regmap: Only send a single buffer for async I/O if writing one register
[deliverable/linux.git] / drivers / base / regmap / regmap.c
1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23
24 #include "internal.h"
25
26 /*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32 #undef LOG_DEVICE
33
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 unsigned int mask, unsigned int val,
36 bool *change);
37
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 unsigned int val);
44
45 bool regmap_reg_in_ranges(unsigned int reg,
46 const struct regmap_range *ranges,
47 unsigned int nranges)
48 {
49 const struct regmap_range *r;
50 int i;
51
52 for (i = 0, r = ranges; i < nranges; i++, r++)
53 if (regmap_reg_in_range(reg, r))
54 return true;
55 return false;
56 }
57 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
58
59 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
60 const struct regmap_access_table *table)
61 {
62 /* Check "no ranges" first */
63 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
64 return false;
65
66 /* In case zero "yes ranges" are supplied, any reg is OK */
67 if (!table->n_yes_ranges)
68 return true;
69
70 return regmap_reg_in_ranges(reg, table->yes_ranges,
71 table->n_yes_ranges);
72 }
73 EXPORT_SYMBOL_GPL(regmap_check_range_table);
74
75 bool regmap_writeable(struct regmap *map, unsigned int reg)
76 {
77 if (map->max_register && reg > map->max_register)
78 return false;
79
80 if (map->writeable_reg)
81 return map->writeable_reg(map->dev, reg);
82
83 if (map->wr_table)
84 return regmap_check_range_table(map, reg, map->wr_table);
85
86 return true;
87 }
88
89 bool regmap_readable(struct regmap *map, unsigned int reg)
90 {
91 if (map->max_register && reg > map->max_register)
92 return false;
93
94 if (map->format.format_write)
95 return false;
96
97 if (map->readable_reg)
98 return map->readable_reg(map->dev, reg);
99
100 if (map->rd_table)
101 return regmap_check_range_table(map, reg, map->rd_table);
102
103 return true;
104 }
105
106 bool regmap_volatile(struct regmap *map, unsigned int reg)
107 {
108 if (!regmap_readable(map, reg))
109 return false;
110
111 if (map->volatile_reg)
112 return map->volatile_reg(map->dev, reg);
113
114 if (map->volatile_table)
115 return regmap_check_range_table(map, reg, map->volatile_table);
116
117 if (map->cache_ops)
118 return false;
119 else
120 return true;
121 }
122
123 bool regmap_precious(struct regmap *map, unsigned int reg)
124 {
125 if (!regmap_readable(map, reg))
126 return false;
127
128 if (map->precious_reg)
129 return map->precious_reg(map->dev, reg);
130
131 if (map->precious_table)
132 return regmap_check_range_table(map, reg, map->precious_table);
133
134 return false;
135 }
136
137 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
138 size_t num)
139 {
140 unsigned int i;
141
142 for (i = 0; i < num; i++)
143 if (!regmap_volatile(map, reg + i))
144 return false;
145
146 return true;
147 }
148
149 static void regmap_format_2_6_write(struct regmap *map,
150 unsigned int reg, unsigned int val)
151 {
152 u8 *out = map->work_buf;
153
154 *out = (reg << 6) | val;
155 }
156
157 static void regmap_format_4_12_write(struct regmap *map,
158 unsigned int reg, unsigned int val)
159 {
160 __be16 *out = map->work_buf;
161 *out = cpu_to_be16((reg << 12) | val);
162 }
163
164 static void regmap_format_7_9_write(struct regmap *map,
165 unsigned int reg, unsigned int val)
166 {
167 __be16 *out = map->work_buf;
168 *out = cpu_to_be16((reg << 9) | val);
169 }
170
171 static void regmap_format_10_14_write(struct regmap *map,
172 unsigned int reg, unsigned int val)
173 {
174 u8 *out = map->work_buf;
175
176 out[2] = val;
177 out[1] = (val >> 8) | (reg << 6);
178 out[0] = reg >> 2;
179 }
180
181 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182 {
183 u8 *b = buf;
184
185 b[0] = val << shift;
186 }
187
188 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189 {
190 __be16 *b = buf;
191
192 b[0] = cpu_to_be16(val << shift);
193 }
194
195 static void regmap_format_16_native(void *buf, unsigned int val,
196 unsigned int shift)
197 {
198 *(u16 *)buf = val << shift;
199 }
200
201 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
202 {
203 u8 *b = buf;
204
205 val <<= shift;
206
207 b[0] = val >> 16;
208 b[1] = val >> 8;
209 b[2] = val;
210 }
211
212 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
213 {
214 __be32 *b = buf;
215
216 b[0] = cpu_to_be32(val << shift);
217 }
218
219 static void regmap_format_32_native(void *buf, unsigned int val,
220 unsigned int shift)
221 {
222 *(u32 *)buf = val << shift;
223 }
224
225 static void regmap_parse_inplace_noop(void *buf)
226 {
227 }
228
229 static unsigned int regmap_parse_8(const void *buf)
230 {
231 const u8 *b = buf;
232
233 return b[0];
234 }
235
236 static unsigned int regmap_parse_16_be(const void *buf)
237 {
238 const __be16 *b = buf;
239
240 return be16_to_cpu(b[0]);
241 }
242
243 static void regmap_parse_16_be_inplace(void *buf)
244 {
245 __be16 *b = buf;
246
247 b[0] = be16_to_cpu(b[0]);
248 }
249
250 static unsigned int regmap_parse_16_native(const void *buf)
251 {
252 return *(u16 *)buf;
253 }
254
255 static unsigned int regmap_parse_24(const void *buf)
256 {
257 const u8 *b = buf;
258 unsigned int ret = b[2];
259 ret |= ((unsigned int)b[1]) << 8;
260 ret |= ((unsigned int)b[0]) << 16;
261
262 return ret;
263 }
264
265 static unsigned int regmap_parse_32_be(const void *buf)
266 {
267 const __be32 *b = buf;
268
269 return be32_to_cpu(b[0]);
270 }
271
272 static void regmap_parse_32_be_inplace(void *buf)
273 {
274 __be32 *b = buf;
275
276 b[0] = be32_to_cpu(b[0]);
277 }
278
279 static unsigned int regmap_parse_32_native(const void *buf)
280 {
281 return *(u32 *)buf;
282 }
283
284 static void regmap_lock_mutex(void *__map)
285 {
286 struct regmap *map = __map;
287 mutex_lock(&map->mutex);
288 }
289
290 static void regmap_unlock_mutex(void *__map)
291 {
292 struct regmap *map = __map;
293 mutex_unlock(&map->mutex);
294 }
295
296 static void regmap_lock_spinlock(void *__map)
297 __acquires(&map->spinlock)
298 {
299 struct regmap *map = __map;
300 unsigned long flags;
301
302 spin_lock_irqsave(&map->spinlock, flags);
303 map->spinlock_flags = flags;
304 }
305
306 static void regmap_unlock_spinlock(void *__map)
307 __releases(&map->spinlock)
308 {
309 struct regmap *map = __map;
310 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
311 }
312
313 static void dev_get_regmap_release(struct device *dev, void *res)
314 {
315 /*
316 * We don't actually have anything to do here; the goal here
317 * is not to manage the regmap but to provide a simple way to
318 * get the regmap back given a struct device.
