Merge with upstream to accommodate with thermal changes
[deliverable/linux.git] / drivers / base / regmap / regmap-irq.c
1 /*
2 * regmap based irq_chip
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/export.h>
14 #include <linux/device.h>
15 #include <linux/regmap.h>
16 #include <linux/irq.h>
17 #include <linux/interrupt.h>
18 #include <linux/irqdomain.h>
19 #include <linux/slab.h>
20
21 #include "internal.h"
22
23 struct regmap_irq_chip_data {
24 struct mutex lock;
25
26 struct regmap *map;
27 struct regmap_irq_chip *chip;
28
29 int irq_base;
30 struct irq_domain *domain;
31
32 unsigned int *status_buf;
33 unsigned int *mask_buf;
34 unsigned int *mask_buf_def;
35
36 unsigned int irq_reg_stride;
37 };
38
39 static inline const
40 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
41 int irq)
42 {
43 return &data->chip->irqs[irq];
44 }
45
46 static void regmap_irq_lock(struct irq_data *data)
47 {
48 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
49
50 mutex_lock(&d->lock);
51 }
52
53 static void regmap_irq_sync_unlock(struct irq_data *data)
54 {
55 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
56 struct regmap *map = d->map;
57 int i, ret;
58
59 /*
60 * If there's been a change in the mask write it back to the
61 * hardware. We rely on the use of the regmap core cache to
62 * suppress pointless writes.
63 */
64 for (i = 0; i < d->chip->num_regs; i++) {
65 ret = regmap_update_bits(d->map, d->chip->mask_base +
66 (i * map->reg_stride *
67 d->irq_reg_stride),
68 d->mask_buf_def[i], d->mask_buf[i]);
69 if (ret != 0)
70 dev_err(d->map->dev, "Failed to sync masks in %x\n",
71 d->chip->mask_base + (i * map->reg_stride));
72 }
73
74 mutex_unlock(&d->lock);
75 }
76
77 static void regmap_irq_enable(struct irq_data *data)
78 {
79 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
80 struct regmap *map = d->map;
81 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
82
83 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
84 }
85
86 static void regmap_irq_disable(struct irq_data *data)
87 {
88 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
89 struct regmap *map = d->map;
90 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
91
92 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
93 }
94
95 static struct irq_chip regmap_irq_chip = {
96 .name = "regmap",
97 .irq_bus_lock = regmap_irq_lock,
98 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
99 .irq_disable = regmap_irq_disable,
100 .irq_enable = regmap_irq_enable,
101 };
102
103 static irqreturn_t regmap_irq_thread(int irq, void *d)
104 {
105 struct regmap_irq_chip_data *data = d;
106 struct regmap_irq_chip *chip = data->chip;
107 struct regmap *map = data->map;
108 int ret, i;
109 bool handled = false;
110
111 /*
112 * Ignore masked IRQs and ack if we need to; we ack early so
113 * there is no race between handling and acknowleding the
114 * interrupt. We assume that typically few of the interrupts
115 * will fire simultaneously so don't worry about overhead from
116 * doing a write per register.
117 */
118 for (i = 0; i < data->chip->num_regs; i++) {
119 ret = regmap_read(map, chip->status_base + (i * map->reg_stride
120 * data->irq_reg_stride),
121 &data->status_buf[i]);
122
123 if (ret != 0) {
124 dev_err(map->dev, "Failed to read IRQ status: %d\n",
125 ret);
126 return IRQ_NONE;
127 }
128
129 data->status_buf[i] &= ~data->mask_buf[i];
130
131 if (data->status_buf[i] && chip->ack_base) {
132 ret = regmap_write(map, chip->ack_base +
133 (i * map->reg_stride *
134 data->irq_reg_stride),
135 data->status_buf[i]);
136 if (ret != 0)
137 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
138 chip->ack_base + (i * map->reg_stride),
139 ret);
140 }
141 }
142
143 for (i = 0; i < chip->num_irqs; i++) {
144 if (data->status_buf[chip->irqs[i].reg_offset /
145 map->reg_stride] & chip->irqs[i].mask) {
146 handle_nested_irq(irq_find_mapping(data->domain, i));
147 handled = true;
148 }
149 }
150
151 if (handled)
152 return IRQ_HANDLED;
153 else
154 return IRQ_NONE;
155 }
156
157 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
158 irq_hw_number_t hw)
159 {
160 struct regmap_irq_chip_data *data = h->host_data;
161
162 irq_set_chip_data(virq, data);
163 irq_set_chip_and_handler(virq, &regmap_irq_chip, handle_edge_irq);
164 irq_set_nested_thread(virq, 1);
165
166 /* ARM needs us to explicitly flag the IRQ as valid
167 * and will set them noprobe when we do so. */
168 #ifdef CONFIG_ARM
169 set_irq_flags(virq, IRQF_VALID);
170 #else
171 irq_set_noprobe(virq);
172 #endif
173
174 return 0;
175 }
176
177 static struct irq_domain_ops regmap_domain_ops = {
178 .map = regmap_irq_map,
179 .xlate = irq_domain_xlate_twocell,
180 };
181
182 /**
183 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
184 *
185 * map: The regmap for the device.
