sata_mv: Improve naming of main_irq cause/mask identifiers
[deliverable/linux.git] / drivers / ata / sata_mv.c
1 /*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 *
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24
25 /*
26 * sata_mv TODO list:
27 *
28 * --> Errata workaround for NCQ device errors.
29 *
30 * --> More errata workarounds for PCI-X.
31 *
32 * --> Complete a full errata audit for all chipsets to identify others.
33 *
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
35 *
36 * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
37 *
38 * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
39 *
40 * --> Develop a low-power-consumption strategy, and implement it.
41 *
42 * --> [Experiment, low priority] Investigate interrupt coalescing.
43 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
44 * the overhead reduced by interrupt mitigation is quite often not
45 * worth the latency cost.
46 *
47 * --> [Experiment, Marvell value added] Is it possible to use target
48 * mode to cross-connect two Linux boxes with Marvell cards? If so,
49 * creating LibATA target mode support would be very interesting.
50 *
51 * Target mode, for those without docs, is the ability to directly
52 * connect two SATA ports.
53 */
54
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_cmnd.h>
70 #include <scsi/scsi_device.h>
71 #include <linux/libata.h>
72
73 #define DRV_NAME "sata_mv"
74 #define DRV_VERSION "1.20"
75
76 enum {
77 /* BAR's are enumerated in terms of pci_resource_start() terms */
78 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
79 MV_IO_BAR = 2, /* offset 0x18: IO space */
80 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
81
82 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
83 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
84
85 MV_PCI_REG_BASE = 0,
86 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
87 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
88 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
89 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
90 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
91 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
92
93 MV_SATAHC0_REG_BASE = 0x20000,
94 MV_FLASH_CTL = 0x1046c,
95 MV_GPIO_PORT_CTL = 0x104f0,
96 MV_RESET_CFG = 0x180d8,
97
98 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
99 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
100 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
101 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
102
103 MV_MAX_Q_DEPTH = 32,
104 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
105
106 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
107 * CRPB needs alignment on a 256B boundary. Size == 256B
108 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
109 */
110 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
111 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
112 MV_MAX_SG_CT = 256,
113 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
114
115 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
116 MV_PORT_HC_SHIFT = 2,
117 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
118 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
119 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
120
121 /* Host Flags */
122 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
123 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
124 /* SoC integrated controllers, no PCI interface */
125 MV_FLAG_SOC = (1 << 28),
126
127 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
128 ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
129 ATA_FLAG_PIO_POLLING,
130 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
131
132 CRQB_FLAG_READ = (1 << 0),
133 CRQB_TAG_SHIFT = 1,
134 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
135 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
136 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
137 CRQB_CMD_ADDR_SHIFT = 8,
138 CRQB_CMD_CS = (0x2 << 11),
139 CRQB_CMD_LAST = (1 << 15),
140
141 CRPB_FLAG_STATUS_SHIFT = 8,
142 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
143 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
144
145 EPRD_FLAG_END_OF_TBL = (1 << 31),
146
147 /* PCI interface registers */
148
149 PCI_COMMAND_OFS = 0xc00,
150
151 PCI_MAIN_CMD_STS_OFS = 0xd30,
152 STOP_PCI_MASTER = (1 << 2),
153 PCI_MASTER_EMPTY = (1 << 3),
154 GLOB_SFT_RST = (1 << 4),
155
156 MV_PCI_MODE = 0xd00,
157 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
158 MV_PCI_DISC_TIMER = 0xd04,
159 MV_PCI_MSI_TRIGGER = 0xc38,
160 MV_PCI_SERR_MASK = 0xc28,
161 MV_PCI_XBAR_TMOUT = 0x1d04,
162 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
163 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
164 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
165 MV_PCI_ERR_COMMAND = 0x1d50,
166
167 PCI_IRQ_CAUSE_OFS = 0x1d58,
168 PCI_IRQ_MASK_OFS = 0x1d5c,
169 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
170
171 PCIE_IRQ_CAUSE_OFS = 0x1900,
172 PCIE_IRQ_MASK_OFS = 0x1910,
173 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
174
175 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
176 PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
177 PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
178 SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
179 SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
180 ERR_IRQ = (1 << 0), /* shift by port # */
181 DONE_IRQ = (1 << 1), /* shift by port # */
182 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
183 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
184 PCI_ERR = (1 << 18),
185 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
186 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
187 PORTS_0_3_COAL_DONE = (1 << 8),
188 PORTS_4_7_COAL_DONE = (1 << 17),
189 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
190 GPIO_INT = (1 << 22),
191 SELF_INT = (1 << 23),
192 TWSI_INT = (1 << 24),
193 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
194 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
195 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
196 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
197 PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
198 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
199 HC_MAIN_RSVD),
200 HC_MAIN_MASKED_IRQS_5 = (PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
201 HC_MAIN_RSVD_5),
202 HC_MAIN_MASKED_IRQS_SOC = (PORTS_0_3_COAL_DONE | HC_MAIN_RSVD_SOC),
203
204 /* SATAHC registers */
205 HC_CFG_OFS = 0,
206
207 HC_IRQ_CAUSE_OFS = 0x14,
208 DMA_IRQ = (1 << 0), /* shift by port # */
209 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
210 DEV_IRQ = (1 << 8), /* shift by port # */
211
212 /* Shadow block registers */
213 SHD_BLK_OFS = 0x100,
214 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
215
216 /* SATA registers */
217 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
218 SATA_ACTIVE_OFS = 0x350,
219 SATA_FIS_IRQ_CAUSE_OFS = 0x364,
220
221 LTMODE_OFS = 0x30c,
222 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
223
224 PHY_MODE3 = 0x310,
225 PHY_MODE4 = 0x314,
226 PHY_MODE2 = 0x330,
227 SATA_IFCTL_OFS = 0x344,
228 SATA_IFSTAT_OFS = 0x34c,
229 VENDOR_UNIQUE_FIS_OFS = 0x35c,
230
231 FIS_CFG_OFS = 0x360,
232 FIS_CFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
233
234 MV5_PHY_MODE = 0x74,
235 MV5_LT_MODE = 0x30,
236 MV5_PHY_CTL = 0x0C,
237 SATA_INTERFACE_CFG = 0x050,
238
239 MV_M2_PREAMP_MASK = 0x7e0,
240
241 /* Port registers */
242 EDMA_CFG_OFS = 0,
243 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
244 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
245 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
246 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
247 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
248 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
249 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
250
251 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
252 EDMA_ERR_IRQ_MASK_OFS = 0xc,
253 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
254 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
255 EDMA_ERR_DEV = (1 << 2), /* device error */
256 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
257 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
258 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
259 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
260 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
261 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
262 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
263 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
264 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
265 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
266 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
267
268 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
269 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
270 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
271 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
272 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
273
274 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
275
276 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
277 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
278 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
279 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
280 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
281 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
282
283 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
284
285 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
286 EDMA_ERR_OVERRUN_5 = (1 << 5),
287 EDMA_ERR_UNDERRUN_5 = (1 << 6),
288
289 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
290 EDMA_ERR_LNK_CTRL_RX_1 |
291 EDMA_ERR_LNK_CTRL_RX_3 |
292 EDMA_ERR_LNK_CTRL_TX,
293
294 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
295 EDMA_ERR_PRD_PAR |
296 EDMA_ERR_DEV_DCON |
297 EDMA_ERR_DEV_CON |
298 EDMA_ERR_SERR |
299 EDMA_ERR_SELF_DIS |
300 EDMA_ERR_CRQB_PAR |
301 EDMA_ERR_CRPB_PAR |
302 EDMA_ERR_INTRL_PAR |
303 EDMA_ERR_IORDY |
304 EDMA_ERR_LNK_CTRL_RX_2 |
305 EDMA_ERR_LNK_DATA_RX |
306 EDMA_ERR_LNK_DATA_TX |
307 EDMA_ERR_TRANS_PROTO,
308
309 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
310 EDMA_ERR_PRD_PAR |
311 EDMA_ERR_DEV_DCON |
312 EDMA_ERR_DEV_CON |
313 EDMA_ERR_OVERRUN_5 |
314 EDMA_ERR_UNDERRUN_5 |
315 EDMA_ERR_SELF_DIS_5 |
316 EDMA_ERR_CRQB_PAR |
317 EDMA_ERR_CRPB_PAR |
318 EDMA_ERR_INTRL_PAR |
319 EDMA_ERR_IORDY,
320
321 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
322 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
323
324 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
325 EDMA_REQ_Q_PTR_SHIFT = 5,
326
327 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
328 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
329 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
330 EDMA_RSP_Q_PTR_SHIFT = 3,
331
332 EDMA_CMD_OFS = 0x28, /* EDMA command register */
333 EDMA_EN = (1 << 0), /* enable EDMA */
334 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
335 ATA_RST = (1 << 2), /* reset trans/link/phy */
336
337 EDMA_IORDY_TMOUT = 0x34,
338 EDMA_ARB_CFG = 0x38,
339
340 GEN_II_NCQ_MAX_SECTORS = 256, /* max sects/io on Gen2 w/NCQ */
341
342 /* Host private flags (hp_flags) */
343 MV_HP_FLAG_MSI = (1 << 0),
344 MV_HP_ERRATA_50XXB0 = (1 << 1),
345 MV_HP_ERRATA_50XXB2 = (1 << 2),
346 MV_HP_ERRATA_60X1B2 = (1 << 3),
347 MV_HP_ERRATA_60X1C0 = (1 << 4),
348 MV_HP_ERRATA_XX42A0 = (1 << 5),
349 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
350 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
351 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
352 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
353
354 /* Port private flags (pp_flags) */
355 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
356 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
357 };
358
359 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
360 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
361 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
362 #define HAS_PCI(host) (!((host)->ports[0]->flags & MV_FLAG_SOC))
363
364 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
365 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
366
367 enum {
368 /* DMA boundary 0xffff is required by the s/g splitting
369 * we need on /length/ in mv_fill-sg().
370 */
371 MV_DMA_BOUNDARY = 0xffffU,
372
373 /* mask of register bits containing lower 32 bits
374 * of EDMA request queue DMA address
375 */
376 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
377
378 /* ditto, for response queue */
379 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
380 };
381
382 enum chip_type {
383 chip_504x,
384 chip_508x,
385 chip_5080,
386 chip_604x,
387 chip_608x,
388 chip_6042,
389 chip_7042,
390 chip_soc,
391 };
392
393 /* Command ReQuest Block: 32B */
394 struct mv_crqb {
395 __le32 sg_addr;
396 __le32 sg_addr_hi;
397 __le16 ctrl_flags;
398 __le16 ata_cmd[11];
399 };
400
401 struct mv_crqb_iie {
402 __le32 addr;
403 __le32 addr_hi;
404 __le32 flags;
405 __le32 len;
406 __le32 ata_cmd[4];
407 };
408
409 /* Command ResPonse Block: 8B */
410 struct mv_crpb {
411 __le16 id;
412 __le16 flags;
413 __le32 tmstmp;
414 };
415
416 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
417 struct mv_sg {
418 __le32 addr;
419 __le32 flags_size;
420 __le32 addr_hi;
421 __le32 reserved;
422 };
423
424 struct mv_port_priv {
425 struct mv_crqb *crqb;
426 dma_addr_t crqb_dma;
427 struct mv_crpb *crpb;
428 dma_addr_t crpb_dma;
429 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
430 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
431
432 unsigned int req_idx;
433 unsigned int resp_idx;
434
435 u32 pp_flags;
436 };
437
438 struct mv_port_signal {
439 u32 amps;
440 u32 pre;
441 };
442
443 struct mv_host_priv {
444 u32 hp_flags;
445 struct mv_port_signal signal[8];
446 const struct mv_hw_ops *ops;
447 int n_ports;
448 void __iomem *base;
449 void __iomem *main_irq_cause_addr;
450 void __iomem *main_irq_mask_addr;
451 u32 irq_cause_ofs;
452 u32 irq_mask_ofs;
453 u32 unmask_all_irqs;
454 /*
455 * These consistent DMA memory pools give us guaranteed
456 * alignment for hardware-accessed data structures,
457 * and less memory waste in accomplishing the alignment.