319 */
320 }
321
322 static bool _regmap_range_add(struct regmap *map,
323 struct regmap_range_node *data)
324 {
325 struct rb_root *root = &map->range_tree;
326 struct rb_node **new = &(root->rb_node), *parent = NULL;
327
328 while (*new) {
329 struct regmap_range_node *this =
330 container_of(*new, struct regmap_range_node, node);
331
332 parent = *new;
333 if (data->range_max < this->range_min)
334 new = &((*new)->rb_left);
335 else if (data->range_min > this->range_max)
336 new = &((*new)->rb_right);
337 else
338 return false;
339 }
340
341 rb_link_node(&data->node, parent, new);
342 rb_insert_color(&data->node, root);
343
344 return true;
345 }
346
347 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
348 unsigned int reg)
349 {
350 struct rb_node *node = map->range_tree.rb_node;
351
352 while (node) {
353 struct regmap_range_node *this =
354 container_of(node, struct regmap_range_node, node);
355
356 if (reg < this->range_min)
357 node = node->rb_left;
358 else if (reg > this->range_max)
359 node = node->rb_right;
360 else
361 return this;
362 }
363
364 return NULL;
365 }
366
367 static void regmap_range_exit(struct regmap *map)
368 {
369 struct rb_node *next;
370 struct regmap_range_node *range_node;
371
372 next = rb_first(&map->range_tree);
373 while (next) {
374 range_node = rb_entry(next, struct regmap_range_node, node);
375 next = rb_next(&range_node->node);
376 rb_erase(&range_node->node, &map->range_tree);
377 kfree(range_node);
378 }
379
380 kfree(map->selector_work_buf);
381 }
382
383 /**
384 * regmap_init(): Initialise register map
385 *
386 * @dev: Device that will be interacted with
387 * @bus: Bus-specific callbacks to use with device
388 * @bus_context: Data passed to bus-specific callbacks
389 * @config: Configuration for register map
390 *
391 * The return value will be an ERR_PTR() on error or a valid pointer to
392 * a struct regmap. This function should generally not be called
393 * directly, it should be called by bus-specific init functions.
394 */
395 struct regmap *regmap_init(struct device *dev,
396 const struct regmap_bus *bus,
397 void *bus_context,
398 const struct regmap_config *config)
399 {
400 struct regmap *map, **m;
401 int ret = -EINVAL;
402 enum regmap_endian reg_endian, val_endian;
403 int i, j;
404
405 if (!config)
406 goto err;
407
408 map = kzalloc(sizeof(*map), GFP_KERNEL);
409 if (map == NULL) {
410 ret = -ENOMEM;
411 goto err;
412 }
413
414 if (config->lock && config->unlock) {
415 map->lock = config->lock;
416 map->unlock = config->unlock;
417 map->lock_arg = config->lock_arg;
418 } else {
419 if ((bus && bus->fast_io) ||
420 config->fast_io) {
421 spin_lock_init(&map->spinlock);
422 map->lock = regmap_lock_spinlock;
423 map->unlock = regmap_unlock_spinlock;
424 } else {
425 mutex_init(&map->mutex);
426 map->lock = regmap_lock_mutex;
427 map->unlock = regmap_unlock_mutex;
428 }
429 map->lock_arg = map;
430 }
431 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
432 map->format.pad_bytes = config->pad_bits / 8;
433 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
434 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
435 config->val_bits + config->pad_bits, 8);
436 map->reg_shift = config->pad_bits % 8;
437 if (config->reg_stride)
438 map->reg_stride = config->reg_stride;
439 else
440 map->reg_stride = 1;
441 map->use_single_rw = config->use_single_rw;
442 map->dev = dev;
443 map->bus = bus;
444 map->bus_context = bus_context;
445 map->max_register = config->max_register;
446 map->wr_table = config->wr_table;
447 map->rd_table = config->rd_table;
448 map->volatile_table = config->volatile_table;
449 map->precious_table = config->precious_table;
450 map->writeable_reg = config->writeable_reg;
451 map->readable_reg = config->readable_reg;
452 map->volatile_reg = config->volatile_reg;
453 map->precious_reg = config->precious_reg;
454 map->cache_type = config->cache_type;
455 map->name = config->name;
456
457 spin_lock_init(&map->async_lock);
458 INIT_LIST_HEAD(&map->async_list);
459 INIT_LIST_HEAD(&map->async_free);
460 init_waitqueue_head(&map->async_waitq);
461
462 if (config->read_flag_mask || config->write_flag_mask) {
463 map->read_flag_mask = config->read_flag_mask;
464 map->write_flag_mask = config->write_flag_mask;
465 } else if (bus) {
466 map->read_flag_mask = bus->read_flag_mask;
467 }
468
469 if (!bus) {
470 map->reg_read = config->reg_read;
471 map->reg_write = config->reg_write;
472
473 map->defer_caching = false;
474 goto skip_format_initialization;
475 } else {
476 map->reg_read = _regmap_bus_read;
477 }
478
479 reg_endian = config->reg_format_endian;
480 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
481 reg_endian = bus->reg_format_endian_default;
482 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
483 reg_endian = REGMAP_ENDIAN_BIG;
484
485 val_endian = config->val_format_endian;
486 if (val_endian == REGMAP_ENDIAN_DEFAULT)
487 val_endian = bus->val_format_endian_default;
488 if (val_endian == REGMAP_ENDIAN_DEFAULT)
489 val_endian = REGMAP_ENDIAN_BIG;
490
491 switch (config->reg_bits + map->reg_shift) {
492 case 2:
493 switch (config->val_bits) {
494 case 6:
495 map->format.format_write = regmap_format_2_6_write;
496 break;
497 default:
498 goto err_map;
499 }
500 break;
501
502 case 4:
503 switch (config->val_bits) {
504 case 12:
505 map->format.format_write = regmap_format_4_12_write;
506 break;
507 default:
508 goto err_map;
509 }
510 break;
511
512 case 7:
513 switch (config->val_bits) {
514 case 9:
515 map->format.format_write = regmap_format_7_9_write;
516 break;
517 default:
518 goto err_map;
519 }
520 break;
521
522 case 10:
523 switch (config->val_bits) {
524 case 14:
525 map->format.format_write = regmap_format_10_14_write;
526 break;
527 default:
528 goto err_map;
529 }
530 break;
531
532 case 8:
533 map->format.format_reg = regmap_format_8;
534 break;
535
536 case 16:
537 switch (reg_endian) {
538 case REGMAP_ENDIAN_BIG:
539 map->format.format_reg = regmap_format_16_be;
540 break;
541 case REGMAP_ENDIAN_NATIVE:
542 map->format.format_reg = regmap_format_16_native;
543 break;
544 default:
545 goto err_map;
546 }
547 break;
548
549 case 24:
550 if (reg_endian != REGMAP_ENDIAN_BIG)
551 goto err_map;
552 map->format.format_reg = regmap_format_24;
553 break;
554
555 case 32:
556 switch (reg_endian) {
557 case REGMAP_ENDIAN_BIG:
558 map->format.format_reg = regmap_format_32_be;
559 break;
560 case REGMAP_ENDIAN_NATIVE:
561 map->format.format_reg = regmap_format_32_native;
562 break;
563 default:
564 goto err_map;
565 }
566 break;
567
568 default:
569 goto err_map;
570 }
571
572 if (val_endian == REGMAP_ENDIAN_NATIVE)
573 map->format.parse_inplace = regmap_parse_inplace_noop;
574
575 switch (config->val_bits) {
576 case 8:
577 map->format.format_val = regmap_format_8;
578 map->format.parse_val = regmap_parse_8;
579 map->format.parse_inplace = regmap_parse_inplace_noop;
580 break;
581 case 16:
582 switch (val_endian) {
