Merge branch 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus
[deliverable/linux.git] / drivers / ata / sata_mv.c
1 /*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 *
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24
25 /*
26 * sata_mv TODO list:
27 *
28 * --> Errata workaround for NCQ device errors.
29 *
30 * --> More errata workarounds for PCI-X.
31 *
32 * --> Complete a full errata audit for all chipsets to identify others.
33 *
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
35 *
36 * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
37 *
38 * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
39 *
40 * --> Develop a low-power-consumption strategy, and implement it.
41 *
42 * --> [Experiment, low priority] Investigate interrupt coalescing.
43 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
44 * the overhead reduced by interrupt mitigation is quite often not
45 * worth the latency cost.
46 *
47 * --> [Experiment, Marvell value added] Is it possible to use target
48 * mode to cross-connect two Linux boxes with Marvell cards? If so,
49 * creating LibATA target mode support would be very interesting.
50 *
51 * Target mode, for those without docs, is the ability to directly
52 * connect two SATA ports.
53 */
54
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_cmnd.h>
70 #include <scsi/scsi_device.h>
71 #include <linux/libata.h>
72
73 #define DRV_NAME "sata_mv"
74 #define DRV_VERSION "1.20"
75
76 enum {
77 /* BAR's are enumerated in terms of pci_resource_start() terms */
78 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
79 MV_IO_BAR = 2, /* offset 0x18: IO space */
80 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
81
82 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
83 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
84
85 MV_PCI_REG_BASE = 0,
86 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
87 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
88 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
89 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
90 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
91 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
92
93 MV_SATAHC0_REG_BASE = 0x20000,
94 MV_FLASH_CTL = 0x1046c,
95 MV_GPIO_PORT_CTL = 0x104f0,
96 MV_RESET_CFG = 0x180d8,
97
98 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
99 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
100 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
101 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
102
103 MV_MAX_Q_DEPTH = 32,
104 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
105
106 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
107 * CRPB needs alignment on a 256B boundary. Size == 256B
108 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
109 */
110 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
111 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
112 MV_MAX_SG_CT = 256,
113 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
114
115 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
116 MV_PORT_HC_SHIFT = 2,
117 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
118 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
119 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
120
121 /* Host Flags */
122 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
123 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
124 /* SoC integrated controllers, no PCI interface */
125 MV_FLAG_SOC = (1 << 28),
126
127 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
128 ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
129 ATA_FLAG_PIO_POLLING,
130 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
131
132 CRQB_FLAG_READ = (1 << 0),
133 CRQB_TAG_SHIFT = 1,
134 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
135 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
136 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
137 CRQB_CMD_ADDR_SHIFT = 8,
138 CRQB_CMD_CS = (0x2 << 11),
139 CRQB_CMD_LAST = (1 << 15),
140
141 CRPB_FLAG_STATUS_SHIFT = 8,
142 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
143 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
144
145 EPRD_FLAG_END_OF_TBL = (1 << 31),
146
147 /* PCI interface registers */
148
149 PCI_COMMAND_OFS = 0xc00,
150
151 PCI_MAIN_CMD_STS_OFS = 0xd30,
152 STOP_PCI_MASTER = (1 << 2),
153 PCI_MASTER_EMPTY = (1 << 3),
154 GLOB_SFT_RST = (1 << 4),
155
156 MV_PCI_MODE = 0xd00,
157 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
158 MV_PCI_DISC_TIMER = 0xd04,
159 MV_PCI_MSI_TRIGGER = 0xc38,
160 MV_PCI_SERR_MASK = 0xc28,
161 MV_PCI_XBAR_TMOUT = 0x1d04,
162 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
163 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
164 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
165 MV_PCI_ERR_COMMAND = 0x1d50,
166
167 PCI_IRQ_CAUSE_OFS = 0x1d58,
168 PCI_IRQ_MASK_OFS = 0x1d5c,
169 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
170
171 PCIE_IRQ_CAUSE_OFS = 0x1900,
172 PCIE_IRQ_MASK_OFS = 0x1910,
173 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
174
175 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
176 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
177 HC_SOC_MAIN_IRQ_CAUSE_OFS = 0x20020,
178 HC_SOC_MAIN_IRQ_MASK_OFS = 0x20024,
179 ERR_IRQ = (1 << 0), /* shift by port # */
180 DONE_IRQ = (1 << 1), /* shift by port # */
181 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
182 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
183 PCI_ERR = (1 << 18),
184 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
185 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
186 PORTS_0_3_COAL_DONE = (1 << 8),
187 PORTS_4_7_COAL_DONE = (1 << 17),
188 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
189 GPIO_INT = (1 << 22),
190 SELF_INT = (1 << 23),
191 TWSI_INT = (1 << 24),
192 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
193 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
194 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
195 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
196 PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
197 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
198 HC_MAIN_RSVD),
199 HC_MAIN_MASKED_IRQS_5 = (PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
200 HC_MAIN_RSVD_5),
201 HC_MAIN_MASKED_IRQS_SOC = (PORTS_0_3_COAL_DONE | HC_MAIN_RSVD_SOC),
202
203 /* SATAHC registers */
204 HC_CFG_OFS = 0,
205
206 HC_IRQ_CAUSE_OFS = 0x14,
207 DMA_IRQ = (1 << 0), /* shift by port # */
208 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
209 DEV_IRQ = (1 << 8), /* shift by port # */
210
211 /* Shadow block registers */
212 SHD_BLK_OFS = 0x100,
213 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
214
215 /* SATA registers */
216 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
217 SATA_ACTIVE_OFS = 0x350,
218 SATA_FIS_IRQ_CAUSE_OFS = 0x364,
219
220 LTMODE_OFS = 0x30c,
221 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
222
223 PHY_MODE3 = 0x310,
224 PHY_MODE4 = 0x314,
225 PHY_MODE2 = 0x330,
226 SATA_IFCTL_OFS = 0x344,
227 SATA_IFSTAT_OFS = 0x34c,
228 VENDOR_UNIQUE_FIS_OFS = 0x35c,
229
230 FIS_CFG_OFS = 0x360,
231 FIS_CFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
232
233 MV5_PHY_MODE = 0x74,
234 MV5_LT_MODE = 0x30,
235 MV5_PHY_CTL = 0x0C,
236 SATA_INTERFACE_CFG = 0x050,
237
238 MV_M2_PREAMP_MASK = 0x7e0,
239
240 /* Port registers */
241 EDMA_CFG_OFS = 0,
242 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
243 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
244 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
245 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
246 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
247 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
248 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
249
250 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
251 EDMA_ERR_IRQ_MASK_OFS = 0xc,
252 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
253 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
254 EDMA_ERR_DEV = (1 << 2), /* device error */
255 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
256 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
257 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
258 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
259 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
260 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
261 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
262 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
263 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
264 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
265 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
266
267 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
268 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
269 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
270 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
271 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
272
273 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
274
275 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
276 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
277 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
278 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
279 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
280 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
281
282 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
283
284 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
285 EDMA_ERR_OVERRUN_5 = (1 << 5),
286 EDMA_ERR_UNDERRUN_5 = (1 << 6),
287
288 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
289 EDMA_ERR_LNK_CTRL_RX_1 |
290 EDMA_ERR_LNK_CTRL_RX_3 |
291 EDMA_ERR_LNK_CTRL_TX,
292
293 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
294 EDMA_ERR_PRD_PAR |
295 EDMA_ERR_DEV_DCON |
296 EDMA_ERR_DEV_CON |
297 EDMA_ERR_SERR |
298 EDMA_ERR_SELF_DIS |
299 EDMA_ERR_CRQB_PAR |
300 EDMA_ERR_CRPB_PAR |
301 EDMA_ERR_INTRL_PAR |
302 EDMA_ERR_IORDY |
303 EDMA_ERR_LNK_CTRL_RX_2 |
304 EDMA_ERR_LNK_DATA_RX |
305 EDMA_ERR_LNK_DATA_TX |
306 EDMA_ERR_TRANS_PROTO,
307
308 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
309 EDMA_ERR_PRD_PAR |
310 EDMA_ERR_DEV_DCON |
311 EDMA_ERR_DEV_CON |
312 EDMA_ERR_OVERRUN_5 |
313 EDMA_ERR_UNDERRUN_5 |
314 EDMA_ERR_SELF_DIS_5 |
315 EDMA_ERR_CRQB_PAR |
316 EDMA_ERR_CRPB_PAR |
317 EDMA_ERR_INTRL_PAR |
318 EDMA_ERR_IORDY,
319
320 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
321 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
322
323 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
324 EDMA_REQ_Q_PTR_SHIFT = 5,
325
326 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
327 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
328 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
329 EDMA_RSP_Q_PTR_SHIFT = 3,
330
331 EDMA_CMD_OFS = 0x28, /* EDMA command register */
332 EDMA_EN = (1 << 0), /* enable EDMA */
333 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
334 ATA_RST = (1 << 2), /* reset trans/link/phy */
335
336 EDMA_IORDY_TMOUT = 0x34,
337 EDMA_ARB_CFG = 0x38,
338
339 GEN_II_NCQ_MAX_SECTORS = 256, /* max sects/io on Gen2 w/NCQ */
340
341 /* Host private flags (hp_flags) */
342 MV_HP_FLAG_MSI = (1 << 0),
343 MV_HP_ERRATA_50XXB0 = (1 << 1),
344 MV_HP_ERRATA_50XXB2 = (1 << 2),
345 MV_HP_ERRATA_60X1B2 = (1 << 3),
346 MV_HP_ERRATA_60X1C0 = (1 << 4),
347 MV_HP_ERRATA_XX42A0 = (1 << 5),
348 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
349 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
350 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
351 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
352
353 /* Port private flags (pp_flags) */
354 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
355 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
356 };
357
358 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
359 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
360 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
361 #define HAS_PCI(host) (!((host)->ports[0]->flags & MV_FLAG_SOC))
362
363 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
364 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
365
366 enum {
367 /* DMA boundary 0xffff is required by the s/g splitting
368 * we need on /length/ in mv_fill-sg().
369 */
370 MV_DMA_BOUNDARY = 0xffffU,
371
372 /* mask of register bits containing lower 32 bits
373 * of EDMA request queue DMA address
374 */
375 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
376
377 /* ditto, for response queue */
378 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
379 };
380
381 enum chip_type {
382 chip_504x,
383 chip_508x,
384 chip_5080,
385 chip_604x,
386 chip_608x,
387 chip_6042,
388 chip_7042,
389 chip_soc,
390 };
391
392 /* Command ReQuest Block: 32B */
393 struct mv_crqb {
394 __le32 sg_addr;
395 __le32 sg_addr_hi;
396 __le16 ctrl_flags;
397 __le16 ata_cmd[11];
398 };
399
400 struct mv_crqb_iie {
401 __le32 addr;
402 __le32 addr_hi;
403 __le32 flags;
404 __le32 len;
405 __le32 ata_cmd[4];
406 };
407
408 /* Command ResPonse Block: 8B */
409 struct mv_crpb {
410 __le16 id;
411 __le16 flags;
412 __le32 tmstmp;
413 };
414
415 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
416 struct mv_sg {
417 __le32 addr;
418 __le32 flags_size;
419 __le32 addr_hi;
420 __le32 reserved;
421 };
422
423 struct mv_port_priv {
424 struct mv_crqb *crqb;
425 dma_addr_t crqb_dma;
426 struct mv_crpb *crpb;
427 dma_addr_t crpb_dma;
428 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
429 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
430
431 unsigned int req_idx;
432 unsigned int resp_idx;
433
434 u32 pp_flags;
435 };
436
437 struct mv_port_signal {
438 u32 amps;
439 u32 pre;
440 };
441
442 struct mv_host_priv {
443 u32 hp_flags;
444 struct mv_port_signal signal[8];
445 const struct mv_hw_ops *ops;
446 int n_ports;
447 void __iomem *base;
448 void __iomem *main_cause_reg_addr;
449 void __iomem *main_mask_reg_addr;
450 u32 irq_cause_ofs;
451 u32 irq_mask_ofs;
452 u32 unmask_all_irqs;
453 /*
454 * These consistent DMA memory pools give us guaranteed
455 * alignment for hardware-accessed data structures,
456 * and less memory waste in accomplishing the alignment.
