Merge branch 'pci/resource' into next
[deliverable/linux.git] / drivers / base / power / main.c
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpuidle.h>
33 #include <linux/timer.h>
34
35 #include "../base.h"
36 #include "power.h"
37
38 typedef int (*pm_callback_t)(struct device *);
39
40 /*
41 * The entries in the dpm_list list are in a depth first order, simply
42 * because children are guaranteed to be discovered after parents, and
43 * are inserted at the back of the list on discovery.
44 *
45 * Since device_pm_add() may be called with a device lock held,
46 * we must never try to acquire a device lock while holding
47 * dpm_list_mutex.
48 */
49
50 LIST_HEAD(dpm_list);
51 static LIST_HEAD(dpm_prepared_list);
52 static LIST_HEAD(dpm_suspended_list);
53 static LIST_HEAD(dpm_late_early_list);
54 static LIST_HEAD(dpm_noirq_list);
55
56 struct suspend_stats suspend_stats;
57 static DEFINE_MUTEX(dpm_list_mtx);
58 static pm_message_t pm_transition;
59
60 static int async_error;
61
62 static char *pm_verb(int event)
63 {
64 switch (event) {
65 case PM_EVENT_SUSPEND:
66 return "suspend";
67 case PM_EVENT_RESUME:
68 return "resume";
69 case PM_EVENT_FREEZE:
70 return "freeze";
71 case PM_EVENT_QUIESCE:
72 return "quiesce";
73 case PM_EVENT_HIBERNATE:
74 return "hibernate";
75 case PM_EVENT_THAW:
76 return "thaw";
77 case PM_EVENT_RESTORE:
78 return "restore";
79 case PM_EVENT_RECOVER:
80 return "recover";
81 default:
82 return "(unknown PM event)";
83 }
84 }
85
86 /**
87 * device_pm_sleep_init - Initialize system suspend-related device fields.
88 * @dev: Device object being initialized.
89 */
90 void device_pm_sleep_init(struct device *dev)
91 {
92 dev->power.is_prepared = false;
93 dev->power.is_suspended = false;
94 init_completion(&dev->power.completion);
95 complete_all(&dev->power.completion);
96 dev->power.wakeup = NULL;
97 INIT_LIST_HEAD(&dev->power.entry);
98 }
99
100 /**
101 * device_pm_lock - Lock the list of active devices used by the PM core.
102 */
103 void device_pm_lock(void)
104 {
105 mutex_lock(&dpm_list_mtx);
106 }
107
108 /**
109 * device_pm_unlock - Unlock the list of active devices used by the PM core.
110 */
111 void device_pm_unlock(void)
112 {
113 mutex_unlock(&dpm_list_mtx);
114 }
115
116 /**
117 * device_pm_add - Add a device to the PM core's list of active devices.
118 * @dev: Device to add to the list.
119 */
120 void device_pm_add(struct device *dev)
121 {
122 pr_debug("PM: Adding info for %s:%s\n",
123 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
124 mutex_lock(&dpm_list_mtx);
125 if (dev->parent && dev->parent->power.is_prepared)
126 dev_warn(dev, "parent %s should not be sleeping\n",
127 dev_name(dev->parent));
128 list_add_tail(&dev->power.entry, &dpm_list);
129 mutex_unlock(&dpm_list_mtx);
130 }
131
132 /**
133 * device_pm_remove - Remove a device from the PM core's list of active devices.
134 * @dev: Device to be removed from the list.
135 */
136 void device_pm_remove(struct device *dev)
137 {
138 pr_debug("PM: Removing info for %s:%s\n",
139 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
140 complete_all(&dev->power.completion);
141 mutex_lock(&dpm_list_mtx);
142 list_del_init(&dev->power.entry);
143 mutex_unlock(&dpm_list_mtx);
144 device_wakeup_disable(dev);
145 pm_runtime_remove(dev);
146 }
147
148 /**
149 * device_pm_move_before - Move device in the PM core's list of active devices.
150 * @deva: Device to move in dpm_list.
151 * @devb: Device @deva should come before.
152 */
153 void device_pm_move_before(struct device *deva, struct device *devb)
154 {
155 pr_debug("PM: Moving %s:%s before %s:%s\n",
156 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
157 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
158 /* Delete deva from dpm_list and reinsert before devb. */
159 list_move_tail(&deva->power.entry, &devb->power.entry);
160 }
161
162 /**
163 * device_pm_move_after - Move device in the PM core's list of active devices.
164 * @deva: Device to move in dpm_list.
165 * @devb: Device @deva should come after.
166 */
167 void device_pm_move_after(struct device *deva, struct device *devb)
168 {
169 pr_debug("PM: Moving %s:%s after %s:%s\n",
170 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
171 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
172 /* Delete deva from dpm_list and reinsert after devb. */
173 list_move(&deva->power.entry, &devb->power.entry);
174 }
175
176 /**
177 * device_pm_move_last - Move device to end of the PM core's list of devices.
178 * @dev: Device to move in dpm_list.
