Merge branch 'merge-fixes' into devel
[deliverable/linux.git] / drivers / ata / sata_nv.c
1 /*
2 * sata_nv.c - NVIDIA nForce SATA
3 *
4 * Copyright 2004 NVIDIA Corp. All rights reserved.
5 * Copyright 2004 Andrew Chew
6 *
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; see the file COPYING. If not, write to
20 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 *
23 * libata documentation is available via 'make {ps|pdf}docs',
24 * as Documentation/DocBook/libata.*
25 *
26 * No hardware documentation available outside of NVIDIA.
27 * This driver programs the NVIDIA SATA controller in a similar
28 * fashion as with other PCI IDE BMDMA controllers, with a few
29 * NV-specific details such as register offsets, SATA phy location,
30 * hotplug info, etc.
31 *
32 * CK804/MCP04 controllers support an alternate programming interface
33 * similar to the ADMA specification (with some modifications).
34 * This allows the use of NCQ. Non-DMA-mapped ATA commands are still
35 * sent through the legacy interface.
36 *
37 */
38
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <linux/libata.h>
50
51 #define DRV_NAME "sata_nv"
52 #define DRV_VERSION "3.5"
53
54 #define NV_ADMA_DMA_BOUNDARY 0xffffffffUL
55
56 enum {
57 NV_MMIO_BAR = 5,
58
59 NV_PORTS = 2,
60 NV_PIO_MASK = 0x1f,
61 NV_MWDMA_MASK = 0x07,
62 NV_UDMA_MASK = 0x7f,
63 NV_PORT0_SCR_REG_OFFSET = 0x00,
64 NV_PORT1_SCR_REG_OFFSET = 0x40,
65
66 /* INT_STATUS/ENABLE */
67 NV_INT_STATUS = 0x10,
68 NV_INT_ENABLE = 0x11,
69 NV_INT_STATUS_CK804 = 0x440,
70 NV_INT_ENABLE_CK804 = 0x441,
71
72 /* INT_STATUS/ENABLE bits */
73 NV_INT_DEV = 0x01,
74 NV_INT_PM = 0x02,
75 NV_INT_ADDED = 0x04,
76 NV_INT_REMOVED = 0x08,
77
78 NV_INT_PORT_SHIFT = 4, /* each port occupies 4 bits */
79
80 NV_INT_ALL = 0x0f,
81 NV_INT_MASK = NV_INT_DEV |
82 NV_INT_ADDED | NV_INT_REMOVED,
83
84 /* INT_CONFIG */
85 NV_INT_CONFIG = 0x12,
86 NV_INT_CONFIG_METHD = 0x01, // 0 = INT, 1 = SMI
87
88 // For PCI config register 20
89 NV_MCP_SATA_CFG_20 = 0x50,
90 NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04,
91 NV_MCP_SATA_CFG_20_PORT0_EN = (1 << 17),
92 NV_MCP_SATA_CFG_20_PORT1_EN = (1 << 16),
93 NV_MCP_SATA_CFG_20_PORT0_PWB_EN = (1 << 14),
94 NV_MCP_SATA_CFG_20_PORT1_PWB_EN = (1 << 12),
95
96 NV_ADMA_MAX_CPBS = 32,
97 NV_ADMA_CPB_SZ = 128,
98 NV_ADMA_APRD_SZ = 16,
99 NV_ADMA_SGTBL_LEN = (1024 - NV_ADMA_CPB_SZ) /
100 NV_ADMA_APRD_SZ,
101 NV_ADMA_SGTBL_TOTAL_LEN = NV_ADMA_SGTBL_LEN + 5,
102 NV_ADMA_SGTBL_SZ = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ,
103 NV_ADMA_PORT_PRIV_DMA_SZ = NV_ADMA_MAX_CPBS *
104 (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ),
105
106 /* BAR5 offset to ADMA general registers */
107 NV_ADMA_GEN = 0x400,
108 NV_ADMA_GEN_CTL = 0x00,
109 NV_ADMA_NOTIFIER_CLEAR = 0x30,
110
111 /* BAR5 offset to ADMA ports */
112 NV_ADMA_PORT = 0x480,
113
114 /* size of ADMA port register space */
115 NV_ADMA_PORT_SIZE = 0x100,
116
117 /* ADMA port registers */
118 NV_ADMA_CTL = 0x40,
119 NV_ADMA_CPB_COUNT = 0x42,
120 NV_ADMA_NEXT_CPB_IDX = 0x43,
121 NV_ADMA_STAT = 0x44,
122 NV_ADMA_CPB_BASE_LOW = 0x48,
123 NV_ADMA_CPB_BASE_HIGH = 0x4C,
124 NV_ADMA_APPEND = 0x50,
125 NV_ADMA_NOTIFIER = 0x68,
126 NV_ADMA_NOTIFIER_ERROR = 0x6C,
127
128 /* NV_ADMA_CTL register bits */
129 NV_ADMA_CTL_HOTPLUG_IEN = (1 << 0),
130 NV_ADMA_CTL_CHANNEL_RESET = (1 << 5),
131 NV_ADMA_CTL_GO = (1 << 7),
132 NV_ADMA_CTL_AIEN = (1 << 8),
133 NV_ADMA_CTL_READ_NON_COHERENT = (1 << 11),
134 NV_ADMA_CTL_WRITE_NON_COHERENT = (1 << 12),
135
136 /* CPB response flag bits */
137 NV_CPB_RESP_DONE = (1 << 0),
138 NV_CPB_RESP_ATA_ERR = (1 << 3),
139 NV_CPB_RESP_CMD_ERR = (1 << 4),
140 NV_CPB_RESP_CPB_ERR = (1 << 7),
141
142 /* CPB control flag bits */
143 NV_CPB_CTL_CPB_VALID = (1 << 0),
144 NV_CPB_CTL_QUEUE = (1 << 1),
145 NV_CPB_CTL_APRD_VALID = (1 << 2),
146 NV_CPB_CTL_IEN = (1 << 3),
147 NV_CPB_CTL_FPDMA = (1 << 4),
148
149 /* APRD flags */
150 NV_APRD_WRITE = (1 << 1),
151 NV_APRD_END = (1 << 2),
152 NV_APRD_CONT = (1 << 3),
153
154 /* NV_ADMA_STAT flags */
155 NV_ADMA_STAT_TIMEOUT = (1 << 0),
156 NV_ADMA_STAT_HOTUNPLUG = (1 << 1),
157 NV_ADMA_STAT_HOTPLUG = (1 << 2),
158 NV_ADMA_STAT_CPBERR = (1 << 4),
159 NV_ADMA_STAT_SERROR = (1 << 5),
160 NV_ADMA_STAT_CMD_COMPLETE = (1 << 6),
161 NV_ADMA_STAT_IDLE = (1 << 8),
162 NV_ADMA_STAT_LEGACY = (1 << 9),
163 NV_ADMA_STAT_STOPPED = (1 << 10),
164 NV_ADMA_STAT_DONE = (1 << 12),
165 NV_ADMA_STAT_ERR = NV_ADMA_STAT_CPBERR |
166 NV_ADMA_STAT_TIMEOUT,
167
168 /* port flags */
169 NV_ADMA_PORT_REGISTER_MODE = (1 << 0),
170 NV_ADMA_ATAPI_SETUP_COMPLETE = (1 << 1),
171
172 /* MCP55 reg offset */
173 NV_CTL_MCP55 = 0x400,
174 NV_INT_STATUS_MCP55 = 0x440,
175 NV_INT_ENABLE_MCP55 = 0x444,
176 NV_NCQ_REG_MCP55 = 0x448,
177
178 /* MCP55 */
179 NV_INT_ALL_MCP55 = 0xffff,
180 NV_INT_PORT_SHIFT_MCP55 = 16, /* each port occupies 16 bits */
181 NV_INT_MASK_MCP55 = NV_INT_ALL_MCP55 & 0xfffd,
182
183 /* SWNCQ ENABLE BITS*/
184 NV_CTL_PRI_SWNCQ = 0x02,
185 NV_CTL_SEC_SWNCQ = 0x04,
186
187 /* SW NCQ status bits*/
188 NV_SWNCQ_IRQ_DEV = (1 << 0),
189 NV_SWNCQ_IRQ_PM = (1 << 1),
190 NV_SWNCQ_IRQ_ADDED = (1 << 2),
191 NV_SWNCQ_IRQ_REMOVED = (1 << 3),
192
193 NV_SWNCQ_IRQ_BACKOUT = (1 << 4),
194 NV_SWNCQ_IRQ_SDBFIS = (1 << 5),
195 NV_SWNCQ_IRQ_DHREGFIS = (1 << 6),
196 NV_SWNCQ_IRQ_DMASETUP = (1 << 7),
197
198 NV_SWNCQ_IRQ_HOTPLUG = NV_SWNCQ_IRQ_ADDED |
199 NV_SWNCQ_IRQ_REMOVED,
200
201 };
202
203 /* ADMA Physical Region Descriptor - one SG segment */
204 struct nv_adma_prd {
205 __le64 addr;
206 __le32 len;
207 u8 flags;
208 u8 packet_len;
209 __le16 reserved;
210 };
211
212 enum nv_adma_regbits {
213 CMDEND = (1 << 15), /* end of command list */
214 WNB = (1 << 14), /* wait-not-BSY */
215 IGN = (1 << 13), /* ignore this entry */
216 CS1n = (1 << (4 + 8)), /* std. PATA signals follow... */
217 DA2 = (1 << (2 + 8)),
218 DA1 = (1 << (1 + 8)),
219 DA0 = (1 << (0 + 8)),
220 };