457 */
458 struct dma_pool *crqb_pool;
459 struct dma_pool *crpb_pool;
460 struct dma_pool *sg_tbl_pool;
461 };
462
463 struct mv_hw_ops {
464 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
465 unsigned int port);
466 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
467 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
468 void __iomem *mmio);
469 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
470 unsigned int n_hc);
471 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
472 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
473 };
474
475 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
476 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
477 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
478 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
479 static int mv_port_start(struct ata_port *ap);
480 static void mv_port_stop(struct ata_port *ap);
481 static void mv_qc_prep(struct ata_queued_cmd *qc);
482 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
483 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
484 static int mv_hardreset(struct ata_link *link, unsigned int *class,
485 unsigned long deadline);
486 static void mv_eh_freeze(struct ata_port *ap);
487 static void mv_eh_thaw(struct ata_port *ap);
488 static void mv6_dev_config(struct ata_device *dev);
489
490 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
491 unsigned int port);
492 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
493 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
494 void __iomem *mmio);
495 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
496 unsigned int n_hc);
497 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
498 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
499
500 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
501 unsigned int port);
502 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
503 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
504 void __iomem *mmio);
505 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
506 unsigned int n_hc);
507 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
508 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
509 void __iomem *mmio);
510 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
511 void __iomem *mmio);
512 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
513 void __iomem *mmio, unsigned int n_hc);
514 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
515 void __iomem *mmio);
516 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
517 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
518 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
519 unsigned int port_no);
520 static int mv_stop_edma(struct ata_port *ap);
521 static int mv_stop_edma_engine(void __iomem *port_mmio);
522 static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
523
524 static void mv_pmp_select(struct ata_port *ap, int pmp);
525 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
526 unsigned long deadline);
527 static int mv_softreset(struct ata_link *link, unsigned int *class,
528 unsigned long deadline);
529
530 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
531 * because we have to allow room for worst case splitting of
532 * PRDs for 64K boundaries in mv_fill_sg().
533 */
534 static struct scsi_host_template mv5_sht = {
535 ATA_BASE_SHT(DRV_NAME),
536 .sg_tablesize = MV_MAX_SG_CT / 2,
537 .dma_boundary = MV_DMA_BOUNDARY,
538 };
539
540 static struct scsi_host_template mv6_sht = {
541 ATA_NCQ_SHT(DRV_NAME),
542 .can_queue = MV_MAX_Q_DEPTH - 1,
543 .sg_tablesize = MV_MAX_SG_CT / 2,
544 .dma_boundary = MV_DMA_BOUNDARY,
545 };
546
547 static struct ata_port_operations mv5_ops = {
548 .inherits = &ata_sff_port_ops,
549
550 .qc_prep = mv_qc_prep,
551 .qc_issue = mv_qc_issue,
552
553 .freeze = mv_eh_freeze,
554 .thaw = mv_eh_thaw,
555 .hardreset = mv_hardreset,
556 .error_handler = ata_std_error_handler, /* avoid SFF EH */
557 .post_internal_cmd = ATA_OP_NULL,
558
559 .scr_read = mv5_scr_read,
560 .scr_write = mv5_scr_write,
561
562 .port_start = mv_port_start,
563 .port_stop = mv_port_stop,
564 };
565
566 static struct ata_port_operations mv6_ops = {
567 .inherits = &mv5_ops,
568 .qc_defer = sata_pmp_qc_defer_cmd_switch,
569 .dev_config = mv6_dev_config,
570 .scr_read = mv_scr_read,
571 .scr_write = mv_scr_write,
572
573 .pmp_hardreset = mv_pmp_hardreset,
574 .pmp_softreset = mv_softreset,
575 .softreset = mv_softreset,
576 .error_handler = sata_pmp_error_handler,
577 };
578
579 static struct ata_port_operations mv_iie_ops = {
580 .inherits = &mv6_ops,
581 .qc_defer = ata_std_qc_defer, /* FIS-based switching */
582 .dev_config = ATA_OP_NULL,
583 .qc_prep = mv_qc_prep_iie,
584 };
585
586 static const struct ata_port_info mv_port_info[] = {
587 { /* chip_504x */
588 .flags = MV_COMMON_FLAGS,
589 .pio_mask = 0x1f, /* pio0-4 */
590 .udma_mask = ATA_UDMA6,
591 .port_ops = &mv5_ops,
592 },
593 { /* chip_508x */
594 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
595 .pio_mask = 0x1f, /* pio0-4 */
596 .udma_mask = ATA_UDMA6,
597 .port_ops = &mv5_ops,
598 },
599 { /* chip_5080 */
600 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
601 .pio_mask = 0x1f, /* pio0-4 */
602 .udma_mask = ATA_UDMA6,
603 .port_ops = &mv5_ops,
604 },
605 { /* chip_604x */
606 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
607 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
608 ATA_FLAG_NCQ,
609 .pio_mask = 0x1f, /* pio0-4 */
610 .udma_mask = ATA_UDMA6,
611 .port_ops = &mv6_ops,
612 },
613 { /* chip_608x */
614 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
615 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
616 ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
617 .pio_mask = 0x1f, /* pio0-4 */
618 .udma_mask = ATA_UDMA6,
619 .port_ops = &mv6_ops,
620 },
621 { /* chip_6042 */
622 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
623 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
624 ATA_FLAG_NCQ,
625 .pio_mask = 0x1f, /* pio0-4 */
626 .udma_mask = ATA_UDMA6,
627 .port_ops = &mv_iie_ops,
628 },
629 { /* chip_7042 */
630 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
631 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
632 ATA_FLAG_NCQ,
633 .pio_mask = 0x1f, /* pio0-4 */
634 .udma_mask = ATA_UDMA6,
635 .port_ops = &mv_iie_ops,
636 },
637 { /* chip_soc */
638 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
639 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
640 ATA_FLAG_NCQ | MV_FLAG_SOC,
641 .pio_mask = 0x1f, /* pio0-4 */
642 .udma_mask = ATA_UDMA6,
643 .port_ops = &mv_iie_ops,
644 },
645 };
646
647 static const struct pci_device_id mv_pci_tbl[] = {
648 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
649 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
650 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
651 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
652 /* RocketRAID 1740/174x have different identifiers */
653 { PCI_VDEVICE(TTI, 0x1740), chip_508x },
654 { PCI_VDEVICE(TTI, 0x1742), chip_508x },
655
656 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
657 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
658 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
659 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
660 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
661
662 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
663
664 /* Adaptec 1430SA */
665 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
666
667 /* Marvell 7042 support */
668 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
669
670 /* Highpoint RocketRAID PCIe series */
671 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
672 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
673
674 { } /* terminate list */
675 };
676
677 static const struct mv_hw_ops mv5xxx_ops = {
678 .phy_errata = mv5_phy_errata,
679 .enable_leds = mv5_enable_leds,
680 .read_preamp = mv5_read_preamp,
681 .reset_hc = mv5_reset_hc,
682 .reset_flash = mv5_reset_flash,
683 .reset_bus = mv5_reset_bus,
684 };
685
686 static const struct mv_hw_ops mv6xxx_ops = {
687 .phy_errata = mv6_phy_errata,
688 .enable_leds = mv6_enable_leds,
689 .read_preamp = mv6_read_preamp,
690 .reset_hc = mv6_reset_hc,
691 .reset_flash = mv6_reset_flash,
692 .reset_bus = mv_reset_pci_bus,
693 };
694
695 static const struct mv_hw_ops mv_soc_ops = {
696 .phy_errata = mv6_phy_errata,
697 .enable_leds = mv_soc_enable_leds,
698 .read_preamp = mv_soc_read_preamp,
699 .reset_hc = mv_soc_reset_hc,
700 .reset_flash = mv_soc_reset_flash,
701 .reset_bus = mv_soc_reset_bus,
702 };
703
704 /*
705 * Functions
706 */
707
708 static inline void writelfl(unsigned long data, void __iomem *addr)
709 {
710 writel(data, addr);
711 (void) readl(addr); /* flush to avoid PCI posted write */
712 }
713
714 static inline unsigned int mv_hc_from_port(unsigned int port)
715 {
716 return port >> MV_PORT_HC_SHIFT;
717 }
718
719 static inline unsigned int mv_hardport_from_port(unsigned int port)
720 {
721 return port & MV_PORT_MASK;
722 }
723
724 /*
725 * Consolidate some rather tricky bit shift calculations.
726 * This is hot-path stuff, so not a function.
727 * Simple code, with two return values, so macro rather than inline.
728 *
729 * port is the sole input, in range 0..7.
730 * shift is one output, for use with the main_cause and main_mask registers.
731 * hardport is the other output, in range 0..3
732 *
733 * Note that port and hardport may be the same variable in some cases.
734 */
735 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
736 { \
737 shift = mv_hc_from_port(port) * HC_SHIFT; \
738 hardport = mv_hardport_from_port(port); \
739 shift += hardport * 2; \
740 }
741
742 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
743 {
744 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
745 }
746
747 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
748 unsigned int port)
749 {
750 return mv_hc_base(base, mv_hc_from_port(port));
751 }
752
753 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
754 {
755 return mv_hc_base_from_port(base, port) +
756 MV_SATAHC_ARBTR_REG_SZ +
757 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
758 }
759
760 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
761 {
762 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
763 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
764
765 return hc_mmio + ofs;
766 }
767
768 static inline void __iomem *mv_host_base(struct ata_host *host)
769 {
770 struct mv_host_priv *hpriv = host->private_data;
771 return hpriv->base;
772 }
773
774 static inline void __iomem *mv_ap_base(struct ata_port *ap)
775 {
776 return mv_port_base(mv_host_base(ap->host), ap->port_no);
777 }
778
779 static inline int mv_get_hc_count(unsigned long port_flags)
780 {
781 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
782 }
783
784 static void mv_set_edma_ptrs(void __iomem *port_mmio,
785 struct mv_host_priv *hpriv,
786 struct mv_port_priv *pp)
787 {
788 u32 index;
789
790 /*
791 * initialize request queue
792 */
793 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
794 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
795
796 WARN_ON(pp->crqb_dma & 0x3ff);
797 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
798 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
799 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
800
801 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
802 writelfl((pp->crqb_dma & 0xffffffff) | index,
803 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
804 else
805 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
806
807 /*
808 * initialize response queue
809 */
810 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
811 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
812
813 WARN_ON(pp->crpb_dma & 0xff);
814 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
815
816 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
817 writelfl((pp->crpb_dma & 0xffffffff) | index,
818 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
819 else
820 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
821
822 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
823 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
824 }
825
826 /**
827 * mv_start_dma - Enable eDMA engine
828 * @base: port base address
829 * @pp: port private data
830 *
831 * Verify the local cache of the eDMA state is accurate with a
832 * WARN_ON.
833 *
834 * LOCKING:
835 * Inherited from caller.
