Merge tag 'stable/for-linus-3.14-rc0-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / drivers / base / core.c
1 /*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kdev_t.h>
20 #include <linux/notifier.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/genhd.h>
24 #include <linux/kallsyms.h>
25 #include <linux/mutex.h>
26 #include <linux/async.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sysfs.h>
30
31 #include "base.h"
32 #include "power/power.h"
33
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46
47 int (*platform_notify)(struct device *dev) = NULL;
48 int (*platform_notify_remove)(struct device *dev) = NULL;
49 static struct kobject *dev_kobj;
50 struct kobject *sysfs_dev_char_kobj;
51 struct kobject *sysfs_dev_block_kobj;
52
53 static DEFINE_MUTEX(device_hotplug_lock);
54
55 void lock_device_hotplug(void)
56 {
57 mutex_lock(&device_hotplug_lock);
58 }
59
60 void unlock_device_hotplug(void)
61 {
62 mutex_unlock(&device_hotplug_lock);
63 }
64
65 int lock_device_hotplug_sysfs(void)
66 {
67 if (mutex_trylock(&device_hotplug_lock))
68 return 0;
69
70 /* Avoid busy looping (5 ms of sleep should do). */
71 msleep(5);
72 return restart_syscall();
73 }
74
75 #ifdef CONFIG_BLOCK
76 static inline int device_is_not_partition(struct device *dev)
77 {
78 return !(dev->type == &part_type);
79 }
80 #else
81 static inline int device_is_not_partition(struct device *dev)
82 {
83 return 1;
84 }
85 #endif
86
87 /**
88 * dev_driver_string - Return a device's driver name, if at all possible
89 * @dev: struct device to get the name of
90 *
91 * Will return the device's driver's name if it is bound to a device. If
92 * the device is not bound to a driver, it will return the name of the bus
93 * it is attached to. If it is not attached to a bus either, an empty
94 * string will be returned.
95 */
96 const char *dev_driver_string(const struct device *dev)
97 {
98 struct device_driver *drv;
99
100 /* dev->driver can change to NULL underneath us because of unbinding,
101 * so be careful about accessing it. dev->bus and dev->class should
102 * never change once they are set, so they don't need special care.
103 */
104 drv = ACCESS_ONCE(dev->driver);
105 return drv ? drv->name :
106 (dev->bus ? dev->bus->name :
107 (dev->class ? dev->class->name : ""));
108 }
109 EXPORT_SYMBOL(dev_driver_string);
110
111 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
112
113 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
114 char *buf)
115 {
116 struct device_attribute *dev_attr = to_dev_attr(attr);
117 struct device *dev = kobj_to_dev(kobj);
118 ssize_t ret = -EIO;
119
120 if (dev_attr->show)
121 ret = dev_attr->show(dev, dev_attr, buf);
122 if (ret >= (ssize_t)PAGE_SIZE) {
123 print_symbol("dev_attr_show: %s returned bad count\n",
124 (unsigned long)dev_attr->show);
125 }
126 return ret;
127 }
128
129 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
130 const char *buf, size_t count)
131 {
132 struct device_attribute *dev_attr = to_dev_attr(attr);
133 struct device *dev = kobj_to_dev(kobj);
134 ssize_t ret = -EIO;
135
136 if (dev_attr->store)
137 ret = dev_attr->store(dev, dev_attr, buf, count);
138 return ret;
139 }
140
141 static const struct sysfs_ops dev_sysfs_ops = {
142 .show = dev_attr_show,
143 .store = dev_attr_store,
144 };
145
146 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
147
148 ssize_t device_store_ulong(struct device *dev,
149 struct device_attribute *attr,
150 const char *buf, size_t size)
151 {
152 struct dev_ext_attribute *ea = to_ext_attr(attr);
153 char *end;
154 unsigned long new = simple_strtoul(buf, &end, 0);
155 if (end == buf)
156 return -EINVAL;
157 *(unsigned long *)(ea->var) = new;
158 /* Always return full write size even if we didn't consume all */
159 return size;
160 }
161 EXPORT_SYMBOL_GPL(device_store_ulong);
162
163 ssize_t device_show_ulong(struct device *dev,
164 struct device_attribute *attr,
165 char *buf)
166 {
167 struct dev_ext_attribute *ea = to_ext_attr(attr);
168 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
169 }
170 EXPORT_SYMBOL_GPL(device_show_ulong);
171
172 ssize_t device_store_int(struct device *dev,
173 struct device_attribute *attr,
174 const char *buf, size_t size)
175 {
176 struct dev_ext_attribute *ea = to_ext_attr(attr);
177 char *end;
178 long new = simple_strtol(buf, &end, 0);
179 if (end == buf || new > INT_MAX || new < INT_MIN)
180 return -EINVAL;
181 *(int *)(ea->var) = new;
182 /* Always return full write size even if we didn't consume all */
183 return size;
184 }
185 EXPORT_SYMBOL_GPL(device_store_int);
186
187 ssize_t device_show_int(struct device *dev,
188 struct device_attribute *attr,
189 char *buf)
190 {
191 struct dev_ext_attribute *ea = to_ext_attr(attr);
192
193 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
194 }
195 EXPORT_SYMBOL_GPL(device_show_int);
196
197 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
198 const char *buf, size_t size)
199 {
200 struct dev_ext_attribute *ea = to_ext_attr(attr);
201
202 if (strtobool(buf, ea->var) < 0)
203 return -EINVAL;
204
205 return size;
206 }
207 EXPORT_SYMBOL_GPL(device_store_bool);
208
209 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
210 char *buf)
211 {
212 struct dev_ext_attribute *ea = to_ext_attr(attr);
213
214 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
215 }
216 EXPORT_SYMBOL_GPL(device_show_bool);
217
218 /**
219 * device_release - free device structure.
220 * @kobj: device's kobject.
221 *
222 * This is called once the reference count for the object
223 * reaches 0. We forward the call to the device's release
224 * method, which should handle actually freeing the structure.
225 */
226 static void device_release(struct kobject *kobj)
227 {
228 struct device *dev = kobj_to_dev(kobj);
229 struct device_private *p = dev->p;
230
231 /*
232 * Some platform devices are driven without driver attached
233 * and managed resources may have been acquired. Make sure
234 * all resources are released.
235 *
236 * Drivers still can add resources into device after device
237 * is deleted but alive, so release devres here to avoid
238 * possible memory leak.
