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
40 * cycles = value + 1
41 * 8:11 cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
42 * register access.
43 * 12:15 cmd_low_time. Active time of DIOW_/DIOR_ during task file
44 * register access.
45 * 16:18 udma_cycle_time. Clock cycles for UDMA xfer?
46 * 19:21 pre_high_time. Time to initialize 1st cycle for PIO and MW DMA xfer.
47 * 22:24 cmd_pre_high_time. Time to initialize 1st PIO cycle for task file
48 * register access.
49 * 28 UDMA enable.
50 * 29 DMA enable.
51 * 30 PIO_MST enable. If set, the chip is in bus master mode during
52 * PIO xfer.
53 * 31 FIFO enable.
54 */
55
56 static const struct hpt_clock hpt366_40[] = {
57 { XFER_UDMA_4, 0x900fd943 },
58 { XFER_UDMA_3, 0x900ad943 },
59 { XFER_UDMA_2, 0x900bd943 },
60 { XFER_UDMA_1, 0x9008d943 },
61 { XFER_UDMA_0, 0x9008d943 },
62
63 { XFER_MW_DMA_2, 0xa008d943 },
64 { XFER_MW_DMA_1, 0xa010d955 },
65 { XFER_MW_DMA_0, 0xa010d9fc },
66
67 { XFER_PIO_4, 0xc008d963 },
68 { XFER_PIO_3, 0xc010d974 },
69 { XFER_PIO_2, 0xc010d997 },
70 { XFER_PIO_1, 0xc010d9c7 },
71 { XFER_PIO_0, 0xc018d9d9 },
72 { 0, 0x0120d9d9 }
73 };
74
75 static const struct hpt_clock hpt366_33[] = {
76 { XFER_UDMA_4, 0x90c9a731 },
77 { XFER_UDMA_3, 0x90cfa731 },
78 { XFER_UDMA_2, 0x90caa731 },
79 { XFER_UDMA_1, 0x90cba731 },
80 { XFER_UDMA_0, 0x90c8a731 },
81
82 { XFER_MW_DMA_2, 0xa0c8a731 },
83 { XFER_MW_DMA_1, 0xa0c8a732 }, /* 0xa0c8a733 */
84 { XFER_MW_DMA_0, 0xa0c8a797 },
85
86 { XFER_PIO_4, 0xc0c8a731 },
87 { XFER_PIO_3, 0xc0c8a742 },
88 { XFER_PIO_2, 0xc0d0a753 },
89 { XFER_PIO_1, 0xc0d0a7a3 }, /* 0xc0d0a793 */
90 { XFER_PIO_0, 0xc0d0a7aa }, /* 0xc0d0a7a7 */
91 { 0, 0x0120a7a7 }
92 };
93
94 static const struct hpt_clock hpt366_25[] = {
95 { XFER_UDMA_4, 0x90c98521 },
96 { XFER_UDMA_3, 0x90cf8521 },
97 { XFER_UDMA_2, 0x90cf8521 },
98 { XFER_UDMA_1, 0x90cb8521 },
99 { XFER_UDMA_0, 0x90cb8521 },
100
101 { XFER_MW_DMA_2, 0xa0ca8521 },
102 { XFER_MW_DMA_1, 0xa0ca8532 },
103 { XFER_MW_DMA_0, 0xa0ca8575 },
104
105 { XFER_PIO_4, 0xc0ca8521 },
106 { XFER_PIO_3, 0xc0ca8532 },
107 { XFER_PIO_2, 0xc0ca8542 },
108 { XFER_PIO_1, 0xc0d08572 },
109 { XFER_PIO_0, 0xc0d08585 },
110 { 0, 0x01208585 }
111 };
112
113 static const char * const bad_ata33[] = {
114 "Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3",
115 "Maxtor 90845U3", "Maxtor 90650U2",
116 "Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5",
117 "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
118 "Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6",
119 "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
120 "Maxtor 90510D4",
121 "Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
122 "Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7",
123 "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
124 "Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5",
125 "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
126 NULL
127 };
128
129 static const char * const bad_ata66_4[] = {
130 "IBM-DTLA-307075",
131 "IBM-DTLA-307060",
132 "IBM-DTLA-307045",
133 "IBM-DTLA-307030",
134 "IBM-DTLA-307020",
135 "IBM-DTLA-307015",
136 "IBM-DTLA-305040",
137 "IBM-DTLA-305030",
138 "IBM-DTLA-305020",
139 "IC35L010AVER07-0",
140 "IC35L020AVER07-0",
141 "IC35L030AVER07-0",
142 "IC35L040AVER07-0",
143 "IC35L060AVER07-0",
144 "WDC AC310200R",
145 NULL
146 };
147
148 static const char * const bad_ata66_3[] = {
149 "WDC AC310200R",
150 NULL
151 };
152
153 static int hpt_dma_blacklisted(const struct ata_device *dev, char *modestr,
154 const char * const list[])
155 {
156 unsigned char model_num[ATA_ID_PROD_LEN + 1];
157 int i = 0;
158
159 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
160
161 while (list[i] != NULL) {
162 if (!strcmp(list[i], model_num)) {
163 printk(KERN_WARNING DRV_NAME ": %s is not supported for %s.\n",
164 modestr, list[i]);
165 return 1;
166 }
167 i++;
168 }
169 return 0;
170 }
171
172 /**
173 * hpt366_filter - mode selection filter
174 * @adev: ATA device
175 *
176 * Block UDMA on devices that cause trouble with this controller.
