libata-sff: ata_sff_irq_clear() is BMDMA specific
[deliverable/linux.git] / drivers / ata / sata_nv.c
1 /*
2 * sata_nv.c - NVIDIA nForce SATA
3 *
4 * Copyright 2004 NVIDIA Corp. All rights reserved.
5 * Copyright 2004 Andrew Chew
6 *
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; see the file COPYING. If not, write to
20 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 *
23 * libata documentation is available via 'make {ps|pdf}docs',
24 * as Documentation/DocBook/libata.*
25 *
26 * No hardware documentation available outside of NVIDIA.
27 * This driver programs the NVIDIA SATA controller in a similar
28 * fashion as with other PCI IDE BMDMA controllers, with a few
29 * NV-specific details such as register offsets, SATA phy location,
30 * hotplug info, etc.
31 *
32 * CK804/MCP04 controllers support an alternate programming interface
33 * similar to the ADMA specification (with some modifications).
34 * This allows the use of NCQ. Non-DMA-mapped ATA commands are still
35 * sent through the legacy interface.
36 *
37 */
38
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/gfp.h>
42 #include <linux/pci.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/interrupt.h>
47 #include <linux/device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_device.h>
50 #include <linux/libata.h>
51
52 #define DRV_NAME "sata_nv"
53 #define DRV_VERSION "3.5"
54
55 #define NV_ADMA_DMA_BOUNDARY 0xffffffffUL
56
57 enum {
58 NV_MMIO_BAR = 5,
59
60 NV_PORTS = 2,
61 NV_PIO_MASK = ATA_PIO4,
62 NV_MWDMA_MASK = ATA_MWDMA2,
63 NV_UDMA_MASK = ATA_UDMA6,
64 NV_PORT0_SCR_REG_OFFSET = 0x00,
65 NV_PORT1_SCR_REG_OFFSET = 0x40,
66
67 /* INT_STATUS/ENABLE */
68 NV_INT_STATUS = 0x10,
69 NV_INT_ENABLE = 0x11,
70 NV_INT_STATUS_CK804 = 0x440,
71 NV_INT_ENABLE_CK804 = 0x441,
72
73 /* INT_STATUS/ENABLE bits */
74 NV_INT_DEV = 0x01,
75 NV_INT_PM = 0x02,
76 NV_INT_ADDED = 0x04,
77 NV_INT_REMOVED = 0x08,
78
79 NV_INT_PORT_SHIFT = 4, /* each port occupies 4 bits */
80
81 NV_INT_ALL = 0x0f,
82 NV_INT_MASK = NV_INT_DEV |
83 NV_INT_ADDED | NV_INT_REMOVED,
84
85 /* INT_CONFIG */
86 NV_INT_CONFIG = 0x12,
87 NV_INT_CONFIG_METHD = 0x01, // 0 = INT, 1 = SMI
88
89 // For PCI config register 20
90 NV_MCP_SATA_CFG_20 = 0x50,
91 NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04,
92 NV_MCP_SATA_CFG_20_PORT0_EN = (1 << 17),
93 NV_MCP_SATA_CFG_20_PORT1_EN = (1 << 16),
94 NV_MCP_SATA_CFG_20_PORT0_PWB_EN = (1 << 14),
95 NV_MCP_SATA_CFG_20_PORT1_PWB_EN = (1 << 12),
96
97 NV_ADMA_MAX_CPBS = 32,
98 NV_ADMA_CPB_SZ = 128,
99 NV_ADMA_APRD_SZ = 16,
100 NV_ADMA_SGTBL_LEN = (1024 - NV_ADMA_CPB_SZ) /
101 NV_ADMA_APRD_SZ,
102 NV_ADMA_SGTBL_TOTAL_LEN = NV_ADMA_SGTBL_LEN + 5,
103 NV_ADMA_SGTBL_SZ = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ,
104 NV_ADMA_PORT_PRIV_DMA_SZ = NV_ADMA_MAX_CPBS *
105 (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ),
106
107 /* BAR5 offset to ADMA general registers */
108 NV_ADMA_GEN = 0x400,
109 NV_ADMA_GEN_CTL = 0x00,
110 NV_ADMA_NOTIFIER_CLEAR = 0x30,
111
112 /* BAR5 offset to ADMA ports */
113 NV_ADMA_PORT = 0x480,
114
115 /* size of ADMA port register space */
116 NV_ADMA_PORT_SIZE = 0x100,
117
118 /* ADMA port registers */
119 NV_ADMA_CTL = 0x40,
120 NV_ADMA_CPB_COUNT = 0x42,
121 NV_ADMA_NEXT_CPB_IDX = 0x43,
122 NV_ADMA_STAT = 0x44,
123 NV_ADMA_CPB_BASE_LOW = 0x48,
124 NV_ADMA_CPB_BASE_HIGH = 0x4C,
125 NV_ADMA_APPEND = 0x50,
126 NV_ADMA_NOTIFIER = 0x68,
127 NV_ADMA_NOTIFIER_ERROR = 0x6C,
128
129 /* NV_ADMA_CTL register bits */
130 NV_ADMA_CTL_HOTPLUG_IEN = (1 << 0),
131 NV_ADMA_CTL_CHANNEL_RESET = (1 << 5),
132 NV_ADMA_CTL_GO = (1 << 7),
133 NV_ADMA_CTL_AIEN = (1 << 8),
134 NV_ADMA_CTL_READ_NON_COHERENT = (1 << 11),
135 NV_ADMA_CTL_WRITE_NON_COHERENT = (1 << 12),
136
137 /* CPB response flag bits */
138 NV_CPB_RESP_DONE = (1 << 0),
139 NV_CPB_RESP_ATA_ERR = (1 << 3),
140 NV_CPB_RESP_CMD_ERR = (1 << 4),
141 NV_CPB_RESP_CPB_ERR = (1 << 7),
142
143 /* CPB control flag bits */
144 NV_CPB_CTL_CPB_VALID = (1 << 0),
145 NV_CPB_CTL_QUEUE = (1 << 1),
146 NV_CPB_CTL_APRD_VALID = (1 << 2),
147 NV_CPB_CTL_IEN = (1 << 3),
148 NV_CPB_CTL_FPDMA = (1 << 4),
149
150 /* APRD flags */
151 NV_APRD_WRITE = (1 << 1),
152 NV_APRD_END = (1 << 2),
153 NV_APRD_CONT = (1 << 3),
154
155 /* NV_ADMA_STAT flags */
156 NV_ADMA_STAT_TIMEOUT = (1 << 0),
157 NV_ADMA_STAT_HOTUNPLUG = (1 << 1),
158 NV_ADMA_STAT_HOTPLUG = (1 << 2),
159 NV_ADMA_STAT_CPBERR = (1 << 4),
160 NV_ADMA_STAT_SERROR = (1 << 5),
161 NV_ADMA_STAT_CMD_COMPLETE = (1 << 6),
162 NV_ADMA_STAT_IDLE = (1 << 8),
163 NV_ADMA_STAT_LEGACY = (1 << 9),
164 NV_ADMA_STAT_STOPPED = (1 << 10),
165 NV_ADMA_STAT_DONE = (1 << 12),
166 NV_ADMA_STAT_ERR = NV_ADMA_STAT_CPBERR |
167 NV_ADMA_STAT_TIMEOUT,
168
169 /* port flags */
170 NV_ADMA_PORT_REGISTER_MODE = (1 << 0),
171 NV_ADMA_ATAPI_SETUP_COMPLETE = (1 << 1),
172
173 /* MCP55 reg offset */
174 NV_CTL_MCP55 = 0x400,
175 NV_INT_STATUS_MCP55 = 0x440,
176 NV_INT_ENABLE_MCP55 = 0x444,
177 NV_NCQ_REG_MCP55 = 0x448,
178
179 /* MCP55 */
180 NV_INT_ALL_MCP55 = 0xffff,
181 NV_INT_PORT_SHIFT_MCP55 = 16, /* each port occupies 16 bits */
182 NV_INT_MASK_MCP55 = NV_INT_ALL_MCP55 & 0xfffd,
183
184 /* SWNCQ ENABLE BITS*/
185 NV_CTL_PRI_SWNCQ = 0x02,
186 NV_CTL_SEC_SWNCQ = 0x04,
187
188 /* SW NCQ status bits*/
189 NV_SWNCQ_IRQ_DEV = (1 << 0),
190 NV_SWNCQ_IRQ_PM = (1 << 1),
191 NV_SWNCQ_IRQ_ADDED = (1 << 2),
192 NV_SWNCQ_IRQ_REMOVED = (1 << 3),
193
194 NV_SWNCQ_IRQ_BACKOUT = (1 << 4),
195 NV_SWNCQ_IRQ_SDBFIS = (1 << 5),
196 NV_SWNCQ_IRQ_DHREGFIS = (1 << 6),
197 NV_SWNCQ_IRQ_DMASETUP = (1 << 7),
198
199 NV_SWNCQ_IRQ_HOTPLUG = NV_SWNCQ_IRQ_ADDED |
200 NV_SWNCQ_IRQ_REMOVED,
201
202 };
203
204 /* ADMA Physical Region Descriptor - one SG segment */
205 struct nv_adma_prd {
206 __le64 addr;
207 __le32 len;
208 u8 flags;
209 u8 packet_len;
210 __le16 reserved;
211 };
212
213 enum nv_adma_regbits {
214 CMDEND = (1 << 15), /* end of command list */
215 WNB = (1 << 14), /* wait-not-BSY */
216 IGN = (1 << 13), /* ignore this entry */
217 CS1n = (1 << (4 + 8)), /* std. PATA signals follow... */
218 DA2 = (1 << (2 + 8)),
219 DA1 = (1 << (1 + 8)),
220 DA0 = (1 << (0 + 8)),
221 };