239 */
240 devres_release_all(dev);
241
242 if (dev->release)
243 dev->release(dev);
244 else if (dev->type && dev->type->release)
245 dev->type->release(dev);
246 else if (dev->class && dev->class->dev_release)
247 dev->class->dev_release(dev);
248 else
249 WARN(1, KERN_ERR "Device '%s' does not have a release() "
250 "function, it is broken and must be fixed.\n",
251 dev_name(dev));
252 kfree(p);
253 }
254
255 static const void *device_namespace(struct kobject *kobj)
256 {
257 struct device *dev = kobj_to_dev(kobj);
258 const void *ns = NULL;
259
260 if (dev->class && dev->class->ns_type)
261 ns = dev->class->namespace(dev);
262
263 return ns;
264 }
265
266 static struct kobj_type device_ktype = {
267 .release = device_release,
268 .sysfs_ops = &dev_sysfs_ops,
269 .namespace = device_namespace,
270 };
271
272
273 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
274 {
275 struct kobj_type *ktype = get_ktype(kobj);
276
277 if (ktype == &device_ktype) {
278 struct device *dev = kobj_to_dev(kobj);
279 if (dev->bus)
280 return 1;
281 if (dev->class)
282 return 1;
283 }
284 return 0;
285 }
286
287 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
288 {
289 struct device *dev = kobj_to_dev(kobj);
290
291 if (dev->bus)
292 return dev->bus->name;
293 if (dev->class)
294 return dev->class->name;
295 return NULL;
296 }
297
298 static int dev_uevent(struct kset *kset, struct kobject *kobj,
299 struct kobj_uevent_env *env)
300 {
301 struct device *dev = kobj_to_dev(kobj);
302 int retval = 0;
303
304 /* add device node properties if present */
305 if (MAJOR(dev->devt)) {
306 const char *tmp;
307 const char *name;
308 umode_t mode = 0;
309 kuid_t uid = GLOBAL_ROOT_UID;
310 kgid_t gid = GLOBAL_ROOT_GID;
311
312 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
313 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
314 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
315 if (name) {
316 add_uevent_var(env, "DEVNAME=%s", name);
317 if (mode)
318 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
319 if (!uid_eq(uid, GLOBAL_ROOT_UID))
320 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
321 if (!gid_eq(gid, GLOBAL_ROOT_GID))
322 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
323 kfree(tmp);
324 }
325 }
326
327 if (dev->type && dev->type->name)
328 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
329
330 if (dev->driver)
331 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
332
333 /* Add common DT information about the device */
334 of_device_uevent(dev, env);
335
336 /* have the bus specific function add its stuff */
337 if (dev->bus && dev->bus->uevent) {
338 retval = dev->bus->uevent(dev, env);
339 if (retval)
340 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
341 dev_name(dev), __func__, retval);
342 }
343
344 /* have the class specific function add its stuff */
345 if (dev->class && dev->class->dev_uevent) {
346 retval = dev->class->dev_uevent(dev, env);
347 if (retval)
348 pr_debug("device: '%s': %s: class uevent() "
349 "returned %d\n", dev_name(dev),
350 __func__, retval);
351 }
352
353 /* have the device type specific function add its stuff */
354 if (dev->type && dev->type->uevent) {
355 retval = dev->type->uevent(dev, env);
356 if (retval)
357 pr_debug("device: '%s': %s: dev_type uevent() "
358 "returned %d\n", dev_name(dev),
359 __func__, retval);
360 }
361
362 return retval;
363 }
364
365 static const struct kset_uevent_ops device_uevent_ops = {
366 .filter = dev_uevent_filter,
367 .name = dev_uevent_name,
368 .uevent = dev_uevent,
369 };
370
371 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
372 char *buf)
373 {
374 struct kobject *top_kobj;
375 struct kset *kset;
376 struct kobj_uevent_env *env = NULL;
377 int i;
378 size_t count = 0;
379 int retval;
380
381 /* search the kset, the device belongs to */
382 top_kobj = &dev->kobj;
383 while (!top_kobj->kset && top_kobj->parent)
384 top_kobj = top_kobj->parent;
385 if (!top_kobj->kset)
386 goto out;
387
388 kset = top_kobj->kset;
389 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
390 goto out;
391
392 /* respect filter */
393 if (kset->uevent_ops && kset->uevent_ops->filter)
394 if (!kset->uevent_ops->filter(kset, &dev->kobj))
395 goto out;
396
397 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
398 if (!env)
399 return -ENOMEM;
400
401 /* let the kset specific function add its keys */
402 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
403 if (retval)
404 goto out;
405
406 /* copy keys to file */
407 for (i = 0; i < env->envp_idx; i++)
408 count += sprintf(&buf[count], "%s\n", env->envp[i]);
409 out:
410 kfree(env);
411 return count;
412 }
413
414 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
415 const char *buf, size_t count)
416 {
417 enum kobject_action action;
418
419 if (kobject_action_type(buf, count, &action) == 0)
420 kobject_uevent(&dev->kobj, action);
421 else
422 dev_err(dev, "uevent: unknown action-string\n");
423 return count;
424 }
425 static DEVICE_ATTR_RW(uevent);
426
427 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
428 char *buf)
429 {
430 bool val;
431
432 device_lock(dev);
433 val = !dev->offline;
434 device_unlock(dev);
435 return sprintf(buf, "%u\n", val);
436 }
437
438 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
439 const char *buf, size_t count)
440 {
441 bool val;
442 int ret;
443
444 ret = strtobool(buf, &val);
445 if (ret < 0)
446 return ret;
447
448 ret = lock_device_hotplug_sysfs();
449 if (ret)
450 return ret;
451
452 ret = val ? device_online(dev) : device_offline(dev);
453 unlock_device_hotplug();
454 return ret < 0 ? ret : count;
455 }
456 static DEVICE_ATTR_RW(online);
457
458 int device_add_groups(struct device *dev, const struct attribute_group **groups)
459 {
460 return sysfs_create_groups(&dev->kobj, groups);
461 }
462
463 void device_remove_groups(struct device *dev,
464 const struct attribute_group **groups)
465 {
466 sysfs_remove_groups(&dev->kobj, groups);
467 }
468
469 static int device_add_attrs(struct device *dev)
470 {
471 struct class *class = dev->class;
472 const struct device_type *type = dev->type;
473 int error;
474
475 if (class) {
476 error = device_add_groups(dev, class->dev_groups);
477 if (error)
478 return error;
479 }
480
481 if (type) {
482 error = device_add_groups(dev, type->groups);
483 if (error)
484 goto err_remove_class_groups;
485 }
486
487 error = device_add_groups(dev, dev->groups);
488 if (error)
489 goto err_remove_type_groups;
490
491 if (device_supports_offline(dev) && !dev->offline_disabled) {
492 error = device_create_file(dev, &dev_attr_online);
493 if (error)
494 goto err_remove_dev_groups;
495 }
496
497 return 0;
498
499 err_remove_dev_groups:
500 device_remove_groups(dev, dev->groups);
501 err_remove_type_groups:
502 if (type)
503 device_remove_groups(dev, type->groups);
504 err_remove_class_groups:
505 if (class)
506 device_remove_groups(dev, class->dev_groups);
507
508 return error;
509 }
510
511 static void device_remove_attrs(struct device *dev)
512 {
513 struct class *class = dev->class;
514 const struct device_type *type = dev->type;
515
516 device_remove_file(dev, &dev_attr_online);
517 device_remove_groups(dev, dev->groups);
518
519 if (type)
520 device_remove_groups(dev, type->groups);
521
522 if (class)
523 device_remove_groups(dev, class->dev_groups);
524 }
525
526 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
527 char *buf)
528 {
529 return print_dev_t(buf, dev->devt);
530 }
531 static DEVICE_ATTR_RO(dev);
532
533 /* /sys/devices/ */
534 struct kset *devices_kset;
535
536 /**
537 * device_create_file - create sysfs attribute file for device.
538 * @dev: device.
539 * @attr: device attribute descriptor.
540 */
541 int device_create_file(struct device *dev,
542 const struct device_attribute *attr)
543 {
544 int error = 0;
545
546 if (dev) {
547 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
548 "Attribute %s: write permission without 'store'\n",
549 attr->attr.name);
550 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
551 "Attribute %s: read permission without 'show'\n",
552 attr->attr.name);
553 error = sysfs_create_file(&dev->kobj, &attr->attr);
554 }
555
556 return error;
557 }
558 EXPORT_SYMBOL_GPL(device_create_file);
559
560 /**
561 * device_remove_file - remove sysfs attribute file.
562 * @dev: device.
563 * @attr: device attribute descriptor.
564 */
565 void device_remove_file(struct device *dev,
566 const struct device_attribute *attr)
567 {
568 if (dev)
569 sysfs_remove_file(&dev->kobj, &attr->attr);
570 }
571 EXPORT_SYMBOL_GPL(device_remove_file);
572
573 /**
574 * device_create_bin_file - create sysfs binary attribute file for device.
575 * @dev: device.
576 * @attr: device binary attribute descriptor.
577 */
578 int device_create_bin_file(struct device *dev,
579 const struct bin_attribute *attr)
580 {
581 int error = -EINVAL;
582 if (dev)
583 error = sysfs_create_bin_file(&dev->kobj, attr);
584 return error;
585 }
586 EXPORT_SYMBOL_GPL(device_create_bin_file);
587
588 /**
589 * device_remove_bin_file - remove sysfs binary attribute file
590 * @dev: device.
591 * @attr: device binary attribute descriptor.
592 */
593 void device_remove_bin_file(struct device *dev,
594 const struct bin_attribute *attr)
595 {
596 if (dev)
597 sysfs_remove_bin_file(&dev->kobj, attr);
598 }
599 EXPORT_SYMBOL_GPL(device_remove_bin_file);
600
601 /**
602 * device_schedule_callback_owner - helper to schedule a callback for a device
603 * @dev: device.
604 * @func: callback function to invoke later.
