libata: update libata LLDs to use devres
[deliverable/linux.git] / drivers / ata / sata_mv.c
1 /*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
6 *
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/sched.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_cmnd.h>
36 #include <linux/libata.h>
37
38 #define DRV_NAME "sata_mv"
39 #define DRV_VERSION "0.7"
40
41 enum {
42 /* BAR's are enumerated in terms of pci_resource_start() terms */
43 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
44 MV_IO_BAR = 2, /* offset 0x18: IO space */
45 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
46
47 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
48 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
49
50 MV_PCI_REG_BASE = 0,
51 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
52 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
53 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
54 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
55 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
56 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
57
58 MV_SATAHC0_REG_BASE = 0x20000,
59 MV_FLASH_CTL = 0x1046c,
60 MV_GPIO_PORT_CTL = 0x104f0,
61 MV_RESET_CFG = 0x180d8,
62
63 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
64 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
65 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
66 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
67
68 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
69
70 MV_MAX_Q_DEPTH = 32,
71 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
72
73 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
74 * CRPB needs alignment on a 256B boundary. Size == 256B
75 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
76 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
77 */
78 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
79 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
80 MV_MAX_SG_CT = 176,
81 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
82 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
83
84 MV_PORTS_PER_HC = 4,
85 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
86 MV_PORT_HC_SHIFT = 2,
87 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
88 MV_PORT_MASK = 3,
89
90 /* Host Flags */
91 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
92 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
93 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
94 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
95 ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING),
96 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
97
98 CRQB_FLAG_READ = (1 << 0),
99 CRQB_TAG_SHIFT = 1,
100 CRQB_CMD_ADDR_SHIFT = 8,
101 CRQB_CMD_CS = (0x2 << 11),
102 CRQB_CMD_LAST = (1 << 15),
103
104 CRPB_FLAG_STATUS_SHIFT = 8,
105
106 EPRD_FLAG_END_OF_TBL = (1 << 31),
107
108 /* PCI interface registers */
109
110 PCI_COMMAND_OFS = 0xc00,
111
112 PCI_MAIN_CMD_STS_OFS = 0xd30,
113 STOP_PCI_MASTER = (1 << 2),
114 PCI_MASTER_EMPTY = (1 << 3),
115 GLOB_SFT_RST = (1 << 4),
116
117 MV_PCI_MODE = 0xd00,
118 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
119 MV_PCI_DISC_TIMER = 0xd04,
120 MV_PCI_MSI_TRIGGER = 0xc38,
121 MV_PCI_SERR_MASK = 0xc28,
122 MV_PCI_XBAR_TMOUT = 0x1d04,
123 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
124 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
125 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
126 MV_PCI_ERR_COMMAND = 0x1d50,
127
128 PCI_IRQ_CAUSE_OFS = 0x1d58,
129 PCI_IRQ_MASK_OFS = 0x1d5c,
130 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
131
132 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
133 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
134 PORT0_ERR = (1 << 0), /* shift by port # */
135 PORT0_DONE = (1 << 1), /* shift by port # */
136 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
137 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
138 PCI_ERR = (1 << 18),
139 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
140 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
141 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
142 GPIO_INT = (1 << 22),
143 SELF_INT = (1 << 23),
144 TWSI_INT = (1 << 24),
145 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
146 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
147 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
148 HC_MAIN_RSVD),
149
150 /* SATAHC registers */
151 HC_CFG_OFS = 0,
152
153 HC_IRQ_CAUSE_OFS = 0x14,
154 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
155 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
156 DEV_IRQ = (1 << 8), /* shift by port # */
157
158 /* Shadow block registers */
159 SHD_BLK_OFS = 0x100,
160 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
161
162 /* SATA registers */
163 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
164 SATA_ACTIVE_OFS = 0x350,
165 PHY_MODE3 = 0x310,
166 PHY_MODE4 = 0x314,
167 PHY_MODE2 = 0x330,
168 MV5_PHY_MODE = 0x74,
169 MV5_LT_MODE = 0x30,
170 MV5_PHY_CTL = 0x0C,
171 SATA_INTERFACE_CTL = 0x050,
172
173 MV_M2_PREAMP_MASK = 0x7e0,
174
175 /* Port registers */
176 EDMA_CFG_OFS = 0,
177 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
178 EDMA_CFG_NCQ = (1 << 5),
179 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
180 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
181 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
182
183 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
184 EDMA_ERR_IRQ_MASK_OFS = 0xc,
185 EDMA_ERR_D_PAR = (1 << 0),
186 EDMA_ERR_PRD_PAR = (1 << 1),
187 EDMA_ERR_DEV = (1 << 2),
188 EDMA_ERR_DEV_DCON = (1 << 3),
189 EDMA_ERR_DEV_CON = (1 << 4),
190 EDMA_ERR_SERR = (1 << 5),
191 EDMA_ERR_SELF_DIS = (1 << 7),
192 EDMA_ERR_BIST_ASYNC = (1 << 8),
193 EDMA_ERR_CRBQ_PAR = (1 << 9),
194 EDMA_ERR_CRPB_PAR = (1 << 10),
195 EDMA_ERR_INTRL_PAR = (1 << 11),
196 EDMA_ERR_IORDY = (1 << 12),
197 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
198 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
199 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
200 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
201 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
202 EDMA_ERR_TRANS_PROTO = (1 << 31),
203 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
204 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
205 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
206 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
207 EDMA_ERR_LNK_DATA_RX |
208 EDMA_ERR_LNK_DATA_TX |
209 EDMA_ERR_TRANS_PROTO),
210
211 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
212 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
213
214 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
215 EDMA_REQ_Q_PTR_SHIFT = 5,
216
217 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
218 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
219 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
220 EDMA_RSP_Q_PTR_SHIFT = 3,
221
222 EDMA_CMD_OFS = 0x28,
223 EDMA_EN = (1 << 0),
224 EDMA_DS = (1 << 1),
225 ATA_RST = (1 << 2),
226
227 EDMA_IORDY_TMOUT = 0x34,
228 EDMA_ARB_CFG = 0x38,
229
230 /* Host private flags (hp_flags) */
231 MV_HP_FLAG_MSI = (1 << 0),
232 MV_HP_ERRATA_50XXB0 = (1 << 1),
233 MV_HP_ERRATA_50XXB2 = (1 << 2),
234 MV_HP_ERRATA_60X1B2 = (1 << 3),
235 MV_HP_ERRATA_60X1C0 = (1 << 4),
236 MV_HP_ERRATA_XX42A0 = (1 << 5),
237 MV_HP_50XX = (1 << 6),
238 MV_HP_GEN_IIE = (1 << 7),
239
240 /* Port private flags (pp_flags) */
241 MV_PP_FLAG_EDMA_EN = (1 << 0),
242 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
243 };
244
245 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
246 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
247 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
248 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
249 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
250
251 enum {
252 /* Our DMA boundary is determined by an ePRD being unable to handle
253 * anything larger than 64KB
254 */
255 MV_DMA_BOUNDARY = 0xffffU,
256
257 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
258
259 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
260 };
261
262 enum chip_type {
263 chip_504x,
264 chip_508x,
265 chip_5080,
266 chip_604x,
267 chip_608x,
268 chip_6042,
269 chip_7042,
270 };
271
272 /* Command ReQuest Block: 32B */
273 struct mv_crqb {
274 __le32 sg_addr;
275 __le32 sg_addr_hi;
276 __le16 ctrl_flags;
277 __le16 ata_cmd[11];
278 };
279
280 struct mv_crqb_iie {
281 __le32 addr;
282 __le32 addr_hi;
283 __le32 flags;
284 __le32 len;
285 __le32 ata_cmd[4];
286 };
287
288 /* Command ResPonse Block: 8B */
289 struct mv_crpb {
290 __le16 id;
291 __le16 flags;
292 __le32 tmstmp;
293 };
294
295 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
296 struct mv_sg {
297 __le32 addr;
298 __le32 flags_size;
299 __le32 addr_hi;
300 __le32 reserved;
301 };
302
303 struct mv_port_priv {
304 struct mv_crqb *crqb;
305 dma_addr_t crqb_dma;
306 struct mv_crpb *crpb;
307 dma_addr_t crpb_dma;
308 struct mv_sg *sg_tbl;
309 dma_addr_t sg_tbl_dma;
310 u32 pp_flags;
311 };
312
313 struct mv_port_signal {
314 u32 amps;
315 u32 pre;
316 };
317
318 struct mv_host_priv;
319 struct mv_hw_ops {
320 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
321 unsigned int port);
322 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