222
223 /* ADMA Command Parameter Block
224 The first 5 SG segments are stored inside the Command Parameter Block itself.
225 If there are more than 5 segments the remainder are stored in a separate
226 memory area indicated by next_aprd. */
227 struct nv_adma_cpb {
228 u8 resp_flags; /* 0 */
229 u8 reserved1; /* 1 */
230 u8 ctl_flags; /* 2 */
231 /* len is length of taskfile in 64 bit words */
232 u8 len; /* 3 */
233 u8 tag; /* 4 */
234 u8 next_cpb_idx; /* 5 */
235 __le16 reserved2; /* 6-7 */
236 __le16 tf[12]; /* 8-31 */
237 struct nv_adma_prd aprd[5]; /* 32-111 */
238 __le64 next_aprd; /* 112-119 */
239 __le64 reserved3; /* 120-127 */
240 };
241
242
243 struct nv_adma_port_priv {
244 struct nv_adma_cpb *cpb;
245 dma_addr_t cpb_dma;
246 struct nv_adma_prd *aprd;
247 dma_addr_t aprd_dma;
248 void __iomem *ctl_block;
249 void __iomem *gen_block;
250 void __iomem *notifier_clear_block;
251 u64 adma_dma_mask;
252 u8 flags;
253 int last_issue_ncq;
254 };
255
256 struct nv_host_priv {
257 unsigned long type;
258 };
259
260 struct defer_queue {
261 u32 defer_bits;
262 unsigned int head;
263 unsigned int tail;
264 unsigned int tag[ATA_MAX_QUEUE];
265 };
266
267 enum ncq_saw_flag_list {
268 ncq_saw_d2h = (1U << 0),
269 ncq_saw_dmas = (1U << 1),
270 ncq_saw_sdb = (1U << 2),
271 ncq_saw_backout = (1U << 3),
272 };
273
274 struct nv_swncq_port_priv {
275 struct ata_bmdma_prd *prd; /* our SG list */
276 dma_addr_t prd_dma; /* and its DMA mapping */
277 void __iomem *sactive_block;
278 void __iomem *irq_block;
279 void __iomem *tag_block;
280 u32 qc_active;
281
282 unsigned int last_issue_tag;
283
284 /* fifo circular queue to store deferral command */
285 struct defer_queue defer_queue;
286
287 /* for NCQ interrupt analysis */
288 u32 dhfis_bits;
289 u32 dmafis_bits;
290 u32 sdbfis_bits;
291
292 unsigned int ncq_flags;
293 };
294
295
296 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT)))))
297
298 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
299 #ifdef CONFIG_PM
300 static int nv_pci_device_resume(struct pci_dev *pdev);
301 #endif
302 static void nv_ck804_host_stop(struct ata_host *host);
303 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance);
304 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance);
305 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance);
306 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val);
307 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val);
308
309 static int nv_hardreset(struct ata_link *link, unsigned int *class,
310 unsigned long deadline);
311 static void nv_nf2_freeze(struct ata_port *ap);
312 static void nv_nf2_thaw(struct ata_port *ap);
313 static void nv_ck804_freeze(struct ata_port *ap);
314 static void nv_ck804_thaw(struct ata_port *ap);
315 static int nv_adma_slave_config(struct scsi_device *sdev);
316 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc);
317 static void nv_adma_qc_prep(struct ata_queued_cmd *qc);
318 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc);
319 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance);
320 static void nv_adma_irq_clear(struct ata_port *ap);
321 static int nv_adma_port_start(struct ata_port *ap);
322 static void nv_adma_port_stop(struct ata_port *ap);
323 #ifdef CONFIG_PM
324 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg);
325 static int nv_adma_port_resume(struct ata_port *ap);
326 #endif
327 static void nv_adma_freeze(struct ata_port *ap);
328 static void nv_adma_thaw(struct ata_port *ap);
329 static void nv_adma_error_handler(struct ata_port *ap);
330 static void nv_adma_host_stop(struct ata_host *host);
331 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc);
332 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf);
333
334 static void nv_mcp55_thaw(struct ata_port *ap);
335 static void nv_mcp55_freeze(struct ata_port *ap);
336 static void nv_swncq_error_handler(struct ata_port *ap);
337 static int nv_swncq_slave_config(struct scsi_device *sdev);
338 static int nv_swncq_port_start(struct ata_port *ap);
339 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc);
340 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc);
341 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc);
342 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis);
343 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance);
344 #ifdef CONFIG_PM
345 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg);
346 static int nv_swncq_port_resume(struct ata_port *ap);
347 #endif
348
349 enum nv_host_type
350 {
351 GENERIC,
352 NFORCE2,
353 NFORCE3 = NFORCE2, /* NF2 == NF3 as far as sata_nv is concerned */
354 CK804,
355 ADMA,
356 MCP5x,
357 SWNCQ,
358 };
359
360 static const struct pci_device_id nv_pci_tbl[] = {
361 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 },
362 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 },
363 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 },
364 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 },
365 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 },
366 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 },
367 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 },
368 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), MCP5x },
369 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), MCP5x },
370 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), MCP5x },
371 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), MCP5x },
372 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC },
373 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC },
374 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC },
375
376 { } /* terminate list */
377 };
378
379 static struct pci_driver nv_pci_driver = {
380 .name = DRV_NAME,
381 .id_table = nv_pci_tbl,
382 .probe = nv_init_one,
383 #ifdef CONFIG_PM
384 .suspend = ata_pci_device_suspend,
385 .resume = nv_pci_device_resume,
386 #endif
387 .remove = ata_pci_remove_one,
388 };
389
390 static struct scsi_host_template nv_sht = {
391 ATA_BMDMA_SHT(DRV_NAME),
392 };
393
394 static struct scsi_host_template nv_adma_sht = {
395 ATA_NCQ_SHT(DRV_NAME),
396 .can_queue = NV_ADMA_MAX_CPBS,
397 .sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN,
398 .dma_boundary = NV_ADMA_DMA_BOUNDARY,
399 .slave_configure = nv_adma_slave_config,
400 };
401
402 static struct scsi_host_template nv_swncq_sht = {
403 ATA_NCQ_SHT(DRV_NAME),
404 .can_queue = ATA_MAX_QUEUE,
405 .sg_tablesize = LIBATA_MAX_PRD,
406 .dma_boundary = ATA_DMA_BOUNDARY,
407 .slave_configure = nv_swncq_slave_config,
408 };
409
410 /*
411 * NV SATA controllers have various different problems with hardreset
412 * protocol depending on the specific controller and device.
413 *
414 * GENERIC:
415 *
416 * bko11195 reports that link doesn't come online after hardreset on
417 * generic nv's and there have been several other similar reports on
418 * linux-ide.
419 *
420 * bko12351#c23 reports that warmplug on MCP61 doesn't work with
421 * softreset.
422 *
423 * NF2/3:
424 *
425 * bko3352 reports nf2/3 controllers can't determine device signature
426 * reliably after hardreset. The following thread reports detection
427 * failure on cold boot with the standard debouncing timing.
428 *
429 * http://thread.gmane.org/gmane.linux.ide/34098
430 *
431 * bko12176 reports that hardreset fails to bring up the link during
432 * boot on nf2.
433 *
434 * CK804:
435 *
436 * For initial probing after boot and hot plugging, hardreset mostly
437 * works fine on CK804 but curiously, reprobing on the initial port
438 * by rescanning or rmmod/insmod fails to acquire the initial D2H Reg
439 * FIS in somewhat undeterministic way.
440 *
441 * SWNCQ:
442 *
443 * bko12351 reports that when SWNCQ is enabled, for hotplug to work,
444 * hardreset should be used and hardreset can't report proper
445 * signature, which suggests that mcp5x is closer to nf2 as long as
446 * reset quirkiness is concerned.
447 *
448 * bko12703 reports that boot probing fails for intel SSD with
449 * hardreset. Link fails to come online. Softreset works fine.
450 *
451 * The failures are varied but the following patterns seem true for
452 * all flavors.
453 *
454 * - Softreset during boot always works.
455 *
456 * - Hardreset during boot sometimes fails to bring up the link on
457 * certain comibnations and device signature acquisition is
458 * unreliable.
459 *
460 * - Hardreset is often necessary after hotplug.
461 *
462 * So, preferring softreset for boot probing and error handling (as
463 * hardreset might bring down the link) but using hardreset for
464 * post-boot probing should work around the above issues in most
465 * cases. Define nv_hardreset() which only kicks in for post-boot
466 * probing and use it for all variants.
467 */
468 static struct ata_port_operations nv_generic_ops = {
469 .inherits = &ata_bmdma_port_ops,
470 .lost_interrupt = ATA_OP_NULL,
471 .scr_read = nv_scr_read,
472 .scr_write = nv_scr_write,
473 .hardreset = nv_hardreset,
474 };
475
476 static struct ata_port_operations nv_nf2_ops = {
477 .inherits = &nv_generic_ops,
478 .freeze = nv_nf2_freeze,
479 .thaw = nv_nf2_thaw,
480 };
481
482 static struct ata_port_operations nv_ck804_ops = {
483 .inherits = &nv_generic_ops,
484 .freeze = nv_ck804_freeze,
485 .thaw = nv_ck804_thaw,
486 .host_stop = nv_ck804_host_stop,
487 };
488
489 static struct ata_port_operations nv_adma_ops = {
490 .inherits = &nv_ck804_ops,
491
492 .check_atapi_dma = nv_adma_check_atapi_dma,
493 .sff_tf_read = nv_adma_tf_read,
494 .qc_defer = ata_std_qc_defer,
495 .qc_prep = nv_adma_qc_prep,
496 .qc_issue = nv_adma_qc_issue,
497 .sff_irq_clear = nv_adma_irq_clear,
498
499 .freeze = nv_adma_freeze,
500 .thaw = nv_adma_thaw,
501 .error_handler = nv_adma_error_handler,
502 .post_internal_cmd = nv_adma_post_internal_cmd,
503
504 .port_start = nv_adma_port_start,
505 .port_stop = nv_adma_port_stop,
506 #ifdef CONFIG_PM
507 .port_suspend = nv_adma_port_suspend,
508 .port_resume = nv_adma_port_resume,
509 #endif
510 .host_stop = nv_adma_host_stop,
511 };
512
513 static struct ata_port_operations nv_swncq_ops = {
514 .inherits = &nv_generic_ops,
515
516 .qc_defer = ata_std_qc_defer,
517 .qc_prep = nv_swncq_qc_prep,
518 .qc_issue = nv_swncq_qc_issue,
519
520 .freeze = nv_mcp55_freeze,
521 .thaw = nv_mcp55_thaw,
522 .error_handler = nv_swncq_error_handler,
523
524 #ifdef CONFIG_PM
525 .port_suspend = nv_swncq_port_suspend,
526 .port_resume = nv_swncq_port_resume,
527 #endif
528 .port_start = nv_swncq_port_start,
529 };
530
531 struct nv_pi_priv {
532 irq_handler_t irq_handler;
533 struct scsi_host_template *sht;
534 };
535
536 #define NV_PI_PRIV(_irq_handler, _sht) \
537 &(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht }
538
539 static const struct ata_port_info nv_port_info[] = {
540 /* generic */
541 {
542 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
543 .pio_mask = NV_PIO_MASK,
544 .mwdma_mask = NV_MWDMA_MASK,
545 .udma_mask = NV_UDMA_MASK,
546 .port_ops = &nv_generic_ops,
547 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
548 },
549 /* nforce2/3 */
550 {
551 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
552 .pio_mask = NV_PIO_MASK,
553 .mwdma_mask = NV_MWDMA_MASK,
554 .udma_mask = NV_UDMA_MASK,
555 .port_ops = &nv_nf2_ops,
556 .private_data = NV_PI_PRIV(nv_nf2_interrupt, &nv_sht),
557 },
558 /* ck804 */
559 {
560 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
561 .pio_mask = NV_PIO_MASK,
562 .mwdma_mask = NV_MWDMA_MASK,
563 .udma_mask = NV_UDMA_MASK,
564 .port_ops = &nv_ck804_ops,
565 .private_data = NV_PI_PRIV(nv_ck804_interrupt, &nv_sht),
566 },
567 /* ADMA */
568 {
569 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
570 ATA_FLAG_MMIO | ATA_FLAG_NCQ,
571 .pio_mask = NV_PIO_MASK,
572 .mwdma_mask = NV_MWDMA_MASK,
573 .udma_mask = NV_UDMA_MASK,
574 .port_ops = &nv_adma_ops,
575 .private_data = NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht),
576 },
577 /* MCP5x */
578 {
579 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
580 .pio_mask = NV_PIO_MASK,
581 .mwdma_mask = NV_MWDMA_MASK,
582 .udma_mask = NV_UDMA_MASK,
583 .port_ops = &nv_generic_ops,
584 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
585 },
586 /* SWNCQ */
587 {
588 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
589 ATA_FLAG_NCQ,
590 .pio_mask = NV_PIO_MASK,
591 .mwdma_mask = NV_MWDMA_MASK,
592 .udma_mask = NV_UDMA_MASK,
593 .port_ops = &nv_swncq_ops,
594 .private_data = NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht),
595 },
596 };
597
598 MODULE_AUTHOR("NVIDIA");
599 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller");