458 */
459 struct dma_pool *crqb_pool;
460 struct dma_pool *crpb_pool;
461 struct dma_pool *sg_tbl_pool;
462 };
463
464 struct mv_hw_ops {
465 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
466 unsigned int port);
467 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
468 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
469 void __iomem *mmio);
470 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
471 unsigned int n_hc);
472 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
473 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
474 };
475
476 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
477 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
478 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
479 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
480 static int mv_port_start(struct ata_port *ap);
481 static void mv_port_stop(struct ata_port *ap);
482 static void mv_qc_prep(struct ata_queued_cmd *qc);
483 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
484 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
485 static int mv_hardreset(struct ata_link *link, unsigned int *class,
486 unsigned long deadline);
487 static void mv_eh_freeze(struct ata_port *ap);
488 static void mv_eh_thaw(struct ata_port *ap);
489 static void mv6_dev_config(struct ata_device *dev);
490
491 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
492 unsigned int port);
493 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
494 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
495 void __iomem *mmio);
496 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
497 unsigned int n_hc);
498 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
499 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
500
501 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
502 unsigned int port);
503 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
504 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
505 void __iomem *mmio);
506 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
507 unsigned int n_hc);
508 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
509 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
510 void __iomem *mmio);
511 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
512 void __iomem *mmio);
513 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
514 void __iomem *mmio, unsigned int n_hc);
515 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
516 void __iomem *mmio);
517 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
518 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
519 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
520 unsigned int port_no);
521 static int mv_stop_edma(struct ata_port *ap);
522 static int mv_stop_edma_engine(void __iomem *port_mmio);
523 static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
524
525 static void mv_pmp_select(struct ata_port *ap, int pmp);
526 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
527 unsigned long deadline);
528 static int mv_softreset(struct ata_link *link, unsigned int *class,
529 unsigned long deadline);
530
531 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
532 * because we have to allow room for worst case splitting of
533 * PRDs for 64K boundaries in mv_fill_sg().
534 */
535 static struct scsi_host_template mv5_sht = {
536 ATA_BASE_SHT(DRV_NAME),
537 .sg_tablesize = MV_MAX_SG_CT / 2,
538 .dma_boundary = MV_DMA_BOUNDARY,
539 };
540
541 static struct scsi_host_template mv6_sht = {
542 ATA_NCQ_SHT(DRV_NAME),
543 .can_queue = MV_MAX_Q_DEPTH - 1,
544 .sg_tablesize = MV_MAX_SG_CT / 2,
545 .dma_boundary = MV_DMA_BOUNDARY,
546 };
547
548 static struct ata_port_operations mv5_ops = {
549 .inherits = &ata_sff_port_ops,
550
551 .qc_prep = mv_qc_prep,
552 .qc_issue = mv_qc_issue,
553
554 .freeze = mv_eh_freeze,
555 .thaw = mv_eh_thaw,
556 .hardreset = mv_hardreset,
557 .error_handler = ata_std_error_handler, /* avoid SFF EH */
558 .post_internal_cmd = ATA_OP_NULL,
559
560 .scr_read = mv5_scr_read,
561 .scr_write = mv5_scr_write,
562
563 .port_start = mv_port_start,
564 .port_stop = mv_port_stop,
565 };
566
567 static struct ata_port_operations mv6_ops = {
568 .inherits = &mv5_ops,
569 .qc_defer = sata_pmp_qc_defer_cmd_switch,
570 .dev_config = mv6_dev_config,
571 .scr_read = mv_scr_read,
572 .scr_write = mv_scr_write,
573
574 .pmp_hardreset = mv_pmp_hardreset,
575 .pmp_softreset = mv_softreset,
576 .softreset = mv_softreset,
577 .error_handler = sata_pmp_error_handler,
578 };
579
580 static struct ata_port_operations mv_iie_ops = {
581 .inherits = &mv6_ops,
582 .qc_defer = ata_std_qc_defer, /* FIS-based switching */
583 .dev_config = ATA_OP_NULL,
584 .qc_prep = mv_qc_prep_iie,
585 };
586
587 static const struct ata_port_info mv_port_info[] = {
588 { /* chip_504x */
589 .flags = MV_COMMON_FLAGS,
590 .pio_mask = 0x1f, /* pio0-4 */
591 .udma_mask = ATA_UDMA6,
592 .port_ops = &mv5_ops,
593 },
594 { /* chip_508x */
595 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
596 .pio_mask = 0x1f, /* pio0-4 */
597 .udma_mask = ATA_UDMA6,
598 .port_ops = &mv5_ops,
599 },
600 { /* chip_5080 */
601 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
602 .pio_mask = 0x1f, /* pio0-4 */
603 .udma_mask = ATA_UDMA6,
604 .port_ops = &mv5_ops,
605 },
606 { /* chip_604x */
607 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
608 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
609 ATA_FLAG_NCQ,
610 .pio_mask = 0x1f, /* pio0-4 */
611 .udma_mask = ATA_UDMA6,
612 .port_ops = &mv6_ops,
613 },
614 { /* chip_608x */
615 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
616 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
617 ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
618 .pio_mask = 0x1f, /* pio0-4 */
619 .udma_mask = ATA_UDMA6,
620 .port_ops = &mv6_ops,
621 },
622 { /* chip_6042 */
623 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
624 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
625 ATA_FLAG_NCQ,
626 .pio_mask = 0x1f, /* pio0-4 */
627 .udma_mask = ATA_UDMA6,
628 .port_ops = &mv_iie_ops,
629 },
630 { /* chip_7042 */
631 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
632 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
633 ATA_FLAG_NCQ,
634 .pio_mask = 0x1f, /* pio0-4 */
635 .udma_mask = ATA_UDMA6,
636 .port_ops = &mv_iie_ops,
637 },
638 { /* chip_soc */
639 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
640 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
641 ATA_FLAG_NCQ | MV_FLAG_SOC,
642 .pio_mask = 0x1f, /* pio0-4 */
643 .udma_mask = ATA_UDMA6,
644 .port_ops = &mv_iie_ops,
645 },
646 };
647
648 static const struct pci_device_id mv_pci_tbl[] = {
649 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
650 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
651 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
652 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
653 /* RocketRAID 1740/174x have different identifiers */
654 { PCI_VDEVICE(TTI, 0x1740), chip_508x },
655 { PCI_VDEVICE(TTI, 0x1742), chip_508x },
656
657 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
658 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
659 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
660 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
661 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
662
663 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
664
665 /* Adaptec 1430SA */
666 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
667
668 /* Marvell 7042 support */
669 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
670
671 /* Highpoint RocketRAID PCIe series */
672 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
673 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
674
675 { } /* terminate list */
676 };
677
678 static const struct mv_hw_ops mv5xxx_ops = {
679 .phy_errata = mv5_phy_errata,
680 .enable_leds = mv5_enable_leds,
681 .read_preamp = mv5_read_preamp,
682 .reset_hc = mv5_reset_hc,
683 .reset_flash = mv5_reset_flash,
684 .reset_bus = mv5_reset_bus,
685 };
686
687 static const struct mv_hw_ops mv6xxx_ops = {
688 .phy_errata = mv6_phy_errata,
689 .enable_leds = mv6_enable_leds,
690 .read_preamp = mv6_read_preamp,
691 .reset_hc = mv6_reset_hc,
692 .reset_flash = mv6_reset_flash,
693 .reset_bus = mv_reset_pci_bus,
694 };
695
696 static const struct mv_hw_ops mv_soc_ops = {
697 .phy_errata = mv6_phy_errata,
698 .enable_leds = mv_soc_enable_leds,
699 .read_preamp = mv_soc_read_preamp,
700 .reset_hc = mv_soc_reset_hc,
701 .reset_flash = mv_soc_reset_flash,
702 .reset_bus = mv_soc_reset_bus,
703 };
704
705 /*
706 * Functions
707 */
708
709 static inline void writelfl(unsigned long data, void __iomem *addr)
710 {
711 writel(data, addr);
712 (void) readl(addr); /* flush to avoid PCI posted write */
713 }
714
715 static inline unsigned int mv_hc_from_port(unsigned int port)
716 {
717 return port >> MV_PORT_HC_SHIFT;
718 }
719
720 static inline unsigned int mv_hardport_from_port(unsigned int port)
721 {
722 return port & MV_PORT_MASK;
723 }
724
725 /*
726 * Consolidate some rather tricky bit shift calculations.
727 * This is hot-path stuff, so not a function.
728 * Simple code, with two return values, so macro rather than inline.
729 *
730 * port is the sole input, in range 0..7.
731 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
732 * hardport is the other output, in range 0..3.
733 *
734 * Note that port and hardport may be the same variable in some cases.
735 */
736 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
737 { \
738 shift = mv_hc_from_port(port) * HC_SHIFT; \
739 hardport = mv_hardport_from_port(port); \
740 shift += hardport * 2; \
741 }
742
743 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
744 {
745 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
746 }
747
748 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
749 unsigned int port)
750 {
751 return mv_hc_base(base, mv_hc_from_port(port));
752 }
753
754 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
755 {
756 return mv_hc_base_from_port(base, port) +
757 MV_SATAHC_ARBTR_REG_SZ +
758 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
759 }
760
761 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
762 {
763 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
764 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
765
766 return hc_mmio + ofs;
767 }
768
769 static inline void __iomem *mv_host_base(struct ata_host *host)
770 {
771 struct mv_host_priv *hpriv = host->private_data;
772 return hpriv->base;
773 }
774
775 static inline void __iomem *mv_ap_base(struct ata_port *ap)
776 {
777 return mv_port_base(mv_host_base(ap->host), ap->port_no);
778 }
779
780 static inline int mv_get_hc_count(unsigned long port_flags)
781 {
782 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
783 }
784
785 static void mv_set_edma_ptrs(void __iomem *port_mmio,
786 struct mv_host_priv *hpriv,
787 struct mv_port_priv *pp)
788 {
789 u32 index;
790
791 /*
792 * initialize request queue
793 */
794 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
795 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
796
797 WARN_ON(pp->crqb_dma & 0x3ff);
798 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
799 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
800 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
801
802 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
803 writelfl((pp->crqb_dma & 0xffffffff) | index,
804 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
805 else
806 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
807
808 /*
809 * initialize response queue
810 */
811 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
812 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
813
814 WARN_ON(pp->crpb_dma & 0xff);
815 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
816
817 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
818 writelfl((pp->crpb_dma & 0xffffffff) | index,
819 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
820 else
821 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
822
823 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
824 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
825 }
826
827 /**
828 * mv_start_dma - Enable eDMA engine
829 * @base: port base address
830 * @pp: port private data
831 *
832 * Verify the local cache of the eDMA state is accurate with a
833 * WARN_ON.
834 *
835 * LOCKING:
836 * Inherited from caller.