186 * irq: The IRQ the device uses to signal interrupts
187 * irq_flags: The IRQF_ flags to use for the primary interrupt.
188 * chip: Configuration for the interrupt controller.
189 * data: Runtime data structure for the controller, allocated on success
190 *
191 * Returns 0 on success or an errno on failure.
192 *
193 * In order for this to be efficient the chip really should use a
194 * register cache. The chip driver is responsible for restoring the
195 * register values used by the IRQ controller over suspend and resume.
196 */
197 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
198 int irq_base, struct regmap_irq_chip *chip,
199 struct regmap_irq_chip_data **data)
200 {
201 struct regmap_irq_chip_data *d;
202 int i;
203 int ret = -ENOMEM;
204
205 for (i = 0; i < chip->num_irqs; i++) {
206 if (chip->irqs[i].reg_offset % map->reg_stride)
207 return -EINVAL;
208 if (chip->irqs[i].reg_offset / map->reg_stride >=
209 chip->num_regs)
210 return -EINVAL;
211 }
212
213 if (irq_base) {
214 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
215 if (irq_base < 0) {
216 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
217 irq_base);
218 return irq_base;
219 }
220 }
221
222 d = kzalloc(sizeof(*d), GFP_KERNEL);
223 if (!d)
224 return -ENOMEM;
225
226 *data = d;
227
228 d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
229 GFP_KERNEL);
230 if (!d->status_buf)
231 goto err_alloc;
232
233 d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
234 GFP_KERNEL);
235 if (!d->mask_buf)
236 goto err_alloc;
237
238 d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
239 GFP_KERNEL);
240 if (!d->mask_buf_def)
241 goto err_alloc;
242
243 d->map = map;
244 d->chip = chip;
245 d->irq_base = irq_base;
246
247 if (chip->irq_reg_stride)
248 d->irq_reg_stride = chip->irq_reg_stride;
249 else
250 d->irq_reg_stride = 1;
251
252 mutex_init(&d->lock);
253
254 for (i = 0; i < chip->num_irqs; i++)
255 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
256 |= chip->irqs[i].mask;
257
258 /* Mask all the interrupts by default */
259 for (i = 0; i < chip->num_regs; i++) {
260 d->mask_buf[i] = d->mask_buf_def[i];
261 ret = regmap_write(map, chip->mask_base + (i * map->reg_stride
262 * d->irq_reg_stride),
263 d->mask_buf[i]);
264 if (ret != 0) {
265 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
266 chip->mask_base + (i * map->reg_stride), ret);
267 goto err_alloc;
268 }
269 }
270
271 if (irq_base)
272 d->domain = irq_domain_add_legacy(map->dev->of_node,
273 chip->num_irqs, irq_base, 0,
274 &regmap_domain_ops, d);
275 else
276 d->domain = irq_domain_add_linear(map->dev->of_node,
277 chip->num_irqs,
278 &regmap_domain_ops, d);
279 if (!d->domain) {
280 dev_err(map->dev, "Failed to create IRQ domain\n");
281 ret = -ENOMEM;
282 goto err_alloc;
283 }
284
285 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
286 chip->name, d);
287 if (ret != 0) {
288 dev_err(map->dev, "Failed to request IRQ %d: %d\n", irq, ret);
289 goto err_domain;
290 }
291
292 return 0;
293
294 err_domain:
295 /* Should really dispose of the domain but... */
296 err_alloc:
297 kfree(d->mask_buf_def);
298 kfree(d->mask_buf);
299 kfree(d->status_buf);
300 kfree(d);
301 return ret;
302 }
303 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
304
305 /**
306 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
307 *
308 * @irq: Primary IRQ for the device
309 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
310 */
311 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
312 {
313 if (!d)
314 return;
315
316 free_irq(irq, d);
317 /* We should unmap the domain but... */
318 kfree(d->mask_buf_def);
319 kfree(d->mask_buf);
320 kfree(d->status_buf);
321 kfree(d);
322 }
323 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
324
325 /**
326 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
327 *
328 * Useful for drivers to request their own IRQs.
329 *
330 * @data: regmap_irq controller to operate on.
331 */
332 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
333 {
334 WARN_ON(!data->irq_base);
335 return data->irq_base;
336 }
337 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
338
339 /**
340 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
341 *
342 * Useful for drivers to request their own IRQs.
343 *
344 * @data: regmap_irq controller to operate on.
345 * @irq: index of the interrupt requested in the chip IRQs
346 */
347 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
348 {
349 return irq_create_mapping(data->domain, irq);
350 }
351 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
This page took 0.054535 seconds and 5 git commands to generate.