583 case REGMAP_ENDIAN_BIG:
584 map->format.format_val = regmap_format_16_be;
585 map->format.parse_val = regmap_parse_16_be;
586 map->format.parse_inplace = regmap_parse_16_be_inplace;
587 break;
588 case REGMAP_ENDIAN_NATIVE:
589 map->format.format_val = regmap_format_16_native;
590 map->format.parse_val = regmap_parse_16_native;
591 break;
592 default:
593 goto err_map;
594 }
595 break;
596 case 24:
597 if (val_endian != REGMAP_ENDIAN_BIG)
598 goto err_map;
599 map->format.format_val = regmap_format_24;
600 map->format.parse_val = regmap_parse_24;
601 break;
602 case 32:
603 switch (val_endian) {
604 case REGMAP_ENDIAN_BIG:
605 map->format.format_val = regmap_format_32_be;
606 map->format.parse_val = regmap_parse_32_be;
607 map->format.parse_inplace = regmap_parse_32_be_inplace;
608 break;
609 case REGMAP_ENDIAN_NATIVE:
610 map->format.format_val = regmap_format_32_native;
611 map->format.parse_val = regmap_parse_32_native;
612 break;
613 default:
614 goto err_map;
615 }
616 break;
617 }
618
619 if (map->format.format_write) {
620 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
621 (val_endian != REGMAP_ENDIAN_BIG))
622 goto err_map;
623 map->use_single_rw = true;
624 }
625
626 if (!map->format.format_write &&
627 !(map->format.format_reg && map->format.format_val))
628 goto err_map;
629
630 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
631 if (map->work_buf == NULL) {
632 ret = -ENOMEM;
633 goto err_map;
634 }
635
636 if (map->format.format_write) {
637 map->defer_caching = false;
638 map->reg_write = _regmap_bus_formatted_write;
639 } else if (map->format.format_val) {
640 map->defer_caching = true;
641 map->reg_write = _regmap_bus_raw_write;
642 }
643
644 skip_format_initialization:
645
646 map->range_tree = RB_ROOT;
647 for (i = 0; i < config->num_ranges; i++) {
648 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
649 struct regmap_range_node *new;
650
651 /* Sanity check */
652 if (range_cfg->range_max < range_cfg->range_min) {
653 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
654 range_cfg->range_max, range_cfg->range_min);
655 goto err_range;
656 }
657
658 if (range_cfg->range_max > map->max_register) {
659 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
660 range_cfg->range_max, map->max_register);
661 goto err_range;
662 }
663
664 if (range_cfg->selector_reg > map->max_register) {
665 dev_err(map->dev,
666 "Invalid range %d: selector out of map\n", i);
667 goto err_range;
668 }
669
670 if (range_cfg->window_len == 0) {
671 dev_err(map->dev, "Invalid range %d: window_len 0\n",
672 i);
673 goto err_range;
674 }
675
676 /* Make sure, that this register range has no selector
677 or data window within its boundary */
678 for (j = 0; j < config->num_ranges; j++) {
679 unsigned sel_reg = config->ranges[j].selector_reg;
680 unsigned win_min = config->ranges[j].window_start;
681 unsigned win_max = win_min +
682 config->ranges[j].window_len - 1;
683
684 /* Allow data window inside its own virtual range */
685 if (j == i)
686 continue;
687
688 if (range_cfg->range_min <= sel_reg &&
689 sel_reg <= range_cfg->range_max) {
690 dev_err(map->dev,
691 "Range %d: selector for %d in window\n",
692 i, j);
693 goto err_range;
694 }
695
696 if (!(win_max < range_cfg->range_min ||
697 win_min > range_cfg->range_max)) {
698 dev_err(map->dev,
699 "Range %d: window for %d in window\n",
700 i, j);
701 goto err_range;
702 }
703 }
704
705 new = kzalloc(sizeof(*new), GFP_KERNEL);
706 if (new == NULL) {
707 ret = -ENOMEM;
708 goto err_range;
709 }
710
711 new->map = map;
712 new->name = range_cfg->name;
713 new->range_min = range_cfg->range_min;
714 new->range_max = range_cfg->range_max;
715 new->selector_reg = range_cfg->selector_reg;
716 new->selector_mask = range_cfg->selector_mask;
717 new->selector_shift = range_cfg->selector_shift;
718 new->window_start = range_cfg->window_start;
719 new->window_len = range_cfg->window_len;
720
721 if (_regmap_range_add(map, new) == false) {
722 dev_err(map->dev, "Failed to add range %d\n", i);
723 kfree(new);
724 goto err_range;
725 }
726
727 if (map->selector_work_buf == NULL) {
728 map->selector_work_buf =
729 kzalloc(map->format.buf_size, GFP_KERNEL);
730 if (map->selector_work_buf == NULL) {
731 ret = -ENOMEM;
732 goto err_range;
733 }
734 }
735 }
736
737 regmap_debugfs_init(map, config->name);
738
739 ret = regcache_init(map, config);
740 if (ret != 0)
741 goto err_range;
742
743 /* Add a devres resource for dev_get_regmap() */
744 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
745 if (!m) {
746 ret = -ENOMEM;
747 goto err_debugfs;
748 }
749 *m = map;
750 devres_add(dev, m);
751
752 return map;
753
754 err_debugfs:
755 regmap_debugfs_exit(map);
756 regcache_exit(map);
757 err_range:
758 regmap_range_exit(map);
759 kfree(map->work_buf);
760 err_map:
761 kfree(map);
762 err:
763 return ERR_PTR(ret);
764 }
765 EXPORT_SYMBOL_GPL(regmap_init);
766
767 static void devm_regmap_release(struct device *dev, void *res)
768 {
769 regmap_exit(*(struct regmap **)res);
770 }
771
772 /**
773 * devm_regmap_init(): Initialise managed register map
774 *
775 * @dev: Device that will be interacted with
776 * @bus: Bus-specific callbacks to use with device
777 * @bus_context: Data passed to bus-specific callbacks
778 * @config: Configuration for register map
779 *
780 * The return value will be an ERR_PTR() on error or a valid pointer
781 * to a struct regmap. This function should generally not be called
782 * directly, it should be called by bus-specific init functions. The
783 * map will be automatically freed by the device management code.
784 */
785 struct regmap *devm_regmap_init(struct device *dev,
786 const struct regmap_bus *bus,
787 void *bus_context,
788 const struct regmap_config *config)
789 {
790 struct regmap **ptr, *regmap;
791
792 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
793 if (!ptr)
794 return ERR_PTR(-ENOMEM);
795
796 regmap = regmap_init(dev, bus, bus_context, config);
797 if (!IS_ERR(regmap)) {
798 *ptr = regmap;
799 devres_add(dev, ptr);
800 } else {
801 devres_free(ptr);
802 }
803
804 return regmap;
805 }
806 EXPORT_SYMBOL_GPL(devm_regmap_init);
807
808 static void regmap_field_init(struct regmap_field *rm_field,
809 struct regmap *regmap, struct reg_field reg_field)
810 {
811 int field_bits = reg_field.msb - reg_field.lsb + 1;
812 rm_field->regmap = regmap;
813 rm_field->reg = reg_field.reg;
814 rm_field->shift = reg_field.lsb;
815 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
816 }
817
818 /**
819 * devm_regmap_field_alloc(): Allocate and initialise a register field
820 * in a register map.
821 *
822 * @dev: Device that will be interacted with
823 * @regmap: regmap bank in which this register field is located.
824 * @reg_field: Register field with in the bank.
825 *
826 * The return value will be an ERR_PTR() on error or a valid pointer
827 * to a struct regmap_field. The regmap_field will be automatically freed
828 * by the device management code.