605 * @owner: module owning the callback routine
606 *
607 * Attribute methods must not unregister themselves or their parent device
608 * (which would amount to the same thing). Attempts to do so will deadlock,
609 * since unregistration is mutually exclusive with driver callbacks.
610 *
611 * Instead methods can call this routine, which will attempt to allocate
612 * and schedule a workqueue request to call back @func with @dev as its
613 * argument in the workqueue's process context. @dev will be pinned until
614 * @func returns.
615 *
616 * This routine is usually called via the inline device_schedule_callback(),
617 * which automatically sets @owner to THIS_MODULE.
618 *
619 * Returns 0 if the request was submitted, -ENOMEM if storage could not
620 * be allocated, -ENODEV if a reference to @owner isn't available.
621 *
622 * NOTE: This routine won't work if CONFIG_SYSFS isn't set! It uses an
623 * underlying sysfs routine (since it is intended for use by attribute
624 * methods), and if sysfs isn't available you'll get nothing but -ENOSYS.
625 */
626 int device_schedule_callback_owner(struct device *dev,
627 void (*func)(struct device *), struct module *owner)
628 {
629 return sysfs_schedule_callback(&dev->kobj,
630 (void (*)(void *)) func, dev, owner);
631 }
632 EXPORT_SYMBOL_GPL(device_schedule_callback_owner);
633
634 static void klist_children_get(struct klist_node *n)
635 {
636 struct device_private *p = to_device_private_parent(n);
637 struct device *dev = p->device;
638
639 get_device(dev);
640 }
641
642 static void klist_children_put(struct klist_node *n)
643 {
644 struct device_private *p = to_device_private_parent(n);
645 struct device *dev = p->device;
646
647 put_device(dev);
648 }
649
650 /**
651 * device_initialize - init device structure.
652 * @dev: device.
653 *
654 * This prepares the device for use by other layers by initializing
655 * its fields.
656 * It is the first half of device_register(), if called by
657 * that function, though it can also be called separately, so one
658 * may use @dev's fields. In particular, get_device()/put_device()
659 * may be used for reference counting of @dev after calling this
660 * function.
661 *
662 * All fields in @dev must be initialized by the caller to 0, except
663 * for those explicitly set to some other value. The simplest
664 * approach is to use kzalloc() to allocate the structure containing
665 * @dev.
666 *
667 * NOTE: Use put_device() to give up your reference instead of freeing
668 * @dev directly once you have called this function.
669 */
670 void device_initialize(struct device *dev)
671 {
672 dev->kobj.kset = devices_kset;
673 kobject_init(&dev->kobj, &device_ktype);
674 INIT_LIST_HEAD(&dev->dma_pools);
675 mutex_init(&dev->mutex);
676 lockdep_set_novalidate_class(&dev->mutex);
677 spin_lock_init(&dev->devres_lock);
678 INIT_LIST_HEAD(&dev->devres_head);
679 device_pm_init(dev);
680 set_dev_node(dev, -1);
681 }
682 EXPORT_SYMBOL_GPL(device_initialize);
683
684 struct kobject *virtual_device_parent(struct device *dev)
685 {
686 static struct kobject *virtual_dir = NULL;
687
688 if (!virtual_dir)
689 virtual_dir = kobject_create_and_add("virtual",
690 &devices_kset->kobj);
691
692 return virtual_dir;
693 }
694
695 struct class_dir {
696 struct kobject kobj;
697 struct class *class;
698 };
699
700 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
701
702 static void class_dir_release(struct kobject *kobj)
703 {
704 struct class_dir *dir = to_class_dir(kobj);
705 kfree(dir);
706 }
707
708 static const
709 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
710 {
711 struct class_dir *dir = to_class_dir(kobj);
712 return dir->class->ns_type;
713 }
714
715 static struct kobj_type class_dir_ktype = {
716 .release = class_dir_release,
717 .sysfs_ops = &kobj_sysfs_ops,
718 .child_ns_type = class_dir_child_ns_type
719 };
720
721 static struct kobject *
722 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
723 {
724 struct class_dir *dir;
725 int retval;
726
727 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
728 if (!dir)
729 return NULL;
730
731 dir->class = class;
732 kobject_init(&dir->kobj, &class_dir_ktype);
733
734 dir->kobj.kset = &class->p->glue_dirs;
735
736 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
737 if (retval < 0) {
738 kobject_put(&dir->kobj);
739 return NULL;
740 }
741 return &dir->kobj;
742 }
743
744
745 static struct kobject *get_device_parent(struct device *dev,
746 struct device *parent)
747 {
748 if (dev->class) {
749 static DEFINE_MUTEX(gdp_mutex);
750 struct kobject *kobj = NULL;
751 struct kobject *parent_kobj;
752 struct kobject *k;
753
754 #ifdef CONFIG_BLOCK
755 /* block disks show up in /sys/block */
756 if (sysfs_deprecated && dev->class == &block_class) {
757 if (parent && parent->class == &block_class)
758 return &parent->kobj;
759 return &block_class.p->subsys.kobj;
760 }
761 #endif
762
763 /*
764 * If we have no parent, we live in "virtual".
765 * Class-devices with a non class-device as parent, live
766 * in a "glue" directory to prevent namespace collisions.
767 */
768 if (parent == NULL)
769 parent_kobj = virtual_device_parent(dev);
770 else if (parent->class && !dev->class->ns_type)
771 return &parent->kobj;
772 else
773 parent_kobj = &parent->kobj;
774
775 mutex_lock(&gdp_mutex);
776
777 /* find our class-directory at the parent and reference it */
778 spin_lock(&dev->class->p->glue_dirs.list_lock);
779 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
780 if (k->parent == parent_kobj) {
781 kobj = kobject_get(k);
782 break;
783 }
784 spin_unlock(&dev->class->p->glue_dirs.list_lock);
785 if (kobj) {
786 mutex_unlock(&gdp_mutex);
787 return kobj;
788 }
789
790 /* or create a new class-directory at the parent device */
791 k = class_dir_create_and_add(dev->class, parent_kobj);
792 /* do not emit an uevent for this simple "glue" directory */
793 mutex_unlock(&gdp_mutex);
794 return k;
795 }
796
797 /* subsystems can specify a default root directory for their devices */
798 if (!parent && dev->bus && dev->bus->dev_root)
799 return &dev->bus->dev_root->kobj;
800
801 if (parent)
802 return &parent->kobj;
803 return NULL;
804 }
805
806 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
807 {
808 /* see if we live in a "glue" directory */
809 if (!glue_dir || !dev->class ||
810 glue_dir->kset != &dev->class->p->glue_dirs)
811 return;
812
813 kobject_put(glue_dir);
814 }
815
816 static void cleanup_device_parent(struct device *dev)
817 {
818 cleanup_glue_dir(dev, dev->kobj.parent);
819 }
820
821 static int device_add_class_symlinks(struct device *dev)
822 {
823 int error;
824
825 if (!dev->class)
826 return 0;
827
828 error = sysfs_create_link(&dev->kobj,
829 &dev->class->p->subsys.kobj,
830 "subsystem");
831 if (error)
832 goto out;
833
834 if (dev->parent && device_is_not_partition(dev)) {
835 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
836 "device");
837 if (error)
838 goto out_subsys;
839 }
840
841 #ifdef CONFIG_BLOCK
842 /* /sys/block has directories and does not need symlinks */
843 if (sysfs_deprecated && dev->class == &block_class)
844 return 0;
845 #endif
846
847 /* link in the class directory pointing to the device */
848 error = sysfs_create_link(&dev->class->p->subsys.kobj,
849 &dev->kobj, dev_name(dev));
850 if (error)
851 goto out_device;
852
853 return 0;
854
855 out_device:
856 sysfs_remove_link(&dev->kobj, "device");
857
858 out_subsys:
859 sysfs_remove_link(&dev->kobj, "subsystem");
860 out:
861 return error;
862 }
863
864 static void device_remove_class_symlinks(struct device *dev)
865 {
866 if (!dev->class)
867 return;
868
869 if (dev->parent && device_is_not_partition(dev))
870 sysfs_remove_link(&dev->kobj, "device");
871 sysfs_remove_link(&dev->kobj, "subsystem");
872 #ifdef CONFIG_BLOCK
873 if (sysfs_deprecated && dev->class == &block_class)
874 return;
875 #endif
876 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
877 }
878
879 /**
880 * dev_set_name - set a device name
881 * @dev: device
882 * @fmt: format string for the device's name
883 */
884 int dev_set_name(struct device *dev, const char *fmt, ...)