179 */
180 void device_pm_move_last(struct device *dev)
181 {
182 pr_debug("PM: Moving %s:%s to end of list\n",
183 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
184 list_move_tail(&dev->power.entry, &dpm_list);
185 }
186
187 static ktime_t initcall_debug_start(struct device *dev)
188 {
189 ktime_t calltime = ktime_set(0, 0);
190
191 if (pm_print_times_enabled) {
192 pr_info("calling %s+ @ %i, parent: %s\n",
193 dev_name(dev), task_pid_nr(current),
194 dev->parent ? dev_name(dev->parent) : "none");
195 calltime = ktime_get();
196 }
197
198 return calltime;
199 }
200
201 static void initcall_debug_report(struct device *dev, ktime_t calltime,
202 int error, pm_message_t state, char *info)
203 {
204 ktime_t rettime;
205 s64 nsecs;
206
207 rettime = ktime_get();
208 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
209
210 if (pm_print_times_enabled) {
211 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
212 error, (unsigned long long)nsecs >> 10);
213 }
214
215 trace_device_pm_report_time(dev, info, nsecs, pm_verb(state.event),
216 error);
217 }
218
219 /**
220 * dpm_wait - Wait for a PM operation to complete.
221 * @dev: Device to wait for.
222 * @async: If unset, wait only if the device's power.async_suspend flag is set.
223 */
224 static void dpm_wait(struct device *dev, bool async)
225 {
226 if (!dev)
227 return;
228
229 if (async || (pm_async_enabled && dev->power.async_suspend))
230 wait_for_completion(&dev->power.completion);
231 }
232
233 static int dpm_wait_fn(struct device *dev, void *async_ptr)
234 {
235 dpm_wait(dev, *((bool *)async_ptr));
236 return 0;
237 }
238
239 static void dpm_wait_for_children(struct device *dev, bool async)
240 {
241 device_for_each_child(dev, &async, dpm_wait_fn);
242 }
243
244 /**
245 * pm_op - Return the PM operation appropriate for given PM event.
246 * @ops: PM operations to choose from.
247 * @state: PM transition of the system being carried out.
248 */
249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
250 {
251 switch (state.event) {
252 #ifdef CONFIG_SUSPEND
253 case PM_EVENT_SUSPEND:
254 return ops->suspend;
255 case PM_EVENT_RESUME:
256 return ops->resume;
257 #endif /* CONFIG_SUSPEND */
258 #ifdef CONFIG_HIBERNATE_CALLBACKS
259 case PM_EVENT_FREEZE:
260 case PM_EVENT_QUIESCE:
261 return ops->freeze;
262 case PM_EVENT_HIBERNATE:
263 return ops->poweroff;
264 case PM_EVENT_THAW:
265 case PM_EVENT_RECOVER:
266 return ops->thaw;
267 break;
268 case PM_EVENT_RESTORE:
269 return ops->restore;
270 #endif /* CONFIG_HIBERNATE_CALLBACKS */
271 }
272
273 return NULL;
274 }
275
276 /**
277 * pm_late_early_op - Return the PM operation appropriate for given PM event.
278 * @ops: PM operations to choose from.
279 * @state: PM transition of the system being carried out.
280 *
281 * Runtime PM is disabled for @dev while this function is being executed.
282 */
283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
284 pm_message_t state)
285 {
286 switch (state.event) {
287 #ifdef CONFIG_SUSPEND
288 case PM_EVENT_SUSPEND:
289 return ops->suspend_late;
290 case PM_EVENT_RESUME:
291 return ops->resume_early;
292 #endif /* CONFIG_SUSPEND */
293 #ifdef CONFIG_HIBERNATE_CALLBACKS
294 case PM_EVENT_FREEZE:
295 case PM_EVENT_QUIESCE:
296 return ops->freeze_late;
297 case PM_EVENT_HIBERNATE:
298 return ops->poweroff_late;
299 case PM_EVENT_THAW:
300 case PM_EVENT_RECOVER:
301 return ops->thaw_early;
302 case PM_EVENT_RESTORE:
303 return ops->restore_early;
304 #endif /* CONFIG_HIBERNATE_CALLBACKS */
305 }
306
307 return NULL;
308 }
309
310 /**
311 * pm_noirq_op - Return the PM operation appropriate for given PM event.
312 * @ops: PM operations to choose from.
313 * @state: PM transition of the system being carried out.
314 *
315 * The driver of @dev will not receive interrupts while this function is being
316 * executed.
317 */
318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
319 {
320 switch (state.event) {
321 #ifdef CONFIG_SUSPEND
322 case PM_EVENT_SUSPEND:
323 return ops->suspend_noirq;
324 case PM_EVENT_RESUME:
325 return ops->resume_noirq;
326 #endif /* CONFIG_SUSPEND */
327 #ifdef CONFIG_HIBERNATE_CALLBACKS
328 case PM_EVENT_FREEZE:
329 case PM_EVENT_QUIESCE:
330 return ops->freeze_noirq;
331 case PM_EVENT_HIBERNATE:
332 return ops->poweroff_noirq;
333 case PM_EVENT_THAW:
334 case PM_EVENT_RECOVER:
335 return ops->thaw_noirq;
336 case PM_EVENT_RESTORE:
337 return ops->restore_noirq;
338 #endif /* CONFIG_HIBERNATE_CALLBACKS */
339 }
340
341 return NULL;
342 }
343
344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
345 {
346 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
347 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
348 ", may wakeup" : "");
349 }
350
351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
352 int error)
353 {
354 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
355 dev_name(dev), pm_verb(state.event), info, error);
356 }
357
358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
359 {
360 ktime_t calltime;
361 u64 usecs64;
362 int usecs;
363
364 calltime = ktime_get();
365 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
366 do_div(usecs64, NSEC_PER_USEC);
367 usecs = usecs64;
368 if (usecs == 0)
369 usecs = 1;
370 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
371 info ?: "", info ? " " : "", pm_verb(state.event),
372 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
373 }
374
375 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
376 pm_message_t state, char *info)
377 {
378 ktime_t calltime;
379 int error;
380
381 if (!cb)
382 return 0;
383
384 calltime = initcall_debug_start(dev);
385
386 pm_dev_dbg(dev, state, info);
387 error = cb(dev);
388 suspend_report_result(cb, error);
389
390 initcall_debug_report(dev, calltime, error, state, info);
391
392 return error;
393 }
394
395 #ifdef CONFIG_DPM_WATCHDOG
396 struct dpm_watchdog {
397 struct device *dev;
398 struct task_struct *tsk;
399 struct timer_list timer;
400 };
401
402 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
403 struct dpm_watchdog wd
404
405 /**
406 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
407 * @data: Watchdog object address.