600 MODULE_LICENSE("GPL");
601 MODULE_DEVICE_TABLE(pci, nv_pci_tbl);
602 MODULE_VERSION(DRV_VERSION);
603
604 static int adma_enabled;
605 static int swncq_enabled = 1;
606 static int msi_enabled;
607
608 static void nv_adma_register_mode(struct ata_port *ap)
609 {
610 struct nv_adma_port_priv *pp = ap->private_data;
611 void __iomem *mmio = pp->ctl_block;
612 u16 tmp, status;
613 int count = 0;
614
615 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
616 return;
617
618 status = readw(mmio + NV_ADMA_STAT);
619 while (!(status & NV_ADMA_STAT_IDLE) && count < 20) {
620 ndelay(50);
621 status = readw(mmio + NV_ADMA_STAT);
622 count++;
623 }
624 if (count == 20)
625 ata_port_printk(ap, KERN_WARNING,
626 "timeout waiting for ADMA IDLE, stat=0x%hx\n",
627 status);
628
629 tmp = readw(mmio + NV_ADMA_CTL);
630 writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
631
632 count = 0;
633 status = readw(mmio + NV_ADMA_STAT);
634 while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) {
635 ndelay(50);
636 status = readw(mmio + NV_ADMA_STAT);
637 count++;
638 }
639 if (count == 20)
640 ata_port_printk(ap, KERN_WARNING,
641 "timeout waiting for ADMA LEGACY, stat=0x%hx\n",
642 status);
643
644 pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
645 }
646
647 static void nv_adma_mode(struct ata_port *ap)
648 {
649 struct nv_adma_port_priv *pp = ap->private_data;
650 void __iomem *mmio = pp->ctl_block;
651 u16 tmp, status;
652 int count = 0;
653
654 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE))
655 return;
656
657 WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
658
659 tmp = readw(mmio + NV_ADMA_CTL);
660 writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
661
662 status = readw(mmio + NV_ADMA_STAT);
663 while (((status & NV_ADMA_STAT_LEGACY) ||
664 !(status & NV_ADMA_STAT_IDLE)) && count < 20) {
665 ndelay(50);
666 status = readw(mmio + NV_ADMA_STAT);
667 count++;
668 }
669 if (count == 20)
670 ata_port_printk(ap, KERN_WARNING,
671 "timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n",
672 status);
673
674 pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE;
675 }
676
677 static int nv_adma_slave_config(struct scsi_device *sdev)
678 {
679 struct ata_port *ap = ata_shost_to_port(sdev->host);
680 struct nv_adma_port_priv *pp = ap->private_data;
681 struct nv_adma_port_priv *port0, *port1;
682 struct scsi_device *sdev0, *sdev1;
683 struct pci_dev *pdev = to_pci_dev(ap->host->dev);
684 unsigned long segment_boundary, flags;
685 unsigned short sg_tablesize;
686 int rc;
687 int adma_enable;
688 u32 current_reg, new_reg, config_mask;
689
690 rc = ata_scsi_slave_config(sdev);
691
692 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
693 /* Not a proper libata device, ignore */
694 return rc;
695
696 spin_lock_irqsave(ap->lock, flags);
697
698 if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) {
699 /*
700 * NVIDIA reports that ADMA mode does not support ATAPI commands.
701 * Therefore ATAPI commands are sent through the legacy interface.
702 * However, the legacy interface only supports 32-bit DMA.
703 * Restrict DMA parameters as required by the legacy interface
704 * when an ATAPI device is connected.
705 */
706 segment_boundary = ATA_DMA_BOUNDARY;
707 /* Subtract 1 since an extra entry may be needed for padding, see
708 libata-scsi.c */
709 sg_tablesize = LIBATA_MAX_PRD - 1;
710
711 /* Since the legacy DMA engine is in use, we need to disable ADMA
712 on the port. */
713 adma_enable = 0;
714 nv_adma_register_mode(ap);
715 } else {
716 segment_boundary = NV_ADMA_DMA_BOUNDARY;
717 sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN;
718 adma_enable = 1;
719 }
720
721 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &current_reg);
722
723 if (ap->port_no == 1)
724 config_mask = NV_MCP_SATA_CFG_20_PORT1_EN |
725 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
726 else
727 config_mask = NV_MCP_SATA_CFG_20_PORT0_EN |
728 NV_MCP_SATA_CFG_20_PORT0_PWB_EN;
729
730 if (adma_enable) {
731 new_reg = current_reg | config_mask;
732 pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE;
733 } else {
734 new_reg = current_reg & ~config_mask;
735 pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE;
736 }
737
738 if (current_reg != new_reg)
739 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg);
740
741 port0 = ap->host->ports[0]->private_data;
742 port1 = ap->host->ports[1]->private_data;
743 sdev0 = ap->host->ports[0]->link.device[0].sdev;
744 sdev1 = ap->host->ports[1]->link.device[0].sdev;
745 if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
746 (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) {
747 /** We have to set the DMA mask to 32-bit if either port is in
748 ATAPI mode, since they are on the same PCI device which is
749 used for DMA mapping. If we set the mask we also need to set
750 the bounce limit on both ports to ensure that the block
751 layer doesn't feed addresses that cause DMA mapping to
752 choke. If either SCSI device is not allocated yet, it's OK
753 since that port will discover its correct setting when it
754 does get allocated.
755 Note: Setting 32-bit mask should not fail. */
756 if (sdev0)
757 blk_queue_bounce_limit(sdev0->request_queue,
758 ATA_DMA_MASK);
759 if (sdev1)
760 blk_queue_bounce_limit(sdev1->request_queue,
761 ATA_DMA_MASK);
762
763 pci_set_dma_mask(pdev, ATA_DMA_MASK);
764 } else {
765 /** This shouldn't fail as it was set to this value before */
766 pci_set_dma_mask(pdev, pp->adma_dma_mask);
767 if (sdev0)
768 blk_queue_bounce_limit(sdev0->request_queue,
769 pp->adma_dma_mask);
770 if (sdev1)
771 blk_queue_bounce_limit(sdev1->request_queue,
772 pp->adma_dma_mask);
773 }
774
775 blk_queue_segment_boundary(sdev->request_queue, segment_boundary);
776 blk_queue_max_segments(sdev->request_queue, sg_tablesize);
777 ata_port_printk(ap, KERN_INFO,
778 "DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n",
779 (unsigned long long)*ap->host->dev->dma_mask,
780 segment_boundary, sg_tablesize);
781
782 spin_unlock_irqrestore(ap->lock, flags);
783
784 return rc;
785 }
786
787 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc)
788 {
789 struct nv_adma_port_priv *pp = qc->ap->private_data;
790 return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
791 }
792
793 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
794 {
795 /* Other than when internal or pass-through commands are executed,
796 the only time this function will be called in ADMA mode will be
797 if a command fails. In the failure case we don't care about going
798 into register mode with ADMA commands pending, as the commands will
799 all shortly be aborted anyway. We assume that NCQ commands are not
800 issued via passthrough, which is the only way that switching into
801 ADMA mode could abort outstanding commands. */
802 nv_adma_register_mode(ap);
803
804 ata_sff_tf_read(ap, tf);
805 }
806
807 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb)
808 {
809 unsigned int idx = 0;
810
811 if (tf->flags & ATA_TFLAG_ISADDR) {
812 if (tf->flags & ATA_TFLAG_LBA48) {
813 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->hob_feature | WNB);
814 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect);
815 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->hob_lbal);
816 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->hob_lbam);
817 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->hob_lbah);
818 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature);
819 } else
820 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature | WNB);
821
822 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->nsect);
823 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->lbal);
824 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->lbam);
825 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->lbah);
826 }
827
828 if (tf->flags & ATA_TFLAG_DEVICE)
829 cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device);
830
831 cpb[idx++] = cpu_to_le16((ATA_REG_CMD << 8) | tf->command | CMDEND);
832
833 while (idx < 12)
834 cpb[idx++] = cpu_to_le16(IGN);
835
836 return idx;
837 }
838
839 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err)
840 {
841 struct nv_adma_port_priv *pp = ap->private_data;
842 u8 flags = pp->cpb[cpb_num].resp_flags;
843
844 VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags);
845
846 if (unlikely((force_err ||
847 flags & (NV_CPB_RESP_ATA_ERR |
848 NV_CPB_RESP_CMD_ERR |
849 NV_CPB_RESP_CPB_ERR)))) {
850 struct ata_eh_info *ehi = &ap->link.eh_info;
851 int freeze = 0;
852
853 ata_ehi_clear_desc(ehi);
854 __ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags);
855 if (flags & NV_CPB_RESP_ATA_ERR) {
856 ata_ehi_push_desc(ehi, "ATA error");
857 ehi->err_mask |= AC_ERR_DEV;
858 } else if (flags & NV_CPB_RESP_CMD_ERR) {
859 ata_ehi_push_desc(ehi, "CMD error");
860 ehi->err_mask |= AC_ERR_DEV;
861 } else if (flags & NV_CPB_RESP_CPB_ERR) {
862 ata_ehi_push_desc(ehi, "CPB error");
863 ehi->err_mask |= AC_ERR_SYSTEM;
864 freeze = 1;
865 } else {
866 /* notifier error, but no error in CPB flags? */
867 ata_ehi_push_desc(ehi, "unknown");
868 ehi->err_mask |= AC_ERR_OTHER;
869 freeze = 1;
870 }
871 /* Kill all commands. EH will determine what actually failed. */
872 if (freeze)
873 ata_port_freeze(ap);
874 else
875 ata_port_abort(ap);
876 return 1;
877 }
878
879 if (likely(flags & NV_CPB_RESP_DONE)) {
880 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, cpb_num);
881 VPRINTK("CPB flags done, flags=0x%x\n", flags);
882 if (likely(qc)) {
883 DPRINTK("Completing qc from tag %d\n", cpb_num);
884 ata_qc_complete(qc);
885 } else {
886 struct ata_eh_info *ehi = &ap->link.eh_info;
887 /* Notifier bits set without a command may indicate the drive
888 is misbehaving. Raise host state machine violation on this
889 condition. */
890 ata_port_printk(ap, KERN_ERR,
891 "notifier for tag %d with no cmd?\n",
892 cpb_num);
893 ehi->err_mask |= AC_ERR_HSM;
894 ehi->action |= ATA_EH_RESET;
895 ata_port_freeze(ap);
896 return 1;
897 }
898 }
899 return 0;
900 }
901
902 static int nv_host_intr(struct ata_port *ap, u8 irq_stat)
903 {
904 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
905
906 /* freeze if hotplugged */
907 if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) {
908 ata_port_freeze(ap);
909 return 1;
910 }
911
912 /* bail out if not our interrupt */
913 if (!(irq_stat & NV_INT_DEV))
914 return 0;
915
916 /* DEV interrupt w/ no active qc? */
917 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
918 ata_sff_check_status(ap);
919 return 1;
920 }
921
922 /* handle interrupt */
923 return ata_sff_host_intr(ap, qc);
924 }
925
926 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance)
927 {
928 struct ata_host *host = dev_instance;
929 int i, handled = 0;
930 u32 notifier_clears[2];
931
932 spin_lock(&host->lock);
933
934 for (i = 0; i < host->n_ports; i++) {
935 struct ata_port *ap = host->ports[i];
936 struct nv_adma_port_priv *pp = ap->private_data;
937 void __iomem *mmio = pp->ctl_block;
938 u16 status;
939 u32 gen_ctl;
940 u32 notifier, notifier_error;
941
942 notifier_clears[i] = 0;
943
944 /* if ADMA is disabled, use standard ata interrupt handler */
945 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
946 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
947 >> (NV_INT_PORT_SHIFT * i);
948 handled += nv_host_intr(ap, irq_stat);
949 continue;
950 }
951
952 /* if in ATA register mode, check for standard interrupts */
953 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) {
954 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
955 >> (NV_INT_PORT_SHIFT * i);
956 if (ata_tag_valid(ap->link.active_tag))
957 /** NV_INT_DEV indication seems unreliable
958 at times at least in ADMA mode. Force it
959 on always when a command is active, to
960 prevent losing interrupts. */
961 irq_stat |= NV_INT_DEV;
962 handled += nv_host_intr(ap, irq_stat);
963 }
964
965 notifier = readl(mmio + NV_ADMA_NOTIFIER);
966 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
967 notifier_clears[i] = notifier | notifier_error;
968
969 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
970
971 if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier &&
972 !notifier_error)
973 /* Nothing to do */
974 continue;
975
976 status = readw(mmio + NV_ADMA_STAT);
977
978 /*
979 * Clear status. Ensure the controller sees the
980 * clearing before we start looking at any of the CPB
981 * statuses, so that any CPB completions after this
982 * point in the handler will raise another interrupt.