885 {
886 va_list vargs;
887 int err;
888
889 va_start(vargs, fmt);
890 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
891 va_end(vargs);
892 return err;
893 }
894 EXPORT_SYMBOL_GPL(dev_set_name);
895
896 /**
897 * device_to_dev_kobj - select a /sys/dev/ directory for the device
898 * @dev: device
899 *
900 * By default we select char/ for new entries. Setting class->dev_obj
901 * to NULL prevents an entry from being created. class->dev_kobj must
902 * be set (or cleared) before any devices are registered to the class
903 * otherwise device_create_sys_dev_entry() and
904 * device_remove_sys_dev_entry() will disagree about the presence of
905 * the link.
906 */
907 static struct kobject *device_to_dev_kobj(struct device *dev)
908 {
909 struct kobject *kobj;
910
911 if (dev->class)
912 kobj = dev->class->dev_kobj;
913 else
914 kobj = sysfs_dev_char_kobj;
915
916 return kobj;
917 }
918
919 static int device_create_sys_dev_entry(struct device *dev)
920 {
921 struct kobject *kobj = device_to_dev_kobj(dev);
922 int error = 0;
923 char devt_str[15];
924
925 if (kobj) {
926 format_dev_t(devt_str, dev->devt);
927 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
928 }
929
930 return error;
931 }
932
933 static void device_remove_sys_dev_entry(struct device *dev)
934 {
935 struct kobject *kobj = device_to_dev_kobj(dev);
936 char devt_str[15];
937
938 if (kobj) {
939 format_dev_t(devt_str, dev->devt);
940 sysfs_remove_link(kobj, devt_str);
941 }
942 }
943
944 int device_private_init(struct device *dev)
945 {
946 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
947 if (!dev->p)
948 return -ENOMEM;
949 dev->p->device = dev;
950 klist_init(&dev->p->klist_children, klist_children_get,
951 klist_children_put);
952 INIT_LIST_HEAD(&dev->p->deferred_probe);
953 return 0;
954 }
955
956 /**
957 * device_add - add device to device hierarchy.
958 * @dev: device.
959 *
960 * This is part 2 of device_register(), though may be called
961 * separately _iff_ device_initialize() has been called separately.
962 *
963 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
964 * to the global and sibling lists for the device, then
965 * adds it to the other relevant subsystems of the driver model.
966 *
967 * Do not call this routine or device_register() more than once for
968 * any device structure. The driver model core is not designed to work
969 * with devices that get unregistered and then spring back to life.
970 * (Among other things, it's very hard to guarantee that all references
971 * to the previous incarnation of @dev have been dropped.) Allocate
972 * and register a fresh new struct device instead.
973 *
974 * NOTE: _Never_ directly free @dev after calling this function, even
975 * if it returned an error! Always use put_device() to give up your
976 * reference instead.
977 */
978 int device_add(struct device *dev)
979 {
980 struct device *parent = NULL;
981 struct kobject *kobj;
982 struct class_interface *class_intf;
983 int error = -EINVAL;
984
985 dev = get_device(dev);
986 if (!dev)
987 goto done;
988
989 if (!dev->p) {
990 error = device_private_init(dev);
991 if (error)
992 goto done;
993 }
994
995 /*
996 * for statically allocated devices, which should all be converted
997 * some day, we need to initialize the name. We prevent reading back
998 * the name, and force the use of dev_name()
999 */
1000 if (dev->init_name) {
1001 dev_set_name(dev, "%s", dev->init_name);
1002 dev->init_name = NULL;
1003 }
1004
1005 /* subsystems can specify simple device enumeration */
1006 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1007 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1008
1009 if (!dev_name(dev)) {
1010 error = -EINVAL;
1011 goto name_error;
1012 }
1013
1014 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1015
1016 parent = get_device(dev->parent);
1017 kobj = get_device_parent(dev, parent);
1018 if (kobj)
1019 dev->kobj.parent = kobj;
1020
1021 /* use parent numa_node */
1022 if (parent)
1023 set_dev_node(dev, dev_to_node(parent));
1024
1025 /* first, register with generic layer. */
1026 /* we require the name to be set before, and pass NULL */
1027 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1028 if (error)
1029 goto Error;
1030
1031 /* notify platform of device entry */
1032 if (platform_notify)
1033 platform_notify(dev);
1034
1035 error = device_create_file(dev, &dev_attr_uevent);
1036 if (error)
1037 goto attrError;
1038
1039 if (MAJOR(dev->devt)) {
1040 error = device_create_file(dev, &dev_attr_dev);
1041 if (error)
1042 goto ueventattrError;
1043
1044 error = device_create_sys_dev_entry(dev);
1045 if (error)
1046 goto devtattrError;
1047
1048 devtmpfs_create_node(dev);
1049 }
1050
1051 error = device_add_class_symlinks(dev);
1052 if (error)
1053 goto SymlinkError;
1054 error = device_add_attrs(dev);
1055 if (error)
1056 goto AttrsError;
1057 error = bus_add_device(dev);
1058 if (error)
1059 goto BusError;
1060 error = dpm_sysfs_add(dev);
1061 if (error)
1062 goto DPMError;
1063 device_pm_add(dev);
1064
1065 /* Notify clients of device addition. This call must come
1066 * after dpm_sysfs_add() and before kobject_uevent().
1067 */
1068 if (dev->bus)
1069 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1070 BUS_NOTIFY_ADD_DEVICE, dev);
1071
1072 kobject_uevent(&dev->kobj, KOBJ_ADD);
1073 bus_probe_device(dev);
1074 if (parent)
1075 klist_add_tail(&dev->p->knode_parent,
1076 &parent->p->klist_children);
1077
1078 if (dev->class) {
1079 mutex_lock(&dev->class->p->mutex);
1080 /* tie the class to the device */
1081 klist_add_tail(&dev->knode_class,
1082 &dev->class->p->klist_devices);
1083
1084 /* notify any interfaces that the device is here */
1085 list_for_each_entry(class_intf,
1086 &dev->class->p->interfaces, node)
1087 if (class_intf->add_dev)
1088 class_intf->add_dev(dev, class_intf);
1089 mutex_unlock(&dev->class->p->mutex);
1090 }
1091 done:
1092 put_device(dev);
1093 return error;
1094 DPMError:
1095 bus_remove_device(dev);
1096 BusError:
1097 device_remove_attrs(dev);
1098 AttrsError:
1099 device_remove_class_symlinks(dev);
1100 SymlinkError:
1101 if (MAJOR(dev->devt))
1102 devtmpfs_delete_node(dev);
1103 if (MAJOR(dev->devt))
1104 device_remove_sys_dev_entry(dev);
1105 devtattrError:
1106 if (MAJOR(dev->devt))
1107 device_remove_file(dev, &dev_attr_dev);
1108 ueventattrError:
1109 device_remove_file(dev, &dev_attr_uevent);
1110 attrError:
1111 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1112 kobject_del(&dev->kobj);
1113 Error:
1114 cleanup_device_parent(dev);
1115 if (parent)
1116 put_device(parent);
1117 name_error:
1118 kfree(dev->p);
1119 dev->p = NULL;
1120 goto done;
1121 }
1122 EXPORT_SYMBOL_GPL(device_add);
1123
1124 /**
1125 * device_register - register a device with the system.
1126 * @dev: pointer to the device structure
1127 *
1128 * This happens in two clean steps - initialize the device
1129 * and add it to the system. The two steps can be called
1130 * separately, but this is the easiest and most common.
1131 * I.e. you should only call the two helpers separately if
1132 * have a clearly defined need to use and refcount the device
1133 * before it is added to the hierarchy.
1134 *
1135 * For more information, see the kerneldoc for device_initialize()
1136 * and device_add().