408 *
409 * Called when a driver has timed out suspending or resuming.
410 * There's not much we can do here to recover so panic() to
411 * capture a crash-dump in pstore.
412 */
413 static void dpm_watchdog_handler(unsigned long data)
414 {
415 struct dpm_watchdog *wd = (void *)data;
416
417 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
418 show_stack(wd->tsk, NULL);
419 panic("%s %s: unrecoverable failure\n",
420 dev_driver_string(wd->dev), dev_name(wd->dev));
421 }
422
423 /**
424 * dpm_watchdog_set - Enable pm watchdog for given device.
425 * @wd: Watchdog. Must be allocated on the stack.
426 * @dev: Device to handle.
427 */
428 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
429 {
430 struct timer_list *timer = &wd->timer;
431
432 wd->dev = dev;
433 wd->tsk = current;
434
435 init_timer_on_stack(timer);
436 /* use same timeout value for both suspend and resume */
437 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
438 timer->function = dpm_watchdog_handler;
439 timer->data = (unsigned long)wd;
440 add_timer(timer);
441 }
442
443 /**
444 * dpm_watchdog_clear - Disable suspend/resume watchdog.
445 * @wd: Watchdog to disable.
446 */
447 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
448 {
449 struct timer_list *timer = &wd->timer;
450
451 del_timer_sync(timer);
452 destroy_timer_on_stack(timer);
453 }
454 #else
455 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
456 #define dpm_watchdog_set(x, y)
457 #define dpm_watchdog_clear(x)
458 #endif
459
460 /*------------------------- Resume routines -------------------------*/
461
462 /**
463 * device_resume_noirq - Execute an "early resume" callback for given device.
464 * @dev: Device to handle.
465 * @state: PM transition of the system being carried out.
466 *
467 * The driver of @dev will not receive interrupts while this function is being
468 * executed.
469 */
470 static int device_resume_noirq(struct device *dev, pm_message_t state)
471 {
472 pm_callback_t callback = NULL;
473 char *info = NULL;
474 int error = 0;
475
476 TRACE_DEVICE(dev);
477 TRACE_RESUME(0);
478
479 if (dev->power.syscore)
480 goto Out;
481
482 if (dev->pm_domain) {
483 info = "noirq power domain ";
484 callback = pm_noirq_op(&dev->pm_domain->ops, state);
485 } else if (dev->type && dev->type->pm) {
486 info = "noirq type ";
487 callback = pm_noirq_op(dev->type->pm, state);
488 } else if (dev->class && dev->class->pm) {
489 info = "noirq class ";
490 callback = pm_noirq_op(dev->class->pm, state);
491 } else if (dev->bus && dev->bus->pm) {
492 info = "noirq bus ";
493 callback = pm_noirq_op(dev->bus->pm, state);
494 }
495
496 if (!callback && dev->driver && dev->driver->pm) {
497 info = "noirq driver ";
498 callback = pm_noirq_op(dev->driver->pm, state);
499 }
500
501 error = dpm_run_callback(callback, dev, state, info);
502
503 Out:
504 TRACE_RESUME(error);
505 return error;
506 }
507
508 /**
509 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
510 * @state: PM transition of the system being carried out.
511 *
512 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
513 * enable device drivers to receive interrupts.
514 */
515 static void dpm_resume_noirq(pm_message_t state)
516 {
517 ktime_t starttime = ktime_get();
518
519 mutex_lock(&dpm_list_mtx);
520 while (!list_empty(&dpm_noirq_list)) {
521 struct device *dev = to_device(dpm_noirq_list.next);
522 int error;
523
524 get_device(dev);
525 list_move_tail(&dev->power.entry, &dpm_late_early_list);
526 mutex_unlock(&dpm_list_mtx);
527
528 error = device_resume_noirq(dev, state);
529 if (error) {
530 suspend_stats.failed_resume_noirq++;
531 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
532 dpm_save_failed_dev(dev_name(dev));
533 pm_dev_err(dev, state, " noirq", error);
534 }
535
536 mutex_lock(&dpm_list_mtx);
537 put_device(dev);
538 }
539 mutex_unlock(&dpm_list_mtx);
540 dpm_show_time(starttime, state, "noirq");
541 resume_device_irqs();
542 cpuidle_resume();
543 }
544
545 /**
546 * device_resume_early - Execute an "early resume" callback for given device.
547 * @dev: Device to handle.
548 * @state: PM transition of the system being carried out.
549 *
550 * Runtime PM is disabled for @dev while this function is being executed.