323 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
324 void __iomem *mmio);
325 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
326 unsigned int n_hc);
327 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
328 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
329 };
330
331 struct mv_host_priv {
332 u32 hp_flags;
333 struct mv_port_signal signal[8];
334 const struct mv_hw_ops *ops;
335 };
336
337 static void mv_irq_clear(struct ata_port *ap);
338 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
339 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
340 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
341 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
342 static void mv_phy_reset(struct ata_port *ap);
343 static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
344 static int mv_port_start(struct ata_port *ap);
345 static void mv_port_stop(struct ata_port *ap);
346 static void mv_qc_prep(struct ata_queued_cmd *qc);
347 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
348 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
349 static irqreturn_t mv_interrupt(int irq, void *dev_instance);
350 static void mv_eng_timeout(struct ata_port *ap);
351 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
352
353 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
354 unsigned int port);
355 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
356 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
357 void __iomem *mmio);
358 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
359 unsigned int n_hc);
360 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
361 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
362
363 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
364 unsigned int port);
365 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
366 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
367 void __iomem *mmio);
368 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
369 unsigned int n_hc);
370 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
371 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
372 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
373 unsigned int port_no);
374 static void mv_stop_and_reset(struct ata_port *ap);
375
376 static struct scsi_host_template mv_sht = {
377 .module = THIS_MODULE,
378 .name = DRV_NAME,
379 .ioctl = ata_scsi_ioctl,
380 .queuecommand = ata_scsi_queuecmd,
381 .can_queue = MV_USE_Q_DEPTH,
382 .this_id = ATA_SHT_THIS_ID,
383 .sg_tablesize = MV_MAX_SG_CT / 2,
384 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
385 .emulated = ATA_SHT_EMULATED,
386 .use_clustering = ATA_SHT_USE_CLUSTERING,
387 .proc_name = DRV_NAME,
388 .dma_boundary = MV_DMA_BOUNDARY,
389 .slave_configure = ata_scsi_slave_config,
390 .slave_destroy = ata_scsi_slave_destroy,
391 .bios_param = ata_std_bios_param,
392 };
393
394 static const struct ata_port_operations mv5_ops = {
395 .port_disable = ata_port_disable,
396
397 .tf_load = ata_tf_load,
398 .tf_read = ata_tf_read,
399 .check_status = ata_check_status,
400 .exec_command = ata_exec_command,
401 .dev_select = ata_std_dev_select,
402
403 .phy_reset = mv_phy_reset,
404
405 .qc_prep = mv_qc_prep,
406 .qc_issue = mv_qc_issue,
407 .data_xfer = ata_mmio_data_xfer,
408
409 .eng_timeout = mv_eng_timeout,
410
411 .irq_handler = mv_interrupt,
412 .irq_clear = mv_irq_clear,
413
414 .scr_read = mv5_scr_read,
415 .scr_write = mv5_scr_write,
416
417 .port_start = mv_port_start,
418 .port_stop = mv_port_stop,
419 };
420
421 static const struct ata_port_operations mv6_ops = {
422 .port_disable = ata_port_disable,
423
424 .tf_load = ata_tf_load,
425 .tf_read = ata_tf_read,
426 .check_status = ata_check_status,
427 .exec_command = ata_exec_command,
428 .dev_select = ata_std_dev_select,
429
430 .phy_reset = mv_phy_reset,
431
432 .qc_prep = mv_qc_prep,
433 .qc_issue = mv_qc_issue,
434 .data_xfer = ata_mmio_data_xfer,
435
436 .eng_timeout = mv_eng_timeout,
437
438 .irq_handler = mv_interrupt,
439 .irq_clear = mv_irq_clear,
440
441 .scr_read = mv_scr_read,
442 .scr_write = mv_scr_write,
443
444 .port_start = mv_port_start,
445 .port_stop = mv_port_stop,
446 };
447
448 static const struct ata_port_operations mv_iie_ops = {
449 .port_disable = ata_port_disable,
450
451 .tf_load = ata_tf_load,
452 .tf_read = ata_tf_read,
453 .check_status = ata_check_status,
454 .exec_command = ata_exec_command,
455 .dev_select = ata_std_dev_select,
456
457 .phy_reset = mv_phy_reset,
458
459 .qc_prep = mv_qc_prep_iie,
460 .qc_issue = mv_qc_issue,
461 .data_xfer = ata_mmio_data_xfer,
462
463 .eng_timeout = mv_eng_timeout,
464
465 .irq_handler = mv_interrupt,
466 .irq_clear = mv_irq_clear,
467
468 .scr_read = mv_scr_read,
469 .scr_write = mv_scr_write,
470
471 .port_start = mv_port_start,
472 .port_stop = mv_port_stop,
473 };
474
475 static const struct ata_port_info mv_port_info[] = {
476 { /* chip_504x */
477 .sht = &mv_sht,
478 .flags = MV_COMMON_FLAGS,
479 .pio_mask = 0x1f, /* pio0-4 */
480 .udma_mask = 0x7f, /* udma0-6 */
481 .port_ops = &mv5_ops,
482 },
483 { /* chip_508x */
484 .sht = &mv_sht,
485 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
486 .pio_mask = 0x1f, /* pio0-4 */
487 .udma_mask = 0x7f, /* udma0-6 */
488 .port_ops = &mv5_ops,
489 },
490 { /* chip_5080 */
491 .sht = &mv_sht,
492 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
493 .pio_mask = 0x1f, /* pio0-4 */
494 .udma_mask = 0x7f, /* udma0-6 */
495 .port_ops = &mv5_ops,
496 },
497 { /* chip_604x */
498 .sht = &mv_sht,
499 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
500 .pio_mask = 0x1f, /* pio0-4 */
501 .udma_mask = 0x7f, /* udma0-6 */
502 .port_ops = &mv6_ops,
503 },
504 { /* chip_608x */
505 .sht = &mv_sht,
506 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
507 MV_FLAG_DUAL_HC),
508 .pio_mask = 0x1f, /* pio0-4 */
509 .udma_mask = 0x7f, /* udma0-6 */
510 .port_ops = &mv6_ops,
511 },
512 { /* chip_6042 */
513 .sht = &mv_sht,
514 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
515 .pio_mask = 0x1f, /* pio0-4 */
516 .udma_mask = 0x7f, /* udma0-6 */
517 .port_ops = &mv_iie_ops,
518 },
519 { /* chip_7042 */
520 .sht = &mv_sht,
521 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
522 .pio_mask = 0x1f, /* pio0-4 */
523 .udma_mask = 0x7f, /* udma0-6 */
524 .port_ops = &mv_iie_ops,
525 },
526 };
527
528 static const struct pci_device_id mv_pci_tbl[] = {
529 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
530 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
531 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
532 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
533
534 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
535 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
536 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
537 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
538 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
539
540 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
541
542 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
543
544 { } /* terminate list */
545 };
546
547 static struct pci_driver mv_pci_driver = {
548 .name = DRV_NAME,
549 .id_table = mv_pci_tbl,
550 .probe = mv_init_one,
551 .remove = ata_pci_remove_one,
552 };
553
554 static const struct mv_hw_ops mv5xxx_ops = {
555 .phy_errata = mv5_phy_errata,
556 .enable_leds = mv5_enable_leds,
557 .read_preamp = mv5_read_preamp,
558 .reset_hc = mv5_reset_hc,
559 .reset_flash = mv5_reset_flash,
560 .reset_bus = mv5_reset_bus,
561 };
562
563 static const struct mv_hw_ops mv6xxx_ops = {
564 .phy_errata = mv6_phy_errata,
565 .enable_leds = mv6_enable_leds,
566 .read_preamp = mv6_read_preamp,
567 .reset_hc = mv6_reset_hc,
568 .reset_flash = mv6_reset_flash,
569 .reset_bus = mv_reset_pci_bus,
570 };
571
572 /*
573 * module options
574 */
575 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
576
577
578 /*
579 * Functions
580 */
581
582 static inline void writelfl(unsigned long data, void __iomem *addr)
583 {
584 writel(data, addr);
585 (void) readl(addr); /* flush to avoid PCI posted write */
586 }
587
588 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
589 {
590 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
591 }
592
593 static inline unsigned int mv_hc_from_port(unsigned int port)
594 {
595 return port >> MV_PORT_HC_SHIFT;
596 }
597
598 static inline unsigned int mv_hardport_from_port(unsigned int port)
599 {
600 return port & MV_PORT_MASK;
601 }
602
603 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
604 unsigned int port)
605 {
606 return mv_hc_base(base, mv_hc_from_port(port));
607 }
608
609 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
610 {
611 return mv_hc_base_from_port(base, port) +
612 MV_SATAHC_ARBTR_REG_SZ +
613 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
614 }
615
616 static inline void __iomem *mv_ap_base(struct ata_port *ap)
617 {
618 return mv_port_base(ap->host->mmio_base, ap->port_no);
619 }
620
621 static inline int mv_get_hc_count(unsigned long port_flags)
622 {
623 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
624 }
625
626 static void mv_irq_clear(struct ata_port *ap)
627 {
628 }
629
630 /**
631 * mv_start_dma - Enable eDMA engine
632 * @base: port base address
633 * @pp: port private data
634 *
635 * Verify the local cache of the eDMA state is accurate with a
636 * WARN_ON.
