Merge commit 'gcl/merge' into merge
[deliverable/linux.git] / drivers / ata / sata_mv.c
1 /*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 *
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10 *
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 */
27
28 /*
29 * sata_mv TODO list:
30 *
31 * --> Develop a low-power-consumption strategy, and implement it.
32 *
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34 *
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
38 *
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
41 */
42
43 /*
44 * 80x1-B2 errata PCI#11:
45 *
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
50 */
51
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_cmnd.h>
69 #include <scsi/scsi_device.h>
70 #include <linux/libata.h>
71
72 #define DRV_NAME "sata_mv"
73 #define DRV_VERSION "1.28"
74
75 /*
76 * module options
77 */
78
79 static int msi;
80 #ifdef CONFIG_PCI
81 module_param(msi, int, S_IRUGO);
82 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
83 #endif
84
85 static int irq_coalescing_io_count;
86 module_param(irq_coalescing_io_count, int, S_IRUGO);
87 MODULE_PARM_DESC(irq_coalescing_io_count,
88 "IRQ coalescing I/O count threshold (0..255)");
89
90 static int irq_coalescing_usecs;
91 module_param(irq_coalescing_usecs, int, S_IRUGO);
92 MODULE_PARM_DESC(irq_coalescing_usecs,
93 "IRQ coalescing time threshold in usecs");
94
95 enum {
96 /* BAR's are enumerated in terms of pci_resource_start() terms */
97 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
98 MV_IO_BAR = 2, /* offset 0x18: IO space */
99 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
100
101 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
102 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
103
104 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
105 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
106 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
107 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
108
109 MV_PCI_REG_BASE = 0,
110
111 /*
112 * Per-chip ("all ports") interrupt coalescing feature.
113 * This is only for GEN_II / GEN_IIE hardware.
114 *
115 * Coalescing defers the interrupt until either the IO_THRESHOLD
116 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
117 */
118 COAL_REG_BASE = 0x18000,
119 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
120 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
121
122 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
123 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
124
125 /*
126 * Registers for the (unused here) transaction coalescing feature:
127 */
128 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
129 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
130
131 SATAHC0_REG_BASE = 0x20000,
132 FLASH_CTL = 0x1046c,
133 GPIO_PORT_CTL = 0x104f0,
134 RESET_CFG = 0x180d8,
135
136 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
137 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
138 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
139 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
140
141 MV_MAX_Q_DEPTH = 32,
142 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
143
144 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
145 * CRPB needs alignment on a 256B boundary. Size == 256B
146 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
147 */
148 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
149 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
150 MV_MAX_SG_CT = 256,
151 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
152
153 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
154 MV_PORT_HC_SHIFT = 2,
155 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
156 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
157 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
158
159 /* Host Flags */
160 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
161
162 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
163 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
164
165 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
166
167 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
168 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
169
170 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
171
172 CRQB_FLAG_READ = (1 << 0),
173 CRQB_TAG_SHIFT = 1,
174 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
175 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
176 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
177 CRQB_CMD_ADDR_SHIFT = 8,
178 CRQB_CMD_CS = (0x2 << 11),
179 CRQB_CMD_LAST = (1 << 15),
180
181 CRPB_FLAG_STATUS_SHIFT = 8,
182 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
183 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
184
185 EPRD_FLAG_END_OF_TBL = (1 << 31),
186
187 /* PCI interface registers */
188
189 MV_PCI_COMMAND = 0xc00,
190 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
191 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
192
193 PCI_MAIN_CMD_STS = 0xd30,
194 STOP_PCI_MASTER = (1 << 2),
195 PCI_MASTER_EMPTY = (1 << 3),
196 GLOB_SFT_RST = (1 << 4),
197
198 MV_PCI_MODE = 0xd00,
199 MV_PCI_MODE_MASK = 0x30,
200
201 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
202 MV_PCI_DISC_TIMER = 0xd04,
203 MV_PCI_MSI_TRIGGER = 0xc38,
204 MV_PCI_SERR_MASK = 0xc28,
205 MV_PCI_XBAR_TMOUT = 0x1d04,
206 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
207 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
208 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
209 MV_PCI_ERR_COMMAND = 0x1d50,
210
211 PCI_IRQ_CAUSE = 0x1d58,
212 PCI_IRQ_MASK = 0x1d5c,
213 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
214
215 PCIE_IRQ_CAUSE = 0x1900,
216 PCIE_IRQ_MASK = 0x1910,
217 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
218
219 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
220 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
221 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
222 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
223 SOC_HC_MAIN_IRQ_MASK = 0x20024,
224 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
225 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
226 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
227 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
228 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
229 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
230 PCI_ERR = (1 << 18),
231 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
232 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
233 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
234 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
235 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
236 GPIO_INT = (1 << 22),
237 SELF_INT = (1 << 23),
238 TWSI_INT = (1 << 24),
239 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
240 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
241 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
242
243 /* SATAHC registers */
244 HC_CFG = 0x00,
245
246 HC_IRQ_CAUSE = 0x14,
247 DMA_IRQ = (1 << 0), /* shift by port # */
248 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
249 DEV_IRQ = (1 << 8), /* shift by port # */
250
251 /*
252 * Per-HC (Host-Controller) interrupt coalescing feature.
253 * This is present on all chip generations.
254 *
255 * Coalescing defers the interrupt until either the IO_THRESHOLD
256 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
257 */
258 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
259 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
260
261 SOC_LED_CTRL = 0x2c,
262 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
263 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
264 /* with dev activity LED */
265
266 /* Shadow block registers */
267 SHD_BLK = 0x100,
268 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
269
270 /* SATA registers */
271 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
272 SATA_ACTIVE = 0x350,
273 FIS_IRQ_CAUSE = 0x364,
274 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
275
276 LTMODE = 0x30c, /* requires read-after-write */
277 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
278
279 PHY_MODE2 = 0x330,
280 PHY_MODE3 = 0x310,
281
282 PHY_MODE4 = 0x314, /* requires read-after-write */
283 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
284 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
285 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
286 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
287
288 SATA_IFCTL = 0x344,
289 SATA_TESTCTL = 0x348,
290 SATA_IFSTAT = 0x34c,
291 VENDOR_UNIQUE_FIS = 0x35c,
292
293 FISCFG = 0x360,
294 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
295 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
296
297 PHY_MODE9_GEN2 = 0x398,
298 PHY_MODE9_GEN1 = 0x39c,
299 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
300
301 MV5_PHY_MODE = 0x74,
302 MV5_LTMODE = 0x30,
303 MV5_PHY_CTL = 0x0C,
304 SATA_IFCFG = 0x050,
305
306 MV_M2_PREAMP_MASK = 0x7e0,
307
308 /* Port registers */
309 EDMA_CFG = 0,
310 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
311 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
312 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
313 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
314 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
315 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
316 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
317
318 EDMA_ERR_IRQ_CAUSE = 0x8,
319 EDMA_ERR_IRQ_MASK = 0xc,
320 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
321 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
322 EDMA_ERR_DEV = (1 << 2), /* device error */
323 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
324 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
325 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
326 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
327 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
328 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
329 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
330 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
331 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
332 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
333 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
334
335 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
336 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
337 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
338 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
339 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
340
341 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
342
343 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
344 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
345 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
346 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
347 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
348 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
349
350 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
351
352 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
353 EDMA_ERR_OVERRUN_5 = (1 << 5),
354 EDMA_ERR_UNDERRUN_5 = (1 << 6),
355
356 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
357 EDMA_ERR_LNK_CTRL_RX_1 |
358 EDMA_ERR_LNK_CTRL_RX_3 |
359 EDMA_ERR_LNK_CTRL_TX,
360
361 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
362 EDMA_ERR_PRD_PAR |
363 EDMA_ERR_DEV_DCON |
364 EDMA_ERR_DEV_CON |
365 EDMA_ERR_SERR |
366 EDMA_ERR_SELF_DIS |
367 EDMA_ERR_CRQB_PAR |
368 EDMA_ERR_CRPB_PAR |
369 EDMA_ERR_INTRL_PAR |
370 EDMA_ERR_IORDY |
371 EDMA_ERR_LNK_CTRL_RX_2 |
372 EDMA_ERR_LNK_DATA_RX |
373 EDMA_ERR_LNK_DATA_TX |
374 EDMA_ERR_TRANS_PROTO,
375
376 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
377 EDMA_ERR_PRD_PAR |
378 EDMA_ERR_DEV_DCON |
379 EDMA_ERR_DEV_CON |
380 EDMA_ERR_OVERRUN_5 |
381 EDMA_ERR_UNDERRUN_5 |
382 EDMA_ERR_SELF_DIS_5 |
383 EDMA_ERR_CRQB_PAR |
384 EDMA_ERR_CRPB_PAR |
385 EDMA_ERR_INTRL_PAR |
386 EDMA_ERR_IORDY,
387
388 EDMA_REQ_Q_BASE_HI = 0x10,
389 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
390
391 EDMA_REQ_Q_OUT_PTR = 0x18,
392 EDMA_REQ_Q_PTR_SHIFT = 5,
393
394 EDMA_RSP_Q_BASE_HI = 0x1c,
395 EDMA_RSP_Q_IN_PTR = 0x20,
396 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
397 EDMA_RSP_Q_PTR_SHIFT = 3,
398
399 EDMA_CMD = 0x28, /* EDMA command register */
400 EDMA_EN = (1 << 0), /* enable EDMA */
401 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
402 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
403
404 EDMA_STATUS = 0x30, /* EDMA engine status */
405 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
406 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
407
408 EDMA_IORDY_TMOUT = 0x34,
409 EDMA_ARB_CFG = 0x38,
410
411 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
412 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
413
414 BMDMA_CMD = 0x224, /* bmdma command register */
415 BMDMA_STATUS = 0x228, /* bmdma status register */
416 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
417 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
418
419 /* Host private flags (hp_flags) */
420 MV_HP_FLAG_MSI = (1 << 0),
421 MV_HP_ERRATA_50XXB0 = (1 << 1),
422 MV_HP_ERRATA_50XXB2 = (1 << 2),
423 MV_HP_ERRATA_60X1B2 = (1 << 3),
424 MV_HP_ERRATA_60X1C0 = (1 << 4),
425 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
426 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
427 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
428 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
429 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
430 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
431 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
432
433 /* Port private flags (pp_flags) */
434 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
435 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
436 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
437 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
438 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
439 };
440
441 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
442 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
443 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
444 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
445 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
446
447 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
448 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
449
450 enum {
451 /* DMA boundary 0xffff is required by the s/g splitting
452 * we need on /length/ in mv_fill-sg().
453 */
454 MV_DMA_BOUNDARY = 0xffffU,
455
456 /* mask of register bits containing lower 32 bits
457 * of EDMA request queue DMA address
458 */
459 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
460
461 /* ditto, for response queue */
462 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
463 };
464
465 enum chip_type {
466 chip_504x,
467 chip_508x,
468 chip_5080,
469 chip_604x,
470 chip_608x,
471 chip_6042,
472 chip_7042,
473 chip_soc,
474 };
475
476 /* Command ReQuest Block: 32B */
477 struct mv_crqb {
478 __le32 sg_addr;
479 __le32 sg_addr_hi;
480 __le16 ctrl_flags;
481 __le16 ata_cmd[11];
482 };
483
484 struct mv_crqb_iie {
485 __le32 addr;
486 __le32 addr_hi;
487 __le32 flags;
488 __le32 len;
489 __le32 ata_cmd[4];
490 };
491
492 /* Command ResPonse Block: 8B */
493 struct mv_crpb {
494 __le16 id;
495 __le16 flags;
496 __le32 tmstmp;
497 };
498
499 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
500 struct mv_sg {
501 __le32 addr;
502 __le32 flags_size;
503 __le32 addr_hi;
504 __le32 reserved;
505 };
506
507 /*
508 * We keep a local cache of a few frequently accessed port
509 * registers here, to avoid having to read them (very slow)
510 * when switching between EDMA and non-EDMA modes.
511 */
512 struct mv_cached_regs {
513 u32 fiscfg;
514 u32 ltmode;
515 u32 haltcond;
516 u32 unknown_rsvd;
517 };
518
519 struct mv_port_priv {
520 struct mv_crqb *crqb;
521 dma_addr_t crqb_dma;
522 struct mv_crpb *crpb;
523 dma_addr_t crpb_dma;
524 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
525 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
526
527 unsigned int req_idx;
528 unsigned int resp_idx;
529
530 u32 pp_flags;
531 struct mv_cached_regs cached;
532 unsigned int delayed_eh_pmp_map;
533 };
534
535 struct mv_port_signal {
536 u32 amps;
537 u32 pre;
538 };
539
540 struct mv_host_priv {
541 u32 hp_flags;
542 unsigned int board_idx;
543 u32 main_irq_mask;
544 struct mv_port_signal signal[8];
545 const struct mv_hw_ops *ops;
546 int n_ports;
547 void __iomem *base;
548 void __iomem *main_irq_cause_addr;
549 void __iomem *main_irq_mask_addr;
550 u32 irq_cause_offset;
551 u32 irq_mask_offset;
552 u32 unmask_all_irqs;
553
554 #if defined(CONFIG_HAVE_CLK)
555 struct clk *clk;
556 #endif
557 /*
558 * These consistent DMA memory pools give us guaranteed
559 * alignment for hardware-accessed data structures,
560 * and less memory waste in accomplishing the alignment.
561 */
562 struct dma_pool *crqb_pool;
563 struct dma_pool *crpb_pool;
564 struct dma_pool *sg_tbl_pool;
565 };
566
567 struct mv_hw_ops {
568 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
569 unsigned int port);
570 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
571 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
572 void __iomem *mmio);
573 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
574 unsigned int n_hc);
575 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
576 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
577 };
578
579 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
580 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
581 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
582 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
583 static int mv_port_start(struct ata_port *ap);
584 static void mv_port_stop(struct ata_port *ap);
585 static int mv_qc_defer(struct ata_queued_cmd *qc);
586 static void mv_qc_prep(struct ata_queued_cmd *qc);
587 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
588 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
589 static int mv_hardreset(struct ata_link *link, unsigned int *class,
590 unsigned long deadline);
591 static void mv_eh_freeze(struct ata_port *ap);
592 static void mv_eh_thaw(struct ata_port *ap);
593 static void mv6_dev_config(struct ata_device *dev);
594
595 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
596 unsigned int port);
597 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
598 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
599 void __iomem *mmio);
600 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
601 unsigned int n_hc);
602 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
603 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
604
605 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
606 unsigned int port);
607 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
608 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
609 void __iomem *mmio);
610 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
611 unsigned int n_hc);
612 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
613 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
614 void __iomem *mmio);
615 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
616 void __iomem *mmio);
617 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
618 void __iomem *mmio, unsigned int n_hc);
619 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
620 void __iomem *mmio);
621 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
622 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
623 void __iomem *mmio, unsigned int port);
624 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
625 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
626 unsigned int port_no);
627 static int mv_stop_edma(struct ata_port *ap);
628 static int mv_stop_edma_engine(void __iomem *port_mmio);
629 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
630
631 static void mv_pmp_select(struct ata_port *ap, int pmp);
632 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
633 unsigned long deadline);
634 static int mv_softreset(struct ata_link *link, unsigned int *class,
635 unsigned long deadline);
636 static void mv_pmp_error_handler(struct ata_port *ap);
637 static void mv_process_crpb_entries(struct ata_port *ap,
638 struct mv_port_priv *pp);
639
640 static void mv_sff_irq_clear(struct ata_port *ap);
641 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
642 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
643 static void mv_bmdma_start(struct ata_queued_cmd *qc);
644 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
645 static u8 mv_bmdma_status(struct ata_port *ap);
646 static u8 mv_sff_check_status(struct ata_port *ap);
647
648 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
649 * because we have to allow room for worst case splitting of
650 * PRDs for 64K boundaries in mv_fill_sg().