551 */
552 static int device_resume_early(struct device *dev, pm_message_t state)
553 {
554 pm_callback_t callback = NULL;
555 char *info = NULL;
556 int error = 0;
557
558 TRACE_DEVICE(dev);
559 TRACE_RESUME(0);
560
561 if (dev->power.syscore)
562 goto Out;
563
564 if (dev->pm_domain) {
565 info = "early power domain ";
566 callback = pm_late_early_op(&dev->pm_domain->ops, state);
567 } else if (dev->type && dev->type->pm) {
568 info = "early type ";
569 callback = pm_late_early_op(dev->type->pm, state);
570 } else if (dev->class && dev->class->pm) {
571 info = "early class ";
572 callback = pm_late_early_op(dev->class->pm, state);
573 } else if (dev->bus && dev->bus->pm) {
574 info = "early bus ";
575 callback = pm_late_early_op(dev->bus->pm, state);
576 }
577
578 if (!callback && dev->driver && dev->driver->pm) {
579 info = "early driver ";
580 callback = pm_late_early_op(dev->driver->pm, state);
581 }
582
583 error = dpm_run_callback(callback, dev, state, info);
584
585 Out:
586 TRACE_RESUME(error);
587
588 pm_runtime_enable(dev);
589 return error;
590 }
591
592 /**
593 * dpm_resume_early - Execute "early resume" callbacks for all devices.
594 * @state: PM transition of the system being carried out.
595 */
596 static void dpm_resume_early(pm_message_t state)
597 {
598 ktime_t starttime = ktime_get();
599
600 mutex_lock(&dpm_list_mtx);
601 while (!list_empty(&dpm_late_early_list)) {
602 struct device *dev = to_device(dpm_late_early_list.next);
603 int error;
604
605 get_device(dev);
606 list_move_tail(&dev->power.entry, &dpm_suspended_list);
607 mutex_unlock(&dpm_list_mtx);
608
609 error = device_resume_early(dev, state);
610 if (error) {
611 suspend_stats.failed_resume_early++;
612 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
613 dpm_save_failed_dev(dev_name(dev));
614 pm_dev_err(dev, state, " early", error);
615 }
616
617 mutex_lock(&dpm_list_mtx);
618 put_device(dev);
619 }
620 mutex_unlock(&dpm_list_mtx);
621 dpm_show_time(starttime, state, "early");
622 }
623
624 /**
625 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
626 * @state: PM transition of the system being carried out.
627 */
628 void dpm_resume_start(pm_message_t state)
629 {
630 dpm_resume_noirq(state);
631 dpm_resume_early(state);
632 }
633 EXPORT_SYMBOL_GPL(dpm_resume_start);
634
635 /**
636 * device_resume - Execute "resume" callbacks for given device.
637 * @dev: Device to handle.
638 * @state: PM transition of the system being carried out.
639 * @async: If true, the device is being resumed asynchronously.
640 */
641 static int device_resume(struct device *dev, pm_message_t state, bool async)
642 {
643 pm_callback_t callback = NULL;
644 char *info = NULL;
645 int error = 0;
646 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
647
648 TRACE_DEVICE(dev);
649 TRACE_RESUME(0);
650
651 if (dev->power.syscore)
652 goto Complete;
653
654 dpm_wait(dev->parent, async);
655 dpm_watchdog_set(&wd, dev);
656 device_lock(dev);
657
658 /*
659 * This is a fib. But we'll allow new children to be added below
660 * a resumed device, even if the device hasn't been completed yet.
661 */
662 dev->power.is_prepared = false;
663
664 if (!dev->power.is_suspended)
665 goto Unlock;
666
667 if (dev->pm_domain) {
668 info = "power domain ";
669 callback = pm_op(&dev->pm_domain->ops, state);
670 goto Driver;
671 }
672
673 if (dev->type && dev->type->pm) {
674 info = "type ";
675 callback = pm_op(dev->type->pm, state);
676 goto Driver;
677 }
678
679 if (dev->class) {
680 if (dev->class->pm) {
681 info = "class ";
682 callback = pm_op(dev->class->pm, state);
683 goto Driver;
684 } else if (dev->class->resume) {
685 info = "legacy class ";
686 callback = dev->class->resume;
687 goto End;
688 }
689 }
690
691 if (dev->bus) {
692 if (dev->bus->pm) {
693 info = "bus ";
694 callback = pm_op(dev->bus->pm, state);
695 } else if (dev->bus->resume) {
696 info = "legacy bus ";
697 callback = dev->bus->resume;
698 goto End;
699 }
700 }
701
702 Driver:
703 if (!callback && dev->driver && dev->driver->pm) {
704 info = "driver ";
705 callback = pm_op(dev->driver->pm, state);
706 }
707
708 End:
709 error = dpm_run_callback(callback, dev, state, info);
710 dev->power.is_suspended = false;
711
712 Unlock:
713 device_unlock(dev);
714 dpm_watchdog_clear(&wd);
715
716 Complete:
717 complete_all(&dev->power.completion);
718
719 TRACE_RESUME(error);
720
721 return error;
722 }
723
724 static void async_resume(void *data, async_cookie_t cookie)
725 {
726 struct device *dev = (struct device *)data;
727 int error;
728
729 error = device_resume(dev, pm_transition, true);
730 if (error)
731 pm_dev_err(dev, pm_transition, " async", error);
732 put_device(dev);
733 }
734
735 static bool is_async(struct device *dev)
736 {
737 return dev->power.async_suspend && pm_async_enabled
738 && !pm_trace_is_enabled();
739 }
740
741 /**
742 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
743 * @state: PM transition of the system being carried out.