836 */
837 static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
838 struct mv_port_priv *pp, u8 protocol)
839 {
840 int want_ncq = (protocol == ATA_PROT_NCQ);
841
842 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
843 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
844 if (want_ncq != using_ncq)
845 mv_stop_edma(ap);
846 }
847 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
848 struct mv_host_priv *hpriv = ap->host->private_data;
849 int hardport = mv_hardport_from_port(ap->port_no);
850 void __iomem *hc_mmio = mv_hc_base_from_port(
851 mv_host_base(ap->host), hardport);
852 u32 hc_irq_cause, ipending;
853
854 /* clear EDMA event indicators, if any */
855 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
856
857 /* clear EDMA interrupt indicator, if any */
858 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
859 ipending = (DEV_IRQ | DMA_IRQ) << hardport;
860 if (hc_irq_cause & ipending) {
861 writelfl(hc_irq_cause & ~ipending,
862 hc_mmio + HC_IRQ_CAUSE_OFS);
863 }
864
865 mv_edma_cfg(ap, want_ncq);
866
867 /* clear FIS IRQ Cause */
868 writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
869
870 mv_set_edma_ptrs(port_mmio, hpriv, pp);
871
872 writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
873 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
874 }
875 }
876
877 /**
878 * mv_stop_edma_engine - Disable eDMA engine
879 * @port_mmio: io base address
880 *
881 * LOCKING:
882 * Inherited from caller.
883 */
884 static int mv_stop_edma_engine(void __iomem *port_mmio)
885 {
886 int i;
887
888 /* Disable eDMA. The disable bit auto clears. */
889 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
890
891 /* Wait for the chip to confirm eDMA is off. */
892 for (i = 10000; i > 0; i--) {
893 u32 reg = readl(port_mmio + EDMA_CMD_OFS);
894 if (!(reg & EDMA_EN))
895 return 0;
896 udelay(10);
897 }
898 return -EIO;
899 }
900
901 static int mv_stop_edma(struct ata_port *ap)
902 {
903 void __iomem *port_mmio = mv_ap_base(ap);
904 struct mv_port_priv *pp = ap->private_data;
905
906 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
907 return 0;
908 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
909 if (mv_stop_edma_engine(port_mmio)) {
910 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
911 return -EIO;
912 }
913 return 0;
914 }
915
916 #ifdef ATA_DEBUG
917 static void mv_dump_mem(void __iomem *start, unsigned bytes)
918 {
919 int b, w;
920 for (b = 0; b < bytes; ) {
921 DPRINTK("%p: ", start + b);
922 for (w = 0; b < bytes && w < 4; w++) {
923 printk("%08x ", readl(start + b));
924 b += sizeof(u32);
925 }
926 printk("\n");
927 }
928 }
929 #endif
930
931 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
932 {
933 #ifdef ATA_DEBUG
934 int b, w;
935 u32 dw;
936 for (b = 0; b < bytes; ) {
937 DPRINTK("%02x: ", b);
938 for (w = 0; b < bytes && w < 4; w++) {
939 (void) pci_read_config_dword(pdev, b, &dw);
940 printk("%08x ", dw);
941 b += sizeof(u32);
942 }
943 printk("\n");
944 }
945 #endif
946 }
947 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
948 struct pci_dev *pdev)
949 {
950 #ifdef ATA_DEBUG
951 void __iomem *hc_base = mv_hc_base(mmio_base,
952 port >> MV_PORT_HC_SHIFT);
953 void __iomem *port_base;
954 int start_port, num_ports, p, start_hc, num_hcs, hc;
955
956 if (0 > port) {
957 start_hc = start_port = 0;
958 num_ports = 8; /* shld be benign for 4 port devs */
959 num_hcs = 2;
960 } else {
961 start_hc = port >> MV_PORT_HC_SHIFT;
962 start_port = port;
963 num_ports = num_hcs = 1;
964 }
965 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
966 num_ports > 1 ? num_ports - 1 : start_port);
967
968 if (NULL != pdev) {
969 DPRINTK("PCI config space regs:\n");
970 mv_dump_pci_cfg(pdev, 0x68);
971 }
972 DPRINTK("PCI regs:\n");
973 mv_dump_mem(mmio_base+0xc00, 0x3c);
974 mv_dump_mem(mmio_base+0xd00, 0x34);
975 mv_dump_mem(mmio_base+0xf00, 0x4);
976 mv_dump_mem(mmio_base+0x1d00, 0x6c);
977 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
978 hc_base = mv_hc_base(mmio_base, hc);
979 DPRINTK("HC regs (HC %i):\n", hc);
980 mv_dump_mem(hc_base, 0x1c);
981 }
982 for (p = start_port; p < start_port + num_ports; p++) {
983 port_base = mv_port_base(mmio_base, p);
984 DPRINTK("EDMA regs (port %i):\n", p);
985 mv_dump_mem(port_base, 0x54);
986 DPRINTK("SATA regs (port %i):\n", p);
987 mv_dump_mem(port_base+0x300, 0x60);
988 }
989 #endif
990 }
991
992 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
993 {
994 unsigned int ofs;
995
996 switch (sc_reg_in) {
997 case SCR_STATUS:
998 case SCR_CONTROL:
999 case SCR_ERROR:
1000 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1001 break;
1002 case SCR_ACTIVE:
1003 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
1004 break;
1005 default:
1006 ofs = 0xffffffffU;
1007 break;
1008 }
1009 return ofs;
1010 }
1011
1012 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
1013 {
1014 unsigned int ofs = mv_scr_offset(sc_reg_in);
1015
1016 if (ofs != 0xffffffffU) {
1017 *val = readl(mv_ap_base(ap) + ofs);
1018 return 0;
1019 } else
1020 return -EINVAL;
1021 }
1022
1023 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1024 {
1025 unsigned int ofs = mv_scr_offset(sc_reg_in);
1026
1027 if (ofs != 0xffffffffU) {
1028 writelfl(val, mv_ap_base(ap) + ofs);
1029 return 0;
1030 } else
1031 return -EINVAL;
1032 }
1033
1034 static void mv6_dev_config(struct ata_device *adev)
1035 {
1036 /*
1037 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1038 *
1039 * Gen-II does not support NCQ over a port multiplier
1040 * (no FIS-based switching).
1041 *
1042 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1043 * See mv_qc_prep() for more info.
1044 */
1045 if (adev->flags & ATA_DFLAG_NCQ) {
1046 if (sata_pmp_attached(adev->link->ap)) {
1047 adev->flags &= ~ATA_DFLAG_NCQ;
1048 ata_dev_printk(adev, KERN_INFO,
1049 "NCQ disabled for command-based switching\n");
1050 } else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
1051 adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
1052 ata_dev_printk(adev, KERN_INFO,
1053 "max_sectors limited to %u for NCQ\n",
1054 adev->max_sectors);
1055 }
1056 }
1057 }
1058
1059 static void mv_config_fbs(void __iomem *port_mmio, int enable_fbs)
1060 {
1061 u32 old_fcfg, new_fcfg, old_ltmode, new_ltmode;
1062 /*
1063 * Various bit settings required for operation
1064 * in FIS-based switching (fbs) mode on GenIIe:
1065 */
1066 old_fcfg = readl(port_mmio + FIS_CFG_OFS);
1067 old_ltmode = readl(port_mmio + LTMODE_OFS);
1068 if (enable_fbs) {
1069 new_fcfg = old_fcfg | FIS_CFG_SINGLE_SYNC;
1070 new_ltmode = old_ltmode | LTMODE_BIT8;
1071 } else { /* disable fbs */
1072 new_fcfg = old_fcfg & ~FIS_CFG_SINGLE_SYNC;
1073 new_ltmode = old_ltmode & ~LTMODE_BIT8;
1074 }
1075 if (new_fcfg != old_fcfg)
1076 writelfl(new_fcfg, port_mmio + FIS_CFG_OFS);
1077 if (new_ltmode != old_ltmode)
1078 writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1079 }
1080
1081 static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1082 {
1083 u32 cfg;
1084 struct mv_port_priv *pp = ap->private_data;
1085 struct mv_host_priv *hpriv = ap->host->private_data;
1086 void __iomem *port_mmio = mv_ap_base(ap);
1087
1088 /* set up non-NCQ EDMA configuration */
1089 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1090
1091 if (IS_GEN_I(hpriv))
1092 cfg |= (1 << 8); /* enab config burst size mask */
1093
1094 else if (IS_GEN_II(hpriv))
1095 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1096
1097 else if (IS_GEN_IIE(hpriv)) {
1098 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1099 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1100 cfg |= (1 << 18); /* enab early completion */
1101 cfg |= (1 << 17); /* enab cut-through (dis stor&forwrd) */
1102
1103 if (want_ncq && sata_pmp_attached(ap)) {
1104 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1105 mv_config_fbs(port_mmio, 1);
1106 } else {
1107 mv_config_fbs(port_mmio, 0);
1108 }
1109 }
1110
1111 if (want_ncq) {
1112 cfg |= EDMA_CFG_NCQ;
1113 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1114 } else
1115 pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1116
1117 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1118 }
1119
1120 static void mv_port_free_dma_mem(struct ata_port *ap)
1121 {
1122 struct mv_host_priv *hpriv = ap->host->private_data;
1123 struct mv_port_priv *pp = ap->private_data;
1124 int tag;
1125
1126 if (pp->crqb) {
1127 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1128 pp->crqb = NULL;
1129 }
1130 if (pp->crpb) {
1131 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1132 pp->crpb = NULL;
1133 }
1134 /*
1135 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1136 * For later hardware, we have one unique sg_tbl per NCQ tag.
1137 */
1138 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1139 if (pp->sg_tbl[tag]) {
1140 if (tag == 0 || !IS_GEN_I(hpriv))
1141 dma_pool_free(hpriv->sg_tbl_pool,
1142 pp->sg_tbl[tag],
1143 pp->sg_tbl_dma[tag]);
1144 pp->sg_tbl[tag] = NULL;
1145 }
1146 }
1147 }
1148
1149 /**
1150 * mv_port_start - Port specific init/start routine.
1151 * @ap: ATA channel to manipulate
1152 *
1153 * Allocate and point to DMA memory, init port private memory,
1154 * zero indices.
1155 *
1156 * LOCKING:
1157 * Inherited from caller.
1158 */
1159 static int mv_port_start(struct ata_port *ap)
1160 {
1161 struct device *dev = ap->host->dev;
1162 struct mv_host_priv *hpriv = ap->host->private_data;
1163 struct mv_port_priv *pp;
1164 int tag;
1165
1166 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1167 if (!pp)
1168 return -ENOMEM;
1169 ap->private_data = pp;
1170
1171 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1172 if (!pp->crqb)
1173 return -ENOMEM;
1174 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1175
1176 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1177 if (!pp->crpb)
1178 goto out_port_free_dma_mem;
1179 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1180
1181 /*
1182 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1183 * For later hardware, we need one unique sg_tbl per NCQ tag.
1184 */
1185 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1186 if (tag == 0 || !IS_GEN_I(hpriv)) {
1187 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1188 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1189 if (!pp->sg_tbl[tag])
1190 goto out_port_free_dma_mem;
1191 } else {
1192 pp->sg_tbl[tag] = pp->sg_tbl[0];
1193 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1194 }
1195 }
1196 return 0;
1197
1198 out_port_free_dma_mem:
1199 mv_port_free_dma_mem(ap);
1200 return -ENOMEM;
1201 }
1202
1203 /**
1204 * mv_port_stop - Port specific cleanup/stop routine.
1205 * @ap: ATA channel to manipulate
1206 *
1207 * Stop DMA, cleanup port memory.
1208 *
1209 * LOCKING:
1210 * This routine uses the host lock to protect the DMA stop.
1211 */
1212 static void mv_port_stop(struct ata_port *ap)
1213 {
1214 mv_stop_edma(ap);
1215 mv_port_free_dma_mem(ap);
1216 }
1217
1218 /**
1219 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1220 * @qc: queued command whose SG list to source from
1221 *
1222 * Populate the SG list and mark the last entry.
