Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / drivers / base / memory.c
1 /*
2 * Memory subsystem support
3 *
4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5 * Dave Hansen <haveblue@us.ibm.com>
6 *
7 * This file provides the necessary infrastructure to represent
8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11 */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/memory_hotplug.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24
25 #include <linux/atomic.h>
26 #include <asm/uaccess.h>
27
28 static DEFINE_MUTEX(mem_sysfs_mutex);
29
30 #define MEMORY_CLASS_NAME "memory"
31
32 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
33
34 static int sections_per_block;
35
36 static inline int base_memory_block_id(int section_nr)
37 {
38 return section_nr / sections_per_block;
39 }
40
41 static int memory_subsys_online(struct device *dev);
42 static int memory_subsys_offline(struct device *dev);
43
44 static struct bus_type memory_subsys = {
45 .name = MEMORY_CLASS_NAME,
46 .dev_name = MEMORY_CLASS_NAME,
47 .online = memory_subsys_online,
48 .offline = memory_subsys_offline,
49 };
50
51 static BLOCKING_NOTIFIER_HEAD(memory_chain);
52
53 int register_memory_notifier(struct notifier_block *nb)
54 {
55 return blocking_notifier_chain_register(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(register_memory_notifier);
58
59 void unregister_memory_notifier(struct notifier_block *nb)
60 {
61 blocking_notifier_chain_unregister(&memory_chain, nb);
62 }
63 EXPORT_SYMBOL(unregister_memory_notifier);
64
65 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
66
67 int register_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 return atomic_notifier_chain_register(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(register_memory_isolate_notifier);
72
73 void unregister_memory_isolate_notifier(struct notifier_block *nb)
74 {
75 atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
76 }
77 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
78
79 static void memory_block_release(struct device *dev)
80 {
81 struct memory_block *mem = to_memory_block(dev);
82
83 kfree(mem);
84 }
85
86 unsigned long __weak memory_block_size_bytes(void)
87 {
88 return MIN_MEMORY_BLOCK_SIZE;
89 }
90
91 static unsigned long get_memory_block_size(void)
92 {
93 unsigned long block_sz;
94
95 block_sz = memory_block_size_bytes();
96
97 /* Validate blk_sz is a power of 2 and not less than section size */
98 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
99 WARN_ON(1);
100 block_sz = MIN_MEMORY_BLOCK_SIZE;
101 }
102
103 return block_sz;
104 }
105
106 /*
107 * use this as the physical section index that this memsection
108 * uses.
109 */
110
111 static ssize_t show_mem_start_phys_index(struct device *dev,
112 struct device_attribute *attr, char *buf)
113 {
114 struct memory_block *mem = to_memory_block(dev);
115 unsigned long phys_index;
116
117 phys_index = mem->start_section_nr / sections_per_block;
118 return sprintf(buf, "%08lx\n", phys_index);
119 }
120
121 /*
122 * Show whether the section of memory is likely to be hot-removable
123 */
124 static ssize_t show_mem_removable(struct device *dev,
125 struct device_attribute *attr, char *buf)
126 {
127 unsigned long i, pfn;
128 int ret = 1;
129 struct memory_block *mem = to_memory_block(dev);
130
131 for (i = 0; i < sections_per_block; i++) {
132 if (!present_section_nr(mem->start_section_nr + i))
133 continue;
134 pfn = section_nr_to_pfn(mem->start_section_nr + i);
135 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
136 }
137
138 return sprintf(buf, "%d\n", ret);
139 }
140
141 /*
142 * online, offline, going offline, etc.