837 */
838 static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
839 struct mv_port_priv *pp, u8 protocol)
840 {
841 int want_ncq = (protocol == ATA_PROT_NCQ);
842
843 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
844 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
845 if (want_ncq != using_ncq)
846 mv_stop_edma(ap);
847 }
848 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
849 struct mv_host_priv *hpriv = ap->host->private_data;
850 int hardport = mv_hardport_from_port(ap->port_no);
851 void __iomem *hc_mmio = mv_hc_base_from_port(
852 mv_host_base(ap->host), hardport);
853 u32 hc_irq_cause, ipending;
854
855 /* clear EDMA event indicators, if any */
856 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
857
858 /* clear EDMA interrupt indicator, if any */
859 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
860 ipending = (DEV_IRQ | DMA_IRQ) << hardport;
861 if (hc_irq_cause & ipending) {
862 writelfl(hc_irq_cause & ~ipending,
863 hc_mmio + HC_IRQ_CAUSE_OFS);
864 }
865
866 mv_edma_cfg(ap, want_ncq);
867
868 /* clear FIS IRQ Cause */
869 writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
870
871 mv_set_edma_ptrs(port_mmio, hpriv, pp);
872
873 writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
874 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
875 }
876 }
877
878 /**
879 * mv_stop_edma_engine - Disable eDMA engine
880 * @port_mmio: io base address
881 *
882 * LOCKING:
883 * Inherited from caller.
884 */
885 static int mv_stop_edma_engine(void __iomem *port_mmio)
886 {
887 int i;
888
889 /* Disable eDMA. The disable bit auto clears. */
890 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
891
892 /* Wait for the chip to confirm eDMA is off. */
893 for (i = 10000; i > 0; i--) {
894 u32 reg = readl(port_mmio + EDMA_CMD_OFS);
895 if (!(reg & EDMA_EN))
896 return 0;
897 udelay(10);
898 }
899 return -EIO;
900 }
901
902 static int mv_stop_edma(struct ata_port *ap)
903 {
904 void __iomem *port_mmio = mv_ap_base(ap);
905 struct mv_port_priv *pp = ap->private_data;
906
907 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
908 return 0;
909 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
910 if (mv_stop_edma_engine(port_mmio)) {
911 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
912 return -EIO;
913 }
914 return 0;
915 }
916
917 #ifdef ATA_DEBUG
918 static void mv_dump_mem(void __iomem *start, unsigned bytes)
919 {
920 int b, w;
921 for (b = 0; b < bytes; ) {
922 DPRINTK("%p: ", start + b);
923 for (w = 0; b < bytes && w < 4; w++) {
924 printk("%08x ", readl(start + b));
925 b += sizeof(u32);
926 }
927 printk("\n");
928 }
929 }
930 #endif
931
932 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
933 {
934 #ifdef ATA_DEBUG
935 int b, w;
936 u32 dw;
937 for (b = 0; b < bytes; ) {
938 DPRINTK("%02x: ", b);
939 for (w = 0; b < bytes && w < 4; w++) {
940 (void) pci_read_config_dword(pdev, b, &dw);
941 printk("%08x ", dw);
942 b += sizeof(u32);
943 }
944 printk("\n");
945 }
946 #endif
947 }
948 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
949 struct pci_dev *pdev)
950 {
951 #ifdef ATA_DEBUG
952 void __iomem *hc_base = mv_hc_base(mmio_base,
953 port >> MV_PORT_HC_SHIFT);
954 void __iomem *port_base;
955 int start_port, num_ports, p, start_hc, num_hcs, hc;
956
957 if (0 > port) {
958 start_hc = start_port = 0;
959 num_ports = 8; /* shld be benign for 4 port devs */
960 num_hcs = 2;
961 } else {
962 start_hc = port >> MV_PORT_HC_SHIFT;
963 start_port = port;
964 num_ports = num_hcs = 1;
965 }
966 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
967 num_ports > 1 ? num_ports - 1 : start_port);
968
969 if (NULL != pdev) {
970 DPRINTK("PCI config space regs:\n");
971 mv_dump_pci_cfg(pdev, 0x68);
972 }
973 DPRINTK("PCI regs:\n");
974 mv_dump_mem(mmio_base+0xc00, 0x3c);
975 mv_dump_mem(mmio_base+0xd00, 0x34);
976 mv_dump_mem(mmio_base+0xf00, 0x4);
977 mv_dump_mem(mmio_base+0x1d00, 0x6c);
978 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
979 hc_base = mv_hc_base(mmio_base, hc);
980 DPRINTK("HC regs (HC %i):\n", hc);
981 mv_dump_mem(hc_base, 0x1c);
982 }
983 for (p = start_port; p < start_port + num_ports; p++) {
984 port_base = mv_port_base(mmio_base, p);
985 DPRINTK("EDMA regs (port %i):\n", p);
986 mv_dump_mem(port_base, 0x54);
987 DPRINTK("SATA regs (port %i):\n", p);
988 mv_dump_mem(port_base+0x300, 0x60);
989 }
990 #endif
991 }
992
993 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
994 {
995 unsigned int ofs;
996
997 switch (sc_reg_in) {
998 case SCR_STATUS:
999 case SCR_CONTROL:
1000 case SCR_ERROR:
1001 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1002 break;
1003 case SCR_ACTIVE:
1004 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
1005 break;
1006 default:
1007 ofs = 0xffffffffU;
1008 break;
1009 }
1010 return ofs;
1011 }
1012
1013 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
1014 {
1015 unsigned int ofs = mv_scr_offset(sc_reg_in);
1016
1017 if (ofs != 0xffffffffU) {
1018 *val = readl(mv_ap_base(ap) + ofs);
1019 return 0;
1020 } else
1021 return -EINVAL;
1022 }
1023
1024 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1025 {
1026 unsigned int ofs = mv_scr_offset(sc_reg_in);
1027
1028 if (ofs != 0xffffffffU) {
1029 writelfl(val, mv_ap_base(ap) + ofs);
1030 return 0;
1031 } else
1032 return -EINVAL;
1033 }
1034
1035 static void mv6_dev_config(struct ata_device *adev)
1036 {
1037 /*
1038 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1039 *
1040 * Gen-II does not support NCQ over a port multiplier
1041 * (no FIS-based switching).
1042 *
1043 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1044 * See mv_qc_prep() for more info.
1045 */
1046 if (adev->flags & ATA_DFLAG_NCQ) {
1047 if (sata_pmp_attached(adev->link->ap)) {
1048 adev->flags &= ~ATA_DFLAG_NCQ;
1049 ata_dev_printk(adev, KERN_INFO,
1050 "NCQ disabled for command-based switching\n");
1051 } else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
1052 adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
1053 ata_dev_printk(adev, KERN_INFO,
1054 "max_sectors limited to %u for NCQ\n",
1055 adev->max_sectors);
1056 }
1057 }
1058 }
1059
1060 static void mv_config_fbs(void __iomem *port_mmio, int enable_fbs)
1061 {
1062 u32 old_fcfg, new_fcfg, old_ltmode, new_ltmode;
1063 /*
1064 * Various bit settings required for operation
1065 * in FIS-based switching (fbs) mode on GenIIe:
1066 */
1067 old_fcfg = readl(port_mmio + FIS_CFG_OFS);
1068 old_ltmode = readl(port_mmio + LTMODE_OFS);
1069 if (enable_fbs) {
1070 new_fcfg = old_fcfg | FIS_CFG_SINGLE_SYNC;
1071 new_ltmode = old_ltmode | LTMODE_BIT8;
1072 } else { /* disable fbs */
1073 new_fcfg = old_fcfg & ~FIS_CFG_SINGLE_SYNC;
1074 new_ltmode = old_ltmode & ~LTMODE_BIT8;
1075 }
1076 if (new_fcfg != old_fcfg)
1077 writelfl(new_fcfg, port_mmio + FIS_CFG_OFS);
1078 if (new_ltmode != old_ltmode)
1079 writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1080 }
1081
1082 static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1083 {
1084 u32 cfg;
1085 struct mv_port_priv *pp = ap->private_data;
1086 struct mv_host_priv *hpriv = ap->host->private_data;
1087 void __iomem *port_mmio = mv_ap_base(ap);
1088
1089 /* set up non-NCQ EDMA configuration */
1090 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1091
1092 if (IS_GEN_I(hpriv))
1093 cfg |= (1 << 8); /* enab config burst size mask */
1094
1095 else if (IS_GEN_II(hpriv))
1096 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1097
1098 else if (IS_GEN_IIE(hpriv)) {
1099 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1100 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1101 cfg |= (1 << 18); /* enab early completion */
1102 cfg |= (1 << 17); /* enab cut-through (dis stor&forwrd) */
1103
1104 if (want_ncq && sata_pmp_attached(ap)) {
1105 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1106 mv_config_fbs(port_mmio, 1);
1107 } else {
1108 mv_config_fbs(port_mmio, 0);
1109 }
1110 }
1111
1112 if (want_ncq) {
1113 cfg |= EDMA_CFG_NCQ;
1114 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1115 } else
1116 pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1117
1118 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1119 }
1120
1121 static void mv_port_free_dma_mem(struct ata_port *ap)
1122 {
1123 struct mv_host_priv *hpriv = ap->host->private_data;
1124 struct mv_port_priv *pp = ap->private_data;
1125 int tag;
1126
1127 if (pp->crqb) {
1128 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1129 pp->crqb = NULL;
1130 }
1131 if (pp->crpb) {
1132 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1133 pp->crpb = NULL;
1134 }
1135 /*
1136 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1137 * For later hardware, we have one unique sg_tbl per NCQ tag.
1138 */
1139 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1140 if (pp->sg_tbl[tag]) {
1141 if (tag == 0 || !IS_GEN_I(hpriv))
1142 dma_pool_free(hpriv->sg_tbl_pool,
1143 pp->sg_tbl[tag],
1144 pp->sg_tbl_dma[tag]);
1145 pp->sg_tbl[tag] = NULL;
1146 }
1147 }
1148 }
1149
1150 /**
1151 * mv_port_start - Port specific init/start routine.
1152 * @ap: ATA channel to manipulate
1153 *
1154 * Allocate and point to DMA memory, init port private memory,
1155 * zero indices.
1156 *
1157 * LOCKING:
1158 * Inherited from caller.
1159 */
1160 static int mv_port_start(struct ata_port *ap)
1161 {
1162 struct device *dev = ap->host->dev;
1163 struct mv_host_priv *hpriv = ap->host->private_data;
1164 struct mv_port_priv *pp;
1165 int tag;
1166
1167 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1168 if (!pp)
1169 return -ENOMEM;
1170 ap->private_data = pp;
1171
1172 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1173 if (!pp->crqb)
1174 return -ENOMEM;
1175 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1176
1177 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1178 if (!pp->crpb)
1179 goto out_port_free_dma_mem;
1180 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1181
1182 /*
1183 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1184 * For later hardware, we need one unique sg_tbl per NCQ tag.
1185 */
1186 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1187 if (tag == 0 || !IS_GEN_I(hpriv)) {
1188 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1189 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1190 if (!pp->sg_tbl[tag])
1191 goto out_port_free_dma_mem;
1192 } else {
1193 pp->sg_tbl[tag] = pp->sg_tbl[0];
1194 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1195 }
1196 }
1197 return 0;
1198
1199 out_port_free_dma_mem:
1200 mv_port_free_dma_mem(ap);
1201 return -ENOMEM;
1202 }
1203
1204 /**
1205 * mv_port_stop - Port specific cleanup/stop routine.
1206 * @ap: ATA channel to manipulate
1207 *
1208 * Stop DMA, cleanup port memory.
1209 *
1210 * LOCKING:
1211 * This routine uses the host lock to protect the DMA stop.