221
222 /* ADMA Command Parameter Block
223 The first 5 SG segments are stored inside the Command Parameter Block itself.
224 If there are more than 5 segments the remainder are stored in a separate
225 memory area indicated by next_aprd. */
226 struct nv_adma_cpb {
227 u8 resp_flags; /* 0 */
228 u8 reserved1; /* 1 */
229 u8 ctl_flags; /* 2 */
230 /* len is length of taskfile in 64 bit words */
231 u8 len; /* 3 */
232 u8 tag; /* 4 */
233 u8 next_cpb_idx; /* 5 */
234 __le16 reserved2; /* 6-7 */
235 __le16 tf[12]; /* 8-31 */
236 struct nv_adma_prd aprd[5]; /* 32-111 */
237 __le64 next_aprd; /* 112-119 */
238 __le64 reserved3; /* 120-127 */
239 };
240
241
242 struct nv_adma_port_priv {
243 struct nv_adma_cpb *cpb;
244 dma_addr_t cpb_dma;
245 struct nv_adma_prd *aprd;
246 dma_addr_t aprd_dma;
247 void __iomem *ctl_block;
248 void __iomem *gen_block;
249 void __iomem *notifier_clear_block;
250 u64 adma_dma_mask;
251 u8 flags;
252 int last_issue_ncq;
253 };
254
255 struct nv_host_priv {
256 unsigned long type;
257 };
258
259 struct defer_queue {
260 u32 defer_bits;
261 unsigned int head;
262 unsigned int tail;
263 unsigned int tag[ATA_MAX_QUEUE];
264 };
265
266 enum ncq_saw_flag_list {
267 ncq_saw_d2h = (1U << 0),
268 ncq_saw_dmas = (1U << 1),
269 ncq_saw_sdb = (1U << 2),
270 ncq_saw_backout = (1U << 3),
271 };
272
273 struct nv_swncq_port_priv {
274 struct ata_prd *prd; /* our SG list */
275 dma_addr_t prd_dma; /* and its DMA mapping */
276 void __iomem *sactive_block;
277 void __iomem *irq_block;
278 void __iomem *tag_block;
279 u32 qc_active;
280
281 unsigned int last_issue_tag;
282
283 /* fifo circular queue to store deferral command */
284 struct defer_queue defer_queue;
285
286 /* for NCQ interrupt analysis */
287 u32 dhfis_bits;
288 u32 dmafis_bits;
289 u32 sdbfis_bits;
290
291 unsigned int ncq_flags;
292 };
293
294
295 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT)))))
296
297 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
298 #ifdef CONFIG_PM
299 static int nv_pci_device_resume(struct pci_dev *pdev);
300 #endif
301 static void nv_ck804_host_stop(struct ata_host *host);
302 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance);
303 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance);
304 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance);
305 static int nv_scr_read(struct ata_port *ap, unsigned int sc_reg, u32 *val);
306 static int nv_scr_write(struct ata_port *ap, unsigned int sc_reg, u32 val);
307
308 static void nv_nf2_freeze(struct ata_port *ap);
309 static void nv_nf2_thaw(struct ata_port *ap);
310 static void nv_ck804_freeze(struct ata_port *ap);
311 static void nv_ck804_thaw(struct ata_port *ap);
312 static int nv_hardreset(struct ata_link *link, unsigned int *class,
313 unsigned long deadline);
314 static int nv_adma_slave_config(struct scsi_device *sdev);
315 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc);
316 static void nv_adma_qc_prep(struct ata_queued_cmd *qc);
317 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc);
318 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance);
319 static void nv_adma_irq_clear(struct ata_port *ap);
320 static int nv_adma_port_start(struct ata_port *ap);
321 static void nv_adma_port_stop(struct ata_port *ap);
322 #ifdef CONFIG_PM
323 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg);
324 static int nv_adma_port_resume(struct ata_port *ap);
325 #endif
326 static void nv_adma_freeze(struct ata_port *ap);
327 static void nv_adma_thaw(struct ata_port *ap);
328 static void nv_adma_error_handler(struct ata_port *ap);
329 static void nv_adma_host_stop(struct ata_host *host);
330 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc);
331 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf);
332
333 static void nv_mcp55_thaw(struct ata_port *ap);
334 static void nv_mcp55_freeze(struct ata_port *ap);
335 static void nv_swncq_error_handler(struct ata_port *ap);
336 static int nv_swncq_slave_config(struct scsi_device *sdev);
337 static int nv_swncq_port_start(struct ata_port *ap);
338 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc);
339 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc);
340 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc);
341 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis);
342 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance);
343 #ifdef CONFIG_PM
344 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg);
345 static int nv_swncq_port_resume(struct ata_port *ap);
346 #endif
347
348 enum nv_host_type
349 {
350 GENERIC,
351 NFORCE2,
352 NFORCE3 = NFORCE2, /* NF2 == NF3 as far as sata_nv is concerned */
353 CK804,
354 ADMA,
355 SWNCQ,
356 };
357
358 static const struct pci_device_id nv_pci_tbl[] = {
359 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 },
360 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 },
361 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 },
362 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 },
363 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 },
364 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 },
365 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 },
366 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), SWNCQ },
367 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), SWNCQ },
368 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), SWNCQ },
369 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), SWNCQ },
370 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC },
371 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC },
372 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC },
373
374 { } /* terminate list */
375 };
376
377 static struct pci_driver nv_pci_driver = {
378 .name = DRV_NAME,
379 .id_table = nv_pci_tbl,
380 .probe = nv_init_one,
381 #ifdef CONFIG_PM
382 .suspend = ata_pci_device_suspend,
383 .resume = nv_pci_device_resume,
384 #endif
385 .remove = ata_pci_remove_one,
386 };
387
388 static struct scsi_host_template nv_sht = {
389 ATA_BMDMA_SHT(DRV_NAME),
390 };
391
392 static struct scsi_host_template nv_adma_sht = {
393 ATA_NCQ_SHT(DRV_NAME),
394 .can_queue = NV_ADMA_MAX_CPBS,
395 .sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN,
396 .dma_boundary = NV_ADMA_DMA_BOUNDARY,
397 .slave_configure = nv_adma_slave_config,
398 };
399
400 static struct scsi_host_template nv_swncq_sht = {
401 ATA_NCQ_SHT(DRV_NAME),
402 .can_queue = ATA_MAX_QUEUE,
403 .sg_tablesize = LIBATA_MAX_PRD,
404 .dma_boundary = ATA_DMA_BOUNDARY,
405 .slave_configure = nv_swncq_slave_config,
406 };
407
408 static struct ata_port_operations nv_generic_ops = {
409 .inherits = &ata_bmdma_port_ops,
410 .hardreset = nv_hardreset,
411 .scr_read = nv_scr_read,
412 .scr_write = nv_scr_write,
413 };
414
415 static struct ata_port_operations nv_nf2_ops = {
416 .inherits = &nv_generic_ops,
417 .freeze = nv_nf2_freeze,
418 .thaw = nv_nf2_thaw,
419 };
420
421 static struct ata_port_operations nv_ck804_ops = {
422 .inherits = &nv_generic_ops,
423 .freeze = nv_ck804_freeze,
424 .thaw = nv_ck804_thaw,
425 .host_stop = nv_ck804_host_stop,
426 };
427
428 static struct ata_port_operations nv_adma_ops = {
429 .inherits = &nv_generic_ops,
430
431 .check_atapi_dma = nv_adma_check_atapi_dma,
432 .sff_tf_read = nv_adma_tf_read,
433 .qc_defer = ata_std_qc_defer,
434 .qc_prep = nv_adma_qc_prep,
435 .qc_issue = nv_adma_qc_issue,
436 .sff_irq_clear = nv_adma_irq_clear,
437
438 .freeze = nv_adma_freeze,
439 .thaw = nv_adma_thaw,
440 .error_handler = nv_adma_error_handler,
441 .post_internal_cmd = nv_adma_post_internal_cmd,
442
443 .port_start = nv_adma_port_start,
444 .port_stop = nv_adma_port_stop,
445 #ifdef CONFIG_PM
446 .port_suspend = nv_adma_port_suspend,
447 .port_resume = nv_adma_port_resume,
448 #endif
449 .host_stop = nv_adma_host_stop,
450 };
451
452 static struct ata_port_operations nv_swncq_ops = {
453 .inherits = &nv_generic_ops,
454
455 .qc_defer = ata_std_qc_defer,
456 .qc_prep = nv_swncq_qc_prep,
457 .qc_issue = nv_swncq_qc_issue,
458
459 .freeze = nv_mcp55_freeze,
460 .thaw = nv_mcp55_thaw,
461 .error_handler = nv_swncq_error_handler,
462
463 #ifdef CONFIG_PM
464 .port_suspend = nv_swncq_port_suspend,
465 .port_resume = nv_swncq_port_resume,
466 #endif
467 .port_start = nv_swncq_port_start,
468 };
469
470 struct nv_pi_priv {
471 irq_handler_t irq_handler;
472 struct scsi_host_template *sht;
473 };
474
475 #define NV_PI_PRIV(_irq_handler, _sht) \
476 &(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht }
477
478 static const struct ata_port_info nv_port_info[] = {
479 /* generic */
480 {
481 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
482 .pio_mask = NV_PIO_MASK,
483 .mwdma_mask = NV_MWDMA_MASK,
484 .udma_mask = NV_UDMA_MASK,
485 .port_ops = &nv_generic_ops,
486 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
487 },
488 /* nforce2/3 */
489 {
490 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
491 .pio_mask = NV_PIO_MASK,
492 .mwdma_mask = NV_MWDMA_MASK,
493 .udma_mask = NV_UDMA_MASK,
494 .port_ops = &nv_nf2_ops,
495 .private_data = NV_PI_PRIV(nv_nf2_interrupt, &nv_sht),
496 },
497 /* ck804 */
498 {
499 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
500 .pio_mask = NV_PIO_MASK,
501 .mwdma_mask = NV_MWDMA_MASK,
502 .udma_mask = NV_UDMA_MASK,
503 .port_ops = &nv_ck804_ops,
504 .private_data = NV_PI_PRIV(nv_ck804_interrupt, &nv_sht),
505 },
506 /* ADMA */
507 {
508 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
509 ATA_FLAG_MMIO | ATA_FLAG_NCQ,
510 .pio_mask = NV_PIO_MASK,
511 .mwdma_mask = NV_MWDMA_MASK,
512 .udma_mask = NV_UDMA_MASK,
513 .port_ops = &nv_adma_ops,
514 .private_data = NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht),
515 },
516 /* SWNCQ */
517 {
518 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
519 ATA_FLAG_NCQ,
520 .pio_mask = NV_PIO_MASK,
521 .mwdma_mask = NV_MWDMA_MASK,
522 .udma_mask = NV_UDMA_MASK,
523 .port_ops = &nv_swncq_ops,
524 .private_data = NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht),
525 },
526 };
527
528 MODULE_AUTHOR("NVIDIA");
529 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller");
530 MODULE_LICENSE("GPL");
531 MODULE_DEVICE_TABLE(pci, nv_pci_tbl);
532 MODULE_VERSION(DRV_VERSION);
533
534 static int adma_enabled;
535 static int swncq_enabled = 1;
536
537 static void nv_adma_register_mode(struct ata_port *ap)
538 {
539 struct nv_adma_port_priv *pp = ap->private_data;
540 void __iomem *mmio = pp->ctl_block;
541 u16 tmp, status;
542 int count = 0;
543
544 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
545 return;
546
547 status = readw(mmio + NV_ADMA_STAT);
548 while (!(status & NV_ADMA_STAT_IDLE) && count < 20) {
549 ndelay(50);
550 status = readw(mmio + NV_ADMA_STAT);
551 count++;
552 }
553 if (count == 20)
554 ata_port_printk(ap, KERN_WARNING,
555 "timeout waiting for ADMA IDLE, stat=0x%hx\n",
556 status);
557
558 tmp = readw(mmio + NV_ADMA_CTL);
559 writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
560
561 count = 0;
562 status = readw(mmio + NV_ADMA_STAT);
563 while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) {
564 ndelay(50);
565 status = readw(mmio + NV_ADMA_STAT);
566 count++;
567 }
568 if (count == 20)
569 ata_port_printk(ap, KERN_WARNING,
570 "timeout waiting for ADMA LEGACY, stat=0x%hx\n",
571 status);
572
573 pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
574 }
575
576 static void nv_adma_mode(struct ata_port *ap)
577 {
578 struct nv_adma_port_priv *pp = ap->private_data;
579 void __iomem *mmio = pp->ctl_block;
580 u16 tmp, status;
581 int count = 0;
582
583 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE))
584 return;
585
586 WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
587
588 tmp = readw(mmio + NV_ADMA_CTL);
589 writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
590
591 status = readw(mmio + NV_ADMA_STAT);
592 while (((status & NV_ADMA_STAT_LEGACY) ||
593 !(status & NV_ADMA_STAT_IDLE)) && count < 20) {
594 ndelay(50);
595 status = readw(mmio + NV_ADMA_STAT);
596 count++;
597 }
598 if (count == 20)
599 ata_port_printk(ap, KERN_WARNING,
600 "timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n",
601 status);
602
603 pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE;
604 }
605
606 static int nv_adma_slave_config(struct scsi_device *sdev)
607 {
608 struct ata_port *ap = ata_shost_to_port(sdev->host);
609 struct nv_adma_port_priv *pp = ap->private_data;
610 struct nv_adma_port_priv *port0, *port1;
611 struct scsi_device *sdev0, *sdev1;
612 struct pci_dev *pdev = to_pci_dev(ap->host->dev);
613 unsigned long segment_boundary, flags;
614 unsigned short sg_tablesize;
615 int rc;
616 int adma_enable;
617 u32 current_reg, new_reg, config_mask;
618
619 rc = ata_scsi_slave_config(sdev);
620
621 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
622 /* Not a proper libata device, ignore */
623 return rc;
624
625 spin_lock_irqsave(ap->lock, flags);
626
627 if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) {
628 /*
629 * NVIDIA reports that ADMA mode does not support ATAPI commands.