1137 *
1138 * NOTE: _Never_ directly free @dev after calling this function, even
1139 * if it returned an error! Always use put_device() to give up the
1140 * reference initialized in this function instead.
1141 */
1142 int device_register(struct device *dev)
1143 {
1144 device_initialize(dev);
1145 return device_add(dev);
1146 }
1147 EXPORT_SYMBOL_GPL(device_register);
1148
1149 /**
1150 * get_device - increment reference count for device.
1151 * @dev: device.
1152 *
1153 * This simply forwards the call to kobject_get(), though
1154 * we do take care to provide for the case that we get a NULL
1155 * pointer passed in.
1156 */
1157 struct device *get_device(struct device *dev)
1158 {
1159 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1160 }
1161 EXPORT_SYMBOL_GPL(get_device);
1162
1163 /**
1164 * put_device - decrement reference count.
1165 * @dev: device in question.
1166 */
1167 void put_device(struct device *dev)
1168 {
1169 /* might_sleep(); */
1170 if (dev)
1171 kobject_put(&dev->kobj);
1172 }
1173 EXPORT_SYMBOL_GPL(put_device);
1174
1175 /**
1176 * device_del - delete device from system.
1177 * @dev: device.
1178 *
1179 * This is the first part of the device unregistration
1180 * sequence. This removes the device from the lists we control
1181 * from here, has it removed from the other driver model
1182 * subsystems it was added to in device_add(), and removes it
1183 * from the kobject hierarchy.
1184 *
1185 * NOTE: this should be called manually _iff_ device_add() was
1186 * also called manually.
1187 */
1188 void device_del(struct device *dev)
1189 {
1190 struct device *parent = dev->parent;
1191 struct class_interface *class_intf;
1192
1193 /* Notify clients of device removal. This call must come
1194 * before dpm_sysfs_remove().
1195 */
1196 if (dev->bus)
1197 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1198 BUS_NOTIFY_DEL_DEVICE, dev);
1199 dpm_sysfs_remove(dev);
1200 if (parent)
1201 klist_del(&dev->p->knode_parent);
1202 if (MAJOR(dev->devt)) {
1203 devtmpfs_delete_node(dev);
1204 device_remove_sys_dev_entry(dev);
1205 device_remove_file(dev, &dev_attr_dev);
1206 }
1207 if (dev->class) {
1208 device_remove_class_symlinks(dev);
1209
1210 mutex_lock(&dev->class->p->mutex);
1211 /* notify any interfaces that the device is now gone */
1212 list_for_each_entry(class_intf,
1213 &dev->class->p->interfaces, node)
1214 if (class_intf->remove_dev)
1215 class_intf->remove_dev(dev, class_intf);
1216 /* remove the device from the class list */
1217 klist_del(&dev->knode_class);
1218 mutex_unlock(&dev->class->p->mutex);
1219 }
1220 device_remove_file(dev, &dev_attr_uevent);
1221 device_remove_attrs(dev);
1222 bus_remove_device(dev);
1223 device_pm_remove(dev);
1224 driver_deferred_probe_del(dev);
1225
1226 /* Notify the platform of the removal, in case they
1227 * need to do anything...
1228 */
1229 if (platform_notify_remove)
1230 platform_notify_remove(dev);
1231 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1232 cleanup_device_parent(dev);
1233 kobject_del(&dev->kobj);
1234 put_device(parent);
1235 }
1236 EXPORT_SYMBOL_GPL(device_del);
1237
1238 /**
1239 * device_unregister - unregister device from system.
1240 * @dev: device going away.
1241 *
1242 * We do this in two parts, like we do device_register(). First,
1243 * we remove it from all the subsystems with device_del(), then
1244 * we decrement the reference count via put_device(). If that
1245 * is the final reference count, the device will be cleaned up
1246 * via device_release() above. Otherwise, the structure will
1247 * stick around until the final reference to the device is dropped.
1248 */
1249 void device_unregister(struct device *dev)
1250 {
1251 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1252 device_del(dev);
1253 put_device(dev);
1254 }
1255 EXPORT_SYMBOL_GPL(device_unregister);
1256
1257 static struct device *next_device(struct klist_iter *i)
1258 {
1259 struct klist_node *n = klist_next(i);
1260 struct device *dev = NULL;
1261 struct device_private *p;
1262
1263 if (n) {
1264 p = to_device_private_parent(n);
1265 dev = p->device;
1266 }
1267 return dev;
1268 }
1269
1270 /**
1271 * device_get_devnode - path of device node file
1272 * @dev: device
1273 * @mode: returned file access mode
1274 * @uid: returned file owner
1275 * @gid: returned file group
1276 * @tmp: possibly allocated string
1277 *
1278 * Return the relative path of a possible device node.
1279 * Non-default names may need to allocate a memory to compose
1280 * a name. This memory is returned in tmp and needs to be
1281 * freed by the caller.
1282 */
1283 const char *device_get_devnode(struct device *dev,
1284 umode_t *mode, kuid_t *uid, kgid_t *gid,
1285 const char **tmp)
1286 {
1287 char *s;
1288
1289 *tmp = NULL;
1290
1291 /* the device type may provide a specific name */
1292 if (dev->type && dev->type->devnode)
1293 *tmp = dev->type->devnode(dev, mode, uid, gid);
1294 if (*tmp)
1295 return *tmp;
1296
1297 /* the class may provide a specific name */
1298 if (dev->class && dev->class->devnode)
1299 *tmp = dev->class->devnode(dev, mode);
1300 if (*tmp)
1301 return *tmp;
1302
1303 /* return name without allocation, tmp == NULL */
1304 if (strchr(dev_name(dev), '!') == NULL)
1305 return dev_name(dev);
1306
1307 /* replace '!' in the name with '/' */
1308 *tmp = kstrdup(dev_name(dev), GFP_KERNEL);
1309 if (!*tmp)
1310 return NULL;
1311 while ((s = strchr(*tmp, '!')))
1312 s[0] = '/';
1313 return *tmp;
1314 }
1315
1316 /**
1317 * device_for_each_child - device child iterator.
1318 * @parent: parent struct device.
1319 * @fn: function to be called for each device.
1320 * @data: data for the callback.
1321 *
1322 * Iterate over @parent's child devices, and call @fn for each,
1323 * passing it @data.
1324 *
1325 * We check the return of @fn each time. If it returns anything
1326 * other than 0, we break out and return that value.
1327 */
1328 int device_for_each_child(struct device *parent, void *data,
1329 int (*fn)(struct device *dev, void *data))
1330 {
1331 struct klist_iter i;
1332 struct device *child;
1333 int error = 0;
1334
1335 if (!parent->p)
1336 return 0;
1337
1338 klist_iter_init(&parent->p->klist_children, &i);
1339 while ((child = next_device(&i)) && !error)
1340 error = fn(child, data);
1341 klist_iter_exit(&i);
1342 return error;
1343 }
1344 EXPORT_SYMBOL_GPL(device_for_each_child);
1345
1346 /**
1347 * device_find_child - device iterator for locating a particular device.
1348 * @parent: parent struct device
1349 * @match: Callback function to check device
1350 * @data: Data to pass to match function
1351 *
1352 * This is similar to the device_for_each_child() function above, but it
1353 * returns a reference to a device that is 'found' for later use, as
1354 * determined by the @match callback.
1355 *
1356 * The callback should return 0 if the device doesn't match and non-zero
1357 * if it does. If the callback returns non-zero and a reference to the
1358 * current device can be obtained, this function will return to the caller
1359 * and not iterate over any more devices.
1360 *
1361 * NOTE: you will need to drop the reference with put_device() after use.