1212 */
1213 static void mv_port_stop(struct ata_port *ap)
1214 {
1215 mv_stop_edma(ap);
1216 mv_port_free_dma_mem(ap);
1217 }
1218
1219 /**
1220 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1221 * @qc: queued command whose SG list to source from
1222 *
1223 * Populate the SG list and mark the last entry.
1224 *
1225 * LOCKING:
1226 * Inherited from caller.
1227 */
1228 static void mv_fill_sg(struct ata_queued_cmd *qc)
1229 {
1230 struct mv_port_priv *pp = qc->ap->private_data;
1231 struct scatterlist *sg;
1232 struct mv_sg *mv_sg, *last_sg = NULL;
1233 unsigned int si;
1234
1235 mv_sg = pp->sg_tbl[qc->tag];
1236 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1237 dma_addr_t addr = sg_dma_address(sg);
1238 u32 sg_len = sg_dma_len(sg);
1239
1240 while (sg_len) {
1241 u32 offset = addr & 0xffff;
1242 u32 len = sg_len;
1243
1244 if ((offset + sg_len > 0x10000))
1245 len = 0x10000 - offset;
1246
1247 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1248 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1249 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1250
1251 sg_len -= len;
1252 addr += len;
1253
1254 last_sg = mv_sg;
1255 mv_sg++;
1256 }
1257 }
1258
1259 if (likely(last_sg))
1260 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1261 }
1262
1263 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1264 {
1265 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1266 (last ? CRQB_CMD_LAST : 0);
1267 *cmdw = cpu_to_le16(tmp);
1268 }
1269
1270 /**
1271 * mv_qc_prep - Host specific command preparation.
1272 * @qc: queued command to prepare
1273 *
1274 * This routine simply redirects to the general purpose routine
1275 * if command is not DMA. Else, it handles prep of the CRQB
1276 * (command request block), does some sanity checking, and calls
1277 * the SG load routine.
1278 *
1279 * LOCKING:
1280 * Inherited from caller.
1281 */
1282 static void mv_qc_prep(struct ata_queued_cmd *qc)
1283 {
1284 struct ata_port *ap = qc->ap;
1285 struct mv_port_priv *pp = ap->private_data;
1286 __le16 *cw;
1287 struct ata_taskfile *tf;
1288 u16 flags = 0;
1289 unsigned in_index;
1290
1291 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1292 (qc->tf.protocol != ATA_PROT_NCQ))
1293 return;
1294
1295 /* Fill in command request block
1296 */
1297 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1298 flags |= CRQB_FLAG_READ;
1299 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1300 flags |= qc->tag << CRQB_TAG_SHIFT;
1301 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1302
1303 /* get current queue index from software */
1304 in_index = pp->req_idx;
1305
1306 pp->crqb[in_index].sg_addr =
1307 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1308 pp->crqb[in_index].sg_addr_hi =
1309 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1310 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1311
1312 cw = &pp->crqb[in_index].ata_cmd[0];
1313 tf = &qc->tf;
1314
1315 /* Sadly, the CRQB cannot accomodate all registers--there are
1316 * only 11 bytes...so we must pick and choose required
1317 * registers based on the command. So, we drop feature and
1318 * hob_feature for [RW] DMA commands, but they are needed for
1319 * NCQ. NCQ will drop hob_nsect.
1320 */
1321 switch (tf->command) {
1322 case ATA_CMD_READ:
1323 case ATA_CMD_READ_EXT:
1324 case ATA_CMD_WRITE:
1325 case ATA_CMD_WRITE_EXT:
1326 case ATA_CMD_WRITE_FUA_EXT:
1327 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1328 break;
1329 case ATA_CMD_FPDMA_READ:
1330 case ATA_CMD_FPDMA_WRITE:
1331 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1332 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1333 break;
1334 default:
1335 /* The only other commands EDMA supports in non-queued and
1336 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1337 * of which are defined/used by Linux. If we get here, this
1338 * driver needs work.
1339 *
1340 * FIXME: modify libata to give qc_prep a return value and
1341 * return error here.
1342 */
1343 BUG_ON(tf->command);
1344 break;
1345 }
1346 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1347 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1348 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1349 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1350 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1351 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1352 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1353 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1354 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1355
1356 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1357 return;
1358 mv_fill_sg(qc);
1359 }
1360
1361 /**
1362 * mv_qc_prep_iie - Host specific command preparation.
1363 * @qc: queued command to prepare
1364 *
1365 * This routine simply redirects to the general purpose routine
1366 * if command is not DMA. Else, it handles prep of the CRQB
1367 * (command request block), does some sanity checking, and calls
1368 * the SG load routine.
1369 *
1370 * LOCKING:
1371 * Inherited from caller.
1372 */
1373 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1374 {
1375 struct ata_port *ap = qc->ap;
1376 struct mv_port_priv *pp = ap->private_data;
1377 struct mv_crqb_iie *crqb;
1378 struct ata_taskfile *tf;
1379 unsigned in_index;
1380 u32 flags = 0;
1381
1382 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1383 (qc->tf.protocol != ATA_PROT_NCQ))
1384 return;
1385
1386 /* Fill in Gen IIE command request block */
1387 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1388 flags |= CRQB_FLAG_READ;
1389
1390 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1391 flags |= qc->tag << CRQB_TAG_SHIFT;
1392 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1393 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1394
1395 /* get current queue index from software */
1396 in_index = pp->req_idx;
1397
1398 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1399 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1400 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1401 crqb->flags = cpu_to_le32(flags);
1402
1403 tf = &qc->tf;
1404 crqb->ata_cmd[0] = cpu_to_le32(
1405 (tf->command << 16) |
1406 (tf->feature << 24)
1407 );
1408 crqb->ata_cmd[1] = cpu_to_le32(
1409 (tf->lbal << 0) |
1410 (tf->lbam << 8) |
1411 (tf->lbah << 16) |
1412 (tf->device << 24)
1413 );
1414 crqb->ata_cmd[2] = cpu_to_le32(
1415 (tf->hob_lbal << 0) |
1416 (tf->hob_lbam << 8) |
1417 (tf->hob_lbah << 16) |
1418 (tf->hob_feature << 24)
1419 );
1420 crqb->ata_cmd[3] = cpu_to_le32(
1421 (tf->nsect << 0) |
1422 (tf->hob_nsect << 8)
1423 );
1424
1425 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1426 return;
1427 mv_fill_sg(qc);
1428 }
1429
1430 /**
1431 * mv_qc_issue - Initiate a command to the host
1432 * @qc: queued command to start
1433 *
1434 * This routine simply redirects to the general purpose routine
1435 * if command is not DMA. Else, it sanity checks our local
1436 * caches of the request producer/consumer indices then enables
1437 * DMA and bumps the request producer index.
1438 *
1439 * LOCKING:
1440 * Inherited from caller.
1441 */
1442 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1443 {
1444 struct ata_port *ap = qc->ap;
1445 void __iomem *port_mmio = mv_ap_base(ap);
1446 struct mv_port_priv *pp = ap->private_data;
1447 u32 in_index;
1448
1449 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1450 (qc->tf.protocol != ATA_PROT_NCQ)) {
1451 /*
1452 * We're about to send a non-EDMA capable command to the
1453 * port. Turn off EDMA so there won't be problems accessing
1454 * shadow block, etc registers.
1455 */
1456 mv_stop_edma(ap);
1457 mv_pmp_select(ap, qc->dev->link->pmp);
1458 return ata_sff_qc_issue(qc);
1459 }
1460
1461 mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1462
1463 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1464 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1465
1466 /* and write the request in pointer to kick the EDMA to life */
1467 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1468 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1469
1470 return 0;
1471 }
1472
1473 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1474 {
1475 struct mv_port_priv *pp = ap->private_data;
1476 struct ata_queued_cmd *qc;
1477
1478 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1479 return NULL;
1480 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1481 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1482 qc = NULL;
1483 return qc;
1484 }
1485
1486 static void mv_unexpected_intr(struct ata_port *ap)
1487 {
1488 struct mv_port_priv *pp = ap->private_data;
1489 struct ata_eh_info *ehi = &ap->link.eh_info;
1490 char *when = "";
1491
1492 /*
1493 * We got a device interrupt from something that
1494 * was supposed to be using EDMA or polling.
1495 */
1496 ata_ehi_clear_desc(ehi);
1497 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1498 when = " while EDMA enabled";
1499 } else {
1500 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1501 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1502 when = " while polling";
1503 }
1504 ata_ehi_push_desc(ehi, "unexpected device interrupt%s", when);
1505 ehi->err_mask |= AC_ERR_OTHER;
1506 ehi->action |= ATA_EH_RESET;
1507 ata_port_freeze(ap);
1508 }
1509
1510 /**
1511 * mv_err_intr - Handle error interrupts on the port
1512 * @ap: ATA channel to manipulate
1513 * @qc: affected command (non-NCQ), or NULL
1514 *
1515 * Most cases require a full reset of the chip's state machine,
1516 * which also performs a COMRESET.
1517 * Also, if the port disabled DMA, update our cached copy to match.
1518 *
1519 * LOCKING:
1520 * Inherited from caller.
1521 */
1522 static void mv_err_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1523 {
1524 void __iomem *port_mmio = mv_ap_base(ap);
1525 u32 edma_err_cause, eh_freeze_mask, serr = 0;
1526 struct mv_port_priv *pp = ap->private_data;
1527 struct mv_host_priv *hpriv = ap->host->private_data;
1528 unsigned int action = 0, err_mask = 0;
1529 struct ata_eh_info *ehi = &ap->link.eh_info;
1530
1531 ata_ehi_clear_desc(ehi);
1532
1533 /*
1534 * Read and clear the err_cause bits. This won't actually
1535 * clear for some errors (eg. SError), but we will be doing
1536 * a hard reset in those cases regardless, which *will* clear it.
1537 */
1538 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1539 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1540
1541 ata_ehi_push_desc(ehi, "edma_err_cause=%08x", edma_err_cause);
1542
1543 /*
1544 * All generations share these EDMA error cause bits:
1545 */
1546 if (edma_err_cause & EDMA_ERR_DEV)
1547 err_mask |= AC_ERR_DEV;
1548 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1549 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1550 EDMA_ERR_INTRL_PAR)) {
1551 err_mask |= AC_ERR_ATA_BUS;
1552 action |= ATA_EH_RESET;
1553 ata_ehi_push_desc(ehi, "parity error");
1554 }
1555 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1556 ata_ehi_hotplugged(ehi);
1557 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1558 "dev disconnect" : "dev connect");
1559 action |= ATA_EH_RESET;
1560 }
1561
1562 /*
1563 * Gen-I has a different SELF_DIS bit,
1564 * different FREEZE bits, and no SERR bit:
1565 */
1566 if (IS_GEN_I(hpriv)) {
1567 eh_freeze_mask = EDMA_EH_FREEZE_5;
1568 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1569 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1570 ata_ehi_push_desc(ehi, "EDMA self-disable");
1571 }
1572 } else {
1573 eh_freeze_mask = EDMA_EH_FREEZE;
1574 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1575 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1576 ata_ehi_push_desc(ehi, "EDMA self-disable");
1577 }
1578 if (edma_err_cause & EDMA_ERR_SERR) {
1579 /*
1580 * Ensure that we read our own SCR, not a pmp link SCR:
1581 */
1582 ap->ops->scr_read(ap, SCR_ERROR, &serr);
1583 /*
1584 * Don't clear SError here; leave it for libata-eh:
1585 */
1586 ata_ehi_push_desc(ehi, "SError=%08x", serr);
1587 err_mask |= AC_ERR_ATA_BUS;
1588 action |= ATA_EH_RESET;
1589 }
1590 }
1591
1592 if (!err_mask) {
1593 err_mask = AC_ERR_OTHER;
1594 action |= ATA_EH_RESET;
1595 }
1596
1597 ehi->serror |= serr;
1598 ehi->action |= action;
1599
1600 if (qc)
1601 qc->err_mask |= err_mask;
1602 else
1603 ehi->err_mask |= err_mask;
1604
1605 if (edma_err_cause & eh_freeze_mask)
1606 ata_port_freeze(ap);
1607 else
1608 ata_port_abort(ap);
1609 }
1610
1611 static void mv_process_crpb_response(struct ata_port *ap,
1612 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1613 {
1614 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
1615
1616 if (qc) {
1617 u8 ata_status;
1618 u16 edma_status = le16_to_cpu(response->flags);
1619 /*
1620 * edma_status from a response queue entry:
1621 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1622 * MSB is saved ATA status from command completion.