630 * Therefore ATAPI commands are sent through the legacy interface.
631 * However, the legacy interface only supports 32-bit DMA.
632 * Restrict DMA parameters as required by the legacy interface
633 * when an ATAPI device is connected.
634 */
635 segment_boundary = ATA_DMA_BOUNDARY;
636 /* Subtract 1 since an extra entry may be needed for padding, see
637 libata-scsi.c */
638 sg_tablesize = LIBATA_MAX_PRD - 1;
639
640 /* Since the legacy DMA engine is in use, we need to disable ADMA
641 on the port. */
642 adma_enable = 0;
643 nv_adma_register_mode(ap);
644 } else {
645 segment_boundary = NV_ADMA_DMA_BOUNDARY;
646 sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN;
647 adma_enable = 1;
648 }
649
650 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &current_reg);
651
652 if (ap->port_no == 1)
653 config_mask = NV_MCP_SATA_CFG_20_PORT1_EN |
654 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
655 else
656 config_mask = NV_MCP_SATA_CFG_20_PORT0_EN |
657 NV_MCP_SATA_CFG_20_PORT0_PWB_EN;
658
659 if (adma_enable) {
660 new_reg = current_reg | config_mask;
661 pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE;
662 } else {
663 new_reg = current_reg & ~config_mask;
664 pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE;
665 }
666
667 if (current_reg != new_reg)
668 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg);
669
670 port0 = ap->host->ports[0]->private_data;
671 port1 = ap->host->ports[1]->private_data;
672 sdev0 = ap->host->ports[0]->link.device[0].sdev;
673 sdev1 = ap->host->ports[1]->link.device[0].sdev;
674 if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
675 (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) {
676 /** We have to set the DMA mask to 32-bit if either port is in
677 ATAPI mode, since they are on the same PCI device which is
678 used for DMA mapping. If we set the mask we also need to set
679 the bounce limit on both ports to ensure that the block
680 layer doesn't feed addresses that cause DMA mapping to
681 choke. If either SCSI device is not allocated yet, it's OK
682 since that port will discover its correct setting when it
683 does get allocated.
684 Note: Setting 32-bit mask should not fail. */
685 if (sdev0)
686 blk_queue_bounce_limit(sdev0->request_queue,
687 ATA_DMA_MASK);
688 if (sdev1)
689 blk_queue_bounce_limit(sdev1->request_queue,
690 ATA_DMA_MASK);
691
692 pci_set_dma_mask(pdev, ATA_DMA_MASK);
693 } else {
694 /** This shouldn't fail as it was set to this value before */
695 pci_set_dma_mask(pdev, pp->adma_dma_mask);
696 if (sdev0)
697 blk_queue_bounce_limit(sdev0->request_queue,
698 pp->adma_dma_mask);
699 if (sdev1)
700 blk_queue_bounce_limit(sdev1->request_queue,
701 pp->adma_dma_mask);
702 }
703
704 blk_queue_segment_boundary(sdev->request_queue, segment_boundary);
705 blk_queue_max_hw_segments(sdev->request_queue, sg_tablesize);
706 ata_port_printk(ap, KERN_INFO,
707 "DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n",
708 (unsigned long long)*ap->host->dev->dma_mask,
709 segment_boundary, sg_tablesize);
710
711 spin_unlock_irqrestore(ap->lock, flags);
712
713 return rc;
714 }
715
716 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc)
717 {
718 struct nv_adma_port_priv *pp = qc->ap->private_data;
719 return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
720 }
721
722 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
723 {
724 /* Other than when internal or pass-through commands are executed,
725 the only time this function will be called in ADMA mode will be
726 if a command fails. In the failure case we don't care about going
727 into register mode with ADMA commands pending, as the commands will
728 all shortly be aborted anyway. We assume that NCQ commands are not
729 issued via passthrough, which is the only way that switching into
730 ADMA mode could abort outstanding commands. */
731 nv_adma_register_mode(ap);
732
733 ata_sff_tf_read(ap, tf);
734 }
735
736 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb)
737 {
738 unsigned int idx = 0;
739
740 if (tf->flags & ATA_TFLAG_ISADDR) {
741 if (tf->flags & ATA_TFLAG_LBA48) {
742 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->hob_feature | WNB);
743 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect);
744 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->hob_lbal);
745 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->hob_lbam);
746 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->hob_lbah);
747 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature);
748 } else
749 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature | WNB);
750
751 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->nsect);
752 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->lbal);
753 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->lbam);
754 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->lbah);
755 }
756
757 if (tf->flags & ATA_TFLAG_DEVICE)
758 cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device);
759
760 cpb[idx++] = cpu_to_le16((ATA_REG_CMD << 8) | tf->command | CMDEND);
761
762 while (idx < 12)
763 cpb[idx++] = cpu_to_le16(IGN);
764
765 return idx;
766 }
767
768 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err)
769 {
770 struct nv_adma_port_priv *pp = ap->private_data;
771 u8 flags = pp->cpb[cpb_num].resp_flags;
772
773 VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags);
774
775 if (unlikely((force_err ||
776 flags & (NV_CPB_RESP_ATA_ERR |
777 NV_CPB_RESP_CMD_ERR |
778 NV_CPB_RESP_CPB_ERR)))) {
779 struct ata_eh_info *ehi = &ap->link.eh_info;
780 int freeze = 0;
781
782 ata_ehi_clear_desc(ehi);
783 __ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags);
784 if (flags & NV_CPB_RESP_ATA_ERR) {
785 ata_ehi_push_desc(ehi, "ATA error");
786 ehi->err_mask |= AC_ERR_DEV;
787 } else if (flags & NV_CPB_RESP_CMD_ERR) {
788 ata_ehi_push_desc(ehi, "CMD error");
789 ehi->err_mask |= AC_ERR_DEV;
790 } else if (flags & NV_CPB_RESP_CPB_ERR) {
791 ata_ehi_push_desc(ehi, "CPB error");
792 ehi->err_mask |= AC_ERR_SYSTEM;
793 freeze = 1;
794 } else {
795 /* notifier error, but no error in CPB flags? */
796 ata_ehi_push_desc(ehi, "unknown");
797 ehi->err_mask |= AC_ERR_OTHER;
798 freeze = 1;
799 }
800 /* Kill all commands. EH will determine what actually failed. */
801 if (freeze)
802 ata_port_freeze(ap);
803 else
804 ata_port_abort(ap);
805 return 1;
806 }
807
808 if (likely(flags & NV_CPB_RESP_DONE)) {
809 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, cpb_num);
810 VPRINTK("CPB flags done, flags=0x%x\n", flags);
811 if (likely(qc)) {
812 DPRINTK("Completing qc from tag %d\n", cpb_num);
813 ata_qc_complete(qc);
814 } else {
815 struct ata_eh_info *ehi = &ap->link.eh_info;
816 /* Notifier bits set without a command may indicate the drive
817 is misbehaving. Raise host state machine violation on this
818 condition. */
819 ata_port_printk(ap, KERN_ERR,
820 "notifier for tag %d with no cmd?\n",
821 cpb_num);
822 ehi->err_mask |= AC_ERR_HSM;
823 ehi->action |= ATA_EH_RESET;
824 ata_port_freeze(ap);
825 return 1;
826 }
827 }
828 return 0;
829 }
830
831 static int nv_host_intr(struct ata_port *ap, u8 irq_stat)
832 {
833 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
834
835 /* freeze if hotplugged */
836 if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) {
837 ata_port_freeze(ap);
838 return 1;
839 }
840
841 /* bail out if not our interrupt */
842 if (!(irq_stat & NV_INT_DEV))
843 return 0;
844
845 /* DEV interrupt w/ no active qc? */
846 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
847 ata_sff_check_status(ap);
848 return 1;
849 }
850
851 /* handle interrupt */
852 return ata_sff_host_intr(ap, qc);
853 }
854
855 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance)
856 {