1362 */
1363 struct device *device_find_child(struct device *parent, void *data,
1364 int (*match)(struct device *dev, void *data))
1365 {
1366 struct klist_iter i;
1367 struct device *child;
1368
1369 if (!parent)
1370 return NULL;
1371
1372 klist_iter_init(&parent->p->klist_children, &i);
1373 while ((child = next_device(&i)))
1374 if (match(child, data) && get_device(child))
1375 break;
1376 klist_iter_exit(&i);
1377 return child;
1378 }
1379 EXPORT_SYMBOL_GPL(device_find_child);
1380
1381 int __init devices_init(void)
1382 {
1383 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
1384 if (!devices_kset)
1385 return -ENOMEM;
1386 dev_kobj = kobject_create_and_add("dev", NULL);
1387 if (!dev_kobj)
1388 goto dev_kobj_err;
1389 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
1390 if (!sysfs_dev_block_kobj)
1391 goto block_kobj_err;
1392 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
1393 if (!sysfs_dev_char_kobj)
1394 goto char_kobj_err;
1395
1396 return 0;
1397
1398 char_kobj_err:
1399 kobject_put(sysfs_dev_block_kobj);
1400 block_kobj_err:
1401 kobject_put(dev_kobj);
1402 dev_kobj_err:
1403 kset_unregister(devices_kset);
1404 return -ENOMEM;
1405 }
1406
1407 static int device_check_offline(struct device *dev, void *not_used)
1408 {
1409 int ret;
1410
1411 ret = device_for_each_child(dev, NULL, device_check_offline);
1412 if (ret)
1413 return ret;
1414
1415 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
1416 }
1417
1418 /**
1419 * device_offline - Prepare the device for hot-removal.
1420 * @dev: Device to be put offline.
1421 *
1422 * Execute the device bus type's .offline() callback, if present, to prepare
1423 * the device for a subsequent hot-removal. If that succeeds, the device must
1424 * not be used until either it is removed or its bus type's .online() callback
1425 * is executed.
1426 *
1427 * Call under device_hotplug_lock.
1428 */
1429 int device_offline(struct device *dev)
1430 {
1431 int ret;
1432
1433 if (dev->offline_disabled)
1434 return -EPERM;
1435
1436 ret = device_for_each_child(dev, NULL, device_check_offline);
1437 if (ret)
1438 return ret;
1439
1440 device_lock(dev);
1441 if (device_supports_offline(dev)) {
1442 if (dev->offline) {
1443 ret = 1;
1444 } else {
1445 ret = dev->bus->offline(dev);
1446 if (!ret) {
1447 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1448 dev->offline = true;
1449 }
1450 }
1451 }
1452 device_unlock(dev);
1453
1454 return ret;
1455 }
1456
1457 /**
1458 * device_online - Put the device back online after successful device_offline().
1459 * @dev: Device to be put back online.
1460 *
1461 * If device_offline() has been successfully executed for @dev, but the device
1462 * has not been removed subsequently, execute its bus type's .online() callback
1463 * to indicate that the device can be used again.
1464 *
1465 * Call under device_hotplug_lock.
1466 */
1467 int device_online(struct device *dev)
1468 {
1469 int ret = 0;
1470
1471 device_lock(dev);
1472 if (device_supports_offline(dev)) {
1473 if (dev->offline) {
1474 ret = dev->bus->online(dev);
1475 if (!ret) {
1476 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
1477 dev->offline = false;
1478 }
1479 } else {
1480 ret = 1;
1481 }
1482 }
1483 device_unlock(dev);
1484
1485 return ret;
1486 }
1487
1488 struct root_device {
1489 struct device dev;
1490 struct module *owner;
1491 };
1492
1493 static inline struct root_device *to_root_device(struct device *d)
1494 {
1495 return container_of(d, struct root_device, dev);
1496 }
1497
1498 static void root_device_release(struct device *dev)
1499 {
1500 kfree(to_root_device(dev));
1501 }
1502
1503 /**
1504 * __root_device_register - allocate and register a root device
1505 * @name: root device name
1506 * @owner: owner module of the root device, usually THIS_MODULE
1507 *
1508 * This function allocates a root device and registers it
1509 * using device_register(). In order to free the returned
1510 * device, use root_device_unregister().
1511 *
1512 * Root devices are dummy devices which allow other devices
1513 * to be grouped under /sys/devices. Use this function to
1514 * allocate a root device and then use it as the parent of
1515 * any device which should appear under /sys/devices/{name}
1516 *
1517 * The /sys/devices/{name} directory will also contain a
1518 * 'module' symlink which points to the @owner directory
1519 * in sysfs.
1520 *
1521 * Returns &struct device pointer on success, or ERR_PTR() on error.
1522 *
1523 * Note: You probably want to use root_device_register().
1524 */
1525 struct device *__root_device_register(const char *name, struct module *owner)
1526 {
1527 struct root_device *root;
1528 int err = -ENOMEM;
1529
1530 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
1531 if (!root)
1532 return ERR_PTR(err);
1533
1534 err = dev_set_name(&root->dev, "%s", name);
1535 if (err) {
1536 kfree(root);
1537 return ERR_PTR(err);
1538 }
1539
1540 root->dev.release = root_device_release;
1541
1542 err = device_register(&root->dev);
1543 if (err) {
1544 put_device(&root->dev);
1545 return ERR_PTR(err);
1546 }
1547
1548 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
1549 if (owner) {
1550 struct module_kobject *mk = &owner->mkobj;
1551
1552 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
1553 if (err) {
1554 device_unregister(&root->dev);
1555 return ERR_PTR(err);
1556 }
1557 root->owner = owner;
1558 }
1559 #endif
1560
1561 return &root->dev;
1562 }
1563 EXPORT_SYMBOL_GPL(__root_device_register);
1564
1565 /**
1566 * root_device_unregister - unregister and free a root device
1567 * @dev: device going away
1568 *
1569 * This function unregisters and cleans up a device that was created by
1570 * root_device_register().
1571 */
1572 void root_device_unregister(struct device *dev)
1573 {
1574 struct root_device *root = to_root_device(dev);
1575
1576 if (root->owner)
1577 sysfs_remove_link(&root->dev.kobj, "module");
1578
1579 device_unregister(dev);
1580 }
1581 EXPORT_SYMBOL_GPL(root_device_unregister);
1582
1583
1584 static void device_create_release(struct device *dev)
1585 {
1586 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1587 kfree(dev);
1588 }
1589
1590 static struct device *
1591 device_create_groups_vargs(struct class *class, struct device *parent,
1592 dev_t devt, void *drvdata,
1593 const struct attribute_group **groups,
1594 const char *fmt, va_list args)
1595 {
1596 struct device *dev = NULL;
1597 int retval = -ENODEV;
1598
1599 if (class == NULL || IS_ERR(class))
1600 goto error;
1601
1602 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1603 if (!dev) {
1604 retval = -ENOMEM;
1605 goto error;
1606 }
1607
1608 device_initialize(dev);
1609 dev->devt = devt;
1610 dev->class = class;
1611 dev->parent = parent;
1612 dev->groups = groups;
1613 dev->release = device_create_release;
1614 dev_set_drvdata(dev, drvdata);
1615
1616 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
1617 if (retval)
1618 goto error;
1619
1620 retval = device_add(dev);
1621 if (retval)
1622 goto error;
1623
1624 return dev;
1625
1626 error:
1627 put_device(dev);
1628 return ERR_PTR(retval);
1629 }
1630
1631 /**
1632 * device_create_vargs - creates a device and registers it with sysfs
1633 * @class: pointer to the struct class that this device should be registered to
1634 * @parent: pointer to the parent struct device of this new device, if any
1635 * @devt: the dev_t for the char device to be added
1636 * @drvdata: the data to be added to the device for callbacks
1637 * @fmt: string for the device's name
1638 * @args: va_list for the device's name
1639 *
1640 * This function can be used by char device classes. A struct device
1641 * will be created in sysfs, registered to the specified class.
1642 *
1643 * A "dev" file will be created, showing the dev_t for the device, if
1644 * the dev_t is not 0,0.
1645 * If a pointer to a parent struct device is passed in, the newly created
1646 * struct device will be a child of that device in sysfs.
1647 * The pointer to the struct device will be returned from the call.
1648 * Any further sysfs files that might be required can be created using this
1649 * pointer.
1650 *
1651 * Returns &struct device pointer on success, or ERR_PTR() on error.
1652 *
1653 * Note: the struct class passed to this function must have previously
1654 * been created with a call to class_create().