651 */
652 static struct scsi_host_template mv5_sht = {
653 ATA_BASE_SHT(DRV_NAME),
654 .sg_tablesize = MV_MAX_SG_CT / 2,
655 .dma_boundary = MV_DMA_BOUNDARY,
656 };
657
658 static struct scsi_host_template mv6_sht = {
659 ATA_NCQ_SHT(DRV_NAME),
660 .can_queue = MV_MAX_Q_DEPTH - 1,
661 .sg_tablesize = MV_MAX_SG_CT / 2,
662 .dma_boundary = MV_DMA_BOUNDARY,
663 };
664
665 static struct ata_port_operations mv5_ops = {
666 .inherits = &ata_sff_port_ops,
667
668 .lost_interrupt = ATA_OP_NULL,
669
670 .qc_defer = mv_qc_defer,
671 .qc_prep = mv_qc_prep,
672 .qc_issue = mv_qc_issue,
673
674 .freeze = mv_eh_freeze,
675 .thaw = mv_eh_thaw,
676 .hardreset = mv_hardreset,
677 .error_handler = ata_std_error_handler, /* avoid SFF EH */
678 .post_internal_cmd = ATA_OP_NULL,
679
680 .scr_read = mv5_scr_read,
681 .scr_write = mv5_scr_write,
682
683 .port_start = mv_port_start,
684 .port_stop = mv_port_stop,
685 };
686
687 static struct ata_port_operations mv6_ops = {
688 .inherits = &mv5_ops,
689 .dev_config = mv6_dev_config,
690 .scr_read = mv_scr_read,
691 .scr_write = mv_scr_write,
692
693 .pmp_hardreset = mv_pmp_hardreset,
694 .pmp_softreset = mv_softreset,
695 .softreset = mv_softreset,
696 .error_handler = mv_pmp_error_handler,
697
698 .sff_check_status = mv_sff_check_status,
699 .sff_irq_clear = mv_sff_irq_clear,
700 .check_atapi_dma = mv_check_atapi_dma,
701 .bmdma_setup = mv_bmdma_setup,
702 .bmdma_start = mv_bmdma_start,
703 .bmdma_stop = mv_bmdma_stop,
704 .bmdma_status = mv_bmdma_status,
705 };
706
707 static struct ata_port_operations mv_iie_ops = {
708 .inherits = &mv6_ops,
709 .dev_config = ATA_OP_NULL,
710 .qc_prep = mv_qc_prep_iie,
711 };
712
713 static const struct ata_port_info mv_port_info[] = {
714 { /* chip_504x */
715 .flags = MV_GEN_I_FLAGS,
716 .pio_mask = ATA_PIO4,
717 .udma_mask = ATA_UDMA6,
718 .port_ops = &mv5_ops,
719 },
720 { /* chip_508x */
721 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
722 .pio_mask = ATA_PIO4,
723 .udma_mask = ATA_UDMA6,
724 .port_ops = &mv5_ops,
725 },
726 { /* chip_5080 */
727 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
728 .pio_mask = ATA_PIO4,
729 .udma_mask = ATA_UDMA6,
730 .port_ops = &mv5_ops,
731 },
732 { /* chip_604x */
733 .flags = MV_GEN_II_FLAGS,
734 .pio_mask = ATA_PIO4,
735 .udma_mask = ATA_UDMA6,
736 .port_ops = &mv6_ops,
737 },
738 { /* chip_608x */
739 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
740 .pio_mask = ATA_PIO4,
741 .udma_mask = ATA_UDMA6,
742 .port_ops = &mv6_ops,
743 },
744 { /* chip_6042 */
745 .flags = MV_GEN_IIE_FLAGS,
746 .pio_mask = ATA_PIO4,
747 .udma_mask = ATA_UDMA6,
748 .port_ops = &mv_iie_ops,
749 },
750 { /* chip_7042 */
751 .flags = MV_GEN_IIE_FLAGS,
752 .pio_mask = ATA_PIO4,
753 .udma_mask = ATA_UDMA6,
754 .port_ops = &mv_iie_ops,
755 },
756 { /* chip_soc */
757 .flags = MV_GEN_IIE_FLAGS,
758 .pio_mask = ATA_PIO4,
759 .udma_mask = ATA_UDMA6,
760 .port_ops = &mv_iie_ops,
761 },
762 };
763
764 static const struct pci_device_id mv_pci_tbl[] = {
765 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
766 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
767 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
768 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
769 /* RocketRAID 1720/174x have different identifiers */
770 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
771 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
772 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
773
774 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
775 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
776 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
777 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
778 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
779
780 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
781
782 /* Adaptec 1430SA */
783 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
784
785 /* Marvell 7042 support */
786 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
787
788 /* Highpoint RocketRAID PCIe series */
789 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
790 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
791
792 { } /* terminate list */
793 };
794
795 static const struct mv_hw_ops mv5xxx_ops = {
796 .phy_errata = mv5_phy_errata,
797 .enable_leds = mv5_enable_leds,
798 .read_preamp = mv5_read_preamp,
799 .reset_hc = mv5_reset_hc,
800 .reset_flash = mv5_reset_flash,
801 .reset_bus = mv5_reset_bus,
802 };
803
804 static const struct mv_hw_ops mv6xxx_ops = {
805 .phy_errata = mv6_phy_errata,
806 .enable_leds = mv6_enable_leds,
807 .read_preamp = mv6_read_preamp,
808 .reset_hc = mv6_reset_hc,
809 .reset_flash = mv6_reset_flash,
810 .reset_bus = mv_reset_pci_bus,
811 };
812
813 static const struct mv_hw_ops mv_soc_ops = {
814 .phy_errata = mv6_phy_errata,
815 .enable_leds = mv_soc_enable_leds,
816 .read_preamp = mv_soc_read_preamp,
817 .reset_hc = mv_soc_reset_hc,
818 .reset_flash = mv_soc_reset_flash,
819 .reset_bus = mv_soc_reset_bus,
820 };
821
822 static const struct mv_hw_ops mv_soc_65n_ops = {
823 .phy_errata = mv_soc_65n_phy_errata,
824 .enable_leds = mv_soc_enable_leds,
825 .reset_hc = mv_soc_reset_hc,
826 .reset_flash = mv_soc_reset_flash,
827 .reset_bus = mv_soc_reset_bus,
828 };
829
830 /*
831 * Functions
832 */
833
834 static inline void writelfl(unsigned long data, void __iomem *addr)
835 {
836 writel(data, addr);
837 (void) readl(addr); /* flush to avoid PCI posted write */
838 }
839
840 static inline unsigned int mv_hc_from_port(unsigned int port)
841 {
842 return port >> MV_PORT_HC_SHIFT;
843 }
844
845 static inline unsigned int mv_hardport_from_port(unsigned int port)
846 {
847 return port & MV_PORT_MASK;
848 }
849
850 /*
851 * Consolidate some rather tricky bit shift calculations.
852 * This is hot-path stuff, so not a function.
853 * Simple code, with two return values, so macro rather than inline.
854 *
855 * port is the sole input, in range 0..7.
856 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
857 * hardport is the other output, in range 0..3.
858 *
859 * Note that port and hardport may be the same variable in some cases.
860 */
861 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
862 { \
863 shift = mv_hc_from_port(port) * HC_SHIFT; \
864 hardport = mv_hardport_from_port(port); \
865 shift += hardport * 2; \
866 }
867
868 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
869 {
870 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
871 }
872
873 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
874 unsigned int port)
875 {
876 return mv_hc_base(base, mv_hc_from_port(port));
877 }
878
879 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
880 {
881 return mv_hc_base_from_port(base, port) +
882 MV_SATAHC_ARBTR_REG_SZ +
883 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
884 }
885
886 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
887 {
888 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
889 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
890
891 return hc_mmio + ofs;
892 }
893
894 static inline void __iomem *mv_host_base(struct ata_host *host)
895 {
896 struct mv_host_priv *hpriv = host->private_data;
897 return hpriv->base;
898 }
899
900 static inline void __iomem *mv_ap_base(struct ata_port *ap)
901 {
902 return mv_port_base(mv_host_base(ap->host), ap->port_no);
903 }
904
905 static inline int mv_get_hc_count(unsigned long port_flags)
906 {
907 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
908 }
909
910 /**
911 * mv_save_cached_regs - (re-)initialize cached port registers
912 * @ap: the port whose registers we are caching
913 *
914 * Initialize the local cache of port registers,
915 * so that reading them over and over again can
916 * be avoided on the hotter paths of this driver.
917 * This saves a few microseconds each time we switch
918 * to/from EDMA mode to perform (eg.) a drive cache flush.
919 */
920 static void mv_save_cached_regs(struct ata_port *ap)
921 {
922 void __iomem *port_mmio = mv_ap_base(ap);
923 struct mv_port_priv *pp = ap->private_data;
924
925 pp->cached.fiscfg = readl(port_mmio + FISCFG);
926 pp->cached.ltmode = readl(port_mmio + LTMODE);
927 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
928 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
929 }
930
931 /**
932 * mv_write_cached_reg - write to a cached port register
933 * @addr: hardware address of the register
934 * @old: pointer to cached value of the register
935 * @new: new value for the register
936 *
937 * Write a new value to a cached register,
938 * but only if the value is different from before.
939 */
940 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
941 {
942 if (new != *old) {
943 unsigned long laddr;
944 *old = new;
945 /*
946 * Workaround for 88SX60x1-B2 FEr SATA#13:
947 * Read-after-write is needed to prevent generating 64-bit
948 * write cycles on the PCI bus for SATA interface registers
949 * at offsets ending in 0x4 or 0xc.
950 *
951 * Looks like a lot of fuss, but it avoids an unnecessary
952 * +1 usec read-after-write delay for unaffected registers.
953 */
954 laddr = (long)addr & 0xffff;
955 if (laddr >= 0x300 && laddr <= 0x33c) {
956 laddr &= 0x000f;
957 if (laddr == 0x4 || laddr == 0xc) {
958 writelfl(new, addr); /* read after write */
959 return;
960 }
961 }
962 writel(new, addr); /* unaffected by the errata */
963 }
964 }
965
966 static void mv_set_edma_ptrs(void __iomem *port_mmio,
967 struct mv_host_priv *hpriv,
968 struct mv_port_priv *pp)
969 {
970 u32 index;
971
972 /*
973 * initialize request queue
974 */
975 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
976 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
977
978 WARN_ON(pp->crqb_dma & 0x3ff);
979 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
980 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
981 port_mmio + EDMA_REQ_Q_IN_PTR);
982 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
983
984 /*
985 * initialize response queue
986 */
987 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
988 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
989
990 WARN_ON(pp->crpb_dma & 0xff);
991 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
992 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
993 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
994 port_mmio + EDMA_RSP_Q_OUT_PTR);
995 }
996
997 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
998 {
999 /*
1000 * When writing to the main_irq_mask in hardware,
1001 * we must ensure exclusivity between the interrupt coalescing bits
1002 * and the corresponding individual port DONE_IRQ bits.
1003 *
1004 * Note that this register is really an "IRQ enable" register,
1005 * not an "IRQ mask" register as Marvell's naming might suggest.
1006 */
1007 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1008 mask &= ~DONE_IRQ_0_3;
1009 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1010 mask &= ~DONE_IRQ_4_7;
1011 writelfl(mask, hpriv->main_irq_mask_addr);
1012 }
1013
1014 static void mv_set_main_irq_mask(struct ata_host *host,
1015 u32 disable_bits, u32 enable_bits)
1016 {
1017 struct mv_host_priv *hpriv = host->private_data;
1018 u32 old_mask, new_mask;
1019
1020 old_mask = hpriv->main_irq_mask;
1021 new_mask = (old_mask & ~disable_bits) | enable_bits;
1022 if (new_mask != old_mask) {
1023 hpriv->main_irq_mask = new_mask;
1024 mv_write_main_irq_mask(new_mask, hpriv);
1025 }
1026 }
1027
1028 static void mv_enable_port_irqs(struct ata_port *ap,
1029 unsigned int port_bits)
1030 {
1031 unsigned int shift, hardport, port = ap->port_no;
1032 u32 disable_bits, enable_bits;
1033
1034 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1035
1036 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1037 enable_bits = port_bits << shift;
1038 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1039 }
1040
1041 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1042 void __iomem *port_mmio,
1043 unsigned int port_irqs)
1044 {
1045 struct mv_host_priv *hpriv = ap->host->private_data;
1046 int hardport = mv_hardport_from_port(ap->port_no);
1047 void __iomem *hc_mmio = mv_hc_base_from_port(
1048 mv_host_base(ap->host), ap->port_no);
1049 u32 hc_irq_cause;
1050
1051 /* clear EDMA event indicators, if any */
1052 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1053
1054 /* clear pending irq events */
1055 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1056 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1057
1058 /* clear FIS IRQ Cause */
1059 if (IS_GEN_IIE(hpriv))
1060 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1061
1062 mv_enable_port_irqs(ap, port_irqs);
1063 }
1064
1065 static void mv_set_irq_coalescing(struct ata_host *host,
1066 unsigned int count, unsigned int usecs)
1067 {
1068 struct mv_host_priv *hpriv = host->private_data;
1069 void __iomem *mmio = hpriv->base, *hc_mmio;
1070 u32 coal_enable = 0;
1071 unsigned long flags;
1072 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1073 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1074 ALL_PORTS_COAL_DONE;
1075
1076 /* Disable IRQ coalescing if either threshold is zero */
1077 if (!usecs || !count) {
1078 clks = count = 0;
1079 } else {
1080 /* Respect maximum limits of the hardware */
1081 clks = usecs * COAL_CLOCKS_PER_USEC;
1082 if (clks > MAX_COAL_TIME_THRESHOLD)
1083 clks = MAX_COAL_TIME_THRESHOLD;
1084 if (count > MAX_COAL_IO_COUNT)
1085 count = MAX_COAL_IO_COUNT;
1086 }
1087
1088 spin_lock_irqsave(&host->lock, flags);
1089 mv_set_main_irq_mask(host, coal_disable, 0);
1090
1091 if (is_dual_hc && !IS_GEN_I(hpriv)) {
1092 /*
1093 * GEN_II/GEN_IIE with dual host controllers:
1094 * one set of global thresholds for the entire chip.
1095 */
1096 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1097 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1098 /* clear leftover coal IRQ bit */
1099 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1100 if (count)
1101 coal_enable = ALL_PORTS_COAL_DONE;
1102 clks = count = 0; /* force clearing of regular regs below */
1103 }
1104
1105 /*
1106 * All chips: independent thresholds for each HC on the chip.
1107 */
1108 hc_mmio = mv_hc_base_from_port(mmio, 0);
1109 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1110 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1111 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1112 if (count)
1113 coal_enable |= PORTS_0_3_COAL_DONE;
1114 if (is_dual_hc) {
1115 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1116 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1117 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1118 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1119 if (count)
1120 coal_enable |= PORTS_4_7_COAL_DONE;
1121 }
1122
1123 mv_set_main_irq_mask(host, 0, coal_enable);
1124 spin_unlock_irqrestore(&host->lock, flags);
1125 }
1126
1127 /**
1128 * mv_start_edma - Enable eDMA engine
1129 * @base: port base address
1130 * @pp: port private data
1131 *
1132 * Verify the local cache of the eDMA state is accurate with a
1133 * WARN_ON.
1134 *
1135 * LOCKING:
1136 * Inherited from caller.
1137 */
1138 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1139 struct mv_port_priv *pp, u8 protocol)
1140 {
1141 int want_ncq = (protocol == ATA_PROT_NCQ);
1142
1143 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1144 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1145 if (want_ncq != using_ncq)
1146 mv_stop_edma(ap);
1147 }
1148 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1149 struct mv_host_priv *hpriv = ap->host->private_data;
1150
1151 mv_edma_cfg(ap, want_ncq, 1);
1152
1153 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1154 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1155
1156 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1157 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1158 }
1159 }
1160
1161 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1162 {
1163 void __iomem *port_mmio = mv_ap_base(ap);
1164 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1165 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1166 int i;
1167
1168 /*
1169 * Wait for the EDMA engine to finish transactions in progress.
1170 * No idea what a good "timeout" value might be, but measurements
1171 * indicate that it often requires hundreds of microseconds
1172 * with two drives in-use. So we use the 15msec value above
1173 * as a rough guess at what even more drives might require.
1174 */
1175 for (i = 0; i < timeout; ++i) {
1176 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1177 if ((edma_stat & empty_idle) == empty_idle)
1178 break;
1179 udelay(per_loop);
1180 }
1181 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1182 }
1183
1184 /**
1185 * mv_stop_edma_engine - Disable eDMA engine
1186 * @port_mmio: io base address
1187 *
1188 * LOCKING:
1189 * Inherited from caller.