1623 */
1624 if (!ncq_enabled) {
1625 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
1626 if (err_cause) {
1627 /*
1628 * Error will be seen/handled by mv_err_intr().
1629 * So do nothing at all here.
1630 */
1631 return;
1632 }
1633 }
1634 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
1635 qc->err_mask |= ac_err_mask(ata_status);
1636 ata_qc_complete(qc);
1637 } else {
1638 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
1639 __func__, tag);
1640 }
1641 }
1642
1643 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
1644 {
1645 void __iomem *port_mmio = mv_ap_base(ap);
1646 struct mv_host_priv *hpriv = ap->host->private_data;
1647 u32 in_index;
1648 bool work_done = false;
1649 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
1650
1651 /* Get the hardware queue position index */
1652 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1653 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1654
1655 /* Process new responses from since the last time we looked */
1656 while (in_index != pp->resp_idx) {
1657 unsigned int tag;
1658 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
1659
1660 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1661
1662 if (IS_GEN_I(hpriv)) {
1663 /* 50xx: no NCQ, only one command active at a time */
1664 tag = ap->link.active_tag;
1665 } else {
1666 /* Gen II/IIE: get command tag from CRPB entry */
1667 tag = le16_to_cpu(response->id) & 0x1f;
1668 }
1669 mv_process_crpb_response(ap, response, tag, ncq_enabled);
1670 work_done = true;
1671 }
1672
1673 /* Update the software queue position index in hardware */
1674 if (work_done)
1675 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
1676 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
1677 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1678 }
1679
1680 /**
1681 * mv_host_intr - Handle all interrupts on the given host controller
1682 * @host: host specific structure
1683 * @main_irq_cause: Main interrupt cause register for the chip.
1684 *
1685 * LOCKING:
1686 * Inherited from caller.
1687 */
1688 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
1689 {
1690 struct mv_host_priv *hpriv = host->private_data;
1691 void __iomem *mmio = hpriv->base, *hc_mmio = NULL;
1692 u32 hc_irq_cause = 0;
1693 unsigned int handled = 0, port;
1694
1695 for (port = 0; port < hpriv->n_ports; port++) {
1696 struct ata_port *ap = host->ports[port];
1697 struct mv_port_priv *pp;
1698 unsigned int shift, hardport, port_cause;
1699 /*
1700 * When we move to the second hc, flag our cached
1701 * copies of hc_mmio (and hc_irq_cause) as invalid again.
1702 */
1703 if (port == MV_PORTS_PER_HC)
1704 hc_mmio = NULL;
1705 /*
1706 * Do nothing if port is not interrupting or is disabled:
1707 */
1708 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1709 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
1710 if (!port_cause || !ap || (ap->flags & ATA_FLAG_DISABLED))
1711 continue;
1712 /*
1713 * Each hc within the host has its own hc_irq_cause register.
1714 * We defer reading it until we know we need it, right now:
1715 *
1716 * FIXME later: we don't really need to read this register
1717 * (some logic changes required below if we go that way),
1718 * because it doesn't tell us anything new. But we do need
1719 * to write to it, outside the top of this loop,
1720 * to reset the interrupt triggers for next time.
1721 */
1722 if (!hc_mmio) {
1723 hc_mmio = mv_hc_base_from_port(mmio, port);
1724 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1725 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1726 handled = 1;
1727 }
1728 /*
1729 * Process completed CRPB response(s) before other events.
1730 */
1731 pp = ap->private_data;
1732 if (hc_irq_cause & (DMA_IRQ << hardport)) {
1733 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN)
1734 mv_process_crpb_entries(ap, pp);
1735 }
1736 /*
1737 * Handle chip-reported errors, or continue on to handle PIO.
1738 */
1739 if (unlikely(port_cause & ERR_IRQ)) {
1740 mv_err_intr(ap, mv_get_active_qc(ap));
1741 } else if (hc_irq_cause & (DEV_IRQ << hardport)) {
1742 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1743 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
1744 if (qc) {
1745 ata_sff_host_intr(ap, qc);
1746 continue;
1747 }
1748 }
1749 mv_unexpected_intr(ap);
1750 }
1751 }
1752 return handled;
1753 }
1754
1755 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
1756 {
1757 struct mv_host_priv *hpriv = host->private_data;
1758 struct ata_port *ap;
1759 struct ata_queued_cmd *qc;
1760 struct ata_eh_info *ehi;
1761 unsigned int i, err_mask, printed = 0;
1762 u32 err_cause;
1763
1764 err_cause = readl(mmio + hpriv->irq_cause_ofs);
1765
1766 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
1767 err_cause);
1768
1769 DPRINTK("All regs @ PCI error\n");
1770 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
1771
1772 writelfl(0, mmio + hpriv->irq_cause_ofs);
1773
1774 for (i = 0; i < host->n_ports; i++) {
1775 ap = host->ports[i];
1776 if (!ata_link_offline(&ap->link)) {
1777 ehi = &ap->link.eh_info;
1778 ata_ehi_clear_desc(ehi);
1779 if (!printed++)
1780 ata_ehi_push_desc(ehi,
1781 "PCI err cause 0x%08x", err_cause);
1782 err_mask = AC_ERR_HOST_BUS;
1783 ehi->action = ATA_EH_RESET;
1784 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1785 if (qc)
1786 qc->err_mask |= err_mask;
1787 else
1788 ehi->err_mask |= err_mask;
1789
1790 ata_port_freeze(ap);
1791 }
1792 }
1793 return 1; /* handled */
1794 }
1795
1796 /**
1797 * mv_interrupt - Main interrupt event handler
1798 * @irq: unused
1799 * @dev_instance: private data; in this case the host structure
1800 *
1801 * Read the read only register to determine if any host
1802 * controllers have pending interrupts. If so, call lower level
1803 * routine to handle. Also check for PCI errors which are only
1804 * reported here.
1805 *
1806 * LOCKING:
1807 * This routine holds the host lock while processing pending
1808 * interrupts.
1809 */
1810 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
1811 {
1812 struct ata_host *host = dev_instance;
1813 struct mv_host_priv *hpriv = host->private_data;
1814 unsigned int handled = 0;
1815 u32 main_irq_cause, main_irq_mask;
1816
1817 spin_lock(&host->lock);
1818 main_irq_cause = readl(hpriv->main_irq_cause_addr);
1819 main_irq_mask = readl(hpriv->main_irq_mask_addr);
1820 /*
1821 * Deal with cases where we either have nothing pending, or have read
1822 * a bogus register value which can indicate HW removal or PCI fault.
1823 */
1824 if ((main_irq_cause & main_irq_mask) && (main_irq_cause != 0xffffffffU)) {
1825 if (unlikely((main_irq_cause & PCI_ERR) && HAS_PCI(host)))
1826 handled = mv_pci_error(host, hpriv->base);
1827 else
1828 handled = mv_host_intr(host, main_irq_cause);
1829 }
1830 spin_unlock(&host->lock);
1831 return IRQ_RETVAL(handled);
1832 }
1833
1834 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1835 {
1836 unsigned int ofs;
1837
1838 switch (sc_reg_in) {
1839 case SCR_STATUS:
1840 case SCR_ERROR:
1841 case SCR_CONTROL:
1842 ofs = sc_reg_in * sizeof(u32);
1843 break;
1844 default:
1845 ofs = 0xffffffffU;
1846 break;
1847 }
1848 return ofs;
1849 }
1850
1851 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
1852 {
1853 struct mv_host_priv *hpriv = ap->host->private_data;
1854 void __iomem *mmio = hpriv->base;
1855 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1856 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1857
1858 if (ofs != 0xffffffffU) {
1859 *val = readl(addr + ofs);
1860 return 0;
1861 } else
1862 return -EINVAL;
1863 }
1864
1865 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1866 {
1867 struct mv_host_priv *hpriv = ap->host->private_data;
1868 void __iomem *mmio = hpriv->base;
1869 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1870 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1871
1872 if (ofs != 0xffffffffU) {
1873 writelfl(val, addr + ofs);
1874 return 0;
1875 } else
1876 return -EINVAL;
1877 }
1878
1879 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
1880 {
1881 struct pci_dev *pdev = to_pci_dev(host->dev);
1882 int early_5080;
1883
1884 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
1885
1886 if (!early_5080) {
1887 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1888 tmp |= (1 << 0);
1889 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1890 }
1891
1892 mv_reset_pci_bus(host, mmio);
1893 }
1894
1895 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1896 {
1897 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1898 }
1899
1900 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1901 void __iomem *mmio)
1902 {
1903 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1904 u32 tmp;
1905
1906 tmp = readl(phy_mmio + MV5_PHY_MODE);
1907
1908 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1909 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1910 }
1911
1912 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1913 {
1914 u32 tmp;
1915
1916 writel(0, mmio + MV_GPIO_PORT_CTL);
1917
1918 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1919
1920 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1921 tmp |= ~(1 << 0);
1922 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1923 }
1924
1925 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1926 unsigned int port)
1927 {
1928 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1929 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1930 u32 tmp;
1931 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1932
1933 if (fix_apm_sq) {
1934 tmp = readl(phy_mmio + MV5_LT_MODE);
1935 tmp |= (1 << 19);
1936 writel(tmp, phy_mmio + MV5_LT_MODE);
1937
1938 tmp = readl(phy_mmio + MV5_PHY_CTL);
1939 tmp &= ~0x3;
1940 tmp |= 0x1;
1941 writel(tmp, phy_mmio + MV5_PHY_CTL);
1942 }
1943
1944 tmp = readl(phy_mmio + MV5_PHY_MODE);
1945 tmp &= ~mask;
1946 tmp |= hpriv->signal[port].pre;
1947 tmp |= hpriv->signal[port].amps;
1948 writel(tmp, phy_mmio + MV5_PHY_MODE);
1949 }
1950
1951
1952 #undef ZERO
1953 #define ZERO(reg) writel(0, port_mmio + (reg))
1954 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1955 unsigned int port)
1956 {
1957 void __iomem *port_mmio = mv_port_base(mmio, port);
1958
1959 /*
1960 * The datasheet warns against setting ATA_RST when EDMA is active
1961 * (but doesn't say what the problem might be). So we first try
1962 * to disable the EDMA engine before doing the ATA_RST operation.