744 *
745 * Execute the appropriate "resume" callback for all devices whose status
746 * indicates that they are suspended.
747 */
748 void dpm_resume(pm_message_t state)
749 {
750 struct device *dev;
751 ktime_t starttime = ktime_get();
752
753 might_sleep();
754
755 mutex_lock(&dpm_list_mtx);
756 pm_transition = state;
757 async_error = 0;
758
759 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
760 reinit_completion(&dev->power.completion);
761 if (is_async(dev)) {
762 get_device(dev);
763 async_schedule(async_resume, dev);
764 }
765 }
766
767 while (!list_empty(&dpm_suspended_list)) {
768 dev = to_device(dpm_suspended_list.next);
769 get_device(dev);
770 if (!is_async(dev)) {
771 int error;
772
773 mutex_unlock(&dpm_list_mtx);
774
775 error = device_resume(dev, state, false);
776 if (error) {
777 suspend_stats.failed_resume++;
778 dpm_save_failed_step(SUSPEND_RESUME);
779 dpm_save_failed_dev(dev_name(dev));
780 pm_dev_err(dev, state, "", error);
781 }
782
783 mutex_lock(&dpm_list_mtx);
784 }
785 if (!list_empty(&dev->power.entry))
786 list_move_tail(&dev->power.entry, &dpm_prepared_list);
787 put_device(dev);
788 }
789 mutex_unlock(&dpm_list_mtx);
790 async_synchronize_full();
791 dpm_show_time(starttime, state, NULL);
792 }
793
794 /**
795 * device_complete - Complete a PM transition for given device.
796 * @dev: Device to handle.
797 * @state: PM transition of the system being carried out.
798 */
799 static void device_complete(struct device *dev, pm_message_t state)
800 {
801 void (*callback)(struct device *) = NULL;
802 char *info = NULL;
803
804 if (dev->power.syscore)
805 return;
806
807 device_lock(dev);
808
809 if (dev->pm_domain) {
810 info = "completing power domain ";
811 callback = dev->pm_domain->ops.complete;
812 } else if (dev->type && dev->type->pm) {
813 info = "completing type ";
814 callback = dev->type->pm->complete;
815 } else if (dev->class && dev->class->pm) {
816 info = "completing class ";
817 callback = dev->class->pm->complete;
818 } else if (dev->bus && dev->bus->pm) {
819 info = "completing bus ";
820 callback = dev->bus->pm->complete;
821 }
822
823 if (!callback && dev->driver && dev->driver->pm) {
824 info = "completing driver ";
825 callback = dev->driver->pm->complete;
826 }
827
828 if (callback) {
829 pm_dev_dbg(dev, state, info);
830 callback(dev);
831 }
832
833 device_unlock(dev);
834
835 pm_runtime_put(dev);
836 }
837
838 /**
839 * dpm_complete - Complete a PM transition for all non-sysdev devices.
840 * @state: PM transition of the system being carried out.
841 *
842 * Execute the ->complete() callbacks for all devices whose PM status is not
843 * DPM_ON (this allows new devices to be registered).
844 */
845 void dpm_complete(pm_message_t state)
846 {
847 struct list_head list;
848
849 might_sleep();
850
851 INIT_LIST_HEAD(&list);
852 mutex_lock(&dpm_list_mtx);
853 while (!list_empty(&dpm_prepared_list)) {
854 struct device *dev = to_device(dpm_prepared_list.prev);
855
856 get_device(dev);
857 dev->power.is_prepared = false;
858 list_move(&dev->power.entry, &list);
859 mutex_unlock(&dpm_list_mtx);
860
861 device_complete(dev, state);
862
863 mutex_lock(&dpm_list_mtx);
864 put_device(dev);
865 }
866 list_splice(&list, &dpm_list);
867 mutex_unlock(&dpm_list_mtx);
868 }
869
870 /**
871 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
872 * @state: PM transition of the system being carried out.
873 *
874 * Execute "resume" callbacks for all devices and complete the PM transition of
875 * the system.
876 */
877 void dpm_resume_end(pm_message_t state)
878 {
879 dpm_resume(state);
880 dpm_complete(state);
881 }
882 EXPORT_SYMBOL_GPL(dpm_resume_end);
883
884
885 /*------------------------- Suspend routines -------------------------*/
886
887 /**
888 * resume_event - Return a "resume" message for given "suspend" sleep state.
889 * @sleep_state: PM message representing a sleep state.
890 *
891 * Return a PM message representing the resume event corresponding to given
892 * sleep state.
893 */
894 static pm_message_t resume_event(pm_message_t sleep_state)
895 {
896 switch (sleep_state.event) {
897 case PM_EVENT_SUSPEND:
898 return PMSG_RESUME;
899 case PM_EVENT_FREEZE:
900 case PM_EVENT_QUIESCE:
901 return PMSG_RECOVER;
902 case PM_EVENT_HIBERNATE:
903 return PMSG_RESTORE;
904 }
905 return PMSG_ON;
906 }
907
908 /**
909 * device_suspend_noirq - Execute a "late suspend" callback for given device.
910 * @dev: Device to handle.
911 * @state: PM transition of the system being carried out.
912 *
913 * The driver of @dev will not receive interrupts while this function is being
914 * executed.