1190 */
1191 static int mv_stop_edma_engine(void __iomem *port_mmio)
1192 {
1193 int i;
1194
1195 /* Disable eDMA. The disable bit auto clears. */
1196 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1197
1198 /* Wait for the chip to confirm eDMA is off. */
1199 for (i = 10000; i > 0; i--) {
1200 u32 reg = readl(port_mmio + EDMA_CMD);
1201 if (!(reg & EDMA_EN))
1202 return 0;
1203 udelay(10);
1204 }
1205 return -EIO;
1206 }
1207
1208 static int mv_stop_edma(struct ata_port *ap)
1209 {
1210 void __iomem *port_mmio = mv_ap_base(ap);
1211 struct mv_port_priv *pp = ap->private_data;
1212 int err = 0;
1213
1214 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1215 return 0;
1216 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1217 mv_wait_for_edma_empty_idle(ap);
1218 if (mv_stop_edma_engine(port_mmio)) {
1219 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
1220 err = -EIO;
1221 }
1222 mv_edma_cfg(ap, 0, 0);
1223 return err;
1224 }
1225
1226 #ifdef ATA_DEBUG
1227 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1228 {
1229 int b, w;
1230 for (b = 0; b < bytes; ) {
1231 DPRINTK("%p: ", start + b);
1232 for (w = 0; b < bytes && w < 4; w++) {
1233 printk("%08x ", readl(start + b));
1234 b += sizeof(u32);
1235 }
1236 printk("\n");
1237 }
1238 }
1239 #endif
1240
1241 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1242 {
1243 #ifdef ATA_DEBUG
1244 int b, w;
1245 u32 dw;
1246 for (b = 0; b < bytes; ) {
1247 DPRINTK("%02x: ", b);
1248 for (w = 0; b < bytes && w < 4; w++) {
1249 (void) pci_read_config_dword(pdev, b, &dw);
1250 printk("%08x ", dw);
1251 b += sizeof(u32);
1252 }
1253 printk("\n");
1254 }
1255 #endif
1256 }
1257 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1258 struct pci_dev *pdev)
1259 {
1260 #ifdef ATA_DEBUG
1261 void __iomem *hc_base = mv_hc_base(mmio_base,
1262 port >> MV_PORT_HC_SHIFT);
1263 void __iomem *port_base;
1264 int start_port, num_ports, p, start_hc, num_hcs, hc;
1265
1266 if (0 > port) {
1267 start_hc = start_port = 0;
1268 num_ports = 8; /* shld be benign for 4 port devs */
1269 num_hcs = 2;
1270 } else {
1271 start_hc = port >> MV_PORT_HC_SHIFT;
1272 start_port = port;
1273 num_ports = num_hcs = 1;
1274 }
1275 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1276 num_ports > 1 ? num_ports - 1 : start_port);
1277
1278 if (NULL != pdev) {
1279 DPRINTK("PCI config space regs:\n");
1280 mv_dump_pci_cfg(pdev, 0x68);
1281 }
1282 DPRINTK("PCI regs:\n");
1283 mv_dump_mem(mmio_base+0xc00, 0x3c);
1284 mv_dump_mem(mmio_base+0xd00, 0x34);
1285 mv_dump_mem(mmio_base+0xf00, 0x4);
1286 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1287 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1288 hc_base = mv_hc_base(mmio_base, hc);
1289 DPRINTK("HC regs (HC %i):\n", hc);
1290 mv_dump_mem(hc_base, 0x1c);
1291 }
1292 for (p = start_port; p < start_port + num_ports; p++) {
1293 port_base = mv_port_base(mmio_base, p);
1294 DPRINTK("EDMA regs (port %i):\n", p);
1295 mv_dump_mem(port_base, 0x54);
1296 DPRINTK("SATA regs (port %i):\n", p);
1297 mv_dump_mem(port_base+0x300, 0x60);
1298 }
1299 #endif
1300 }
1301
1302 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1303 {
1304 unsigned int ofs;
1305
1306 switch (sc_reg_in) {
1307 case SCR_STATUS:
1308 case SCR_CONTROL:
1309 case SCR_ERROR:
1310 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1311 break;
1312 case SCR_ACTIVE:
1313 ofs = SATA_ACTIVE; /* active is not with the others */
1314 break;
1315 default:
1316 ofs = 0xffffffffU;
1317 break;
1318 }
1319 return ofs;
1320 }
1321
1322 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1323 {
1324 unsigned int ofs = mv_scr_offset(sc_reg_in);
1325
1326 if (ofs != 0xffffffffU) {
1327 *val = readl(mv_ap_base(link->ap) + ofs);
1328 return 0;
1329 } else
1330 return -EINVAL;
1331 }
1332
1333 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1334 {
1335 unsigned int ofs = mv_scr_offset(sc_reg_in);
1336
1337 if (ofs != 0xffffffffU) {
1338 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1339 if (sc_reg_in == SCR_CONTROL) {
1340 /*
1341 * Workaround for 88SX60x1 FEr SATA#26:
1342 *
1343 * COMRESETs have to take care not to accidently
1344 * put the drive to sleep when writing SCR_CONTROL.
1345 * Setting bits 12..15 prevents this problem.
1346 *
1347 * So if we see an outbound COMMRESET, set those bits.
1348 * Ditto for the followup write that clears the reset.
1349 *
1350 * The proprietary driver does this for
1351 * all chip versions, and so do we.
1352 */
1353 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1354 val |= 0xf000;
1355 }
1356 writelfl(val, addr);
1357 return 0;
1358 } else
1359 return -EINVAL;
1360 }
1361
1362 static void mv6_dev_config(struct ata_device *adev)
1363 {
1364 /*
1365 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1366 *
1367 * Gen-II does not support NCQ over a port multiplier
1368 * (no FIS-based switching).
1369 */
1370 if (adev->flags & ATA_DFLAG_NCQ) {
1371 if (sata_pmp_attached(adev->link->ap)) {
1372 adev->flags &= ~ATA_DFLAG_NCQ;
1373 ata_dev_printk(adev, KERN_INFO,
1374 "NCQ disabled for command-based switching\n");
1375 }
1376 }
1377 }
1378
1379 static int mv_qc_defer(struct ata_queued_cmd *qc)
1380 {
1381 struct ata_link *link = qc->dev->link;
1382 struct ata_port *ap = link->ap;
1383 struct mv_port_priv *pp = ap->private_data;
1384
1385 /*
1386 * Don't allow new commands if we're in a delayed EH state
1387 * for NCQ and/or FIS-based switching.
1388 */
1389 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1390 return ATA_DEFER_PORT;
1391
1392 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1393 * can run concurrently.
1394 * set excl_link when we want to send a PIO command in DMA mode
1395 * or a non-NCQ command in NCQ mode.
1396 * When we receive a command from that link, and there are no
1397 * outstanding commands, mark a flag to clear excl_link and let
1398 * the command go through.
1399 */
1400 if (unlikely(ap->excl_link)) {
1401 if (link == ap->excl_link) {
1402 if (ap->nr_active_links)
1403 return ATA_DEFER_PORT;
1404 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1405 return 0;
1406 } else
1407 return ATA_DEFER_PORT;
1408 }
1409
1410 /*
1411 * If the port is completely idle, then allow the new qc.
1412 */
1413 if (ap->nr_active_links == 0)
1414 return 0;
1415
1416 /*
1417 * The port is operating in host queuing mode (EDMA) with NCQ
1418 * enabled, allow multiple NCQ commands. EDMA also allows
1419 * queueing multiple DMA commands but libata core currently
1420 * doesn't allow it.
1421 */
1422 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1423 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1424 if (ata_is_ncq(qc->tf.protocol))
1425 return 0;
1426 else {
1427 ap->excl_link = link;
1428 return ATA_DEFER_PORT;
1429 }
1430 }
1431
1432 return ATA_DEFER_PORT;
1433 }
1434
1435 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1436 {
1437 struct mv_port_priv *pp = ap->private_data;
1438 void __iomem *port_mmio;
1439
1440 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1441 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1442 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1443
1444 ltmode = *old_ltmode & ~LTMODE_BIT8;
1445 haltcond = *old_haltcond | EDMA_ERR_DEV;
1446
1447 if (want_fbs) {
1448 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1449 ltmode = *old_ltmode | LTMODE_BIT8;
1450 if (want_ncq)
1451 haltcond &= ~EDMA_ERR_DEV;
1452 else
1453 fiscfg |= FISCFG_WAIT_DEV_ERR;
1454 } else {
1455 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1456 }
1457
1458 port_mmio = mv_ap_base(ap);
1459 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1460 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1461 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1462 }
1463
1464 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1465 {
1466 struct mv_host_priv *hpriv = ap->host->private_data;
1467 u32 old, new;
1468
1469 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1470 old = readl(hpriv->base + GPIO_PORT_CTL);
1471 if (want_ncq)
1472 new = old | (1 << 22);
1473 else
1474 new = old & ~(1 << 22);
1475 if (new != old)
1476 writel(new, hpriv->base + GPIO_PORT_CTL);
1477 }
1478
1479 /**
1480 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1481 * @ap: Port being initialized
1482 *
1483 * There are two DMA modes on these chips: basic DMA, and EDMA.
1484 *
1485 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1486 * of basic DMA on the GEN_IIE versions of the chips.
1487 *
1488 * This bit survives EDMA resets, and must be set for basic DMA
1489 * to function, and should be cleared when EDMA is active.
1490 */
1491 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1492 {
1493 struct mv_port_priv *pp = ap->private_data;
1494 u32 new, *old = &pp->cached.unknown_rsvd;
1495
1496 if (enable_bmdma)
1497 new = *old | 1;
1498 else
1499 new = *old & ~1;
1500 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1501 }
1502
1503 /*
1504 * SOC chips have an issue whereby the HDD LEDs don't always blink
1505 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1506 * of the SOC takes care of it, generating a steady blink rate when
1507 * any drive on the chip is active.
1508 *
1509 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1510 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1511 *
1512 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1513 * LED operation works then, and provides better (more accurate) feedback.
1514 *
1515 * Note that this code assumes that an SOC never has more than one HC onboard.
1516 */
1517 static void mv_soc_led_blink_enable(struct ata_port *ap)
1518 {
1519 struct ata_host *host = ap->host;
1520 struct mv_host_priv *hpriv = host->private_data;
1521 void __iomem *hc_mmio;
1522 u32 led_ctrl;
1523
1524 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1525 return;
1526 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1527 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1528 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1529 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1530 }
1531
1532 static void mv_soc_led_blink_disable(struct ata_port *ap)
1533 {
1534 struct ata_host *host = ap->host;
1535 struct mv_host_priv *hpriv = host->private_data;
1536 void __iomem *hc_mmio;
1537 u32 led_ctrl;
1538 unsigned int port;
1539
1540 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1541 return;
1542
1543 /* disable led-blink only if no ports are using NCQ */
1544 for (port = 0; port < hpriv->n_ports; port++) {
1545 struct ata_port *this_ap = host->ports[port];
1546 struct mv_port_priv *pp = this_ap->private_data;
1547
1548 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1549 return;
1550 }
1551
1552 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1553 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1554 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1555 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1556 }
1557
1558 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1559 {
1560 u32 cfg;
1561 struct mv_port_priv *pp = ap->private_data;
1562 struct mv_host_priv *hpriv = ap->host->private_data;
1563 void __iomem *port_mmio = mv_ap_base(ap);
1564
1565 /* set up non-NCQ EDMA configuration */
1566 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1567 pp->pp_flags &=
1568 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1569
1570 if (IS_GEN_I(hpriv))
1571 cfg |= (1 << 8); /* enab config burst size mask */
1572
1573 else if (IS_GEN_II(hpriv)) {
1574 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1575 mv_60x1_errata_sata25(ap, want_ncq);
1576
1577 } else if (IS_GEN_IIE(hpriv)) {
1578 int want_fbs = sata_pmp_attached(ap);
1579 /*
1580 * Possible future enhancement:
1581 *
1582 * The chip can use FBS with non-NCQ, if we allow it,
1583 * But first we need to have the error handling in place
1584 * for this mode (datasheet section 7.3.15.4.2.3).
1585 * So disallow non-NCQ FBS for now.
1586 */
1587 want_fbs &= want_ncq;
1588
1589 mv_config_fbs(ap, want_ncq, want_fbs);
1590
1591 if (want_fbs) {
1592 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1593 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1594 }
1595
1596 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1597 if (want_edma) {
1598 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1599 if (!IS_SOC(hpriv))
1600 cfg |= (1 << 18); /* enab early completion */
1601 }
1602 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1603 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1604 mv_bmdma_enable_iie(ap, !want_edma);
1605
1606 if (IS_SOC(hpriv)) {
1607 if (want_ncq)
1608 mv_soc_led_blink_enable(ap);
1609 else
1610 mv_soc_led_blink_disable(ap);
1611 }
1612 }
1613
1614 if (want_ncq) {
1615 cfg |= EDMA_CFG_NCQ;
1616 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1617 }
1618
1619 writelfl(cfg, port_mmio + EDMA_CFG);
1620 }
1621
1622 static void mv_port_free_dma_mem(struct ata_port *ap)
1623 {
1624 struct mv_host_priv *hpriv = ap->host->private_data;
1625 struct mv_port_priv *pp = ap->private_data;
1626 int tag;
1627
1628 if (pp->crqb) {
1629 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1630 pp->crqb = NULL;
1631 }
1632 if (pp->crpb) {
1633 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1634 pp->crpb = NULL;
1635 }
1636 /*
1637 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1638 * For later hardware, we have one unique sg_tbl per NCQ tag.
1639 */
1640 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1641 if (pp->sg_tbl[tag]) {
1642 if (tag == 0 || !IS_GEN_I(hpriv))
1643 dma_pool_free(hpriv->sg_tbl_pool,
1644 pp->sg_tbl[tag],
1645 pp->sg_tbl_dma[tag]);
1646 pp->sg_tbl[tag] = NULL;
1647 }
1648 }
1649 }
1650
1651 /**
1652 * mv_port_start - Port specific init/start routine.
1653 * @ap: ATA channel to manipulate
1654 *
1655 * Allocate and point to DMA memory, init port private memory,
1656 * zero indices.
1657 *
1658 * LOCKING:
1659 * Inherited from caller.
1660 */
1661 static int mv_port_start(struct ata_port *ap)
1662 {
1663 struct device *dev = ap->host->dev;
1664 struct mv_host_priv *hpriv = ap->host->private_data;
1665 struct mv_port_priv *pp;
1666 unsigned long flags;
1667 int tag;
1668
1669 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1670 if (!pp)
1671 return -ENOMEM;
1672 ap->private_data = pp;
1673
1674 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1675 if (!pp->crqb)
1676 return -ENOMEM;
1677 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1678
1679 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1680 if (!pp->crpb)
1681 goto out_port_free_dma_mem;
1682 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1683
1684 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1685 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1686 ap->flags |= ATA_FLAG_AN;
1687 /*
1688 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1689 * For later hardware, we need one unique sg_tbl per NCQ tag.
1690 */
1691 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1692 if (tag == 0 || !IS_GEN_I(hpriv)) {
1693 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1694 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1695 if (!pp->sg_tbl[tag])
1696 goto out_port_free_dma_mem;
1697 } else {
1698 pp->sg_tbl[tag] = pp->sg_tbl[0];
1699 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1700 }
1701 }
1702
1703 spin_lock_irqsave(ap->lock, flags);
1704 mv_save_cached_regs(ap);
1705 mv_edma_cfg(ap, 0, 0);
1706 spin_unlock_irqrestore(ap->lock, flags);
1707
1708 return 0;
1709
1710 out_port_free_dma_mem:
1711 mv_port_free_dma_mem(ap);
1712 return -ENOMEM;
1713 }
1714
1715 /**
1716 * mv_port_stop - Port specific cleanup/stop routine.
1717 * @ap: ATA channel to manipulate
1718 *
1719 * Stop DMA, cleanup port memory.
1720 *
1721 * LOCKING:
1722 * This routine uses the host lock to protect the DMA stop.
