soc: qcom: smd: Correct fBLOCKREADINTR handling
[deliverable/linux.git] / drivers / base / core.c
1 /*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sysfs.h>
30
31 #include "base.h"
32 #include "power/power.h"
33
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46
47 int (*platform_notify)(struct device *dev) = NULL;
48 int (*platform_notify_remove)(struct device *dev) = NULL;
49 static struct kobject *dev_kobj;
50 struct kobject *sysfs_dev_char_kobj;
51 struct kobject *sysfs_dev_block_kobj;
52
53 static DEFINE_MUTEX(device_hotplug_lock);
54
55 void lock_device_hotplug(void)
56 {
57 mutex_lock(&device_hotplug_lock);
58 }
59
60 void unlock_device_hotplug(void)
61 {
62 mutex_unlock(&device_hotplug_lock);
63 }
64
65 int lock_device_hotplug_sysfs(void)
66 {
67 if (mutex_trylock(&device_hotplug_lock))
68 return 0;
69
70 /* Avoid busy looping (5 ms of sleep should do). */
71 msleep(5);
72 return restart_syscall();
73 }
74
75 #ifdef CONFIG_BLOCK
76 static inline int device_is_not_partition(struct device *dev)
77 {
78 return !(dev->type == &part_type);
79 }
80 #else
81 static inline int device_is_not_partition(struct device *dev)
82 {
83 return 1;
84 }
85 #endif
86
87 /**
88 * dev_driver_string - Return a device's driver name, if at all possible
89 * @dev: struct device to get the name of
90 *
91 * Will return the device's driver's name if it is bound to a device. If
92 * the device is not bound to a driver, it will return the name of the bus
93 * it is attached to. If it is not attached to a bus either, an empty
94 * string will be returned.
95 */
96 const char *dev_driver_string(const struct device *dev)
97 {
98 struct device_driver *drv;
99
100 /* dev->driver can change to NULL underneath us because of unbinding,
101 * so be careful about accessing it. dev->bus and dev->class should
102 * never change once they are set, so they don't need special care.
103 */
104 drv = ACCESS_ONCE(dev->driver);
105 return drv ? drv->name :
106 (dev->bus ? dev->bus->name :
107 (dev->class ? dev->class->name : ""));
108 }
109 EXPORT_SYMBOL(dev_driver_string);
110
111 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
112
113 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
114 char *buf)
115 {
116 struct device_attribute *dev_attr = to_dev_attr(attr);
117 struct device *dev = kobj_to_dev(kobj);
118 ssize_t ret = -EIO;
119
120 if (dev_attr->show)
121 ret = dev_attr->show(dev, dev_attr, buf);
122 if (ret >= (ssize_t)PAGE_SIZE) {
123 print_symbol("dev_attr_show: %s returned bad count\n",
124 (unsigned long)dev_attr->show);
125 }
126 return ret;
127 }
128
129 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
130 const char *buf, size_t count)
131 {
132 struct device_attribute *dev_attr = to_dev_attr(attr);
133 struct device *dev = kobj_to_dev(kobj);
134 ssize_t ret = -EIO;
135
136 if (dev_attr->store)
137 ret = dev_attr->store(dev, dev_attr, buf, count);
138 return ret;
139 }
140
141 static const struct sysfs_ops dev_sysfs_ops = {
142 .show = dev_attr_show,
143 .store = dev_attr_store,
144 };
145
146 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
147
148 ssize_t device_store_ulong(struct device *dev,
149 struct device_attribute *attr,
150 const char *buf, size_t size)
151 {
152 struct dev_ext_attribute *ea = to_ext_attr(attr);
153 char *end;
154 unsigned long new = simple_strtoul(buf, &end, 0);
155 if (end == buf)
156 return -EINVAL;
157 *(unsigned long *)(ea->var) = new;
158 /* Always return full write size even if we didn't consume all */
159 return size;
160 }
161 EXPORT_SYMBOL_GPL(device_store_ulong);
162
163 ssize_t device_show_ulong(struct device *dev,
164 struct device_attribute *attr,
165 char *buf)
166 {
167 struct dev_ext_attribute *ea = to_ext_attr(attr);
168 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
169 }
170 EXPORT_SYMBOL_GPL(device_show_ulong);
171
172 ssize_t device_store_int(struct device *dev,
173 struct device_attribute *attr,
174 const char *buf, size_t size)
175 {
176 struct dev_ext_attribute *ea = to_ext_attr(attr);
177 char *end;
178 long new = simple_strtol(buf, &end, 0);
179 if (end == buf || new > INT_MAX || new < INT_MIN)
180 return -EINVAL;
181 *(int *)(ea->var) = new;
182 /* Always return full write size even if we didn't consume all */
183 return size;
184 }
185 EXPORT_SYMBOL_GPL(device_store_int);
186
187 ssize_t device_show_int(struct device *dev,
188 struct device_attribute *attr,
189 char *buf)
190 {
191 struct dev_ext_attribute *ea = to_ext_attr(attr);
192
193 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
194 }
195 EXPORT_SYMBOL_GPL(device_show_int);
196
197 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
198 const char *buf, size_t size)
199 {
200 struct dev_ext_attribute *ea = to_ext_attr(attr);
201
202 if (strtobool(buf, ea->var) < 0)
203 return -EINVAL;
204
205 return size;
206 }
207 EXPORT_SYMBOL_GPL(device_store_bool);
208
209 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
210 char *buf)
211 {
212 struct dev_ext_attribute *ea = to_ext_attr(attr);
213
214 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
215 }
216 EXPORT_SYMBOL_GPL(device_show_bool);
217
218 /**
219 * device_release - free device structure.
220 * @kobj: device's kobject.
221 *
222 * This is called once the reference count for the object
223 * reaches 0. We forward the call to the device's release
224 * method, which should handle actually freeing the structure.
225 */
226 static void device_release(struct kobject *kobj)
227 {
228 struct device *dev = kobj_to_dev(kobj);
229 struct device_private *p = dev->p;
230
231 /*
232 * Some platform devices are driven without driver attached
233 * and managed resources may have been acquired. Make sure
234 * all resources are released.
235 *
236 * Drivers still can add resources into device after device
237 * is deleted but alive, so release devres here to avoid
238 * possible memory leak.