829 */
830 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
831 struct regmap *regmap, struct reg_field reg_field)
832 {
833 struct regmap_field *rm_field = devm_kzalloc(dev,
834 sizeof(*rm_field), GFP_KERNEL);
835 if (!rm_field)
836 return ERR_PTR(-ENOMEM);
837
838 regmap_field_init(rm_field, regmap, reg_field);
839
840 return rm_field;
841
842 }
843 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
844
845 /**
846 * devm_regmap_field_free(): Free register field allocated using
847 * devm_regmap_field_alloc. Usally drivers need not call this function,
848 * as the memory allocated via devm will be freed as per device-driver
849 * life-cyle.
850 *
851 * @dev: Device that will be interacted with
852 * @field: regmap field which should be freed.
853 */
854 void devm_regmap_field_free(struct device *dev,
855 struct regmap_field *field)
856 {
857 devm_kfree(dev, field);
858 }
859 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
860
861 /**
862 * regmap_field_alloc(): Allocate and initialise a register field
863 * in a register map.
864 *
865 * @regmap: regmap bank in which this register field is located.
866 * @reg_field: Register field with in the bank.
867 *
868 * The return value will be an ERR_PTR() on error or a valid pointer
869 * to a struct regmap_field. The regmap_field should be freed by the
870 * user once its finished working with it using regmap_field_free().
871 */
872 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
873 struct reg_field reg_field)
874 {
875 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
876
877 if (!rm_field)
878 return ERR_PTR(-ENOMEM);
879
880 regmap_field_init(rm_field, regmap, reg_field);
881
882 return rm_field;
883 }
884 EXPORT_SYMBOL_GPL(regmap_field_alloc);
885
886 /**
887 * regmap_field_free(): Free register field allocated using regmap_field_alloc
888 *
889 * @field: regmap field which should be freed.
890 */
891 void regmap_field_free(struct regmap_field *field)
892 {
893 kfree(field);
894 }
895 EXPORT_SYMBOL_GPL(regmap_field_free);
896
897 /**
898 * regmap_reinit_cache(): Reinitialise the current register cache
899 *
900 * @map: Register map to operate on.
901 * @config: New configuration. Only the cache data will be used.
902 *
903 * Discard any existing register cache for the map and initialize a
904 * new cache. This can be used to restore the cache to defaults or to
905 * update the cache configuration to reflect runtime discovery of the
906 * hardware.
907 *
908 * No explicit locking is done here, the user needs to ensure that
909 * this function will not race with other calls to regmap.
910 */
911 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
912 {
913 regcache_exit(map);
914 regmap_debugfs_exit(map);
915
916 map->max_register = config->max_register;
917 map->writeable_reg = config->writeable_reg;
918 map->readable_reg = config->readable_reg;
919 map->volatile_reg = config->volatile_reg;
920 map->precious_reg = config->precious_reg;
921 map->cache_type = config->cache_type;
922
923 regmap_debugfs_init(map, config->name);
924
925 map->cache_bypass = false;
926 map->cache_only = false;
927
928 return regcache_init(map, config);
929 }
930 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
931
932 /**
933 * regmap_exit(): Free a previously allocated register map
934 */
935 void regmap_exit(struct regmap *map)
936 {
937 struct regmap_async *async;
938
939 regcache_exit(map);
940 regmap_debugfs_exit(map);
941 regmap_range_exit(map);
942 if (map->bus && map->bus->free_context)
943 map->bus->free_context(map->bus_context);
944 kfree(map->work_buf);
945 while (!list_empty(&map->async_free)) {
946 async = list_first_entry_or_null(&map->async_free,
947 struct regmap_async,
948 list);
949 list_del(&async->list);
950 kfree(async->work_buf);
951 kfree(async);
952 }
953 kfree(map);
954 }
955 EXPORT_SYMBOL_GPL(regmap_exit);
956
957 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
958 {
959 struct regmap **r = res;
960 if (!r || !*r) {
961 WARN_ON(!r || !*r);
962 return 0;
963 }
964
965 /* If the user didn't specify a name match any */
966 if (data)
967 return (*r)->name == data;
968 else
969 return 1;
970 }
971
972 /**
973 * dev_get_regmap(): Obtain the regmap (if any) for a device
974 *
975 * @dev: Device to retrieve the map for
976 * @name: Optional name for the register map, usually NULL.
977 *
978 * Returns the regmap for the device if one is present, or NULL. If
979 * name is specified then it must match the name specified when
980 * registering the device, if it is NULL then the first regmap found
981 * will be used. Devices with multiple register maps are very rare,
982 * generic code should normally not need to specify a name.
983 */
984 struct regmap *dev_get_regmap(struct device *dev, const char *name)
985 {
986 struct regmap **r = devres_find(dev, dev_get_regmap_release,
987 dev_get_regmap_match, (void *)name);
988
989 if (!r)
990 return NULL;
991 return *r;
992 }
993 EXPORT_SYMBOL_GPL(dev_get_regmap);
994
995 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
996 struct regmap_range_node *range,
997 unsigned int val_num)
998 {
999 void *orig_work_buf;
1000 unsigned int win_offset;
1001 unsigned int win_page;
1002 bool page_chg;
1003 int ret;
1004
1005 win_offset = (*reg - range->range_min) % range->window_len;
1006 win_page = (*reg - range->range_min) / range->window_len;
1007
1008 if (val_num > 1) {
1009 /* Bulk write shouldn't cross range boundary */
1010 if (*reg + val_num - 1 > range->range_max)
1011 return -EINVAL;
1012
1013 /* ... or single page boundary */
1014 if (val_num > range->window_len - win_offset)
1015 return -EINVAL;
1016 }
1017
1018 /* It is possible to have selector register inside data window.
1019 In that case, selector register is located on every page and
1020 it needs no page switching, when accessed alone. */
1021 if (val_num > 1 ||
1022 range->window_start + win_offset != range->selector_reg) {
1023 /* Use separate work_buf during page switching */
1024 orig_work_buf = map->work_buf;
1025 map->work_buf = map->selector_work_buf;
1026
1027 ret = _regmap_update_bits(map, range->selector_reg,
1028 range->selector_mask,
1029 win_page << range->selector_shift,
1030 &page_chg);
1031
1032 map->work_buf = orig_work_buf;
1033
1034 if (ret != 0)
1035 return ret;
1036 }
1037
1038 *reg = range->window_start + win_offset;
1039
1040 return 0;
1041 }
1042
1043 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1044 const void *val, size_t val_len)
1045 {
1046 struct regmap_range_node *range;
1047 unsigned long flags;
1048 u8 *u8 = map->work_buf;
1049 void *work_val = map->work_buf + map->format.reg_bytes +
1050 map->format.pad_bytes;
1051 void *buf;
1052 int ret = -ENOTSUPP;
1053 size_t len;
1054 int i;
1055
1056 WARN_ON(!map->bus);
1057
1058 /* Check for unwritable registers before we start */
1059 if (map->writeable_reg)
1060 for (i = 0; i < val_len / map->format.val_bytes; i++)
1061 if (!map->writeable_reg(map->dev,
1062 reg + (i * map->reg_stride)))
1063 return -EINVAL;
1064
1065 if (!map->cache_bypass && map->format.parse_val) {
1066 unsigned int ival;
1067 int val_bytes = map->format.val_bytes;
1068 for (i = 0; i < val_len / val_bytes; i++) {
1069 ival = map->format.parse_val(val + (i * val_bytes));
1070 ret = regcache_write(map, reg + (i * map->reg_stride),
1071 ival);
1072 if (ret) {
1073 dev_err(map->dev,
1074 "Error in caching of register: %x ret: %d\n",
1075 reg + i, ret);
1076 return ret;
1077 }
1078 }
1079 if (map->cache_only) {
1080 map->cache_dirty = true;
1081 return 0;
1082 }
1083 }
1084
1085 range = _regmap_range_lookup(map, reg);
1086 if (range) {
1087 int val_num = val_len / map->format.val_bytes;
1088 int win_offset = (reg - range->range_min) % range->window_len;
1089 int win_residue = range->window_len - win_offset;
1090
1091 /* If the write goes beyond the end of the window split it */
1092 while (val_num > win_residue) {
1093 dev_dbg(map->dev, "Writing window %d/%zu\n",
1094 win_residue, val_len / map->format.val_bytes);
1095 ret = _regmap_raw_write(map, reg, val, win_residue *
1096 map->format.val_bytes);
1097 if (ret != 0)
1098 return ret;
1099
1100 reg += win_residue;
1101 val_num -= win_residue;
1102 val += win_residue * map->format.val_bytes;
1103 val_len -= win_residue * map->format.val_bytes;
1104
1105 win_offset = (reg - range->range_min) %
1106 range->window_len;
1107 win_residue = range->window_len - win_offset;
1108 }
1109
1110 ret = _regmap_select_page(map, &reg, range, val_num);
1111 if (ret != 0)
1112 return ret;
1113 }
1114
1115 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1116
1117 u8[0] |= map->write_flag_mask;
1118
1119 /*
1120 * Essentially all I/O mechanisms will be faster with a single
1121 * buffer to write. Since register syncs often generate raw
1122 * writes of single registers optimise that case.