1723 */
1724 static void mv_port_stop(struct ata_port *ap)
1725 {
1726 unsigned long flags;
1727
1728 spin_lock_irqsave(ap->lock, flags);
1729 mv_stop_edma(ap);
1730 mv_enable_port_irqs(ap, 0);
1731 spin_unlock_irqrestore(ap->lock, flags);
1732 mv_port_free_dma_mem(ap);
1733 }
1734
1735 /**
1736 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1737 * @qc: queued command whose SG list to source from
1738 *
1739 * Populate the SG list and mark the last entry.
1740 *
1741 * LOCKING:
1742 * Inherited from caller.
1743 */
1744 static void mv_fill_sg(struct ata_queued_cmd *qc)
1745 {
1746 struct mv_port_priv *pp = qc->ap->private_data;
1747 struct scatterlist *sg;
1748 struct mv_sg *mv_sg, *last_sg = NULL;
1749 unsigned int si;
1750
1751 mv_sg = pp->sg_tbl[qc->tag];
1752 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1753 dma_addr_t addr = sg_dma_address(sg);
1754 u32 sg_len = sg_dma_len(sg);
1755
1756 while (sg_len) {
1757 u32 offset = addr & 0xffff;
1758 u32 len = sg_len;
1759
1760 if (offset + len > 0x10000)
1761 len = 0x10000 - offset;
1762
1763 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1764 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1765 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1766 mv_sg->reserved = 0;
1767
1768 sg_len -= len;
1769 addr += len;
1770
1771 last_sg = mv_sg;
1772 mv_sg++;
1773 }
1774 }
1775
1776 if (likely(last_sg))
1777 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1778 mb(); /* ensure data structure is visible to the chipset */
1779 }
1780
1781 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1782 {
1783 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1784 (last ? CRQB_CMD_LAST : 0);
1785 *cmdw = cpu_to_le16(tmp);
1786 }
1787
1788 /**
1789 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1790 * @ap: Port associated with this ATA transaction.
1791 *
1792 * We need this only for ATAPI bmdma transactions,
1793 * as otherwise we experience spurious interrupts
1794 * after libata-sff handles the bmdma interrupts.
1795 */
1796 static void mv_sff_irq_clear(struct ata_port *ap)
1797 {
1798 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1799 }
1800
1801 /**
1802 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1803 * @qc: queued command to check for chipset/DMA compatibility.
1804 *
1805 * The bmdma engines cannot handle speculative data sizes
1806 * (bytecount under/over flow). So only allow DMA for
1807 * data transfer commands with known data sizes.
1808 *
1809 * LOCKING:
1810 * Inherited from caller.
1811 */
1812 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1813 {
1814 struct scsi_cmnd *scmd = qc->scsicmd;
1815
1816 if (scmd) {
1817 switch (scmd->cmnd[0]) {
1818 case READ_6:
1819 case READ_10:
1820 case READ_12:
1821 case WRITE_6:
1822 case WRITE_10:
1823 case WRITE_12:
1824 case GPCMD_READ_CD:
1825 case GPCMD_SEND_DVD_STRUCTURE:
1826 case GPCMD_SEND_CUE_SHEET:
1827 return 0; /* DMA is safe */
1828 }
1829 }
1830 return -EOPNOTSUPP; /* use PIO instead */
1831 }
1832
1833 /**
1834 * mv_bmdma_setup - Set up BMDMA transaction
1835 * @qc: queued command to prepare DMA for.
1836 *
1837 * LOCKING:
1838 * Inherited from caller.
1839 */
1840 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1841 {
1842 struct ata_port *ap = qc->ap;
1843 void __iomem *port_mmio = mv_ap_base(ap);
1844 struct mv_port_priv *pp = ap->private_data;
1845
1846 mv_fill_sg(qc);
1847
1848 /* clear all DMA cmd bits */
1849 writel(0, port_mmio + BMDMA_CMD);
1850
1851 /* load PRD table addr. */
1852 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1853 port_mmio + BMDMA_PRD_HIGH);
1854 writelfl(pp->sg_tbl_dma[qc->tag],
1855 port_mmio + BMDMA_PRD_LOW);
1856
1857 /* issue r/w command */
1858 ap->ops->sff_exec_command(ap, &qc->tf);
1859 }
1860
1861 /**
1862 * mv_bmdma_start - Start a BMDMA transaction
1863 * @qc: queued command to start DMA on.
1864 *
1865 * LOCKING:
1866 * Inherited from caller.
1867 */
1868 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1869 {
1870 struct ata_port *ap = qc->ap;
1871 void __iomem *port_mmio = mv_ap_base(ap);
1872 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1873 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1874
1875 /* start host DMA transaction */
1876 writelfl(cmd, port_mmio + BMDMA_CMD);
1877 }
1878
1879 /**
1880 * mv_bmdma_stop - Stop BMDMA transfer
1881 * @qc: queued command to stop DMA on.
1882 *
1883 * Clears the ATA_DMA_START flag in the bmdma control register
1884 *
1885 * LOCKING:
1886 * Inherited from caller.
1887 */
1888 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1889 {
1890 struct ata_port *ap = qc->ap;
1891 void __iomem *port_mmio = mv_ap_base(ap);
1892 u32 cmd;
1893
1894 /* clear start/stop bit */
1895 cmd = readl(port_mmio + BMDMA_CMD);
1896 cmd &= ~ATA_DMA_START;
1897 writelfl(cmd, port_mmio + BMDMA_CMD);
1898
1899 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1900 ata_sff_dma_pause(ap);
1901 }
1902
1903 /**
1904 * mv_bmdma_status - Read BMDMA status
1905 * @ap: port for which to retrieve DMA status.
1906 *
1907 * Read and return equivalent of the sff BMDMA status register.
1908 *
1909 * LOCKING:
1910 * Inherited from caller.
1911 */
1912 static u8 mv_bmdma_status(struct ata_port *ap)
1913 {
1914 void __iomem *port_mmio = mv_ap_base(ap);
1915 u32 reg, status;
1916
1917 /*
1918 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1919 * and the ATA_DMA_INTR bit doesn't exist.
1920 */
1921 reg = readl(port_mmio + BMDMA_STATUS);
1922 if (reg & ATA_DMA_ACTIVE)
1923 status = ATA_DMA_ACTIVE;
1924 else
1925 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1926 return status;
1927 }
1928
1929 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1930 {
1931 struct ata_taskfile *tf = &qc->tf;
1932 /*
1933 * Workaround for 88SX60x1 FEr SATA#24.
1934 *
1935 * Chip may corrupt WRITEs if multi_count >= 4kB.
1936 * Note that READs are unaffected.
1937 *
1938 * It's not clear if this errata really means "4K bytes",
1939 * or if it always happens for multi_count > 7
1940 * regardless of device sector_size.
1941 *
1942 * So, for safety, any write with multi_count > 7
1943 * gets converted here into a regular PIO write instead:
1944 */
1945 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1946 if (qc->dev->multi_count > 7) {
1947 switch (tf->command) {
1948 case ATA_CMD_WRITE_MULTI:
1949 tf->command = ATA_CMD_PIO_WRITE;
1950 break;
1951 case ATA_CMD_WRITE_MULTI_FUA_EXT:
1952 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1953 /* fall through */
1954 case ATA_CMD_WRITE_MULTI_EXT:
1955 tf->command = ATA_CMD_PIO_WRITE_EXT;
1956 break;
1957 }
1958 }
1959 }
1960 }
1961
1962 /**
1963 * mv_qc_prep - Host specific command preparation.
1964 * @qc: queued command to prepare
1965 *
1966 * This routine simply redirects to the general purpose routine
1967 * if command is not DMA. Else, it handles prep of the CRQB
1968 * (command request block), does some sanity checking, and calls
1969 * the SG load routine.
1970 *
1971 * LOCKING:
1972 * Inherited from caller.
1973 */
1974 static void mv_qc_prep(struct ata_queued_cmd *qc)
1975 {
1976 struct ata_port *ap = qc->ap;
1977 struct mv_port_priv *pp = ap->private_data;
1978 __le16 *cw;
1979 struct ata_taskfile *tf = &qc->tf;
1980 u16 flags = 0;
1981 unsigned in_index;
1982
1983 switch (tf->protocol) {
1984 case ATA_PROT_DMA:
1985 case ATA_PROT_NCQ:
1986 break; /* continue below */
1987 case ATA_PROT_PIO:
1988 mv_rw_multi_errata_sata24(qc);
1989 return;
1990 default:
1991 return;
1992 }
1993
1994 /* Fill in command request block
1995 */
1996 if (!(tf->flags & ATA_TFLAG_WRITE))
1997 flags |= CRQB_FLAG_READ;
1998 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1999 flags |= qc->tag << CRQB_TAG_SHIFT;
2000 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2001
2002 /* get current queue index from software */
2003 in_index = pp->req_idx;
2004
2005 pp->crqb[in_index].sg_addr =
2006 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2007 pp->crqb[in_index].sg_addr_hi =
2008 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2009 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2010
2011 cw = &pp->crqb[in_index].ata_cmd[0];
2012
2013 /* Sadly, the CRQB cannot accomodate all registers--there are
2014 * only 11 bytes...so we must pick and choose required
2015 * registers based on the command. So, we drop feature and
2016 * hob_feature for [RW] DMA commands, but they are needed for
2017 * NCQ. NCQ will drop hob_nsect, which is not needed there
2018 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2019 */
2020 switch (tf->command) {
2021 case ATA_CMD_READ:
2022 case ATA_CMD_READ_EXT:
2023 case ATA_CMD_WRITE:
2024 case ATA_CMD_WRITE_EXT:
2025 case ATA_CMD_WRITE_FUA_EXT:
2026 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2027 break;
2028 case ATA_CMD_FPDMA_READ:
2029 case ATA_CMD_FPDMA_WRITE:
2030 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2031 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2032 break;
2033 default:
2034 /* The only other commands EDMA supports in non-queued and
2035 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2036 * of which are defined/used by Linux. If we get here, this
2037 * driver needs work.
2038 *
2039 * FIXME: modify libata to give qc_prep a return value and
2040 * return error here.
2041 */
2042 BUG_ON(tf->command);
2043 break;
2044 }
2045 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2046 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2047 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2048 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2049 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2050 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2051 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2052 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2053 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2054
2055 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2056 return;
2057 mv_fill_sg(qc);
2058 }
2059
2060 /**
2061 * mv_qc_prep_iie - Host specific command preparation.
2062 * @qc: queued command to prepare
2063 *
2064 * This routine simply redirects to the general purpose routine
2065 * if command is not DMA. Else, it handles prep of the CRQB
2066 * (command request block), does some sanity checking, and calls
2067 * the SG load routine.
2068 *
2069 * LOCKING:
2070 * Inherited from caller.
2071 */
2072 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2073 {
2074 struct ata_port *ap = qc->ap;
2075 struct mv_port_priv *pp = ap->private_data;
2076 struct mv_crqb_iie *crqb;
2077 struct ata_taskfile *tf = &qc->tf;
2078 unsigned in_index;
2079 u32 flags = 0;
2080
2081 if ((tf->protocol != ATA_PROT_DMA) &&
2082 (tf->protocol != ATA_PROT_NCQ))
2083 return;
2084
2085 /* Fill in Gen IIE command request block */
2086 if (!(tf->flags & ATA_TFLAG_WRITE))
2087 flags |= CRQB_FLAG_READ;
2088
2089 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2090 flags |= qc->tag << CRQB_TAG_SHIFT;
2091 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2092 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2093
2094 /* get current queue index from software */
2095 in_index = pp->req_idx;
2096
2097 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2098 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2099 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2100 crqb->flags = cpu_to_le32(flags);
2101
2102 crqb->ata_cmd[0] = cpu_to_le32(
2103 (tf->command << 16) |
2104 (tf->feature << 24)
2105 );
2106 crqb->ata_cmd[1] = cpu_to_le32(
2107 (tf->lbal << 0) |
2108 (tf->lbam << 8) |
2109 (tf->lbah << 16) |
2110 (tf->device << 24)
2111 );
2112 crqb->ata_cmd[2] = cpu_to_le32(
2113 (tf->hob_lbal << 0) |
2114 (tf->hob_lbam << 8) |
2115 (tf->hob_lbah << 16) |
2116 (tf->hob_feature << 24)
2117 );
2118 crqb->ata_cmd[3] = cpu_to_le32(
2119 (tf->nsect << 0) |
2120 (tf->hob_nsect << 8)
2121 );
2122
2123 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2124 return;
2125 mv_fill_sg(qc);
2126 }
2127
2128 /**
2129 * mv_sff_check_status - fetch device status, if valid
2130 * @ap: ATA port to fetch status from
2131 *
2132 * When using command issue via mv_qc_issue_fis(),
2133 * the initial ATA_BUSY state does not show up in the
2134 * ATA status (shadow) register. This can confuse libata!
2135 *
2136 * So we have a hook here to fake ATA_BUSY for that situation,
2137 * until the first time a BUSY, DRQ, or ERR bit is seen.
2138 *
2139 * The rest of the time, it simply returns the ATA status register.
2140 */
2141 static u8 mv_sff_check_status(struct ata_port *ap)
2142 {
2143 u8 stat = ioread8(ap->ioaddr.status_addr);
2144 struct mv_port_priv *pp = ap->private_data;
2145
2146 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2147 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2148 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2149 else
2150 stat = ATA_BUSY;
2151 }
2152 return stat;
2153 }
2154
2155 /**
2156 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2157 * @fis: fis to be sent
2158 * @nwords: number of 32-bit words in the fis
2159 */
2160 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2161 {
2162 void __iomem *port_mmio = mv_ap_base(ap);
2163 u32 ifctl, old_ifctl, ifstat;
2164 int i, timeout = 200, final_word = nwords - 1;
2165
2166 /* Initiate FIS transmission mode */
2167 old_ifctl = readl(port_mmio + SATA_IFCTL);
2168 ifctl = 0x100 | (old_ifctl & 0xf);
2169 writelfl(ifctl, port_mmio + SATA_IFCTL);
2170
2171 /* Send all words of the FIS except for the final word */
2172 for (i = 0; i < final_word; ++i)
2173 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2174
2175 /* Flag end-of-transmission, and then send the final word */
2176 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2177 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2178
2179 /*
2180 * Wait for FIS transmission to complete.
2181 * This typically takes just a single iteration.
2182 */
2183 do {
2184 ifstat = readl(port_mmio + SATA_IFSTAT);
2185 } while (!(ifstat & 0x1000) && --timeout);
2186
2187 /* Restore original port configuration */
2188 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2189
2190 /* See if it worked */
2191 if ((ifstat & 0x3000) != 0x1000) {
2192 ata_port_printk(ap, KERN_WARNING,
2193 "%s transmission error, ifstat=%08x\n",
2194 __func__, ifstat);
2195 return AC_ERR_OTHER;
2196 }
2197 return 0;
2198 }
2199
2200 /**
2201 * mv_qc_issue_fis - Issue a command directly as a FIS
2202 * @qc: queued command to start
2203 *
2204 * Note that the ATA shadow registers are not updated
2205 * after command issue, so the device will appear "READY"
2206 * if polled, even while it is BUSY processing the command.
2207 *
2208 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2209 *
2210 * Note: we don't get updated shadow regs on *completion*
2211 * of non-data commands. So avoid sending them via this function,
2212 * as they will appear to have completed immediately.
2213 *
2214 * GEN_IIE has special registers that we could get the result tf from,
2215 * but earlier chipsets do not. For now, we ignore those registers.
2216 */
2217 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2218 {
2219 struct ata_port *ap = qc->ap;
2220 struct mv_port_priv *pp = ap->private_data;
2221 struct ata_link *link = qc->dev->link;
2222 u32 fis[5];
2223 int err = 0;
2224
2225 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2226 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2227 if (err)
2228 return err;
2229
2230 switch (qc->tf.protocol) {
2231 case ATAPI_PROT_PIO:
2232 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2233 /* fall through */
2234 case ATAPI_PROT_NODATA:
2235 ap->hsm_task_state = HSM_ST_FIRST;
2236 break;
2237 case ATA_PROT_PIO:
2238 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2239 if (qc->tf.flags & ATA_TFLAG_WRITE)
2240 ap->hsm_task_state = HSM_ST_FIRST;
2241 else
2242 ap->hsm_task_state = HSM_ST;
2243 break;
2244 default:
2245 ap->hsm_task_state = HSM_ST_LAST;
2246 break;
2247 }
2248
2249 if (qc->tf.flags & ATA_TFLAG_POLLING)
2250 ata_pio_queue_task(ap, qc, 0);
2251 return 0;
2252 }
2253
2254 /**
2255 * mv_qc_issue - Initiate a command to the host
2256 * @qc: queued command to start
2257 *
2258 * This routine simply redirects to the general purpose routine
2259 * if command is not DMA. Else, it sanity checks our local
2260 * caches of the request producer/consumer indices then enables
2261 * DMA and bumps the request producer index.