1963 */
1964 mv_reset_channel(hpriv, mmio, port);
1965
1966 ZERO(0x028); /* command */
1967 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1968 ZERO(0x004); /* timer */
1969 ZERO(0x008); /* irq err cause */
1970 ZERO(0x00c); /* irq err mask */
1971 ZERO(0x010); /* rq bah */
1972 ZERO(0x014); /* rq inp */
1973 ZERO(0x018); /* rq outp */
1974 ZERO(0x01c); /* respq bah */
1975 ZERO(0x024); /* respq outp */
1976 ZERO(0x020); /* respq inp */
1977 ZERO(0x02c); /* test control */
1978 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1979 }
1980 #undef ZERO
1981
1982 #define ZERO(reg) writel(0, hc_mmio + (reg))
1983 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1984 unsigned int hc)
1985 {
1986 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1987 u32 tmp;
1988
1989 ZERO(0x00c);
1990 ZERO(0x010);
1991 ZERO(0x014);
1992 ZERO(0x018);
1993
1994 tmp = readl(hc_mmio + 0x20);
1995 tmp &= 0x1c1c1c1c;
1996 tmp |= 0x03030303;
1997 writel(tmp, hc_mmio + 0x20);
1998 }
1999 #undef ZERO
2000
2001 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2002 unsigned int n_hc)
2003 {
2004 unsigned int hc, port;
2005
2006 for (hc = 0; hc < n_hc; hc++) {
2007 for (port = 0; port < MV_PORTS_PER_HC; port++)
2008 mv5_reset_hc_port(hpriv, mmio,
2009 (hc * MV_PORTS_PER_HC) + port);
2010
2011 mv5_reset_one_hc(hpriv, mmio, hc);
2012 }
2013
2014 return 0;
2015 }
2016
2017 #undef ZERO
2018 #define ZERO(reg) writel(0, mmio + (reg))
2019 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2020 {
2021 struct mv_host_priv *hpriv = host->private_data;
2022 u32 tmp;
2023
2024 tmp = readl(mmio + MV_PCI_MODE);
2025 tmp &= 0xff00ffff;
2026 writel(tmp, mmio + MV_PCI_MODE);
2027
2028 ZERO(MV_PCI_DISC_TIMER);
2029 ZERO(MV_PCI_MSI_TRIGGER);
2030 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
2031 ZERO(PCI_HC_MAIN_IRQ_MASK_OFS);
2032 ZERO(MV_PCI_SERR_MASK);
2033 ZERO(hpriv->irq_cause_ofs);
2034 ZERO(hpriv->irq_mask_ofs);
2035 ZERO(MV_PCI_ERR_LOW_ADDRESS);
2036 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2037 ZERO(MV_PCI_ERR_ATTRIBUTE);
2038 ZERO(MV_PCI_ERR_COMMAND);
2039 }
2040 #undef ZERO
2041
2042 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2043 {
2044 u32 tmp;
2045
2046 mv5_reset_flash(hpriv, mmio);
2047
2048 tmp = readl(mmio + MV_GPIO_PORT_CTL);
2049 tmp &= 0x3;
2050 tmp |= (1 << 5) | (1 << 6);
2051 writel(tmp, mmio + MV_GPIO_PORT_CTL);
2052 }
2053
2054 /**
2055 * mv6_reset_hc - Perform the 6xxx global soft reset
2056 * @mmio: base address of the HBA
2057 *
2058 * This routine only applies to 6xxx parts.
2059 *
2060 * LOCKING:
2061 * Inherited from caller.
2062 */
2063 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2064 unsigned int n_hc)
2065 {
2066 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2067 int i, rc = 0;
2068 u32 t;
2069
2070 /* Following procedure defined in PCI "main command and status
2071 * register" table.
2072 */
2073 t = readl(reg);
2074 writel(t | STOP_PCI_MASTER, reg);
2075
2076 for (i = 0; i < 1000; i++) {
2077 udelay(1);
2078 t = readl(reg);
2079 if (PCI_MASTER_EMPTY & t)
2080 break;
2081 }
2082 if (!(PCI_MASTER_EMPTY & t)) {
2083 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2084 rc = 1;
2085 goto done;
2086 }
2087
2088 /* set reset */
2089 i = 5;
2090 do {
2091 writel(t | GLOB_SFT_RST, reg);
2092 t = readl(reg);
2093 udelay(1);
2094 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
2095
2096 if (!(GLOB_SFT_RST & t)) {
2097 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2098 rc = 1;
2099 goto done;
2100 }
2101
2102 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2103 i = 5;
2104 do {
2105 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2106 t = readl(reg);
2107 udelay(1);
2108 } while ((GLOB_SFT_RST & t) && (i-- > 0));
2109
2110 if (GLOB_SFT_RST & t) {
2111 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2112 rc = 1;
2113 }
2114 done:
2115 return rc;
2116 }
2117
2118 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2119 void __iomem *mmio)
2120 {
2121 void __iomem *port_mmio;
2122 u32 tmp;
2123
2124 tmp = readl(mmio + MV_RESET_CFG);
2125 if ((tmp & (1 << 0)) == 0) {
2126 hpriv->signal[idx].amps = 0x7 << 8;
2127 hpriv->signal[idx].pre = 0x1 << 5;
2128 return;
2129 }
2130
2131 port_mmio = mv_port_base(mmio, idx);
2132 tmp = readl(port_mmio + PHY_MODE2);
2133
2134 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2135 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2136 }
2137
2138 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2139 {
2140 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
2141 }
2142
2143 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2144 unsigned int port)
2145 {
2146 void __iomem *port_mmio = mv_port_base(mmio, port);
2147
2148 u32 hp_flags = hpriv->hp_flags;
2149 int fix_phy_mode2 =
2150 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2151 int fix_phy_mode4 =
2152 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2153 u32 m2, tmp;
2154
2155 if (fix_phy_mode2) {
2156 m2 = readl(port_mmio + PHY_MODE2);
2157 m2 &= ~(1 << 16);
2158 m2 |= (1 << 31);
2159 writel(m2, port_mmio + PHY_MODE2);
2160
2161 udelay(200);
2162
2163 m2 = readl(port_mmio + PHY_MODE2);
2164 m2 &= ~((1 << 16) | (1 << 31));
2165 writel(m2, port_mmio + PHY_MODE2);
2166
2167 udelay(200);
2168 }
2169
2170 /* who knows what this magic does */
2171 tmp = readl(port_mmio + PHY_MODE3);
2172 tmp &= ~0x7F800000;
2173 tmp |= 0x2A800000;
2174 writel(tmp, port_mmio + PHY_MODE3);
2175
2176 if (fix_phy_mode4) {
2177 u32 m4;
2178
2179 m4 = readl(port_mmio + PHY_MODE4);
2180
2181 if (hp_flags & MV_HP_ERRATA_60X1B2)
2182 tmp = readl(port_mmio + PHY_MODE3);
2183
2184 /* workaround for errata FEr SATA#10 (part 1) */
2185 m4 = (m4 & ~(1 << 1)) | (1 << 0);
2186
2187 writel(m4, port_mmio + PHY_MODE4);
2188
2189 if (hp_flags & MV_HP_ERRATA_60X1B2)
2190 writel(tmp, port_mmio + PHY_MODE3);
2191 }
2192
2193 /* Revert values of pre-emphasis and signal amps to the saved ones */
2194 m2 = readl(port_mmio + PHY_MODE2);
2195
2196 m2 &= ~MV_M2_PREAMP_MASK;
2197 m2 |= hpriv->signal[port].amps;
2198 m2 |= hpriv->signal[port].pre;
2199 m2 &= ~(1 << 16);
2200
2201 /* according to mvSata 3.6.1, some IIE values are fixed */
2202 if (IS_GEN_IIE(hpriv)) {
2203 m2 &= ~0xC30FF01F;
2204 m2 |= 0x0000900F;
2205 }
2206
2207 writel(m2, port_mmio + PHY_MODE2);
2208 }
2209
2210 /* TODO: use the generic LED interface to configure the SATA Presence */
2211 /* & Acitivy LEDs on the board */
2212 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2213 void __iomem *mmio)
2214 {
2215 return;
2216 }
2217
2218 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2219 void __iomem *mmio)
2220 {
2221 void __iomem *port_mmio;
2222 u32 tmp;
2223
2224 port_mmio = mv_port_base(mmio, idx);
2225 tmp = readl(port_mmio + PHY_MODE2);
2226
2227 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2228 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2229 }
2230
2231 #undef ZERO
2232 #define ZERO(reg) writel(0, port_mmio + (reg))
2233 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2234 void __iomem *mmio, unsigned int port)
2235 {
2236 void __iomem *port_mmio = mv_port_base(mmio, port);
2237
2238 /*
2239 * The datasheet warns against setting ATA_RST when EDMA is active
2240 * (but doesn't say what the problem might be). So we first try
2241 * to disable the EDMA engine before doing the ATA_RST operation.
2242 */
2243 mv_reset_channel(hpriv, mmio, port);
2244
2245 ZERO(0x028); /* command */
2246 writel(0x101f, port_mmio + EDMA_CFG_OFS);
2247 ZERO(0x004); /* timer */
2248 ZERO(0x008); /* irq err cause */
2249 ZERO(0x00c); /* irq err mask */
2250 ZERO(0x010); /* rq bah */
2251 ZERO(0x014); /* rq inp */
2252 ZERO(0x018); /* rq outp */
2253 ZERO(0x01c); /* respq bah */
2254 ZERO(0x024); /* respq outp */
2255 ZERO(0x020); /* respq inp */
2256 ZERO(0x02c); /* test control */
2257 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
2258 }
2259
2260 #undef ZERO
2261
2262 #define ZERO(reg) writel(0, hc_mmio + (reg))
2263 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2264 void __iomem *mmio)
2265 {
2266 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2267
2268 ZERO(0x00c);
2269 ZERO(0x010);
2270 ZERO(0x014);
2271
2272 }
2273
2274 #undef ZERO
2275
2276 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2277 void __iomem *mmio, unsigned int n_hc)
2278 {
2279 unsigned int port;
2280
2281 for (port = 0; port < hpriv->n_ports; port++)
2282 mv_soc_reset_hc_port(hpriv, mmio, port);
2283
2284 mv_soc_reset_one_hc(hpriv, mmio);
2285
2286 return 0;
2287 }
2288
2289 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2290 void __iomem *mmio)
2291 {
2292 return;
2293 }
2294
2295 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2296 {
2297 return;
2298 }
2299
2300 static void mv_setup_ifctl(void __iomem *port_mmio, int want_gen2i)
2301 {
2302 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CFG);
2303
2304 ifctl = (ifctl & 0xf7f) | 0x9b1000; /* from chip spec */
2305 if (want_gen2i)
2306 ifctl |= (1 << 7); /* enable gen2i speed */
2307 writelfl(ifctl, port_mmio + SATA_INTERFACE_CFG);
2308 }
2309
2310 /*
2311 * Caller must ensure that EDMA is not active,
2312 * by first doing mv_stop_edma() where needed.