983 */
984 writew(status, mmio + NV_ADMA_STAT);
985 readw(mmio + NV_ADMA_STAT); /* flush posted write */
986 rmb();
987
988 handled++; /* irq handled if we got here */
989
990 /* freeze if hotplugged or controller error */
991 if (unlikely(status & (NV_ADMA_STAT_HOTPLUG |
992 NV_ADMA_STAT_HOTUNPLUG |
993 NV_ADMA_STAT_TIMEOUT |
994 NV_ADMA_STAT_SERROR))) {
995 struct ata_eh_info *ehi = &ap->link.eh_info;
996
997 ata_ehi_clear_desc(ehi);
998 __ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status);
999 if (status & NV_ADMA_STAT_TIMEOUT) {
1000 ehi->err_mask |= AC_ERR_SYSTEM;
1001 ata_ehi_push_desc(ehi, "timeout");
1002 } else if (status & NV_ADMA_STAT_HOTPLUG) {
1003 ata_ehi_hotplugged(ehi);
1004 ata_ehi_push_desc(ehi, "hotplug");
1005 } else if (status & NV_ADMA_STAT_HOTUNPLUG) {
1006 ata_ehi_hotplugged(ehi);
1007 ata_ehi_push_desc(ehi, "hot unplug");
1008 } else if (status & NV_ADMA_STAT_SERROR) {
1009 /* let EH analyze SError and figure out cause */
1010 ata_ehi_push_desc(ehi, "SError");
1011 } else
1012 ata_ehi_push_desc(ehi, "unknown");
1013 ata_port_freeze(ap);
1014 continue;
1015 }
1016
1017 if (status & (NV_ADMA_STAT_DONE |
1018 NV_ADMA_STAT_CPBERR |
1019 NV_ADMA_STAT_CMD_COMPLETE)) {
1020 u32 check_commands = notifier_clears[i];
1021 int pos, error = 0;
1022
1023 if (status & NV_ADMA_STAT_CPBERR) {
1024 /* check all active commands */
1025 if (ata_tag_valid(ap->link.active_tag))
1026 check_commands = 1 <<
1027 ap->link.active_tag;
1028 else
1029 check_commands = ap->link.sactive;
1030 }
1031
1032 /* check CPBs for completed commands */
1033 while ((pos = ffs(check_commands)) && !error) {
1034 pos--;
1035 error = nv_adma_check_cpb(ap, pos,
1036 notifier_error & (1 << pos));
1037 check_commands &= ~(1 << pos);
1038 }
1039 }
1040 }
1041
1042 if (notifier_clears[0] || notifier_clears[1]) {
1043 /* Note: Both notifier clear registers must be written
1044 if either is set, even if one is zero, according to NVIDIA. */
1045 struct nv_adma_port_priv *pp = host->ports[0]->private_data;
1046 writel(notifier_clears[0], pp->notifier_clear_block);
1047 pp = host->ports[1]->private_data;
1048 writel(notifier_clears[1], pp->notifier_clear_block);
1049 }
1050
1051 spin_unlock(&host->lock);
1052
1053 return IRQ_RETVAL(handled);
1054 }
1055
1056 static void nv_adma_freeze(struct ata_port *ap)
1057 {
1058 struct nv_adma_port_priv *pp = ap->private_data;
1059 void __iomem *mmio = pp->ctl_block;
1060 u16 tmp;
1061
1062 nv_ck804_freeze(ap);
1063
1064 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1065 return;
1066
1067 /* clear any outstanding CK804 notifications */
1068 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1069 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1070
1071 /* Disable interrupt */
1072 tmp = readw(mmio + NV_ADMA_CTL);
1073 writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1074 mmio + NV_ADMA_CTL);
1075 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1076 }
1077
1078 static void nv_adma_thaw(struct ata_port *ap)
1079 {
1080 struct nv_adma_port_priv *pp = ap->private_data;
1081 void __iomem *mmio = pp->ctl_block;
1082 u16 tmp;
1083
1084 nv_ck804_thaw(ap);
1085
1086 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1087 return;
1088
1089 /* Enable interrupt */
1090 tmp = readw(mmio + NV_ADMA_CTL);
1091 writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1092 mmio + NV_ADMA_CTL);
1093 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1094 }
1095
1096 static void nv_adma_irq_clear(struct ata_port *ap)
1097 {
1098 struct nv_adma_port_priv *pp = ap->private_data;
1099 void __iomem *mmio = pp->ctl_block;
1100 u32 notifier_clears[2];
1101
1102 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
1103 ata_bmdma_irq_clear(ap);
1104 return;
1105 }
1106
1107 /* clear any outstanding CK804 notifications */
1108 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1109 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1110
1111 /* clear ADMA status */
1112 writew(0xffff, mmio + NV_ADMA_STAT);
1113
1114 /* clear notifiers - note both ports need to be written with
1115 something even though we are only clearing on one */
1116 if (ap->port_no == 0) {
1117 notifier_clears[0] = 0xFFFFFFFF;
1118 notifier_clears[1] = 0;
1119 } else {
1120 notifier_clears[0] = 0;
1121 notifier_clears[1] = 0xFFFFFFFF;
1122 }
1123 pp = ap->host->ports[0]->private_data;
1124 writel(notifier_clears[0], pp->notifier_clear_block);
1125 pp = ap->host->ports[1]->private_data;
1126 writel(notifier_clears[1], pp->notifier_clear_block);
1127 }
1128
1129 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc)
1130 {
1131 struct nv_adma_port_priv *pp = qc->ap->private_data;
1132
1133 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
1134 ata_bmdma_post_internal_cmd(qc);
1135 }
1136
1137 static int nv_adma_port_start(struct ata_port *ap)
1138 {
1139 struct device *dev = ap->host->dev;
1140 struct nv_adma_port_priv *pp;
1141 int rc;
1142 void *mem;
1143 dma_addr_t mem_dma;
1144 void __iomem *mmio;
1145 struct pci_dev *pdev = to_pci_dev(dev);
1146 u16 tmp;
1147
1148 VPRINTK("ENTER\n");
1149
1150 /* Ensure DMA mask is set to 32-bit before allocating legacy PRD and
1151 pad buffers */
1152 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1153 if (rc)
1154 return rc;
1155 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1156 if (rc)
1157 return rc;
1158
1159 /* we might fallback to bmdma, allocate bmdma resources */
1160 rc = ata_bmdma_port_start(ap);
1161 if (rc)
1162 return rc;
1163
1164 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1165 if (!pp)
1166 return -ENOMEM;
1167
1168 mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT +
1169 ap->port_no * NV_ADMA_PORT_SIZE;
1170 pp->ctl_block = mmio;
1171 pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN;
1172 pp->notifier_clear_block = pp->gen_block +
1173 NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no);
1174
1175 /* Now that the legacy PRD and padding buffer are allocated we can
1176 safely raise the DMA mask to allocate the CPB/APRD table.