637 *
638 * LOCKING:
639 * Inherited from caller.
640 */
641 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
642 {
643 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
644 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
645 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
646 }
647 WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
648 }
649
650 /**
651 * mv_stop_dma - Disable eDMA engine
652 * @ap: ATA channel to manipulate
653 *
654 * Verify the local cache of the eDMA state is accurate with a
655 * WARN_ON.
656 *
657 * LOCKING:
658 * Inherited from caller.
659 */
660 static void mv_stop_dma(struct ata_port *ap)
661 {
662 void __iomem *port_mmio = mv_ap_base(ap);
663 struct mv_port_priv *pp = ap->private_data;
664 u32 reg;
665 int i;
666
667 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
668 /* Disable EDMA if active. The disable bit auto clears.
669 */
670 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
671 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
672 } else {
673 WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
674 }
675
676 /* now properly wait for the eDMA to stop */
677 for (i = 1000; i > 0; i--) {
678 reg = readl(port_mmio + EDMA_CMD_OFS);
679 if (!(EDMA_EN & reg)) {
680 break;
681 }
682 udelay(100);
683 }
684
685 if (EDMA_EN & reg) {
686 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
687 /* FIXME: Consider doing a reset here to recover */
688 }
689 }
690
691 #ifdef ATA_DEBUG
692 static void mv_dump_mem(void __iomem *start, unsigned bytes)
693 {
694 int b, w;
695 for (b = 0; b < bytes; ) {
696 DPRINTK("%p: ", start + b);
697 for (w = 0; b < bytes && w < 4; w++) {
698 printk("%08x ",readl(start + b));
699 b += sizeof(u32);
700 }
701 printk("\n");
702 }
703 }
704 #endif
705
706 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
707 {
708 #ifdef ATA_DEBUG
709 int b, w;
710 u32 dw;
711 for (b = 0; b < bytes; ) {
712 DPRINTK("%02x: ", b);
713 for (w = 0; b < bytes && w < 4; w++) {
714 (void) pci_read_config_dword(pdev,b,&dw);
715 printk("%08x ",dw);
716 b += sizeof(u32);
717 }
718 printk("\n");
719 }
720 #endif
721 }
722 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
723 struct pci_dev *pdev)
724 {
725 #ifdef ATA_DEBUG
726 void __iomem *hc_base = mv_hc_base(mmio_base,
727 port >> MV_PORT_HC_SHIFT);
728 void __iomem *port_base;
729 int start_port, num_ports, p, start_hc, num_hcs, hc;
730
731 if (0 > port) {
732 start_hc = start_port = 0;
733 num_ports = 8; /* shld be benign for 4 port devs */
734 num_hcs = 2;
735 } else {
736 start_hc = port >> MV_PORT_HC_SHIFT;
737 start_port = port;
738 num_ports = num_hcs = 1;
739 }
740 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
741 num_ports > 1 ? num_ports - 1 : start_port);
742
743 if (NULL != pdev) {
744 DPRINTK("PCI config space regs:\n");
745 mv_dump_pci_cfg(pdev, 0x68);
746 }
747 DPRINTK("PCI regs:\n");
748 mv_dump_mem(mmio_base+0xc00, 0x3c);
749 mv_dump_mem(mmio_base+0xd00, 0x34);
750 mv_dump_mem(mmio_base+0xf00, 0x4);
751 mv_dump_mem(mmio_base+0x1d00, 0x6c);
752 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
753 hc_base = mv_hc_base(mmio_base, hc);
754 DPRINTK("HC regs (HC %i):\n", hc);
755 mv_dump_mem(hc_base, 0x1c);
756 }
757 for (p = start_port; p < start_port + num_ports; p++) {
758 port_base = mv_port_base(mmio_base, p);
759 DPRINTK("EDMA regs (port %i):\n",p);
760 mv_dump_mem(port_base, 0x54);
761 DPRINTK("SATA regs (port %i):\n",p);
762 mv_dump_mem(port_base+0x300, 0x60);
763 }
764 #endif
765 }
766
767 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
768 {
769 unsigned int ofs;
770
771 switch (sc_reg_in) {
772 case SCR_STATUS:
773 case SCR_CONTROL:
774 case SCR_ERROR:
775 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
776 break;
777 case SCR_ACTIVE:
778 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
779 break;
780 default:
781 ofs = 0xffffffffU;
782 break;
783 }
784 return ofs;
785 }
786
787 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
788 {
789 unsigned int ofs = mv_scr_offset(sc_reg_in);
790
791 if (0xffffffffU != ofs) {
792 return readl(mv_ap_base(ap) + ofs);
793 } else {
794 return (u32) ofs;
795 }
796 }
797
798 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
799 {
800 unsigned int ofs = mv_scr_offset(sc_reg_in);
801
802 if (0xffffffffU != ofs) {
803 writelfl(val, mv_ap_base(ap) + ofs);
804 }
805 }
806
807 static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
808 {
809 u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
810
811 /* set up non-NCQ EDMA configuration */
812 cfg &= ~0x1f; /* clear queue depth */
813 cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */
814 cfg &= ~(1 << 9); /* disable equeue */
815
816 if (IS_GEN_I(hpriv))
817 cfg |= (1 << 8); /* enab config burst size mask */
818
819 else if (IS_GEN_II(hpriv))
820 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
821
822 else if (IS_GEN_IIE(hpriv)) {
823 cfg |= (1 << 23); /* dis RX PM port mask */
824 cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
825 cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
826 cfg |= (1 << 18); /* enab early completion */
827 cfg |= (1 << 17); /* enab host q cache */
828 cfg |= (1 << 22); /* enab cutthrough */
829 }
830
831 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
832 }
833
834 /**
835 * mv_port_start - Port specific init/start routine.
836 * @ap: ATA channel to manipulate
837 *
838 * Allocate and point to DMA memory, init port private memory,
839 * zero indices.
840 *
841 * LOCKING:
842 * Inherited from caller.
843 */
844 static int mv_port_start(struct ata_port *ap)
845 {
846 struct device *dev = ap->host->dev;
847 struct mv_host_priv *hpriv = ap->host->private_data;
848 struct mv_port_priv *pp;
849 void __iomem *port_mmio = mv_ap_base(ap);
850 void *mem;
851 dma_addr_t mem_dma;
852 int rc;
853
854 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
855 if (!pp)
856 return -ENOMEM;
857
858 mem = dmam_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
859 GFP_KERNEL);
860 if (!mem)
861 return -ENOMEM;
862 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
863
864 rc = ata_pad_alloc(ap, dev);
865 if (rc)
866 return rc;
867
868 /* First item in chunk of DMA memory:
869 * 32-slot command request table (CRQB), 32 bytes each in size
870 */
871 pp->crqb = mem;
872 pp->crqb_dma = mem_dma;
873 mem += MV_CRQB_Q_SZ;
874 mem_dma += MV_CRQB_Q_SZ;
875
876 /* Second item:
877 * 32-slot command response table (CRPB), 8 bytes each in size
878 */
879 pp->crpb = mem;
880 pp->crpb_dma = mem_dma;
881 mem += MV_CRPB_Q_SZ;
882 mem_dma += MV_CRPB_Q_SZ;
883
884 /* Third item:
885 * Table of scatter-gather descriptors (ePRD), 16 bytes each
886 */
887 pp->sg_tbl = mem;
888 pp->sg_tbl_dma = mem_dma;
889
890 mv_edma_cfg(hpriv, port_mmio);
891
892 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
893 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
894 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
895
896 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
897 writelfl(pp->crqb_dma & 0xffffffff,
898 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
899 else
900 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
901
902 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
903
904 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
905 writelfl(pp->crpb_dma & 0xffffffff,
906 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
907 else
908 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
909
910 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
911 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
912
913 /* Don't turn on EDMA here...do it before DMA commands only. Else
914 * we'll be unable to send non-data, PIO, etc due to restricted access
915 * to shadow regs.
916 */
917 ap->private_data = pp;
918 return 0;
919 }
920
921 /**
922 * mv_port_stop - Port specific cleanup/stop routine.
923 * @ap: ATA channel to manipulate
924 *
925 * Stop DMA, cleanup port memory.
926 *
927 * LOCKING:
928 * This routine uses the host lock to protect the DMA stop.