915 */
916 static int device_suspend_noirq(struct device *dev, pm_message_t state)
917 {
918 pm_callback_t callback = NULL;
919 char *info = NULL;
920
921 if (dev->power.syscore)
922 return 0;
923
924 if (dev->pm_domain) {
925 info = "noirq power domain ";
926 callback = pm_noirq_op(&dev->pm_domain->ops, state);
927 } else if (dev->type && dev->type->pm) {
928 info = "noirq type ";
929 callback = pm_noirq_op(dev->type->pm, state);
930 } else if (dev->class && dev->class->pm) {
931 info = "noirq class ";
932 callback = pm_noirq_op(dev->class->pm, state);
933 } else if (dev->bus && dev->bus->pm) {
934 info = "noirq bus ";
935 callback = pm_noirq_op(dev->bus->pm, state);
936 }
937
938 if (!callback && dev->driver && dev->driver->pm) {
939 info = "noirq driver ";
940 callback = pm_noirq_op(dev->driver->pm, state);
941 }
942
943 return dpm_run_callback(callback, dev, state, info);
944 }
945
946 /**
947 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
948 * @state: PM transition of the system being carried out.
949 *
950 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
951 * handlers for all non-sysdev devices.
952 */
953 static int dpm_suspend_noirq(pm_message_t state)
954 {
955 ktime_t starttime = ktime_get();
956 int error = 0;
957
958 cpuidle_pause();
959 suspend_device_irqs();
960 mutex_lock(&dpm_list_mtx);
961 while (!list_empty(&dpm_late_early_list)) {
962 struct device *dev = to_device(dpm_late_early_list.prev);
963
964 get_device(dev);
965 mutex_unlock(&dpm_list_mtx);
966
967 error = device_suspend_noirq(dev, state);
968
969 mutex_lock(&dpm_list_mtx);
970 if (error) {
971 pm_dev_err(dev, state, " noirq", error);
972 suspend_stats.failed_suspend_noirq++;
973 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
974 dpm_save_failed_dev(dev_name(dev));
975 put_device(dev);
976 break;
977 }
978 if (!list_empty(&dev->power.entry))
979 list_move(&dev->power.entry, &dpm_noirq_list);
980 put_device(dev);
981
982 if (pm_wakeup_pending()) {
983 error = -EBUSY;
984 break;
985 }
986 }
987 mutex_unlock(&dpm_list_mtx);
988 if (error)
989 dpm_resume_noirq(resume_event(state));
990 else
991 dpm_show_time(starttime, state, "noirq");
992 return error;
993 }
994
995 /**
996 * device_suspend_late - Execute a "late suspend" callback for given device.
997 * @dev: Device to handle.
998 * @state: PM transition of the system being carried out.
999 *
1000 * Runtime PM is disabled for @dev while this function is being executed.
1001 */
1002 static int device_suspend_late(struct device *dev, pm_message_t state)
1003 {
1004 pm_callback_t callback = NULL;
1005 char *info = NULL;
1006
1007 __pm_runtime_disable(dev, false);
1008
1009 if (dev->power.syscore)
1010 return 0;
1011
1012 if (dev->pm_domain) {
1013 info = "late power domain ";
1014 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1015 } else if (dev->type && dev->type->pm) {
1016 info = "late type ";
1017 callback = pm_late_early_op(dev->type->pm, state);
1018 } else if (dev->class && dev->class->pm) {
1019 info = "late class ";
1020 callback = pm_late_early_op(dev->class->pm, state);
1021 } else if (dev->bus && dev->bus->pm) {
1022 info = "late bus ";
1023 callback = pm_late_early_op(dev->bus->pm, state);
1024 }
1025
1026 if (!callback && dev->driver && dev->driver->pm) {
1027 info = "late driver ";
1028 callback = pm_late_early_op(dev->driver->pm, state);
1029 }
1030
1031 return dpm_run_callback(callback, dev, state, info);
1032 }
1033
1034 /**
1035 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1036 * @state: PM transition of the system being carried out.
1037 */
1038 static int dpm_suspend_late(pm_message_t state)
1039 {
1040 ktime_t starttime = ktime_get();
1041 int error = 0;
1042
1043 mutex_lock(&dpm_list_mtx);
1044 while (!list_empty(&dpm_suspended_list)) {
1045 struct device *dev = to_device(dpm_suspended_list.prev);
1046
1047 get_device(dev);
1048 mutex_unlock(&dpm_list_mtx);
1049
1050 error = device_suspend_late(dev, state);
1051
1052 mutex_lock(&dpm_list_mtx);
1053 if (error) {
1054 pm_dev_err(dev, state, " late", error);
1055 suspend_stats.failed_suspend_late++;
1056 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1057 dpm_save_failed_dev(dev_name(dev));
1058 put_device(dev);
1059 break;
1060 }
1061 if (!list_empty(&dev->power.entry))
1062 list_move(&dev->power.entry, &dpm_late_early_list);
1063 put_device(dev);
1064
1065 if (pm_wakeup_pending()) {
1066 error = -EBUSY;
1067 break;
1068 }
1069 }
1070 mutex_unlock(&dpm_list_mtx);
1071 if (error)
1072 dpm_resume_early(resume_event(state));
1073 else
1074 dpm_show_time(starttime, state, "late");
1075
1076 return error;
1077 }
1078
1079 /**
1080 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1081 * @state: PM transition of the system being carried out.
1082 */
1083 int dpm_suspend_end(pm_message_t state)
1084 {
1085 int error = dpm_suspend_late(state);
1086 if (error)
1087 return error;
1088
1089 error = dpm_suspend_noirq(state);
1090 if (error) {
1091 dpm_resume_early(resume_event(state));
1092 return error;
1093 }
1094
1095 return 0;
1096 }
1097 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1098
1099 /**
1100 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1101 * @dev: Device to suspend.