1655 */
1656 struct device *device_create_vargs(struct class *class, struct device *parent,
1657 dev_t devt, void *drvdata, const char *fmt,
1658 va_list args)
1659 {
1660 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
1661 fmt, args);
1662 }
1663 EXPORT_SYMBOL_GPL(device_create_vargs);
1664
1665 /**
1666 * device_create - creates a device and registers it with sysfs
1667 * @class: pointer to the struct class that this device should be registered to
1668 * @parent: pointer to the parent struct device of this new device, if any
1669 * @devt: the dev_t for the char device to be added
1670 * @drvdata: the data to be added to the device for callbacks
1671 * @fmt: string for the device's name
1672 *
1673 * This function can be used by char device classes. A struct device
1674 * will be created in sysfs, registered to the specified class.
1675 *
1676 * A "dev" file will be created, showing the dev_t for the device, if
1677 * the dev_t is not 0,0.
1678 * If a pointer to a parent struct device is passed in, the newly created
1679 * struct device will be a child of that device in sysfs.
1680 * The pointer to the struct device will be returned from the call.
1681 * Any further sysfs files that might be required can be created using this
1682 * pointer.
1683 *
1684 * Returns &struct device pointer on success, or ERR_PTR() on error.
1685 *
1686 * Note: the struct class passed to this function must have previously
1687 * been created with a call to class_create().
1688 */
1689 struct device *device_create(struct class *class, struct device *parent,
1690 dev_t devt, void *drvdata, const char *fmt, ...)
1691 {
1692 va_list vargs;
1693 struct device *dev;
1694
1695 va_start(vargs, fmt);
1696 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
1697 va_end(vargs);
1698 return dev;
1699 }
1700 EXPORT_SYMBOL_GPL(device_create);
1701
1702 /**
1703 * device_create_with_groups - creates a device and registers it with sysfs
1704 * @class: pointer to the struct class that this device should be registered to
1705 * @parent: pointer to the parent struct device of this new device, if any
1706 * @devt: the dev_t for the char device to be added
1707 * @drvdata: the data to be added to the device for callbacks
1708 * @groups: NULL-terminated list of attribute groups to be created
1709 * @fmt: string for the device's name
1710 *
1711 * This function can be used by char device classes. A struct device
1712 * will be created in sysfs, registered to the specified class.
1713 * Additional attributes specified in the groups parameter will also
1714 * be created automatically.
1715 *
1716 * A "dev" file will be created, showing the dev_t for the device, if
1717 * the dev_t is not 0,0.
1718 * If a pointer to a parent struct device is passed in, the newly created
1719 * struct device will be a child of that device in sysfs.
1720 * The pointer to the struct device will be returned from the call.
1721 * Any further sysfs files that might be required can be created using this
1722 * pointer.
1723 *
1724 * Returns &struct device pointer on success, or ERR_PTR() on error.
1725 *
1726 * Note: the struct class passed to this function must have previously
1727 * been created with a call to class_create().
1728 */
1729 struct device *device_create_with_groups(struct class *class,
1730 struct device *parent, dev_t devt,
1731 void *drvdata,
1732 const struct attribute_group **groups,
1733 const char *fmt, ...)
1734 {
1735 va_list vargs;
1736 struct device *dev;
1737
1738 va_start(vargs, fmt);
1739 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
1740 fmt, vargs);
1741 va_end(vargs);
1742 return dev;
1743 }
1744 EXPORT_SYMBOL_GPL(device_create_with_groups);
1745
1746 static int __match_devt(struct device *dev, const void *data)
1747 {
1748 const dev_t *devt = data;
1749
1750 return dev->devt == *devt;
1751 }
1752
1753 /**
1754 * device_destroy - removes a device that was created with device_create()
1755 * @class: pointer to the struct class that this device was registered with
1756 * @devt: the dev_t of the device that was previously registered
1757 *
1758 * This call unregisters and cleans up a device that was created with a
1759 * call to device_create().
1760 */
1761 void device_destroy(struct class *class, dev_t devt)
1762 {
1763 struct device *dev;
1764
1765 dev = class_find_device(class, NULL, &devt, __match_devt);
1766 if (dev) {
1767 put_device(dev);
1768 device_unregister(dev);
1769 }
1770 }
1771 EXPORT_SYMBOL_GPL(device_destroy);
1772
1773 /**
1774 * device_rename - renames a device
1775 * @dev: the pointer to the struct device to be renamed
1776 * @new_name: the new name of the device
1777 *
1778 * It is the responsibility of the caller to provide mutual
1779 * exclusion between two different calls of device_rename
1780 * on the same device to ensure that new_name is valid and
1781 * won't conflict with other devices.
1782 *
1783 * Note: Don't call this function. Currently, the networking layer calls this
1784 * function, but that will change. The following text from Kay Sievers offers
1785 * some insight:
1786 *
1787 * Renaming devices is racy at many levels, symlinks and other stuff are not
1788 * replaced atomically, and you get a "move" uevent, but it's not easy to
1789 * connect the event to the old and new device. Device nodes are not renamed at
1790 * all, there isn't even support for that in the kernel now.
1791 *
1792 * In the meantime, during renaming, your target name might be taken by another
1793 * driver, creating conflicts. Or the old name is taken directly after you
1794 * renamed it -- then you get events for the same DEVPATH, before you even see
1795 * the "move" event. It's just a mess, and nothing new should ever rely on
1796 * kernel device renaming. Besides that, it's not even implemented now for
1797 * other things than (driver-core wise very simple) network devices.
1798 *
1799 * We are currently about to change network renaming in udev to completely
1800 * disallow renaming of devices in the same namespace as the kernel uses,
1801 * because we can't solve the problems properly, that arise with swapping names
1802 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
1803 * be allowed to some other name than eth[0-9]*, for the aforementioned
1804 * reasons.
1805 *
1806 * Make up a "real" name in the driver before you register anything, or add
1807 * some other attributes for userspace to find the device, or use udev to add
1808 * symlinks -- but never rename kernel devices later, it's a complete mess. We
1809 * don't even want to get into that and try to implement the missing pieces in
1810 * the core. We really have other pieces to fix in the driver core mess. :)
1811 */
1812 int device_rename(struct device *dev, const char *new_name)
1813 {
1814 struct kobject *kobj = &dev->kobj;
1815 char *old_device_name = NULL;
1816 int error;
1817
1818 dev = get_device(dev);
1819 if (!dev)
1820 return -EINVAL;
1821
1822 dev_dbg(dev, "renaming to %s\n", new_name);
1823
1824 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
1825 if (!old_device_name) {
1826 error = -ENOMEM;
1827 goto out;
1828 }
1829
1830 if (dev->class) {
1831 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
1832 kobj, old_device_name,
1833 new_name, kobject_namespace(kobj));
1834 if (error)
1835 goto out;
1836 }
1837
1838 error = kobject_rename(kobj, new_name);
1839 if (error)
1840 goto out;
1841
1842 out:
1843 put_device(dev);
1844
1845 kfree(old_device_name);
1846
1847 return error;
1848 }
1849 EXPORT_SYMBOL_GPL(device_rename);
1850
1851 static int device_move_class_links(struct device *dev,
1852 struct device *old_parent,
1853 struct device *new_parent)
1854 {
1855 int error = 0;
1856
1857 if (old_parent)
1858 sysfs_remove_link(&dev->kobj, "device");
1859 if (new_parent)
1860 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
1861 "device");
1862 return error;
1863 }
1864
1865 /**
1866 * device_move - moves a device to a new parent
1867 * @dev: the pointer to the struct device to be moved
1868 * @new_parent: the new parent of the device (can by NULL)
1869 * @dpm_order: how to reorder the dpm_list
1870 */
1871 int device_move(struct device *dev, struct device *new_parent,
1872 enum dpm_order dpm_order)
1873 {
1874 int error;
1875 struct device *old_parent;
1876 struct kobject *new_parent_kobj;
1877
1878 dev = get_device(dev);
1879 if (!dev)
1880 return -EINVAL;
1881
1882 device_pm_lock();
1883 new_parent = get_device(new_parent);
1884 new_parent_kobj = get_device_parent(dev, new_parent);
1885
1886 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
1887 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
1888 error = kobject_move(&dev->kobj, new_parent_kobj);
1889 if (error) {
1890 cleanup_glue_dir(dev, new_parent_kobj);
1891 put_device(new_parent);
1892 goto out;
1893 }
1894 old_parent = dev->parent;
1895 dev->parent = new_parent;
1896 if (old_parent)
1897 klist_remove(&dev->p->knode_parent);
1898 if (new_parent) {
1899 klist_add_tail(&dev->p->knode_parent,
1900 &new_parent->p->klist_children);
1901 set_dev_node(dev, dev_to_node(new_parent));
1902 }
1903
1904 if (dev->class) {
1905 error = device_move_class_links(dev, old_parent, new_parent);
1906 if (error) {
1907 /* We ignore errors on cleanup since we're hosed anyway... */
1908 device_move_class_links(dev, new_parent, old_parent);
1909 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
1910 if (new_parent)
1911 klist_remove(&dev->p->knode_parent);
1912 dev->parent = old_parent;
1913 if (old_parent) {
1914 klist_add_tail(&dev->p->knode_parent,
1915 &old_parent->p->klist_children);
1916 set_dev_node(dev, dev_to_node(old_parent));
1917 }
1918 }
1919 cleanup_glue_dir(dev, new_parent_kobj);
1920 put_device(new_parent);
1921 goto out;
1922 }
1923 }
1924 switch (dpm_order) {
1925 case DPM_ORDER_NONE:
1926 break;
1927 case DPM_ORDER_DEV_AFTER_PARENT:
1928 device_pm_move_after(dev, new_parent);
1929 break;
1930 case DPM_ORDER_PARENT_BEFORE_DEV:
1931 device_pm_move_before(new_parent, dev);
1932 break;
1933 case DPM_ORDER_DEV_LAST:
1934 device_pm_move_last(dev);
1935 break;
1936 }
1937
1938 put_device(old_parent);
1939 out:
1940 device_pm_unlock();
1941 put_device(dev);
1942 return error;
1943 }
1944 EXPORT_SYMBOL_GPL(device_move);
1945
1946 /**
1947 * device_shutdown - call ->shutdown() on each device to shutdown.