929 */
930 static void mv_port_stop(struct ata_port *ap)
931 {
932 unsigned long flags;
933
934 spin_lock_irqsave(&ap->host->lock, flags);
935 mv_stop_dma(ap);
936 spin_unlock_irqrestore(&ap->host->lock, flags);
937 }
938
939 /**
940 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
941 * @qc: queued command whose SG list to source from
942 *
943 * Populate the SG list and mark the last entry.
944 *
945 * LOCKING:
946 * Inherited from caller.
947 */
948 static void mv_fill_sg(struct ata_queued_cmd *qc)
949 {
950 struct mv_port_priv *pp = qc->ap->private_data;
951 unsigned int i = 0;
952 struct scatterlist *sg;
953
954 ata_for_each_sg(sg, qc) {
955 dma_addr_t addr;
956 u32 sg_len, len, offset;
957
958 addr = sg_dma_address(sg);
959 sg_len = sg_dma_len(sg);
960
961 while (sg_len) {
962 offset = addr & MV_DMA_BOUNDARY;
963 len = sg_len;
964 if ((offset + sg_len) > 0x10000)
965 len = 0x10000 - offset;
966
967 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
968 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
969 pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff);
970
971 sg_len -= len;
972 addr += len;
973
974 if (!sg_len && ata_sg_is_last(sg, qc))
975 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
976
977 i++;
978 }
979 }
980 }
981
982 static inline unsigned mv_inc_q_index(unsigned index)
983 {
984 return (index + 1) & MV_MAX_Q_DEPTH_MASK;
985 }
986
987 static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
988 {
989 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
990 (last ? CRQB_CMD_LAST : 0);
991 *cmdw = cpu_to_le16(tmp);
992 }
993
994 /**
995 * mv_qc_prep - Host specific command preparation.
996 * @qc: queued command to prepare
997 *
998 * This routine simply redirects to the general purpose routine
999 * if command is not DMA. Else, it handles prep of the CRQB
1000 * (command request block), does some sanity checking, and calls
1001 * the SG load routine.
1002 *
1003 * LOCKING:
1004 * Inherited from caller.
1005 */
1006 static void mv_qc_prep(struct ata_queued_cmd *qc)
1007 {
1008 struct ata_port *ap = qc->ap;
1009 struct mv_port_priv *pp = ap->private_data;
1010 __le16 *cw;
1011 struct ata_taskfile *tf;
1012 u16 flags = 0;
1013 unsigned in_index;
1014
1015 if (ATA_PROT_DMA != qc->tf.protocol)
1016 return;
1017
1018 /* Fill in command request block
1019 */
1020 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1021 flags |= CRQB_FLAG_READ;
1022 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1023 flags |= qc->tag << CRQB_TAG_SHIFT;
1024
1025 /* get current queue index from hardware */
1026 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1027 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1028
1029 pp->crqb[in_index].sg_addr =
1030 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1031 pp->crqb[in_index].sg_addr_hi =
1032 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1033 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1034
1035 cw = &pp->crqb[in_index].ata_cmd[0];
1036 tf = &qc->tf;
1037
1038 /* Sadly, the CRQB cannot accomodate all registers--there are
1039 * only 11 bytes...so we must pick and choose required
1040 * registers based on the command. So, we drop feature and
1041 * hob_feature for [RW] DMA commands, but they are needed for
1042 * NCQ. NCQ will drop hob_nsect.
1043 */
1044 switch (tf->command) {
1045 case ATA_CMD_READ:
1046 case ATA_CMD_READ_EXT:
1047 case ATA_CMD_WRITE:
1048 case ATA_CMD_WRITE_EXT:
1049 case ATA_CMD_WRITE_FUA_EXT:
1050 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1051 break;
1052 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1053 case ATA_CMD_FPDMA_READ:
1054 case ATA_CMD_FPDMA_WRITE:
1055 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1056 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1057 break;
1058 #endif /* FIXME: remove this line when NCQ added */
1059 default:
1060 /* The only other commands EDMA supports in non-queued and
1061 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1062 * of which are defined/used by Linux. If we get here, this
1063 * driver needs work.
1064 *
1065 * FIXME: modify libata to give qc_prep a return value and
1066 * return error here.
1067 */
1068 BUG_ON(tf->command);
1069 break;
1070 }
1071 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1072 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1073 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1074 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1075 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1076 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1077 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1078 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1079 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1080
1081 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1082 return;
1083 mv_fill_sg(qc);
1084 }
1085
1086 /**
1087 * mv_qc_prep_iie - Host specific command preparation.
1088 * @qc: queued command to prepare
1089 *
1090 * This routine simply redirects to the general purpose routine
1091 * if command is not DMA. Else, it handles prep of the CRQB
1092 * (command request block), does some sanity checking, and calls
1093 * the SG load routine.
1094 *
1095 * LOCKING:
1096 * Inherited from caller.
1097 */
1098 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1099 {
1100 struct ata_port *ap = qc->ap;
1101 struct mv_port_priv *pp = ap->private_data;
1102 struct mv_crqb_iie *crqb;
1103 struct ata_taskfile *tf;
1104 unsigned in_index;
1105 u32 flags = 0;
1106
1107 if (ATA_PROT_DMA != qc->tf.protocol)
1108 return;
1109
1110 /* Fill in Gen IIE command request block
1111 */
1112 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1113 flags |= CRQB_FLAG_READ;
1114
1115 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1116 flags |= qc->tag << CRQB_TAG_SHIFT;
1117
1118 /* get current queue index from hardware */
1119 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1120 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1121
1122 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1123 crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1124 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1125 crqb->flags = cpu_to_le32(flags);
1126
1127 tf = &qc->tf;
1128 crqb->ata_cmd[0] = cpu_to_le32(
1129 (tf->command << 16) |
1130 (tf->feature << 24)
1131 );
1132 crqb->ata_cmd[1] = cpu_to_le32(
1133 (tf->lbal << 0) |
1134 (tf->lbam << 8) |
1135 (tf->lbah << 16) |
1136 (tf->device << 24)
1137 );
1138 crqb->ata_cmd[2] = cpu_to_le32(
1139 (tf->hob_lbal << 0) |
1140 (tf->hob_lbam << 8) |
1141 (tf->hob_lbah << 16) |
1142 (tf->hob_feature << 24)
1143 );
1144 crqb->ata_cmd[3] = cpu_to_le32(
1145 (tf->nsect << 0) |
1146 (tf->hob_nsect << 8)
1147 );
1148
1149 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1150 return;
1151 mv_fill_sg(qc);
1152 }
1153
1154 /**
1155 * mv_qc_issue - Initiate a command to the host
1156 * @qc: queued command to start
1157 *
1158 * This routine simply redirects to the general purpose routine
1159 * if command is not DMA. Else, it sanity checks our local
1160 * caches of the request producer/consumer indices then enables
1161 * DMA and bumps the request producer index.
1162 *
1163 * LOCKING:
1164 * Inherited from caller.
1165 */
1166 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1167 {
1168 void __iomem *port_mmio = mv_ap_base(qc->ap);
1169 struct mv_port_priv *pp = qc->ap->private_data;
1170 unsigned in_index;
1171 u32 in_ptr;
1172
1173 if (ATA_PROT_DMA != qc->tf.protocol) {
1174 /* We're about to send a non-EDMA capable command to the
1175 * port. Turn off EDMA so there won't be problems accessing
1176 * shadow block, etc registers.
1177 */
1178 mv_stop_dma(qc->ap);
1179 return ata_qc_issue_prot(qc);
1180 }
1181
1182 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1183 in_index = (in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1184
1185 /* until we do queuing, the queue should be empty at this point */
1186 WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1187 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1188
1189 in_index = mv_inc_q_index(in_index); /* now incr producer index */
1190
1191 mv_start_dma(port_mmio, pp);
1192
1193 /* and write the request in pointer to kick the EDMA to life */
1194 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1195 in_ptr |= in_index << EDMA_REQ_Q_PTR_SHIFT;
1196 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1197
1198 return 0;
1199 }
1200
1201 /**
1202 * mv_get_crpb_status - get status from most recently completed cmd
1203 * @ap: ATA channel to manipulate
1204 *
1205 * This routine is for use when the port is in DMA mode, when it
1206 * will be using the CRPB (command response block) method of
1207 * returning command completion information. We check indices
1208 * are good, grab status, and bump the response consumer index to
1209 * prove that we're up to date.
1210 *
1211 * LOCKING:
1212 * Inherited from caller.