143 */
144 static ssize_t show_mem_state(struct device *dev,
145 struct device_attribute *attr, char *buf)
146 {
147 struct memory_block *mem = to_memory_block(dev);
148 ssize_t len = 0;
149
150 /*
151 * We can probably put these states in a nice little array
152 * so that they're not open-coded
153 */
154 switch (mem->state) {
155 case MEM_ONLINE:
156 len = sprintf(buf, "online\n");
157 break;
158 case MEM_OFFLINE:
159 len = sprintf(buf, "offline\n");
160 break;
161 case MEM_GOING_OFFLINE:
162 len = sprintf(buf, "going-offline\n");
163 break;
164 default:
165 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
166 mem->state);
167 WARN_ON(1);
168 break;
169 }
170
171 return len;
172 }
173
174 int memory_notify(unsigned long val, void *v)
175 {
176 return blocking_notifier_call_chain(&memory_chain, val, v);
177 }
178
179 int memory_isolate_notify(unsigned long val, void *v)
180 {
181 return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
182 }
183
184 /*
185 * The probe routines leave the pages reserved, just as the bootmem code does.
186 * Make sure they're still that way.
187 */
188 static bool pages_correctly_reserved(unsigned long start_pfn)
189 {
190 int i, j;
191 struct page *page;
192 unsigned long pfn = start_pfn;
193
194 /*
195 * memmap between sections is not contiguous except with
196 * SPARSEMEM_VMEMMAP. We lookup the page once per section
197 * and assume memmap is contiguous within each section
198 */
199 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
200 if (WARN_ON_ONCE(!pfn_valid(pfn)))
201 return false;
202 page = pfn_to_page(pfn);
203
204 for (j = 0; j < PAGES_PER_SECTION; j++) {
205 if (PageReserved(page + j))
206 continue;
207
208 printk(KERN_WARNING "section number %ld page number %d "
209 "not reserved, was it already online?\n",
210 pfn_to_section_nr(pfn), j);
211
212 return false;
213 }
214 }
215
216 return true;
217 }
218
219 /*
220 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
221 * OK to have direct references to sparsemem variables in here.
222 */
223 static int
224 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
225 {
226 unsigned long start_pfn;
227 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
228 struct page *first_page;
229 int ret;
230
231 first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
232 start_pfn = page_to_pfn(first_page);
233
234 switch (action) {
235 case MEM_ONLINE:
236 if (!pages_correctly_reserved(start_pfn))
237 return -EBUSY;
238
239 ret = online_pages(start_pfn, nr_pages, online_type);
240 break;
241 case MEM_OFFLINE:
242 ret = offline_pages(start_pfn, nr_pages);
243 break;
244 default:
245 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
246 "%ld\n", __func__, phys_index, action, action);
247 ret = -EINVAL;
248 }
249
250 return ret;
251 }
252
253 static int memory_block_change_state(struct memory_block *mem,
254 unsigned long to_state, unsigned long from_state_req)
255 {
256 int ret = 0;
257
258 if (mem->state != from_state_req)
259 return -EINVAL;
260
261 if (to_state == MEM_OFFLINE)
262 mem->state = MEM_GOING_OFFLINE;
263
264 ret = memory_block_action(mem->start_section_nr, to_state,
265 mem->online_type);
266
267 mem->state = ret ? from_state_req : to_state;
268
269 return ret;
270 }
271
272 /* The device lock serializes operations on memory_subsys_[online|offline] */
273 static int memory_subsys_online(struct device *dev)
274 {
275 struct memory_block *mem = to_memory_block(dev);
276 int ret;
277
278 if (mem->state == MEM_ONLINE)
279 return 0;
280
281 /*
282 * If we are called from store_mem_state(), online_type will be
283 * set >= 0 Otherwise we were called from the device online
284 * attribute and need to set the online_type.