1177 These are allowed to fail since we store the value that ends up
1178 being used to set as the bounce limit in slave_config later if
1179 needed. */
1180 pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1181 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1182 pp->adma_dma_mask = *dev->dma_mask;
1183
1184 mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ,
1185 &mem_dma, GFP_KERNEL);
1186 if (!mem)
1187 return -ENOMEM;
1188 memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ);
1189
1190 /*
1191 * First item in chunk of DMA memory:
1192 * 128-byte command parameter block (CPB)
1193 * one for each command tag
1194 */
1195 pp->cpb = mem;
1196 pp->cpb_dma = mem_dma;
1197
1198 writel(mem_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW);
1199 writel((mem_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH);
1200
1201 mem += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1202 mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1203
1204 /*
1205 * Second item: block of ADMA_SGTBL_LEN s/g entries
1206 */
1207 pp->aprd = mem;
1208 pp->aprd_dma = mem_dma;
1209
1210 ap->private_data = pp;
1211
1212 /* clear any outstanding interrupt conditions */
1213 writew(0xffff, mmio + NV_ADMA_STAT);
1214
1215 /* initialize port variables */
1216 pp->flags = NV_ADMA_PORT_REGISTER_MODE;
1217
1218 /* clear CPB fetch count */
1219 writew(0, mmio + NV_ADMA_CPB_COUNT);
1220
1221 /* clear GO for register mode, enable interrupt */
1222 tmp = readw(mmio + NV_ADMA_CTL);
1223 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1224 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1225
1226 tmp = readw(mmio + NV_ADMA_CTL);
1227 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1228 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1229 udelay(1);
1230 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1231 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1232
1233 return 0;
1234 }
1235
1236 static void nv_adma_port_stop(struct ata_port *ap)
1237 {
1238 struct nv_adma_port_priv *pp = ap->private_data;
1239 void __iomem *mmio = pp->ctl_block;
1240
1241 VPRINTK("ENTER\n");
1242 writew(0, mmio + NV_ADMA_CTL);
1243 }
1244
1245 #ifdef CONFIG_PM
1246 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg)
1247 {
1248 struct nv_adma_port_priv *pp = ap->private_data;
1249 void __iomem *mmio = pp->ctl_block;
1250
1251 /* Go to register mode - clears GO */
1252 nv_adma_register_mode(ap);
1253
1254 /* clear CPB fetch count */
1255 writew(0, mmio + NV_ADMA_CPB_COUNT);
1256
1257 /* disable interrupt, shut down port */
1258 writew(0, mmio + NV_ADMA_CTL);
1259
1260 return 0;
1261 }
1262
1263 static int nv_adma_port_resume(struct ata_port *ap)
1264 {
1265 struct nv_adma_port_priv *pp = ap->private_data;
1266 void __iomem *mmio = pp->ctl_block;
1267 u16 tmp;
1268
1269 /* set CPB block location */
1270 writel(pp->cpb_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW);
1271 writel((pp->cpb_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH);
1272
1273 /* clear any outstanding interrupt conditions */
1274 writew(0xffff, mmio + NV_ADMA_STAT);
1275
1276 /* initialize port variables */
1277 pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
1278
1279 /* clear CPB fetch count */
1280 writew(0, mmio + NV_ADMA_CPB_COUNT);
1281
1282 /* clear GO for register mode, enable interrupt */
1283 tmp = readw(mmio + NV_ADMA_CTL);
1284 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1285 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1286
1287 tmp = readw(mmio + NV_ADMA_CTL);
1288 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1289 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1290 udelay(1);
1291 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1292 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1293
1294 return 0;
1295 }
1296 #endif
1297
1298 static void nv_adma_setup_port(struct ata_port *ap)
1299 {
1300 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1301 struct ata_ioports *ioport = &ap->ioaddr;
1302
1303 VPRINTK("ENTER\n");
1304
1305 mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE;
1306
1307 ioport->cmd_addr = mmio;
1308 ioport->data_addr = mmio + (ATA_REG_DATA * 4);
1309 ioport->error_addr =
1310 ioport->feature_addr = mmio + (ATA_REG_ERR * 4);
1311 ioport->nsect_addr = mmio + (ATA_REG_NSECT * 4);
1312 ioport->lbal_addr = mmio + (ATA_REG_LBAL * 4);
1313 ioport->lbam_addr = mmio + (ATA_REG_LBAM * 4);
1314 ioport->lbah_addr = mmio + (ATA_REG_LBAH * 4);
1315 ioport->device_addr = mmio + (ATA_REG_DEVICE * 4);
1316 ioport->status_addr =
1317 ioport->command_addr = mmio + (ATA_REG_STATUS * 4);
1318 ioport->altstatus_addr =
1319 ioport->ctl_addr = mmio + 0x20;
1320 }
1321
1322 static int nv_adma_host_init(struct ata_host *host)
1323 {
1324 struct pci_dev *pdev = to_pci_dev(host->dev);
1325 unsigned int i;
1326 u32 tmp32;
1327
1328 VPRINTK("ENTER\n");
1329
1330 /* enable ADMA on the ports */
1331 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
1332 tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN |
1333 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
1334 NV_MCP_SATA_CFG_20_PORT1_EN |
1335 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
1336
1337 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
1338
1339 for (i = 0; i < host->n_ports; i++)
1340 nv_adma_setup_port(host->ports[i]);
1341
1342 return 0;
1343 }
1344
1345 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc,
1346 struct scatterlist *sg,
1347 int idx,
1348 struct nv_adma_prd *aprd)
1349 {
1350 u8 flags = 0;
1351 if (qc->tf.flags & ATA_TFLAG_WRITE)
1352 flags |= NV_APRD_WRITE;
1353 if (idx == qc->n_elem - 1)
1354 flags |= NV_APRD_END;
1355 else if (idx != 4)
1356 flags |= NV_APRD_CONT;
1357
1358 aprd->addr = cpu_to_le64(((u64)sg_dma_address(sg)));
1359 aprd->len = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */
1360 aprd->flags = flags;
1361 aprd->packet_len = 0;
1362 }
1363
1364 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb)
1365 {
1366 struct nv_adma_port_priv *pp = qc->ap->private_data;
1367 struct nv_adma_prd *aprd;
1368 struct scatterlist *sg;
1369 unsigned int si;
1370
1371 VPRINTK("ENTER\n");
1372
1373 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1374 aprd = (si < 5) ? &cpb->aprd[si] :
1375 &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)];
1376 nv_adma_fill_aprd(qc, sg, si, aprd);
1377 }
1378 if (si > 5)
1379 cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag)));
1380 else
1381 cpb->next_aprd = cpu_to_le64(0);
1382 }
1383
1384 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc)
1385 {
1386 struct nv_adma_port_priv *pp = qc->ap->private_data;
1387
1388 /* ADMA engine can only be used for non-ATAPI DMA commands,
1389 or interrupt-driven no-data commands. */
1390 if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
1391 (qc->tf.flags & ATA_TFLAG_POLLING))
1392 return 1;
1393
1394 if ((qc->flags & ATA_QCFLAG_DMAMAP) ||
1395 (qc->tf.protocol == ATA_PROT_NODATA))
1396 return 0;
1397
1398 return 1;
1399 }
1400
1401 static void nv_adma_qc_prep(struct ata_queued_cmd *qc)
1402 {
1403 struct nv_adma_port_priv *pp = qc->ap->private_data;
1404 struct nv_adma_cpb *cpb = &pp->cpb[qc->tag];
1405 u8 ctl_flags = NV_CPB_CTL_CPB_VALID |
1406 NV_CPB_CTL_IEN;
1407
1408 if (nv_adma_use_reg_mode(qc)) {
1409 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1410 (qc->flags & ATA_QCFLAG_DMAMAP));
1411 nv_adma_register_mode(qc->ap);
1412 ata_bmdma_qc_prep(qc);
1413 return;
1414 }
1415
1416 cpb->resp_flags = NV_CPB_RESP_DONE;
1417 wmb();
1418 cpb->ctl_flags = 0;
1419 wmb();
1420
1421 cpb->len = 3;
1422 cpb->tag = qc->tag;
1423 cpb->next_cpb_idx = 0;
1424
1425 /* turn on NCQ flags for NCQ commands */
1426 if (qc->tf.protocol == ATA_PROT_NCQ)
1427 ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA;
1428
1429 VPRINTK("qc->flags = 0x%lx\n", qc->flags);
1430
1431 nv_adma_tf_to_cpb(&qc->tf, cpb->tf);
1432
1433 if (qc->flags & ATA_QCFLAG_DMAMAP) {
1434 nv_adma_fill_sg(qc, cpb);
1435 ctl_flags |= NV_CPB_CTL_APRD_VALID;
1436 } else
1437 memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5);
1438
1439 /* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID
1440 until we are finished filling in all of the contents */
1441 wmb();
1442 cpb->ctl_flags = ctl_flags;
1443 wmb();
1444 cpb->resp_flags = 0;
1445 }
1446
1447 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc)
1448 {
1449 struct nv_adma_port_priv *pp = qc->ap->private_data;
1450 void __iomem *mmio = pp->ctl_block;
1451 int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ);
1452
1453 VPRINTK("ENTER\n");
1454
1455 /* We can't handle result taskfile with NCQ commands, since
1456 retrieving the taskfile switches us out of ADMA mode and would abort
1457 existing commands. */
1458 if (unlikely(qc->tf.protocol == ATA_PROT_NCQ &&
1459 (qc->flags & ATA_QCFLAG_RESULT_TF))) {
1460 ata_dev_printk(qc->dev, KERN_ERR,
1461 "NCQ w/ RESULT_TF not allowed\n");
1462 return AC_ERR_SYSTEM;
1463 }
1464
1465 if (nv_adma_use_reg_mode(qc)) {
1466 /* use ATA register mode */
1467 VPRINTK("using ATA register mode: 0x%lx\n", qc->flags);
1468 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1469 (qc->flags & ATA_QCFLAG_DMAMAP));
1470 nv_adma_register_mode(qc->ap);
1471 return ata_bmdma_qc_issue(qc);
1472 } else
1473 nv_adma_mode(qc->ap);
1474
1475 /* write append register, command tag in lower 8 bits
1476 and (number of cpbs to append -1) in top 8 bits */
1477 wmb();
1478
1479 if (curr_ncq != pp->last_issue_ncq) {
1480 /* Seems to need some delay before switching between NCQ and
1481 non-NCQ commands, else we get command timeouts and such. */
1482 udelay(20);
1483 pp->last_issue_ncq = curr_ncq;
1484 }
1485
1486 writew(qc->tag, mmio + NV_ADMA_APPEND);
1487
1488 DPRINTK("Issued tag %u\n", qc->tag);
1489
1490 return 0;
1491 }
1492
1493 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance)
1494 {
1495 struct ata_host *host = dev_instance;
1496 unsigned int i;
1497 unsigned int handled = 0;
1498 unsigned long flags;
1499
1500 spin_lock_irqsave(&host->lock, flags);
1501
1502 for (i = 0; i < host->n_ports; i++) {
1503 struct ata_port *ap = host->ports[i];
1504 struct ata_queued_cmd *qc;
1505
1506 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1507 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
1508 handled += ata_sff_host_intr(ap, qc);
1509 } else {
1510 /*
1511 * No request pending? Clear interrupt status
1512 * anyway, in case there's one pending.
1513 */
1514 ap->ops->sff_check_status(ap);
1515 }
1516 }
1517
1518 spin_unlock_irqrestore(&host->lock, flags);
1519
1520 return IRQ_RETVAL(handled);
1521 }
1522
1523 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat)
1524 {
1525 int i, handled = 0;
1526
1527 for (i = 0; i < host->n_ports; i++) {
1528 handled += nv_host_intr(host->ports[i], irq_stat);
1529 irq_stat >>= NV_INT_PORT_SHIFT;
1530 }
1531
1532 return IRQ_RETVAL(handled);
1533 }
1534
1535 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance)
1536 {
1537 struct ata_host *host = dev_instance;
1538 u8 irq_stat;
1539 irqreturn_t ret;
1540
1541 spin_lock(&host->lock);
1542 irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS);
1543 ret = nv_do_interrupt(host, irq_stat);
1544 spin_unlock(&host->lock);
1545
1546 return ret;
1547 }
1548
1549 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance)
1550 {
1551 struct ata_host *host = dev_instance;
1552 u8 irq_stat;
1553 irqreturn_t ret;
1554
1555 spin_lock(&host->lock);
1556 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1557 ret = nv_do_interrupt(host, irq_stat);
1558 spin_unlock(&host->lock);
1559
1560 return ret;
1561 }
1562
1563 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val)
1564 {
1565 if (sc_reg > SCR_CONTROL)
1566 return -EINVAL;
1567
1568 *val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg * 4));
1569 return 0;
1570 }
1571
1572 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val)
1573 {
1574 if (sc_reg > SCR_CONTROL)
1575 return -EINVAL;
1576
1577 iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg * 4));
1578 return 0;
1579 }
1580
1581 static int nv_hardreset(struct ata_link *link, unsigned int *class,
1582 unsigned long deadline)
1583 {
1584 struct ata_eh_context *ehc = &link->eh_context;
1585
1586 /* Do hardreset iff it's post-boot probing, please read the
1587 * comment above port ops for details.