2313 */
2314 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2315 unsigned int port_no)
2316 {
2317 void __iomem *port_mmio = mv_port_base(mmio, port_no);
2318
2319 mv_stop_edma_engine(port_mmio);
2320 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
2321
2322 if (!IS_GEN_I(hpriv)) {
2323 /* Enable 3.0gb/s link speed */
2324 mv_setup_ifctl(port_mmio, 1);
2325 }
2326 /*
2327 * Strobing ATA_RST here causes a hard reset of the SATA transport,
2328 * link, and physical layers. It resets all SATA interface registers
2329 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2330 */
2331 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
2332 udelay(25); /* allow reset propagation */
2333 writelfl(0, port_mmio + EDMA_CMD_OFS);
2334
2335 hpriv->ops->phy_errata(hpriv, mmio, port_no);
2336
2337 if (IS_GEN_I(hpriv))
2338 mdelay(1);
2339 }
2340
2341 static void mv_pmp_select(struct ata_port *ap, int pmp)
2342 {
2343 if (sata_pmp_supported(ap)) {
2344 void __iomem *port_mmio = mv_ap_base(ap);
2345 u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2346 int old = reg & 0xf;
2347
2348 if (old != pmp) {
2349 reg = (reg & ~0xf) | pmp;
2350 writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2351 }
2352 }
2353 }
2354
2355 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2356 unsigned long deadline)
2357 {
2358 mv_pmp_select(link->ap, sata_srst_pmp(link));
2359 return sata_std_hardreset(link, class, deadline);
2360 }
2361
2362 static int mv_softreset(struct ata_link *link, unsigned int *class,
2363 unsigned long deadline)
2364 {
2365 mv_pmp_select(link->ap, sata_srst_pmp(link));
2366 return ata_sff_softreset(link, class, deadline);
2367 }
2368
2369 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2370 unsigned long deadline)
2371 {
2372 struct ata_port *ap = link->ap;
2373 struct mv_host_priv *hpriv = ap->host->private_data;
2374 struct mv_port_priv *pp = ap->private_data;
2375 void __iomem *mmio = hpriv->base;
2376 int rc, attempts = 0, extra = 0;
2377 u32 sstatus;
2378 bool online;
2379
2380 mv_reset_channel(hpriv, mmio, ap->port_no);
2381 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2382
2383 /* Workaround for errata FEr SATA#10 (part 2) */
2384 do {
2385 const unsigned long *timing =
2386 sata_ehc_deb_timing(&link->eh_context);
2387
2388 rc = sata_link_hardreset(link, timing, deadline + extra,
2389 &online, NULL);
2390 if (rc)
2391 return rc;
2392 sata_scr_read(link, SCR_STATUS, &sstatus);
2393 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2394 /* Force 1.5gb/s link speed and try again */
2395 mv_setup_ifctl(mv_ap_base(ap), 0);
2396 if (time_after(jiffies + HZ, deadline))
2397 extra = HZ; /* only extend it once, max */
2398 }
2399 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2400
2401 return rc;
2402 }
2403
2404 static void mv_eh_freeze(struct ata_port *ap)
2405 {
2406 struct mv_host_priv *hpriv = ap->host->private_data;
2407 unsigned int shift, hardport, port = ap->port_no;
2408 u32 main_irq_mask;
2409
2410 /* FIXME: handle coalescing completion events properly */
2411
2412 mv_stop_edma(ap);
2413 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2414
2415 /* disable assertion of portN err, done events */
2416 main_irq_mask = readl(hpriv->main_irq_mask_addr);
2417 main_irq_mask &= ~((DONE_IRQ | ERR_IRQ) << shift);
2418 writelfl(main_irq_mask, hpriv->main_irq_mask_addr);
2419 }
2420
2421 static void mv_eh_thaw(struct ata_port *ap)
2422 {
2423 struct mv_host_priv *hpriv = ap->host->private_data;
2424 unsigned int shift, hardport, port = ap->port_no;
2425 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2426 void __iomem *port_mmio = mv_ap_base(ap);
2427 u32 main_irq_mask, hc_irq_cause;
2428
2429 /* FIXME: handle coalescing completion events properly */
2430
2431 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2432
2433 /* clear EDMA errors on this port */
2434 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2435
2436 /* clear pending irq events */
2437 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2438 hc_irq_cause &= ~((DEV_IRQ | DMA_IRQ) << hardport);
2439 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2440
2441 /* enable assertion of portN err, done events */
2442 main_irq_mask = readl(hpriv->main_irq_mask_addr);
2443 main_irq_mask |= ((DONE_IRQ | ERR_IRQ) << shift);
2444 writelfl(main_irq_mask, hpriv->main_irq_mask_addr);
2445 }
2446
2447 /**
2448 * mv_port_init - Perform some early initialization on a single port.
2449 * @port: libata data structure storing shadow register addresses
2450 * @port_mmio: base address of the port
2451 *
2452 * Initialize shadow register mmio addresses, clear outstanding
2453 * interrupts on the port, and unmask interrupts for the future
2454 * start of the port.
2455 *
2456 * LOCKING:
2457 * Inherited from caller.
2458 */
2459 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2460 {
2461 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2462 unsigned serr_ofs;
2463
2464 /* PIO related setup
2465 */
2466 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2467 port->error_addr =
2468 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2469 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2470 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2471 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2472 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2473 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2474 port->status_addr =
2475 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2476 /* special case: control/altstatus doesn't have ATA_REG_ address */
2477 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2478
2479 /* unused: */
2480 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2481
2482 /* Clear any currently outstanding port interrupt conditions */
2483 serr_ofs = mv_scr_offset(SCR_ERROR);
2484 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2485 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2486
2487 /* unmask all non-transient EDMA error interrupts */
2488 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2489
2490 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2491 readl(port_mmio + EDMA_CFG_OFS),
2492 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2493 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2494 }
2495
2496 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2497 {
2498 struct pci_dev *pdev = to_pci_dev(host->dev);
2499 struct mv_host_priv *hpriv = host->private_data;
2500 u32 hp_flags = hpriv->hp_flags;
2501
2502 switch (board_idx) {
2503 case chip_5080:
2504 hpriv->ops = &mv5xxx_ops;
2505 hp_flags |= MV_HP_GEN_I;
2506
2507 switch (pdev->revision) {
2508 case 0x1:
2509 hp_flags |= MV_HP_ERRATA_50XXB0;
2510 break;
2511 case 0x3:
2512 hp_flags |= MV_HP_ERRATA_50XXB2;
2513 break;
2514 default:
2515 dev_printk(KERN_WARNING, &pdev->dev,
2516 "Applying 50XXB2 workarounds to unknown rev\n");
2517 hp_flags |= MV_HP_ERRATA_50XXB2;
2518 break;
2519 }
2520 break;
2521
2522 case chip_504x:
2523 case chip_508x:
2524 hpriv->ops = &mv5xxx_ops;
2525 hp_flags |= MV_HP_GEN_I;
2526
2527 switch (pdev->revision) {
2528 case 0x0:
2529 hp_flags |= MV_HP_ERRATA_50XXB0;
2530 break;
2531 case 0x3:
2532 hp_flags |= MV_HP_ERRATA_50XXB2;
2533 break;
2534 default:
2535 dev_printk(KERN_WARNING, &pdev->dev,
2536 "Applying B2 workarounds to unknown rev\n");
2537 hp_flags |= MV_HP_ERRATA_50XXB2;
2538 break;
2539 }
2540 break;
2541
2542 case chip_604x:
2543 case chip_608x:
2544 hpriv->ops = &mv6xxx_ops;
2545 hp_flags |= MV_HP_GEN_II;
2546
2547 switch (pdev->revision) {
2548 case 0x7:
2549 hp_flags |= MV_HP_ERRATA_60X1B2;
2550 break;
2551 case 0x9:
2552 hp_flags |= MV_HP_ERRATA_60X1C0;
2553 break;
2554 default:
2555 dev_printk(KERN_WARNING, &pdev->dev,
2556 "Applying B2 workarounds to unknown rev\n");
2557 hp_flags |= MV_HP_ERRATA_60X1B2;
2558 break;
2559 }
2560 break;
2561
2562 case chip_7042:
2563 hp_flags |= MV_HP_PCIE;
2564 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2565 (pdev->device == 0x2300 || pdev->device == 0x2310))
2566 {
2567 /*
2568 * Highpoint RocketRAID PCIe 23xx series cards:
2569 *
2570 * Unconfigured drives are treated as "Legacy"
2571 * by the BIOS, and it overwrites sector 8 with
2572 * a "Lgcy" metadata block prior to Linux boot.
2573 *
2574 * Configured drives (RAID or JBOD) leave sector 8
2575 * alone, but instead overwrite a high numbered
2576 * sector for the RAID metadata. This sector can
2577 * be determined exactly, by truncating the physical
2578 * drive capacity to a nice even GB value.
2579 *
2580 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2581 *
2582 * Warn the user, lest they think we're just buggy.
2583 */
2584 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2585 " BIOS CORRUPTS DATA on all attached drives,"
2586 " regardless of if/how they are configured."
2587 " BEWARE!\n");
2588 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
2589 " use sectors 8-9 on \"Legacy\" drives,"
2590 " and avoid the final two gigabytes on"
2591 " all RocketRAID BIOS initialized drives.\n");
2592 }
2593 case chip_6042:
2594 hpriv->ops = &mv6xxx_ops;
2595 hp_flags |= MV_HP_GEN_IIE;
2596
2597 switch (pdev->revision) {
2598 case 0x0:
2599 hp_flags |= MV_HP_ERRATA_XX42A0;
2600 break;
2601 case 0x1:
2602 hp_flags |= MV_HP_ERRATA_60X1C0;
2603 break;
2604 default:
2605 dev_printk(KERN_WARNING, &pdev->dev,
2606 "Applying 60X1C0 workarounds to unknown rev\n");
2607 hp_flags |= MV_HP_ERRATA_60X1C0;
2608 break;
2609 }
2610 break;
2611 case chip_soc:
2612 hpriv->ops = &mv_soc_ops;
2613 hp_flags |= MV_HP_ERRATA_60X1C0;
2614 break;
2615
2616 default:
2617 dev_printk(KERN_ERR, host->dev,
2618 "BUG: invalid board index %u\n", board_idx);
2619 return 1;
2620 }
2621
2622 hpriv->hp_flags = hp_flags;
2623 if (hp_flags & MV_HP_PCIE) {
2624 hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
2625 hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
2626 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
2627 } else {
2628 hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
2629 hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
2630 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
2631 }
2632
2633 return 0;
2634 }
2635
2636 /**
2637 * mv_init_host - Perform some early initialization of the host.
2638 * @host: ATA host to initialize
2639 * @board_idx: controller index
2640 *
2641 * If possible, do an early global reset of the host. Then do
2642 * our port init and clear/unmask all/relevant host interrupts.
2643 *
2644 * LOCKING:
2645 * Inherited from caller.