857 struct ata_host *host = dev_instance;
858 int i, handled = 0;
859 u32 notifier_clears[2];
860
861 spin_lock(&host->lock);
862
863 for (i = 0; i < host->n_ports; i++) {
864 struct ata_port *ap = host->ports[i];
865 notifier_clears[i] = 0;
866
867 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) {
868 struct nv_adma_port_priv *pp = ap->private_data;
869 void __iomem *mmio = pp->ctl_block;
870 u16 status;
871 u32 gen_ctl;
872 u32 notifier, notifier_error;
873
874 /* if ADMA is disabled, use standard ata interrupt handler */
875 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
876 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
877 >> (NV_INT_PORT_SHIFT * i);
878 handled += nv_host_intr(ap, irq_stat);
879 continue;
880 }
881
882 /* if in ATA register mode, check for standard interrupts */
883 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) {
884 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
885 >> (NV_INT_PORT_SHIFT * i);
886 if (ata_tag_valid(ap->link.active_tag))
887 /** NV_INT_DEV indication seems unreliable at times
888 at least in ADMA mode. Force it on always when a
889 command is active, to prevent losing interrupts. */
890 irq_stat |= NV_INT_DEV;
891 handled += nv_host_intr(ap, irq_stat);
892 }
893
894 notifier = readl(mmio + NV_ADMA_NOTIFIER);
895 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
896 notifier_clears[i] = notifier | notifier_error;
897
898 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
899
900 if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier &&
901 !notifier_error)
902 /* Nothing to do */
903 continue;
904
905 status = readw(mmio + NV_ADMA_STAT);
906
907 /* Clear status. Ensure the controller sees the clearing before we start
908 looking at any of the CPB statuses, so that any CPB completions after
909 this point in the handler will raise another interrupt. */
910 writew(status, mmio + NV_ADMA_STAT);
911 readw(mmio + NV_ADMA_STAT); /* flush posted write */
912 rmb();
913
914 handled++; /* irq handled if we got here */
915
916 /* freeze if hotplugged or controller error */
917 if (unlikely(status & (NV_ADMA_STAT_HOTPLUG |
918 NV_ADMA_STAT_HOTUNPLUG |
919 NV_ADMA_STAT_TIMEOUT |
920 NV_ADMA_STAT_SERROR))) {
921 struct ata_eh_info *ehi = &ap->link.eh_info;
922
923 ata_ehi_clear_desc(ehi);
924 __ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status);
925 if (status & NV_ADMA_STAT_TIMEOUT) {
926 ehi->err_mask |= AC_ERR_SYSTEM;
927 ata_ehi_push_desc(ehi, "timeout");
928 } else if (status & NV_ADMA_STAT_HOTPLUG) {
929 ata_ehi_hotplugged(ehi);
930 ata_ehi_push_desc(ehi, "hotplug");
931 } else if (status & NV_ADMA_STAT_HOTUNPLUG) {
932 ata_ehi_hotplugged(ehi);
933 ata_ehi_push_desc(ehi, "hot unplug");
934 } else if (status & NV_ADMA_STAT_SERROR) {
935 /* let libata analyze SError and figure out the cause */
936 ata_ehi_push_desc(ehi, "SError");
937 } else
938 ata_ehi_push_desc(ehi, "unknown");
939 ata_port_freeze(ap);
940 continue;
941 }
942
943 if (status & (NV_ADMA_STAT_DONE |
944 NV_ADMA_STAT_CPBERR |
945 NV_ADMA_STAT_CMD_COMPLETE)) {
946 u32 check_commands = notifier_clears[i];
947 int pos, error = 0;
948
949 if (status & NV_ADMA_STAT_CPBERR) {
950 /* Check all active commands */
951 if (ata_tag_valid(ap->link.active_tag))
952 check_commands = 1 <<
953 ap->link.active_tag;
954 else
955 check_commands = ap->
956 link.sactive;
957 }
958
959 /** Check CPBs for completed commands */
960 while ((pos = ffs(check_commands)) && !error) {
961 pos--;
962 error = nv_adma_check_cpb(ap, pos,
963 notifier_error & (1 << pos));
964 check_commands &= ~(1 << pos);
965 }
966 }
967 }
968 }
969
970 if (notifier_clears[0] || notifier_clears[1]) {
971 /* Note: Both notifier clear registers must be written
972 if either is set, even if one is zero, according to NVIDIA. */
973 struct nv_adma_port_priv *pp = host->ports[0]->private_data;
974 writel(notifier_clears[0], pp->notifier_clear_block);
975 pp = host->ports[1]->private_data;
976 writel(notifier_clears[1], pp->notifier_clear_block);
977 }
978
979 spin_unlock(&host->lock);
980
981 return IRQ_RETVAL(handled);
982 }
983
984 static void nv_adma_freeze(struct ata_port *ap)
985 {
986 struct nv_adma_port_priv *pp = ap->private_data;
987 void __iomem *mmio = pp->ctl_block;
988 u16 tmp;
989
990 nv_ck804_freeze(ap);
991
992 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
993 return;
994
995 /* clear any outstanding CK804 notifications */
996 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
997 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
998
999 /* Disable interrupt */
1000 tmp = readw(mmio + NV_ADMA_CTL);
1001 writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1002 mmio + NV_ADMA_CTL);
1003 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1004 }
1005
1006 static void nv_adma_thaw(struct ata_port *ap)
1007 {
1008 struct nv_adma_port_priv *pp = ap->private_data;
1009 void __iomem *mmio = pp->ctl_block;
1010 u16 tmp;
1011
1012 nv_ck804_thaw(ap);
1013
1014 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1015 return;
1016
1017 /* Enable interrupt */
1018 tmp = readw(mmio + NV_ADMA_CTL);
1019 writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1020 mmio + NV_ADMA_CTL);
1021 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1022 }
1023
1024 static void nv_adma_irq_clear(struct ata_port *ap)
1025 {
1026 struct nv_adma_port_priv *pp = ap->private_data;
1027 void __iomem *mmio = pp->ctl_block;
1028 u32 notifier_clears[2];
1029
1030 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
1031 ata_sff_irq_clear(ap);
1032 return;
1033 }
1034
1035 /* clear any outstanding CK804 notifications */
1036 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1037 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1038
1039 /* clear ADMA status */
1040 writew(0xffff, mmio + NV_ADMA_STAT);
1041
1042 /* clear notifiers - note both ports need to be written with
1043 something even though we are only clearing on one */
1044 if (ap->port_no == 0) {
1045 notifier_clears[0] = 0xFFFFFFFF;
1046 notifier_clears[1] = 0;
1047 } else {
1048 notifier_clears[0] = 0;
1049 notifier_clears[1] = 0xFFFFFFFF;
1050 }
1051 pp = ap->host->ports[0]->private_data;
1052 writel(notifier_clears[0], pp->notifier_clear_block);
1053 pp = ap->host->ports[1]->private_data;
1054 writel(notifier_clears[1], pp->notifier_clear_block);
1055 }
1056
1057 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc)
1058 {
1059 struct nv_adma_port_priv *pp = qc->ap->private_data;
1060
1061 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
1062 ata_sff_post_internal_cmd(qc);
1063 }
1064
1065 static int nv_adma_port_start(struct ata_port *ap)
1066 {
1067 struct device *dev = ap->host->dev;
1068 struct nv_adma_port_priv *pp;
1069 int rc;
1070 void *mem;
1071 dma_addr_t mem_dma;
1072 void __iomem *mmio;
1073 struct pci_dev *pdev = to_pci_dev(dev);
1074 u16 tmp;
1075
1076 VPRINTK("ENTER\n");
1077
1078 /* Ensure DMA mask is set to 32-bit before allocating legacy PRD and
1079 pad buffers */
1080 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1081 if (rc)
1082 return rc;
1083 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1084 if (rc)
1085 return rc;
1086
1087 rc = ata_port_start(ap);
1088 if (rc)
1089 return rc;
1090
1091 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1092 if (!pp)
1093 return -ENOMEM;
1094
1095 mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT +
1096 ap->port_no * NV_ADMA_PORT_SIZE;
1097 pp->ctl_block = mmio;
1098 pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN;
1099 pp->notifier_clear_block = pp->gen_block +
1100 NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no);
1101
1102 /* Now that the legacy PRD and padding buffer are allocated we can
1103 safely raise the DMA mask to allocate the CPB/APRD table.