1588 */
1589 if (!(link->ap->pflags & ATA_PFLAG_LOADING) &&
1590 !ata_dev_enabled(link->device))
1591 sata_link_hardreset(link, sata_deb_timing_hotplug, deadline,
1592 NULL, NULL);
1593 else {
1594 const unsigned long *timing = sata_ehc_deb_timing(ehc);
1595 int rc;
1596
1597 if (!(ehc->i.flags & ATA_EHI_QUIET))
1598 ata_link_printk(link, KERN_INFO, "nv: skipping "
1599 "hardreset on occupied port\n");
1600
1601 /* make sure the link is online */
1602 rc = sata_link_resume(link, timing, deadline);
1603 /* whine about phy resume failure but proceed */
1604 if (rc && rc != -EOPNOTSUPP)
1605 ata_link_printk(link, KERN_WARNING, "failed to resume "
1606 "link (errno=%d)\n", rc);
1607 }
1608
1609 /* device signature acquisition is unreliable */
1610 return -EAGAIN;
1611 }
1612
1613 static void nv_nf2_freeze(struct ata_port *ap)
1614 {
1615 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1616 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1617 u8 mask;
1618
1619 mask = ioread8(scr_addr + NV_INT_ENABLE);
1620 mask &= ~(NV_INT_ALL << shift);
1621 iowrite8(mask, scr_addr + NV_INT_ENABLE);
1622 }
1623
1624 static void nv_nf2_thaw(struct ata_port *ap)
1625 {
1626 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1627 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1628 u8 mask;
1629
1630 iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS);
1631
1632 mask = ioread8(scr_addr + NV_INT_ENABLE);
1633 mask |= (NV_INT_MASK << shift);
1634 iowrite8(mask, scr_addr + NV_INT_ENABLE);
1635 }
1636
1637 static void nv_ck804_freeze(struct ata_port *ap)
1638 {
1639 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1640 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1641 u8 mask;
1642
1643 mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1644 mask &= ~(NV_INT_ALL << shift);
1645 writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1646 }
1647
1648 static void nv_ck804_thaw(struct ata_port *ap)
1649 {
1650 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1651 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1652 u8 mask;
1653
1654 writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804);
1655
1656 mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1657 mask |= (NV_INT_MASK << shift);
1658 writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1659 }
1660
1661 static void nv_mcp55_freeze(struct ata_port *ap)
1662 {
1663 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1664 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1665 u32 mask;
1666
1667 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1668
1669 mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1670 mask &= ~(NV_INT_ALL_MCP55 << shift);
1671 writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1672 ata_sff_freeze(ap);
1673 }
1674
1675 static void nv_mcp55_thaw(struct ata_port *ap)
1676 {
1677 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1678 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1679 u32 mask;
1680
1681 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1682
1683 mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1684 mask |= (NV_INT_MASK_MCP55 << shift);
1685 writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1686 ata_sff_thaw(ap);
1687 }
1688
1689 static void nv_adma_error_handler(struct ata_port *ap)
1690 {
1691 struct nv_adma_port_priv *pp = ap->private_data;
1692 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) {
1693 void __iomem *mmio = pp->ctl_block;
1694 int i;
1695 u16 tmp;
1696
1697 if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) {
1698 u32 notifier = readl(mmio + NV_ADMA_NOTIFIER);
1699 u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
1700 u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
1701 u32 status = readw(mmio + NV_ADMA_STAT);
1702 u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT);
1703 u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX);
1704
1705 ata_port_printk(ap, KERN_ERR,
1706 "EH in ADMA mode, notifier 0x%X "
1707 "notifier_error 0x%X gen_ctl 0x%X status 0x%X "
1708 "next cpb count 0x%X next cpb idx 0x%x\n",
1709 notifier, notifier_error, gen_ctl, status,
1710 cpb_count, next_cpb_idx);
1711
1712 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) {
1713 struct nv_adma_cpb *cpb = &pp->cpb[i];
1714 if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) ||
1715 ap->link.sactive & (1 << i))
1716 ata_port_printk(ap, KERN_ERR,
1717 "CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n",
1718 i, cpb->ctl_flags, cpb->resp_flags);
1719 }
1720 }
1721
1722 /* Push us back into port register mode for error handling. */
1723 nv_adma_register_mode(ap);
1724
1725 /* Mark all of the CPBs as invalid to prevent them from
1726 being executed */
1727 for (i = 0; i < NV_ADMA_MAX_CPBS; i++)
1728 pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID;
1729
1730 /* clear CPB fetch count */
1731 writew(0, mmio + NV_ADMA_CPB_COUNT);
1732
1733 /* Reset channel */
1734 tmp = readw(mmio + NV_ADMA_CTL);
1735 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1736 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1737 udelay(1);
1738 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1739 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1740 }
1741
1742 ata_bmdma_error_handler(ap);
1743 }
1744
1745 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc)
1746 {
1747 struct nv_swncq_port_priv *pp = ap->private_data;
1748 struct defer_queue *dq = &pp->defer_queue;
1749
1750 /* queue is full */
1751 WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE);
1752 dq->defer_bits |= (1 << qc->tag);
1753 dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag;
1754 }
1755
1756 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap)
1757 {
1758 struct nv_swncq_port_priv *pp = ap->private_data;
1759 struct defer_queue *dq = &pp->defer_queue;
1760 unsigned int tag;
1761
1762 if (dq->head == dq->tail) /* null queue */
1763 return NULL;
1764
1765 tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)];
1766 dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON;
1767 WARN_ON(!(dq->defer_bits & (1 << tag)));
1768 dq->defer_bits &= ~(1 << tag);
1769
1770 return ata_qc_from_tag(ap, tag);
1771 }
1772
1773 static void nv_swncq_fis_reinit(struct ata_port *ap)
1774 {
1775 struct nv_swncq_port_priv *pp = ap->private_data;
1776
1777 pp->dhfis_bits = 0;
1778 pp->dmafis_bits = 0;
1779 pp->sdbfis_bits = 0;
1780 pp->ncq_flags = 0;
1781 }
1782
1783 static void nv_swncq_pp_reinit(struct ata_port *ap)
1784 {
1785 struct nv_swncq_port_priv *pp = ap->private_data;
1786 struct defer_queue *dq = &pp->defer_queue;
1787
1788 dq->head = 0;
1789 dq->tail = 0;
1790 dq->defer_bits = 0;
1791 pp->qc_active = 0;
1792 pp->last_issue_tag = ATA_TAG_POISON;
1793 nv_swncq_fis_reinit(ap);
1794 }
1795
1796 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis)
1797 {
1798 struct nv_swncq_port_priv *pp = ap->private_data;
1799
1800 writew(fis, pp->irq_block);
1801 }
1802
1803 static void __ata_bmdma_stop(struct ata_port *ap)
1804 {
1805 struct ata_queued_cmd qc;
1806
1807 qc.ap = ap;
1808 ata_bmdma_stop(&qc);
1809 }
1810
1811 static void nv_swncq_ncq_stop(struct ata_port *ap)
1812 {
1813 struct nv_swncq_port_priv *pp = ap->private_data;
1814 unsigned int i;
1815 u32 sactive;
1816 u32 done_mask;
1817
1818 ata_port_printk(ap, KERN_ERR,
1819 "EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n",
1820 ap->qc_active, ap->link.sactive);
1821 ata_port_printk(ap, KERN_ERR,
1822 "SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n "
1823 "dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n",
1824 pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag,
1825 pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits);
1826
1827 ata_port_printk(ap, KERN_ERR, "ATA_REG 0x%X ERR_REG 0x%X\n",
1828 ap->ops->sff_check_status(ap),
1829 ioread8(ap->ioaddr.error_addr));
1830
1831 sactive = readl(pp->sactive_block);
1832 done_mask = pp->qc_active ^ sactive;
1833
1834 ata_port_printk(ap, KERN_ERR, "tag : dhfis dmafis sdbfis sacitve\n");
1835 for (i = 0; i < ATA_MAX_QUEUE; i++) {
1836 u8 err = 0;
1837 if (pp->qc_active & (1 << i))
1838 err = 0;
1839 else if (done_mask & (1 << i))
1840 err = 1;
1841 else
1842 continue;
1843
1844 ata_port_printk(ap, KERN_ERR,
1845 "tag 0x%x: %01x %01x %01x %01x %s\n", i,
1846 (pp->dhfis_bits >> i) & 0x1,
1847 (pp->dmafis_bits >> i) & 0x1,
1848 (pp->sdbfis_bits >> i) & 0x1,
1849 (sactive >> i) & 0x1,
1850 (err ? "error! tag doesn't exit" : " "));
1851 }
1852
1853 nv_swncq_pp_reinit(ap);
1854 ap->ops->sff_irq_clear(ap);
1855 __ata_bmdma_stop(ap);
1856 nv_swncq_irq_clear(ap, 0xffff);
1857 }
1858
1859 static void nv_swncq_error_handler(struct ata_port *ap)
1860 {
1861 struct ata_eh_context *ehc = &ap->link.eh_context;
1862
1863 if (ap->link.sactive) {
1864 nv_swncq_ncq_stop(ap);
1865 ehc->i.action |= ATA_EH_RESET;
1866 }
1867
1868 ata_bmdma_error_handler(ap);