239 */
240 devres_release_all(dev);
241
242 if (dev->release)
243 dev->release(dev);
244 else if (dev->type && dev->type->release)
245 dev->type->release(dev);
246 else if (dev->class && dev->class->dev_release)
247 dev->class->dev_release(dev);
248 else
249 WARN(1, KERN_ERR "Device '%s' does not have a release() "
250 "function, it is broken and must be fixed.\n",
251 dev_name(dev));
252 kfree(p);
253 }
254
255 static const void *device_namespace(struct kobject *kobj)
256 {
257 struct device *dev = kobj_to_dev(kobj);
258 const void *ns = NULL;
259
260 if (dev->class && dev->class->ns_type)
261 ns = dev->class->namespace(dev);
262
263 return ns;
264 }
265
266 static struct kobj_type device_ktype = {
267 .release = device_release,
268 .sysfs_ops = &dev_sysfs_ops,
269 .namespace = device_namespace,
270 };
271
272
273 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
274 {
275 struct kobj_type *ktype = get_ktype(kobj);
276
277 if (ktype == &device_ktype) {
278 struct device *dev = kobj_to_dev(kobj);
279 if (dev->bus)
280 return 1;
281 if (dev->class)
282 return 1;
283 }
284 return 0;
285 }
286
287 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
288 {
289 struct device *dev = kobj_to_dev(kobj);
290
291 if (dev->bus)
292 return dev->bus->name;
293 if (dev->class)
294 return dev->class->name;
295 return NULL;
296 }
297
298 static int dev_uevent(struct kset *kset, struct kobject *kobj,
299 struct kobj_uevent_env *env)
300 {
301 struct device *dev = kobj_to_dev(kobj);
302 int retval = 0;
303
304 /* add device node properties if present */
305 if (MAJOR(dev->devt)) {
306 const char *tmp;
307 const char *name;
308 umode_t mode = 0;
309 kuid_t uid = GLOBAL_ROOT_UID;
310 kgid_t gid = GLOBAL_ROOT_GID;
311
312 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
313 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
314 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
315 if (name) {
316 add_uevent_var(env, "DEVNAME=%s", name);
317 if (mode)
318 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
319 if (!uid_eq(uid, GLOBAL_ROOT_UID))
320 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
321 if (!gid_eq(gid, GLOBAL_ROOT_GID))
322 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
323 kfree(tmp);
324 }
325 }
326
327 if (dev->type && dev->type->name)
328 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
329
330 if (dev->driver)
331 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
332
333 /* Add common DT information about the device */
334 of_device_uevent(dev, env);
335
336 /* have the bus specific function add its stuff */
337 if (dev->bus && dev->bus->uevent) {
338 retval = dev->bus->uevent(dev, env);
339 if (retval)
340 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
341 dev_name(dev), __func__, retval);
342 }
343
344 /* have the class specific function add its stuff */
345 if (dev->class && dev->class->dev_uevent) {
346 retval = dev->class->dev_uevent(dev, env);
347 if (retval)
348 pr_debug("device: '%s': %s: class uevent() "
349 "returned %d\n", dev_name(dev),
350 __func__, retval);
351 }
352
353 /* have the device type specific function add its stuff */
354 if (dev->type && dev->type->uevent) {
355 retval = dev->type->uevent(dev, env);
356 if (retval)
357 pr_debug("device: '%s': %s: dev_type uevent() "
358 "returned %d\n", dev_name(dev),
359 __func__, retval);
360 }
361
362 return retval;
363 }
364
365 static const struct kset_uevent_ops device_uevent_ops = {
366 .filter = dev_uevent_filter,
367 .name = dev_uevent_name,
368 .uevent = dev_uevent,
369 };
370
371 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
372 char *buf)
373 {
374 struct kobject *top_kobj;
375 struct kset *kset;
376 struct kobj_uevent_env *env = NULL;
377 int i;
378 size_t count = 0;
379 int retval;
380
381 /* search the kset, the device belongs to */
382 top_kobj = &dev->kobj;
383 while (!top_kobj->kset && top_kobj->parent)
384 top_kobj = top_kobj->parent;
385 if (!top_kobj->kset)
386 goto out;
387
388 kset = top_kobj->kset;
389 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
390 goto out;
391
392 /* respect filter */
393 if (kset->uevent_ops && kset->uevent_ops->filter)
394 if (!kset->uevent_ops->filter(kset, &dev->kobj))
395 goto out;
396
397 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
398 if (!env)
399 return -ENOMEM;
400
401 /* let the kset specific function add its keys */
402 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
403 if (retval)
404 goto out;
405
406 /* copy keys to file */
407 for (i = 0; i < env->envp_idx; i++)
408 count += sprintf(&buf[count], "%s\n", env->envp[i]);
409 out:
410 kfree(env);
411 return count;
412 }
413
414 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
415 const char *buf, size_t count)
416 {
417 enum kobject_action action;
418
419 if (kobject_action_type(buf, count, &action) == 0)
420 kobject_uevent(&dev->kobj, action);
421 else
422 dev_err(dev, "uevent: unknown action-string\n");
423 return count;
424 }
425 static DEVICE_ATTR_RW(uevent);
426
427 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
428 char *buf)
429 {
430 bool val;
431
432 device_lock(dev);
433 val = !dev->offline;
434 device_unlock(dev);
435 return sprintf(buf, "%u\n", val);
436 }
437
438 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
439 const char *buf, size_t count)
440 {
441 bool val;
442 int ret;
443
444 ret = strtobool(buf, &val);
445 if (ret < 0)
446 return ret;
447
448 ret = lock_device_hotplug_sysfs();
449 if (ret)
450 return ret;
451
452 ret = val ? device_online(dev) : device_offline(dev);
453 unlock_device_hotplug();
454 return ret < 0 ? ret : count;
455 }
456 static DEVICE_ATTR_RW(online);
457
458 int device_add_groups(struct device *dev, const struct attribute_group **groups)
459 {
460 return sysfs_create_groups(&dev->kobj, groups);
461 }
462
463 void device_remove_groups(struct device *dev,
464 const struct attribute_group **groups)
465 {
466 sysfs_remove_groups(&dev->kobj, groups);
467 }
468
469 static int device_add_attrs(struct device *dev)
470 {
471 struct class *class = dev->class;
472 const struct device_type *type = dev->type;
473 int error;
474
475 if (class) {
476 error = device_add_groups(dev, class->dev_groups);
477 if (error)
478 return error;
479 }
480
481 if (type) {
482 error = device_add_groups(dev, type->groups);
483 if (error)
484 goto err_remove_class_groups;
485 }
486
487 error = device_add_groups(dev, dev->groups);
488 if (error)
489 goto err_remove_type_groups;
490
491 if (device_supports_offline(dev) && !dev->offline_disabled) {
492 error = device_create_file(dev, &dev_attr_online);
493 if (error)
494 goto err_remove_dev_groups;
495 }
496
497 return 0;
498
499 err_remove_dev_groups:
500 device_remove_groups(dev, dev->groups);
501 err_remove_type_groups:
502 if (type)
503 device_remove_groups(dev, type->groups);
504 err_remove_class_groups:
505 if (class)
506 device_remove_groups(dev, class->dev_groups);
507
508 return error;
509 }
510
511 static void device_remove_attrs(struct device *dev)
512 {
513 struct class *class = dev->class;
514 const struct device_type *type = dev->type;
515
516 device_remove_file(dev, &dev_attr_online);
517 device_remove_groups(dev, dev->groups);
518
519 if (type)
520 device_remove_groups(dev, type->groups);
521
522 if (class)
523 device_remove_groups(dev, class->dev_groups);
524 }
525
526 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
527 char *buf)
528 {
529 return print_dev_t(buf, dev->devt);
530 }
531 static DEVICE_ATTR_RO(dev);
532
533 /* /sys/devices/ */
534 struct kset *devices_kset;
535
536 /**
537 * device_create_file - create sysfs attribute file for device.
538 * @dev: device.
539 * @attr: device attribute descriptor.
540 */
541 int device_create_file(struct device *dev,
542 const struct device_attribute *attr)
543 {
544 int error = 0;
545
546 if (dev) {
547 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
548 "Attribute %s: write permission without 'store'\n",
549 attr->attr.name);
550 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
551 "Attribute %s: read permission without 'show'\n",
552 attr->attr.name);
553 error = sysfs_create_file(&dev->kobj, &attr->attr);
554 }
555
556 return error;
557 }
558 EXPORT_SYMBOL_GPL(device_create_file);
559
560 /**
561 * device_remove_file - remove sysfs attribute file.
562 * @dev: device.
563 * @attr: device attribute descriptor.
564 */
565 void device_remove_file(struct device *dev,
566 const struct device_attribute *attr)
567 {
568 if (dev)
569 sysfs_remove_file(&dev->kobj, &attr->attr);
570 }
571 EXPORT_SYMBOL_GPL(device_remove_file);
572
573 /**
574 * device_remove_file_self - remove sysfs attribute file from its own method.
575 * @dev: device.
576 * @attr: device attribute descriptor.
577 *
578 * See kernfs_remove_self() for details.
579 */
580 bool device_remove_file_self(struct device *dev,
581 const struct device_attribute *attr)
582 {
583 if (dev)
584 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
585 else
586 return false;
587 }
588 EXPORT_SYMBOL_GPL(device_remove_file_self);
589
590 /**
591 * device_create_bin_file - create sysfs binary attribute file for device.
592 * @dev: device.
593 * @attr: device binary attribute descriptor.
594 */
595 int device_create_bin_file(struct device *dev,
596 const struct bin_attribute *attr)
597 {
598 int error = -EINVAL;
599 if (dev)
600 error = sysfs_create_bin_file(&dev->kobj, attr);
601 return error;
602 }
603 EXPORT_SYMBOL_GPL(device_create_bin_file);
604
605 /**
606 * device_remove_bin_file - remove sysfs binary attribute file
607 * @dev: device.
608 * @attr: device binary attribute descriptor.