1213 */
1214 static u8 mv_get_crpb_status(struct ata_port *ap)
1215 {
1216 void __iomem *port_mmio = mv_ap_base(ap);
1217 struct mv_port_priv *pp = ap->private_data;
1218 unsigned out_index;
1219 u32 out_ptr;
1220 u8 ata_status;
1221
1222 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1223 out_index = (out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1224
1225 ata_status = le16_to_cpu(pp->crpb[out_index].flags)
1226 >> CRPB_FLAG_STATUS_SHIFT;
1227
1228 /* increment our consumer index... */
1229 out_index = mv_inc_q_index(out_index);
1230
1231 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1232 WARN_ON(out_index != ((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1233 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1234
1235 /* write out our inc'd consumer index so EDMA knows we're caught up */
1236 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1237 out_ptr |= out_index << EDMA_RSP_Q_PTR_SHIFT;
1238 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1239
1240 /* Return ATA status register for completed CRPB */
1241 return ata_status;
1242 }
1243
1244 /**
1245 * mv_err_intr - Handle error interrupts on the port
1246 * @ap: ATA channel to manipulate
1247 * @reset_allowed: bool: 0 == don't trigger from reset here
1248 *
1249 * In most cases, just clear the interrupt and move on. However,
1250 * some cases require an eDMA reset, which is done right before
1251 * the COMRESET in mv_phy_reset(). The SERR case requires a
1252 * clear of pending errors in the SATA SERROR register. Finally,
1253 * if the port disabled DMA, update our cached copy to match.
1254 *
1255 * LOCKING:
1256 * Inherited from caller.
1257 */
1258 static void mv_err_intr(struct ata_port *ap, int reset_allowed)
1259 {
1260 void __iomem *port_mmio = mv_ap_base(ap);
1261 u32 edma_err_cause, serr = 0;
1262
1263 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1264
1265 if (EDMA_ERR_SERR & edma_err_cause) {
1266 sata_scr_read(ap, SCR_ERROR, &serr);
1267 sata_scr_write_flush(ap, SCR_ERROR, serr);
1268 }
1269 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1270 struct mv_port_priv *pp = ap->private_data;
1271 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1272 }
1273 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1274 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1275
1276 /* Clear EDMA now that SERR cleanup done */
1277 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1278
1279 /* check for fatal here and recover if needed */
1280 if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause))
1281 mv_stop_and_reset(ap);
1282 }
1283
1284 /**
1285 * mv_host_intr - Handle all interrupts on the given host controller
1286 * @host: host specific structure
1287 * @relevant: port error bits relevant to this host controller
1288 * @hc: which host controller we're to look at
1289 *
1290 * Read then write clear the HC interrupt status then walk each
1291 * port connected to the HC and see if it needs servicing. Port
1292 * success ints are reported in the HC interrupt status reg, the
1293 * port error ints are reported in the higher level main
1294 * interrupt status register and thus are passed in via the
1295 * 'relevant' argument.
1296 *
1297 * LOCKING:
1298 * Inherited from caller.
1299 */
1300 static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
1301 {
1302 void __iomem *mmio = host->mmio_base;
1303 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1304 struct ata_queued_cmd *qc;
1305 u32 hc_irq_cause;
1306 int shift, port, port0, hard_port, handled;
1307 unsigned int err_mask;
1308
1309 if (hc == 0) {
1310 port0 = 0;
1311 } else {
1312 port0 = MV_PORTS_PER_HC;
1313 }
1314
1315 /* we'll need the HC success int register in most cases */
1316 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1317 if (hc_irq_cause) {
1318 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1319 }
1320
1321 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1322 hc,relevant,hc_irq_cause);
1323
1324 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1325 u8 ata_status = 0;
1326 struct ata_port *ap = host->ports[port];
1327 struct mv_port_priv *pp = ap->private_data;
1328
1329 hard_port = mv_hardport_from_port(port); /* range 0..3 */
1330 handled = 0; /* ensure ata_status is set if handled++ */
1331
1332 /* Note that DEV_IRQ might happen spuriously during EDMA,
1333 * and should be ignored in such cases.
1334 * The cause of this is still under investigation.
1335 */
1336 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1337 /* EDMA: check for response queue interrupt */
1338 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1339 ata_status = mv_get_crpb_status(ap);
1340 handled = 1;
1341 }
1342 } else {
1343 /* PIO: check for device (drive) interrupt */
1344 if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1345 ata_status = readb((void __iomem *)
1346 ap->ioaddr.status_addr);
1347 handled = 1;
1348 /* ignore spurious intr if drive still BUSY */
1349 if (ata_status & ATA_BUSY) {
1350 ata_status = 0;
1351 handled = 0;
1352 }
1353 }
1354 }
1355
1356 if (ap && (ap->flags & ATA_FLAG_DISABLED))
1357 continue;
1358
1359 err_mask = ac_err_mask(ata_status);
1360
1361 shift = port << 1; /* (port * 2) */
1362 if (port >= MV_PORTS_PER_HC) {
1363 shift++; /* skip bit 8 in the HC Main IRQ reg */
1364 }
1365 if ((PORT0_ERR << shift) & relevant) {
1366 mv_err_intr(ap, 1);
1367 err_mask |= AC_ERR_OTHER;
1368 handled = 1;
1369 }
1370
1371 if (handled) {
1372 qc = ata_qc_from_tag(ap, ap->active_tag);
1373 if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) {
1374 VPRINTK("port %u IRQ found for qc, "
1375 "ata_status 0x%x\n", port,ata_status);
1376 /* mark qc status appropriately */
1377 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) {
1378 qc->err_mask |= err_mask;
1379 ata_qc_complete(qc);
1380 }
1381 }
1382 }
1383 }
1384 VPRINTK("EXIT\n");
1385 }
1386
1387 /**
1388 * mv_interrupt -
1389 * @irq: unused
1390 * @dev_instance: private data; in this case the host structure
1391 * @regs: unused
1392 *
1393 * Read the read only register to determine if any host
1394 * controllers have pending interrupts. If so, call lower level
1395 * routine to handle. Also check for PCI errors which are only
1396 * reported here.
1397 *
1398 * LOCKING:
1399 * This routine holds the host lock while processing pending
1400 * interrupts.
1401 */
1402 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
1403 {
1404 struct ata_host *host = dev_instance;
1405 unsigned int hc, handled = 0, n_hcs;
1406 void __iomem *mmio = host->mmio_base;
1407 struct mv_host_priv *hpriv;
1408 u32 irq_stat;
1409
1410 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1411
1412 /* check the cases where we either have nothing pending or have read
1413 * a bogus register value which can indicate HW removal or PCI fault
1414 */
1415 if (!irq_stat || (0xffffffffU == irq_stat)) {
1416 return IRQ_NONE;
1417 }
1418
1419 n_hcs = mv_get_hc_count(host->ports[0]->flags);
1420 spin_lock(&host->lock);
1421
1422 for (hc = 0; hc < n_hcs; hc++) {
1423 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1424 if (relevant) {
1425 mv_host_intr(host, relevant, hc);
1426 handled++;
1427 }
1428 }
1429
1430 hpriv = host->private_data;
1431 if (IS_60XX(hpriv)) {
1432 /* deal with the interrupt coalescing bits */
1433 if (irq_stat & (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE)) {
1434 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_LO);
1435 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_HI);
1436 writelfl(0, mmio + MV_IRQ_COAL_CAUSE);
1437 }
1438 }
1439
1440 if (PCI_ERR & irq_stat) {
1441 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1442 readl(mmio + PCI_IRQ_CAUSE_OFS));
1443
1444 DPRINTK("All regs @ PCI error\n");
1445 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
1446
1447 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1448 handled++;
1449 }
1450 spin_unlock(&host->lock);
1451
1452 return IRQ_RETVAL(handled);
1453 }
1454
1455 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1456 {
1457 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1458 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1459
1460 return hc_mmio + ofs;
1461 }
1462
1463 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1464 {
1465 unsigned int ofs;
1466
1467 switch (sc_reg_in) {
1468 case SCR_STATUS:
1469 case SCR_ERROR:
1470 case SCR_CONTROL:
1471 ofs = sc_reg_in * sizeof(u32);
1472 break;
1473 default:
1474 ofs = 0xffffffffU;
1475 break;
1476 }
1477 return ofs;
1478 }
1479
1480 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1481 {
1482 void __iomem *mmio = mv5_phy_base(ap->host->mmio_base, ap->port_no);
1483 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1484
1485 if (ofs != 0xffffffffU)
1486 return readl(mmio + ofs);
1487 else
1488 return (u32) ofs;
1489 }
1490
1491 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1492 {
1493 void __iomem *mmio = mv5_phy_base(ap->host->mmio_base, ap->port_no);
1494 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1495
1496 if (ofs != 0xffffffffU)
1497 writelfl(val, mmio + ofs);
1498 }
1499
1500 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1501 {