1123 */
1124 if (val != work_val && val_len == map->format.val_bytes) {
1125 memcpy(work_val, val, map->format.val_bytes);
1126 val = work_val;
1127 }
1128
1129 if (map->async && map->bus->async_write) {
1130 struct regmap_async *async;
1131
1132 trace_regmap_async_write_start(map->dev, reg, val_len);
1133
1134 spin_lock_irqsave(&map->async_lock, flags);
1135 async = list_first_entry_or_null(&map->async_free,
1136 struct regmap_async,
1137 list);
1138 if (async)
1139 list_del(&async->list);
1140 spin_unlock_irqrestore(&map->async_lock, flags);
1141
1142 if (!async) {
1143 async = map->bus->async_alloc();
1144 if (!async)
1145 return -ENOMEM;
1146
1147 async->work_buf = kzalloc(map->format.buf_size,
1148 GFP_KERNEL | GFP_DMA);
1149 if (!async->work_buf) {
1150 kfree(async);
1151 return -ENOMEM;
1152 }
1153 }
1154
1155 async->map = map;
1156
1157 /* If the caller supplied the value we can use it safely. */
1158 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1159 map->format.reg_bytes + map->format.val_bytes);
1160
1161 spin_lock_irqsave(&map->async_lock, flags);
1162 list_add_tail(&async->list, &map->async_list);
1163 spin_unlock_irqrestore(&map->async_lock, flags);
1164
1165 if (val != work_val)
1166 ret = map->bus->async_write(map->bus_context,
1167 async->work_buf,
1168 map->format.reg_bytes +
1169 map->format.pad_bytes,
1170 val, val_len, async);
1171 else
1172 ret = map->bus->async_write(map->bus_context,
1173 async->work_buf,
1174 map->format.reg_bytes +
1175 map->format.pad_bytes +
1176 val_len, NULL, 0, async);
1177
1178 if (ret != 0) {
1179 dev_err(map->dev, "Failed to schedule write: %d\n",
1180 ret);
1181
1182 spin_lock_irqsave(&map->async_lock, flags);
1183 list_move(&async->list, &map->async_free);
1184 spin_unlock_irqrestore(&map->async_lock, flags);
1185 }
1186
1187 return ret;
1188 }
1189
1190 trace_regmap_hw_write_start(map->dev, reg,
1191 val_len / map->format.val_bytes);
1192
1193 /* If we're doing a single register write we can probably just
1194 * send the work_buf directly, otherwise try to do a gather
1195 * write.
1196 */
1197 if (val == work_val)
1198 ret = map->bus->write(map->bus_context, map->work_buf,
1199 map->format.reg_bytes +
1200 map->format.pad_bytes +
1201 val_len);
1202 else if (map->bus->gather_write)
1203 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1204 map->format.reg_bytes +
1205 map->format.pad_bytes,
1206 val, val_len);
1207
1208 /* If that didn't work fall back on linearising by hand. */
1209 if (ret == -ENOTSUPP) {
1210 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1211 buf = kzalloc(len, GFP_KERNEL);
1212 if (!buf)
1213 return -ENOMEM;
1214
1215 memcpy(buf, map->work_buf, map->format.reg_bytes);
1216 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1217 val, val_len);
1218 ret = map->bus->write(map->bus_context, buf, len);
1219
1220 kfree(buf);
1221 }
1222
1223 trace_regmap_hw_write_done(map->dev, reg,
1224 val_len / map->format.val_bytes);
1225
1226 return ret;
1227 }
1228
1229 /**
1230 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1231 *
1232 * @map: Map to check.
1233 */
1234 bool regmap_can_raw_write(struct regmap *map)
1235 {
1236 return map->bus && map->format.format_val && map->format.format_reg;
1237 }
1238 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1239
1240 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1241 unsigned int val)
1242 {
1243 int ret;
1244 struct regmap_range_node *range;
1245 struct regmap *map = context;
1246
1247 WARN_ON(!map->bus || !map->format.format_write);
1248
1249 range = _regmap_range_lookup(map, reg);
1250 if (range) {
1251 ret = _regmap_select_page(map, &reg, range, 1);
1252 if (ret != 0)
1253 return ret;
1254 }
1255
1256 map->format.format_write(map, reg, val);
1257
1258 trace_regmap_hw_write_start(map->dev, reg, 1);
1259
1260 ret = map->bus->write(map->bus_context, map->work_buf,
1261 map->format.buf_size);
1262
1263 trace_regmap_hw_write_done(map->dev, reg, 1);
1264
1265 return ret;
1266 }
1267
1268 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1269 unsigned int val)
1270 {
1271 struct regmap *map = context;
1272
1273 WARN_ON(!map->bus || !map->format.format_val);
1274
1275 map->format.format_val(map->work_buf + map->format.reg_bytes
1276 + map->format.pad_bytes, val, 0);
1277 return _regmap_raw_write(map, reg,
1278 map->work_buf +
1279 map->format.reg_bytes +
1280 map->format.pad_bytes,
1281 map->format.val_bytes);
1282 }
1283
1284 static inline void *_regmap_map_get_context(struct regmap *map)
1285 {
1286 return (map->bus) ? map : map->bus_context;
1287 }
1288
1289 int _regmap_write(struct regmap *map, unsigned int reg,
1290 unsigned int val)
1291 {
1292 int ret;
1293 void *context = _regmap_map_get_context(map);
1294
1295 if (!regmap_writeable(map, reg))
1296 return -EIO;
1297
1298 if (!map->cache_bypass && !map->defer_caching) {
1299 ret = regcache_write(map, reg, val);
1300 if (ret != 0)
1301 return ret;
1302 if (map->cache_only) {
1303 map->cache_dirty = true;
1304 return 0;
1305 }
1306 }
1307
1308 #ifdef LOG_DEVICE
1309 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1310 dev_info(map->dev, "%x <= %x\n", reg, val);
1311 #endif
1312
1313 trace_regmap_reg_write(map->dev, reg, val);
1314
1315 return map->reg_write(context, reg, val);
1316 }
1317
1318 /**
1319 * regmap_write(): Write a value to a single register
1320 *
1321 * @map: Register map to write to
1322 * @reg: Register to write to
1323 * @val: Value to be written
1324 *
1325 * A value of zero will be returned on success, a negative errno will
1326 * be returned in error cases.