609 */
610 void device_remove_bin_file(struct device *dev,
611 const struct bin_attribute *attr)
612 {
613 if (dev)
614 sysfs_remove_bin_file(&dev->kobj, attr);
615 }
616 EXPORT_SYMBOL_GPL(device_remove_bin_file);
617
618 static void klist_children_get(struct klist_node *n)
619 {
620 struct device_private *p = to_device_private_parent(n);
621 struct device *dev = p->device;
622
623 get_device(dev);
624 }
625
626 static void klist_children_put(struct klist_node *n)
627 {
628 struct device_private *p = to_device_private_parent(n);
629 struct device *dev = p->device;
630
631 put_device(dev);
632 }
633
634 /**
635 * device_initialize - init device structure.
636 * @dev: device.
637 *
638 * This prepares the device for use by other layers by initializing
639 * its fields.
640 * It is the first half of device_register(), if called by
641 * that function, though it can also be called separately, so one
642 * may use @dev's fields. In particular, get_device()/put_device()
643 * may be used for reference counting of @dev after calling this
644 * function.
645 *
646 * All fields in @dev must be initialized by the caller to 0, except
647 * for those explicitly set to some other value. The simplest
648 * approach is to use kzalloc() to allocate the structure containing
649 * @dev.
650 *
651 * NOTE: Use put_device() to give up your reference instead of freeing
652 * @dev directly once you have called this function.
653 */
654 void device_initialize(struct device *dev)
655 {
656 dev->kobj.kset = devices_kset;
657 kobject_init(&dev->kobj, &device_ktype);
658 INIT_LIST_HEAD(&dev->dma_pools);
659 mutex_init(&dev->mutex);
660 lockdep_set_novalidate_class(&dev->mutex);
661 spin_lock_init(&dev->devres_lock);
662 INIT_LIST_HEAD(&dev->devres_head);
663 device_pm_init(dev);
664 set_dev_node(dev, -1);
665 }
666 EXPORT_SYMBOL_GPL(device_initialize);
667
668 struct kobject *virtual_device_parent(struct device *dev)
669 {
670 static struct kobject *virtual_dir = NULL;
671
672 if (!virtual_dir)
673 virtual_dir = kobject_create_and_add("virtual",
674 &devices_kset->kobj);
675
676 return virtual_dir;
677 }
678
679 struct class_dir {
680 struct kobject kobj;
681 struct class *class;
682 };
683
684 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
685
686 static void class_dir_release(struct kobject *kobj)
687 {
688 struct class_dir *dir = to_class_dir(kobj);
689 kfree(dir);
690 }
691
692 static const
693 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
694 {
695 struct class_dir *dir = to_class_dir(kobj);
696 return dir->class->ns_type;
697 }
698
699 static struct kobj_type class_dir_ktype = {
700 .release = class_dir_release,
701 .sysfs_ops = &kobj_sysfs_ops,
702 .child_ns_type = class_dir_child_ns_type
703 };
704
705 static struct kobject *
706 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
707 {
708 struct class_dir *dir;
709 int retval;
710
711 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
712 if (!dir)
713 return NULL;
714
715 dir->class = class;
716 kobject_init(&dir->kobj, &class_dir_ktype);
717
718 dir->kobj.kset = &class->p->glue_dirs;
719
720 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
721 if (retval < 0) {
722 kobject_put(&dir->kobj);
723 return NULL;
724 }
725 return &dir->kobj;
726 }
727
728 static DEFINE_MUTEX(gdp_mutex);
729
730 static struct kobject *get_device_parent(struct device *dev,
731 struct device *parent)
732 {
733 if (dev->class) {
734 struct kobject *kobj = NULL;
735 struct kobject *parent_kobj;
736 struct kobject *k;
737
738 #ifdef CONFIG_BLOCK
739 /* block disks show up in /sys/block */
740 if (sysfs_deprecated && dev->class == &block_class) {
741 if (parent && parent->class == &block_class)
742 return &parent->kobj;
743 return &block_class.p->subsys.kobj;
744 }
745 #endif
746
747 /*
748 * If we have no parent, we live in "virtual".
749 * Class-devices with a non class-device as parent, live
750 * in a "glue" directory to prevent namespace collisions.
751 */
752 if (parent == NULL)
753 parent_kobj = virtual_device_parent(dev);
754 else if (parent->class && !dev->class->ns_type)
755 return &parent->kobj;
756 else
757 parent_kobj = &parent->kobj;
758
759 mutex_lock(&gdp_mutex);
760
761 /* find our class-directory at the parent and reference it */
762 spin_lock(&dev->class->p->glue_dirs.list_lock);
763 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
764 if (k->parent == parent_kobj) {
765 kobj = kobject_get(k);
766 break;
767 }
768 spin_unlock(&dev->class->p->glue_dirs.list_lock);
769 if (kobj) {
770 mutex_unlock(&gdp_mutex);
771 return kobj;
772 }
773
774 /* or create a new class-directory at the parent device */
775 k = class_dir_create_and_add(dev->class, parent_kobj);
776 /* do not emit an uevent for this simple "glue" directory */
777 mutex_unlock(&gdp_mutex);
778 return k;
779 }
780
781 /* subsystems can specify a default root directory for their devices */
782 if (!parent && dev->bus && dev->bus->dev_root)
783 return &dev->bus->dev_root->kobj;
784
785 if (parent)
786 return &parent->kobj;
787 return NULL;
788 }
789
790 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
791 {
792 /* see if we live in a "glue" directory */
793 if (!glue_dir || !dev->class ||
794 glue_dir->kset != &dev->class->p->glue_dirs)
795 return;
796
797 mutex_lock(&gdp_mutex);
798 kobject_put(glue_dir);
799 mutex_unlock(&gdp_mutex);
800 }
801
802 static void cleanup_device_parent(struct device *dev)
803 {
804 cleanup_glue_dir(dev, dev->kobj.parent);
805 }
806
807 static int device_add_class_symlinks(struct device *dev)
808 {
809 struct device_node *of_node = dev_of_node(dev);
810 int error;
811
812 if (of_node) {
813 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
814 if (error)
815 dev_warn(dev, "Error %d creating of_node link\n",error);
816 /* An error here doesn't warrant bringing down the device */
817 }
818
819 if (!dev->class)
820 return 0;
821
822 error = sysfs_create_link(&dev->kobj,
823 &dev->class->p->subsys.kobj,
824 "subsystem");
825 if (error)
826 goto out_devnode;
827
828 if (dev->parent && device_is_not_partition(dev)) {
829 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
830 "device");
831 if (error)
832 goto out_subsys;
833 }
834
835 #ifdef CONFIG_BLOCK
836 /* /sys/block has directories and does not need symlinks */
837 if (sysfs_deprecated && dev->class == &block_class)
838 return 0;
839 #endif
840
841 /* link in the class directory pointing to the device */
842 error = sysfs_create_link(&dev->class->p->subsys.kobj,
843 &dev->kobj, dev_name(dev));
844 if (error)
845 goto out_device;
846
847 return 0;
848
849 out_device:
850 sysfs_remove_link(&dev->kobj, "device");
851
852 out_subsys:
853 sysfs_remove_link(&dev->kobj, "subsystem");
854 out_devnode:
855 sysfs_remove_link(&dev->kobj, "of_node");
856 return error;
857 }
858
859 static void device_remove_class_symlinks(struct device *dev)
860 {
861 if (dev_of_node(dev))
862 sysfs_remove_link(&dev->kobj, "of_node");
863
864 if (!dev->class)
865 return;
866
867 if (dev->parent && device_is_not_partition(dev))
868 sysfs_remove_link(&dev->kobj, "device");
869 sysfs_remove_link(&dev->kobj, "subsystem");
870 #ifdef CONFIG_BLOCK
871 if (sysfs_deprecated && dev->class == &block_class)
872 return;
873 #endif
874 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
875 }
876
877 /**
878 * dev_set_name - set a device name
879 * @dev: device
880 * @fmt: format string for the device's name
881 */
882 int dev_set_name(struct device *dev, const char *fmt, ...)
883 {
884 va_list vargs;
885 int err;
886
887 va_start(vargs, fmt);
888 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
889 va_end(vargs);
890 return err;
891 }
892 EXPORT_SYMBOL_GPL(dev_set_name);
893
894 /**
895 * device_to_dev_kobj - select a /sys/dev/ directory for the device
896 * @dev: device
897 *
898 * By default we select char/ for new entries. Setting class->dev_obj
899 * to NULL prevents an entry from being created. class->dev_kobj must
900 * be set (or cleared) before any devices are registered to the class
901 * otherwise device_create_sys_dev_entry() and
902 * device_remove_sys_dev_entry() will disagree about the presence of
903 * the link.
