regmap: Don't generate gather writes for single register raw writes
[deliverable/linux.git] / drivers / base / regmap / regmap.c
1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23
24 #include "internal.h"
25
26 /*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32 #undef LOG_DEVICE
33
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 unsigned int mask, unsigned int val,
36 bool *change);
37
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 unsigned int val);
44
45 bool regmap_reg_in_ranges(unsigned int reg,
46 const struct regmap_range *ranges,
47 unsigned int nranges)
48 {
49 const struct regmap_range *r;
50 int i;
51
52 for (i = 0, r = ranges; i < nranges; i++, r++)
53 if (regmap_reg_in_range(reg, r))
54 return true;
55 return false;
56 }
57 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
58
59 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
60 const struct regmap_access_table *table)
61 {
62 /* Check "no ranges" first */
63 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
64 return false;
65
66 /* In case zero "yes ranges" are supplied, any reg is OK */
67 if (!table->n_yes_ranges)
68 return true;
69
70 return regmap_reg_in_ranges(reg, table->yes_ranges,
71 table->n_yes_ranges);
72 }
73 EXPORT_SYMBOL_GPL(regmap_check_range_table);
74
75 bool regmap_writeable(struct regmap *map, unsigned int reg)
76 {
77 if (map->max_register && reg > map->max_register)
78 return false;
79
80 if (map->writeable_reg)
81 return map->writeable_reg(map->dev, reg);
82
83 if (map->wr_table)
84 return regmap_check_range_table(map, reg, map->wr_table);
85
86 return true;
87 }
88
89 bool regmap_readable(struct regmap *map, unsigned int reg)
90 {
91 if (map->max_register && reg > map->max_register)
92 return false;
93
94 if (map->format.format_write)
95 return false;
96
97 if (map->readable_reg)
98 return map->readable_reg(map->dev, reg);
99
100 if (map->rd_table)
101 return regmap_check_range_table(map, reg, map->rd_table);
102
103 return true;
104 }
105
106 bool regmap_volatile(struct regmap *map, unsigned int reg)
107 {
108 if (!regmap_readable(map, reg))
109 return false;
110
111 if (map->volatile_reg)
112 return map->volatile_reg(map->dev, reg);
113
114 if (map->volatile_table)
115 return regmap_check_range_table(map, reg, map->volatile_table);
116
117 if (map->cache_ops)
118 return false;
119 else
120 return true;
121 }
122
123 bool regmap_precious(struct regmap *map, unsigned int reg)
124 {
125 if (!regmap_readable(map, reg))
126 return false;
127
128 if (map->precious_reg)
129 return map->precious_reg(map->dev, reg);
130
131 if (map->precious_table)
132 return regmap_check_range_table(map, reg, map->precious_table);
133
134 return false;
135 }
136
137 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
138 size_t num)
139 {
140 unsigned int i;
141
142 for (i = 0; i < num; i++)
143 if (!regmap_volatile(map, reg + i))
144 return false;
145
146 return true;
147 }
148
149 static void regmap_format_2_6_write(struct regmap *map,
150 unsigned int reg, unsigned int val)
151 {
152 u8 *out = map->work_buf;
153
154 *out = (reg << 6) | val;
155 }
156
157 static void regmap_format_4_12_write(struct regmap *map,
158 unsigned int reg, unsigned int val)
159 {
160 __be16 *out = map->work_buf;
161 *out = cpu_to_be16((reg << 12) | val);
162 }
163