1948 */
1949 void device_shutdown(void)
1950 {
1951 struct device *dev, *parent;
1952
1953 spin_lock(&devices_kset->list_lock);
1954 /*
1955 * Walk the devices list backward, shutting down each in turn.
1956 * Beware that device unplug events may also start pulling
1957 * devices offline, even as the system is shutting down.
1958 */
1959 while (!list_empty(&devices_kset->list)) {
1960 dev = list_entry(devices_kset->list.prev, struct device,
1961 kobj.entry);
1962
1963 /*
1964 * hold reference count of device's parent to
1965 * prevent it from being freed because parent's
1966 * lock is to be held
1967 */
1968 parent = get_device(dev->parent);
1969 get_device(dev);
1970 /*
1971 * Make sure the device is off the kset list, in the
1972 * event that dev->*->shutdown() doesn't remove it.
1973 */
1974 list_del_init(&dev->kobj.entry);
1975 spin_unlock(&devices_kset->list_lock);
1976
1977 /* hold lock to avoid race with probe/release */
1978 if (parent)
1979 device_lock(parent);
1980 device_lock(dev);
1981
1982 /* Don't allow any more runtime suspends */
1983 pm_runtime_get_noresume(dev);
1984 pm_runtime_barrier(dev);
1985
1986 if (dev->bus && dev->bus->shutdown) {
1987 if (initcall_debug)
1988 dev_info(dev, "shutdown\n");
1989 dev->bus->shutdown(dev);
1990 } else if (dev->driver && dev->driver->shutdown) {
1991 if (initcall_debug)
1992 dev_info(dev, "shutdown\n");
1993 dev->driver->shutdown(dev);
1994 }
1995
1996 device_unlock(dev);
1997 if (parent)
1998 device_unlock(parent);
1999
2000 put_device(dev);
2001 put_device(parent);
2002
2003 spin_lock(&devices_kset->list_lock);
2004 }
2005 spin_unlock(&devices_kset->list_lock);
2006 async_synchronize_full();
2007 }
2008
2009 /*
2010 * Device logging functions
2011 */
2012
2013 #ifdef CONFIG_PRINTK
2014 static int
2015 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2016 {
2017 const char *subsys;
2018 size_t pos = 0;
2019
2020 if (dev->class)
2021 subsys = dev->class->name;
2022 else if (dev->bus)
2023 subsys = dev->bus->name;
2024 else
2025 return 0;
2026
2027 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2028
2029 /*
2030 * Add device identifier DEVICE=:
2031 * b12:8 block dev_t
2032 * c127:3 char dev_t
2033 * n8 netdev ifindex
2034 * +sound:card0 subsystem:devname
2035 */
2036 if (MAJOR(dev->devt)) {
2037 char c;
2038
2039 if (strcmp(subsys, "block") == 0)
2040 c = 'b';
2041 else
2042 c = 'c';
2043 pos++;
2044 pos += snprintf(hdr + pos, hdrlen - pos,
2045 "DEVICE=%c%u:%u",
2046 c, MAJOR(dev->devt), MINOR(dev->devt));
2047 } else if (strcmp(subsys, "net") == 0) {
2048 struct net_device *net = to_net_dev(dev);
2049
2050 pos++;
2051 pos += snprintf(hdr + pos, hdrlen - pos,
2052 "DEVICE=n%u", net->ifindex);
2053 } else {
2054 pos++;
2055 pos += snprintf(hdr + pos, hdrlen - pos,
2056 "DEVICE=+%s:%s", subsys, dev_name(dev));
2057 }
2058
2059 return pos;
2060 }
2061 EXPORT_SYMBOL(create_syslog_header);
2062
2063 int dev_vprintk_emit(int level, const struct device *dev,
2064 const char *fmt, va_list args)
2065 {
2066 char hdr[128];
2067 size_t hdrlen;
2068
2069 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2070
2071 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2072 }
2073 EXPORT_SYMBOL(dev_vprintk_emit);
2074
2075 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2076 {
2077 va_list args;
2078 int r;
2079
2080 va_start(args, fmt);
2081
2082 r = dev_vprintk_emit(level, dev, fmt, args);
2083
2084 va_end(args);
2085
2086 return r;
2087 }
2088 EXPORT_SYMBOL(dev_printk_emit);
2089
2090 static int __dev_printk(const char *level, const struct device *dev,
2091 struct va_format *vaf)
2092 {
2093 if (!dev)
2094 return printk("%s(NULL device *): %pV", level, vaf);
2095
2096 return dev_printk_emit(level[1] - '0', dev,
2097 "%s %s: %pV",
2098 dev_driver_string(dev), dev_name(dev), vaf);
2099 }
2100
2101 int dev_printk(const char *level, const struct device *dev,
2102 const char *fmt, ...)
2103 {
2104 struct va_format vaf;
2105 va_list args;
2106 int r;
2107
2108 va_start(args, fmt);
2109
2110 vaf.fmt = fmt;
2111 vaf.va = &args;
2112
2113 r = __dev_printk(level, dev, &vaf);
2114
2115 va_end(args);
2116
2117 return r;
2118 }
2119 EXPORT_SYMBOL(dev_printk);
2120
2121 #define define_dev_printk_level(func, kern_level) \
2122 int func(const struct device *dev, const char *fmt, ...) \
2123 { \
2124 struct va_format vaf; \
2125 va_list args; \
2126 int r; \
2127 \
2128 va_start(args, fmt); \
2129 \
2130 vaf.fmt = fmt; \
2131 vaf.va = &args; \
2132 \
2133 r = __dev_printk(kern_level, dev, &vaf); \
2134 \
2135 va_end(args); \
2136 \
2137 return r; \
2138 } \
2139 EXPORT_SYMBOL(func);
2140
2141 define_dev_printk_level(dev_emerg, KERN_EMERG);
2142 define_dev_printk_level(dev_alert, KERN_ALERT);
2143 define_dev_printk_level(dev_crit, KERN_CRIT);
2144 define_dev_printk_level(dev_err, KERN_ERR);
2145 define_dev_printk_level(dev_warn, KERN_WARNING);
2146 define_dev_printk_level(dev_notice, KERN_NOTICE);
2147 define_dev_printk_level(_dev_info, KERN_INFO);
2148
2149 #endif
This page took 0.12516 seconds and 5 git commands to generate.