177 */
178
179 static unsigned long hpt366_filter(struct ata_device *adev, unsigned long mask)
180 {
181 if (adev->class == ATA_DEV_ATA) {
182 if (hpt_dma_blacklisted(adev, "UDMA", bad_ata33))
183 mask &= ~ATA_MASK_UDMA;
184 if (hpt_dma_blacklisted(adev, "UDMA3", bad_ata66_3))
185 mask &= ~(0xF8 << ATA_SHIFT_UDMA);
186 if (hpt_dma_blacklisted(adev, "UDMA4", bad_ata66_4))
187 mask &= ~(0xF0 << ATA_SHIFT_UDMA);
188 } else if (adev->class == ATA_DEV_ATAPI)
189 mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
190
191 return mask;
192 }
193
194 static int hpt36x_cable_detect(struct ata_port *ap)
195 {
196 struct pci_dev *pdev = to_pci_dev(ap->host->dev);
197 u8 ata66;
198
199 /*
200 * Each channel of pata_hpt366 occupies separate PCI function
201 * as the primary channel and bit1 indicates the cable type.
202 */
203 pci_read_config_byte(pdev, 0x5A, &ata66);
204 if (ata66 & 2)
205 return ATA_CBL_PATA40;
206 return ATA_CBL_PATA80;
207 }
208
209 static void hpt366_set_mode(struct ata_port *ap, struct ata_device *adev,
210 u8 mode)
211 {
212 struct hpt_clock *clocks = ap->host->private_data;
213 struct pci_dev *pdev = to_pci_dev(ap->host->dev);
214 u32 addr = 0x40 + 4 * adev->devno;
215 u32 mask, reg;
216
217 /* determine timing mask and find matching clock entry */
218 if (mode < XFER_MW_DMA_0)
219 mask = 0xc1f8ffff;
220 else if (mode < XFER_UDMA_0)
221 mask = 0x303800ff;
222 else
223 mask = 0x30070000;
224
225 while (clocks->xfer_mode) {
226 if (clocks->xfer_mode == mode)
227 break;
228 clocks++;
229 }
230 if (!clocks->xfer_mode)
231 BUG();
232
233 /*
234 * Combine new mode bits with old config bits and disable
235 * on-chip PIO FIFO/buffer (and PIO MST mode as well) to avoid
236 * problems handling I/O errors later.
237 */
238 pci_read_config_dword(pdev, addr, &reg);
239 reg = ((reg & ~mask) | (clocks->timing & mask)) & ~0xc0000000;
240 pci_write_config_dword(pdev, addr, reg);
241 }
242
243 /**
244 * hpt366_set_piomode - PIO setup
245 * @ap: ATA interface
246 * @adev: device on the interface
247 *
248 * Perform PIO mode setup.
249 */
250
251 static void hpt366_set_piomode(struct ata_port *ap, struct ata_device *adev)
252 {
253 hpt366_set_mode(ap, adev, adev->pio_mode);
254 }
255
256 /**
257 * hpt366_set_dmamode - DMA timing setup
258 * @ap: ATA interface
259 * @adev: Device being configured
260 *
261 * Set up the channel for MWDMA or UDMA modes. Much the same as with
262 * PIO, load the mode number and then set MWDMA or UDMA flag.