164 static void regmap_format_7_9_write(struct regmap *map,
165 unsigned int reg, unsigned int val)
166 {
167 __be16 *out = map->work_buf;
168 *out = cpu_to_be16((reg << 9) | val);
169 }
170
171 static void regmap_format_10_14_write(struct regmap *map,
172 unsigned int reg, unsigned int val)
173 {
174 u8 *out = map->work_buf;
175
176 out[2] = val;
177 out[1] = (val >> 8) | (reg << 6);
178 out[0] = reg >> 2;
179 }
180
181 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182 {
183 u8 *b = buf;
184
185 b[0] = val << shift;
186 }
187
188 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189 {
190 __be16 *b = buf;
191
192 b[0] = cpu_to_be16(val << shift);
193 }
194
195 static void regmap_format_16_native(void *buf, unsigned int val,
196 unsigned int shift)
197 {
198 *(u16 *)buf = val << shift;
199 }
200
201 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
202 {
203 u8 *b = buf;
204
205 val <<= shift;
206
207 b[0] = val >> 16;
208 b[1] = val >> 8;
209 b[2] = val;
210 }
211
212 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
213 {
214 __be32 *b = buf;
215
216 b[0] = cpu_to_be32(val << shift);
217 }
218
219 static void regmap_format_32_native(void *buf, unsigned int val,
220 unsigned int shift)
221 {
222 *(u32 *)buf = val << shift;
223 }
224
225 static void regmap_parse_inplace_noop(void *buf)
226 {
227 }
228
229 static unsigned int regmap_parse_8(const void *buf)
230 {
231 const u8 *b = buf;
232
233 return b[0];
234 }
235
236 static unsigned int regmap_parse_16_be(const void *buf)
237 {
238 const __be16 *b = buf;
239
240 return be16_to_cpu(b[0]);
241 }
242
243 static void regmap_parse_16_be_inplace(void *buf)
244 {
245 __be16 *b = buf;
246
247 b[0] = be16_to_cpu(b[0]);
248 }
249
250 static unsigned int regmap_parse_16_native(const void *buf)
251 {
252 return *(u16 *)buf;
253 }
254
255 static unsigned int regmap_parse_24(const void *buf)
256 {
257 const u8 *b = buf;
258 unsigned int ret = b[2];
259 ret |= ((unsigned int)b[1]) << 8;
260 ret |= ((unsigned int)b[0]) << 16;
261
262 return ret;
263 }
264
265 static unsigned int regmap_parse_32_be(const void *buf)
266 {
267 const __be32 *b = buf;
268
269 return be32_to_cpu(b[0]);
270 }
271
272 static void regmap_parse_32_be_inplace(void *buf)
273 {
274 __be32 *b = buf;
275
276 b[0] = be32_to_cpu(b[0]);
277 }
278
279 static unsigned int regmap_parse_32_native(const void *buf)
280 {
281 return *(u32 *)buf;
282 }
283
284 static void regmap_lock_mutex(void *__map)
285 {
286 struct regmap *map = __map;
287 mutex_lock(&map->mutex);
288 }
289
290 static void regmap_unlock_mutex(void *__map)
291 {
292 struct regmap *map = __map;
293 mutex_unlock(&map->mutex);
294 }
295
296 static void regmap_lock_spinlock(void *__map)
297 __acquires(&map->spinlock)
298 {
299 struct regmap *map = __map;
300 unsigned long flags;
301
302 spin_lock_irqsave(&map->spinlock, flags);
303 map->spinlock_flags = flags;
304 }
305
306 static void regmap_unlock_spinlock(void *__map)
307 __releases(&map->spinlock)
308 {
309 struct regmap *map = __map;
310 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
311 }
312
313 static void dev_get_regmap_release(struct device *dev, void *res)
314 {
315 /*
316 * We don't actually have anything to do here; the goal here
317 * is not to manage the regmap but to provide a simple way to
318 * get the regmap back given a struct device.