904 */
905 static struct kobject *device_to_dev_kobj(struct device *dev)
906 {
907 struct kobject *kobj;
908
909 if (dev->class)
910 kobj = dev->class->dev_kobj;
911 else
912 kobj = sysfs_dev_char_kobj;
913
914 return kobj;
915 }
916
917 static int device_create_sys_dev_entry(struct device *dev)
918 {
919 struct kobject *kobj = device_to_dev_kobj(dev);
920 int error = 0;
921 char devt_str[15];
922
923 if (kobj) {
924 format_dev_t(devt_str, dev->devt);
925 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
926 }
927
928 return error;
929 }
930
931 static void device_remove_sys_dev_entry(struct device *dev)
932 {
933 struct kobject *kobj = device_to_dev_kobj(dev);
934 char devt_str[15];
935
936 if (kobj) {
937 format_dev_t(devt_str, dev->devt);
938 sysfs_remove_link(kobj, devt_str);
939 }
940 }
941
942 int device_private_init(struct device *dev)
943 {
944 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
945 if (!dev->p)
946 return -ENOMEM;
947 dev->p->device = dev;
948 klist_init(&dev->p->klist_children, klist_children_get,
949 klist_children_put);
950 INIT_LIST_HEAD(&dev->p->deferred_probe);
951 return 0;
952 }
953
954 /**
955 * device_add - add device to device hierarchy.
956 * @dev: device.
957 *
958 * This is part 2 of device_register(), though may be called
959 * separately _iff_ device_initialize() has been called separately.
960 *
961 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
962 * to the global and sibling lists for the device, then
963 * adds it to the other relevant subsystems of the driver model.
964 *
965 * Do not call this routine or device_register() more than once for
966 * any device structure. The driver model core is not designed to work
967 * with devices that get unregistered and then spring back to life.
968 * (Among other things, it's very hard to guarantee that all references
969 * to the previous incarnation of @dev have been dropped.) Allocate
970 * and register a fresh new struct device instead.
971 *
972 * NOTE: _Never_ directly free @dev after calling this function, even
973 * if it returned an error! Always use put_device() to give up your
974 * reference instead.
975 */
976 int device_add(struct device *dev)
977 {
978 struct device *parent = NULL;
979 struct kobject *kobj;
980 struct class_interface *class_intf;
981 int error = -EINVAL;
982
983 dev = get_device(dev);
984 if (!dev)
985 goto done;
986
987 if (!dev->p) {
988 error = device_private_init(dev);
989 if (error)
990 goto done;
991 }
992
993 /*
994 * for statically allocated devices, which should all be converted
995 * some day, we need to initialize the name. We prevent reading back
996 * the name, and force the use of dev_name()
997 */
998 if (dev->init_name) {
999 dev_set_name(dev, "%s", dev->init_name);
1000 dev->init_name = NULL;
1001 }
1002
1003 /* subsystems can specify simple device enumeration */
1004 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1005 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1006
1007 if (!dev_name(dev)) {
1008 error = -EINVAL;
1009 goto name_error;
1010 }
1011
1012 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1013
1014 parent = get_device(dev->parent);
1015 kobj = get_device_parent(dev, parent);
1016 if (kobj)
1017 dev->kobj.parent = kobj;
1018
1019 /* use parent numa_node */
1020 if (parent)
1021 set_dev_node(dev, dev_to_node(parent));
1022
1023 /* first, register with generic layer. */
1024 /* we require the name to be set before, and pass NULL */
1025 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1026 if (error)
1027 goto Error;
1028
1029 /* notify platform of device entry */
1030 if (platform_notify)
1031 platform_notify(dev);
1032
1033 error = device_create_file(dev, &dev_attr_uevent);
1034 if (error)
1035 goto attrError;
1036
1037 error = device_add_class_symlinks(dev);
1038 if (error)
1039 goto SymlinkError;
1040 error = device_add_attrs(dev);
1041 if (error)
1042 goto AttrsError;
1043 error = bus_add_device(dev);
1044 if (error)
1045 goto BusError;
1046 error = dpm_sysfs_add(dev);
1047 if (error)
1048 goto DPMError;
1049 device_pm_add(dev);
1050
1051 if (MAJOR(dev->devt)) {
1052 error = device_create_file(dev, &dev_attr_dev);
1053 if (error)
1054 goto DevAttrError;
1055
1056 error = device_create_sys_dev_entry(dev);
1057 if (error)
1058 goto SysEntryError;
1059
1060 devtmpfs_create_node(dev);
1061 }
1062
1063 /* Notify clients of device addition. This call must come
1064 * after dpm_sysfs_add() and before kobject_uevent().
1065 */
1066 if (dev->bus)
1067 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1068 BUS_NOTIFY_ADD_DEVICE, dev);
1069
1070 kobject_uevent(&dev->kobj, KOBJ_ADD);
1071 bus_probe_device(dev);
1072 if (parent)
1073 klist_add_tail(&dev->p->knode_parent,
1074 &parent->p->klist_children);
1075
1076 if (dev->class) {
1077 mutex_lock(&dev->class->p->mutex);
1078 /* tie the class to the device */
1079 klist_add_tail(&dev->knode_class,
1080 &dev->class->p->klist_devices);
1081
1082 /* notify any interfaces that the device is here */
1083 list_for_each_entry(class_intf,
1084 &dev->class->p->interfaces, node)
1085 if (class_intf->add_dev)
1086 class_intf->add_dev(dev, class_intf);
1087 mutex_unlock(&dev->class->p->mutex);
1088 }
1089 done:
1090 put_device(dev);
1091 return error;
1092 SysEntryError:
1093 if (MAJOR(dev->devt))
1094 device_remove_file(dev, &dev_attr_dev);
1095 DevAttrError:
1096 device_pm_remove(dev);
1097 dpm_sysfs_remove(dev);
1098 DPMError:
1099 bus_remove_device(dev);
1100 BusError:
1101 device_remove_attrs(dev);
1102 AttrsError:
1103 device_remove_class_symlinks(dev);
1104 SymlinkError:
1105 device_remove_file(dev, &dev_attr_uevent);
1106 attrError:
1107 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1108 kobject_del(&dev->kobj);
1109 Error:
1110 cleanup_device_parent(dev);
1111 put_device(parent);
1112 name_error:
1113 kfree(dev->p);
1114 dev->p = NULL;
1115 goto done;
1116 }
1117 EXPORT_SYMBOL_GPL(device_add);
1118
1119 /**
1120 * device_register - register a device with the system.
1121 * @dev: pointer to the device structure
1122 *
1123 * This happens in two clean steps - initialize the device
1124 * and add it to the system. The two steps can be called
1125 * separately, but this is the easiest and most common.
1126 * I.e. you should only call the two helpers separately if
1127 * have a clearly defined need to use and refcount the device
1128 * before it is added to the hierarchy.
1129 *
1130 * For more information, see the kerneldoc for device_initialize()
1131 * and device_add().
1132 *
1133 * NOTE: _Never_ directly free @dev after calling this function, even
1134 * if it returned an error! Always use put_device() to give up the
1135 * reference initialized in this function instead.
1136 */
1137 int device_register(struct device *dev)
1138 {
1139 device_initialize(dev);
1140 return device_add(dev);
1141 }
1142 EXPORT_SYMBOL_GPL(device_register);
1143
1144 /**
1145 * get_device - increment reference count for device.
1146 * @dev: device.
1147 *
1148 * This simply forwards the call to kobject_get(), though
1149 * we do take care to provide for the case that we get a NULL
1150 * pointer passed in.
1151 */
1152 struct device *get_device(struct device *dev)
1153 {
1154 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1155 }
1156 EXPORT_SYMBOL_GPL(get_device);
1157
1158 /**
1159 * put_device - decrement reference count.
1160 * @dev: device in question.
1161 */
1162 void put_device(struct device *dev)
1163 {
1164 /* might_sleep(); */
1165 if (dev)
1166 kobject_put(&dev->kobj);
1167 }
1168 EXPORT_SYMBOL_GPL(put_device);
1169
1170 /**
1171 * device_del - delete device from system.
1172 * @dev: device.