1104 These are allowed to fail since we store the value that ends up
1105 being used to set as the bounce limit in slave_config later if
1106 needed. */
1107 pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1108 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1109 pp->adma_dma_mask = *dev->dma_mask;
1110
1111 mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ,
1112 &mem_dma, GFP_KERNEL);
1113 if (!mem)
1114 return -ENOMEM;
1115 memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ);
1116
1117 /*
1118 * First item in chunk of DMA memory:
1119 * 128-byte command parameter block (CPB)
1120 * one for each command tag
1121 */
1122 pp->cpb = mem;
1123 pp->cpb_dma = mem_dma;
1124
1125 writel(mem_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW);
1126 writel((mem_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH);
1127
1128 mem += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1129 mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1130
1131 /*
1132 * Second item: block of ADMA_SGTBL_LEN s/g entries
1133 */
1134 pp->aprd = mem;
1135 pp->aprd_dma = mem_dma;
1136
1137 ap->private_data = pp;
1138
1139 /* clear any outstanding interrupt conditions */
1140 writew(0xffff, mmio + NV_ADMA_STAT);
1141
1142 /* initialize port variables */
1143 pp->flags = NV_ADMA_PORT_REGISTER_MODE;
1144
1145 /* clear CPB fetch count */
1146 writew(0, mmio + NV_ADMA_CPB_COUNT);
1147
1148 /* clear GO for register mode, enable interrupt */
1149 tmp = readw(mmio + NV_ADMA_CTL);
1150 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1151 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1152
1153 tmp = readw(mmio + NV_ADMA_CTL);
1154 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1155 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1156 udelay(1);
1157 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1158 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1159
1160 return 0;
1161 }
1162
1163 static void nv_adma_port_stop(struct ata_port *ap)
1164 {
1165 struct nv_adma_port_priv *pp = ap->private_data;
1166 void __iomem *mmio = pp->ctl_block;
1167
1168 VPRINTK("ENTER\n");
1169 writew(0, mmio + NV_ADMA_CTL);
1170 }
1171
1172 #ifdef CONFIG_PM
1173 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg)
1174 {
1175 struct nv_adma_port_priv *pp = ap->private_data;
1176 void __iomem *mmio = pp->ctl_block;
1177
1178 /* Go to register mode - clears GO */
1179 nv_adma_register_mode(ap);
1180
1181 /* clear CPB fetch count */
1182 writew(0, mmio + NV_ADMA_CPB_COUNT);
1183
1184 /* disable interrupt, shut down port */
1185 writew(0, mmio + NV_ADMA_CTL);
1186
1187 return 0;
1188 }
1189
1190 static int nv_adma_port_resume(struct ata_port *ap)
1191 {
1192 struct nv_adma_port_priv *pp = ap->private_data;
1193 void __iomem *mmio = pp->ctl_block;
1194 u16 tmp;
1195
1196 /* set CPB block location */
1197 writel(pp->cpb_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW);
1198 writel((pp->cpb_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH);
1199
1200 /* clear any outstanding interrupt conditions */
1201 writew(0xffff, mmio + NV_ADMA_STAT);
1202
1203 /* initialize port variables */
1204 pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
1205
1206 /* clear CPB fetch count */
1207 writew(0, mmio + NV_ADMA_CPB_COUNT);
1208
1209 /* clear GO for register mode, enable interrupt */
1210 tmp = readw(mmio + NV_ADMA_CTL);
1211 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1212 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1213
1214 tmp = readw(mmio + NV_ADMA_CTL);
1215 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1216 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1217 udelay(1);
1218 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1219 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1220
1221 return 0;
1222 }
1223 #endif
1224
1225 static void nv_adma_setup_port(struct ata_port *ap)
1226 {
1227 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1228 struct ata_ioports *ioport = &ap->ioaddr;
1229
1230 VPRINTK("ENTER\n");
1231
1232 mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE;
1233
1234 ioport->cmd_addr = mmio;
1235 ioport->data_addr = mmio + (ATA_REG_DATA * 4);
1236 ioport->error_addr =
1237 ioport->feature_addr = mmio + (ATA_REG_ERR * 4);
1238 ioport->nsect_addr = mmio + (ATA_REG_NSECT * 4);
1239 ioport->lbal_addr = mmio + (ATA_REG_LBAL * 4);
1240 ioport->lbam_addr = mmio + (ATA_REG_LBAM * 4);
1241 ioport->lbah_addr = mmio + (ATA_REG_LBAH * 4);
1242 ioport->device_addr = mmio + (ATA_REG_DEVICE * 4);
1243 ioport->status_addr =
1244 ioport->command_addr = mmio + (ATA_REG_STATUS * 4);
1245 ioport->altstatus_addr =
1246 ioport->ctl_addr = mmio + 0x20;
1247 }
1248
1249 static int nv_adma_host_init(struct ata_host *host)
1250 {
1251 struct pci_dev *pdev = to_pci_dev(host->dev);
1252 unsigned int i;
1253 u32 tmp32;
1254
1255 VPRINTK("ENTER\n");
1256
1257 /* enable ADMA on the ports */
1258 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
1259 tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN |
1260 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
1261 NV_MCP_SATA_CFG_20_PORT1_EN |
1262 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
1263
1264 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
1265
1266 for (i = 0; i < host->n_ports; i++)
1267 nv_adma_setup_port(host->ports[i]);
1268
1269 return 0;
1270 }
1271
1272 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc,
1273 struct scatterlist *sg,
1274 int idx,
1275 struct nv_adma_prd *aprd)
1276 {
1277 u8 flags = 0;
1278 if (qc->tf.flags & ATA_TFLAG_WRITE)
1279 flags |= NV_APRD_WRITE;
1280 if (idx == qc->n_elem - 1)
1281 flags |= NV_APRD_END;
1282 else if (idx != 4)
1283 flags |= NV_APRD_CONT;
1284
1285 aprd->addr = cpu_to_le64(((u64)sg_dma_address(sg)));
1286 aprd->len = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */
1287 aprd->flags = flags;
1288 aprd->packet_len = 0;
1289 }
1290
1291 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb)
1292 {
1293 struct nv_adma_port_priv *pp = qc->ap->private_data;
1294 struct nv_adma_prd *aprd;
1295 struct scatterlist *sg;
1296 unsigned int si;
1297
1298 VPRINTK("ENTER\n");
1299
1300 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1301 aprd = (si < 5) ? &cpb->aprd[si] :
1302 &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)];
1303 nv_adma_fill_aprd(qc, sg, si, aprd);
1304 }
1305 if (si > 5)
1306 cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag)));
1307 else
1308 cpb->next_aprd = cpu_to_le64(0);
1309 }
1310
1311 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc)
1312 {
1313 struct nv_adma_port_priv *pp = qc->ap->private_data;
1314
1315 /* ADMA engine can only be used for non-ATAPI DMA commands,
1316 or interrupt-driven no-data commands. */
1317 if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
1318 (qc->tf.flags & ATA_TFLAG_POLLING))
1319 return 1;
1320
1321 if ((qc->flags & ATA_QCFLAG_DMAMAP) ||
1322 (qc->tf.protocol == ATA_PROT_NODATA))
1323 return 0;
1324
1325 return 1;
1326 }
1327
1328 static void nv_adma_qc_prep(struct ata_queued_cmd *qc)
1329 {
1330 struct nv_adma_port_priv *pp = qc->ap->private_data;
1331 struct nv_adma_cpb *cpb = &pp->cpb[qc->tag];
1332 u8 ctl_flags = NV_CPB_CTL_CPB_VALID |
1333 NV_CPB_CTL_IEN;
1334
1335 if (nv_adma_use_reg_mode(qc)) {
1336 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1337 (qc->flags & ATA_QCFLAG_DMAMAP));
1338 nv_adma_register_mode(qc->ap);
1339 ata_sff_qc_prep(qc);
1340 return;
1341 }
1342
1343 cpb->resp_flags = NV_CPB_RESP_DONE;
1344 wmb();
1345 cpb->ctl_flags = 0;
1346 wmb();
1347
1348 cpb->len = 3;
1349 cpb->tag = qc->tag;
1350 cpb->next_cpb_idx = 0;
1351
1352 /* turn on NCQ flags for NCQ commands */
1353 if (qc->tf.protocol == ATA_PROT_NCQ)
1354 ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA;
1355
1356 VPRINTK("qc->flags = 0x%lx\n", qc->flags);
1357
1358 nv_adma_tf_to_cpb(&qc->tf, cpb->tf);
1359
1360 if (qc->flags & ATA_QCFLAG_DMAMAP) {
1361 nv_adma_fill_sg(qc, cpb);
1362 ctl_flags |= NV_CPB_CTL_APRD_VALID;
1363 } else
1364 memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5);
1365
1366 /* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID
1367 until we are finished filling in all of the contents */
1368 wmb();
1369 cpb->ctl_flags = ctl_flags;
1370 wmb();
1371 cpb->resp_flags = 0;
1372 }
1373
1374 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc)
1375 {
1376 struct nv_adma_port_priv *pp = qc->ap->private_data;
1377 void __iomem *mmio = pp->ctl_block;
1378 int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ);
1379
1380 VPRINTK("ENTER\n");
1381
1382 /* We can't handle result taskfile with NCQ commands, since
1383 retrieving the taskfile switches us out of ADMA mode and would abort
1384 existing commands. */
1385 if (unlikely(qc->tf.protocol == ATA_PROT_NCQ &&
1386 (qc->flags & ATA_QCFLAG_RESULT_TF))) {
1387 ata_dev_printk(qc->dev, KERN_ERR,
1388 "NCQ w/ RESULT_TF not allowed\n");
1389 return AC_ERR_SYSTEM;
1390 }
1391
1392 if (nv_adma_use_reg_mode(qc)) {
1393 /* use ATA register mode */
1394 VPRINTK("using ATA register mode: 0x%lx\n", qc->flags);
1395 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1396 (qc->flags & ATA_QCFLAG_DMAMAP));
1397 nv_adma_register_mode(qc->ap);
1398 return ata_sff_qc_issue(qc);
1399 } else
1400 nv_adma_mode(qc->ap);
1401
1402 /* write append register, command tag in lower 8 bits
1403 and (number of cpbs to append -1) in top 8 bits */
1404 wmb();
1405
1406 if (curr_ncq != pp->last_issue_ncq) {
1407 /* Seems to need some delay before switching between NCQ and
1408 non-NCQ commands, else we get command timeouts and such. */
1409 udelay(20);
1410 pp->last_issue_ncq = curr_ncq;
1411 }
1412
1413 writew(qc->tag, mmio + NV_ADMA_APPEND);
1414
1415 DPRINTK("Issued tag %u\n", qc->tag);
1416
1417 return 0;
1418 }
1419
1420 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance)
1421 {
1422 struct ata_host *host = dev_instance;
1423 unsigned int i;
1424 unsigned int handled = 0;
1425 unsigned long flags;
1426
1427 spin_lock_irqsave(&host->lock, flags);
1428
1429 for (i = 0; i < host->n_ports; i++) {
1430 struct ata_port *ap;
1431
1432 ap = host->ports[i];
1433 if (ap &&
1434 !(ap->flags & ATA_FLAG_DISABLED)) {
1435 struct ata_queued_cmd *qc;
1436
1437 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1438 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
1439 handled += ata_sff_host_intr(ap, qc);
1440 else
1441 // No request pending? Clear interrupt status
1442 // anyway, in case there's one pending.