1223 *
1224 * LOCKING:
1225 * Inherited from caller.
1226 */
1227 static void mv_fill_sg(struct ata_queued_cmd *qc)
1228 {
1229 struct mv_port_priv *pp = qc->ap->private_data;
1230 struct scatterlist *sg;
1231 struct mv_sg *mv_sg, *last_sg = NULL;
1232 unsigned int si;
1233
1234 mv_sg = pp->sg_tbl[qc->tag];
1235 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1236 dma_addr_t addr = sg_dma_address(sg);
1237 u32 sg_len = sg_dma_len(sg);
1238
1239 while (sg_len) {
1240 u32 offset = addr & 0xffff;
1241 u32 len = sg_len;
1242
1243 if ((offset + sg_len > 0x10000))
1244 len = 0x10000 - offset;
1245
1246 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1247 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1248 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1249
1250 sg_len -= len;
1251 addr += len;
1252
1253 last_sg = mv_sg;
1254 mv_sg++;
1255 }
1256 }
1257
1258 if (likely(last_sg))
1259 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1260 }
1261
1262 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1263 {
1264 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1265 (last ? CRQB_CMD_LAST : 0);
1266 *cmdw = cpu_to_le16(tmp);
1267 }
1268
1269 /**
1270 * mv_qc_prep - Host specific command preparation.
1271 * @qc: queued command to prepare
1272 *
1273 * This routine simply redirects to the general purpose routine
1274 * if command is not DMA. Else, it handles prep of the CRQB
1275 * (command request block), does some sanity checking, and calls
1276 * the SG load routine.
1277 *
1278 * LOCKING:
1279 * Inherited from caller.
1280 */
1281 static void mv_qc_prep(struct ata_queued_cmd *qc)
1282 {
1283 struct ata_port *ap = qc->ap;
1284 struct mv_port_priv *pp = ap->private_data;
1285 __le16 *cw;
1286 struct ata_taskfile *tf;
1287 u16 flags = 0;
1288 unsigned in_index;
1289
1290 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1291 (qc->tf.protocol != ATA_PROT_NCQ))
1292 return;
1293
1294 /* Fill in command request block
1295 */
1296 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1297 flags |= CRQB_FLAG_READ;
1298 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1299 flags |= qc->tag << CRQB_TAG_SHIFT;
1300 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1301
1302 /* get current queue index from software */
1303 in_index = pp->req_idx;
1304
1305 pp->crqb[in_index].sg_addr =
1306 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1307 pp->crqb[in_index].sg_addr_hi =
1308 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1309 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1310
1311 cw = &pp->crqb[in_index].ata_cmd[0];
1312 tf = &qc->tf;
1313
1314 /* Sadly, the CRQB cannot accomodate all registers--there are
1315 * only 11 bytes...so we must pick and choose required
1316 * registers based on the command. So, we drop feature and
1317 * hob_feature for [RW] DMA commands, but they are needed for
1318 * NCQ. NCQ will drop hob_nsect.
1319 */
1320 switch (tf->command) {
1321 case ATA_CMD_READ:
1322 case ATA_CMD_READ_EXT:
1323 case ATA_CMD_WRITE:
1324 case ATA_CMD_WRITE_EXT:
1325 case ATA_CMD_WRITE_FUA_EXT:
1326 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1327 break;
1328 case ATA_CMD_FPDMA_READ:
1329 case ATA_CMD_FPDMA_WRITE:
1330 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1331 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1332 break;
1333 default:
1334 /* The only other commands EDMA supports in non-queued and
1335 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1336 * of which are defined/used by Linux. If we get here, this
1337 * driver needs work.
1338 *
1339 * FIXME: modify libata to give qc_prep a return value and
1340 * return error here.
1341 */
1342 BUG_ON(tf->command);
1343 break;
1344 }
1345 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1346 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1347 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1348 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1349 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1350 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1351 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1352 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1353 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1354
1355 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1356 return;
1357 mv_fill_sg(qc);
1358 }
1359
1360 /**
1361 * mv_qc_prep_iie - Host specific command preparation.
1362 * @qc: queued command to prepare
1363 *
1364 * This routine simply redirects to the general purpose routine
1365 * if command is not DMA. Else, it handles prep of the CRQB
1366 * (command request block), does some sanity checking, and calls
1367 * the SG load routine.
1368 *
1369 * LOCKING:
1370 * Inherited from caller.
1371 */
1372 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1373 {
1374 struct ata_port *ap = qc->ap;
1375 struct mv_port_priv *pp = ap->private_data;
1376 struct mv_crqb_iie *crqb;
1377 struct ata_taskfile *tf;
1378 unsigned in_index;
1379 u32 flags = 0;
1380
1381 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1382 (qc->tf.protocol != ATA_PROT_NCQ))
1383 return;
1384
1385 /* Fill in Gen IIE command request block */
1386 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1387 flags |= CRQB_FLAG_READ;
1388
1389 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1390 flags |= qc->tag << CRQB_TAG_SHIFT;
1391 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1392 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1393
1394 /* get current queue index from software */
1395 in_index = pp->req_idx;
1396
1397 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1398 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1399 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1400 crqb->flags = cpu_to_le32(flags);
1401
1402 tf = &qc->tf;
1403 crqb->ata_cmd[0] = cpu_to_le32(
1404 (tf->command << 16) |
1405 (tf->feature << 24)
1406 );
1407 crqb->ata_cmd[1] = cpu_to_le32(
1408 (tf->lbal << 0) |
1409 (tf->lbam << 8) |
1410 (tf->lbah << 16) |
1411 (tf->device << 24)
1412 );
1413 crqb->ata_cmd[2] = cpu_to_le32(
1414 (tf->hob_lbal << 0) |
1415 (tf->hob_lbam << 8) |
1416 (tf->hob_lbah << 16) |
1417 (tf->hob_feature << 24)
1418 );
1419 crqb->ata_cmd[3] = cpu_to_le32(
1420 (tf->nsect << 0) |
1421 (tf->hob_nsect << 8)
1422 );
1423
1424 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1425 return;
1426 mv_fill_sg(qc);
1427 }
1428
1429 /**
1430 * mv_qc_issue - Initiate a command to the host
1431 * @qc: queued command to start
1432 *
1433 * This routine simply redirects to the general purpose routine
1434 * if command is not DMA. Else, it sanity checks our local
1435 * caches of the request producer/consumer indices then enables
1436 * DMA and bumps the request producer index.
1437 *
1438 * LOCKING:
1439 * Inherited from caller.
1440 */
1441 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1442 {
1443 struct ata_port *ap = qc->ap;
1444 void __iomem *port_mmio = mv_ap_base(ap);
1445 struct mv_port_priv *pp = ap->private_data;
1446 u32 in_index;
1447
1448 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1449 (qc->tf.protocol != ATA_PROT_NCQ)) {
1450 /*
1451 * We're about to send a non-EDMA capable command to the
1452 * port. Turn off EDMA so there won't be problems accessing
1453 * shadow block, etc registers.
1454 */
1455 mv_stop_edma(ap);
1456 mv_pmp_select(ap, qc->dev->link->pmp);
1457 return ata_sff_qc_issue(qc);
1458 }
1459
1460 mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1461
1462 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1463 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1464
1465 /* and write the request in pointer to kick the EDMA to life */
1466 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1467 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1468
1469 return 0;
1470 }
1471
1472 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1473 {
1474 struct mv_port_priv *pp = ap->private_data;
1475 struct ata_queued_cmd *qc;
1476
1477 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1478 return NULL;
1479 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1480 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1481 qc = NULL;
1482 return qc;
1483 }
1484
1485 static void mv_unexpected_intr(struct ata_port *ap)
1486 {
1487 struct mv_port_priv *pp = ap->private_data;
1488 struct ata_eh_info *ehi = &ap->link.eh_info;
1489 char *when = "";
1490
1491 /*
1492 * We got a device interrupt from something that
1493 * was supposed to be using EDMA or polling.
1494 */
1495 ata_ehi_clear_desc(ehi);
1496 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1497 when = " while EDMA enabled";
1498 } else {
1499 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1500 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1501 when = " while polling";
1502 }
1503 ata_ehi_push_desc(ehi, "unexpected device interrupt%s", when);
1504 ehi->err_mask |= AC_ERR_OTHER;
1505 ehi->action |= ATA_EH_RESET;
1506 ata_port_freeze(ap);
1507 }
1508
1509 /**
1510 * mv_err_intr - Handle error interrupts on the port
1511 * @ap: ATA channel to manipulate
1512 * @qc: affected command (non-NCQ), or NULL
1513 *
1514 * Most cases require a full reset of the chip's state machine,
1515 * which also performs a COMRESET.
1516 * Also, if the port disabled DMA, update our cached copy to match.
1517 *
1518 * LOCKING:
1519 * Inherited from caller.
1520 */
1521 static void mv_err_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1522 {
1523 void __iomem *port_mmio = mv_ap_base(ap);
1524 u32 edma_err_cause, eh_freeze_mask, serr = 0;
1525 struct mv_port_priv *pp = ap->private_data;
1526 struct mv_host_priv *hpriv = ap->host->private_data;
1527 unsigned int action = 0, err_mask = 0;
1528 struct ata_eh_info *ehi = &ap->link.eh_info;
1529
1530 ata_ehi_clear_desc(ehi);
1531
1532 /*
1533 * Read and clear the err_cause bits. This won't actually
1534 * clear for some errors (eg. SError), but we will be doing
1535 * a hard reset in those cases regardless, which *will* clear it.
1536 */
1537 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1538 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1539
1540 ata_ehi_push_desc(ehi, "edma_err_cause=%08x", edma_err_cause);
1541
1542 /*
1543 * All generations share these EDMA error cause bits:
1544 */
1545 if (edma_err_cause & EDMA_ERR_DEV)
1546 err_mask |= AC_ERR_DEV;
1547 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1548 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1549 EDMA_ERR_INTRL_PAR)) {
1550 err_mask |= AC_ERR_ATA_BUS;
1551 action |= ATA_EH_RESET;
1552 ata_ehi_push_desc(ehi, "parity error");
1553 }
1554 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1555 ata_ehi_hotplugged(ehi);
1556 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1557 "dev disconnect" : "dev connect");
1558 action |= ATA_EH_RESET;
1559 }
1560
1561 /*
1562 * Gen-I has a different SELF_DIS bit,
1563 * different FREEZE bits, and no SERR bit:
1564 */
1565 if (IS_GEN_I(hpriv)) {
1566 eh_freeze_mask = EDMA_EH_FREEZE_5;
1567 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1568 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1569 ata_ehi_push_desc(ehi, "EDMA self-disable");
1570 }
1571 } else {
1572 eh_freeze_mask = EDMA_EH_FREEZE;
1573 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1574 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1575 ata_ehi_push_desc(ehi, "EDMA self-disable");
1576 }
1577 if (edma_err_cause & EDMA_ERR_SERR) {
1578 /*
1579 * Ensure that we read our own SCR, not a pmp link SCR:
1580 */
1581 ap->ops->scr_read(ap, SCR_ERROR, &serr);
1582 /*
1583 * Don't clear SError here; leave it for libata-eh:
1584 */
1585 ata_ehi_push_desc(ehi, "SError=%08x", serr);
1586 err_mask |= AC_ERR_ATA_BUS;
1587 action |= ATA_EH_RESET;
1588 }
1589 }
1590
1591 if (!err_mask) {
1592 err_mask = AC_ERR_OTHER;
1593 action |= ATA_EH_RESET;
1594 }
1595
1596 ehi->serror |= serr;
1597 ehi->action |= action;
1598
1599 if (qc)
1600 qc->err_mask |= err_mask;
1601 else
1602 ehi->err_mask |= err_mask;
1603
1604 if (edma_err_cause & eh_freeze_mask)
1605 ata_port_freeze(ap);
1606 else
1607 ata_port_abort(ap);
1608 }
1609
1610 static void mv_process_crpb_response(struct ata_port *ap,
1611 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1612 {
1613 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
1614
1615 if (qc) {
1616 u8 ata_status;
1617 u16 edma_status = le16_to_cpu(response->flags);
1618 /*
1619 * edma_status from a response queue entry:
1620 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1621 * MSB is saved ATA status from command completion.