2262 *
2263 * LOCKING:
2264 * Inherited from caller.
2265 */
2266 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2267 {
2268 static int limit_warnings = 10;
2269 struct ata_port *ap = qc->ap;
2270 void __iomem *port_mmio = mv_ap_base(ap);
2271 struct mv_port_priv *pp = ap->private_data;
2272 u32 in_index;
2273 unsigned int port_irqs;
2274
2275 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2276
2277 switch (qc->tf.protocol) {
2278 case ATA_PROT_DMA:
2279 case ATA_PROT_NCQ:
2280 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2281 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2282 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2283
2284 /* Write the request in pointer to kick the EDMA to life */
2285 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2286 port_mmio + EDMA_REQ_Q_IN_PTR);
2287 return 0;
2288
2289 case ATA_PROT_PIO:
2290 /*
2291 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2292 *
2293 * Someday, we might implement special polling workarounds
2294 * for these, but it all seems rather unnecessary since we
2295 * normally use only DMA for commands which transfer more
2296 * than a single block of data.
2297 *
2298 * Much of the time, this could just work regardless.
2299 * So for now, just log the incident, and allow the attempt.
2300 */
2301 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2302 --limit_warnings;
2303 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2304 ": attempting PIO w/multiple DRQ: "
2305 "this may fail due to h/w errata\n");
2306 }
2307 /* drop through */
2308 case ATA_PROT_NODATA:
2309 case ATAPI_PROT_PIO:
2310 case ATAPI_PROT_NODATA:
2311 if (ap->flags & ATA_FLAG_PIO_POLLING)
2312 qc->tf.flags |= ATA_TFLAG_POLLING;
2313 break;
2314 }
2315
2316 if (qc->tf.flags & ATA_TFLAG_POLLING)
2317 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2318 else
2319 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2320
2321 /*
2322 * We're about to send a non-EDMA capable command to the
2323 * port. Turn off EDMA so there won't be problems accessing
2324 * shadow block, etc registers.
2325 */
2326 mv_stop_edma(ap);
2327 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2328 mv_pmp_select(ap, qc->dev->link->pmp);
2329
2330 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2331 struct mv_host_priv *hpriv = ap->host->private_data;
2332 /*
2333 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2334 *
2335 * After any NCQ error, the READ_LOG_EXT command
2336 * from libata-eh *must* use mv_qc_issue_fis().
2337 * Otherwise it might fail, due to chip errata.
2338 *
2339 * Rather than special-case it, we'll just *always*
2340 * use this method here for READ_LOG_EXT, making for
2341 * easier testing.
2342 */
2343 if (IS_GEN_II(hpriv))
2344 return mv_qc_issue_fis(qc);
2345 }
2346 return ata_sff_qc_issue(qc);
2347 }
2348
2349 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2350 {
2351 struct mv_port_priv *pp = ap->private_data;
2352 struct ata_queued_cmd *qc;
2353
2354 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2355 return NULL;
2356 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2357 if (qc) {
2358 if (qc->tf.flags & ATA_TFLAG_POLLING)
2359 qc = NULL;
2360 else if (!(qc->flags & ATA_QCFLAG_ACTIVE))
2361 qc = NULL;
2362 }
2363 return qc;
2364 }
2365
2366 static void mv_pmp_error_handler(struct ata_port *ap)
2367 {
2368 unsigned int pmp, pmp_map;
2369 struct mv_port_priv *pp = ap->private_data;
2370
2371 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2372 /*
2373 * Perform NCQ error analysis on failed PMPs
2374 * before we freeze the port entirely.
2375 *
2376 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2377 */
2378 pmp_map = pp->delayed_eh_pmp_map;
2379 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2380 for (pmp = 0; pmp_map != 0; pmp++) {
2381 unsigned int this_pmp = (1 << pmp);
2382 if (pmp_map & this_pmp) {
2383 struct ata_link *link = &ap->pmp_link[pmp];
2384 pmp_map &= ~this_pmp;
2385 ata_eh_analyze_ncq_error(link);
2386 }
2387 }
2388 ata_port_freeze(ap);
2389 }
2390 sata_pmp_error_handler(ap);
2391 }
2392
2393 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2394 {
2395 void __iomem *port_mmio = mv_ap_base(ap);
2396
2397 return readl(port_mmio + SATA_TESTCTL) >> 16;
2398 }
2399
2400 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2401 {
2402 struct ata_eh_info *ehi;
2403 unsigned int pmp;
2404
2405 /*
2406 * Initialize EH info for PMPs which saw device errors
2407 */
2408 ehi = &ap->link.eh_info;
2409 for (pmp = 0; pmp_map != 0; pmp++) {
2410 unsigned int this_pmp = (1 << pmp);
2411 if (pmp_map & this_pmp) {
2412 struct ata_link *link = &ap->pmp_link[pmp];
2413
2414 pmp_map &= ~this_pmp;
2415 ehi = &link->eh_info;
2416 ata_ehi_clear_desc(ehi);
2417 ata_ehi_push_desc(ehi, "dev err");
2418 ehi->err_mask |= AC_ERR_DEV;
2419 ehi->action |= ATA_EH_RESET;
2420 ata_link_abort(link);
2421 }
2422 }
2423 }
2424
2425 static int mv_req_q_empty(struct ata_port *ap)
2426 {
2427 void __iomem *port_mmio = mv_ap_base(ap);
2428 u32 in_ptr, out_ptr;
2429
2430 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2431 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2432 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2433 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2434 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2435 }
2436
2437 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2438 {
2439 struct mv_port_priv *pp = ap->private_data;
2440 int failed_links;
2441 unsigned int old_map, new_map;
2442
2443 /*
2444 * Device error during FBS+NCQ operation:
2445 *
2446 * Set a port flag to prevent further I/O being enqueued.
2447 * Leave the EDMA running to drain outstanding commands from this port.
2448 * Perform the post-mortem/EH only when all responses are complete.
2449 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2450 */
2451 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2452 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2453 pp->delayed_eh_pmp_map = 0;
2454 }
2455 old_map = pp->delayed_eh_pmp_map;
2456 new_map = old_map | mv_get_err_pmp_map(ap);
2457
2458 if (old_map != new_map) {
2459 pp->delayed_eh_pmp_map = new_map;
2460 mv_pmp_eh_prep(ap, new_map & ~old_map);
2461 }
2462 failed_links = hweight16(new_map);
2463
2464 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2465 "failed_links=%d nr_active_links=%d\n",
2466 __func__, pp->delayed_eh_pmp_map,
2467 ap->qc_active, failed_links,
2468 ap->nr_active_links);
2469
2470 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2471 mv_process_crpb_entries(ap, pp);
2472 mv_stop_edma(ap);
2473 mv_eh_freeze(ap);
2474 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2475 return 1; /* handled */
2476 }
2477 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2478 return 1; /* handled */
2479 }
2480
2481 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2482 {
2483 /*
2484 * Possible future enhancement:
2485 *
2486 * FBS+non-NCQ operation is not yet implemented.
2487 * See related notes in mv_edma_cfg().
2488 *
2489 * Device error during FBS+non-NCQ operation:
2490 *
2491 * We need to snapshot the shadow registers for each failed command.
2492 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2493 */
2494 return 0; /* not handled */
2495 }
2496
2497 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2498 {
2499 struct mv_port_priv *pp = ap->private_data;
2500
2501 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2502 return 0; /* EDMA was not active: not handled */
2503 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2504 return 0; /* FBS was not active: not handled */
2505
2506 if (!(edma_err_cause & EDMA_ERR_DEV))
2507 return 0; /* non DEV error: not handled */
2508 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2509 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2510 return 0; /* other problems: not handled */
2511
2512 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2513 /*
2514 * EDMA should NOT have self-disabled for this case.
2515 * If it did, then something is wrong elsewhere,
2516 * and we cannot handle it here.
2517 */
2518 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2519 ata_port_printk(ap, KERN_WARNING,
2520 "%s: err_cause=0x%x pp_flags=0x%x\n",
2521 __func__, edma_err_cause, pp->pp_flags);
2522 return 0; /* not handled */
2523 }
2524 return mv_handle_fbs_ncq_dev_err(ap);
2525 } else {
2526 /*
2527 * EDMA should have self-disabled for this case.
2528 * If it did not, then something is wrong elsewhere,
2529 * and we cannot handle it here.
2530 */
2531 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2532 ata_port_printk(ap, KERN_WARNING,
2533 "%s: err_cause=0x%x pp_flags=0x%x\n",
2534 __func__, edma_err_cause, pp->pp_flags);
2535 return 0; /* not handled */
2536 }
2537 return mv_handle_fbs_non_ncq_dev_err(ap);
2538 }
2539 return 0; /* not handled */
2540 }
2541
2542 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2543 {
2544 struct ata_eh_info *ehi = &ap->link.eh_info;
2545 char *when = "idle";
2546
2547 ata_ehi_clear_desc(ehi);
2548 if (ap->flags & ATA_FLAG_DISABLED) {
2549 when = "disabled";
2550 } else if (edma_was_enabled) {
2551 when = "EDMA enabled";
2552 } else {
2553 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2554 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2555 when = "polling";
2556 }
2557 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2558 ehi->err_mask |= AC_ERR_OTHER;
2559 ehi->action |= ATA_EH_RESET;
2560 ata_port_freeze(ap);
2561 }
2562
2563 /**
2564 * mv_err_intr - Handle error interrupts on the port
2565 * @ap: ATA channel to manipulate
2566 *
2567 * Most cases require a full reset of the chip's state machine,
2568 * which also performs a COMRESET.
2569 * Also, if the port disabled DMA, update our cached copy to match.
2570 *
2571 * LOCKING:
2572 * Inherited from caller.
2573 */
2574 static void mv_err_intr(struct ata_port *ap)
2575 {
2576 void __iomem *port_mmio = mv_ap_base(ap);
2577 u32 edma_err_cause, eh_freeze_mask, serr = 0;
2578 u32 fis_cause = 0;
2579 struct mv_port_priv *pp = ap->private_data;
2580 struct mv_host_priv *hpriv = ap->host->private_data;
2581 unsigned int action = 0, err_mask = 0;
2582 struct ata_eh_info *ehi = &ap->link.eh_info;
2583 struct ata_queued_cmd *qc;
2584 int abort = 0;
2585
2586 /*
2587 * Read and clear the SError and err_cause bits.
2588 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2589 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2590 */
2591 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2592 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2593
2594 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2595 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2596 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2597 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2598 }
2599 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2600
2601 if (edma_err_cause & EDMA_ERR_DEV) {
2602 /*
2603 * Device errors during FIS-based switching operation
2604 * require special handling.
2605 */
2606 if (mv_handle_dev_err(ap, edma_err_cause))
2607 return;
2608 }
2609
2610 qc = mv_get_active_qc(ap);
2611 ata_ehi_clear_desc(ehi);
2612 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2613 edma_err_cause, pp->pp_flags);
2614
2615 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2616 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2617 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2618 u32 ec = edma_err_cause &
2619 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2620 sata_async_notification(ap);
2621 if (!ec)
2622 return; /* Just an AN; no need for the nukes */
2623 ata_ehi_push_desc(ehi, "SDB notify");
2624 }
2625 }
2626 /*
2627 * All generations share these EDMA error cause bits:
2628 */
2629 if (edma_err_cause & EDMA_ERR_DEV) {
2630 err_mask |= AC_ERR_DEV;
2631 action |= ATA_EH_RESET;
2632 ata_ehi_push_desc(ehi, "dev error");
2633 }
2634 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2635 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2636 EDMA_ERR_INTRL_PAR)) {
2637 err_mask |= AC_ERR_ATA_BUS;
2638 action |= ATA_EH_RESET;
2639 ata_ehi_push_desc(ehi, "parity error");
2640 }
2641 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2642 ata_ehi_hotplugged(ehi);
2643 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2644 "dev disconnect" : "dev connect");
2645 action |= ATA_EH_RESET;
2646 }
2647
2648 /*
2649 * Gen-I has a different SELF_DIS bit,
2650 * different FREEZE bits, and no SERR bit:
2651 */
2652 if (IS_GEN_I(hpriv)) {
2653 eh_freeze_mask = EDMA_EH_FREEZE_5;
2654 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2655 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2656 ata_ehi_push_desc(ehi, "EDMA self-disable");
2657 }
2658 } else {
2659 eh_freeze_mask = EDMA_EH_FREEZE;
2660 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2661 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2662 ata_ehi_push_desc(ehi, "EDMA self-disable");
2663 }
2664 if (edma_err_cause & EDMA_ERR_SERR) {
2665 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2666 err_mask |= AC_ERR_ATA_BUS;
2667 action |= ATA_EH_RESET;
2668 }
2669 }
2670
2671 if (!err_mask) {
2672 err_mask = AC_ERR_OTHER;
2673 action |= ATA_EH_RESET;
2674 }
2675
2676 ehi->serror |= serr;
2677 ehi->action |= action;
2678
2679 if (qc)
2680 qc->err_mask |= err_mask;
2681 else
2682 ehi->err_mask |= err_mask;
2683
2684 if (err_mask == AC_ERR_DEV) {
2685 /*
2686 * Cannot do ata_port_freeze() here,
2687 * because it would kill PIO access,
2688 * which is needed for further diagnosis.
2689 */
2690 mv_eh_freeze(ap);
2691 abort = 1;
2692 } else if (edma_err_cause & eh_freeze_mask) {
2693 /*
2694 * Note to self: ata_port_freeze() calls ata_port_abort()
2695 */
2696 ata_port_freeze(ap);
2697 } else {
2698 abort = 1;
2699 }
2700
2701 if (abort) {
2702 if (qc)
2703 ata_link_abort(qc->dev->link);
2704 else
2705 ata_port_abort(ap);
2706 }
2707 }
2708
2709 static void mv_process_crpb_response(struct ata_port *ap,
2710 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2711 {
2712 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2713
2714 if (qc) {
2715 u8 ata_status;
2716 u16 edma_status = le16_to_cpu(response->flags);
2717 /*
2718 * edma_status from a response queue entry:
2719 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2720 * MSB is saved ATA status from command completion.
2721 */
2722 if (!ncq_enabled) {
2723 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2724 if (err_cause) {
2725 /*
2726 * Error will be seen/handled by mv_err_intr().
2727 * So do nothing at all here.
2728 */
2729 return;
2730 }
2731 }
2732 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2733 if (!ac_err_mask(ata_status))
2734 ata_qc_complete(qc);
2735 /* else: leave it for mv_err_intr() */
2736 } else {
2737 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2738 __func__, tag);
2739 }
2740 }
2741
2742 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2743 {
2744 void __iomem *port_mmio = mv_ap_base(ap);
2745 struct mv_host_priv *hpriv = ap->host->private_data;
2746 u32 in_index;
2747 bool work_done = false;
2748 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2749
2750 /* Get the hardware queue position index */
2751 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2752 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2753
2754 /* Process new responses from since the last time we looked */
2755 while (in_index != pp->resp_idx) {
2756 unsigned int tag;
2757 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2758
2759 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2760
2761 if (IS_GEN_I(hpriv)) {
2762 /* 50xx: no NCQ, only one command active at a time */
2763 tag = ap->link.active_tag;
2764 } else {
2765 /* Gen II/IIE: get command tag from CRPB entry */
2766 tag = le16_to_cpu(response->id) & 0x1f;
2767 }
2768 mv_process_crpb_response(ap, response, tag, ncq_enabled);
2769 work_done = true;
2770 }
2771
2772 /* Update the software queue position index in hardware */
2773 if (work_done)
2774 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2775 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2776 port_mmio + EDMA_RSP_Q_OUT_PTR);
2777 }
2778
2779 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2780 {
2781 struct mv_port_priv *pp;
2782 int edma_was_enabled;
2783
2784 if (ap->flags & ATA_FLAG_DISABLED) {
2785 mv_unexpected_intr(ap, 0);
2786 return;
2787 }
2788 /*
2789 * Grab a snapshot of the EDMA_EN flag setting,
2790 * so that we have a consistent view for this port,
2791 * even if something we call of our routines changes it.