319 */
320 }
321
322 static bool _regmap_range_add(struct regmap *map,
323 struct regmap_range_node *data)
324 {
325 struct rb_root *root = &map->range_tree;
326 struct rb_node **new = &(root->rb_node), *parent = NULL;
327
328 while (*new) {
329 struct regmap_range_node *this =
330 container_of(*new, struct regmap_range_node, node);
331
332 parent = *new;
333 if (data->range_max < this->range_min)
334 new = &((*new)->rb_left);
335 else if (data->range_min > this->range_max)
336 new = &((*new)->rb_right);
337 else
338 return false;
339 }
340
341 rb_link_node(&data->node, parent, new);
342 rb_insert_color(&data->node, root);
343
344 return true;
345 }
346
347 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
348 unsigned int reg)
349 {
350 struct rb_node *node = map->range_tree.rb_node;
351
352 while (node) {
353 struct regmap_range_node *this =
354 container_of(node, struct regmap_range_node, node);
355
356 if (reg < this->range_min)
357 node = node->rb_left;
358 else if (reg > this->range_max)
359 node = node->rb_right;
360 else
361 return this;
362 }
363
364 return NULL;
365 }
366
367 static void regmap_range_exit(struct regmap *map)
368 {
369 struct rb_node *next;
370 struct regmap_range_node *range_node;
371
372 next = rb_first(&map->range_tree);
373 while (next) {
374 range_node = rb_entry(next, struct regmap_range_node, node);
375 next = rb_next(&range_node->node);
376 rb_erase(&range_node->node, &map->range_tree);
377 kfree(range_node);
378 }
379
380 kfree(map->selector_work_buf);
381 }
382
383 /**
384 * regmap_init(): Initialise register map
385 *
386 * @dev: Device that will be interacted with
387 * @bus: Bus-specific callbacks to use with device
388 * @bus_context: Data passed to bus-specific callbacks
389 * @config: Configuration for register map
390 *
391 * The return value will be an ERR_PTR() on error or a valid pointer to
392 * a struct regmap. This function should generally not be called
393 * directly, it should be called by bus-specific init functions.
394 */
395 struct regmap *regmap_init(struct device *dev,
396 const struct regmap_bus *bus,
397 void *bus_context,
398 const struct regmap_config *config)
399 {
400 struct regmap *map, **m;
401 int ret = -EINVAL;
402 enum regmap_endian reg_endian, val_endian;
403 int i, j;
404
405 if (!config)
406 goto err;
407
408 map = kzalloc(sizeof(*map), GFP_KERNEL);
409 if (map == NULL) {
410 ret = -ENOMEM;
411 goto err;
412 }
413
414 if (config->lock && config->unlock) {
415 map->lock = config->lock;
416 map->unlock = config->unlock;
417 map->lock_arg = config->lock_arg;
418 } else {
419 if ((bus && bus->fast_io) ||
420 config->fast_io) {
421 spin_lock_init(&map->spinlock);
422 map->lock = regmap_lock_spinlock;
423 map->unlock = regmap_unlock_spinlock;
424 } else {
425 mutex_init(&map->mutex);
426 map->lock = regmap_lock_mutex;
427 map->unlock = regmap_unlock_mutex;
428 }
429 map->lock_arg = map;
430 }
431 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
432 map->format.pad_bytes = config->pad_bits / 8;
433 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
434 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
435 config->val_bits + config->pad_bits, 8);
436 map->reg_shift = config->pad_bits % 8;
437 if (config->reg_stride)
438 map->reg_stride = config->reg_stride;
439 else
440 map->reg_stride = 1;
441 map->use_single_rw = config->use_single_rw;
442 map->dev = dev;
443 map->bus = bus;
444 map->bus_context = bus_context;
445 map->max_register = config->max_register;
446 map->wr_table = config->wr_table;
447 map->rd_table = config->rd_table;
448 map->volatile_table = config->volatile_table;