1327 */
1328 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1329 {
1330 int ret;
1331
1332 if (reg % map->reg_stride)
1333 return -EINVAL;
1334
1335 map->lock(map->lock_arg);
1336
1337 ret = _regmap_write(map, reg, val);
1338
1339 map->unlock(map->lock_arg);
1340
1341 return ret;
1342 }
1343 EXPORT_SYMBOL_GPL(regmap_write);
1344
1345 /**
1346 * regmap_write_async(): Write a value to a single register asynchronously
1347 *
1348 * @map: Register map to write to
1349 * @reg: Register to write to
1350 * @val: Value to be written
1351 *
1352 * A value of zero will be returned on success, a negative errno will
1353 * be returned in error cases.
1354 */
1355 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1356 {
1357 int ret;
1358
1359 if (reg % map->reg_stride)
1360 return -EINVAL;
1361
1362 map->lock(map->lock_arg);
1363
1364 map->async = true;
1365
1366 ret = _regmap_write(map, reg, val);
1367
1368 map->async = false;
1369
1370 map->unlock(map->lock_arg);
1371
1372 return ret;
1373 }
1374 EXPORT_SYMBOL_GPL(regmap_write_async);
1375
1376 /**
1377 * regmap_raw_write(): Write raw values to one or more registers
1378 *
1379 * @map: Register map to write to
1380 * @reg: Initial register to write to
1381 * @val: Block of data to be written, laid out for direct transmission to the
1382 * device
1383 * @val_len: Length of data pointed to by val.
1384 *
1385 * This function is intended to be used for things like firmware
1386 * download where a large block of data needs to be transferred to the
1387 * device. No formatting will be done on the data provided.
1388 *
1389 * A value of zero will be returned on success, a negative errno will
1390 * be returned in error cases.
1391 */
1392 int regmap_raw_write(struct regmap *map, unsigned int reg,
1393 const void *val, size_t val_len)
1394 {
1395 int ret;
1396
1397 if (!regmap_can_raw_write(map))
1398 return -EINVAL;
1399 if (val_len % map->format.val_bytes)
1400 return -EINVAL;
1401
1402 map->lock(map->lock_arg);
1403
1404 ret = _regmap_raw_write(map, reg, val, val_len);
1405
1406 map->unlock(map->lock_arg);
1407
1408 return ret;
1409 }
1410 EXPORT_SYMBOL_GPL(regmap_raw_write);
1411
1412 /**
1413 * regmap_field_write(): Write a value to a single register field
1414 *
1415 * @field: Register field to write to
1416 * @val: Value to be written
1417 *
1418 * A value of zero will be returned on success, a negative errno will
1419 * be returned in error cases.
1420 */
1421 int regmap_field_write(struct regmap_field *field, unsigned int val)
1422 {
1423 return regmap_update_bits(field->regmap, field->reg,
1424 field->mask, val << field->shift);
1425 }
1426 EXPORT_SYMBOL_GPL(regmap_field_write);
1427
1428 /*
1429 * regmap_bulk_write(): Write multiple registers to the device
1430 *
1431 * @map: Register map to write to
1432 * @reg: First register to be write from
1433 * @val: Block of data to be written, in native register size for device
1434 * @val_count: Number of registers to write
1435 *
1436 * This function is intended to be used for writing a large block of
1437 * data to the device either in single transfer or multiple transfer.
1438 *
1439 * A value of zero will be returned on success, a negative errno will
1440 * be returned in error cases.
1441 */
1442 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1443 size_t val_count)
1444 {
1445 int ret = 0, i;
1446 size_t val_bytes = map->format.val_bytes;
1447 void *wval;
1448
1449 if (!map->bus)
1450 return -EINVAL;
1451 if (!map->format.parse_inplace)
1452 return -EINVAL;
1453 if (reg % map->reg_stride)
1454 return -EINVAL;
1455
1456 map->lock(map->lock_arg);
1457
1458 /* No formatting is require if val_byte is 1 */
1459 if (val_bytes == 1) {
1460 wval = (void *)val;
1461 } else {
1462 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1463 if (!wval) {
1464 ret = -ENOMEM;
1465 dev_err(map->dev, "Error in memory allocation\n");
1466 goto out;
1467 }
1468 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1469 map->format.parse_inplace(wval + i);
1470 }
1471 /*
1472 * Some devices does not support bulk write, for
1473 * them we have a series of single write operations.
1474 */
1475 if (map->use_single_rw) {
1476 for (i = 0; i < val_count; i++) {
1477 ret = _regmap_raw_write(map,
1478 reg + (i * map->reg_stride),
1479 val + (i * val_bytes),
1480 val_bytes);
1481 if (ret != 0)
1482 return ret;
1483 }
1484 } else {
1485 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1486 }
1487
1488 if (val_bytes != 1)
1489 kfree(wval);
1490
1491 out:
1492 map->unlock(map->lock_arg);
1493 return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1496
1497 /**
1498 * regmap_raw_write_async(): Write raw values to one or more registers
1499 * asynchronously
1500 *
1501 * @map: Register map to write to
1502 * @reg: Initial register to write to
1503 * @val: Block of data to be written, laid out for direct transmission to the
1504 * device. Must be valid until regmap_async_complete() is called.
1505 * @val_len: Length of data pointed to by val.
1506 *
1507 * This function is intended to be used for things like firmware
1508 * download where a large block of data needs to be transferred to the
1509 * device. No formatting will be done on the data provided.
1510 *
1511 * If supported by the underlying bus the write will be scheduled
1512 * asynchronously, helping maximise I/O speed on higher speed buses
1513 * like SPI. regmap_async_complete() can be called to ensure that all
1514 * asynchrnous writes have been completed.
1515 *
1516 * A value of zero will be returned on success, a negative errno will
1517 * be returned in error cases.
1518 */
1519 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1520 const void *val, size_t val_len)
1521 {
1522 int ret;
1523
1524 if (val_len % map->format.val_bytes)
1525 return -EINVAL;
1526 if (reg % map->reg_stride)
1527 return -EINVAL;
1528
1529 map->lock(map->lock_arg);
1530
1531 map->async = true;
1532
1533 ret = _regmap_raw_write(map, reg, val, val_len);
1534
1535 map->async = false;
1536
1537 map->unlock(map->lock_arg);
1538
1539 return ret;
1540 }
1541 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1542
1543 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1544 unsigned int val_len)
1545 {
1546 struct regmap_range_node *range;
1547 u8 *u8 = map->work_buf;
1548 int ret;
1549
1550 WARN_ON(!map->bus);
1551
1552 range = _regmap_range_lookup(map, reg);
1553 if (range) {
1554 ret = _regmap_select_page(map, &reg, range,
1555 val_len / map->format.val_bytes);
1556 if (ret != 0)
1557 return ret;
1558 }
1559
1560 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1561
1562 /*
1563 * Some buses or devices flag reads by setting the high bits in the
1564 * register addresss; since it's always the high bits for all
1565 * current formats we can do this here rather than in
1566 * formatting. This may break if we get interesting formats.