2792 */
2793 pp = ap->private_data;
2794 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2795 /*
2796 * Process completed CRPB response(s) before other events.
2797 */
2798 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2799 mv_process_crpb_entries(ap, pp);
2800 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2801 mv_handle_fbs_ncq_dev_err(ap);
2802 }
2803 /*
2804 * Handle chip-reported errors, or continue on to handle PIO.
2805 */
2806 if (unlikely(port_cause & ERR_IRQ)) {
2807 mv_err_intr(ap);
2808 } else if (!edma_was_enabled) {
2809 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2810 if (qc)
2811 ata_sff_host_intr(ap, qc);
2812 else
2813 mv_unexpected_intr(ap, edma_was_enabled);
2814 }
2815 }
2816
2817 /**
2818 * mv_host_intr - Handle all interrupts on the given host controller
2819 * @host: host specific structure
2820 * @main_irq_cause: Main interrupt cause register for the chip.
2821 *
2822 * LOCKING:
2823 * Inherited from caller.
2824 */
2825 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2826 {
2827 struct mv_host_priv *hpriv = host->private_data;
2828 void __iomem *mmio = hpriv->base, *hc_mmio;
2829 unsigned int handled = 0, port;
2830
2831 /* If asserted, clear the "all ports" IRQ coalescing bit */
2832 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2833 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2834
2835 for (port = 0; port < hpriv->n_ports; port++) {
2836 struct ata_port *ap = host->ports[port];
2837 unsigned int p, shift, hardport, port_cause;
2838
2839 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2840 /*
2841 * Each hc within the host has its own hc_irq_cause register,
2842 * where the interrupting ports bits get ack'd.
2843 */
2844 if (hardport == 0) { /* first port on this hc ? */
2845 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2846 u32 port_mask, ack_irqs;
2847 /*
2848 * Skip this entire hc if nothing pending for any ports
2849 */
2850 if (!hc_cause) {
2851 port += MV_PORTS_PER_HC - 1;
2852 continue;
2853 }
2854 /*
2855 * We don't need/want to read the hc_irq_cause register,
2856 * because doing so hurts performance, and
2857 * main_irq_cause already gives us everything we need.
2858 *
2859 * But we do have to *write* to the hc_irq_cause to ack
2860 * the ports that we are handling this time through.
2861 *
2862 * This requires that we create a bitmap for those
2863 * ports which interrupted us, and use that bitmap
2864 * to ack (only) those ports via hc_irq_cause.
2865 */
2866 ack_irqs = 0;
2867 if (hc_cause & PORTS_0_3_COAL_DONE)
2868 ack_irqs = HC_COAL_IRQ;
2869 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2870 if ((port + p) >= hpriv->n_ports)
2871 break;
2872 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2873 if (hc_cause & port_mask)
2874 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2875 }
2876 hc_mmio = mv_hc_base_from_port(mmio, port);
2877 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2878 handled = 1;
2879 }
2880 /*
2881 * Handle interrupts signalled for this port:
2882 */
2883 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2884 if (port_cause)
2885 mv_port_intr(ap, port_cause);
2886 }
2887 return handled;
2888 }
2889
2890 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2891 {
2892 struct mv_host_priv *hpriv = host->private_data;
2893 struct ata_port *ap;
2894 struct ata_queued_cmd *qc;
2895 struct ata_eh_info *ehi;
2896 unsigned int i, err_mask, printed = 0;
2897 u32 err_cause;
2898
2899 err_cause = readl(mmio + hpriv->irq_cause_offset);
2900
2901 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2902 err_cause);
2903
2904 DPRINTK("All regs @ PCI error\n");
2905 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2906
2907 writelfl(0, mmio + hpriv->irq_cause_offset);
2908
2909 for (i = 0; i < host->n_ports; i++) {
2910 ap = host->ports[i];
2911 if (!ata_link_offline(&ap->link)) {
2912 ehi = &ap->link.eh_info;
2913 ata_ehi_clear_desc(ehi);
2914 if (!printed++)
2915 ata_ehi_push_desc(ehi,
2916 "PCI err cause 0x%08x", err_cause);
2917 err_mask = AC_ERR_HOST_BUS;
2918 ehi->action = ATA_EH_RESET;
2919 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2920 if (qc)
2921 qc->err_mask |= err_mask;
2922 else
2923 ehi->err_mask |= err_mask;
2924
2925 ata_port_freeze(ap);
2926 }
2927 }
2928 return 1; /* handled */
2929 }
2930
2931 /**
2932 * mv_interrupt - Main interrupt event handler
2933 * @irq: unused
2934 * @dev_instance: private data; in this case the host structure
2935 *
2936 * Read the read only register to determine if any host
2937 * controllers have pending interrupts. If so, call lower level
2938 * routine to handle. Also check for PCI errors which are only
2939 * reported here.
2940 *
2941 * LOCKING:
2942 * This routine holds the host lock while processing pending
2943 * interrupts.
2944 */
2945 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2946 {
2947 struct ata_host *host = dev_instance;
2948 struct mv_host_priv *hpriv = host->private_data;
2949 unsigned int handled = 0;
2950 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2951 u32 main_irq_cause, pending_irqs;
2952
2953 spin_lock(&host->lock);
2954
2955 /* for MSI: block new interrupts while in here */
2956 if (using_msi)
2957 mv_write_main_irq_mask(0, hpriv);
2958
2959 main_irq_cause = readl(hpriv->main_irq_cause_addr);
2960 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2961 /*
2962 * Deal with cases where we either have nothing pending, or have read
2963 * a bogus register value which can indicate HW removal or PCI fault.
2964 */
2965 if (pending_irqs && main_irq_cause != 0xffffffffU) {
2966 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2967 handled = mv_pci_error(host, hpriv->base);
2968 else
2969 handled = mv_host_intr(host, pending_irqs);
2970 }
2971
2972 /* for MSI: unmask; interrupt cause bits will retrigger now */
2973 if (using_msi)
2974 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
2975
2976 spin_unlock(&host->lock);
2977
2978 return IRQ_RETVAL(handled);
2979 }
2980
2981 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2982 {
2983 unsigned int ofs;
2984
2985 switch (sc_reg_in) {
2986 case SCR_STATUS:
2987 case SCR_ERROR:
2988 case SCR_CONTROL:
2989 ofs = sc_reg_in * sizeof(u32);
2990 break;
2991 default:
2992 ofs = 0xffffffffU;
2993 break;
2994 }
2995 return ofs;
2996 }
2997
2998 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
2999 {
3000 struct mv_host_priv *hpriv = link->ap->host->private_data;
3001 void __iomem *mmio = hpriv->base;
3002 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3003 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3004
3005 if (ofs != 0xffffffffU) {
3006 *val = readl(addr + ofs);
3007 return 0;
3008 } else
3009 return -EINVAL;
3010 }
3011
3012 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3013 {
3014 struct mv_host_priv *hpriv = link->ap->host->private_data;
3015 void __iomem *mmio = hpriv->base;
3016 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3017 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3018
3019 if (ofs != 0xffffffffU) {
3020 writelfl(val, addr + ofs);
3021 return 0;
3022 } else
3023 return -EINVAL;
3024 }
3025
3026 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3027 {
3028 struct pci_dev *pdev = to_pci_dev(host->dev);
3029 int early_5080;
3030
3031 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3032
3033 if (!early_5080) {
3034 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3035 tmp |= (1 << 0);
3036 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3037 }
3038
3039 mv_reset_pci_bus(host, mmio);
3040 }
3041
3042 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3043 {
3044 writel(0x0fcfffff, mmio + FLASH_CTL);
3045 }
3046
3047 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3048 void __iomem *mmio)
3049 {
3050 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3051 u32 tmp;
3052
3053 tmp = readl(phy_mmio + MV5_PHY_MODE);
3054
3055 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3056 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3057 }
3058
3059 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3060 {
3061 u32 tmp;
3062
3063 writel(0, mmio + GPIO_PORT_CTL);
3064
3065 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3066
3067 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3068 tmp |= ~(1 << 0);
3069 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3070 }
3071
3072 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3073 unsigned int port)
3074 {
3075 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3076 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3077 u32 tmp;
3078 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3079
3080 if (fix_apm_sq) {
3081 tmp = readl(phy_mmio + MV5_LTMODE);
3082 tmp |= (1 << 19);
3083 writel(tmp, phy_mmio + MV5_LTMODE);
3084
3085 tmp = readl(phy_mmio + MV5_PHY_CTL);
3086 tmp &= ~0x3;
3087 tmp |= 0x1;
3088 writel(tmp, phy_mmio + MV5_PHY_CTL);
3089 }
3090
3091 tmp = readl(phy_mmio + MV5_PHY_MODE);
3092 tmp &= ~mask;
3093 tmp |= hpriv->signal[port].pre;
3094 tmp |= hpriv->signal[port].amps;
3095 writel(tmp, phy_mmio + MV5_PHY_MODE);
3096 }
3097
3098
3099 #undef ZERO
3100 #define ZERO(reg) writel(0, port_mmio + (reg))
3101 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3102 unsigned int port)
3103 {
3104 void __iomem *port_mmio = mv_port_base(mmio, port);
3105
3106 mv_reset_channel(hpriv, mmio, port);
3107
3108 ZERO(0x028); /* command */
3109 writel(0x11f, port_mmio + EDMA_CFG);
3110 ZERO(0x004); /* timer */
3111 ZERO(0x008); /* irq err cause */
3112 ZERO(0x00c); /* irq err mask */
3113 ZERO(0x010); /* rq bah */
3114 ZERO(0x014); /* rq inp */
3115 ZERO(0x018); /* rq outp */
3116 ZERO(0x01c); /* respq bah */
3117 ZERO(0x024); /* respq outp */
3118 ZERO(0x020); /* respq inp */
3119 ZERO(0x02c); /* test control */
3120 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3121 }
3122 #undef ZERO
3123
3124 #define ZERO(reg) writel(0, hc_mmio + (reg))
3125 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3126 unsigned int hc)
3127 {
3128 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3129 u32 tmp;
3130
3131 ZERO(0x00c);
3132 ZERO(0x010);
3133 ZERO(0x014);
3134 ZERO(0x018);
3135
3136 tmp = readl(hc_mmio + 0x20);
3137 tmp &= 0x1c1c1c1c;
3138 tmp |= 0x03030303;
3139 writel(tmp, hc_mmio + 0x20);
3140 }
3141 #undef ZERO
3142
3143 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3144 unsigned int n_hc)
3145 {
3146 unsigned int hc, port;
3147
3148 for (hc = 0; hc < n_hc; hc++) {
3149 for (port = 0; port < MV_PORTS_PER_HC; port++)
3150 mv5_reset_hc_port(hpriv, mmio,
3151 (hc * MV_PORTS_PER_HC) + port);
3152
3153 mv5_reset_one_hc(hpriv, mmio, hc);
3154 }
3155
3156 return 0;
3157 }
3158
3159 #undef ZERO
3160 #define ZERO(reg) writel(0, mmio + (reg))
3161 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3162 {
3163 struct mv_host_priv *hpriv = host->private_data;
3164 u32 tmp;
3165
3166 tmp = readl(mmio + MV_PCI_MODE);
3167 tmp &= 0xff00ffff;
3168 writel(tmp, mmio + MV_PCI_MODE);
3169
3170 ZERO(MV_PCI_DISC_TIMER);
3171 ZERO(MV_PCI_MSI_TRIGGER);
3172 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3173 ZERO(MV_PCI_SERR_MASK);
3174 ZERO(hpriv->irq_cause_offset);
3175 ZERO(hpriv->irq_mask_offset);
3176 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3177 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3178 ZERO(MV_PCI_ERR_ATTRIBUTE);
3179 ZERO(MV_PCI_ERR_COMMAND);
3180 }
3181 #undef ZERO
3182
3183 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3184 {
3185 u32 tmp;
3186
3187 mv5_reset_flash(hpriv, mmio);
3188
3189 tmp = readl(mmio + GPIO_PORT_CTL);
3190 tmp &= 0x3;
3191 tmp |= (1 << 5) | (1 << 6);
3192 writel(tmp, mmio + GPIO_PORT_CTL);
3193 }
3194
3195 /**
3196 * mv6_reset_hc - Perform the 6xxx global soft reset
3197 * @mmio: base address of the HBA
3198 *
3199 * This routine only applies to 6xxx parts.
3200 *
3201 * LOCKING:
3202 * Inherited from caller.
3203 */
3204 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3205 unsigned int n_hc)
3206 {
3207 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3208 int i, rc = 0;
3209 u32 t;
3210
3211 /* Following procedure defined in PCI "main command and status
3212 * register" table.
3213 */
3214 t = readl(reg);
3215 writel(t | STOP_PCI_MASTER, reg);
3216
3217 for (i = 0; i < 1000; i++) {
3218 udelay(1);
3219 t = readl(reg);
3220 if (PCI_MASTER_EMPTY & t)
3221 break;
3222 }
3223 if (!(PCI_MASTER_EMPTY & t)) {
3224 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3225 rc = 1;
3226 goto done;
3227 }
3228
3229 /* set reset */
3230 i = 5;
3231 do {
3232 writel(t | GLOB_SFT_RST, reg);
3233 t = readl(reg);
3234 udelay(1);
3235 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3236
3237 if (!(GLOB_SFT_RST & t)) {
3238 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3239 rc = 1;
3240 goto done;
3241 }
3242
3243 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3244 i = 5;
3245 do {
3246 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3247 t = readl(reg);
3248 udelay(1);
3249 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3250
3251 if (GLOB_SFT_RST & t) {
3252 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3253 rc = 1;
3254 }
3255 done:
3256 return rc;
3257 }
3258
3259 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3260 void __iomem *mmio)
3261 {
3262 void __iomem *port_mmio;
3263 u32 tmp;
3264
3265 tmp = readl(mmio + RESET_CFG);
3266 if ((tmp & (1 << 0)) == 0) {
3267 hpriv->signal[idx].amps = 0x7 << 8;
3268 hpriv->signal[idx].pre = 0x1 << 5;
3269 return;
3270 }
3271
3272 port_mmio = mv_port_base(mmio, idx);
3273 tmp = readl(port_mmio + PHY_MODE2);
3274
3275 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3276 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3277 }
3278
3279 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3280 {
3281 writel(0x00000060, mmio + GPIO_PORT_CTL);
3282 }
3283
3284 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3285 unsigned int port)
3286 {
3287 void __iomem *port_mmio = mv_port_base(mmio, port);
3288
3289 u32 hp_flags = hpriv->hp_flags;
3290 int fix_phy_mode2 =
3291 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3292 int fix_phy_mode4 =
3293 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3294 u32 m2, m3;
3295
3296 if (fix_phy_mode2) {
3297 m2 = readl(port_mmio + PHY_MODE2);
3298 m2 &= ~(1 << 16);
3299 m2 |= (1 << 31);
3300 writel(m2, port_mmio + PHY_MODE2);
3301
3302 udelay(200);
3303
3304 m2 = readl(port_mmio + PHY_MODE2);
3305 m2 &= ~((1 << 16) | (1 << 31));
3306 writel(m2, port_mmio + PHY_MODE2);
3307
3308 udelay(200);
3309 }
3310
3311 /*
3312 * Gen-II/IIe PHY_MODE3 errata RM#2:
3313 * Achieves better receiver noise performance than the h/w default:
3314 */
3315 m3 = readl(port_mmio + PHY_MODE3);
3316 m3 = (m3 & 0x1f) | (0x5555601 << 5);
3317
3318 /* Guideline 88F5182 (GL# SATA-S11) */
3319 if (IS_SOC(hpriv))
3320 m3 &= ~0x1c;
3321
3322 if (fix_phy_mode4) {
3323 u32 m4 = readl(port_mmio + PHY_MODE4);
3324 /*
3325 * Enforce reserved-bit restrictions on GenIIe devices only.