449 map->precious_table = config->precious_table;
450 map->writeable_reg = config->writeable_reg;
451 map->readable_reg = config->readable_reg;
452 map->volatile_reg = config->volatile_reg;
453 map->precious_reg = config->precious_reg;
454 map->cache_type = config->cache_type;
455 map->name = config->name;
456
457 spin_lock_init(&map->async_lock);
458 INIT_LIST_HEAD(&map->async_list);
459 INIT_LIST_HEAD(&map->async_free);
460 init_waitqueue_head(&map->async_waitq);
461
462 if (config->read_flag_mask || config->write_flag_mask) {
463 map->read_flag_mask = config->read_flag_mask;
464 map->write_flag_mask = config->write_flag_mask;
465 } else if (bus) {
466 map->read_flag_mask = bus->read_flag_mask;
467 }
468
469 if (!bus) {
470 map->reg_read = config->reg_read;
471 map->reg_write = config->reg_write;
472
473 map->defer_caching = false;
474 goto skip_format_initialization;
475 } else {
476 map->reg_read = _regmap_bus_read;
477 }
478
479 reg_endian = config->reg_format_endian;
480 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
481 reg_endian = bus->reg_format_endian_default;
482 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
483 reg_endian = REGMAP_ENDIAN_BIG;
484
485 val_endian = config->val_format_endian;
486 if (val_endian == REGMAP_ENDIAN_DEFAULT)
487 val_endian = bus->val_format_endian_default;
488 if (val_endian == REGMAP_ENDIAN_DEFAULT)
489 val_endian = REGMAP_ENDIAN_BIG;
490
491 switch (config->reg_bits + map->reg_shift) {
492 case 2:
493 switch (config->val_bits) {
494 case 6:
495 map->format.format_write = regmap_format_2_6_write;
496 break;
497 default:
498 goto err_map;
499 }
500 break;
501
502 case 4:
503 switch (config->val_bits) {
504 case 12:
505 map->format.format_write = regmap_format_4_12_write;
506 break;
507 default:
508 goto err_map;
509 }
510 break;
511
512 case 7:
513 switch (config->val_bits) {
514 case 9:
515 map->format.format_write = regmap_format_7_9_write;
516 break;
517 default:
518 goto err_map;
519 }
520 break;
521
522 case 10:
523 switch (config->val_bits) {
524 case 14:
525 map->format.format_write = regmap_format_10_14_write;
526 break;
527 default:
528 goto err_map;
529 }
530 break;
531
532 case 8:
533 map->format.format_reg = regmap_format_8;
534 break;
535
536 case 16:
537 switch (reg_endian) {
538 case REGMAP_ENDIAN_BIG:
539 map->format.format_reg = regmap_format_16_be;
540 break;
541 case REGMAP_ENDIAN_NATIVE:
542 map->format.format_reg = regmap_format_16_native;
543 break;
544 default:
545 goto err_map;
546 }
547 break;
548
549 case 24:
550 if (reg_endian != REGMAP_ENDIAN_BIG)
551 goto err_map;
552 map->format.format_reg = regmap_format_24;
553 break;
554
555 case 32:
556 switch (reg_endian) {
557 case REGMAP_ENDIAN_BIG:
558 map->format.format_reg = regmap_format_32_be;
559 break;
560 case REGMAP_ENDIAN_NATIVE:
561 map->format.format_reg = regmap_format_32_native;
562 break;
563 default:
564 goto err_map;
565 }
566 break;
567
568 default:
569 goto err_map;
570 }
571
572 if (val_endian == REGMAP_ENDIAN_NATIVE)
573 map->format.parse_inplace = regmap_parse_inplace_noop;
574
575 switch (config->val_bits) {
576 case 8:
577 map->format.format_val = regmap_format_8;
578 map->format.parse_val = regmap_parse_8;
579 map->format.parse_inplace = regmap_parse_inplace_noop;
580 break;
581 case 16:
582 switch (val_endian) {
583 case REGMAP_ENDIAN_BIG:
584 map->format.format_val = regmap_format_16_be;
585 map->format.parse_val = regmap_parse_16_be;
586 map->format.parse_inplace = regmap_parse_16_be_inplace;
587 break;
588 case REGMAP_ENDIAN_NATIVE:
589 map->format.format_val = regmap_format_16_native;
590 map->format.parse_val = regmap_parse_16_native;
591 break;