1102 * @state: PM transition of the system being carried out.
1103 * @cb: Suspend callback to execute.
1104 */
1105 static int legacy_suspend(struct device *dev, pm_message_t state,
1106 int (*cb)(struct device *dev, pm_message_t state),
1107 char *info)
1108 {
1109 int error;
1110 ktime_t calltime;
1111
1112 calltime = initcall_debug_start(dev);
1113
1114 error = cb(dev, state);
1115 suspend_report_result(cb, error);
1116
1117 initcall_debug_report(dev, calltime, error, state, info);
1118
1119 return error;
1120 }
1121
1122 /**
1123 * device_suspend - Execute "suspend" callbacks for given device.
1124 * @dev: Device to handle.
1125 * @state: PM transition of the system being carried out.
1126 * @async: If true, the device is being suspended asynchronously.
1127 */
1128 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1129 {
1130 pm_callback_t callback = NULL;
1131 char *info = NULL;
1132 int error = 0;
1133 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1134
1135 dpm_wait_for_children(dev, async);
1136
1137 if (async_error)
1138 goto Complete;
1139
1140 /*
1141 * If a device configured to wake up the system from sleep states
1142 * has been suspended at run time and there's a resume request pending
1143 * for it, this is equivalent to the device signaling wakeup, so the
1144 * system suspend operation should be aborted.
1145 */
1146 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1147 pm_wakeup_event(dev, 0);
1148
1149 if (pm_wakeup_pending()) {
1150 async_error = -EBUSY;
1151 goto Complete;
1152 }
1153
1154 if (dev->power.syscore)
1155 goto Complete;
1156
1157 dpm_watchdog_set(&wd, dev);
1158 device_lock(dev);
1159
1160 if (dev->pm_domain) {
1161 info = "power domain ";
1162 callback = pm_op(&dev->pm_domain->ops, state);
1163 goto Run;
1164 }
1165
1166 if (dev->type && dev->type->pm) {
1167 info = "type ";
1168 callback = pm_op(dev->type->pm, state);
1169 goto Run;
1170 }
1171
1172 if (dev->class) {
1173 if (dev->class->pm) {
1174 info = "class ";
1175 callback = pm_op(dev->class->pm, state);
1176 goto Run;
1177 } else if (dev->class->suspend) {
1178 pm_dev_dbg(dev, state, "legacy class ");
1179 error = legacy_suspend(dev, state, dev->class->suspend,
1180 "legacy class ");
1181 goto End;
1182 }
1183 }
1184
1185 if (dev->bus) {
1186 if (dev->bus->pm) {
1187 info = "bus ";
1188 callback = pm_op(dev->bus->pm, state);
1189 } else if (dev->bus->suspend) {
1190 pm_dev_dbg(dev, state, "legacy bus ");
1191 error = legacy_suspend(dev, state, dev->bus->suspend,
1192 "legacy bus ");
1193 goto End;
1194 }
1195 }
1196
1197 Run:
1198 if (!callback && dev->driver && dev->driver->pm) {
1199 info = "driver ";
1200 callback = pm_op(dev->driver->pm, state);
1201 }
1202
1203 error = dpm_run_callback(callback, dev, state, info);
1204
1205 End:
1206 if (!error) {
1207 dev->power.is_suspended = true;
1208 if (dev->power.wakeup_path
1209 && dev->parent && !dev->parent->power.ignore_children)
1210 dev->parent->power.wakeup_path = true;
1211 }
1212
1213 device_unlock(dev);
1214 dpm_watchdog_clear(&wd);
1215
1216 Complete:
1217 complete_all(&dev->power.completion);
1218 if (error)
1219 async_error = error;
1220
1221 return error;
1222 }
1223
1224 static void async_suspend(void *data, async_cookie_t cookie)
1225 {
1226 struct device *dev = (struct device *)data;
1227 int error;
1228
1229 error = __device_suspend(dev, pm_transition, true);
1230 if (error) {
1231 dpm_save_failed_dev(dev_name(dev));
1232 pm_dev_err(dev, pm_transition, " async", error);
1233 }
1234
1235 put_device(dev);
1236 }
1237
1238 static int device_suspend(struct device *dev)
1239 {
1240 reinit_completion(&dev->power.completion);
1241
1242 if (pm_async_enabled && dev->power.async_suspend) {
1243 get_device(dev);
1244 async_schedule(async_suspend, dev);
1245 return 0;
1246 }
1247
1248 return __device_suspend(dev, pm_transition, false);
1249 }
1250
1251 /**
1252 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1253 * @state: PM transition of the system being carried out.
1254 */
1255 int dpm_suspend(pm_message_t state)
1256 {
1257 ktime_t starttime = ktime_get();
1258 int error = 0;
1259
1260 might_sleep();
1261
1262 mutex_lock(&dpm_list_mtx);
1263 pm_transition = state;
1264 async_error = 0;
1265 while (!list_empty(&dpm_prepared_list)) {
1266 struct device *dev = to_device(dpm_prepared_list.prev);
1267
1268 get_device(dev);
1269 mutex_unlock(&dpm_list_mtx);
1270
1271 error = device_suspend(dev);
1272
1273 mutex_lock(&dpm_list_mtx);
1274 if (error) {
1275 pm_dev_err(dev, state, "", error);
1276 dpm_save_failed_dev(dev_name(dev));
1277 put_device(dev);
1278 break;
1279 }
1280 if (!list_empty(&dev->power.entry))
1281 list_move(&dev->power.entry, &dpm_suspended_list);
1282 put_device(dev);
1283 if (async_error)
1284 break;
1285 }
1286 mutex_unlock(&dpm_list_mtx);
1287 async_synchronize_full();
1288 if (!error)
1289 error = async_error;
1290 if (error) {
1291 suspend_stats.failed_suspend++;
1292 dpm_save_failed_step(SUSPEND_SUSPEND);
1293 } else
1294 dpm_show_time(starttime, state, NULL);
1295 return error;
1296 }
1297
1298 /**
1299 * device_prepare - Prepare a device for system power transition.