1173 *
1174 * This is the first part of the device unregistration
1175 * sequence. This removes the device from the lists we control
1176 * from here, has it removed from the other driver model
1177 * subsystems it was added to in device_add(), and removes it
1178 * from the kobject hierarchy.
1179 *
1180 * NOTE: this should be called manually _iff_ device_add() was
1181 * also called manually.
1182 */
1183 void device_del(struct device *dev)
1184 {
1185 struct device *parent = dev->parent;
1186 struct class_interface *class_intf;
1187
1188 /* Notify clients of device removal. This call must come
1189 * before dpm_sysfs_remove().
1190 */
1191 if (dev->bus)
1192 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1193 BUS_NOTIFY_DEL_DEVICE, dev);
1194 dpm_sysfs_remove(dev);
1195 if (parent)
1196 klist_del(&dev->p->knode_parent);
1197 if (MAJOR(dev->devt)) {
1198 devtmpfs_delete_node(dev);
1199 device_remove_sys_dev_entry(dev);
1200 device_remove_file(dev, &dev_attr_dev);
1201 }
1202 if (dev->class) {
1203 device_remove_class_symlinks(dev);
1204
1205 mutex_lock(&dev->class->p->mutex);
1206 /* notify any interfaces that the device is now gone */
1207 list_for_each_entry(class_intf,
1208 &dev->class->p->interfaces, node)
1209 if (class_intf->remove_dev)
1210 class_intf->remove_dev(dev, class_intf);
1211 /* remove the device from the class list */
1212 klist_del(&dev->knode_class);
1213 mutex_unlock(&dev->class->p->mutex);
1214 }
1215 device_remove_file(dev, &dev_attr_uevent);
1216 device_remove_attrs(dev);
1217 bus_remove_device(dev);
1218 device_pm_remove(dev);
1219 driver_deferred_probe_del(dev);
1220
1221 /* Notify the platform of the removal, in case they
1222 * need to do anything...
1223 */
1224 if (platform_notify_remove)
1225 platform_notify_remove(dev);
1226 if (dev->bus)
1227 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1228 BUS_NOTIFY_REMOVED_DEVICE, dev);
1229 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1230 cleanup_device_parent(dev);
1231 kobject_del(&dev->kobj);
1232 put_device(parent);
1233 }
1234 EXPORT_SYMBOL_GPL(device_del);
1235
1236 /**
1237 * device_unregister - unregister device from system.
1238 * @dev: device going away.
1239 *
1240 * We do this in two parts, like we do device_register(). First,
1241 * we remove it from all the subsystems with device_del(), then
1242 * we decrement the reference count via put_device(). If that
1243 * is the final reference count, the device will be cleaned up
1244 * via device_release() above. Otherwise, the structure will
1245 * stick around until the final reference to the device is dropped.
1246 */
1247 void device_unregister(struct device *dev)
1248 {
1249 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1250 device_del(dev);
1251 put_device(dev);
1252 }
1253 EXPORT_SYMBOL_GPL(device_unregister);
1254
1255 static struct device *next_device(struct klist_iter *i)
1256 {
1257 struct klist_node *n = klist_next(i);
1258 struct device *dev = NULL;
1259 struct device_private *p;
1260
1261 if (n) {
1262 p = to_device_private_parent(n);
1263 dev = p->device;
1264 }
1265 return dev;
1266 }
1267
1268 /**
1269 * device_get_devnode - path of device node file
1270 * @dev: device
1271 * @mode: returned file access mode
1272 * @uid: returned file owner
1273 * @gid: returned file group
1274 * @tmp: possibly allocated string
1275 *
1276 * Return the relative path of a possible device node.
1277 * Non-default names may need to allocate a memory to compose
1278 * a name. This memory is returned in tmp and needs to be
1279 * freed by the caller.
1280 */
1281 const char *device_get_devnode(struct device *dev,
1282 umode_t *mode, kuid_t *uid, kgid_t *gid,
1283 const char **tmp)
1284 {
1285 char *s;
1286
1287 *tmp = NULL;
1288
1289 /* the device type may provide a specific name */
1290 if (dev->type && dev->type->devnode)
1291 *tmp = dev->type->devnode(dev, mode, uid, gid);
1292 if (*tmp)
1293 return *tmp;
1294
1295 /* the class may provide a specific name */
1296 if (dev->class && dev->class->devnode)
1297 *tmp = dev->class->devnode(dev, mode);
1298 if (*tmp)
1299 return *tmp;
1300
1301 /* return name without allocation, tmp == NULL */
1302 if (strchr(dev_name(dev), '!') == NULL)
1303 return dev_name(dev);
1304
1305 /* replace '!' in the name with '/' */
1306 s = kstrdup(dev_name(dev), GFP_KERNEL);
1307 if (!s)
1308 return NULL;
1309 strreplace(s, '!', '/');
1310 return *tmp = s;
1311 }
1312
1313 /**
1314 * device_for_each_child - device child iterator.
1315 * @parent: parent struct device.
1316 * @fn: function to be called for each device.
1317 * @data: data for the callback.
1318 *
1319 * Iterate over @parent's child devices, and call @fn for each,
1320 * passing it @data.
1321 *
1322 * We check the return of @fn each time. If it returns anything
1323 * other than 0, we break out and return that value.
1324 */
1325 int device_for_each_child(struct device *parent, void *data,
1326 int (*fn)(struct device *dev, void *data))
1327 {
1328 struct klist_iter i;
1329 struct device *child;
1330 int error = 0;
1331
1332 if (!parent->p)
1333 return 0;
1334
1335 klist_iter_init(&parent->p->klist_children, &i);
1336 while ((child = next_device(&i)) && !error)
1337 error = fn(child, data);
1338 klist_iter_exit(&i);
1339 return error;
1340 }
1341 EXPORT_SYMBOL_GPL(device_for_each_child);
1342
1343 /**
1344 * device_find_child - device iterator for locating a particular device.
1345 * @parent: parent struct device
1346 * @match: Callback function to check device
1347 * @data: Data to pass to match function
1348 *
1349 * This is similar to the device_for_each_child() function above, but it
1350 * returns a reference to a device that is 'found' for later use, as
1351 * determined by the @match callback.
1352 *
1353 * The callback should return 0 if the device doesn't match and non-zero
1354 * if it does. If the callback returns non-zero and a reference to the
1355 * current device can be obtained, this function will return to the caller
1356 * and not iterate over any more devices.
1357 *
1358 * NOTE: you will need to drop the reference with put_device() after use.
1359 */
1360 struct device *device_find_child(struct device *parent, void *data,
1361 int (*match)(struct device *dev, void *data))
1362 {
1363 struct klist_iter i;
1364 struct device *child;
1365
1366 if (!parent)
1367 return NULL;
1368
1369 klist_iter_init(&parent->p->klist_children, &i);
1370 while ((child = next_device(&i)))
1371 if (match(child, data) && get_device(child))
1372 break;
1373 klist_iter_exit(&i);
1374 return child;
1375 }
1376 EXPORT_SYMBOL_GPL(device_find_child);
1377
1378 int __init devices_init(void)
1379 {
1380 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
1381 if (!devices_kset)
1382 return -ENOMEM;
1383 dev_kobj = kobject_create_and_add("dev", NULL);
1384 if (!dev_kobj)
1385 goto dev_kobj_err;
1386 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
1387 if (!sysfs_dev_block_kobj)
1388 goto block_kobj_err;
1389 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
1390 if (!sysfs_dev_char_kobj)
1391 goto char_kobj_err;
1392
1393 return 0;
1394
1395 char_kobj_err:
1396 kobject_put(sysfs_dev_block_kobj);
1397 block_kobj_err:
1398 kobject_put(dev_kobj);
1399 dev_kobj_err:
1400 kset_unregister(devices_kset);
1401 return -ENOMEM;
1402 }
1403
1404 static int device_check_offline(struct device *dev, void *not_used)
1405 {
1406 int ret;
1407
1408 ret = device_for_each_child(dev, NULL, device_check_offline);
1409 if (ret)
1410 return ret;
1411
1412 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
1413 }
1414
1415 /**
1416 * device_offline - Prepare the device for hot-removal.
1417 * @dev: Device to be put offline.