1869 }
1870
1871 #ifdef CONFIG_PM
1872 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg)
1873 {
1874 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1875 u32 tmp;
1876
1877 /* clear irq */
1878 writel(~0, mmio + NV_INT_STATUS_MCP55);
1879
1880 /* disable irq */
1881 writel(0, mmio + NV_INT_ENABLE_MCP55);
1882
1883 /* disable swncq */
1884 tmp = readl(mmio + NV_CTL_MCP55);
1885 tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ);
1886 writel(tmp, mmio + NV_CTL_MCP55);
1887
1888 return 0;
1889 }
1890
1891 static int nv_swncq_port_resume(struct ata_port *ap)
1892 {
1893 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1894 u32 tmp;
1895
1896 /* clear irq */
1897 writel(~0, mmio + NV_INT_STATUS_MCP55);
1898
1899 /* enable irq */
1900 writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1901
1902 /* enable swncq */
1903 tmp = readl(mmio + NV_CTL_MCP55);
1904 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1905
1906 return 0;
1907 }
1908 #endif
1909
1910 static void nv_swncq_host_init(struct ata_host *host)
1911 {
1912 u32 tmp;
1913 void __iomem *mmio = host->iomap[NV_MMIO_BAR];
1914 struct pci_dev *pdev = to_pci_dev(host->dev);
1915 u8 regval;
1916
1917 /* disable ECO 398 */
1918 pci_read_config_byte(pdev, 0x7f, &regval);
1919 regval &= ~(1 << 7);
1920 pci_write_config_byte(pdev, 0x7f, regval);
1921
1922 /* enable swncq */
1923 tmp = readl(mmio + NV_CTL_MCP55);
1924 VPRINTK("HOST_CTL:0x%X\n", tmp);
1925 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1926
1927 /* enable irq intr */
1928 tmp = readl(mmio + NV_INT_ENABLE_MCP55);
1929 VPRINTK("HOST_ENABLE:0x%X\n", tmp);
1930 writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1931
1932 /* clear port irq */
1933 writel(~0x0, mmio + NV_INT_STATUS_MCP55);
1934 }
1935
1936 static int nv_swncq_slave_config(struct scsi_device *sdev)
1937 {
1938 struct ata_port *ap = ata_shost_to_port(sdev->host);
1939 struct pci_dev *pdev = to_pci_dev(ap->host->dev);
1940 struct ata_device *dev;
1941 int rc;
1942 u8 rev;
1943 u8 check_maxtor = 0;
1944 unsigned char model_num[ATA_ID_PROD_LEN + 1];
1945
1946 rc = ata_scsi_slave_config(sdev);
1947 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
1948 /* Not a proper libata device, ignore */
1949 return rc;
1950
1951 dev = &ap->link.device[sdev->id];
1952 if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI)
1953 return rc;
1954
1955 /* if MCP51 and Maxtor, then disable ncq */
1956 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA ||
1957 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2)
1958 check_maxtor = 1;
1959
1960 /* if MCP55 and rev <= a2 and Maxtor, then disable ncq */
1961 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA ||
1962 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) {
1963 pci_read_config_byte(pdev, 0x8, &rev);
1964 if (rev <= 0xa2)
1965 check_maxtor = 1;
1966 }
1967
1968 if (!check_maxtor)
1969 return rc;
1970
1971 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
1972
1973 if (strncmp(model_num, "Maxtor", 6) == 0) {
1974 ata_scsi_change_queue_depth(sdev, 1, SCSI_QDEPTH_DEFAULT);
1975 ata_dev_printk(dev, KERN_NOTICE,
1976 "Disabling SWNCQ mode (depth %x)\n", sdev->queue_depth);
1977 }
1978
1979 return rc;
1980 }
1981
1982 static int nv_swncq_port_start(struct ata_port *ap)
1983 {
1984 struct device *dev = ap->host->dev;
1985 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1986 struct nv_swncq_port_priv *pp;
1987 int rc;
1988
1989 /* we might fallback to bmdma, allocate bmdma resources */
1990 rc = ata_bmdma_port_start(ap);
1991 if (rc)
1992 return rc;
1993
1994 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1995 if (!pp)
1996 return -ENOMEM;
1997
1998 pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE,
1999 &pp->prd_dma, GFP_KERNEL);
2000 if (!pp->prd)
2001 return -ENOMEM;
2002 memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE);
2003
2004 ap->private_data = pp;
2005 pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE;
2006 pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2;
2007 pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2;
2008
2009 return 0;
2010 }
2011
2012 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc)
2013 {
2014 if (qc->tf.protocol != ATA_PROT_NCQ) {
2015 ata_bmdma_qc_prep(qc);
2016 return;
2017 }
2018
2019 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2020 return;
2021
2022 nv_swncq_fill_sg(qc);
2023 }
2024
2025 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc)
2026 {
2027 struct ata_port *ap = qc->ap;
2028 struct scatterlist *sg;
2029 struct nv_swncq_port_priv *pp = ap->private_data;
2030 struct ata_bmdma_prd *prd;
2031 unsigned int si, idx;
2032
2033 prd = pp->prd + ATA_MAX_PRD * qc->tag;
2034
2035 idx = 0;
2036 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2037 u32 addr, offset;
2038 u32 sg_len, len;
2039
2040 addr = (u32)sg_dma_address(sg);
2041 sg_len = sg_dma_len(sg);
2042
2043 while (sg_len) {
2044 offset = addr & 0xffff;
2045 len = sg_len;
2046 if ((offset + sg_len) > 0x10000)
2047 len = 0x10000 - offset;
2048
2049 prd[idx].addr = cpu_to_le32(addr);
2050 prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2051
2052 idx++;
2053 sg_len -= len;
2054 addr += len;
2055 }
2056 }
2057
2058 prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2059 }
2060
2061 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap,
2062 struct ata_queued_cmd *qc)
2063 {
2064 struct nv_swncq_port_priv *pp = ap->private_data;
2065
2066 if (qc == NULL)
2067 return 0;
2068
2069 DPRINTK("Enter\n");
2070
2071 writel((1 << qc->tag), pp->sactive_block);
2072 pp->last_issue_tag = qc->tag;
2073 pp->dhfis_bits &= ~(1 << qc->tag);
2074 pp->dmafis_bits &= ~(1 << qc->tag);
2075 pp->qc_active |= (0x1 << qc->tag);
2076
2077 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2078 ap->ops->sff_exec_command(ap, &qc->tf);
2079
2080 DPRINTK("Issued tag %u\n", qc->tag);
2081
2082 return 0;
2083 }
2084
2085 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc)
2086 {
2087 struct ata_port *ap = qc->ap;
2088 struct nv_swncq_port_priv *pp = ap->private_data;
2089
2090 if (qc->tf.protocol != ATA_PROT_NCQ)
2091 return ata_bmdma_qc_issue(qc);
2092
2093 DPRINTK("Enter\n");
2094
2095 if (!pp->qc_active)
2096 nv_swncq_issue_atacmd(ap, qc);
2097 else
2098 nv_swncq_qc_to_dq(ap, qc); /* add qc to defer queue */
2099
2100 return 0;
2101 }
2102
2103 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis)
2104 {
2105 u32 serror;
2106 struct ata_eh_info *ehi = &ap->link.eh_info;
2107
2108 ata_ehi_clear_desc(ehi);
2109
2110 /* AHCI needs SError cleared; otherwise, it might lock up */
2111 sata_scr_read(&ap->link, SCR_ERROR, &serror);
2112 sata_scr_write(&ap->link, SCR_ERROR, serror);
2113
2114 /* analyze @irq_stat */
2115 if (fis & NV_SWNCQ_IRQ_ADDED)
2116 ata_ehi_push_desc(ehi, "hot plug");
2117 else if (fis & NV_SWNCQ_IRQ_REMOVED)
2118 ata_ehi_push_desc(ehi, "hot unplug");
2119
2120 ata_ehi_hotplugged(ehi);
2121
2122 /* okay, let's hand over to EH */
2123 ehi->serror |= serror;
2124
2125 ata_port_freeze(ap);
2126 }
2127
2128 static int nv_swncq_sdbfis(struct ata_port *ap)
2129 {
2130 struct ata_queued_cmd *qc;
2131 struct nv_swncq_port_priv *pp = ap->private_data;
2132 struct ata_eh_info *ehi = &ap->link.eh_info;
2133 u32 sactive;
2134 int nr_done = 0;
2135 u32 done_mask;
2136 int i;
2137 u8 host_stat;
2138 u8 lack_dhfis = 0;
2139
2140 host_stat = ap->ops->bmdma_status(ap);
2141 if (unlikely(host_stat & ATA_DMA_ERR)) {
2142 /* error when transfering data to/from memory */
2143 ata_ehi_clear_desc(ehi);
2144 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2145 ehi->err_mask |= AC_ERR_HOST_BUS;
2146 ehi->action |= ATA_EH_RESET;
2147 return -EINVAL;
2148 }
2149
2150 ap->ops->sff_irq_clear(ap);
2151 __ata_bmdma_stop(ap);
2152
2153 sactive = readl(pp->sactive_block);
2154 done_mask = pp->qc_active ^ sactive;
2155
2156 if (unlikely(done_mask & sactive)) {
2157 ata_ehi_clear_desc(ehi);
2158 ata_ehi_push_desc(ehi, "illegal SWNCQ:qc_active transition"
2159 "(%08x->%08x)", pp->qc_active, sactive);
2160 ehi->err_mask |= AC_ERR_HSM;
2161 ehi->action |= ATA_EH_RESET;
2162 return -EINVAL;
2163 }
2164 for (i = 0; i < ATA_MAX_QUEUE; i++) {
2165 if (!(done_mask & (1 << i)))
2166 continue;
2167
2168 qc = ata_qc_from_tag(ap, i);
2169 if (qc) {
2170 ata_qc_complete(qc);
2171 pp->qc_active &= ~(1 << i);
2172 pp->dhfis_bits &= ~(1 << i);
2173 pp->dmafis_bits &= ~(1 << i);
2174 pp->sdbfis_bits |= (1 << i);
2175 nr_done++;
2176 }
2177 }
2178
2179 if (!ap->qc_active) {
2180 DPRINTK("over\n");
2181 nv_swncq_pp_reinit(ap);
2182 return nr_done;
2183 }
2184
2185 if (pp->qc_active & pp->dhfis_bits)
2186 return nr_done;
2187
2188 if ((pp->ncq_flags & ncq_saw_backout) ||
2189 (pp->qc_active ^ pp->dhfis_bits))
2190 /* if the controller cann't get a device to host register FIS,
2191 * The driver needs to reissue the new command.