1443 ap->ops->sff_check_status(ap);
1444 }
1445
1446 }
1447
1448 spin_unlock_irqrestore(&host->lock, flags);
1449
1450 return IRQ_RETVAL(handled);
1451 }
1452
1453 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat)
1454 {
1455 int i, handled = 0;
1456
1457 for (i = 0; i < host->n_ports; i++) {
1458 struct ata_port *ap = host->ports[i];
1459
1460 if (ap && !(ap->flags & ATA_FLAG_DISABLED))
1461 handled += nv_host_intr(ap, irq_stat);
1462
1463 irq_stat >>= NV_INT_PORT_SHIFT;
1464 }
1465
1466 return IRQ_RETVAL(handled);
1467 }
1468
1469 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance)
1470 {
1471 struct ata_host *host = dev_instance;
1472 u8 irq_stat;
1473 irqreturn_t ret;
1474
1475 spin_lock(&host->lock);
1476 irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS);
1477 ret = nv_do_interrupt(host, irq_stat);
1478 spin_unlock(&host->lock);
1479
1480 return ret;
1481 }
1482
1483 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance)
1484 {
1485 struct ata_host *host = dev_instance;
1486 u8 irq_stat;
1487 irqreturn_t ret;
1488
1489 spin_lock(&host->lock);
1490 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1491 ret = nv_do_interrupt(host, irq_stat);
1492 spin_unlock(&host->lock);
1493
1494 return ret;
1495 }
1496
1497 static int nv_scr_read(struct ata_port *ap, unsigned int sc_reg, u32 *val)
1498 {
1499 if (sc_reg > SCR_CONTROL)
1500 return -EINVAL;
1501
1502 *val = ioread32(ap->ioaddr.scr_addr + (sc_reg * 4));
1503 return 0;
1504 }
1505
1506 static int nv_scr_write(struct ata_port *ap, unsigned int sc_reg, u32 val)
1507 {
1508 if (sc_reg > SCR_CONTROL)
1509 return -EINVAL;
1510
1511 iowrite32(val, ap->ioaddr.scr_addr + (sc_reg * 4));
1512 return 0;
1513 }
1514
1515 static void nv_nf2_freeze(struct ata_port *ap)
1516 {
1517 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1518 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1519 u8 mask;
1520
1521 mask = ioread8(scr_addr + NV_INT_ENABLE);
1522 mask &= ~(NV_INT_ALL << shift);
1523 iowrite8(mask, scr_addr + NV_INT_ENABLE);
1524 }
1525
1526 static void nv_nf2_thaw(struct ata_port *ap)
1527 {
1528 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1529 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1530 u8 mask;
1531
1532 iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS);
1533
1534 mask = ioread8(scr_addr + NV_INT_ENABLE);
1535 mask |= (NV_INT_MASK << shift);
1536 iowrite8(mask, scr_addr + NV_INT_ENABLE);
1537 }
1538
1539 static void nv_ck804_freeze(struct ata_port *ap)
1540 {
1541 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1542 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1543 u8 mask;
1544
1545 mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1546 mask &= ~(NV_INT_ALL << shift);
1547 writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1548 }
1549
1550 static void nv_ck804_thaw(struct ata_port *ap)
1551 {
1552 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1553 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1554 u8 mask;
1555
1556 writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804);
1557
1558 mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1559 mask |= (NV_INT_MASK << shift);
1560 writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1561 }
1562
1563 static void nv_mcp55_freeze(struct ata_port *ap)
1564 {
1565 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1566 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1567 u32 mask;
1568
1569 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1570
1571 mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1572 mask &= ~(NV_INT_ALL_MCP55 << shift);
1573 writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1574 ata_sff_freeze(ap);
1575 }
1576
1577 static void nv_mcp55_thaw(struct ata_port *ap)
1578 {
1579 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1580 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1581 u32 mask;
1582
1583 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1584
1585 mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1586 mask |= (NV_INT_MASK_MCP55 << shift);
1587 writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1588 ata_sff_thaw(ap);
1589 }
1590
1591 static int nv_hardreset(struct ata_link *link, unsigned int *class,
1592 unsigned long deadline)
1593 {
1594 unsigned int dummy;
1595
1596 /* SATA hardreset fails to retrieve proper device signature on
1597 * some controllers. Don't classify on hardreset. For more
1598 * info, see http://bugzilla.kernel.org/show_bug.cgi?id=3352
1599 */
1600 return sata_sff_hardreset(link, &dummy, deadline);
1601 }
1602
1603 static void nv_adma_error_handler(struct ata_port *ap)
1604 {
1605 struct nv_adma_port_priv *pp = ap->private_data;
1606 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) {
1607 void __iomem *mmio = pp->ctl_block;
1608 int i;
1609 u16 tmp;
1610
1611 if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) {
1612 u32 notifier = readl(mmio + NV_ADMA_NOTIFIER);
1613 u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
1614 u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
1615 u32 status = readw(mmio + NV_ADMA_STAT);
1616 u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT);
1617 u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX);
1618
1619 ata_port_printk(ap, KERN_ERR,
1620 "EH in ADMA mode, notifier 0x%X "
1621 "notifier_error 0x%X gen_ctl 0x%X status 0x%X "
1622 "next cpb count 0x%X next cpb idx 0x%x\n",
1623 notifier, notifier_error, gen_ctl, status,
1624 cpb_count, next_cpb_idx);
1625
1626 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) {
1627 struct nv_adma_cpb *cpb = &pp->cpb[i];
1628 if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) ||
1629 ap->link.sactive & (1 << i))
1630 ata_port_printk(ap, KERN_ERR,
1631 "CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n",
1632 i, cpb->ctl_flags, cpb->resp_flags);
1633 }
1634 }
1635
1636 /* Push us back into port register mode for error handling. */
1637 nv_adma_register_mode(ap);
1638
1639 /* Mark all of the CPBs as invalid to prevent them from
1640 being executed */
1641 for (i = 0; i < NV_ADMA_MAX_CPBS; i++)
1642 pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID;
1643
1644 /* clear CPB fetch count */
1645 writew(0, mmio + NV_ADMA_CPB_COUNT);
1646
1647 /* Reset channel */
1648 tmp = readw(mmio + NV_ADMA_CTL);
1649 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1650 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1651 udelay(1);
1652 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1653 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1654 }
1655
1656 ata_sff_error_handler(ap);
1657 }
1658
1659 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc)
1660 {
1661 struct nv_swncq_port_priv *pp = ap->private_data;
1662 struct defer_queue *dq = &pp->defer_queue;
1663
1664 /* queue is full */
1665 WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE);
1666 dq->defer_bits |= (1 << qc->tag);
1667 dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag;
1668 }
1669
1670 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap)
1671 {
1672 struct nv_swncq_port_priv *pp = ap->private_data;
1673 struct defer_queue *dq = &pp->defer_queue;
1674 unsigned int tag;
1675
1676 if (dq->head == dq->tail) /* null queue */
1677 return NULL;
1678
1679 tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)];
1680 dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON;
1681 WARN_ON(!(dq->defer_bits & (1 << tag)));
1682 dq->defer_bits &= ~(1 << tag);
1683
1684 return ata_qc_from_tag(ap, tag);
1685 }
1686
1687 static void nv_swncq_fis_reinit(struct ata_port *ap)
1688 {
1689 struct nv_swncq_port_priv *pp = ap->private_data;
1690
1691 pp->dhfis_bits = 0;
1692 pp->dmafis_bits = 0;
1693 pp->sdbfis_bits = 0;
1694 pp->ncq_flags = 0;
1695 }
1696
1697 static void nv_swncq_pp_reinit(struct ata_port *ap)
1698 {
1699 struct nv_swncq_port_priv *pp = ap->private_data;
1700 struct defer_queue *dq = &pp->defer_queue;
1701
1702 dq->head = 0;
1703 dq->tail = 0;
1704 dq->defer_bits = 0;
1705 pp->qc_active = 0;
1706 pp->last_issue_tag = ATA_TAG_POISON;
1707 nv_swncq_fis_reinit(ap);
1708 }
1709
1710 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis)
1711 {
1712 struct nv_swncq_port_priv *pp = ap->private_data;
1713
1714 writew(fis, pp->irq_block);
1715 }
1716
1717 static void __ata_bmdma_stop(struct ata_port *ap)
1718 {
1719 struct ata_queued_cmd qc;
1720
1721 qc.ap = ap;
1722 ata_bmdma_stop(&qc);
1723 }
1724
1725 static void nv_swncq_ncq_stop(struct ata_port *ap)
1726 {
1727 struct nv_swncq_port_priv *pp = ap->private_data;
1728 unsigned int i;
1729 u32 sactive;
1730 u32 done_mask;
1731
1732 ata_port_printk(ap, KERN_ERR,
1733 "EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n",
1734 ap->qc_active, ap->link.sactive);
1735 ata_port_printk(ap, KERN_ERR,
1736 "SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n "
1737 "dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n",
1738 pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag,
1739 pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits);
1740
1741 ata_port_printk(ap, KERN_ERR, "ATA_REG 0x%X ERR_REG 0x%X\n",
1742 ap->ops->sff_check_status(ap),
1743 ioread8(ap->ioaddr.error_addr));
1744
1745 sactive = readl(pp->sactive_block);
1746 done_mask = pp->qc_active ^ sactive;
1747
1748 ata_port_printk(ap, KERN_ERR, "tag : dhfis dmafis sdbfis sacitve\n");
1749 for (i = 0; i < ATA_MAX_QUEUE; i++) {
1750 u8 err = 0;
1751 if (pp->qc_active & (1 << i))
1752 err = 0;