1418 *
1419 * Execute the device bus type's .offline() callback, if present, to prepare
1420 * the device for a subsequent hot-removal. If that succeeds, the device must
1421 * not be used until either it is removed or its bus type's .online() callback
1422 * is executed.
1423 *
1424 * Call under device_hotplug_lock.
1425 */
1426 int device_offline(struct device *dev)
1427 {
1428 int ret;
1429
1430 if (dev->offline_disabled)
1431 return -EPERM;
1432
1433 ret = device_for_each_child(dev, NULL, device_check_offline);
1434 if (ret)
1435 return ret;
1436
1437 device_lock(dev);
1438 if (device_supports_offline(dev)) {
1439 if (dev->offline) {
1440 ret = 1;
1441 } else {
1442 ret = dev->bus->offline(dev);
1443 if (!ret) {
1444 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1445 dev->offline = true;
1446 }
1447 }
1448 }
1449 device_unlock(dev);
1450
1451 return ret;
1452 }
1453
1454 /**
1455 * device_online - Put the device back online after successful device_offline().
1456 * @dev: Device to be put back online.
1457 *
1458 * If device_offline() has been successfully executed for @dev, but the device
1459 * has not been removed subsequently, execute its bus type's .online() callback
1460 * to indicate that the device can be used again.
1461 *
1462 * Call under device_hotplug_lock.
1463 */
1464 int device_online(struct device *dev)
1465 {
1466 int ret = 0;
1467
1468 device_lock(dev);
1469 if (device_supports_offline(dev)) {
1470 if (dev->offline) {
1471 ret = dev->bus->online(dev);
1472 if (!ret) {
1473 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
1474 dev->offline = false;
1475 }
1476 } else {
1477 ret = 1;
1478 }
1479 }
1480 device_unlock(dev);
1481
1482 return ret;
1483 }
1484
1485 struct root_device {
1486 struct device dev;
1487 struct module *owner;
1488 };
1489
1490 static inline struct root_device *to_root_device(struct device *d)
1491 {
1492 return container_of(d, struct root_device, dev);
1493 }
1494
1495 static void root_device_release(struct device *dev)
1496 {
1497 kfree(to_root_device(dev));
1498 }
1499
1500 /**
1501 * __root_device_register - allocate and register a root device
1502 * @name: root device name
1503 * @owner: owner module of the root device, usually THIS_MODULE
1504 *
1505 * This function allocates a root device and registers it
1506 * using device_register(). In order to free the returned
1507 * device, use root_device_unregister().
1508 *
1509 * Root devices are dummy devices which allow other devices
1510 * to be grouped under /sys/devices. Use this function to
1511 * allocate a root device and then use it as the parent of
1512 * any device which should appear under /sys/devices/{name}
1513 *
1514 * The /sys/devices/{name} directory will also contain a
1515 * 'module' symlink which points to the @owner directory
1516 * in sysfs.
1517 *
1518 * Returns &struct device pointer on success, or ERR_PTR() on error.
1519 *
1520 * Note: You probably want to use root_device_register().
1521 */
1522 struct device *__root_device_register(const char *name, struct module *owner)
1523 {
1524 struct root_device *root;
1525 int err = -ENOMEM;
1526
1527 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
1528 if (!root)
1529 return ERR_PTR(err);
1530
1531 err = dev_set_name(&root->dev, "%s", name);
1532 if (err) {
1533 kfree(root);
1534 return ERR_PTR(err);
1535 }
1536
1537 root->dev.release = root_device_release;
1538
1539 err = device_register(&root->dev);
1540 if (err) {
1541 put_device(&root->dev);
1542 return ERR_PTR(err);
1543 }
1544
1545 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
1546 if (owner) {
1547 struct module_kobject *mk = &owner->mkobj;
1548
1549 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
1550 if (err) {
1551 device_unregister(&root->dev);
1552 return ERR_PTR(err);
1553 }
1554 root->owner = owner;
1555 }
1556 #endif
1557
1558 return &root->dev;
1559 }
1560 EXPORT_SYMBOL_GPL(__root_device_register);
1561
1562 /**
1563 * root_device_unregister - unregister and free a root device
1564 * @dev: device going away
1565 *
1566 * This function unregisters and cleans up a device that was created by
1567 * root_device_register().
1568 */
1569 void root_device_unregister(struct device *dev)
1570 {
1571 struct root_device *root = to_root_device(dev);
1572
1573 if (root->owner)
1574 sysfs_remove_link(&root->dev.kobj, "module");
1575
1576 device_unregister(dev);
1577 }
1578 EXPORT_SYMBOL_GPL(root_device_unregister);
1579
1580
1581 static void device_create_release(struct device *dev)
1582 {
1583 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1584 kfree(dev);
1585 }
1586
1587 static struct device *
1588 device_create_groups_vargs(struct class *class, struct device *parent,
1589 dev_t devt, void *drvdata,
1590 const struct attribute_group **groups,
1591 const char *fmt, va_list args)
1592 {
1593 struct device *dev = NULL;
1594 int retval = -ENODEV;
1595
1596 if (class == NULL || IS_ERR(class))
1597 goto error;
1598
1599 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1600 if (!dev) {
1601 retval = -ENOMEM;
1602 goto error;
1603 }
1604
1605 device_initialize(dev);
1606 dev->devt = devt;
1607 dev->class = class;
1608 dev->parent = parent;
1609 dev->groups = groups;
1610 dev->release = device_create_release;
1611 dev_set_drvdata(dev, drvdata);
1612
1613 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
1614 if (retval)
1615 goto error;
1616
1617 retval = device_add(dev);
1618 if (retval)
1619 goto error;
1620
1621 return dev;
1622
1623 error:
1624 put_device(dev);
1625 return ERR_PTR(retval);
1626 }
1627
1628 /**
1629 * device_create_vargs - creates a device and registers it with sysfs
1630 * @class: pointer to the struct class that this device should be registered to
1631 * @parent: pointer to the parent struct device of this new device, if any
1632 * @devt: the dev_t for the char device to be added
1633 * @drvdata: the data to be added to the device for callbacks
1634 * @fmt: string for the device's name
1635 * @args: va_list for the device's name
1636 *
1637 * This function can be used by char device classes. A struct device
1638 * will be created in sysfs, registered to the specified class.
1639 *
1640 * A "dev" file will be created, showing the dev_t for the device, if
1641 * the dev_t is not 0,0.
1642 * If a pointer to a parent struct device is passed in, the newly created
1643 * struct device will be a child of that device in sysfs.
1644 * The pointer to the struct device will be returned from the call.
1645 * Any further sysfs files that might be required can be created using this
1646 * pointer.
1647 *
1648 * Returns &struct device pointer on success, or ERR_PTR() on error.
1649 *
1650 * Note: the struct class passed to this function must have previously
1651 * been created with a call to class_create().
1652 */
1653 struct device *device_create_vargs(struct class *class, struct device *parent,
1654 dev_t devt, void *drvdata, const char *fmt,
1655 va_list args)
1656 {
1657 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
1658 fmt, args);
1659 }
1660 EXPORT_SYMBOL_GPL(device_create_vargs);
1661
1662 /**
1663 * device_create - creates a device and registers it with sysfs
1664 * @class: pointer to the struct class that this device should be registered to
1665 * @parent: pointer to the parent struct device of this new device, if any
1666 * @devt: the dev_t for the char device to be added
1667 * @drvdata: the data to be added to the device for callbacks
1668 * @fmt: string for the device's name
1669 *
1670 * This function can be used by char device classes. A struct device
1671 * will be created in sysfs, registered to the specified class.
1672 *
1673 * A "dev" file will be created, showing the dev_t for the device, if
1674 * the dev_t is not 0,0.
1675 * If a pointer to a parent struct device is passed in, the newly created
1676 * struct device will be a child of that device in sysfs.
1677 * The pointer to the struct device will be returned from the call.
1678 * Any further sysfs files that might be required can be created using this
1679 * pointer.
1680 *
1681 * Returns &struct device pointer on success, or ERR_PTR() on error.
1682 *
1683 * Note: the struct class passed to this function must have previously
1684 * been created with a call to class_create().
1685 */
1686 struct device *device_create(struct class *class, struct device *parent,
1687 dev_t devt, void *drvdata, const char *fmt, ...)