2646 */
2647 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
2648 {
2649 int rc = 0, n_hc, port, hc;
2650 struct mv_host_priv *hpriv = host->private_data;
2651 void __iomem *mmio = hpriv->base;
2652
2653 rc = mv_chip_id(host, board_idx);
2654 if (rc)
2655 goto done;
2656
2657 if (HAS_PCI(host)) {
2658 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
2659 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
2660 } else {
2661 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
2662 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
2663 }
2664
2665 /* global interrupt mask: 0 == mask everything */
2666 writel(0, hpriv->main_irq_mask_addr);
2667
2668 n_hc = mv_get_hc_count(host->ports[0]->flags);
2669
2670 for (port = 0; port < host->n_ports; port++)
2671 hpriv->ops->read_preamp(hpriv, port, mmio);
2672
2673 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2674 if (rc)
2675 goto done;
2676
2677 hpriv->ops->reset_flash(hpriv, mmio);
2678 hpriv->ops->reset_bus(host, mmio);
2679 hpriv->ops->enable_leds(hpriv, mmio);
2680
2681 for (port = 0; port < host->n_ports; port++) {
2682 struct ata_port *ap = host->ports[port];
2683 void __iomem *port_mmio = mv_port_base(mmio, port);
2684
2685 mv_port_init(&ap->ioaddr, port_mmio);
2686
2687 #ifdef CONFIG_PCI
2688 if (HAS_PCI(host)) {
2689 unsigned int offset = port_mmio - mmio;
2690 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
2691 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
2692 }
2693 #endif
2694 }
2695
2696 for (hc = 0; hc < n_hc; hc++) {
2697 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2698
2699 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2700 "(before clear)=0x%08x\n", hc,
2701 readl(hc_mmio + HC_CFG_OFS),
2702 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2703
2704 /* Clear any currently outstanding hc interrupt conditions */
2705 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2706 }
2707
2708 if (HAS_PCI(host)) {
2709 /* Clear any currently outstanding host interrupt conditions */
2710 writelfl(0, mmio + hpriv->irq_cause_ofs);
2711
2712 /* and unmask interrupt generation for host regs */
2713 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
2714 if (IS_GEN_I(hpriv))
2715 writelfl(~HC_MAIN_MASKED_IRQS_5,
2716 hpriv->main_irq_mask_addr);
2717 else
2718 writelfl(~HC_MAIN_MASKED_IRQS,
2719 hpriv->main_irq_mask_addr);
2720
2721 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2722 "PCI int cause/mask=0x%08x/0x%08x\n",
2723 readl(hpriv->main_irq_cause_addr),
2724 readl(hpriv->main_irq_mask_addr),
2725 readl(mmio + hpriv->irq_cause_ofs),
2726 readl(mmio + hpriv->irq_mask_ofs));
2727 } else {
2728 writelfl(~HC_MAIN_MASKED_IRQS_SOC,
2729 hpriv->main_irq_mask_addr);
2730 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x\n",
2731 readl(hpriv->main_irq_cause_addr),
2732 readl(hpriv->main_irq_mask_addr));
2733 }
2734 done:
2735 return rc;
2736 }
2737
2738 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
2739 {
2740 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
2741 MV_CRQB_Q_SZ, 0);
2742 if (!hpriv->crqb_pool)
2743 return -ENOMEM;
2744
2745 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
2746 MV_CRPB_Q_SZ, 0);
2747 if (!hpriv->crpb_pool)
2748 return -ENOMEM;
2749
2750 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
2751 MV_SG_TBL_SZ, 0);
2752 if (!hpriv->sg_tbl_pool)
2753 return -ENOMEM;
2754
2755 return 0;
2756 }
2757
2758 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
2759 struct mbus_dram_target_info *dram)
2760 {
2761 int i;
2762
2763 for (i = 0; i < 4; i++) {
2764 writel(0, hpriv->base + WINDOW_CTRL(i));
2765 writel(0, hpriv->base + WINDOW_BASE(i));
2766 }
2767
2768 for (i = 0; i < dram->num_cs; i++) {
2769 struct mbus_dram_window *cs = dram->cs + i;
2770
2771 writel(((cs->size - 1) & 0xffff0000) |
2772 (cs->mbus_attr << 8) |
2773 (dram->mbus_dram_target_id << 4) | 1,
2774 hpriv->base + WINDOW_CTRL(i));
2775 writel(cs->base, hpriv->base + WINDOW_BASE(i));
2776 }
2777 }
2778
2779 /**
2780 * mv_platform_probe - handle a positive probe of an soc Marvell
2781 * host
2782 * @pdev: platform device found
2783 *
2784 * LOCKING:
2785 * Inherited from caller.
2786 */
2787 static int mv_platform_probe(struct platform_device *pdev)
2788 {
2789 static int printed_version;
2790 const struct mv_sata_platform_data *mv_platform_data;
2791 const struct ata_port_info *ppi[] =
2792 { &mv_port_info[chip_soc], NULL };
2793 struct ata_host *host;
2794 struct mv_host_priv *hpriv;
2795 struct resource *res;
2796 int n_ports, rc;
2797
2798 if (!printed_version++)
2799 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2800
2801 /*
2802 * Simple resource validation ..
2803 */
2804 if (unlikely(pdev->num_resources != 2)) {
2805 dev_err(&pdev->dev, "invalid number of resources\n");
2806 return -EINVAL;
2807 }
2808
2809 /*
2810 * Get the register base first
2811 */
2812 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2813 if (res == NULL)
2814 return -EINVAL;
2815
2816 /* allocate host */
2817 mv_platform_data = pdev->dev.platform_data;
2818 n_ports = mv_platform_data->n_ports;
2819
2820 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
2821 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2822
2823 if (!host || !hpriv)
2824 return -ENOMEM;
2825 host->private_data = hpriv;
2826 hpriv->n_ports = n_ports;
2827
2828 host->iomap = NULL;
2829 hpriv->base = devm_ioremap(&pdev->dev, res->start,
2830 res->end - res->start + 1);
2831 hpriv->base -= MV_SATAHC0_REG_BASE;
2832
2833 /*
2834 * (Re-)program MBUS remapping windows if we are asked to.
2835 */
2836 if (mv_platform_data->dram != NULL)
2837 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
2838
2839 rc = mv_create_dma_pools(hpriv, &pdev->dev);
2840 if (rc)
2841 return rc;
2842
2843 /* initialize adapter */
2844 rc = mv_init_host(host, chip_soc);
2845 if (rc)
2846 return rc;
2847
2848 dev_printk(KERN_INFO, &pdev->dev,
2849 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
2850 host->n_ports);
2851
2852 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
2853 IRQF_SHARED, &mv6_sht);
2854 }
2855
2856 /*
2857 *
2858 * mv_platform_remove - unplug a platform interface
2859 * @pdev: platform device
2860 *
2861 * A platform bus SATA device has been unplugged. Perform the needed
2862 * cleanup. Also called on module unload for any active devices.
2863 */
2864 static int __devexit mv_platform_remove(struct platform_device *pdev)
2865 {
2866 struct device *dev = &pdev->dev;
2867 struct ata_host *host = dev_get_drvdata(dev);
2868
2869 ata_host_detach(host);
2870 return 0;
2871 }
2872
2873 static struct platform_driver mv_platform_driver = {
2874 .probe = mv_platform_probe,
2875 .remove = __devexit_p(mv_platform_remove),
2876 .driver = {
2877 .name = DRV_NAME,
2878 .owner = THIS_MODULE,
2879 },
2880 };
2881
2882
2883 #ifdef CONFIG_PCI
2884 static int mv_pci_init_one(struct pci_dev *pdev,
2885 const struct pci_device_id *ent);
2886
2887
2888 static struct pci_driver mv_pci_driver = {
2889 .name = DRV_NAME,
2890 .id_table = mv_pci_tbl,
2891 .probe = mv_pci_init_one,
2892 .remove = ata_pci_remove_one,
2893 };
2894
2895 /*
2896 * module options
2897 */
2898 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
2899
2900
2901 /* move to PCI layer or libata core? */
2902 static int pci_go_64(struct pci_dev *pdev)
2903 {
2904 int rc;
2905
2906 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
2907 rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
2908 if (rc) {
2909 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2910 if (rc) {
2911 dev_printk(KERN_ERR, &pdev->dev,
2912 "64-bit DMA enable failed\n");
2913 return rc;
2914 }
2915 }
2916 } else {
2917 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2918 if (rc) {
2919 dev_printk(KERN_ERR, &pdev->dev,
2920 "32-bit DMA enable failed\n");
2921 return rc;
2922 }
2923 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2924 if (rc) {
2925 dev_printk(KERN_ERR, &pdev->dev,
2926 "32-bit consistent DMA enable failed\n");
2927 return rc;
2928 }
2929 }
2930
2931 return rc;
2932 }
2933
2934 /**
2935 * mv_print_info - Dump key info to kernel log for perusal.
2936 * @host: ATA host to print info about
2937 *
2938 * FIXME: complete this.
2939 *
2940 * LOCKING:
2941 * Inherited from caller.
2942 */
2943 static void mv_print_info(struct ata_host *host)
2944 {
2945 struct pci_dev *pdev = to_pci_dev(host->dev);
2946 struct mv_host_priv *hpriv = host->private_data;
2947 u8 scc;
2948 const char *scc_s, *gen;
2949
2950 /* Use this to determine the HW stepping of the chip so we know
2951 * what errata to workaround
2952 */
2953 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2954 if (scc == 0)
2955 scc_s = "SCSI";
2956 else if (scc == 0x01)
2957 scc_s = "RAID";
2958 else
2959 scc_s = "?";
2960
2961 if (IS_GEN_I(hpriv))
2962 gen = "I";
2963 else if (IS_GEN_II(hpriv))
2964 gen = "II";
2965 else if (IS_GEN_IIE(hpriv))
2966 gen = "IIE";
2967 else
2968 gen = "?";
2969
2970 dev_printk(KERN_INFO, &pdev->dev,
2971 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
2972 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
2973 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2974 }
2975
2976 /**
2977 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
2978 * @pdev: PCI device found
2979 * @ent: PCI device ID entry for the matched host
2980 *
2981 * LOCKING:
2982 * Inherited from caller.
2983 */
2984 static int mv_pci_init_one(struct pci_dev *pdev,
2985 const struct pci_device_id *ent)
2986 {
2987 static int printed_version;
2988 unsigned int board_idx = (unsigned int)ent->driver_data;
2989 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
2990 struct ata_host *host;
2991 struct mv_host_priv *hpriv;
2992 int n_ports, rc;
2993
2994 if (!printed_version++)
2995 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2996
2997 /* allocate host */
2998 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
2999
3000 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3001 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3002 if (!host || !hpriv)
3003 return -ENOMEM;
3004 host->private_data = hpriv;
3005 hpriv->n_ports = n_ports;
3006
3007 /* acquire resources */
3008 rc = pcim_enable_device(pdev);
3009 if (rc)
3010 return rc;
3011
3012 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3013 if (rc == -EBUSY)
3014 pcim_pin_device(pdev);
3015 if (rc)
3016 return rc;
3017 host->iomap = pcim_iomap_table(pdev);
3018 hpriv->base = host->iomap[MV_PRIMARY_BAR];
3019
3020 rc = pci_go_64(pdev);
3021 if (rc)
3022 return rc;
3023
3024 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3025 if (rc)
3026 return rc;
3027
3028 /* initialize adapter */
3029 rc = mv_init_host(host, board_idx);
3030 if (rc)
3031 return rc;
3032
3033 /* Enable interrupts */
3034 if (msi && pci_enable_msi(pdev))
3035 pci_intx(pdev, 1);
3036
3037 mv_dump_pci_cfg(pdev, 0x68);
3038 mv_print_info(host);
3039
3040 pci_set_master(pdev);
3041 pci_try_set_mwi(pdev);
3042 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3043 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3044 }
3045 #endif
3046
3047 static int mv_platform_probe(struct platform_device *pdev);
3048 static int __devexit mv_platform_remove(struct platform_device *pdev);
3049
3050 static int __init mv_init(void)
3051 {
3052 int rc = -ENODEV;
3053 #ifdef CONFIG_PCI
3054 rc = pci_register_driver(&mv_pci_driver);
3055 if (rc < 0)
3056 return rc;
3057 #endif
3058 rc = platform_driver_register(&mv_platform_driver);
3059
3060 #ifdef CONFIG_PCI
3061 if (rc < 0)
3062 pci_unregister_driver(&mv_pci_driver);
3063 #endif
3064 return rc;
3065 }
3066
3067 static void __exit mv_exit(void)
3068 {
3069 #ifdef CONFIG_PCI
3070 pci_unregister_driver(&mv_pci_driver);
3071 #endif
3072 platform_driver_unregister(&mv_platform_driver);
3073 }
3074
3075 MODULE_AUTHOR("Brett Russ");
3076 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3077 MODULE_LICENSE("GPL");
3078 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3079 MODULE_VERSION(DRV_VERSION);
3080 MODULE_ALIAS("platform:" DRV_NAME);
3081
3082 #ifdef CONFIG_PCI
3083 module_param(msi, int, 0444);
3084 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3085 #endif
3086
3087 module_init(mv_init);
3088 module_exit(mv_exit);
This page took 0.135019 seconds and 5 git commands to generate.