1567 */
1568 u8[0] |= map->read_flag_mask;
1569
1570 trace_regmap_hw_read_start(map->dev, reg,
1571 val_len / map->format.val_bytes);
1572
1573 ret = map->bus->read(map->bus_context, map->work_buf,
1574 map->format.reg_bytes + map->format.pad_bytes,
1575 val, val_len);
1576
1577 trace_regmap_hw_read_done(map->dev, reg,
1578 val_len / map->format.val_bytes);
1579
1580 return ret;
1581 }
1582
1583 static int _regmap_bus_read(void *context, unsigned int reg,
1584 unsigned int *val)
1585 {
1586 int ret;
1587 struct regmap *map = context;
1588
1589 if (!map->format.parse_val)
1590 return -EINVAL;
1591
1592 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1593 if (ret == 0)
1594 *val = map->format.parse_val(map->work_buf);
1595
1596 return ret;
1597 }
1598
1599 static int _regmap_read(struct regmap *map, unsigned int reg,
1600 unsigned int *val)
1601 {
1602 int ret;
1603 void *context = _regmap_map_get_context(map);
1604
1605 WARN_ON(!map->reg_read);
1606
1607 if (!map->cache_bypass) {
1608 ret = regcache_read(map, reg, val);
1609 if (ret == 0)
1610 return 0;
1611 }
1612
1613 if (map->cache_only)
1614 return -EBUSY;
1615
1616 ret = map->reg_read(context, reg, val);
1617 if (ret == 0) {
1618 #ifdef LOG_DEVICE
1619 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1620 dev_info(map->dev, "%x => %x\n", reg, *val);
1621 #endif
1622
1623 trace_regmap_reg_read(map->dev, reg, *val);
1624
1625 if (!map->cache_bypass)
1626 regcache_write(map, reg, *val);
1627 }
1628
1629 return ret;
1630 }
1631
1632 /**
1633 * regmap_read(): Read a value from a single register
1634 *
1635 * @map: Register map to write to
1636 * @reg: Register to be read from
1637 * @val: Pointer to store read value
1638 *
1639 * A value of zero will be returned on success, a negative errno will
1640 * be returned in error cases.
1641 */
1642 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1643 {
1644 int ret;
1645
1646 if (reg % map->reg_stride)
1647 return -EINVAL;
1648
1649 map->lock(map->lock_arg);
1650
1651 ret = _regmap_read(map, reg, val);
1652
1653 map->unlock(map->lock_arg);
1654
1655 return ret;
1656 }
1657 EXPORT_SYMBOL_GPL(regmap_read);
1658
1659 /**
1660 * regmap_raw_read(): Read raw data from the device
1661 *
1662 * @map: Register map to write to
1663 * @reg: First register to be read from
1664 * @val: Pointer to store read value
1665 * @val_len: Size of data to read
1666 *
1667 * A value of zero will be returned on success, a negative errno will
1668 * be returned in error cases.
1669 */
1670 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1671 size_t val_len)
1672 {
1673 size_t val_bytes = map->format.val_bytes;
1674 size_t val_count = val_len / val_bytes;
1675 unsigned int v;
1676 int ret, i;
1677
1678 if (!map->bus)
1679 return -EINVAL;
1680 if (val_len % map->format.val_bytes)
1681 return -EINVAL;
1682 if (reg % map->reg_stride)
1683 return -EINVAL;
1684
1685 map->lock(map->lock_arg);
1686
1687 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1688 map->cache_type == REGCACHE_NONE) {
1689 /* Physical block read if there's no cache involved */
1690 ret = _regmap_raw_read(map, reg, val, val_len);
1691
1692 } else {
1693 /* Otherwise go word by word for the cache; should be low
1694 * cost as we expect to hit the cache.
1695 */
1696 for (i = 0; i < val_count; i++) {
1697 ret = _regmap_read(map, reg + (i * map->reg_stride),
1698 &v);
1699 if (ret != 0)
1700 goto out;
1701
1702 map->format.format_val(val + (i * val_bytes), v, 0);
1703 }
1704 }
1705
1706 out:
1707 map->unlock(map->lock_arg);
1708
1709 return ret;
1710 }
1711 EXPORT_SYMBOL_GPL(regmap_raw_read);
1712
1713 /**
1714 * regmap_field_read(): Read a value to a single register field
1715 *
1716 * @field: Register field to read from
1717 * @val: Pointer to store read value
1718 *
1719 * A value of zero will be returned on success, a negative errno will
1720 * be returned in error cases.
1721 */
1722 int regmap_field_read(struct regmap_field *field, unsigned int *val)
1723 {
1724 int ret;
1725 unsigned int reg_val;
1726 ret = regmap_read(field->regmap, field->reg, &reg_val);
1727 if (ret != 0)
1728 return ret;
1729
1730 reg_val &= field->mask;
1731 reg_val >>= field->shift;
1732 *val = reg_val;
1733
1734 return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(regmap_field_read);
1737
1738 /**
1739 * regmap_bulk_read(): Read multiple registers from the device
1740 *
1741 * @map: Register map to write to
1742 * @reg: First register to be read from
1743 * @val: Pointer to store read value, in native register size for device
1744 * @val_count: Number of registers to read
1745 *
1746 * A value of zero will be returned on success, a negative errno will
1747 * be returned in error cases.
1748 */
1749 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1750 size_t val_count)
1751 {
1752 int ret, i;
1753 size_t val_bytes = map->format.val_bytes;
1754 bool vol = regmap_volatile_range(map, reg, val_count);
1755
1756 if (!map->bus)
1757 return -EINVAL;
1758 if (!map->format.parse_inplace)
1759 return -EINVAL;
1760 if (reg % map->reg_stride)
1761 return -EINVAL;
1762
1763 if (vol || map->cache_type == REGCACHE_NONE) {
1764 /*
1765 * Some devices does not support bulk read, for
1766 * them we have a series of single read operations.
1767 */
1768 if (map->use_single_rw) {
1769 for (i = 0; i < val_count; i++) {
1770 ret = regmap_raw_read(map,
1771 reg + (i * map->reg_stride),
1772 val + (i * val_bytes),
1773 val_bytes);
1774 if (ret != 0)
1775 return ret;
1776 }
1777 } else {
1778 ret = regmap_raw_read(map, reg, val,
1779 val_bytes * val_count);
1780 if (ret != 0)
1781 return ret;
1782 }
1783
1784 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1785 map->format.parse_inplace(val + i);
1786 } else {
1787 for (i = 0; i < val_count; i++) {
1788 unsigned int ival;
1789 ret = regmap_read(map, reg + (i * map->reg_stride),
1790 &ival);
1791 if (ret != 0)
1792 return ret;
1793 memcpy(val + (i * val_bytes), &ival, val_bytes);
1794 }
1795 }
1796
1797 return 0;
1798 }
1799 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1800
1801 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1802 unsigned int mask, unsigned int val,
1803 bool *change)
1804 {
1805 int ret;
1806 unsigned int tmp, orig;
1807
1808 ret = _regmap_read(map, reg, &orig);
1809 if (ret != 0)
1810 return ret;
1811
1812 tmp = orig & ~mask;
1813 tmp |= val & mask;
1814
1815 if (tmp != orig) {
1816 ret = _regmap_write(map, reg, tmp);
1817 *change = true;
1818 } else {
1819 *change = false;
1820 }
1821
1822 return ret;
1823 }
1824
1825 /**
1826 * regmap_update_bits: Perform a read/modify/write cycle on the register map
1827 *
1828 * @map: Register map to update
1829 * @reg: Register to update
1830 * @mask: Bitmask to change
1831 * @val: New value for bitmask
1832 *
1833 * Returns zero for success, a negative number on error.