1622 */
1623 if (!ncq_enabled) {
1624 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
1625 if (err_cause) {
1626 /*
1627 * Error will be seen/handled by mv_err_intr().
1628 * So do nothing at all here.
1629 */
1630 return;
1631 }
1632 }
1633 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
1634 qc->err_mask |= ac_err_mask(ata_status);
1635 ata_qc_complete(qc);
1636 } else {
1637 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
1638 __func__, tag);
1639 }
1640 }
1641
1642 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
1643 {
1644 void __iomem *port_mmio = mv_ap_base(ap);
1645 struct mv_host_priv *hpriv = ap->host->private_data;
1646 u32 in_index;
1647 bool work_done = false;
1648 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
1649
1650 /* Get the hardware queue position index */
1651 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1652 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1653
1654 /* Process new responses from since the last time we looked */
1655 while (in_index != pp->resp_idx) {
1656 unsigned int tag;
1657 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
1658
1659 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1660
1661 if (IS_GEN_I(hpriv)) {
1662 /* 50xx: no NCQ, only one command active at a time */
1663 tag = ap->link.active_tag;
1664 } else {
1665 /* Gen II/IIE: get command tag from CRPB entry */
1666 tag = le16_to_cpu(response->id) & 0x1f;
1667 }
1668 mv_process_crpb_response(ap, response, tag, ncq_enabled);
1669 work_done = true;
1670 }
1671
1672 /* Update the software queue position index in hardware */
1673 if (work_done)
1674 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
1675 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
1676 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1677 }
1678
1679 /**
1680 * mv_host_intr - Handle all interrupts on the given host controller
1681 * @host: host specific structure
1682 * @main_cause: Main interrupt cause register for the chip.
1683 *
1684 * LOCKING:
1685 * Inherited from caller.
1686 */
1687 static int mv_host_intr(struct ata_host *host, u32 main_cause)
1688 {
1689 struct mv_host_priv *hpriv = host->private_data;
1690 void __iomem *mmio = hpriv->base, *hc_mmio = NULL;
1691 u32 hc_irq_cause = 0;
1692 unsigned int handled = 0, port;
1693
1694 for (port = 0; port < hpriv->n_ports; port++) {
1695 struct ata_port *ap = host->ports[port];
1696 struct mv_port_priv *pp;
1697 unsigned int shift, hardport, port_cause;
1698 /*
1699 * When we move to the second hc, flag our cached
1700 * copies of hc_mmio (and hc_irq_cause) as invalid again.
1701 */
1702 if (port == MV_PORTS_PER_HC)
1703 hc_mmio = NULL;
1704 /*
1705 * Do nothing if port is not interrupting or is disabled:
1706 */
1707 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1708 port_cause = (main_cause >> shift) & (DONE_IRQ | ERR_IRQ);
1709 if (!port_cause || !ap || (ap->flags & ATA_FLAG_DISABLED))
1710 continue;
1711 /*
1712 * Each hc within the host has its own hc_irq_cause register.
1713 * We defer reading it until we know we need it, right now:
1714 *
1715 * FIXME later: we don't really need to read this register
1716 * (some logic changes required below if we go that way),
1717 * because it doesn't tell us anything new. But we do need
1718 * to write to it, outside the top of this loop,
1719 * to reset the interrupt triggers for next time.
1720 */
1721 if (!hc_mmio) {
1722 hc_mmio = mv_hc_base_from_port(mmio, port);
1723 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1724 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1725 handled = 1;
1726 }
1727 /*
1728 * Process completed CRPB response(s) before other events.
1729 */
1730 pp = ap->private_data;
1731 if (hc_irq_cause & (DMA_IRQ << hardport)) {
1732 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN)
1733 mv_process_crpb_entries(ap, pp);
1734 }
1735 /*
1736 * Handle chip-reported errors, or continue on to handle PIO.
1737 */
1738 if (unlikely(port_cause & ERR_IRQ)) {
1739 mv_err_intr(ap, mv_get_active_qc(ap));
1740 } else if (hc_irq_cause & (DEV_IRQ << hardport)) {
1741 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1742 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
1743 if (qc) {
1744 ata_sff_host_intr(ap, qc);
1745 continue;
1746 }
1747 }
1748 mv_unexpected_intr(ap);
1749 }
1750 }
1751 return handled;
1752 }
1753
1754 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
1755 {
1756 struct mv_host_priv *hpriv = host->private_data;
1757 struct ata_port *ap;
1758 struct ata_queued_cmd *qc;
1759 struct ata_eh_info *ehi;
1760 unsigned int i, err_mask, printed = 0;
1761 u32 err_cause;
1762
1763 err_cause = readl(mmio + hpriv->irq_cause_ofs);
1764
1765 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
1766 err_cause);
1767
1768 DPRINTK("All regs @ PCI error\n");
1769 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
1770
1771 writelfl(0, mmio + hpriv->irq_cause_ofs);
1772
1773 for (i = 0; i < host->n_ports; i++) {
1774 ap = host->ports[i];
1775 if (!ata_link_offline(&ap->link)) {
1776 ehi = &ap->link.eh_info;
1777 ata_ehi_clear_desc(ehi);
1778 if (!printed++)
1779 ata_ehi_push_desc(ehi,
1780 "PCI err cause 0x%08x", err_cause);
1781 err_mask = AC_ERR_HOST_BUS;
1782 ehi->action = ATA_EH_RESET;
1783 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1784 if (qc)
1785 qc->err_mask |= err_mask;
1786 else
1787 ehi->err_mask |= err_mask;
1788
1789 ata_port_freeze(ap);
1790 }
1791 }
1792 return 1; /* handled */
1793 }
1794
1795 /**
1796 * mv_interrupt - Main interrupt event handler
1797 * @irq: unused
1798 * @dev_instance: private data; in this case the host structure
1799 *
1800 * Read the read only register to determine if any host
1801 * controllers have pending interrupts. If so, call lower level
1802 * routine to handle. Also check for PCI errors which are only
1803 * reported here.
1804 *
1805 * LOCKING:
1806 * This routine holds the host lock while processing pending
1807 * interrupts.
1808 */
1809 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
1810 {
1811 struct ata_host *host = dev_instance;
1812 struct mv_host_priv *hpriv = host->private_data;
1813 unsigned int handled = 0;
1814 u32 main_cause, main_mask;
1815
1816 spin_lock(&host->lock);
1817 main_cause = readl(hpriv->main_cause_reg_addr);
1818 main_mask = readl(hpriv->main_mask_reg_addr);
1819 /*
1820 * Deal with cases where we either have nothing pending, or have read
1821 * a bogus register value which can indicate HW removal or PCI fault.
1822 */
1823 if ((main_cause & main_mask) && (main_cause != 0xffffffffU)) {
1824 if (unlikely((main_cause & PCI_ERR) && HAS_PCI(host)))
1825 handled = mv_pci_error(host, hpriv->base);
1826 else
1827 handled = mv_host_intr(host, main_cause);
1828 }
1829 spin_unlock(&host->lock);
1830 return IRQ_RETVAL(handled);
1831 }
1832
1833 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1834 {
1835 unsigned int ofs;
1836
1837 switch (sc_reg_in) {
1838 case SCR_STATUS:
1839 case SCR_ERROR:
1840 case SCR_CONTROL:
1841 ofs = sc_reg_in * sizeof(u32);
1842 break;
1843 default:
1844 ofs = 0xffffffffU;
1845 break;
1846 }
1847 return ofs;
1848 }
1849
1850 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
1851 {
1852 struct mv_host_priv *hpriv = ap->host->private_data;
1853 void __iomem *mmio = hpriv->base;
1854 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1855 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1856
1857 if (ofs != 0xffffffffU) {
1858 *val = readl(addr + ofs);
1859 return 0;
1860 } else
1861 return -EINVAL;
1862 }
1863
1864 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1865 {
1866 struct mv_host_priv *hpriv = ap->host->private_data;
1867 void __iomem *mmio = hpriv->base;
1868 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1869 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1870
1871 if (ofs != 0xffffffffU) {
1872 writelfl(val, addr + ofs);
1873 return 0;
1874 } else
1875 return -EINVAL;
1876 }
1877
1878 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
1879 {
1880 struct pci_dev *pdev = to_pci_dev(host->dev);
1881 int early_5080;
1882
1883 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
1884
1885 if (!early_5080) {
1886 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1887 tmp |= (1 << 0);
1888 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1889 }
1890
1891 mv_reset_pci_bus(host, mmio);
1892 }
1893
1894 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1895 {
1896 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1897 }
1898
1899 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1900 void __iomem *mmio)
1901 {
1902 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1903 u32 tmp;
1904
1905 tmp = readl(phy_mmio + MV5_PHY_MODE);
1906
1907 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1908 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1909 }
1910
1911 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1912 {
1913 u32 tmp;
1914
1915 writel(0, mmio + MV_GPIO_PORT_CTL);
1916
1917 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1918
1919 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1920 tmp |= ~(1 << 0);
1921 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1922 }
1923
1924 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1925 unsigned int port)
1926 {
1927 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1928 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1929 u32 tmp;
1930 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1931
1932 if (fix_apm_sq) {
1933 tmp = readl(phy_mmio + MV5_LT_MODE);
1934 tmp |= (1 << 19);
1935 writel(tmp, phy_mmio + MV5_LT_MODE);
1936
1937 tmp = readl(phy_mmio + MV5_PHY_CTL);
1938 tmp &= ~0x3;
1939 tmp |= 0x1;
1940 writel(tmp, phy_mmio + MV5_PHY_CTL);
1941 }
1942
1943 tmp = readl(phy_mmio + MV5_PHY_MODE);
1944 tmp &= ~mask;
1945 tmp |= hpriv->signal[port].pre;
1946 tmp |= hpriv->signal[port].amps;
1947 writel(tmp, phy_mmio + MV5_PHY_MODE);
1948 }
1949
1950
1951 #undef ZERO
1952 #define ZERO(reg) writel(0, port_mmio + (reg))
1953 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1954 unsigned int port)
1955 {
1956 void __iomem *port_mmio = mv_port_base(mmio, port);
1957
1958 /*
1959 * The datasheet warns against setting ATA_RST when EDMA is active
1960 * (but doesn't say what the problem might be). So we first try
1961 * to disable the EDMA engine before doing the ATA_RST operation.