592 default:
593 goto err_map;
594 }
595 break;
596 case 24:
597 if (val_endian != REGMAP_ENDIAN_BIG)
598 goto err_map;
599 map->format.format_val = regmap_format_24;
600 map->format.parse_val = regmap_parse_24;
601 break;
602 case 32:
603 switch (val_endian) {
604 case REGMAP_ENDIAN_BIG:
605 map->format.format_val = regmap_format_32_be;
606 map->format.parse_val = regmap_parse_32_be;
607 map->format.parse_inplace = regmap_parse_32_be_inplace;
608 break;
609 case REGMAP_ENDIAN_NATIVE:
610 map->format.format_val = regmap_format_32_native;
611 map->format.parse_val = regmap_parse_32_native;
612 break;
613 default:
614 goto err_map;
615 }
616 break;
617 }
618
619 if (map->format.format_write) {
620 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
621 (val_endian != REGMAP_ENDIAN_BIG))
622 goto err_map;
623 map->use_single_rw = true;
624 }
625
626 if (!map->format.format_write &&
627 !(map->format.format_reg && map->format.format_val))
628 goto err_map;
629
630 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
631 if (map->work_buf == NULL) {
632 ret = -ENOMEM;
633 goto err_map;
634 }
635
636 if (map->format.format_write) {
637 map->defer_caching = false;
638 map->reg_write = _regmap_bus_formatted_write;
639 } else if (map->format.format_val) {
640 map->defer_caching = true;
641 map->reg_write = _regmap_bus_raw_write;
642 }
643
644 skip_format_initialization:
645
646 map->range_tree = RB_ROOT;
647 for (i = 0; i < config->num_ranges; i++) {
648 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
649 struct regmap_range_node *new;
650
651 /* Sanity check */
652 if (range_cfg->range_max < range_cfg->range_min) {
653 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
654 range_cfg->range_max, range_cfg->range_min);
655 goto err_range;
656 }
657
658 if (range_cfg->range_max > map->max_register) {
659 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
660 range_cfg->range_max, map->max_register);
661 goto err_range;
662 }
663
664 if (range_cfg->selector_reg > map->max_register) {
665 dev_err(map->dev,
666 "Invalid range %d: selector out of map\n", i);
667 goto err_range;
668 }
669
670 if (range_cfg->window_len == 0) {
671 dev_err(map->dev, "Invalid range %d: window_len 0\n",
672 i);
673 goto err_range;
674 }
675
676 /* Make sure, that this register range has no selector
677 or data window within its boundary */
678 for (j = 0; j < config->num_ranges; j++) {
679 unsigned sel_reg = config->ranges[j].selector_reg;
680 unsigned win_min = config->ranges[j].window_start;
681 unsigned win_max = win_min +
682 config->ranges[j].window_len - 1;
683
684 /* Allow data window inside its own virtual range */
685 if (j == i)
686 continue;
687
688 if (range_cfg->range_min <= sel_reg &&
689 sel_reg <= range_cfg->range_max) {
690 dev_err(map->dev,
691 "Range %d: selector for %d in window\n",
692 i, j);
693 goto err_range;
694 }
695
696 if (!(win_max < range_cfg->range_min ||
697 win_min > range_cfg->range_max)) {
698 dev_err(map->dev,
699 "Range %d: window for %d in window\n",
700 i, j);
701 goto err_range;
702 }
703 }
704
705 new = kzalloc(sizeof(*new), GFP_KERNEL);
706 if (new == NULL) {
707 ret = -ENOMEM;
708 goto err_range;
709 }
710
711 new->map = map;
712 new->name = range_cfg->name;
713 new->range_min = range_cfg->range_min;
714 new->range_max = range_cfg->range_max;
715 new->selector_reg = range_cfg->selector_reg;
716 new->selector_mask = range_cfg->selector_mask;
717 new->selector_shift = range_cfg->selector_shift;
718 new->window_start = range_cfg->window_start;
719 new->window_len = range_cfg->window_len;
720
721 if (_regmap_range_add(map, new) == false) {