3326 * For earlier chipsets, force only the internal config field
3327 * (workaround for errata FEr SATA#10 part 1).
3328 */
3329 if (IS_GEN_IIE(hpriv))
3330 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3331 else
3332 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3333 writel(m4, port_mmio + PHY_MODE4);
3334 }
3335 /*
3336 * Workaround for 60x1-B2 errata SATA#13:
3337 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3338 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3339 * Or ensure we use writelfl() when writing PHY_MODE4.
3340 */
3341 writel(m3, port_mmio + PHY_MODE3);
3342
3343 /* Revert values of pre-emphasis and signal amps to the saved ones */
3344 m2 = readl(port_mmio + PHY_MODE2);
3345
3346 m2 &= ~MV_M2_PREAMP_MASK;
3347 m2 |= hpriv->signal[port].amps;
3348 m2 |= hpriv->signal[port].pre;
3349 m2 &= ~(1 << 16);
3350
3351 /* according to mvSata 3.6.1, some IIE values are fixed */
3352 if (IS_GEN_IIE(hpriv)) {
3353 m2 &= ~0xC30FF01F;
3354 m2 |= 0x0000900F;
3355 }
3356
3357 writel(m2, port_mmio + PHY_MODE2);
3358 }
3359
3360 /* TODO: use the generic LED interface to configure the SATA Presence */
3361 /* & Acitivy LEDs on the board */
3362 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3363 void __iomem *mmio)
3364 {
3365 return;
3366 }
3367
3368 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3369 void __iomem *mmio)
3370 {
3371 void __iomem *port_mmio;
3372 u32 tmp;
3373
3374 port_mmio = mv_port_base(mmio, idx);
3375 tmp = readl(port_mmio + PHY_MODE2);
3376
3377 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3378 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3379 }
3380
3381 #undef ZERO
3382 #define ZERO(reg) writel(0, port_mmio + (reg))
3383 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3384 void __iomem *mmio, unsigned int port)
3385 {
3386 void __iomem *port_mmio = mv_port_base(mmio, port);
3387
3388 mv_reset_channel(hpriv, mmio, port);
3389
3390 ZERO(0x028); /* command */
3391 writel(0x101f, port_mmio + EDMA_CFG);
3392 ZERO(0x004); /* timer */
3393 ZERO(0x008); /* irq err cause */
3394 ZERO(0x00c); /* irq err mask */
3395 ZERO(0x010); /* rq bah */
3396 ZERO(0x014); /* rq inp */
3397 ZERO(0x018); /* rq outp */
3398 ZERO(0x01c); /* respq bah */
3399 ZERO(0x024); /* respq outp */
3400 ZERO(0x020); /* respq inp */
3401 ZERO(0x02c); /* test control */
3402 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3403 }
3404
3405 #undef ZERO
3406
3407 #define ZERO(reg) writel(0, hc_mmio + (reg))
3408 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3409 void __iomem *mmio)
3410 {
3411 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3412
3413 ZERO(0x00c);
3414 ZERO(0x010);
3415 ZERO(0x014);
3416
3417 }
3418
3419 #undef ZERO
3420
3421 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3422 void __iomem *mmio, unsigned int n_hc)
3423 {
3424 unsigned int port;
3425
3426 for (port = 0; port < hpriv->n_ports; port++)
3427 mv_soc_reset_hc_port(hpriv, mmio, port);
3428
3429 mv_soc_reset_one_hc(hpriv, mmio);
3430
3431 return 0;
3432 }
3433
3434 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3435 void __iomem *mmio)
3436 {
3437 return;
3438 }
3439
3440 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3441 {
3442 return;
3443 }
3444
3445 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3446 void __iomem *mmio, unsigned int port)
3447 {
3448 void __iomem *port_mmio = mv_port_base(mmio, port);
3449 u32 reg;
3450
3451 reg = readl(port_mmio + PHY_MODE3);
3452 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3453 reg |= (0x1 << 27);
3454 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3455 reg |= (0x1 << 29);
3456 writel(reg, port_mmio + PHY_MODE3);
3457
3458 reg = readl(port_mmio + PHY_MODE4);
3459 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3460 reg |= (0x1 << 16);
3461 writel(reg, port_mmio + PHY_MODE4);
3462
3463 reg = readl(port_mmio + PHY_MODE9_GEN2);
3464 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3465 reg |= 0x8;
3466 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3467 writel(reg, port_mmio + PHY_MODE9_GEN2);
3468
3469 reg = readl(port_mmio + PHY_MODE9_GEN1);
3470 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3471 reg |= 0x8;
3472 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3473 writel(reg, port_mmio + PHY_MODE9_GEN1);
3474 }
3475
3476 /**
3477 * soc_is_65 - check if the soc is 65 nano device
3478 *
3479 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3480 * register, this register should contain non-zero value and it exists only
3481 * in the 65 nano devices, when reading it from older devices we get 0.
3482 */
3483 static bool soc_is_65n(struct mv_host_priv *hpriv)
3484 {
3485 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3486
3487 if (readl(port0_mmio + PHYCFG_OFS))
3488 return true;
3489 return false;
3490 }
3491
3492 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3493 {
3494 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3495
3496 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3497 if (want_gen2i)
3498 ifcfg |= (1 << 7); /* enable gen2i speed */
3499 writelfl(ifcfg, port_mmio + SATA_IFCFG);
3500 }
3501
3502 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3503 unsigned int port_no)
3504 {
3505 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3506
3507 /*
3508 * The datasheet warns against setting EDMA_RESET when EDMA is active
3509 * (but doesn't say what the problem might be). So we first try
3510 * to disable the EDMA engine before doing the EDMA_RESET operation.
3511 */
3512 mv_stop_edma_engine(port_mmio);
3513 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3514
3515 if (!IS_GEN_I(hpriv)) {
3516 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3517 mv_setup_ifcfg(port_mmio, 1);
3518 }
3519 /*
3520 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3521 * link, and physical layers. It resets all SATA interface registers
3522 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3523 */
3524 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3525 udelay(25); /* allow reset propagation */
3526 writelfl(0, port_mmio + EDMA_CMD);
3527
3528 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3529
3530 if (IS_GEN_I(hpriv))
3531 mdelay(1);
3532 }
3533
3534 static void mv_pmp_select(struct ata_port *ap, int pmp)
3535 {
3536 if (sata_pmp_supported(ap)) {
3537 void __iomem *port_mmio = mv_ap_base(ap);
3538 u32 reg = readl(port_mmio + SATA_IFCTL);
3539 int old = reg & 0xf;
3540
3541 if (old != pmp) {
3542 reg = (reg & ~0xf) | pmp;
3543 writelfl(reg, port_mmio + SATA_IFCTL);
3544 }
3545 }
3546 }
3547
3548 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3549 unsigned long deadline)
3550 {
3551 mv_pmp_select(link->ap, sata_srst_pmp(link));
3552 return sata_std_hardreset(link, class, deadline);
3553 }
3554
3555 static int mv_softreset(struct ata_link *link, unsigned int *class,
3556 unsigned long deadline)
3557 {
3558 mv_pmp_select(link->ap, sata_srst_pmp(link));
3559 return ata_sff_softreset(link, class, deadline);
3560 }
3561
3562 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3563 unsigned long deadline)
3564 {
3565 struct ata_port *ap = link->ap;
3566 struct mv_host_priv *hpriv = ap->host->private_data;
3567 struct mv_port_priv *pp = ap->private_data;
3568 void __iomem *mmio = hpriv->base;
3569 int rc, attempts = 0, extra = 0;
3570 u32 sstatus;
3571 bool online;
3572
3573 mv_reset_channel(hpriv, mmio, ap->port_no);
3574 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3575 pp->pp_flags &=
3576 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3577
3578 /* Workaround for errata FEr SATA#10 (part 2) */
3579 do {
3580 const unsigned long *timing =
3581 sata_ehc_deb_timing(&link->eh_context);
3582
3583 rc = sata_link_hardreset(link, timing, deadline + extra,
3584 &online, NULL);
3585 rc = online ? -EAGAIN : rc;
3586 if (rc)
3587 return rc;
3588 sata_scr_read(link, SCR_STATUS, &sstatus);
3589 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3590 /* Force 1.5gb/s link speed and try again */
3591 mv_setup_ifcfg(mv_ap_base(ap), 0);
3592 if (time_after(jiffies + HZ, deadline))
3593 extra = HZ; /* only extend it once, max */
3594 }
3595 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3596 mv_save_cached_regs(ap);
3597 mv_edma_cfg(ap, 0, 0);
3598
3599 return rc;
3600 }
3601
3602 static void mv_eh_freeze(struct ata_port *ap)
3603 {
3604 mv_stop_edma(ap);
3605 mv_enable_port_irqs(ap, 0);
3606 }
3607
3608 static void mv_eh_thaw(struct ata_port *ap)
3609 {
3610 struct mv_host_priv *hpriv = ap->host->private_data;
3611 unsigned int port = ap->port_no;
3612 unsigned int hardport = mv_hardport_from_port(port);
3613 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3614 void __iomem *port_mmio = mv_ap_base(ap);
3615 u32 hc_irq_cause;
3616
3617 /* clear EDMA errors on this port */
3618 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3619
3620 /* clear pending irq events */
3621 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3622 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3623
3624 mv_enable_port_irqs(ap, ERR_IRQ);
3625 }
3626
3627 /**
3628 * mv_port_init - Perform some early initialization on a single port.
3629 * @port: libata data structure storing shadow register addresses
3630 * @port_mmio: base address of the port
3631 *
3632 * Initialize shadow register mmio addresses, clear outstanding
3633 * interrupts on the port, and unmask interrupts for the future
3634 * start of the port.
3635 *
3636 * LOCKING:
3637 * Inherited from caller.
3638 */
3639 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3640 {
3641 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3642
3643 /* PIO related setup
3644 */
3645 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3646 port->error_addr =
3647 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3648 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3649 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3650 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3651 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3652 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3653 port->status_addr =
3654 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3655 /* special case: control/altstatus doesn't have ATA_REG_ address */
3656 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3657
3658 /* unused: */
3659 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
3660
3661 /* Clear any currently outstanding port interrupt conditions */
3662 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3663 writelfl(readl(serr), serr);
3664 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3665
3666 /* unmask all non-transient EDMA error interrupts */
3667 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3668
3669 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3670 readl(port_mmio + EDMA_CFG),
3671 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3672 readl(port_mmio + EDMA_ERR_IRQ_MASK));
3673 }
3674
3675 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3676 {
3677 struct mv_host_priv *hpriv = host->private_data;
3678 void __iomem *mmio = hpriv->base;
3679 u32 reg;
3680
3681 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3682 return 0; /* not PCI-X capable */
3683 reg = readl(mmio + MV_PCI_MODE);
3684 if ((reg & MV_PCI_MODE_MASK) == 0)
3685 return 0; /* conventional PCI mode */
3686 return 1; /* chip is in PCI-X mode */
3687 }
3688
3689 static int mv_pci_cut_through_okay(struct ata_host *host)
3690 {
3691 struct mv_host_priv *hpriv = host->private_data;
3692 void __iomem *mmio = hpriv->base;
3693 u32 reg;
3694
3695 if (!mv_in_pcix_mode(host)) {
3696 reg = readl(mmio + MV_PCI_COMMAND);
3697 if (reg & MV_PCI_COMMAND_MRDTRIG)
3698 return 0; /* not okay */
3699 }
3700 return 1; /* okay */
3701 }
3702
3703 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3704 {
3705 struct mv_host_priv *hpriv = host->private_data;
3706 void __iomem *mmio = hpriv->base;
3707
3708 /* workaround for 60x1-B2 errata PCI#7 */
3709 if (mv_in_pcix_mode(host)) {
3710 u32 reg = readl(mmio + MV_PCI_COMMAND);
3711 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3712 }
3713 }
3714
3715 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3716 {
3717 struct pci_dev *pdev = to_pci_dev(host->dev);
3718 struct mv_host_priv *hpriv = host->private_data;
3719 u32 hp_flags = hpriv->hp_flags;
3720
3721 switch (board_idx) {
3722 case chip_5080:
3723 hpriv->ops = &mv5xxx_ops;
3724 hp_flags |= MV_HP_GEN_I;
3725
3726 switch (pdev->revision) {
3727 case 0x1:
3728 hp_flags |= MV_HP_ERRATA_50XXB0;
3729 break;
3730 case 0x3:
3731 hp_flags |= MV_HP_ERRATA_50XXB2;
3732 break;
3733 default:
3734 dev_printk(KERN_WARNING, &pdev->dev,
3735 "Applying 50XXB2 workarounds to unknown rev\n");
3736 hp_flags |= MV_HP_ERRATA_50XXB2;
3737 break;
3738 }
3739 break;
3740
3741 case chip_504x:
3742 case chip_508x:
3743 hpriv->ops = &mv5xxx_ops;
3744 hp_flags |= MV_HP_GEN_I;
3745
3746 switch (pdev->revision) {
3747 case 0x0:
3748 hp_flags |= MV_HP_ERRATA_50XXB0;
3749 break;
3750 case 0x3:
3751 hp_flags |= MV_HP_ERRATA_50XXB2;
3752 break;
3753 default:
3754 dev_printk(KERN_WARNING, &pdev->dev,
3755 "Applying B2 workarounds to unknown rev\n");
3756 hp_flags |= MV_HP_ERRATA_50XXB2;
3757 break;
3758 }
3759 break;
3760
3761 case chip_604x:
3762 case chip_608x:
3763 hpriv->ops = &mv6xxx_ops;
3764 hp_flags |= MV_HP_GEN_II;
3765
3766 switch (pdev->revision) {
3767 case 0x7:
3768 mv_60x1b2_errata_pci7(host);
3769 hp_flags |= MV_HP_ERRATA_60X1B2;
3770 break;
3771 case 0x9:
3772 hp_flags |= MV_HP_ERRATA_60X1C0;
3773 break;
3774 default:
3775 dev_printk(KERN_WARNING, &pdev->dev,
3776 "Applying B2 workarounds to unknown rev\n");
3777 hp_flags |= MV_HP_ERRATA_60X1B2;
3778 break;
3779 }
3780 break;
3781
3782 case chip_7042:
3783 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3784 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3785 (pdev->device == 0x2300 || pdev->device == 0x2310))
3786 {
3787 /*
3788 * Highpoint RocketRAID PCIe 23xx series cards:
3789 *
3790 * Unconfigured drives are treated as "Legacy"
3791 * by the BIOS, and it overwrites sector 8 with
3792 * a "Lgcy" metadata block prior to Linux boot.
3793 *
3794 * Configured drives (RAID or JBOD) leave sector 8
3795 * alone, but instead overwrite a high numbered
3796 * sector for the RAID metadata. This sector can
3797 * be determined exactly, by truncating the physical
3798 * drive capacity to a nice even GB value.
3799 *
3800 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3801 *
3802 * Warn the user, lest they think we're just buggy.
3803 */
3804 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3805 " BIOS CORRUPTS DATA on all attached drives,"
3806 " regardless of if/how they are configured."
3807 " BEWARE!\n");
3808 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3809 " use sectors 8-9 on \"Legacy\" drives,"
3810 " and avoid the final two gigabytes on"
3811 " all RocketRAID BIOS initialized drives.\n");
3812 }
3813 /* drop through */
3814 case chip_6042:
3815 hpriv->ops = &mv6xxx_ops;
3816 hp_flags |= MV_HP_GEN_IIE;
3817 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3818 hp_flags |= MV_HP_CUT_THROUGH;
3819
3820 switch (pdev->revision) {
3821 case 0x2: /* Rev.B0: the first/only public release */
3822 hp_flags |= MV_HP_ERRATA_60X1C0;
3823 break;
3824 default:
3825 dev_printk(KERN_WARNING, &pdev->dev,
3826 "Applying 60X1C0 workarounds to unknown rev\n");
3827 hp_flags |= MV_HP_ERRATA_60X1C0;
3828 break;
3829 }
3830 break;
3831 case chip_soc:
3832 if (soc_is_65n(hpriv))
3833 hpriv->ops = &mv_soc_65n_ops;
3834 else
3835 hpriv->ops = &mv_soc_ops;
3836 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3837 MV_HP_ERRATA_60X1C0;
3838 break;
3839
3840 default:
3841 dev_printk(KERN_ERR, host->dev,
3842 "BUG: invalid board index %u\n", board_idx);
3843 return 1;
3844 }
3845
3846 hpriv->hp_flags = hp_flags;
3847 if (hp_flags & MV_HP_PCIE) {
3848 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3849 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3850 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3851 } else {
3852 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3853 hpriv->irq_mask_offset = PCI_IRQ_MASK;
3854 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3855 }
3856
3857 return 0;
3858 }
3859
3860 /**
3861 * mv_init_host - Perform some early initialization of the host.