1300 * @dev: Device to handle.
1301 * @state: PM transition of the system being carried out.
1302 *
1303 * Execute the ->prepare() callback(s) for given device. No new children of the
1304 * device may be registered after this function has returned.
1305 */
1306 static int device_prepare(struct device *dev, pm_message_t state)
1307 {
1308 int (*callback)(struct device *) = NULL;
1309 char *info = NULL;
1310 int error = 0;
1311
1312 if (dev->power.syscore)
1313 return 0;
1314
1315 /*
1316 * If a device's parent goes into runtime suspend at the wrong time,
1317 * it won't be possible to resume the device. To prevent this we
1318 * block runtime suspend here, during the prepare phase, and allow
1319 * it again during the complete phase.
1320 */
1321 pm_runtime_get_noresume(dev);
1322
1323 device_lock(dev);
1324
1325 dev->power.wakeup_path = device_may_wakeup(dev);
1326
1327 if (dev->pm_domain) {
1328 info = "preparing power domain ";
1329 callback = dev->pm_domain->ops.prepare;
1330 } else if (dev->type && dev->type->pm) {
1331 info = "preparing type ";
1332 callback = dev->type->pm->prepare;
1333 } else if (dev->class && dev->class->pm) {
1334 info = "preparing class ";
1335 callback = dev->class->pm->prepare;
1336 } else if (dev->bus && dev->bus->pm) {
1337 info = "preparing bus ";
1338 callback = dev->bus->pm->prepare;
1339 }
1340
1341 if (!callback && dev->driver && dev->driver->pm) {
1342 info = "preparing driver ";
1343 callback = dev->driver->pm->prepare;
1344 }
1345
1346 if (callback) {
1347 error = callback(dev);
1348 suspend_report_result(callback, error);
1349 }
1350
1351 device_unlock(dev);
1352
1353 if (error)
1354 pm_runtime_put(dev);
1355
1356 return error;
1357 }
1358
1359 /**
1360 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1361 * @state: PM transition of the system being carried out.
1362 *
1363 * Execute the ->prepare() callback(s) for all devices.
1364 */
1365 int dpm_prepare(pm_message_t state)
1366 {
1367 int error = 0;
1368
1369 might_sleep();
1370
1371 mutex_lock(&dpm_list_mtx);
1372 while (!list_empty(&dpm_list)) {
1373 struct device *dev = to_device(dpm_list.next);
1374
1375 get_device(dev);
1376 mutex_unlock(&dpm_list_mtx);
1377
1378 error = device_prepare(dev, state);
1379
1380 mutex_lock(&dpm_list_mtx);
1381 if (error) {
1382 if (error == -EAGAIN) {
1383 put_device(dev);
1384 error = 0;
1385 continue;
1386 }
1387 printk(KERN_INFO "PM: Device %s not prepared "
1388 "for power transition: code %d\n",
1389 dev_name(dev), error);
1390 put_device(dev);
1391 break;
1392 }
1393 dev->power.is_prepared = true;
1394 if (!list_empty(&dev->power.entry))
1395 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1396 put_device(dev);
1397 }
1398 mutex_unlock(&dpm_list_mtx);
1399 return error;
1400 }
1401
1402 /**
1403 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1404 * @state: PM transition of the system being carried out.
1405 *
1406 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1407 * callbacks for them.
1408 */
1409 int dpm_suspend_start(pm_message_t state)
1410 {
1411 int error;
1412
1413 error = dpm_prepare(state);
1414 if (error) {
1415 suspend_stats.failed_prepare++;
1416 dpm_save_failed_step(SUSPEND_PREPARE);
1417 } else
1418 error = dpm_suspend(state);
1419 return error;
1420 }
1421 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1422
1423 void __suspend_report_result(const char *function, void *fn, int ret)
1424 {
1425 if (ret)
1426 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1427 }
1428 EXPORT_SYMBOL_GPL(__suspend_report_result);
1429
1430 /**
1431 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1432 * @dev: Device to wait for.
1433 * @subordinate: Device that needs to wait for @dev.
1434 */
1435 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1436 {
1437 dpm_wait(dev, subordinate->power.async_suspend);
1438 return async_error;
1439 }
1440 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1441
1442 /**
1443 * dpm_for_each_dev - device iterator.
1444 * @data: data for the callback.
1445 * @fn: function to be called for each device.
1446 *
1447 * Iterate over devices in dpm_list, and call @fn for each device,
1448 * passing it @data.
1449 */
1450 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1451 {
1452 struct device *dev;
1453
1454 if (!fn)
1455 return;
1456
1457 device_pm_lock();
1458 list_for_each_entry(dev, &dpm_list, power.entry)
1459 fn(dev, data);
1460 device_pm_unlock();
1461 }
1462 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
This page took 0.061141 seconds and 5 git commands to generate.