285 */
286 if (mem->online_type < 0)
287 mem->online_type = ONLINE_KEEP;
288
289 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
290
291 /* clear online_type */
292 mem->online_type = -1;
293
294 return ret;
295 }
296
297 static int memory_subsys_offline(struct device *dev)
298 {
299 struct memory_block *mem = to_memory_block(dev);
300
301 if (mem->state == MEM_OFFLINE)
302 return 0;
303
304 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
305 }
306
307 static ssize_t
308 store_mem_state(struct device *dev,
309 struct device_attribute *attr, const char *buf, size_t count)
310 {
311 struct memory_block *mem = to_memory_block(dev);
312 int ret, online_type;
313
314 ret = lock_device_hotplug_sysfs();
315 if (ret)
316 return ret;
317
318 if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
319 online_type = ONLINE_KERNEL;
320 else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
321 online_type = ONLINE_MOVABLE;
322 else if (!strncmp(buf, "online", min_t(int, count, 6)))
323 online_type = ONLINE_KEEP;
324 else if (!strncmp(buf, "offline", min_t(int, count, 7)))
325 online_type = -1;
326 else {
327 ret = -EINVAL;
328 goto err;
329 }
330
331 switch (online_type) {
332 case ONLINE_KERNEL:
333 case ONLINE_MOVABLE:
334 case ONLINE_KEEP:
335 /*
336 * mem->online_type is not protected so there can be a
337 * race here. However, when racing online, the first
338 * will succeed and the second will just return as the
339 * block will already be online. The online type
340 * could be either one, but that is expected.
341 */
342 mem->online_type = online_type;
343 ret = device_online(&mem->dev);
344 break;
345 case -1:
346 ret = device_offline(&mem->dev);
347 break;
348 default:
349 ret = -EINVAL; /* should never happen */
350 }
351
352 err:
353 unlock_device_hotplug();
354
355 if (ret)
356 return ret;
357 return count;
358 }
359
360 /*
361 * phys_device is a bad name for this. What I really want
362 * is a way to differentiate between memory ranges that
363 * are part of physical devices that constitute
364 * a complete removable unit or fru.
365 * i.e. do these ranges belong to the same physical device,
366 * s.t. if I offline all of these sections I can then
367 * remove the physical device?
368 */
369 static ssize_t show_phys_device(struct device *dev,
370 struct device_attribute *attr, char *buf)
371 {
372 struct memory_block *mem = to_memory_block(dev);
373 return sprintf(buf, "%d\n", mem->phys_device);
374 }
375
376 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
377 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
378 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
379 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
380
381 /*
382 * Block size attribute stuff
383 */
384 static ssize_t
385 print_block_size(struct device *dev, struct device_attribute *attr,
386 char *buf)
387 {
388 return sprintf(buf, "%lx\n", get_memory_block_size());
389 }
390
391 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
392
393 /*
394 * Some architectures will have custom drivers to do this, and
395 * will not need to do it from userspace. The fake hot-add code
396 * as well as ppc64 will do all of their discovery in userspace
397 * and will require this interface.
398 */
399 #ifdef CONFIG_ARCH_MEMORY_PROBE
400 static ssize_t
401 memory_probe_store(struct device *dev, struct device_attribute *attr,
402 const char *buf, size_t count)
403 {
404 u64 phys_addr;
405 int nid;
406 int i, ret;
407 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
408
409 phys_addr = simple_strtoull(buf, NULL, 0);
410
411 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
412 return -EINVAL;
413
414 for (i = 0; i < sections_per_block; i++) {
415 nid = memory_add_physaddr_to_nid(phys_addr);
416 ret = add_memory(nid, phys_addr,
417 PAGES_PER_SECTION << PAGE_SHIFT);
418 if (ret)
419 goto out;
420
421 phys_addr += MIN_MEMORY_BLOCK_SIZE;
422 }
423
424 ret = count;
425 out:
426 return ret;
427 }
428
429 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
430 #endif
431
432 #ifdef CONFIG_MEMORY_FAILURE
433 /*
434 * Support for offlining pages of memory
435 */
436
437 /* Soft offline a page */
438 static ssize_t
439 store_soft_offline_page(struct device *dev,
440 struct device_attribute *attr,
441 const char *buf, size_t count)
442 {
443 int ret;
444 u64 pfn;
445 if (!capable(CAP_SYS_ADMIN))
446 return -EPERM;
447 if (kstrtoull(buf, 0, &pfn) < 0)
448 return -EINVAL;
449 pfn >>= PAGE_SHIFT;
450 if (!pfn_valid(pfn))
451 return -ENXIO;
452 ret = soft_offline_page(pfn_to_page(pfn), 0);
453 return ret == 0 ? count : ret;
454 }
455
456 /* Forcibly offline a page, including killing processes. */
457 static ssize_t
458 store_hard_offline_page(struct device *dev,
459 struct device_attribute *attr,
460 const char *buf, size_t count)
461 {
462 int ret;
463 u64 pfn;
464 if (!capable(CAP_SYS_ADMIN))
465 return -EPERM;
466 if (kstrtoull(buf, 0, &pfn) < 0)
467 return -EINVAL;
468 pfn >>= PAGE_SHIFT;
469 ret = memory_failure(pfn, 0, 0);
470 return ret ? ret : count;
471 }
472
473 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
474 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
475 #endif
476
477 /*
478 * Note that phys_device is optional. It is here to allow for
479 * differentiation between which *physical* devices each
480 * section belongs to...