2192 */
2193 lack_dhfis = 1;
2194
2195 DPRINTK("id 0x%x QC: qc_active 0x%x,"
2196 "SWNCQ:qc_active 0x%X defer_bits %X "
2197 "dhfis 0x%X dmafis 0x%X last_issue_tag %x\n",
2198 ap->print_id, ap->qc_active, pp->qc_active,
2199 pp->defer_queue.defer_bits, pp->dhfis_bits,
2200 pp->dmafis_bits, pp->last_issue_tag);
2201
2202 nv_swncq_fis_reinit(ap);
2203
2204 if (lack_dhfis) {
2205 qc = ata_qc_from_tag(ap, pp->last_issue_tag);
2206 nv_swncq_issue_atacmd(ap, qc);
2207 return nr_done;
2208 }
2209
2210 if (pp->defer_queue.defer_bits) {
2211 /* send deferral queue command */
2212 qc = nv_swncq_qc_from_dq(ap);
2213 WARN_ON(qc == NULL);
2214 nv_swncq_issue_atacmd(ap, qc);
2215 }
2216
2217 return nr_done;
2218 }
2219
2220 static inline u32 nv_swncq_tag(struct ata_port *ap)
2221 {
2222 struct nv_swncq_port_priv *pp = ap->private_data;
2223 u32 tag;
2224
2225 tag = readb(pp->tag_block) >> 2;
2226 return (tag & 0x1f);
2227 }
2228
2229 static int nv_swncq_dmafis(struct ata_port *ap)
2230 {
2231 struct ata_queued_cmd *qc;
2232 unsigned int rw;
2233 u8 dmactl;
2234 u32 tag;
2235 struct nv_swncq_port_priv *pp = ap->private_data;
2236
2237 __ata_bmdma_stop(ap);
2238 tag = nv_swncq_tag(ap);
2239
2240 DPRINTK("dma setup tag 0x%x\n", tag);
2241 qc = ata_qc_from_tag(ap, tag);
2242
2243 if (unlikely(!qc))
2244 return 0;
2245
2246 rw = qc->tf.flags & ATA_TFLAG_WRITE;
2247
2248 /* load PRD table addr. */
2249 iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag,
2250 ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2251
2252 /* specify data direction, triple-check start bit is clear */
2253 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2254 dmactl &= ~ATA_DMA_WR;
2255 if (!rw)
2256 dmactl |= ATA_DMA_WR;
2257
2258 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2259
2260 return 1;
2261 }
2262
2263 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
2264 {
2265 struct nv_swncq_port_priv *pp = ap->private_data;
2266 struct ata_queued_cmd *qc;
2267 struct ata_eh_info *ehi = &ap->link.eh_info;
2268 u32 serror;
2269 u8 ata_stat;
2270 int rc = 0;
2271
2272 ata_stat = ap->ops->sff_check_status(ap);
2273 nv_swncq_irq_clear(ap, fis);
2274 if (!fis)
2275 return;
2276
2277 if (ap->pflags & ATA_PFLAG_FROZEN)
2278 return;
2279
2280 if (fis & NV_SWNCQ_IRQ_HOTPLUG) {
2281 nv_swncq_hotplug(ap, fis);
2282 return;
2283 }
2284
2285 if (!pp->qc_active)
2286 return;
2287
2288 if (ap->ops->scr_read(&ap->link, SCR_ERROR, &serror))
2289 return;
2290 ap->ops->scr_write(&ap->link, SCR_ERROR, serror);
2291
2292 if (ata_stat & ATA_ERR) {
2293 ata_ehi_clear_desc(ehi);
2294 ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis);
2295 ehi->err_mask |= AC_ERR_DEV;
2296 ehi->serror |= serror;
2297 ehi->action |= ATA_EH_RESET;
2298 ata_port_freeze(ap);
2299 return;
2300 }
2301
2302 if (fis & NV_SWNCQ_IRQ_BACKOUT) {
2303 /* If the IRQ is backout, driver must issue
2304 * the new command again some time later.
2305 */
2306 pp->ncq_flags |= ncq_saw_backout;
2307 }
2308
2309 if (fis & NV_SWNCQ_IRQ_SDBFIS) {
2310 pp->ncq_flags |= ncq_saw_sdb;
2311 DPRINTK("id 0x%x SWNCQ: qc_active 0x%X "
2312 "dhfis 0x%X dmafis 0x%X sactive 0x%X\n",
2313 ap->print_id, pp->qc_active, pp->dhfis_bits,
2314 pp->dmafis_bits, readl(pp->sactive_block));
2315 rc = nv_swncq_sdbfis(ap);
2316 if (rc < 0)
2317 goto irq_error;
2318 }
2319
2320 if (fis & NV_SWNCQ_IRQ_DHREGFIS) {
2321 /* The interrupt indicates the new command
2322 * was transmitted correctly to the drive.
2323 */
2324 pp->dhfis_bits |= (0x1 << pp->last_issue_tag);
2325 pp->ncq_flags |= ncq_saw_d2h;
2326 if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) {
2327 ata_ehi_push_desc(ehi, "illegal fis transaction");
2328 ehi->err_mask |= AC_ERR_HSM;
2329 ehi->action |= ATA_EH_RESET;
2330 goto irq_error;
2331 }
2332
2333 if (!(fis & NV_SWNCQ_IRQ_DMASETUP) &&
2334 !(pp->ncq_flags & ncq_saw_dmas)) {
2335 ata_stat = ap->ops->sff_check_status(ap);
2336 if (ata_stat & ATA_BUSY)
2337 goto irq_exit;
2338
2339 if (pp->defer_queue.defer_bits) {
2340 DPRINTK("send next command\n");
2341 qc = nv_swncq_qc_from_dq(ap);
2342 nv_swncq_issue_atacmd(ap, qc);
2343 }
2344 }
2345 }
2346
2347 if (fis & NV_SWNCQ_IRQ_DMASETUP) {
2348 /* program the dma controller with appropriate PRD buffers
2349 * and start the DMA transfer for requested command.
2350 */
2351 pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap));
2352 pp->ncq_flags |= ncq_saw_dmas;
2353 rc = nv_swncq_dmafis(ap);
2354 }
2355
2356 irq_exit:
2357 return;
2358 irq_error:
2359 ata_ehi_push_desc(ehi, "fis:0x%x", fis);
2360 ata_port_freeze(ap);
2361 return;
2362 }
2363
2364 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance)
2365 {
2366 struct ata_host *host = dev_instance;
2367 unsigned int i;
2368 unsigned int handled = 0;
2369 unsigned long flags;
2370 u32 irq_stat;
2371
2372 spin_lock_irqsave(&host->lock, flags);
2373
2374 irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55);
2375
2376 for (i = 0; i < host->n_ports; i++) {
2377 struct ata_port *ap = host->ports[i];
2378
2379 if (ap->link.sactive) {
2380 nv_swncq_host_interrupt(ap, (u16)irq_stat);
2381 handled = 1;
2382 } else {
2383 if (irq_stat) /* reserve Hotplug */
2384 nv_swncq_irq_clear(ap, 0xfff0);
2385
2386 handled += nv_host_intr(ap, (u8)irq_stat);
2387 }
2388 irq_stat >>= NV_INT_PORT_SHIFT_MCP55;
2389 }
2390
2391 spin_unlock_irqrestore(&host->lock, flags);
2392
2393 return IRQ_RETVAL(handled);
2394 }
2395
2396 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2397 {
2398 static int printed_version;
2399 const struct ata_port_info *ppi[] = { NULL, NULL };
2400 struct nv_pi_priv *ipriv;
2401 struct ata_host *host;
2402 struct nv_host_priv *hpriv;
2403 int rc;
2404 u32 bar;
2405 void __iomem *base;
2406 unsigned long type = ent->driver_data;
2407
2408 // Make sure this is a SATA controller by counting the number of bars
2409 // (NVIDIA SATA controllers will always have six bars). Otherwise,
2410 // it's an IDE controller and we ignore it.
2411 for (bar = 0; bar < 6; bar++)
2412 if (pci_resource_start(pdev, bar) == 0)
2413 return -ENODEV;
2414
2415 if (!printed_version++)
2416 dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
2417
2418 rc = pcim_enable_device(pdev);
2419 if (rc)
2420 return rc;
2421
2422 /* determine type and allocate host */
2423 if (type == CK804 && adma_enabled) {
2424 dev_printk(KERN_NOTICE, &pdev->dev, "Using ADMA mode\n");
2425 type = ADMA;
2426 } else if (type == MCP5x && swncq_enabled) {
2427 dev_printk(KERN_NOTICE, &pdev->dev, "Using SWNCQ mode\n");
2428 type = SWNCQ;
2429 }
2430
2431 ppi[0] = &nv_port_info[type];
2432 ipriv = ppi[0]->private_data;
2433 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2434 if (rc)
2435 return rc;
2436
2437 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2438 if (!hpriv)
2439 return -ENOMEM;
2440 hpriv->type = type;
2441 host->private_data = hpriv;
2442
2443 /* request and iomap NV_MMIO_BAR */
2444 rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME);
2445 if (rc)
2446 return rc;
2447
2448 /* configure SCR access */
2449 base = host->iomap[NV_MMIO_BAR];
2450 host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET;
2451 host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET;
2452
2453 /* enable SATA space for CK804 */
2454 if (type >= CK804) {
2455 u8 regval;
2456
2457 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2458 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2459 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2460 }
2461
2462 /* init ADMA */
2463 if (type == ADMA) {
2464 rc = nv_adma_host_init(host);
2465 if (rc)
2466 return rc;
2467 } else if (type == SWNCQ)
2468 nv_swncq_host_init(host);
2469
2470 if (msi_enabled) {
2471 dev_printk(KERN_NOTICE, &pdev->dev, "Using MSI\n");
2472 pci_enable_msi(pdev);
2473 }
2474
2475 pci_set_master(pdev);
2476 return ata_pci_sff_activate_host(host, ipriv->irq_handler, ipriv->sht);
2477 }
2478
2479 #ifdef CONFIG_PM
2480 static int nv_pci_device_resume(struct pci_dev *pdev)
2481 {
2482 struct ata_host *host = dev_get_drvdata(&pdev->dev);
2483 struct nv_host_priv *hpriv = host->private_data;
2484 int rc;
2485
2486 rc = ata_pci_device_do_resume(pdev);
2487 if (rc)
2488 return rc;
2489
2490 if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) {
2491 if (hpriv->type >= CK804) {
2492 u8 regval;
2493
2494 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2495 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2496 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2497 }
2498 if (hpriv->type == ADMA) {
2499 u32 tmp32;
2500 struct nv_adma_port_priv *pp;
2501 /* enable/disable ADMA on the ports appropriately */
2502 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2503
2504 pp = host->ports[0]->private_data;
2505 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2506 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2507 NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2508 else
2509 tmp32 |= (NV_MCP_SATA_CFG_20_PORT0_EN |
2510 NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2511 pp = host->ports[1]->private_data;
2512 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2513 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN |
2514 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2515 else
2516 tmp32 |= (NV_MCP_SATA_CFG_20_PORT1_EN |
2517 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2518
2519 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2520 }
2521 }
2522
2523 ata_host_resume(host);
2524
2525 return 0;
2526 }
2527 #endif
2528
2529 static void nv_ck804_host_stop(struct ata_host *host)
2530 {
2531 struct pci_dev *pdev = to_pci_dev(host->dev);
2532 u8 regval;
2533
2534 /* disable SATA space for CK804 */
2535 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2536 regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2537 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2538 }
2539
2540 static void nv_adma_host_stop(struct ata_host *host)
2541 {
2542 struct pci_dev *pdev = to_pci_dev(host->dev);
2543 u32 tmp32;
2544
2545 /* disable ADMA on the ports */
2546 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2547 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2548 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
2549 NV_MCP_SATA_CFG_20_PORT1_EN |
2550 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2551
2552 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2553
2554 nv_ck804_host_stop(host);
2555 }
2556
2557 static int __init nv_init(void)
2558 {
2559 return pci_register_driver(&nv_pci_driver);
2560 }
2561
2562 static void __exit nv_exit(void)
2563 {
2564 pci_unregister_driver(&nv_pci_driver);
2565 }
2566
2567 module_init(nv_init);
2568 module_exit(nv_exit);
2569 module_param_named(adma, adma_enabled, bool, 0444);
2570 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: false)");
2571 module_param_named(swncq, swncq_enabled, bool, 0444);
2572 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)");
2573 module_param_named(msi, msi_enabled, bool, 0444);
2574 MODULE_PARM_DESC(msi, "Enable use of MSI (Default: false)");
2575
This page took 0.118561 seconds and 5 git commands to generate.