722 dev_err(map->dev, "Failed to add range %d\n", i);
723 kfree(new);
724 goto err_range;
725 }
726
727 if (map->selector_work_buf == NULL) {
728 map->selector_work_buf =
729 kzalloc(map->format.buf_size, GFP_KERNEL);
730 if (map->selector_work_buf == NULL) {
731 ret = -ENOMEM;
732 goto err_range;
733 }
734 }
735 }
736
737 regmap_debugfs_init(map, config->name);
738
739 ret = regcache_init(map, config);
740 if (ret != 0)
741 goto err_range;
742
743 /* Add a devres resource for dev_get_regmap() */
744 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
745 if (!m) {
746 ret = -ENOMEM;
747 goto err_debugfs;
748 }
749 *m = map;
750 devres_add(dev, m);
751
752 return map;
753
754 err_debugfs:
755 regmap_debugfs_exit(map);
756 regcache_exit(map);
757 err_range:
758 regmap_range_exit(map);
759 kfree(map->work_buf);
760 err_map:
761 kfree(map);
762 err:
763 return ERR_PTR(ret);
764 }
765 EXPORT_SYMBOL_GPL(regmap_init);
766
767 static void devm_regmap_release(struct device *dev, void *res)
768 {
769 regmap_exit(*(struct regmap **)res);
770 }
771
772 /**
773 * devm_regmap_init(): Initialise managed register map
774 *
775 * @dev: Device that will be interacted with
776 * @bus: Bus-specific callbacks to use with device
777 * @bus_context: Data passed to bus-specific callbacks
778 * @config: Configuration for register map
779 *
780 * The return value will be an ERR_PTR() on error or a valid pointer
781 * to a struct regmap. This function should generally not be called
782 * directly, it should be called by bus-specific init functions. The
783 * map will be automatically freed by the device management code.
784 */
785 struct regmap *devm_regmap_init(struct device *dev,
786 const struct regmap_bus *bus,
787 void *bus_context,
788 const struct regmap_config *config)
789 {
790 struct regmap **ptr, *regmap;
791
792 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
793 if (!ptr)
794 return ERR_PTR(-ENOMEM);
795
796 regmap = regmap_init(dev, bus, bus_context, config);
797 if (!IS_ERR(regmap)) {
798 *ptr = regmap;
799 devres_add(dev, ptr);
800 } else {
801 devres_free(ptr);
802 }
803
804 return regmap;
805 }
806 EXPORT_SYMBOL_GPL(devm_regmap_init);
807
808 static void regmap_field_init(struct regmap_field *rm_field,
809 struct regmap *regmap, struct reg_field reg_field)
810 {
811 int field_bits = reg_field.msb - reg_field.lsb + 1;
812 rm_field->regmap = regmap;
813 rm_field->reg = reg_field.reg;
814 rm_field->shift = reg_field.lsb;
815 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
816 }
817
818 /**
819 * devm_regmap_field_alloc(): Allocate and initialise a register field
820 * in a register map.
821 *
822 * @dev: Device that will be interacted with
823 * @regmap: regmap bank in which this register field is located.
824 * @reg_field: Register field with in the bank.
825 *
826 * The return value will be an ERR_PTR() on error or a valid pointer
827 * to a struct regmap_field. The regmap_field will be automatically freed
828 * by the device management code.
829 */
830 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
831 struct regmap *regmap, struct reg_field reg_field)
832 {
833 struct regmap_field *rm_field = devm_kzalloc(dev,
834 sizeof(*rm_field), GFP_KERNEL);
835 if (!rm_field)
836 return ERR_PTR(-ENOMEM);
837
838 regmap_field_init(rm_field, regmap, reg_field);
839
840 return rm_field;
841
842 }
843 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
844
845 /**
846 * devm_regmap_field_free(): Free register field allocated using
847 * devm_regmap_field_alloc. Usally drivers need not call this function,
848 * as the memory allocated via devm will be freed as per device-driver
849 * life-cyle.