1753 else if (done_mask & (1 << i))
1754 err = 1;
1755 else
1756 continue;
1757
1758 ata_port_printk(ap, KERN_ERR,
1759 "tag 0x%x: %01x %01x %01x %01x %s\n", i,
1760 (pp->dhfis_bits >> i) & 0x1,
1761 (pp->dmafis_bits >> i) & 0x1,
1762 (pp->sdbfis_bits >> i) & 0x1,
1763 (sactive >> i) & 0x1,
1764 (err ? "error! tag doesn't exit" : " "));
1765 }
1766
1767 nv_swncq_pp_reinit(ap);
1768 ap->ops->sff_irq_clear(ap);
1769 __ata_bmdma_stop(ap);
1770 nv_swncq_irq_clear(ap, 0xffff);
1771 }
1772
1773 static void nv_swncq_error_handler(struct ata_port *ap)
1774 {
1775 struct ata_eh_context *ehc = &ap->link.eh_context;
1776
1777 if (ap->link.sactive) {
1778 nv_swncq_ncq_stop(ap);
1779 ehc->i.action |= ATA_EH_RESET;
1780 }
1781
1782 ata_sff_error_handler(ap);
1783 }
1784
1785 #ifdef CONFIG_PM
1786 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg)
1787 {
1788 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1789 u32 tmp;
1790
1791 /* clear irq */
1792 writel(~0, mmio + NV_INT_STATUS_MCP55);
1793
1794 /* disable irq */
1795 writel(0, mmio + NV_INT_ENABLE_MCP55);
1796
1797 /* disable swncq */
1798 tmp = readl(mmio + NV_CTL_MCP55);
1799 tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ);
1800 writel(tmp, mmio + NV_CTL_MCP55);
1801
1802 return 0;
1803 }
1804
1805 static int nv_swncq_port_resume(struct ata_port *ap)
1806 {
1807 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1808 u32 tmp;
1809
1810 /* clear irq */
1811 writel(~0, mmio + NV_INT_STATUS_MCP55);
1812
1813 /* enable irq */
1814 writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1815
1816 /* enable swncq */
1817 tmp = readl(mmio + NV_CTL_MCP55);
1818 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1819
1820 return 0;
1821 }
1822 #endif
1823
1824 static void nv_swncq_host_init(struct ata_host *host)
1825 {
1826 u32 tmp;
1827 void __iomem *mmio = host->iomap[NV_MMIO_BAR];
1828 struct pci_dev *pdev = to_pci_dev(host->dev);
1829 u8 regval;
1830
1831 /* disable ECO 398 */
1832 pci_read_config_byte(pdev, 0x7f, &regval);
1833 regval &= ~(1 << 7);
1834 pci_write_config_byte(pdev, 0x7f, regval);
1835
1836 /* enable swncq */
1837 tmp = readl(mmio + NV_CTL_MCP55);
1838 VPRINTK("HOST_CTL:0x%X\n", tmp);
1839 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1840
1841 /* enable irq intr */
1842 tmp = readl(mmio + NV_INT_ENABLE_MCP55);
1843 VPRINTK("HOST_ENABLE:0x%X\n", tmp);
1844 writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1845
1846 /* clear port irq */
1847 writel(~0x0, mmio + NV_INT_STATUS_MCP55);
1848 }
1849
1850 static int nv_swncq_slave_config(struct scsi_device *sdev)
1851 {
1852 struct ata_port *ap = ata_shost_to_port(sdev->host);
1853 struct pci_dev *pdev = to_pci_dev(ap->host->dev);
1854 struct ata_device *dev;
1855 int rc;
1856 u8 rev;
1857 u8 check_maxtor = 0;
1858 unsigned char model_num[ATA_ID_PROD_LEN + 1];
1859
1860 rc = ata_scsi_slave_config(sdev);
1861 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
1862 /* Not a proper libata device, ignore */
1863 return rc;
1864
1865 dev = &ap->link.device[sdev->id];
1866 if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI)
1867 return rc;
1868
1869 /* if MCP51 and Maxtor, then disable ncq */
1870 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA ||
1871 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2)
1872 check_maxtor = 1;
1873
1874 /* if MCP55 and rev <= a2 and Maxtor, then disable ncq */
1875 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA ||
1876 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) {
1877 pci_read_config_byte(pdev, 0x8, &rev);
1878 if (rev <= 0xa2)
1879 check_maxtor = 1;
1880 }
1881
1882 if (!check_maxtor)
1883 return rc;
1884
1885 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
1886
1887 if (strncmp(model_num, "Maxtor", 6) == 0) {
1888 ata_scsi_change_queue_depth(sdev, 1);
1889 ata_dev_printk(dev, KERN_NOTICE,
1890 "Disabling SWNCQ mode (depth %x)\n", sdev->queue_depth);
1891 }
1892
1893 return rc;
1894 }
1895
1896 static int nv_swncq_port_start(struct ata_port *ap)
1897 {
1898 struct device *dev = ap->host->dev;
1899 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1900 struct nv_swncq_port_priv *pp;
1901 int rc;
1902
1903 rc = ata_port_start(ap);
1904 if (rc)
1905 return rc;
1906
1907 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1908 if (!pp)
1909 return -ENOMEM;
1910
1911 pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE,
1912 &pp->prd_dma, GFP_KERNEL);
1913 if (!pp->prd)
1914 return -ENOMEM;
1915 memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE);
1916
1917 ap->private_data = pp;
1918 pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE;
1919 pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2;
1920 pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2;
1921
1922 return 0;
1923 }
1924
1925 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc)
1926 {
1927 if (qc->tf.protocol != ATA_PROT_NCQ) {
1928 ata_sff_qc_prep(qc);
1929 return;
1930 }
1931
1932 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1933 return;
1934
1935 nv_swncq_fill_sg(qc);
1936 }
1937
1938 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc)
1939 {
1940 struct ata_port *ap = qc->ap;
1941 struct scatterlist *sg;
1942 struct nv_swncq_port_priv *pp = ap->private_data;
1943 struct ata_prd *prd;
1944 unsigned int si, idx;
1945
1946 prd = pp->prd + ATA_MAX_PRD * qc->tag;
1947
1948 idx = 0;
1949 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1950 u32 addr, offset;
1951 u32 sg_len, len;
1952
1953 addr = (u32)sg_dma_address(sg);
1954 sg_len = sg_dma_len(sg);
1955
1956 while (sg_len) {
1957 offset = addr & 0xffff;
1958 len = sg_len;
1959 if ((offset + sg_len) > 0x10000)
1960 len = 0x10000 - offset;
1961
1962 prd[idx].addr = cpu_to_le32(addr);
1963 prd[idx].flags_len = cpu_to_le32(len & 0xffff);
1964
1965 idx++;
1966 sg_len -= len;
1967 addr += len;
1968 }
1969 }
1970
1971 prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
1972 }
1973
1974 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap,
1975 struct ata_queued_cmd *qc)
1976 {
1977 struct nv_swncq_port_priv *pp = ap->private_data;
1978
1979 if (qc == NULL)
1980 return 0;
1981
1982 DPRINTK("Enter\n");
1983
1984 writel((1 << qc->tag), pp->sactive_block);
1985 pp->last_issue_tag = qc->tag;
1986 pp->dhfis_bits &= ~(1 << qc->tag);
1987 pp->dmafis_bits &= ~(1 << qc->tag);
1988 pp->qc_active |= (0x1 << qc->tag);
1989
1990 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1991 ap->ops->sff_exec_command(ap, &qc->tf);
1992
1993 DPRINTK("Issued tag %u\n", qc->tag);
1994
1995 return 0;
1996 }
1997
1998 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc)
1999 {
2000 struct ata_port *ap = qc->ap;
2001 struct nv_swncq_port_priv *pp = ap->private_data;
2002
2003 if (qc->tf.protocol != ATA_PROT_NCQ)
2004 return ata_sff_qc_issue(qc);
2005
2006 DPRINTK("Enter\n");
2007
2008 if (!pp->qc_active)
2009 nv_swncq_issue_atacmd(ap, qc);
2010 else
2011 nv_swncq_qc_to_dq(ap, qc); /* add qc to defer queue */
2012
2013 return 0;
2014 }
2015
2016 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis)
2017 {
2018 u32 serror;
2019 struct ata_eh_info *ehi = &ap->link.eh_info;
2020
2021 ata_ehi_clear_desc(ehi);
2022
2023 /* AHCI needs SError cleared; otherwise, it might lock up */
2024 sata_scr_read(&ap->link, SCR_ERROR, &serror);
2025 sata_scr_write(&ap->link, SCR_ERROR, serror);
2026
2027 /* analyze @irq_stat */
2028 if (fis & NV_SWNCQ_IRQ_ADDED)
2029 ata_ehi_push_desc(ehi, "hot plug");
2030 else if (fis & NV_SWNCQ_IRQ_REMOVED)
2031 ata_ehi_push_desc(ehi, "hot unplug");
2032
2033 ata_ehi_hotplugged(ehi);
2034
2035 /* okay, let's hand over to EH */
2036 ehi->serror |= serror;
2037
2038 ata_port_freeze(ap);
2039 }
2040
2041 static int nv_swncq_sdbfis(struct ata_port *ap)
2042 {
2043 struct ata_queued_cmd *qc;
2044 struct nv_swncq_port_priv *pp = ap->private_data;
2045 struct ata_eh_info *ehi = &ap->link.eh_info;
2046 u32 sactive;
2047 int nr_done = 0;
2048 u32 done_mask;
2049 int i;
2050 u8 host_stat;
2051 u8 lack_dhfis = 0;
2052
2053 host_stat = ap->ops->bmdma_status(ap);
2054 if (unlikely(host_stat & ATA_DMA_ERR)) {
2055 /* error when transfering data to/from memory */
2056 ata_ehi_clear_desc(ehi);
2057 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2058 ehi->err_mask |= AC_ERR_HOST_BUS;
2059 ehi->action |= ATA_EH_RESET;
2060 return -EINVAL;
2061 }
2062
2063 ap->ops->sff_irq_clear(ap);
2064 __ata_bmdma_stop(ap);
2065
2066 sactive = readl(pp->sactive_block);
2067 done_mask = pp->qc_active ^ sactive;
2068
2069 if (unlikely(done_mask & sactive)) {
2070 ata_ehi_clear_desc(ehi);
2071 ata_ehi_push_desc(ehi, "illegal SWNCQ:qc_active transition"
2072 "(%08x->%08x)", pp->qc_active, sactive);
2073 ehi->err_mask |= AC_ERR_HSM;
2074 ehi->action |= ATA_EH_RESET;
2075 return -EINVAL;
2076 }
2077 for (i = 0; i < ATA_MAX_QUEUE; i++) {
2078 if (!(done_mask & (1 << i)))
2079 continue;
2080
2081 qc = ata_qc_from_tag(ap, i);
2082 if (qc) {
2083 ata_qc_complete(qc);
2084 pp->qc_active &= ~(1 << i);
2085 pp->dhfis_bits &= ~(1 << i);
2086 pp->dmafis_bits &= ~(1 << i);
2087 pp->sdbfis_bits |= (1 << i);
2088 nr_done++;
2089 }
2090 }
2091
2092 if (!ap->qc_active) {
2093 DPRINTK("over\n");
2094 nv_swncq_pp_reinit(ap);
2095 return nr_done;
2096 }
2097
2098 if (pp->qc_active & pp->dhfis_bits)
2099 return nr_done;
2100
2101 if ((pp->ncq_flags & ncq_saw_backout) ||
2102 (pp->qc_active ^ pp->dhfis_bits))
2103 /* if the controller cann't get a device to host register FIS,
2104 * The driver needs to reissue the new command.