1688 {
1689 va_list vargs;
1690 struct device *dev;
1691
1692 va_start(vargs, fmt);
1693 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
1694 va_end(vargs);
1695 return dev;
1696 }
1697 EXPORT_SYMBOL_GPL(device_create);
1698
1699 /**
1700 * device_create_with_groups - creates a device and registers it with sysfs
1701 * @class: pointer to the struct class that this device should be registered to
1702 * @parent: pointer to the parent struct device of this new device, if any
1703 * @devt: the dev_t for the char device to be added
1704 * @drvdata: the data to be added to the device for callbacks
1705 * @groups: NULL-terminated list of attribute groups to be created
1706 * @fmt: string for the device's name
1707 *
1708 * This function can be used by char device classes. A struct device
1709 * will be created in sysfs, registered to the specified class.
1710 * Additional attributes specified in the groups parameter will also
1711 * be created automatically.
1712 *
1713 * A "dev" file will be created, showing the dev_t for the device, if
1714 * the dev_t is not 0,0.
1715 * If a pointer to a parent struct device is passed in, the newly created
1716 * struct device will be a child of that device in sysfs.
1717 * The pointer to the struct device will be returned from the call.
1718 * Any further sysfs files that might be required can be created using this
1719 * pointer.
1720 *
1721 * Returns &struct device pointer on success, or ERR_PTR() on error.
1722 *
1723 * Note: the struct class passed to this function must have previously
1724 * been created with a call to class_create().
1725 */
1726 struct device *device_create_with_groups(struct class *class,
1727 struct device *parent, dev_t devt,
1728 void *drvdata,
1729 const struct attribute_group **groups,
1730 const char *fmt, ...)
1731 {
1732 va_list vargs;
1733 struct device *dev;
1734
1735 va_start(vargs, fmt);
1736 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
1737 fmt, vargs);
1738 va_end(vargs);
1739 return dev;
1740 }
1741 EXPORT_SYMBOL_GPL(device_create_with_groups);
1742
1743 static int __match_devt(struct device *dev, const void *data)
1744 {
1745 const dev_t *devt = data;
1746
1747 return dev->devt == *devt;
1748 }
1749
1750 /**
1751 * device_destroy - removes a device that was created with device_create()
1752 * @class: pointer to the struct class that this device was registered with
1753 * @devt: the dev_t of the device that was previously registered
1754 *
1755 * This call unregisters and cleans up a device that was created with a
1756 * call to device_create().
1757 */
1758 void device_destroy(struct class *class, dev_t devt)
1759 {
1760 struct device *dev;
1761
1762 dev = class_find_device(class, NULL, &devt, __match_devt);
1763 if (dev) {
1764 put_device(dev);
1765 device_unregister(dev);
1766 }
1767 }
1768 EXPORT_SYMBOL_GPL(device_destroy);
1769
1770 /**
1771 * device_rename - renames a device
1772 * @dev: the pointer to the struct device to be renamed
1773 * @new_name: the new name of the device
1774 *
1775 * It is the responsibility of the caller to provide mutual
1776 * exclusion between two different calls of device_rename
1777 * on the same device to ensure that new_name is valid and
1778 * won't conflict with other devices.
1779 *
1780 * Note: Don't call this function. Currently, the networking layer calls this
1781 * function, but that will change. The following text from Kay Sievers offers
1782 * some insight:
1783 *
1784 * Renaming devices is racy at many levels, symlinks and other stuff are not
1785 * replaced atomically, and you get a "move" uevent, but it's not easy to
1786 * connect the event to the old and new device. Device nodes are not renamed at
1787 * all, there isn't even support for that in the kernel now.
1788 *
1789 * In the meantime, during renaming, your target name might be taken by another
1790 * driver, creating conflicts. Or the old name is taken directly after you
1791 * renamed it -- then you get events for the same DEVPATH, before you even see
1792 * the "move" event. It's just a mess, and nothing new should ever rely on
1793 * kernel device renaming. Besides that, it's not even implemented now for
1794 * other things than (driver-core wise very simple) network devices.
1795 *
1796 * We are currently about to change network renaming in udev to completely
1797 * disallow renaming of devices in the same namespace as the kernel uses,
1798 * because we can't solve the problems properly, that arise with swapping names
1799 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
1800 * be allowed to some other name than eth[0-9]*, for the aforementioned
1801 * reasons.
1802 *
1803 * Make up a "real" name in the driver before you register anything, or add
1804 * some other attributes for userspace to find the device, or use udev to add
1805 * symlinks -- but never rename kernel devices later, it's a complete mess. We
1806 * don't even want to get into that and try to implement the missing pieces in
1807 * the core. We really have other pieces to fix in the driver core mess. :)
1808 */
1809 int device_rename(struct device *dev, const char *new_name)
1810 {
1811 struct kobject *kobj = &dev->kobj;
1812 char *old_device_name = NULL;
1813 int error;
1814
1815 dev = get_device(dev);
1816 if (!dev)
1817 return -EINVAL;
1818
1819 dev_dbg(dev, "renaming to %s\n", new_name);
1820
1821 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
1822 if (!old_device_name) {
1823 error = -ENOMEM;
1824 goto out;
1825 }
1826
1827 if (dev->class) {
1828 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
1829 kobj, old_device_name,
1830 new_name, kobject_namespace(kobj));
1831 if (error)
1832 goto out;
1833 }
1834
1835 error = kobject_rename(kobj, new_name);
1836 if (error)
1837 goto out;
1838
1839 out:
1840 put_device(dev);
1841
1842 kfree(old_device_name);
1843
1844 return error;
1845 }
1846 EXPORT_SYMBOL_GPL(device_rename);
1847
1848 static int device_move_class_links(struct device *dev,
1849 struct device *old_parent,
1850 struct device *new_parent)
1851 {
1852 int error = 0;
1853
1854 if (old_parent)
1855 sysfs_remove_link(&dev->kobj, "device");
1856 if (new_parent)
1857 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
1858 "device");
1859 return error;
1860 }
1861
1862 /**
1863 * device_move - moves a device to a new parent
1864 * @dev: the pointer to the struct device to be moved
1865 * @new_parent: the new parent of the device (can by NULL)
1866 * @dpm_order: how to reorder the dpm_list
1867 */
1868 int device_move(struct device *dev, struct device *new_parent,
1869 enum dpm_order dpm_order)
1870 {
1871 int error;
1872 struct device *old_parent;
1873 struct kobject *new_parent_kobj;
1874
1875 dev = get_device(dev);
1876 if (!dev)
1877 return -EINVAL;
1878
1879 device_pm_lock();
1880 new_parent = get_device(new_parent);
1881 new_parent_kobj = get_device_parent(dev, new_parent);
1882
1883 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
1884 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
1885 error = kobject_move(&dev->kobj, new_parent_kobj);
1886 if (error) {
1887 cleanup_glue_dir(dev, new_parent_kobj);
1888 put_device(new_parent);
1889 goto out;
1890 }
1891 old_parent = dev->parent;
1892 dev->parent = new_parent;
1893 if (old_parent)
1894 klist_remove(&dev->p->knode_parent);
1895 if (new_parent) {
1896 klist_add_tail(&dev->p->knode_parent,
1897 &new_parent->p->klist_children);
1898 set_dev_node(dev, dev_to_node(new_parent));
1899 }
1900
1901 if (dev->class) {
1902 error = device_move_class_links(dev, old_parent, new_parent);
1903 if (error) {
1904 /* We ignore errors on cleanup since we're hosed anyway... */
1905 device_move_class_links(dev, new_parent, old_parent);
1906 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
1907 if (new_parent)
1908 klist_remove(&dev->p->knode_parent);
1909 dev->parent = old_parent;
1910 if (old_parent) {
1911 klist_add_tail(&dev->p->knode_parent,
1912 &old_parent->p->klist_children);
1913 set_dev_node(dev, dev_to_node(old_parent));
1914 }
1915 }
1916 cleanup_glue_dir(dev, new_parent_kobj);
1917 put_device(new_parent);
1918 goto out;
1919 }
1920 }
1921 switch (dpm_order) {
1922 case DPM_ORDER_NONE:
1923 break;
1924 case DPM_ORDER_DEV_AFTER_PARENT:
1925 device_pm_move_after(dev, new_parent);
1926 break;
1927 case DPM_ORDER_PARENT_BEFORE_DEV:
1928 device_pm_move_before(new_parent, dev);
1929 break;
1930 case DPM_ORDER_DEV_LAST:
1931 device_pm_move_last(dev);
1932 break;
1933 }
1934
1935 put_device(old_parent);
1936 out:
1937 device_pm_unlock();
1938 put_device(dev);
1939 return error;
1940 }
1941 EXPORT_SYMBOL_GPL(device_move);
1942
1943 /**
1944 * device_shutdown - call ->shutdown() on each device to shutdown.