850 *
851 * @dev: Device that will be interacted with
852 * @field: regmap field which should be freed.
853 */
854 void devm_regmap_field_free(struct device *dev,
855 struct regmap_field *field)
856 {
857 devm_kfree(dev, field);
858 }
859 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
860
861 /**
862 * regmap_field_alloc(): Allocate and initialise a register field
863 * in a register map.
864 *
865 * @regmap: regmap bank in which this register field is located.
866 * @reg_field: Register field with in the bank.
867 *
868 * The return value will be an ERR_PTR() on error or a valid pointer
869 * to a struct regmap_field. The regmap_field should be freed by the
870 * user once its finished working with it using regmap_field_free().
871 */
872 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
873 struct reg_field reg_field)
874 {
875 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
876
877 if (!rm_field)
878 return ERR_PTR(-ENOMEM);
879
880 regmap_field_init(rm_field, regmap, reg_field);
881
882 return rm_field;
883 }
884 EXPORT_SYMBOL_GPL(regmap_field_alloc);
885
886 /**
887 * regmap_field_free(): Free register field allocated using regmap_field_alloc
888 *
889 * @field: regmap field which should be freed.
890 */
891 void regmap_field_free(struct regmap_field *field)
892 {
893 kfree(field);
894 }
895 EXPORT_SYMBOL_GPL(regmap_field_free);
896
897 /**
898 * regmap_reinit_cache(): Reinitialise the current register cache
899 *
900 * @map: Register map to operate on.
901 * @config: New configuration. Only the cache data will be used.
902 *
903 * Discard any existing register cache for the map and initialize a
904 * new cache. This can be used to restore the cache to defaults or to
905 * update the cache configuration to reflect runtime discovery of the
906 * hardware.
907 *
908 * No explicit locking is done here, the user needs to ensure that
909 * this function will not race with other calls to regmap.
910 */
911 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
912 {
913 regcache_exit(map);
914 regmap_debugfs_exit(map);
915
916 map->max_register = config->max_register;
917 map->writeable_reg = config->writeable_reg;
918 map->readable_reg = config->readable_reg;
919 map->volatile_reg = config->volatile_reg;
920 map->precious_reg = config->precious_reg;
921 map->cache_type = config->cache_type;
922
923 regmap_debugfs_init(map, config->name);
924
925 map->cache_bypass = false;
926 map->cache_only = false;
927
928 return regcache_init(map, config);
929 }
930 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
931
932 /**
933 * regmap_exit(): Free a previously allocated register map
934 */
935 void regmap_exit(struct regmap *map)
936 {
937 struct regmap_async *async;
938
939 regcache_exit(map);
940 regmap_debugfs_exit(map);
941 regmap_range_exit(map);
942 if (map->bus && map->bus->free_context)
943 map->bus->free_context(map->bus_context);
944 kfree(map->work_buf);
945 while (!list_empty(&map->async_free)) {
946 async = list_first_entry_or_null(&map->async_free,
947 struct regmap_async,
948 list);
949 list_del(&async->list);
950 kfree(async->work_buf);
951 kfree(async);
952 }
953 kfree(map);
954 }
955 EXPORT_SYMBOL_GPL(regmap_exit);
956
957 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
958 {
959 struct regmap **r = res;
960 if (!r || !*r) {
961 WARN_ON(!r || !*r);
962 return 0;
963 }
964
965 /* If the user didn't specify a name match any */
966 if (data)
967 return (*r)->name == data;
968 else
969 return 1;
970 }
971
972 /**
973 * dev_get_regmap(): Obtain the regmap (if any) for a device
974 *
975 * @dev: Device to retrieve the map for
976 * @name: Optional name for the register map, usually NULL.