2105 */
2106 lack_dhfis = 1;
2107
2108 DPRINTK("id 0x%x QC: qc_active 0x%x,"
2109 "SWNCQ:qc_active 0x%X defer_bits %X "
2110 "dhfis 0x%X dmafis 0x%X last_issue_tag %x\n",
2111 ap->print_id, ap->qc_active, pp->qc_active,
2112 pp->defer_queue.defer_bits, pp->dhfis_bits,
2113 pp->dmafis_bits, pp->last_issue_tag);
2114
2115 nv_swncq_fis_reinit(ap);
2116
2117 if (lack_dhfis) {
2118 qc = ata_qc_from_tag(ap, pp->last_issue_tag);
2119 nv_swncq_issue_atacmd(ap, qc);
2120 return nr_done;
2121 }
2122
2123 if (pp->defer_queue.defer_bits) {
2124 /* send deferral queue command */
2125 qc = nv_swncq_qc_from_dq(ap);
2126 WARN_ON(qc == NULL);
2127 nv_swncq_issue_atacmd(ap, qc);
2128 }
2129
2130 return nr_done;
2131 }
2132
2133 static inline u32 nv_swncq_tag(struct ata_port *ap)
2134 {
2135 struct nv_swncq_port_priv *pp = ap->private_data;
2136 u32 tag;
2137
2138 tag = readb(pp->tag_block) >> 2;
2139 return (tag & 0x1f);
2140 }
2141
2142 static int nv_swncq_dmafis(struct ata_port *ap)
2143 {
2144 struct ata_queued_cmd *qc;
2145 unsigned int rw;
2146 u8 dmactl;
2147 u32 tag;
2148 struct nv_swncq_port_priv *pp = ap->private_data;
2149
2150 __ata_bmdma_stop(ap);
2151 tag = nv_swncq_tag(ap);
2152
2153 DPRINTK("dma setup tag 0x%x\n", tag);
2154 qc = ata_qc_from_tag(ap, tag);
2155
2156 if (unlikely(!qc))
2157 return 0;
2158
2159 rw = qc->tf.flags & ATA_TFLAG_WRITE;
2160
2161 /* load PRD table addr. */
2162 iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag,
2163 ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2164
2165 /* specify data direction, triple-check start bit is clear */
2166 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2167 dmactl &= ~ATA_DMA_WR;
2168 if (!rw)
2169 dmactl |= ATA_DMA_WR;
2170
2171 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2172
2173 return 1;
2174 }
2175
2176 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
2177 {
2178 struct nv_swncq_port_priv *pp = ap->private_data;
2179 struct ata_queued_cmd *qc;
2180 struct ata_eh_info *ehi = &ap->link.eh_info;
2181 u32 serror;
2182 u8 ata_stat;
2183 int rc = 0;
2184
2185 ata_stat = ap->ops->sff_check_status(ap);
2186 nv_swncq_irq_clear(ap, fis);
2187 if (!fis)
2188 return;
2189
2190 if (ap->pflags & ATA_PFLAG_FROZEN)
2191 return;
2192
2193 if (fis & NV_SWNCQ_IRQ_HOTPLUG) {
2194 nv_swncq_hotplug(ap, fis);
2195 return;
2196 }
2197
2198 if (!pp->qc_active)
2199 return;
2200
2201 if (ap->ops->scr_read(ap, SCR_ERROR, &serror))
2202 return;
2203 ap->ops->scr_write(ap, SCR_ERROR, serror);
2204
2205 if (ata_stat & ATA_ERR) {
2206 ata_ehi_clear_desc(ehi);
2207 ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis);
2208 ehi->err_mask |= AC_ERR_DEV;
2209 ehi->serror |= serror;
2210 ehi->action |= ATA_EH_RESET;
2211 ata_port_freeze(ap);
2212 return;
2213 }
2214
2215 if (fis & NV_SWNCQ_IRQ_BACKOUT) {
2216 /* If the IRQ is backout, driver must issue
2217 * the new command again some time later.
2218 */
2219 pp->ncq_flags |= ncq_saw_backout;
2220 }
2221
2222 if (fis & NV_SWNCQ_IRQ_SDBFIS) {
2223 pp->ncq_flags |= ncq_saw_sdb;
2224 DPRINTK("id 0x%x SWNCQ: qc_active 0x%X "
2225 "dhfis 0x%X dmafis 0x%X sactive 0x%X\n",
2226 ap->print_id, pp->qc_active, pp->dhfis_bits,
2227 pp->dmafis_bits, readl(pp->sactive_block));
2228 rc = nv_swncq_sdbfis(ap);
2229 if (rc < 0)
2230 goto irq_error;
2231 }
2232
2233 if (fis & NV_SWNCQ_IRQ_DHREGFIS) {
2234 /* The interrupt indicates the new command
2235 * was transmitted correctly to the drive.
2236 */
2237 pp->dhfis_bits |= (0x1 << pp->last_issue_tag);
2238 pp->ncq_flags |= ncq_saw_d2h;
2239 if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) {
2240 ata_ehi_push_desc(ehi, "illegal fis transaction");
2241 ehi->err_mask |= AC_ERR_HSM;
2242 ehi->action |= ATA_EH_RESET;
2243 goto irq_error;
2244 }
2245
2246 if (!(fis & NV_SWNCQ_IRQ_DMASETUP) &&
2247 !(pp->ncq_flags & ncq_saw_dmas)) {
2248 ata_stat = ap->ops->sff_check_status(ap);
2249 if (ata_stat & ATA_BUSY)
2250 goto irq_exit;
2251
2252 if (pp->defer_queue.defer_bits) {
2253 DPRINTK("send next command\n");
2254 qc = nv_swncq_qc_from_dq(ap);
2255 nv_swncq_issue_atacmd(ap, qc);
2256 }
2257 }
2258 }
2259
2260 if (fis & NV_SWNCQ_IRQ_DMASETUP) {
2261 /* program the dma controller with appropriate PRD buffers
2262 * and start the DMA transfer for requested command.
2263 */
2264 pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap));
2265 pp->ncq_flags |= ncq_saw_dmas;
2266 rc = nv_swncq_dmafis(ap);
2267 }
2268
2269 irq_exit:
2270 return;
2271 irq_error:
2272 ata_ehi_push_desc(ehi, "fis:0x%x", fis);
2273 ata_port_freeze(ap);
2274 return;
2275 }
2276
2277 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance)
2278 {
2279 struct ata_host *host = dev_instance;
2280 unsigned int i;
2281 unsigned int handled = 0;
2282 unsigned long flags;
2283 u32 irq_stat;
2284
2285 spin_lock_irqsave(&host->lock, flags);
2286
2287 irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55);
2288
2289 for (i = 0; i < host->n_ports; i++) {
2290 struct ata_port *ap = host->ports[i];
2291
2292 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) {
2293 if (ap->link.sactive) {
2294 nv_swncq_host_interrupt(ap, (u16)irq_stat);
2295 handled = 1;
2296 } else {
2297 if (irq_stat) /* reserve Hotplug */
2298 nv_swncq_irq_clear(ap, 0xfff0);
2299
2300 handled += nv_host_intr(ap, (u8)irq_stat);
2301 }
2302 }
2303 irq_stat >>= NV_INT_PORT_SHIFT_MCP55;
2304 }
2305
2306 spin_unlock_irqrestore(&host->lock, flags);
2307
2308 return IRQ_RETVAL(handled);
2309 }
2310
2311 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2312 {
2313 static int printed_version;
2314 const struct ata_port_info *ppi[] = { NULL, NULL };
2315 struct nv_pi_priv *ipriv;
2316 struct ata_host *host;
2317 struct nv_host_priv *hpriv;
2318 int rc;
2319 u32 bar;
2320 void __iomem *base;
2321 unsigned long type = ent->driver_data;
2322
2323 // Make sure this is a SATA controller by counting the number of bars
2324 // (NVIDIA SATA controllers will always have six bars). Otherwise,
2325 // it's an IDE controller and we ignore it.
2326 for (bar = 0; bar < 6; bar++)
2327 if (pci_resource_start(pdev, bar) == 0)
2328 return -ENODEV;
2329
2330 if (!printed_version++)
2331 dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
2332
2333 rc = pcim_enable_device(pdev);
2334 if (rc)
2335 return rc;
2336
2337 /* determine type and allocate host */
2338 if (type == CK804 && adma_enabled) {
2339 dev_printk(KERN_NOTICE, &pdev->dev, "Using ADMA mode\n");
2340 type = ADMA;
2341 }
2342
2343 if (type == SWNCQ) {
2344 if (swncq_enabled)
2345 dev_printk(KERN_NOTICE, &pdev->dev,
2346 "Using SWNCQ mode\n");
2347 else
2348 type = GENERIC;
2349 }
2350
2351 ppi[0] = &nv_port_info[type];
2352 ipriv = ppi[0]->private_data;
2353 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2354 if (rc)
2355 return rc;
2356
2357 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2358 if (!hpriv)
2359 return -ENOMEM;
2360 hpriv->type = type;
2361 host->private_data = hpriv;
2362
2363 /* request and iomap NV_MMIO_BAR */
2364 rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME);
2365 if (rc)
2366 return rc;
2367
2368 /* configure SCR access */
2369 base = host->iomap[NV_MMIO_BAR];
2370 host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET;
2371 host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET;
2372
2373 /* enable SATA space for CK804 */
2374 if (type >= CK804) {
2375 u8 regval;
2376
2377 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2378 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2379 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2380 }
2381
2382 /* init ADMA */
2383 if (type == ADMA) {
2384 rc = nv_adma_host_init(host);
2385 if (rc)
2386 return rc;
2387 } else if (type == SWNCQ)
2388 nv_swncq_host_init(host);
2389
2390 pci_set_master(pdev);
2391 return ata_host_activate(host, pdev->irq, ipriv->irq_handler,
2392 IRQF_SHARED, ipriv->sht);
2393 }
2394
2395 #ifdef CONFIG_PM
2396 static int nv_pci_device_resume(struct pci_dev *pdev)
2397 {
2398 struct ata_host *host = dev_get_drvdata(&pdev->dev);
2399 struct nv_host_priv *hpriv = host->private_data;
2400 int rc;
2401
2402 rc = ata_pci_device_do_resume(pdev);
2403 if (rc)
2404 return rc;
2405
2406 if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) {
2407 if (hpriv->type >= CK804) {
2408 u8 regval;
2409
2410 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2411 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2412 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2413 }
2414 if (hpriv->type == ADMA) {
2415 u32 tmp32;
2416 struct nv_adma_port_priv *pp;
2417 /* enable/disable ADMA on the ports appropriately */
2418 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2419
2420 pp = host->ports[0]->private_data;
2421 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2422 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2423 NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2424 else
2425 tmp32 |= (NV_MCP_SATA_CFG_20_PORT0_EN |
2426 NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2427 pp = host->ports[1]->private_data;
2428 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2429 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN |
2430 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2431 else
2432 tmp32 |= (NV_MCP_SATA_CFG_20_PORT1_EN |
2433 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2434
2435 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2436 }
2437 }
2438
2439 ata_host_resume(host);
2440
2441 return 0;
2442 }
2443 #endif
2444
2445 static void nv_ck804_host_stop(struct ata_host *host)
2446 {
2447 struct pci_dev *pdev = to_pci_dev(host->dev);
2448 u8 regval;
2449
2450 /* disable SATA space for CK804 */
2451 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2452 regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2453 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2454 }
2455
2456 static void nv_adma_host_stop(struct ata_host *host)
2457 {
2458 struct pci_dev *pdev = to_pci_dev(host->dev);
2459 u32 tmp32;
2460
2461 /* disable ADMA on the ports */
2462 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2463 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2464 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
2465 NV_MCP_SATA_CFG_20_PORT1_EN |
2466 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2467
2468 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2469
2470 nv_ck804_host_stop(host);
2471 }
2472
2473 static int __init nv_init(void)
2474 {
2475 return pci_register_driver(&nv_pci_driver);
2476 }
2477
2478 static void __exit nv_exit(void)
2479 {
2480 pci_unregister_driver(&nv_pci_driver);
2481 }
2482
2483 module_init(nv_init);
2484 module_exit(nv_exit);
2485 module_param_named(adma, adma_enabled, bool, 0444);
2486 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: true)");
2487 module_param_named(swncq, swncq_enabled, bool, 0444);
2488 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)");
2489
This page took 0.110889 seconds and 5 git commands to generate.