1962 */
1963 mv_reset_channel(hpriv, mmio, port);
1964
1965 ZERO(0x028); /* command */
1966 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1967 ZERO(0x004); /* timer */
1968 ZERO(0x008); /* irq err cause */
1969 ZERO(0x00c); /* irq err mask */
1970 ZERO(0x010); /* rq bah */
1971 ZERO(0x014); /* rq inp */
1972 ZERO(0x018); /* rq outp */
1973 ZERO(0x01c); /* respq bah */
1974 ZERO(0x024); /* respq outp */
1975 ZERO(0x020); /* respq inp */
1976 ZERO(0x02c); /* test control */
1977 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1978 }
1979 #undef ZERO
1980
1981 #define ZERO(reg) writel(0, hc_mmio + (reg))
1982 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1983 unsigned int hc)
1984 {
1985 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1986 u32 tmp;
1987
1988 ZERO(0x00c);
1989 ZERO(0x010);
1990 ZERO(0x014);
1991 ZERO(0x018);
1992
1993 tmp = readl(hc_mmio + 0x20);
1994 tmp &= 0x1c1c1c1c;
1995 tmp |= 0x03030303;
1996 writel(tmp, hc_mmio + 0x20);
1997 }
1998 #undef ZERO
1999
2000 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2001 unsigned int n_hc)
2002 {
2003 unsigned int hc, port;
2004
2005 for (hc = 0; hc < n_hc; hc++) {
2006 for (port = 0; port < MV_PORTS_PER_HC; port++)
2007 mv5_reset_hc_port(hpriv, mmio,
2008 (hc * MV_PORTS_PER_HC) + port);
2009
2010 mv5_reset_one_hc(hpriv, mmio, hc);
2011 }
2012
2013 return 0;
2014 }
2015
2016 #undef ZERO
2017 #define ZERO(reg) writel(0, mmio + (reg))
2018 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2019 {
2020 struct mv_host_priv *hpriv = host->private_data;
2021 u32 tmp;
2022
2023 tmp = readl(mmio + MV_PCI_MODE);
2024 tmp &= 0xff00ffff;
2025 writel(tmp, mmio + MV_PCI_MODE);
2026
2027 ZERO(MV_PCI_DISC_TIMER);
2028 ZERO(MV_PCI_MSI_TRIGGER);
2029 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
2030 ZERO(HC_MAIN_IRQ_MASK_OFS);
2031 ZERO(MV_PCI_SERR_MASK);
2032 ZERO(hpriv->irq_cause_ofs);
2033 ZERO(hpriv->irq_mask_ofs);
2034 ZERO(MV_PCI_ERR_LOW_ADDRESS);
2035 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2036 ZERO(MV_PCI_ERR_ATTRIBUTE);
2037 ZERO(MV_PCI_ERR_COMMAND);
2038 }
2039 #undef ZERO
2040
2041 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2042 {
2043 u32 tmp;
2044
2045 mv5_reset_flash(hpriv, mmio);
2046
2047 tmp = readl(mmio + MV_GPIO_PORT_CTL);
2048 tmp &= 0x3;
2049 tmp |= (1 << 5) | (1 << 6);
2050 writel(tmp, mmio + MV_GPIO_PORT_CTL);
2051 }
2052
2053 /**
2054 * mv6_reset_hc - Perform the 6xxx global soft reset
2055 * @mmio: base address of the HBA
2056 *
2057 * This routine only applies to 6xxx parts.
2058 *
2059 * LOCKING:
2060 * Inherited from caller.
2061 */
2062 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2063 unsigned int n_hc)
2064 {
2065 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2066 int i, rc = 0;
2067 u32 t;
2068
2069 /* Following procedure defined in PCI "main command and status
2070 * register" table.
2071 */
2072 t = readl(reg);
2073 writel(t | STOP_PCI_MASTER, reg);
2074
2075 for (i = 0; i < 1000; i++) {
2076 udelay(1);
2077 t = readl(reg);
2078 if (PCI_MASTER_EMPTY & t)
2079 break;
2080 }
2081 if (!(PCI_MASTER_EMPTY & t)) {
2082 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2083 rc = 1;
2084 goto done;
2085 }
2086
2087 /* set reset */
2088 i = 5;
2089 do {
2090 writel(t | GLOB_SFT_RST, reg);
2091 t = readl(reg);
2092 udelay(1);
2093 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
2094
2095 if (!(GLOB_SFT_RST & t)) {
2096 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2097 rc = 1;
2098 goto done;
2099 }
2100
2101 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2102 i = 5;
2103 do {
2104 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2105 t = readl(reg);
2106 udelay(1);
2107 } while ((GLOB_SFT_RST & t) && (i-- > 0));
2108
2109 if (GLOB_SFT_RST & t) {
2110 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2111 rc = 1;
2112 }
2113 done:
2114 return rc;
2115 }
2116
2117 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2118 void __iomem *mmio)
2119 {
2120 void __iomem *port_mmio;
2121 u32 tmp;
2122
2123 tmp = readl(mmio + MV_RESET_CFG);
2124 if ((tmp & (1 << 0)) == 0) {
2125 hpriv->signal[idx].amps = 0x7 << 8;
2126 hpriv->signal[idx].pre = 0x1 << 5;
2127 return;
2128 }
2129
2130 port_mmio = mv_port_base(mmio, idx);
2131 tmp = readl(port_mmio + PHY_MODE2);
2132
2133 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2134 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2135 }
2136
2137 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2138 {
2139 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
2140 }
2141
2142 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2143 unsigned int port)
2144 {
2145 void __iomem *port_mmio = mv_port_base(mmio, port);
2146
2147 u32 hp_flags = hpriv->hp_flags;
2148 int fix_phy_mode2 =
2149 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2150 int fix_phy_mode4 =
2151 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2152 u32 m2, tmp;
2153
2154 if (fix_phy_mode2) {
2155 m2 = readl(port_mmio + PHY_MODE2);
2156 m2 &= ~(1 << 16);
2157 m2 |= (1 << 31);
2158 writel(m2, port_mmio + PHY_MODE2);
2159
2160 udelay(200);
2161
2162 m2 = readl(port_mmio + PHY_MODE2);
2163 m2 &= ~((1 << 16) | (1 << 31));
2164 writel(m2, port_mmio + PHY_MODE2);
2165
2166 udelay(200);
2167 }
2168
2169 /* who knows what this magic does */
2170 tmp = readl(port_mmio + PHY_MODE3);
2171 tmp &= ~0x7F800000;
2172 tmp |= 0x2A800000;
2173 writel(tmp, port_mmio + PHY_MODE3);
2174
2175 if (fix_phy_mode4) {
2176 u32 m4;
2177
2178 m4 = readl(port_mmio + PHY_MODE4);
2179
2180 if (hp_flags & MV_HP_ERRATA_60X1B2)
2181 tmp = readl(port_mmio + PHY_MODE3);
2182
2183 /* workaround for errata FEr SATA#10 (part 1) */
2184 m4 = (m4 & ~(1 << 1)) | (1 << 0);
2185
2186 writel(m4, port_mmio + PHY_MODE4);
2187
2188 if (hp_flags & MV_HP_ERRATA_60X1B2)
2189 writel(tmp, port_mmio + PHY_MODE3);
2190 }
2191
2192 /* Revert values of pre-emphasis and signal amps to the saved ones */
2193 m2 = readl(port_mmio + PHY_MODE2);
2194
2195 m2 &= ~MV_M2_PREAMP_MASK;
2196 m2 |= hpriv->signal[port].amps;
2197 m2 |= hpriv->signal[port].pre;
2198 m2 &= ~(1 << 16);
2199
2200 /* according to mvSata 3.6.1, some IIE values are fixed */
2201 if (IS_GEN_IIE(hpriv)) {
2202 m2 &= ~0xC30FF01F;
2203 m2 |= 0x0000900F;
2204 }
2205
2206 writel(m2, port_mmio + PHY_MODE2);
2207 }
2208
2209 /* TODO: use the generic LED interface to configure the SATA Presence */
2210 /* & Acitivy LEDs on the board */
2211 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2212 void __iomem *mmio)
2213 {
2214 return;
2215 }
2216
2217 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2218 void __iomem *mmio)
2219 {
2220 void __iomem *port_mmio;
2221 u32 tmp;
2222
2223 port_mmio = mv_port_base(mmio, idx);
2224 tmp = readl(port_mmio + PHY_MODE2);
2225
2226 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2227 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2228 }
2229
2230 #undef ZERO
2231 #define ZERO(reg) writel(0, port_mmio + (reg))
2232 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2233 void __iomem *mmio, unsigned int port)
2234 {
2235 void __iomem *port_mmio = mv_port_base(mmio, port);
2236
2237 /*
2238 * The datasheet warns against setting ATA_RST when EDMA is active
2239 * (but doesn't say what the problem might be). So we first try
2240 * to disable the EDMA engine before doing the ATA_RST operation.
2241 */
2242 mv_reset_channel(hpriv, mmio, port);
2243
2244 ZERO(0x028); /* command */
2245 writel(0x101f, port_mmio + EDMA_CFG_OFS);
2246 ZERO(0x004); /* timer */
2247 ZERO(0x008); /* irq err cause */
2248 ZERO(0x00c); /* irq err mask */
2249 ZERO(0x010); /* rq bah */
2250 ZERO(0x014); /* rq inp */
2251 ZERO(0x018); /* rq outp */
2252 ZERO(0x01c); /* respq bah */
2253 ZERO(0x024); /* respq outp */
2254 ZERO(0x020); /* respq inp */
2255 ZERO(0x02c); /* test control */
2256 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
2257 }
2258
2259 #undef ZERO
2260
2261 #define ZERO(reg) writel(0, hc_mmio + (reg))
2262 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2263 void __iomem *mmio)
2264 {
2265 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2266
2267 ZERO(0x00c);
2268 ZERO(0x010);
2269 ZERO(0x014);
2270
2271 }
2272
2273 #undef ZERO
2274
2275 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2276 void __iomem *mmio, unsigned int n_hc)
2277 {
2278 unsigned int port;
2279
2280 for (port = 0; port < hpriv->n_ports; port++)
2281 mv_soc_reset_hc_port(hpriv, mmio, port);
2282
2283 mv_soc_reset_one_hc(hpriv, mmio);
2284
2285 return 0;
2286 }
2287
2288 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2289 void __iomem *mmio)
2290 {
2291 return;
2292 }
2293
2294 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2295 {
2296 return;
2297 }
2298
2299 static void mv_setup_ifctl(void __iomem *port_mmio, int want_gen2i)
2300 {
2301 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CFG);
2302
2303 ifctl = (ifctl & 0xf7f) | 0x9b1000; /* from chip spec */
2304 if (want_gen2i)
2305 ifctl |= (1 << 7); /* enable gen2i speed */
2306 writelfl(ifctl, port_mmio + SATA_INTERFACE_CFG);
2307 }
2308
2309 /*
2310 * Caller must ensure that EDMA is not active,
2311 * by first doing mv_stop_edma() where needed.