3862 * @host: ATA host to initialize
3863 *
3864 * If possible, do an early global reset of the host. Then do
3865 * our port init and clear/unmask all/relevant host interrupts.
3866 *
3867 * LOCKING:
3868 * Inherited from caller.
3869 */
3870 static int mv_init_host(struct ata_host *host)
3871 {
3872 int rc = 0, n_hc, port, hc;
3873 struct mv_host_priv *hpriv = host->private_data;
3874 void __iomem *mmio = hpriv->base;
3875
3876 rc = mv_chip_id(host, hpriv->board_idx);
3877 if (rc)
3878 goto done;
3879
3880 if (IS_SOC(hpriv)) {
3881 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3882 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3883 } else {
3884 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3885 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3886 }
3887
3888 /* initialize shadow irq mask with register's value */
3889 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3890
3891 /* global interrupt mask: 0 == mask everything */
3892 mv_set_main_irq_mask(host, ~0, 0);
3893
3894 n_hc = mv_get_hc_count(host->ports[0]->flags);
3895
3896 for (port = 0; port < host->n_ports; port++)
3897 if (hpriv->ops->read_preamp)
3898 hpriv->ops->read_preamp(hpriv, port, mmio);
3899
3900 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3901 if (rc)
3902 goto done;
3903
3904 hpriv->ops->reset_flash(hpriv, mmio);
3905 hpriv->ops->reset_bus(host, mmio);
3906 hpriv->ops->enable_leds(hpriv, mmio);
3907
3908 for (port = 0; port < host->n_ports; port++) {
3909 struct ata_port *ap = host->ports[port];
3910 void __iomem *port_mmio = mv_port_base(mmio, port);
3911
3912 mv_port_init(&ap->ioaddr, port_mmio);
3913 }
3914
3915 for (hc = 0; hc < n_hc; hc++) {
3916 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3917
3918 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3919 "(before clear)=0x%08x\n", hc,
3920 readl(hc_mmio + HC_CFG),
3921 readl(hc_mmio + HC_IRQ_CAUSE));
3922
3923 /* Clear any currently outstanding hc interrupt conditions */
3924 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3925 }
3926
3927 if (!IS_SOC(hpriv)) {
3928 /* Clear any currently outstanding host interrupt conditions */
3929 writelfl(0, mmio + hpriv->irq_cause_offset);
3930
3931 /* and unmask interrupt generation for host regs */
3932 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3933 }
3934
3935 /*
3936 * enable only global host interrupts for now.
3937 * The per-port interrupts get done later as ports are set up.
3938 */
3939 mv_set_main_irq_mask(host, 0, PCI_ERR);
3940 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3941 irq_coalescing_usecs);
3942 done:
3943 return rc;
3944 }
3945
3946 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3947 {
3948 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3949 MV_CRQB_Q_SZ, 0);
3950 if (!hpriv->crqb_pool)
3951 return -ENOMEM;
3952
3953 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3954 MV_CRPB_Q_SZ, 0);
3955 if (!hpriv->crpb_pool)
3956 return -ENOMEM;
3957
3958 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3959 MV_SG_TBL_SZ, 0);
3960 if (!hpriv->sg_tbl_pool)
3961 return -ENOMEM;
3962
3963 return 0;
3964 }
3965
3966 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3967 struct mbus_dram_target_info *dram)
3968 {
3969 int i;
3970
3971 for (i = 0; i < 4; i++) {
3972 writel(0, hpriv->base + WINDOW_CTRL(i));
3973 writel(0, hpriv->base + WINDOW_BASE(i));
3974 }
3975
3976 for (i = 0; i < dram->num_cs; i++) {
3977 struct mbus_dram_window *cs = dram->cs + i;
3978
3979 writel(((cs->size - 1) & 0xffff0000) |
3980 (cs->mbus_attr << 8) |
3981 (dram->mbus_dram_target_id << 4) | 1,
3982 hpriv->base + WINDOW_CTRL(i));
3983 writel(cs->base, hpriv->base + WINDOW_BASE(i));
3984 }
3985 }
3986
3987 /**
3988 * mv_platform_probe - handle a positive probe of an soc Marvell
3989 * host
3990 * @pdev: platform device found
3991 *
3992 * LOCKING:
3993 * Inherited from caller.
3994 */
3995 static int mv_platform_probe(struct platform_device *pdev)
3996 {
3997 static int printed_version;
3998 const struct mv_sata_platform_data *mv_platform_data;
3999 const struct ata_port_info *ppi[] =
4000 { &mv_port_info[chip_soc], NULL };
4001 struct ata_host *host;
4002 struct mv_host_priv *hpriv;
4003 struct resource *res;
4004 int n_ports, rc;
4005
4006 if (!printed_version++)
4007 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4008
4009 /*
4010 * Simple resource validation ..
4011 */
4012 if (unlikely(pdev->num_resources != 2)) {
4013 dev_err(&pdev->dev, "invalid number of resources\n");
4014 return -EINVAL;
4015 }
4016
4017 /*
4018 * Get the register base first
4019 */
4020 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4021 if (res == NULL)
4022 return -EINVAL;
4023
4024 /* allocate host */
4025 mv_platform_data = pdev->dev.platform_data;
4026 n_ports = mv_platform_data->n_ports;
4027
4028 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4029 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4030
4031 if (!host || !hpriv)
4032 return -ENOMEM;
4033 host->private_data = hpriv;
4034 hpriv->n_ports = n_ports;
4035 hpriv->board_idx = chip_soc;
4036
4037 host->iomap = NULL;
4038 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4039 resource_size(res));
4040 hpriv->base -= SATAHC0_REG_BASE;
4041
4042 #if defined(CONFIG_HAVE_CLK)
4043 hpriv->clk = clk_get(&pdev->dev, NULL);
4044 if (IS_ERR(hpriv->clk))
4045 dev_notice(&pdev->dev, "cannot get clkdev\n");
4046 else
4047 clk_enable(hpriv->clk);
4048 #endif
4049
4050 /*
4051 * (Re-)program MBUS remapping windows if we are asked to.
4052 */
4053 if (mv_platform_data->dram != NULL)
4054 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4055
4056 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4057 if (rc)
4058 goto err;
4059
4060 /* initialize adapter */
4061 rc = mv_init_host(host);
4062 if (rc)
4063 goto err;
4064
4065 dev_printk(KERN_INFO, &pdev->dev,
4066 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4067 host->n_ports);
4068
4069 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4070 IRQF_SHARED, &mv6_sht);
4071 err:
4072 #if defined(CONFIG_HAVE_CLK)
4073 if (!IS_ERR(hpriv->clk)) {
4074 clk_disable(hpriv->clk);
4075 clk_put(hpriv->clk);
4076 }
4077 #endif
4078
4079 return rc;
4080 }
4081
4082 /*
4083 *
4084 * mv_platform_remove - unplug a platform interface
4085 * @pdev: platform device
4086 *
4087 * A platform bus SATA device has been unplugged. Perform the needed
4088 * cleanup. Also called on module unload for any active devices.
4089 */
4090 static int __devexit mv_platform_remove(struct platform_device *pdev)
4091 {
4092 struct device *dev = &pdev->dev;
4093 struct ata_host *host = dev_get_drvdata(dev);
4094 #if defined(CONFIG_HAVE_CLK)
4095 struct mv_host_priv *hpriv = host->private_data;
4096 #endif
4097 ata_host_detach(host);
4098
4099 #if defined(CONFIG_HAVE_CLK)
4100 if (!IS_ERR(hpriv->clk)) {
4101 clk_disable(hpriv->clk);
4102 clk_put(hpriv->clk);
4103 }
4104 #endif
4105 return 0;
4106 }
4107
4108 #ifdef CONFIG_PM
4109 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4110 {
4111 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4112 if (host)
4113 return ata_host_suspend(host, state);
4114 else
4115 return 0;
4116 }
4117
4118 static int mv_platform_resume(struct platform_device *pdev)
4119 {
4120 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4121 int ret;
4122
4123 if (host) {
4124 struct mv_host_priv *hpriv = host->private_data;
4125 const struct mv_sata_platform_data *mv_platform_data = \
4126 pdev->dev.platform_data;
4127 /*
4128 * (Re-)program MBUS remapping windows if we are asked to.
4129 */
4130 if (mv_platform_data->dram != NULL)
4131 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4132
4133 /* initialize adapter */
4134 ret = mv_init_host(host);
4135 if (ret) {
4136 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4137 return ret;
4138 }
4139 ata_host_resume(host);
4140 }
4141
4142 return 0;
4143 }
4144 #else
4145 #define mv_platform_suspend NULL
4146 #define mv_platform_resume NULL
4147 #endif
4148
4149 static struct platform_driver mv_platform_driver = {
4150 .probe = mv_platform_probe,
4151 .remove = __devexit_p(mv_platform_remove),
4152 .suspend = mv_platform_suspend,
4153 .resume = mv_platform_resume,
4154 .driver = {
4155 .name = DRV_NAME,
4156 .owner = THIS_MODULE,
4157 },
4158 };
4159
4160
4161 #ifdef CONFIG_PCI
4162 static int mv_pci_init_one(struct pci_dev *pdev,
4163 const struct pci_device_id *ent);
4164 #ifdef CONFIG_PM
4165 static int mv_pci_device_resume(struct pci_dev *pdev);
4166 #endif
4167
4168
4169 static struct pci_driver mv_pci_driver = {
4170 .name = DRV_NAME,
4171 .id_table = mv_pci_tbl,
4172 .probe = mv_pci_init_one,
4173 .remove = ata_pci_remove_one,
4174 #ifdef CONFIG_PM
4175 .suspend = ata_pci_device_suspend,
4176 .resume = mv_pci_device_resume,
4177 #endif
4178
4179 };
4180
4181 /* move to PCI layer or libata core? */
4182 static int pci_go_64(struct pci_dev *pdev)
4183 {
4184 int rc;
4185
4186 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4187 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4188 if (rc) {
4189 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4190 if (rc) {
4191 dev_printk(KERN_ERR, &pdev->dev,
4192 "64-bit DMA enable failed\n");
4193 return rc;
4194 }
4195 }
4196 } else {
4197 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4198 if (rc) {
4199 dev_printk(KERN_ERR, &pdev->dev,
4200 "32-bit DMA enable failed\n");
4201 return rc;
4202 }
4203 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4204 if (rc) {
4205 dev_printk(KERN_ERR, &pdev->dev,
4206 "32-bit consistent DMA enable failed\n");
4207 return rc;
4208 }
4209 }
4210
4211 return rc;
4212 }
4213
4214 /**
4215 * mv_print_info - Dump key info to kernel log for perusal.
4216 * @host: ATA host to print info about
4217 *
4218 * FIXME: complete this.
4219 *
4220 * LOCKING:
4221 * Inherited from caller.
4222 */
4223 static void mv_print_info(struct ata_host *host)
4224 {
4225 struct pci_dev *pdev = to_pci_dev(host->dev);
4226 struct mv_host_priv *hpriv = host->private_data;
4227 u8 scc;
4228 const char *scc_s, *gen;
4229
4230 /* Use this to determine the HW stepping of the chip so we know
4231 * what errata to workaround
4232 */
4233 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4234 if (scc == 0)
4235 scc_s = "SCSI";
4236 else if (scc == 0x01)
4237 scc_s = "RAID";
4238 else
4239 scc_s = "?";
4240
4241 if (IS_GEN_I(hpriv))
4242 gen = "I";
4243 else if (IS_GEN_II(hpriv))
4244 gen = "II";
4245 else if (IS_GEN_IIE(hpriv))
4246 gen = "IIE";
4247 else
4248 gen = "?";
4249
4250 dev_printk(KERN_INFO, &pdev->dev,
4251 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4252 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4253 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4254 }
4255
4256 /**
4257 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4258 * @pdev: PCI device found
4259 * @ent: PCI device ID entry for the matched host
4260 *
4261 * LOCKING:
4262 * Inherited from caller.
4263 */
4264 static int mv_pci_init_one(struct pci_dev *pdev,
4265 const struct pci_device_id *ent)
4266 {
4267 static int printed_version;
4268 unsigned int board_idx = (unsigned int)ent->driver_data;
4269 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4270 struct ata_host *host;
4271 struct mv_host_priv *hpriv;
4272 int n_ports, port, rc;
4273
4274 if (!printed_version++)
4275 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4276
4277 /* allocate host */
4278 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4279
4280 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4281 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4282 if (!host || !hpriv)
4283 return -ENOMEM;
4284 host->private_data = hpriv;
4285 hpriv->n_ports = n_ports;
4286 hpriv->board_idx = board_idx;
4287
4288 /* acquire resources */
4289 rc = pcim_enable_device(pdev);
4290 if (rc)
4291 return rc;
4292
4293 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4294 if (rc == -EBUSY)
4295 pcim_pin_device(pdev);
4296 if (rc)
4297 return rc;
4298 host->iomap = pcim_iomap_table(pdev);
4299 hpriv->base = host->iomap[MV_PRIMARY_BAR];
4300
4301 rc = pci_go_64(pdev);
4302 if (rc)
4303 return rc;
4304
4305 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4306 if (rc)
4307 return rc;
4308
4309 for (port = 0; port < host->n_ports; port++) {
4310 struct ata_port *ap = host->ports[port];
4311 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4312 unsigned int offset = port_mmio - hpriv->base;
4313
4314 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4315 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4316 }
4317
4318 /* initialize adapter */
4319 rc = mv_init_host(host);
4320 if (rc)
4321 return rc;
4322
4323 /* Enable message-switched interrupts, if requested */
4324 if (msi && pci_enable_msi(pdev) == 0)
4325 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4326
4327 mv_dump_pci_cfg(pdev, 0x68);
4328 mv_print_info(host);
4329
4330 pci_set_master(pdev);
4331 pci_try_set_mwi(pdev);
4332 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4333 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4334 }
4335
4336 #ifdef CONFIG_PM
4337 static int mv_pci_device_resume(struct pci_dev *pdev)
4338 {
4339 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4340 int rc;
4341
4342 rc = ata_pci_device_do_resume(pdev);
4343 if (rc)
4344 return rc;
4345
4346 /* initialize adapter */
4347 rc = mv_init_host(host);
4348 if (rc)
4349 return rc;
4350
4351 ata_host_resume(host);
4352
4353 return 0;
4354 }
4355 #endif
4356 #endif
4357
4358 static int mv_platform_probe(struct platform_device *pdev);
4359 static int __devexit mv_platform_remove(struct platform_device *pdev);
4360
4361 static int __init mv_init(void)
4362 {
4363 int rc = -ENODEV;
4364 #ifdef CONFIG_PCI
4365 rc = pci_register_driver(&mv_pci_driver);
4366 if (rc < 0)
4367 return rc;
4368 #endif
4369 rc = platform_driver_register(&mv_platform_driver);
4370
4371 #ifdef CONFIG_PCI
4372 if (rc < 0)
4373 pci_unregister_driver(&mv_pci_driver);
4374 #endif
4375 return rc;
4376 }
4377
4378 static void __exit mv_exit(void)
4379 {
4380 #ifdef CONFIG_PCI
4381 pci_unregister_driver(&mv_pci_driver);
4382 #endif
4383 platform_driver_unregister(&mv_platform_driver);
4384 }
4385
4386 MODULE_AUTHOR("Brett Russ");
4387 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4388 MODULE_LICENSE("GPL");
4389 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4390 MODULE_VERSION(DRV_VERSION);
4391 MODULE_ALIAS("platform:" DRV_NAME);
4392
4393 module_init(mv_init);
4394 module_exit(mv_exit);
This page took 0.137456 seconds and 5 git commands to generate.