1945 */
1946 void device_shutdown(void)
1947 {
1948 struct device *dev, *parent;
1949
1950 spin_lock(&devices_kset->list_lock);
1951 /*
1952 * Walk the devices list backward, shutting down each in turn.
1953 * Beware that device unplug events may also start pulling
1954 * devices offline, even as the system is shutting down.
1955 */
1956 while (!list_empty(&devices_kset->list)) {
1957 dev = list_entry(devices_kset->list.prev, struct device,
1958 kobj.entry);
1959
1960 /*
1961 * hold reference count of device's parent to
1962 * prevent it from being freed because parent's
1963 * lock is to be held
1964 */
1965 parent = get_device(dev->parent);
1966 get_device(dev);
1967 /*
1968 * Make sure the device is off the kset list, in the
1969 * event that dev->*->shutdown() doesn't remove it.
1970 */
1971 list_del_init(&dev->kobj.entry);
1972 spin_unlock(&devices_kset->list_lock);
1973
1974 /* hold lock to avoid race with probe/release */
1975 if (parent)
1976 device_lock(parent);
1977 device_lock(dev);
1978
1979 /* Don't allow any more runtime suspends */
1980 pm_runtime_get_noresume(dev);
1981 pm_runtime_barrier(dev);
1982
1983 if (dev->bus && dev->bus->shutdown) {
1984 if (initcall_debug)
1985 dev_info(dev, "shutdown\n");
1986 dev->bus->shutdown(dev);
1987 } else if (dev->driver && dev->driver->shutdown) {
1988 if (initcall_debug)
1989 dev_info(dev, "shutdown\n");
1990 dev->driver->shutdown(dev);
1991 }
1992
1993 device_unlock(dev);
1994 if (parent)
1995 device_unlock(parent);
1996
1997 put_device(dev);
1998 put_device(parent);
1999
2000 spin_lock(&devices_kset->list_lock);
2001 }
2002 spin_unlock(&devices_kset->list_lock);
2003 }
2004
2005 /*
2006 * Device logging functions
2007 */
2008
2009 #ifdef CONFIG_PRINTK
2010 static int
2011 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2012 {
2013 const char *subsys;
2014 size_t pos = 0;
2015
2016 if (dev->class)
2017 subsys = dev->class->name;
2018 else if (dev->bus)
2019 subsys = dev->bus->name;
2020 else
2021 return 0;
2022
2023 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2024 if (pos >= hdrlen)
2025 goto overflow;
2026
2027 /*
2028 * Add device identifier DEVICE=:
2029 * b12:8 block dev_t
2030 * c127:3 char dev_t
2031 * n8 netdev ifindex
2032 * +sound:card0 subsystem:devname
2033 */
2034 if (MAJOR(dev->devt)) {
2035 char c;
2036
2037 if (strcmp(subsys, "block") == 0)
2038 c = 'b';
2039 else
2040 c = 'c';
2041 pos++;
2042 pos += snprintf(hdr + pos, hdrlen - pos,
2043 "DEVICE=%c%u:%u",
2044 c, MAJOR(dev->devt), MINOR(dev->devt));
2045 } else if (strcmp(subsys, "net") == 0) {
2046 struct net_device *net = to_net_dev(dev);
2047
2048 pos++;
2049 pos += snprintf(hdr + pos, hdrlen - pos,
2050 "DEVICE=n%u", net->ifindex);
2051 } else {
2052 pos++;
2053 pos += snprintf(hdr + pos, hdrlen - pos,
2054 "DEVICE=+%s:%s", subsys, dev_name(dev));
2055 }
2056
2057 if (pos >= hdrlen)
2058 goto overflow;
2059
2060 return pos;
2061
2062 overflow:
2063 dev_WARN(dev, "device/subsystem name too long");
2064 return 0;
2065 }
2066
2067 int dev_vprintk_emit(int level, const struct device *dev,
2068 const char *fmt, va_list args)
2069 {
2070 char hdr[128];
2071 size_t hdrlen;
2072
2073 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2074
2075 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2076 }
2077 EXPORT_SYMBOL(dev_vprintk_emit);
2078
2079 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2080 {
2081 va_list args;
2082 int r;
2083
2084 va_start(args, fmt);
2085
2086 r = dev_vprintk_emit(level, dev, fmt, args);
2087
2088 va_end(args);
2089
2090 return r;
2091 }
2092 EXPORT_SYMBOL(dev_printk_emit);
2093
2094 static void __dev_printk(const char *level, const struct device *dev,
2095 struct va_format *vaf)
2096 {
2097 if (dev)
2098 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2099 dev_driver_string(dev), dev_name(dev), vaf);
2100 else
2101 printk("%s(NULL device *): %pV", level, vaf);
2102 }
2103
2104 void dev_printk(const char *level, const struct device *dev,
2105 const char *fmt, ...)
2106 {
2107 struct va_format vaf;
2108 va_list args;
2109
2110 va_start(args, fmt);
2111
2112 vaf.fmt = fmt;
2113 vaf.va = &args;
2114
2115 __dev_printk(level, dev, &vaf);
2116
2117 va_end(args);
2118 }
2119 EXPORT_SYMBOL(dev_printk);
2120
2121 #define define_dev_printk_level(func, kern_level) \
2122 void func(const struct device *dev, const char *fmt, ...) \
2123 { \
2124 struct va_format vaf; \
2125 va_list args; \
2126 \
2127 va_start(args, fmt); \
2128 \
2129 vaf.fmt = fmt; \
2130 vaf.va = &args; \
2131 \
2132 __dev_printk(kern_level, dev, &vaf); \
2133 \
2134 va_end(args); \
2135 } \
2136 EXPORT_SYMBOL(func);
2137
2138 define_dev_printk_level(dev_emerg, KERN_EMERG);
2139 define_dev_printk_level(dev_alert, KERN_ALERT);
2140 define_dev_printk_level(dev_crit, KERN_CRIT);
2141 define_dev_printk_level(dev_err, KERN_ERR);
2142 define_dev_printk_level(dev_warn, KERN_WARNING);
2143 define_dev_printk_level(dev_notice, KERN_NOTICE);
2144 define_dev_printk_level(_dev_info, KERN_INFO);
2145
2146 #endif
2147
2148 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2149 {
2150 return fwnode && !IS_ERR(fwnode->secondary);
2151 }
2152
2153 /**
2154 * set_primary_fwnode - Change the primary firmware node of a given device.
2155 * @dev: Device to handle.
2156 * @fwnode: New primary firmware node of the device.
2157 *
2158 * Set the device's firmware node pointer to @fwnode, but if a secondary
2159 * firmware node of the device is present, preserve it.
2160 */
2161 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2162 {
2163 if (fwnode) {
2164 struct fwnode_handle *fn = dev->fwnode;
2165
2166 if (fwnode_is_primary(fn))
2167 fn = fn->secondary;
2168
2169 fwnode->secondary = fn;
2170 dev->fwnode = fwnode;
2171 } else {
2172 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2173 dev->fwnode->secondary : NULL;
2174 }
2175 }
2176 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2177
2178 /**
2179 * set_secondary_fwnode - Change the secondary firmware node of a given device.
2180 * @dev: Device to handle.
2181 * @fwnode: New secondary firmware node of the device.
2182 *
2183 * If a primary firmware node of the device is present, set its secondary
2184 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
2185 * @fwnode.
2186 */
2187 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2188 {
2189 if (fwnode)
2190 fwnode->secondary = ERR_PTR(-ENODEV);
2191
2192 if (fwnode_is_primary(dev->fwnode))
2193 dev->fwnode->secondary = fwnode;
2194 else
2195 dev->fwnode = fwnode;
2196 }
This page took 0.077615 seconds and 5 git commands to generate.