481 */
482 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
483 {
484 return 0;
485 }
486
487 /*
488 * A reference for the returned object is held and the reference for the
489 * hinted object is released.
490 */
491 struct memory_block *find_memory_block_hinted(struct mem_section *section,
492 struct memory_block *hint)
493 {
494 int block_id = base_memory_block_id(__section_nr(section));
495 struct device *hintdev = hint ? &hint->dev : NULL;
496 struct device *dev;
497
498 dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
499 if (hint)
500 put_device(&hint->dev);
501 if (!dev)
502 return NULL;
503 return to_memory_block(dev);
504 }
505
506 /*
507 * For now, we have a linear search to go find the appropriate
508 * memory_block corresponding to a particular phys_index. If
509 * this gets to be a real problem, we can always use a radix
510 * tree or something here.
511 *
512 * This could be made generic for all device subsystems.
513 */
514 struct memory_block *find_memory_block(struct mem_section *section)
515 {
516 return find_memory_block_hinted(section, NULL);
517 }
518
519 static struct attribute *memory_memblk_attrs[] = {
520 &dev_attr_phys_index.attr,
521 &dev_attr_state.attr,
522 &dev_attr_phys_device.attr,
523 &dev_attr_removable.attr,
524 NULL
525 };
526
527 static struct attribute_group memory_memblk_attr_group = {
528 .attrs = memory_memblk_attrs,
529 };
530
531 static const struct attribute_group *memory_memblk_attr_groups[] = {
532 &memory_memblk_attr_group,
533 NULL,
534 };
535
536 /*
537 * register_memory - Setup a sysfs device for a memory block
538 */
539 static
540 int register_memory(struct memory_block *memory)
541 {
542 memory->dev.bus = &memory_subsys;
543 memory->dev.id = memory->start_section_nr / sections_per_block;
544 memory->dev.release = memory_block_release;
545 memory->dev.groups = memory_memblk_attr_groups;
546 memory->dev.offline = memory->state == MEM_OFFLINE;
547
548 return device_register(&memory->dev);
549 }
550
551 static int init_memory_block(struct memory_block **memory,
552 struct mem_section *section, unsigned long state)
553 {
554 struct memory_block *mem;
555 unsigned long start_pfn;
556 int scn_nr;
557 int ret = 0;
558
559 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
560 if (!mem)
561 return -ENOMEM;
562
563 scn_nr = __section_nr(section);
564 mem->start_section_nr =
565 base_memory_block_id(scn_nr) * sections_per_block;
566 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
567 mem->state = state;
568 mem->section_count++;
569 start_pfn = section_nr_to_pfn(mem->start_section_nr);
570 mem->phys_device = arch_get_memory_phys_device(start_pfn);
571
572 ret = register_memory(mem);
573
574 *memory = mem;
575 return ret;
576 }
577
578 static int add_memory_block(int base_section_nr)
579 {
580 struct memory_block *mem;
581 int i, ret, section_count = 0, section_nr;
582
583 for (i = base_section_nr;
584 (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
585 i++) {
586 if (!present_section_nr(i))
587 continue;
588 if (section_count == 0)
589 section_nr = i;
590 section_count++;
591 }
592
593 if (section_count == 0)
594 return 0;
595 ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
596 if (ret)
597 return ret;
598 mem->section_count = section_count;
599 return 0;
600 }
601
602
603 /*
604 * need an interface for the VM to add new memory regions,
605 * but without onlining it.