1502 u8 rev_id;
1503 int early_5080;
1504
1505 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1506
1507 early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1508
1509 if (!early_5080) {
1510 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1511 tmp |= (1 << 0);
1512 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1513 }
1514
1515 mv_reset_pci_bus(pdev, mmio);
1516 }
1517
1518 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1519 {
1520 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1521 }
1522
1523 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1524 void __iomem *mmio)
1525 {
1526 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1527 u32 tmp;
1528
1529 tmp = readl(phy_mmio + MV5_PHY_MODE);
1530
1531 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1532 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1533 }
1534
1535 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1536 {
1537 u32 tmp;
1538
1539 writel(0, mmio + MV_GPIO_PORT_CTL);
1540
1541 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1542
1543 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1544 tmp |= ~(1 << 0);
1545 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1546 }
1547
1548 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1549 unsigned int port)
1550 {
1551 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1552 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1553 u32 tmp;
1554 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1555
1556 if (fix_apm_sq) {
1557 tmp = readl(phy_mmio + MV5_LT_MODE);
1558 tmp |= (1 << 19);
1559 writel(tmp, phy_mmio + MV5_LT_MODE);
1560
1561 tmp = readl(phy_mmio + MV5_PHY_CTL);
1562 tmp &= ~0x3;
1563 tmp |= 0x1;
1564 writel(tmp, phy_mmio + MV5_PHY_CTL);
1565 }
1566
1567 tmp = readl(phy_mmio + MV5_PHY_MODE);
1568 tmp &= ~mask;
1569 tmp |= hpriv->signal[port].pre;
1570 tmp |= hpriv->signal[port].amps;
1571 writel(tmp, phy_mmio + MV5_PHY_MODE);
1572 }
1573
1574
1575 #undef ZERO
1576 #define ZERO(reg) writel(0, port_mmio + (reg))
1577 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1578 unsigned int port)
1579 {
1580 void __iomem *port_mmio = mv_port_base(mmio, port);
1581
1582 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1583
1584 mv_channel_reset(hpriv, mmio, port);
1585
1586 ZERO(0x028); /* command */
1587 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1588 ZERO(0x004); /* timer */
1589 ZERO(0x008); /* irq err cause */
1590 ZERO(0x00c); /* irq err mask */
1591 ZERO(0x010); /* rq bah */
1592 ZERO(0x014); /* rq inp */
1593 ZERO(0x018); /* rq outp */
1594 ZERO(0x01c); /* respq bah */
1595 ZERO(0x024); /* respq outp */
1596 ZERO(0x020); /* respq inp */
1597 ZERO(0x02c); /* test control */
1598 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1599 }
1600 #undef ZERO
1601
1602 #define ZERO(reg) writel(0, hc_mmio + (reg))
1603 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1604 unsigned int hc)
1605 {
1606 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1607 u32 tmp;
1608
1609 ZERO(0x00c);
1610 ZERO(0x010);
1611 ZERO(0x014);
1612 ZERO(0x018);
1613
1614 tmp = readl(hc_mmio + 0x20);
1615 tmp &= 0x1c1c1c1c;
1616 tmp |= 0x03030303;
1617 writel(tmp, hc_mmio + 0x20);
1618 }
1619 #undef ZERO
1620
1621 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1622 unsigned int n_hc)
1623 {
1624 unsigned int hc, port;
1625
1626 for (hc = 0; hc < n_hc; hc++) {
1627 for (port = 0; port < MV_PORTS_PER_HC; port++)
1628 mv5_reset_hc_port(hpriv, mmio,
1629 (hc * MV_PORTS_PER_HC) + port);
1630
1631 mv5_reset_one_hc(hpriv, mmio, hc);
1632 }
1633
1634 return 0;
1635 }
1636
1637 #undef ZERO
1638 #define ZERO(reg) writel(0, mmio + (reg))
1639 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1640 {
1641 u32 tmp;
1642
1643 tmp = readl(mmio + MV_PCI_MODE);
1644 tmp &= 0xff00ffff;
1645 writel(tmp, mmio + MV_PCI_MODE);
1646
1647 ZERO(MV_PCI_DISC_TIMER);
1648 ZERO(MV_PCI_MSI_TRIGGER);
1649 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1650 ZERO(HC_MAIN_IRQ_MASK_OFS);
1651 ZERO(MV_PCI_SERR_MASK);
1652 ZERO(PCI_IRQ_CAUSE_OFS);
1653 ZERO(PCI_IRQ_MASK_OFS);
1654 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1655 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1656 ZERO(MV_PCI_ERR_ATTRIBUTE);
1657 ZERO(MV_PCI_ERR_COMMAND);
1658 }
1659 #undef ZERO
1660
1661 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1662 {
1663 u32 tmp;
1664
1665 mv5_reset_flash(hpriv, mmio);
1666
1667 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1668 tmp &= 0x3;
1669 tmp |= (1 << 5) | (1 << 6);
1670 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1671 }
1672
1673 /**
1674 * mv6_reset_hc - Perform the 6xxx global soft reset
1675 * @mmio: base address of the HBA
1676 *
1677 * This routine only applies to 6xxx parts.
1678 *
1679 * LOCKING:
1680 * Inherited from caller.
1681 */
1682 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1683 unsigned int n_hc)
1684 {
1685 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1686 int i, rc = 0;
1687 u32 t;
1688
1689 /* Following procedure defined in PCI "main command and status
1690 * register" table.
1691 */
1692 t = readl(reg);
1693 writel(t | STOP_PCI_MASTER, reg);
1694
1695 for (i = 0; i < 1000; i++) {
1696 udelay(1);
1697 t = readl(reg);
1698 if (PCI_MASTER_EMPTY & t) {
1699 break;
1700 }
1701 }
1702 if (!(PCI_MASTER_EMPTY & t)) {
1703 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1704 rc = 1;
1705 goto done;
1706 }
1707
1708 /* set reset */
1709 i = 5;
1710 do {
1711 writel(t | GLOB_SFT_RST, reg);
1712 t = readl(reg);
1713 udelay(1);
1714 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1715
1716 if (!(GLOB_SFT_RST & t)) {
1717 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1718 rc = 1;
1719 goto done;
1720 }
1721
1722 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1723 i = 5;
1724 do {
1725 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1726 t = readl(reg);
1727 udelay(1);
1728 } while ((GLOB_SFT_RST & t) && (i-- > 0));
1729
1730 if (GLOB_SFT_RST & t) {
1731 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1732 rc = 1;
1733 }
1734 done:
1735 return rc;
1736 }
1737
1738 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1739 void __iomem *mmio)
1740 {
1741 void __iomem *port_mmio;
1742 u32 tmp;
1743
1744 tmp = readl(mmio + MV_RESET_CFG);
1745 if ((tmp & (1 << 0)) == 0) {
1746 hpriv->signal[idx].amps = 0x7 << 8;
1747 hpriv->signal[idx].pre = 0x1 << 5;
1748 return;
1749 }
1750
1751 port_mmio = mv_port_base(mmio, idx);
1752 tmp = readl(port_mmio + PHY_MODE2);
1753
1754 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
1755 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
1756 }
1757
1758 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1759 {
1760 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1761 }
1762
1763 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1764 unsigned int port)
1765 {
1766 void __iomem *port_mmio = mv_port_base(mmio, port);
1767
1768 u32 hp_flags = hpriv->hp_flags;
1769 int fix_phy_mode2 =
1770 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1771 int fix_phy_mode4 =
1772 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1773 u32 m2, tmp;
1774
1775 if (fix_phy_mode2) {
1776 m2 = readl(port_mmio + PHY_MODE2);
1777 m2 &= ~(1 << 16);
1778 m2 |= (1 << 31);
1779 writel(m2, port_mmio + PHY_MODE2);
1780
1781 udelay(200);
1782
1783 m2 = readl(port_mmio + PHY_MODE2);
1784 m2 &= ~((1 << 16) | (1 << 31));
1785 writel(m2, port_mmio + PHY_MODE2);
1786
1787 udelay(200);
1788 }
1789
1790 /* who knows what this magic does */
1791 tmp = readl(port_mmio + PHY_MODE3);
1792 tmp &= ~0x7F800000;
1793 tmp |= 0x2A800000;
1794 writel(tmp, port_mmio + PHY_MODE3);
1795
1796 if (fix_phy_mode4) {
1797 u32 m4;
1798
1799 m4 = readl(port_mmio + PHY_MODE4);
1800
1801 if (hp_flags & MV_HP_ERRATA_60X1B2)
1802 tmp = readl(port_mmio + 0x310);
1803
1804 m4 = (m4 & ~(1 << 1)) | (1 << 0);
1805
1806 writel(m4, port_mmio + PHY_MODE4);
1807
1808 if (hp_flags & MV_HP_ERRATA_60X1B2)
1809 writel(tmp, port_mmio + 0x310);
1810 }
1811
1812 /* Revert values of pre-emphasis and signal amps to the saved ones */
1813 m2 = readl(port_mmio + PHY_MODE2);
1814
1815 m2 &= ~MV_M2_PREAMP_MASK;
1816 m2 |= hpriv->signal[port].amps;
1817 m2 |= hpriv->signal[port].pre;
1818 m2 &= ~(1 << 16);
1819
1820 /* according to mvSata 3.6.1, some IIE values are fixed */
1821 if (IS_GEN_IIE(hpriv)) {
1822 m2 &= ~0xC30FF01F;
1823 m2 |= 0x0000900F;
1824 }
1825
1826 writel(m2, port_mmio + PHY_MODE2);
1827 }
1828
1829 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1830 unsigned int port_no)
1831 {
1832 void __iomem *port_mmio = mv_port_base(mmio, port_no);
1833
1834 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1835
1836 if (IS_60XX(hpriv)) {
1837 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1838 ifctl |= (1 << 7); /* enable gen2i speed */
1839 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
1840 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1841 }
1842
1843 udelay(25); /* allow reset propagation */
1844
1845 /* Spec never mentions clearing the bit. Marvell's driver does
1846 * clear the bit, however.