263 */
264
265 static void hpt366_set_dmamode(struct ata_port *ap, struct ata_device *adev)
266 {
267 hpt366_set_mode(ap, adev, adev->dma_mode);
268 }
269
270 static struct scsi_host_template hpt36x_sht = {
271 ATA_BMDMA_SHT(DRV_NAME),
272 };
273
274 /*
275 * Configuration for HPT366/68
276 */
277
278 static struct ata_port_operations hpt366_port_ops = {
279 .inherits = &ata_bmdma_port_ops,
280 .cable_detect = hpt36x_cable_detect,
281 .mode_filter = hpt366_filter,
282 .set_piomode = hpt366_set_piomode,
283 .set_dmamode = hpt366_set_dmamode,
284 };
285
286 /**
287 * hpt36x_init_chipset - common chip setup
288 * @dev: PCI device
289 *
290 * Perform the chip setup work that must be done at both init and
291 * resume time
292 */
293
294 static void hpt36x_init_chipset(struct pci_dev *dev)
295 {
296 u8 drive_fast;
297
298 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
299 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
300 pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
301 pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
302
303 pci_read_config_byte(dev, 0x51, &drive_fast);
304 if (drive_fast & 0x80)
305 pci_write_config_byte(dev, 0x51, drive_fast & ~0x80);
306 }
307
308 /**
309 * hpt36x_init_one - Initialise an HPT366/368
310 * @dev: PCI device
311 * @id: Entry in match table
312 *
313 * Initialise an HPT36x device. There are some interesting complications
314 * here. Firstly the chip may report 366 and be one of several variants.
315 * Secondly all the timings depend on the clock for the chip which we must
316 * detect and look up
317 *
318 * This is the known chip mappings. It may be missing a couple of later
319 * releases.
320 *
321 * Chip version PCI Rev Notes
322 * HPT366 4 (HPT366) 0 UDMA66
323 * HPT366 4 (HPT366) 1 UDMA66
324 * HPT368 4 (HPT366) 2 UDMA66
325 * HPT37x/30x 4 (HPT366) 3+ Other driver
326 *
327 */
328
329 static int hpt36x_init_one(struct pci_dev *dev, const struct pci_device_id *id)
330 {
331 static const struct ata_port_info info_hpt366 = {
332 .flags = ATA_FLAG_SLAVE_POSS,
333 .pio_mask = ATA_PIO4,
334 .mwdma_mask = ATA_MWDMA2,
335 .udma_mask = ATA_UDMA4,
336 .port_ops = &hpt366_port_ops
337 };
338 const struct ata_port_info *ppi[] = { &info_hpt366, NULL };
339
340 void *hpriv = NULL;
341 u32 reg1;
342 int rc;
343
344 rc = pcim_enable_device(dev);
345 if (rc)
346 return rc;
347
348 /* May be a later chip in disguise. Check */
349 /* Newer chips are not in the HPT36x driver. Ignore them */
350 if (dev->revision > 2)
351 return -ENODEV;
352
353 hpt36x_init_chipset(dev);
354
355 pci_read_config_dword(dev, 0x40, &reg1);
356
357 /* PCI clocking determines the ATA timing values to use */
358 /* info_hpt366 is safe against re-entry so we can scribble on it */
359 switch ((reg1 & 0x700) >> 8) {
360 case 9:
361 hpriv = &hpt366_40;
362 break;
363 case 5:
364 hpriv = &hpt366_25;
365 break;
366 default:
367 hpriv = &hpt366_33;
368 break;
369 }
370 /* Now kick off ATA set up */
371 return ata_pci_bmdma_init_one(dev, ppi, &hpt36x_sht, hpriv, 0);
372 }
373
374 #ifdef CONFIG_PM
375 static int hpt36x_reinit_one(struct pci_dev *dev)
376 {
377 struct ata_host *host = dev_get_drvdata(&dev->dev);
378 int rc;
379
380 rc = ata_pci_device_do_resume(dev);
381 if (rc)
382 return rc;
383 hpt36x_init_chipset(dev);
384 ata_host_resume(host);
385 return 0;
386 }
387 #endif
388
389 static const struct pci_device_id hpt36x[] = {
390 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366), },
391 { },
392 };
393
394 static struct pci_driver hpt36x_pci_driver = {
395 .name = DRV_NAME,
396 .id_table = hpt36x,
397 .probe = hpt36x_init_one,
398 .remove = ata_pci_remove_one,
399 #ifdef CONFIG_PM
400 .suspend = ata_pci_device_suspend,
401 .resume = hpt36x_reinit_one,
402 #endif
403 };
404
405 static int __init hpt36x_init(void)
406 {
407 return pci_register_driver(&hpt36x_pci_driver);
408 }
409
410 static void __exit hpt36x_exit(void)
411 {
412 pci_unregister_driver(&hpt36x_pci_driver);
413 }
414
415 MODULE_AUTHOR("Alan Cox");
416 MODULE_DESCRIPTION("low-level driver for the Highpoint HPT366/368");
417 MODULE_LICENSE("GPL");
418 MODULE_DEVICE_TABLE(pci, hpt36x);
419 MODULE_VERSION(DRV_VERSION);
420
421 module_init(hpt36x_init);
422 module_exit(hpt36x_exit);
This page took 0.046548 seconds and 5 git commands to generate.