606 */
607 int register_new_memory(int nid, struct mem_section *section)
608 {
609 int ret = 0;
610 struct memory_block *mem;
611
612 mutex_lock(&mem_sysfs_mutex);
613
614 mem = find_memory_block(section);
615 if (mem) {
616 mem->section_count++;
617 put_device(&mem->dev);
618 } else {
619 ret = init_memory_block(&mem, section, MEM_OFFLINE);
620 if (ret)
621 goto out;
622 }
623
624 if (mem->section_count == sections_per_block)
625 ret = register_mem_sect_under_node(mem, nid);
626 out:
627 mutex_unlock(&mem_sysfs_mutex);
628 return ret;
629 }
630
631 #ifdef CONFIG_MEMORY_HOTREMOVE
632 static void
633 unregister_memory(struct memory_block *memory)
634 {
635 BUG_ON(memory->dev.bus != &memory_subsys);
636
637 /* drop the ref. we got in remove_memory_block() */
638 put_device(&memory->dev);
639 device_unregister(&memory->dev);
640 }
641
642 static int remove_memory_block(unsigned long node_id,
643 struct mem_section *section, int phys_device)
644 {
645 struct memory_block *mem;
646
647 mutex_lock(&mem_sysfs_mutex);
648 mem = find_memory_block(section);
649 unregister_mem_sect_under_nodes(mem, __section_nr(section));
650
651 mem->section_count--;
652 if (mem->section_count == 0)
653 unregister_memory(mem);
654 else
655 put_device(&mem->dev);
656
657 mutex_unlock(&mem_sysfs_mutex);
658 return 0;
659 }
660
661 int unregister_memory_section(struct mem_section *section)
662 {
663 if (!present_section(section))
664 return -EINVAL;
665
666 return remove_memory_block(0, section, 0);
667 }
668 #endif /* CONFIG_MEMORY_HOTREMOVE */
669
670 /* return true if the memory block is offlined, otherwise, return false */
671 bool is_memblock_offlined(struct memory_block *mem)
672 {
673 return mem->state == MEM_OFFLINE;
674 }
675
676 static struct attribute *memory_root_attrs[] = {
677 #ifdef CONFIG_ARCH_MEMORY_PROBE
678 &dev_attr_probe.attr,
679 #endif
680
681 #ifdef CONFIG_MEMORY_FAILURE
682 &dev_attr_soft_offline_page.attr,
683 &dev_attr_hard_offline_page.attr,
684 #endif
685
686 &dev_attr_block_size_bytes.attr,
687 NULL
688 };
689
690 static struct attribute_group memory_root_attr_group = {
691 .attrs = memory_root_attrs,
692 };
693
694 static const struct attribute_group *memory_root_attr_groups[] = {
695 &memory_root_attr_group,
696 NULL,
697 };
698
699 /*
700 * Initialize the sysfs support for memory devices...
701 */
702 int __init memory_dev_init(void)
703 {
704 unsigned int i;
705 int ret;
706 int err;
707 unsigned long block_sz;
708
709 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
710 if (ret)
711 goto out;
712
713 block_sz = get_memory_block_size();
714 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
715
716 /*
717 * Create entries for memory sections that were found
718 * during boot and have been initialized
719 */
720 mutex_lock(&mem_sysfs_mutex);
721 for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
722 err = add_memory_block(i);
723 if (!ret)
724 ret = err;
725 }
726 mutex_unlock(&mem_sysfs_mutex);
727
728 out:
729 if (ret)
730 printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
731 return ret;
732 }
This page took 0.048485 seconds and 5 git commands to generate.