2312 */
2313 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2314 unsigned int port_no)
2315 {
2316 void __iomem *port_mmio = mv_port_base(mmio, port_no);
2317
2318 mv_stop_edma_engine(port_mmio);
2319 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
2320
2321 if (!IS_GEN_I(hpriv)) {
2322 /* Enable 3.0gb/s link speed */
2323 mv_setup_ifctl(port_mmio, 1);
2324 }
2325 /*
2326 * Strobing ATA_RST here causes a hard reset of the SATA transport,
2327 * link, and physical layers. It resets all SATA interface registers
2328 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2329 */
2330 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
2331 udelay(25); /* allow reset propagation */
2332 writelfl(0, port_mmio + EDMA_CMD_OFS);
2333
2334 hpriv->ops->phy_errata(hpriv, mmio, port_no);
2335
2336 if (IS_GEN_I(hpriv))
2337 mdelay(1);
2338 }
2339
2340 static void mv_pmp_select(struct ata_port *ap, int pmp)
2341 {
2342 if (sata_pmp_supported(ap)) {
2343 void __iomem *port_mmio = mv_ap_base(ap);
2344 u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2345 int old = reg & 0xf;
2346
2347 if (old != pmp) {
2348 reg = (reg & ~0xf) | pmp;
2349 writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2350 }
2351 }
2352 }
2353
2354 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2355 unsigned long deadline)
2356 {
2357 mv_pmp_select(link->ap, sata_srst_pmp(link));
2358 return sata_std_hardreset(link, class, deadline);
2359 }
2360
2361 static int mv_softreset(struct ata_link *link, unsigned int *class,
2362 unsigned long deadline)
2363 {
2364 mv_pmp_select(link->ap, sata_srst_pmp(link));
2365 return ata_sff_softreset(link, class, deadline);
2366 }
2367
2368 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2369 unsigned long deadline)
2370 {
2371 struct ata_port *ap = link->ap;
2372 struct mv_host_priv *hpriv = ap->host->private_data;
2373 struct mv_port_priv *pp = ap->private_data;
2374 void __iomem *mmio = hpriv->base;
2375 int rc, attempts = 0, extra = 0;
2376 u32 sstatus;
2377 bool online;
2378
2379 mv_reset_channel(hpriv, mmio, ap->port_no);
2380 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2381
2382 /* Workaround for errata FEr SATA#10 (part 2) */
2383 do {
2384 const unsigned long *timing =
2385 sata_ehc_deb_timing(&link->eh_context);
2386
2387 rc = sata_link_hardreset(link, timing, deadline + extra,
2388 &online, NULL);
2389 if (rc)
2390 return rc;
2391 sata_scr_read(link, SCR_STATUS, &sstatus);
2392 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2393 /* Force 1.5gb/s link speed and try again */
2394 mv_setup_ifctl(mv_ap_base(ap), 0);
2395 if (time_after(jiffies + HZ, deadline))
2396 extra = HZ; /* only extend it once, max */
2397 }
2398 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2399
2400 return rc;
2401 }
2402
2403 static void mv_eh_freeze(struct ata_port *ap)
2404 {
2405 struct mv_host_priv *hpriv = ap->host->private_data;
2406 unsigned int shift, hardport, port = ap->port_no;
2407 u32 main_mask;
2408
2409 /* FIXME: handle coalescing completion events properly */
2410
2411 mv_stop_edma(ap);
2412 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2413
2414 /* disable assertion of portN err, done events */
2415 main_mask = readl(hpriv->main_mask_reg_addr);
2416 main_mask &= ~((DONE_IRQ | ERR_IRQ) << shift);
2417 writelfl(main_mask, hpriv->main_mask_reg_addr);
2418 }
2419
2420 static void mv_eh_thaw(struct ata_port *ap)
2421 {
2422 struct mv_host_priv *hpriv = ap->host->private_data;
2423 unsigned int shift, hardport, port = ap->port_no;
2424 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2425 void __iomem *port_mmio = mv_ap_base(ap);
2426 u32 main_mask, hc_irq_cause;
2427
2428 /* FIXME: handle coalescing completion events properly */
2429
2430 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2431
2432 /* clear EDMA errors on this port */
2433 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2434
2435 /* clear pending irq events */
2436 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2437 hc_irq_cause &= ~((DEV_IRQ | DMA_IRQ) << hardport);
2438 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2439
2440 /* enable assertion of portN err, done events */
2441 main_mask = readl(hpriv->main_mask_reg_addr);
2442 main_mask |= ((DONE_IRQ | ERR_IRQ) << shift);
2443 writelfl(main_mask, hpriv->main_mask_reg_addr);
2444 }
2445
2446 /**
2447 * mv_port_init - Perform some early initialization on a single port.
2448 * @port: libata data structure storing shadow register addresses
2449 * @port_mmio: base address of the port
2450 *
2451 * Initialize shadow register mmio addresses, clear outstanding
2452 * interrupts on the port, and unmask interrupts for the future
2453 * start of the port.
2454 *
2455 * LOCKING:
2456 * Inherited from caller.
2457 */
2458 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2459 {
2460 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2461 unsigned serr_ofs;
2462
2463 /* PIO related setup
2464 */
2465 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2466 port->error_addr =
2467 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2468 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2469 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2470 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2471 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2472 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2473 port->status_addr =
2474 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2475 /* special case: control/altstatus doesn't have ATA_REG_ address */
2476 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2477
2478 /* unused: */
2479 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2480
2481 /* Clear any currently outstanding port interrupt conditions */
2482 serr_ofs = mv_scr_offset(SCR_ERROR);
2483 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2484 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2485
2486 /* unmask all non-transient EDMA error interrupts */
2487 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2488
2489 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2490 readl(port_mmio + EDMA_CFG_OFS),
2491 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2492 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2493 }
2494
2495 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2496 {
2497 struct pci_dev *pdev = to_pci_dev(host->dev);
2498 struct mv_host_priv *hpriv = host->private_data;
2499 u32 hp_flags = hpriv->hp_flags;
2500
2501 switch (board_idx) {
2502 case chip_5080:
2503 hpriv->ops = &mv5xxx_ops;
2504 hp_flags |= MV_HP_GEN_I;
2505
2506 switch (pdev->revision) {
2507 case 0x1:
2508 hp_flags |= MV_HP_ERRATA_50XXB0;
2509 break;
2510 case 0x3:
2511 hp_flags |= MV_HP_ERRATA_50XXB2;
2512 break;
2513 default:
2514 dev_printk(KERN_WARNING, &pdev->dev,
2515 "Applying 50XXB2 workarounds to unknown rev\n");
2516 hp_flags |= MV_HP_ERRATA_50XXB2;
2517 break;
2518 }
2519 break;
2520
2521 case chip_504x:
2522 case chip_508x:
2523 hpriv->ops = &mv5xxx_ops;
2524 hp_flags |= MV_HP_GEN_I;
2525
2526 switch (pdev->revision) {
2527 case 0x0:
2528 hp_flags |= MV_HP_ERRATA_50XXB0;
2529 break;
2530 case 0x3:
2531 hp_flags |= MV_HP_ERRATA_50XXB2;
2532 break;
2533 default:
2534 dev_printk(KERN_WARNING, &pdev->dev,
2535 "Applying B2 workarounds to unknown rev\n");
2536 hp_flags |= MV_HP_ERRATA_50XXB2;
2537 break;
2538 }
2539 break;
2540
2541 case chip_604x:
2542 case chip_608x:
2543 hpriv->ops = &mv6xxx_ops;
2544 hp_flags |= MV_HP_GEN_II;
2545
2546 switch (pdev->revision) {
2547 case 0x7:
2548 hp_flags |= MV_HP_ERRATA_60X1B2;
2549 break;
2550 case 0x9:
2551 hp_flags |= MV_HP_ERRATA_60X1C0;
2552 break;
2553 default:
2554 dev_printk(KERN_WARNING, &pdev->dev,
2555 "Applying B2 workarounds to unknown rev\n");
2556 hp_flags |= MV_HP_ERRATA_60X1B2;
2557 break;
2558 }
2559 break;
2560
2561 case chip_7042:
2562 hp_flags |= MV_HP_PCIE;
2563 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2564 (pdev->device == 0x2300 || pdev->device == 0x2310))
2565 {
2566 /*
2567 * Highpoint RocketRAID PCIe 23xx series cards:
2568 *
2569 * Unconfigured drives are treated as "Legacy"
2570 * by the BIOS, and it overwrites sector 8 with
2571 * a "Lgcy" metadata block prior to Linux boot.
2572 *
2573 * Configured drives (RAID or JBOD) leave sector 8
2574 * alone, but instead overwrite a high numbered
2575 * sector for the RAID metadata. This sector can
2576 * be determined exactly, by truncating the physical
2577 * drive capacity to a nice even GB value.
2578 *
2579 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2580 *
2581 * Warn the user, lest they think we're just buggy.
2582 */
2583 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2584 " BIOS CORRUPTS DATA on all attached drives,"
2585 " regardless of if/how they are configured."
2586 " BEWARE!\n");
2587 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
2588 " use sectors 8-9 on \"Legacy\" drives,"
2589 " and avoid the final two gigabytes on"
2590 " all RocketRAID BIOS initialized drives.\n");
2591 }
2592 case chip_6042:
2593 hpriv->ops = &mv6xxx_ops;
2594 hp_flags |= MV_HP_GEN_IIE;
2595
2596 switch (pdev->revision) {
2597 case 0x0:
2598 hp_flags |= MV_HP_ERRATA_XX42A0;
2599 break;
2600 case 0x1:
2601 hp_flags |= MV_HP_ERRATA_60X1C0;
2602 break;
2603 default:
2604 dev_printk(KERN_WARNING, &pdev->dev,
2605 "Applying 60X1C0 workarounds to unknown rev\n");
2606 hp_flags |= MV_HP_ERRATA_60X1C0;
2607 break;
2608 }
2609 break;
2610 case chip_soc:
2611 hpriv->ops = &mv_soc_ops;
2612 hp_flags |= MV_HP_ERRATA_60X1C0;
2613 break;
2614
2615 default:
2616 dev_printk(KERN_ERR, host->dev,
2617 "BUG: invalid board index %u\n", board_idx);
2618 return 1;
2619 }
2620
2621 hpriv->hp_flags = hp_flags;
2622 if (hp_flags & MV_HP_PCIE) {
2623 hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
2624 hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
2625 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
2626 } else {
2627 hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
2628 hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
2629 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
2630 }
2631
2632 return 0;
2633 }
2634
2635 /**
2636 * mv_init_host - Perform some early initialization of the host.
2637 * @host: ATA host to initialize
2638 * @board_idx: controller index
2639 *
2640 * If possible, do an early global reset of the host. Then do
2641 * our port init and clear/unmask all/relevant host interrupts.
2642 *
2643 * LOCKING:
2644 * Inherited from caller.