1834 */
1835 int regmap_update_bits(struct regmap *map, unsigned int reg,
1836 unsigned int mask, unsigned int val)
1837 {
1838 bool change;
1839 int ret;
1840
1841 map->lock(map->lock_arg);
1842 ret = _regmap_update_bits(map, reg, mask, val, &change);
1843 map->unlock(map->lock_arg);
1844
1845 return ret;
1846 }
1847 EXPORT_SYMBOL_GPL(regmap_update_bits);
1848
1849 /**
1850 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
1851 * map asynchronously
1852 *
1853 * @map: Register map to update
1854 * @reg: Register to update
1855 * @mask: Bitmask to change
1856 * @val: New value for bitmask
1857 *
1858 * With most buses the read must be done synchronously so this is most
1859 * useful for devices with a cache which do not need to interact with
1860 * the hardware to determine the current register value.
1861 *
1862 * Returns zero for success, a negative number on error.
1863 */
1864 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
1865 unsigned int mask, unsigned int val)
1866 {
1867 bool change;
1868 int ret;
1869
1870 map->lock(map->lock_arg);
1871
1872 map->async = true;
1873
1874 ret = _regmap_update_bits(map, reg, mask, val, &change);
1875
1876 map->async = false;
1877
1878 map->unlock(map->lock_arg);
1879
1880 return ret;
1881 }
1882 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
1883
1884 /**
1885 * regmap_update_bits_check: Perform a read/modify/write cycle on the
1886 * register map and report if updated
1887 *
1888 * @map: Register map to update
1889 * @reg: Register to update
1890 * @mask: Bitmask to change
1891 * @val: New value for bitmask
1892 * @change: Boolean indicating if a write was done
1893 *
1894 * Returns zero for success, a negative number on error.
1895 */
1896 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1897 unsigned int mask, unsigned int val,
1898 bool *change)
1899 {
1900 int ret;
1901
1902 map->lock(map->lock_arg);
1903 ret = _regmap_update_bits(map, reg, mask, val, change);
1904 map->unlock(map->lock_arg);
1905 return ret;
1906 }
1907 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1908
1909 /**
1910 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
1911 * register map asynchronously and report if
1912 * updated
1913 *
1914 * @map: Register map to update
1915 * @reg: Register to update
1916 * @mask: Bitmask to change
1917 * @val: New value for bitmask
1918 * @change: Boolean indicating if a write was done
1919 *
1920 * With most buses the read must be done synchronously so this is most
1921 * useful for devices with a cache which do not need to interact with
1922 * the hardware to determine the current register value.
1923 *
1924 * Returns zero for success, a negative number on error.
1925 */
1926 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
1927 unsigned int mask, unsigned int val,
1928 bool *change)
1929 {
1930 int ret;
1931
1932 map->lock(map->lock_arg);
1933
1934 map->async = true;
1935
1936 ret = _regmap_update_bits(map, reg, mask, val, change);
1937
1938 map->async = false;
1939
1940 map->unlock(map->lock_arg);
1941
1942 return ret;
1943 }
1944 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
1945
1946 void regmap_async_complete_cb(struct regmap_async *async, int ret)
1947 {
1948 struct regmap *map = async->map;
1949 bool wake;
1950
1951 trace_regmap_async_io_complete(map->dev);
1952
1953 spin_lock(&map->async_lock);
1954 list_move(&async->list, &map->async_free);
1955 wake = list_empty(&map->async_list);
1956
1957 if (ret != 0)
1958 map->async_ret = ret;
1959
1960 spin_unlock(&map->async_lock);
1961
1962 if (wake)
1963 wake_up(&map->async_waitq);
1964 }
1965 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
1966
1967 static int regmap_async_is_done(struct regmap *map)
1968 {
1969 unsigned long flags;
1970 int ret;
1971
1972 spin_lock_irqsave(&map->async_lock, flags);
1973 ret = list_empty(&map->async_list);
1974 spin_unlock_irqrestore(&map->async_lock, flags);
1975
1976 return ret;
1977 }
1978
1979 /**
1980 * regmap_async_complete: Ensure all asynchronous I/O has completed.
1981 *
1982 * @map: Map to operate on.
1983 *
1984 * Blocks until any pending asynchronous I/O has completed. Returns
1985 * an error code for any failed I/O operations.
1986 */
1987 int regmap_async_complete(struct regmap *map)
1988 {
1989 unsigned long flags;
1990 int ret;
1991
1992 /* Nothing to do with no async support */
1993 if (!map->bus || !map->bus->async_write)
1994 return 0;
1995
1996 trace_regmap_async_complete_start(map->dev);
1997
1998 wait_event(map->async_waitq, regmap_async_is_done(map));
1999
2000 spin_lock_irqsave(&map->async_lock, flags);
2001 ret = map->async_ret;
2002 map->async_ret = 0;
2003 spin_unlock_irqrestore(&map->async_lock, flags);
2004
2005 trace_regmap_async_complete_done(map->dev);
2006
2007 return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(regmap_async_complete);
2010
2011 /**
2012 * regmap_register_patch: Register and apply register updates to be applied
2013 * on device initialistion
2014 *
2015 * @map: Register map to apply updates to.
2016 * @regs: Values to update.
2017 * @num_regs: Number of entries in regs.
2018 *
2019 * Register a set of register updates to be applied to the device
2020 * whenever the device registers are synchronised with the cache and
2021 * apply them immediately. Typically this is used to apply
2022 * corrections to be applied to the device defaults on startup, such
2023 * as the updates some vendors provide to undocumented registers.
2024 */
2025 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2026 int num_regs)
2027 {
2028 struct reg_default *p;
2029 int i, ret;
2030 bool bypass;
2031
2032 map->lock(map->lock_arg);
2033
2034 bypass = map->cache_bypass;
2035
2036 map->cache_bypass = true;
2037 map->async = true;
2038
2039 /* Write out first; it's useful to apply even if we fail later. */
2040 for (i = 0; i < num_regs; i++) {
2041 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2042 if (ret != 0) {
2043 dev_err(map->dev, "Failed to write %x = %x: %d\n",
2044 regs[i].reg, regs[i].def, ret);
2045 goto out;
2046 }
2047 }
2048
2049 p = krealloc(map->patch,
2050 sizeof(struct reg_default) * (map->patch_regs + num_regs),
2051 GFP_KERNEL);
2052 if (p) {
2053 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2054 map->patch = p;
2055 map->patch_regs += num_regs;
2056 } else {
2057 ret = -ENOMEM;
2058 }
2059
2060 out:
2061 map->async = false;
2062 map->cache_bypass = bypass;
2063
2064 map->unlock(map->lock_arg);
2065
2066 regmap_async_complete(map);
2067
2068 return ret;
2069 }
2070 EXPORT_SYMBOL_GPL(regmap_register_patch);
2071
2072 /*
2073 * regmap_get_val_bytes(): Report the size of a register value
2074 *
2075 * Report the size of a register value, mainly intended to for use by
2076 * generic infrastructure built on top of regmap.
2077 */
2078 int regmap_get_val_bytes(struct regmap *map)
2079 {
2080 if (map->format.format_write)
2081 return -EINVAL;
2082
2083 return map->format.val_bytes;
2084 }
2085 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2086
2087 static int __init regmap_initcall(void)
2088 {
2089 regmap_debugfs_initcall();
2090
2091 return 0;
2092 }
2093 postcore_initcall(regmap_initcall);
This page took 0.139987 seconds and 5 git commands to generate.