1847 */
1848 writelfl(0, port_mmio + EDMA_CMD_OFS);
1849
1850 hpriv->ops->phy_errata(hpriv, mmio, port_no);
1851
1852 if (IS_50XX(hpriv))
1853 mdelay(1);
1854 }
1855
1856 static void mv_stop_and_reset(struct ata_port *ap)
1857 {
1858 struct mv_host_priv *hpriv = ap->host->private_data;
1859 void __iomem *mmio = ap->host->mmio_base;
1860
1861 mv_stop_dma(ap);
1862
1863 mv_channel_reset(hpriv, mmio, ap->port_no);
1864
1865 __mv_phy_reset(ap, 0);
1866 }
1867
1868 static inline void __msleep(unsigned int msec, int can_sleep)
1869 {
1870 if (can_sleep)
1871 msleep(msec);
1872 else
1873 mdelay(msec);
1874 }
1875
1876 /**
1877 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1878 * @ap: ATA channel to manipulate
1879 *
1880 * Part of this is taken from __sata_phy_reset and modified to
1881 * not sleep since this routine gets called from interrupt level.
1882 *
1883 * LOCKING:
1884 * Inherited from caller. This is coded to safe to call at
1885 * interrupt level, i.e. it does not sleep.
1886 */
1887 static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1888 {
1889 struct mv_port_priv *pp = ap->private_data;
1890 struct mv_host_priv *hpriv = ap->host->private_data;
1891 void __iomem *port_mmio = mv_ap_base(ap);
1892 struct ata_taskfile tf;
1893 struct ata_device *dev = &ap->device[0];
1894 unsigned long timeout;
1895 int retry = 5;
1896 u32 sstatus;
1897
1898 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1899
1900 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1901 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1902 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1903
1904 /* Issue COMRESET via SControl */
1905 comreset_retry:
1906 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1907 __msleep(1, can_sleep);
1908
1909 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1910 __msleep(20, can_sleep);
1911
1912 timeout = jiffies + msecs_to_jiffies(200);
1913 do {
1914 sata_scr_read(ap, SCR_STATUS, &sstatus);
1915 if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0))
1916 break;
1917
1918 __msleep(1, can_sleep);
1919 } while (time_before(jiffies, timeout));
1920
1921 /* work around errata */
1922 if (IS_60XX(hpriv) &&
1923 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1924 (retry-- > 0))
1925 goto comreset_retry;
1926
1927 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1928 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1929 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1930
1931 if (ata_port_online(ap)) {
1932 ata_port_probe(ap);
1933 } else {
1934 sata_scr_read(ap, SCR_STATUS, &sstatus);
1935 ata_port_printk(ap, KERN_INFO,
1936 "no device found (phy stat %08x)\n", sstatus);
1937 ata_port_disable(ap);
1938 return;
1939 }
1940 ap->cbl = ATA_CBL_SATA;
1941
1942 /* even after SStatus reflects that device is ready,
1943 * it seems to take a while for link to be fully
1944 * established (and thus Status no longer 0x80/0x7F),
1945 * so we poll a bit for that, here.
1946 */
1947 retry = 20;
1948 while (1) {
1949 u8 drv_stat = ata_check_status(ap);
1950 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
1951 break;
1952 __msleep(500, can_sleep);
1953 if (retry-- <= 0)
1954 break;
1955 }
1956
1957 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
1958 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
1959 tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
1960 tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
1961
1962 dev->class = ata_dev_classify(&tf);
1963 if (!ata_dev_enabled(dev)) {
1964 VPRINTK("Port disabled post-sig: No device present.\n");
1965 ata_port_disable(ap);
1966 }
1967
1968 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1969
1970 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1971
1972 VPRINTK("EXIT\n");
1973 }
1974
1975 static void mv_phy_reset(struct ata_port *ap)
1976 {
1977 __mv_phy_reset(ap, 1);
1978 }
1979
1980 /**
1981 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
1982 * @ap: ATA channel to manipulate
1983 *
1984 * Intent is to clear all pending error conditions, reset the
1985 * chip/bus, fail the command, and move on.
1986 *
1987 * LOCKING:
1988 * This routine holds the host lock while failing the command.
1989 */
1990 static void mv_eng_timeout(struct ata_port *ap)
1991 {
1992 struct ata_queued_cmd *qc;
1993 unsigned long flags;
1994
1995 ata_port_printk(ap, KERN_ERR, "Entering mv_eng_timeout\n");
1996 DPRINTK("All regs @ start of eng_timeout\n");
1997 mv_dump_all_regs(ap->host->mmio_base, ap->port_no,
1998 to_pci_dev(ap->host->dev));
1999
2000 qc = ata_qc_from_tag(ap, ap->active_tag);
2001 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2002 ap->host->mmio_base, ap, qc, qc->scsicmd, &qc->scsicmd->cmnd);
2003
2004 spin_lock_irqsave(&ap->host->lock, flags);
2005 mv_err_intr(ap, 0);
2006 mv_stop_and_reset(ap);
2007 spin_unlock_irqrestore(&ap->host->lock, flags);
2008
2009 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
2010 if (qc->flags & ATA_QCFLAG_ACTIVE) {
2011 qc->err_mask |= AC_ERR_TIMEOUT;
2012 ata_eh_qc_complete(qc);
2013 }
2014 }
2015
2016 /**
2017 * mv_port_init - Perform some early initialization on a single port.
2018 * @port: libata data structure storing shadow register addresses
2019 * @port_mmio: base address of the port
2020 *
2021 * Initialize shadow register mmio addresses, clear outstanding
2022 * interrupts on the port, and unmask interrupts for the future
2023 * start of the port.
2024 *
2025 * LOCKING:
2026 * Inherited from caller.