2645 */
2646 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
2647 {
2648 int rc = 0, n_hc, port, hc;
2649 struct mv_host_priv *hpriv = host->private_data;
2650 void __iomem *mmio = hpriv->base;
2651
2652 rc = mv_chip_id(host, board_idx);
2653 if (rc)
2654 goto done;
2655
2656 if (HAS_PCI(host)) {
2657 hpriv->main_cause_reg_addr = mmio + HC_MAIN_IRQ_CAUSE_OFS;
2658 hpriv->main_mask_reg_addr = mmio + HC_MAIN_IRQ_MASK_OFS;
2659 } else {
2660 hpriv->main_cause_reg_addr = mmio + HC_SOC_MAIN_IRQ_CAUSE_OFS;
2661 hpriv->main_mask_reg_addr = mmio + HC_SOC_MAIN_IRQ_MASK_OFS;
2662 }
2663
2664 /* global interrupt mask: 0 == mask everything */
2665 writel(0, hpriv->main_mask_reg_addr);
2666
2667 n_hc = mv_get_hc_count(host->ports[0]->flags);
2668
2669 for (port = 0; port < host->n_ports; port++)
2670 hpriv->ops->read_preamp(hpriv, port, mmio);
2671
2672 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2673 if (rc)
2674 goto done;
2675
2676 hpriv->ops->reset_flash(hpriv, mmio);
2677 hpriv->ops->reset_bus(host, mmio);
2678 hpriv->ops->enable_leds(hpriv, mmio);
2679
2680 for (port = 0; port < host->n_ports; port++) {
2681 struct ata_port *ap = host->ports[port];
2682 void __iomem *port_mmio = mv_port_base(mmio, port);
2683
2684 mv_port_init(&ap->ioaddr, port_mmio);
2685
2686 #ifdef CONFIG_PCI
2687 if (HAS_PCI(host)) {
2688 unsigned int offset = port_mmio - mmio;
2689 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
2690 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
2691 }
2692 #endif
2693 }
2694
2695 for (hc = 0; hc < n_hc; hc++) {
2696 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2697
2698 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2699 "(before clear)=0x%08x\n", hc,
2700 readl(hc_mmio + HC_CFG_OFS),
2701 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2702
2703 /* Clear any currently outstanding hc interrupt conditions */
2704 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2705 }
2706
2707 if (HAS_PCI(host)) {
2708 /* Clear any currently outstanding host interrupt conditions */
2709 writelfl(0, mmio + hpriv->irq_cause_ofs);
2710
2711 /* and unmask interrupt generation for host regs */
2712 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
2713 if (IS_GEN_I(hpriv))
2714 writelfl(~HC_MAIN_MASKED_IRQS_5,
2715 hpriv->main_mask_reg_addr);
2716 else
2717 writelfl(~HC_MAIN_MASKED_IRQS,
2718 hpriv->main_mask_reg_addr);
2719
2720 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2721 "PCI int cause/mask=0x%08x/0x%08x\n",
2722 readl(hpriv->main_cause_reg_addr),
2723 readl(hpriv->main_mask_reg_addr),
2724 readl(mmio + hpriv->irq_cause_ofs),
2725 readl(mmio + hpriv->irq_mask_ofs));
2726 } else {
2727 writelfl(~HC_MAIN_MASKED_IRQS_SOC,
2728 hpriv->main_mask_reg_addr);
2729 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x\n",
2730 readl(hpriv->main_cause_reg_addr),
2731 readl(hpriv->main_mask_reg_addr));
2732 }
2733 done:
2734 return rc;
2735 }
2736
2737 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
2738 {
2739 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
2740 MV_CRQB_Q_SZ, 0);
2741 if (!hpriv->crqb_pool)
2742 return -ENOMEM;
2743
2744 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
2745 MV_CRPB_Q_SZ, 0);
2746 if (!hpriv->crpb_pool)
2747 return -ENOMEM;
2748
2749 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
2750 MV_SG_TBL_SZ, 0);
2751 if (!hpriv->sg_tbl_pool)
2752 return -ENOMEM;
2753
2754 return 0;
2755 }
2756
2757 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
2758 struct mbus_dram_target_info *dram)
2759 {
2760 int i;
2761
2762 for (i = 0; i < 4; i++) {
2763 writel(0, hpriv->base + WINDOW_CTRL(i));
2764 writel(0, hpriv->base + WINDOW_BASE(i));
2765 }
2766
2767 for (i = 0; i < dram->num_cs; i++) {
2768 struct mbus_dram_window *cs = dram->cs + i;
2769
2770 writel(((cs->size - 1) & 0xffff0000) |
2771 (cs->mbus_attr << 8) |
2772 (dram->mbus_dram_target_id << 4) | 1,
2773 hpriv->base + WINDOW_CTRL(i));
2774 writel(cs->base, hpriv->base + WINDOW_BASE(i));
2775 }
2776 }
2777
2778 /**
2779 * mv_platform_probe - handle a positive probe of an soc Marvell
2780 * host
2781 * @pdev: platform device found
2782 *
2783 * LOCKING:
2784 * Inherited from caller.
2785 */
2786 static int mv_platform_probe(struct platform_device *pdev)
2787 {
2788 static int printed_version;
2789 const struct mv_sata_platform_data *mv_platform_data;
2790 const struct ata_port_info *ppi[] =
2791 { &mv_port_info[chip_soc], NULL };
2792 struct ata_host *host;
2793 struct mv_host_priv *hpriv;
2794 struct resource *res;
2795 int n_ports, rc;
2796
2797 if (!printed_version++)
2798 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2799
2800 /*
2801 * Simple resource validation ..
2802 */
2803 if (unlikely(pdev->num_resources != 2)) {
2804 dev_err(&pdev->dev, "invalid number of resources\n");
2805 return -EINVAL;
2806 }
2807
2808 /*
2809 * Get the register base first
2810 */
2811 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2812 if (res == NULL)
2813 return -EINVAL;
2814
2815 /* allocate host */
2816 mv_platform_data = pdev->dev.platform_data;
2817 n_ports = mv_platform_data->n_ports;
2818
2819 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
2820 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2821
2822 if (!host || !hpriv)
2823 return -ENOMEM;
2824 host->private_data = hpriv;
2825 hpriv->n_ports = n_ports;
2826
2827 host->iomap = NULL;
2828 hpriv->base = devm_ioremap(&pdev->dev, res->start,
2829 res->end - res->start + 1);
2830 hpriv->base -= MV_SATAHC0_REG_BASE;
2831
2832 /*
2833 * (Re-)program MBUS remapping windows if we are asked to.
2834 */
2835 if (mv_platform_data->dram != NULL)
2836 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
2837
2838 rc = mv_create_dma_pools(hpriv, &pdev->dev);
2839 if (rc)
2840 return rc;
2841
2842 /* initialize adapter */
2843 rc = mv_init_host(host, chip_soc);
2844 if (rc)
2845 return rc;
2846
2847 dev_printk(KERN_INFO, &pdev->dev,
2848 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
2849 host->n_ports);
2850
2851 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
2852 IRQF_SHARED, &mv6_sht);
2853 }
2854
2855 /*
2856 *
2857 * mv_platform_remove - unplug a platform interface
2858 * @pdev: platform device
2859 *
2860 * A platform bus SATA device has been unplugged. Perform the needed
2861 * cleanup. Also called on module unload for any active devices.
2862 */
2863 static int __devexit mv_platform_remove(struct platform_device *pdev)
2864 {
2865 struct device *dev = &pdev->dev;
2866 struct ata_host *host = dev_get_drvdata(dev);
2867
2868 ata_host_detach(host);
2869 return 0;
2870 }
2871
2872 static struct platform_driver mv_platform_driver = {
2873 .probe = mv_platform_probe,
2874 .remove = __devexit_p(mv_platform_remove),
2875 .driver = {
2876 .name = DRV_NAME,
2877 .owner = THIS_MODULE,
2878 },
2879 };
2880
2881
2882 #ifdef CONFIG_PCI
2883 static int mv_pci_init_one(struct pci_dev *pdev,
2884 const struct pci_device_id *ent);
2885
2886
2887 static struct pci_driver mv_pci_driver = {
2888 .name = DRV_NAME,
2889 .id_table = mv_pci_tbl,
2890 .probe = mv_pci_init_one,
2891 .remove = ata_pci_remove_one,
2892 };
2893
2894 /*
2895 * module options
2896 */
2897 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
2898
2899
2900 /* move to PCI layer or libata core? */
2901 static int pci_go_64(struct pci_dev *pdev)
2902 {
2903 int rc;
2904
2905 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
2906 rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
2907 if (rc) {
2908 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2909 if (rc) {
2910 dev_printk(KERN_ERR, &pdev->dev,
2911 "64-bit DMA enable failed\n");
2912 return rc;
2913 }
2914 }
2915 } else {
2916 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2917 if (rc) {
2918 dev_printk(KERN_ERR, &pdev->dev,
2919 "32-bit DMA enable failed\n");
2920 return rc;
2921 }
2922 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2923 if (rc) {
2924 dev_printk(KERN_ERR, &pdev->dev,
2925 "32-bit consistent DMA enable failed\n");
2926 return rc;
2927 }
2928 }
2929
2930 return rc;
2931 }
2932
2933 /**
2934 * mv_print_info - Dump key info to kernel log for perusal.
2935 * @host: ATA host to print info about
2936 *
2937 * FIXME: complete this.
2938 *
2939 * LOCKING:
2940 * Inherited from caller.
2941 */
2942 static void mv_print_info(struct ata_host *host)
2943 {
2944 struct pci_dev *pdev = to_pci_dev(host->dev);
2945 struct mv_host_priv *hpriv = host->private_data;
2946 u8 scc;
2947 const char *scc_s, *gen;
2948
2949 /* Use this to determine the HW stepping of the chip so we know
2950 * what errata to workaround
2951 */
2952 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2953 if (scc == 0)
2954 scc_s = "SCSI";
2955 else if (scc == 0x01)
2956 scc_s = "RAID";
2957 else
2958 scc_s = "?";
2959
2960 if (IS_GEN_I(hpriv))
2961 gen = "I";
2962 else if (IS_GEN_II(hpriv))
2963 gen = "II";
2964 else if (IS_GEN_IIE(hpriv))
2965 gen = "IIE";
2966 else
2967 gen = "?";
2968
2969 dev_printk(KERN_INFO, &pdev->dev,
2970 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
2971 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
2972 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2973 }
2974
2975 /**
2976 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
2977 * @pdev: PCI device found
2978 * @ent: PCI device ID entry for the matched host
2979 *
2980 * LOCKING:
2981 * Inherited from caller.
2982 */
2983 static int mv_pci_init_one(struct pci_dev *pdev,
2984 const struct pci_device_id *ent)
2985 {
2986 static int printed_version;
2987 unsigned int board_idx = (unsigned int)ent->driver_data;
2988 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
2989 struct ata_host *host;
2990 struct mv_host_priv *hpriv;
2991 int n_ports, rc;
2992
2993 if (!printed_version++)
2994 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2995
2996 /* allocate host */
2997 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
2998
2999 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3000 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3001 if (!host || !hpriv)
3002 return -ENOMEM;
3003 host->private_data = hpriv;
3004 hpriv->n_ports = n_ports;
3005
3006 /* acquire resources */
3007 rc = pcim_enable_device(pdev);
3008 if (rc)
3009 return rc;
3010
3011 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3012 if (rc == -EBUSY)
3013 pcim_pin_device(pdev);
3014 if (rc)
3015 return rc;
3016 host->iomap = pcim_iomap_table(pdev);
3017 hpriv->base = host->iomap[MV_PRIMARY_BAR];
3018
3019 rc = pci_go_64(pdev);
3020 if (rc)
3021 return rc;
3022
3023 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3024 if (rc)
3025 return rc;
3026
3027 /* initialize adapter */
3028 rc = mv_init_host(host, board_idx);
3029 if (rc)
3030 return rc;
3031
3032 /* Enable interrupts */
3033 if (msi && pci_enable_msi(pdev))
3034 pci_intx(pdev, 1);
3035
3036 mv_dump_pci_cfg(pdev, 0x68);
3037 mv_print_info(host);
3038
3039 pci_set_master(pdev);
3040 pci_try_set_mwi(pdev);
3041 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3042 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3043 }
3044 #endif
3045
3046 static int mv_platform_probe(struct platform_device *pdev);
3047 static int __devexit mv_platform_remove(struct platform_device *pdev);
3048
3049 static int __init mv_init(void)
3050 {
3051 int rc = -ENODEV;
3052 #ifdef CONFIG_PCI
3053 rc = pci_register_driver(&mv_pci_driver);
3054 if (rc < 0)
3055 return rc;
3056 #endif
3057 rc = platform_driver_register(&mv_platform_driver);
3058
3059 #ifdef CONFIG_PCI
3060 if (rc < 0)
3061 pci_unregister_driver(&mv_pci_driver);
3062 #endif
3063 return rc;
3064 }
3065
3066 static void __exit mv_exit(void)
3067 {
3068 #ifdef CONFIG_PCI
3069 pci_unregister_driver(&mv_pci_driver);
3070 #endif
3071 platform_driver_unregister(&mv_platform_driver);
3072 }
3073
3074 MODULE_AUTHOR("Brett Russ");
3075 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3076 MODULE_LICENSE("GPL");
3077 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3078 MODULE_VERSION(DRV_VERSION);
3079 MODULE_ALIAS("platform:" DRV_NAME);
3080
3081 #ifdef CONFIG_PCI
3082 module_param(msi, int, 0444);
3083 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3084 #endif
3085
3086 module_init(mv_init);
3087 module_exit(mv_exit);
This page took 0.09723 seconds and 5 git commands to generate.