2027 */
2028 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2029 {
2030 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
2031 unsigned serr_ofs;
2032
2033 /* PIO related setup
2034 */
2035 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2036 port->error_addr =
2037 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2038 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2039 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2040 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2041 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2042 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2043 port->status_addr =
2044 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2045 /* special case: control/altstatus doesn't have ATA_REG_ address */
2046 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2047
2048 /* unused: */
2049 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
2050
2051 /* Clear any currently outstanding port interrupt conditions */
2052 serr_ofs = mv_scr_offset(SCR_ERROR);
2053 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2054 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2055
2056 /* unmask all EDMA error interrupts */
2057 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2058
2059 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2060 readl(port_mmio + EDMA_CFG_OFS),
2061 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2062 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2063 }
2064
2065 static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
2066 unsigned int board_idx)
2067 {
2068 u8 rev_id;
2069 u32 hp_flags = hpriv->hp_flags;
2070
2071 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2072
2073 switch(board_idx) {
2074 case chip_5080:
2075 hpriv->ops = &mv5xxx_ops;
2076 hp_flags |= MV_HP_50XX;
2077
2078 switch (rev_id) {
2079 case 0x1:
2080 hp_flags |= MV_HP_ERRATA_50XXB0;
2081 break;
2082 case 0x3:
2083 hp_flags |= MV_HP_ERRATA_50XXB2;
2084 break;
2085 default:
2086 dev_printk(KERN_WARNING, &pdev->dev,
2087 "Applying 50XXB2 workarounds to unknown rev\n");
2088 hp_flags |= MV_HP_ERRATA_50XXB2;
2089 break;
2090 }
2091 break;
2092
2093 case chip_504x:
2094 case chip_508x:
2095 hpriv->ops = &mv5xxx_ops;
2096 hp_flags |= MV_HP_50XX;
2097
2098 switch (rev_id) {
2099 case 0x0:
2100 hp_flags |= MV_HP_ERRATA_50XXB0;
2101 break;
2102 case 0x3:
2103 hp_flags |= MV_HP_ERRATA_50XXB2;
2104 break;
2105 default:
2106 dev_printk(KERN_WARNING, &pdev->dev,
2107 "Applying B2 workarounds to unknown rev\n");
2108 hp_flags |= MV_HP_ERRATA_50XXB2;
2109 break;
2110 }
2111 break;
2112
2113 case chip_604x:
2114 case chip_608x:
2115 hpriv->ops = &mv6xxx_ops;
2116
2117 switch (rev_id) {
2118 case 0x7:
2119 hp_flags |= MV_HP_ERRATA_60X1B2;
2120 break;
2121 case 0x9:
2122 hp_flags |= MV_HP_ERRATA_60X1C0;
2123 break;
2124 default:
2125 dev_printk(KERN_WARNING, &pdev->dev,
2126 "Applying B2 workarounds to unknown rev\n");
2127 hp_flags |= MV_HP_ERRATA_60X1B2;
2128 break;
2129 }
2130 break;
2131
2132 case chip_7042:
2133 case chip_6042:
2134 hpriv->ops = &mv6xxx_ops;
2135
2136 hp_flags |= MV_HP_GEN_IIE;
2137
2138 switch (rev_id) {
2139 case 0x0:
2140 hp_flags |= MV_HP_ERRATA_XX42A0;
2141 break;
2142 case 0x1:
2143 hp_flags |= MV_HP_ERRATA_60X1C0;
2144 break;
2145 default:
2146 dev_printk(KERN_WARNING, &pdev->dev,
2147 "Applying 60X1C0 workarounds to unknown rev\n");
2148 hp_flags |= MV_HP_ERRATA_60X1C0;
2149 break;
2150 }
2151 break;
2152
2153 default:
2154 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2155 return 1;
2156 }
2157
2158 hpriv->hp_flags = hp_flags;
2159
2160 return 0;
2161 }
2162
2163 /**
2164 * mv_init_host - Perform some early initialization of the host.
2165 * @pdev: host PCI device
2166 * @probe_ent: early data struct representing the host
2167 *
2168 * If possible, do an early global reset of the host. Then do
2169 * our port init and clear/unmask all/relevant host interrupts.
2170 *
2171 * LOCKING:
2172 * Inherited from caller.
2173 */
2174 static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2175 unsigned int board_idx)
2176 {
2177 int rc = 0, n_hc, port, hc;
2178 void __iomem *mmio = probe_ent->mmio_base;
2179 struct mv_host_priv *hpriv = probe_ent->private_data;
2180
2181 /* global interrupt mask */
2182 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2183
2184 rc = mv_chip_id(pdev, hpriv, board_idx);
2185 if (rc)
2186 goto done;
2187
2188 n_hc = mv_get_hc_count(probe_ent->port_flags);
2189 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2190
2191 for (port = 0; port < probe_ent->n_ports; port++)
2192 hpriv->ops->read_preamp(hpriv, port, mmio);
2193
2194 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2195 if (rc)
2196 goto done;
2197
2198 hpriv->ops->reset_flash(hpriv, mmio);
2199 hpriv->ops->reset_bus(pdev, mmio);
2200 hpriv->ops->enable_leds(hpriv, mmio);
2201
2202 for (port = 0; port < probe_ent->n_ports; port++) {
2203 if (IS_60XX(hpriv)) {
2204 void __iomem *port_mmio = mv_port_base(mmio, port);
2205
2206 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2207 ifctl |= (1 << 7); /* enable gen2i speed */
2208 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
2209 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2210 }
2211
2212 hpriv->ops->phy_errata(hpriv, mmio, port);
2213 }
2214
2215 for (port = 0; port < probe_ent->n_ports; port++) {
2216 void __iomem *port_mmio = mv_port_base(mmio, port);
2217 mv_port_init(&probe_ent->port[port], port_mmio);
2218 }
2219
2220 for (hc = 0; hc < n_hc; hc++) {
2221 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2222
2223 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2224 "(before clear)=0x%08x\n", hc,
2225 readl(hc_mmio + HC_CFG_OFS),
2226 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2227
2228 /* Clear any currently outstanding hc interrupt conditions */
2229 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2230 }
2231
2232 /* Clear any currently outstanding host interrupt conditions */
2233 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2234
2235 /* and unmask interrupt generation for host regs */
2236 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2237 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2238
2239 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2240 "PCI int cause/mask=0x%08x/0x%08x\n",
2241 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2242 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2243 readl(mmio + PCI_IRQ_CAUSE_OFS),
2244 readl(mmio + PCI_IRQ_MASK_OFS));
2245
2246 done:
2247 return rc;
2248 }
2249
2250 /**
2251 * mv_print_info - Dump key info to kernel log for perusal.
2252 * @probe_ent: early data struct representing the host
2253 *
2254 * FIXME: complete this.
2255 *
2256 * LOCKING:
2257 * Inherited from caller.
2258 */
2259 static void mv_print_info(struct ata_probe_ent *probe_ent)
2260 {
2261 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2262 struct mv_host_priv *hpriv = probe_ent->private_data;
2263 u8 rev_id, scc;
2264 const char *scc_s;
2265
2266 /* Use this to determine the HW stepping of the chip so we know
2267 * what errata to workaround
2268 */
2269 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2270
2271 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2272 if (scc == 0)
2273 scc_s = "SCSI";
2274 else if (scc == 0x01)
2275 scc_s = "RAID";
2276 else
2277 scc_s = "unknown";
2278
2279 dev_printk(KERN_INFO, &pdev->dev,
2280 "%u slots %u ports %s mode IRQ via %s\n",
2281 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2282 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2283 }
2284
2285 /**
2286 * mv_init_one - handle a positive probe of a Marvell host
2287 * @pdev: PCI device found
2288 * @ent: PCI device ID entry for the matched host
2289 *
2290 * LOCKING:
2291 * Inherited from caller.
2292 */
2293 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2294 {
2295 static int printed_version = 0;
2296 struct device *dev = &pdev->dev;
2297 struct ata_probe_ent *probe_ent;
2298 struct mv_host_priv *hpriv;
2299 unsigned int board_idx = (unsigned int)ent->driver_data;
2300 void __iomem *mmio_base;
2301 int rc;
2302
2303 if (!printed_version++)
2304 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2305
2306 rc = pcim_enable_device(pdev);
2307 if (rc)
2308 return rc;
2309 pci_set_master(pdev);
2310
2311 rc = pci_request_regions(pdev, DRV_NAME);
2312 if (rc) {
2313 pcim_pin_device(pdev);
2314 return rc;
2315 }
2316
2317 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
2318 if (probe_ent == NULL)
2319 return -ENOMEM;
2320
2321 probe_ent->dev = pci_dev_to_dev(pdev);
2322 INIT_LIST_HEAD(&probe_ent->node);
2323
2324 mmio_base = pcim_iomap(pdev, MV_PRIMARY_BAR, 0);
2325 if (mmio_base == NULL)
2326 return -ENOMEM;
2327
2328 hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
2329 if (!hpriv)
2330 return -ENOMEM;
2331
2332 probe_ent->sht = mv_port_info[board_idx].sht;
2333 probe_ent->port_flags = mv_port_info[board_idx].flags;
2334 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2335 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2336 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2337
2338 probe_ent->irq = pdev->irq;
2339 probe_ent->irq_flags = IRQF_SHARED;
2340 probe_ent->mmio_base = mmio_base;
2341 probe_ent->private_data = hpriv;
2342
2343 /* initialize adapter */
2344 rc = mv_init_host(pdev, probe_ent, board_idx);
2345 if (rc)
2346 return rc;
2347
2348 /* Enable interrupts */
2349 if (msi && !pci_enable_msi(pdev))
2350 pci_intx(pdev, 1);
2351
2352 mv_dump_pci_cfg(pdev, 0x68);
2353 mv_print_info(probe_ent);
2354
2355 if (ata_device_add(probe_ent) == 0)
2356 return -ENODEV;
2357
2358 devm_kfree(dev, probe_ent);
2359 return 0;
2360 }
2361
2362 static int __init mv_init(void)
2363 {
2364 return pci_register_driver(&mv_pci_driver);
2365 }
2366
2367 static void __exit mv_exit(void)
2368 {
2369 pci_unregister_driver(&mv_pci_driver);
2370 }
2371
2372 MODULE_AUTHOR("Brett Russ");
2373 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2374 MODULE_LICENSE("GPL");
2375 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2376 MODULE_VERSION(DRV_VERSION);
2377
2378 module_param(msi, int, 0444);
2379 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2380
2381 module_init(mv_init);
2382 module_exit(mv_exit);
This page took 0.188097 seconds and 5 git commands to generate.