977 *
978 * Returns the regmap for the device if one is present, or NULL. If
979 * name is specified then it must match the name specified when
980 * registering the device, if it is NULL then the first regmap found
981 * will be used. Devices with multiple register maps are very rare,
982 * generic code should normally not need to specify a name.
983 */
984 struct regmap *dev_get_regmap(struct device *dev, const char *name)
985 {
986 struct regmap **r = devres_find(dev, dev_get_regmap_release,
987 dev_get_regmap_match, (void *)name);
988
989 if (!r)
990 return NULL;
991 return *r;
992 }
993 EXPORT_SYMBOL_GPL(dev_get_regmap);
994
995 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
996 struct regmap_range_node *range,
997 unsigned int val_num)
998 {
999 void *orig_work_buf;
1000 unsigned int win_offset;
1001 unsigned int win_page;
1002 bool page_chg;
1003 int ret;
1004
1005 win_offset = (*reg - range->range_min) % range->window_len;
1006 win_page = (*reg - range->range_min) / range->window_len;
1007
1008 if (val_num > 1) {
1009 /* Bulk write shouldn't cross range boundary */
1010 if (*reg + val_num - 1 > range->range_max)
1011 return -EINVAL;
1012
1013 /* ... or single page boundary */
1014 if (val_num > range->window_len - win_offset)
1015 return -EINVAL;
1016 }
1017
1018 /* It is possible to have selector register inside data window.
1019 In that case, selector register is located on every page and
1020 it needs no page switching, when accessed alone. */
1021 if (val_num > 1 ||
1022 range->window_start + win_offset != range->selector_reg) {
1023 /* Use separate work_buf during page switching */
1024 orig_work_buf = map->work_buf;
1025 map->work_buf = map->selector_work_buf;
1026
1027 ret = _regmap_update_bits(map, range->selector_reg,
1028 range->selector_mask,
1029 win_page << range->selector_shift,
1030 &page_chg);
1031
1032 map->work_buf = orig_work_buf;
1033
1034 if (ret != 0)
1035 return ret;
1036 }
1037
1038 *reg = range->window_start + win_offset;
1039
1040 return 0;
1041 }
1042
1043 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1044 const void *val, size_t val_len, bool async)
1045 {
1046 struct regmap_range_node *range;
1047 unsigned long flags;
1048 u8 *u8 = map->work_buf;
1049 void *work_val = map->work_buf + map->format.reg_bytes +
1050 map->format.pad_bytes;
1051 void *buf;
1052 int ret = -ENOTSUPP;
1053 size_t len;
1054 int i;
1055
1056 WARN_ON(!map->bus);
1057
1058 /* Check for unwritable registers before we start */
1059 if (map->writeable_reg)
1060 for (i = 0; i < val_len / map->format.val_bytes; i++)
1061 if (!map->writeable_reg(map->dev,
1062 reg + (i * map->reg_stride)))
1063 return -EINVAL;
1064
1065 if (!map->cache_bypass && map->format.parse_val) {
1066 unsigned int ival;
1067 int val_bytes = map->format.val_bytes;
1068 for (i = 0; i < val_len / val_bytes; i++) {
1069 ival = map->format.parse_val(val + (i * val_bytes));
1070 ret = regcache_write(map, reg + (i * map->reg_stride),
1071 ival);
1072 if (ret) {
1073 dev_err(map->dev,
1074 "Error in caching of register: %x ret: %d\n",
1075 reg + i, ret);
1076 return ret;
1077 }
1078 }
1079 if (map->cache_only) {
1080 map->cache_dirty = true;
1081 return 0;
1082 }
1083 }
1084
1085 range = _regmap_range_lookup(map, reg);
1086 if (range) {
1087 int val_num = val_len / map->format.val_bytes;
1088 int win_offset = (reg - range->range_min) % range->window_len;
1089 int win_residue = range->window_len - win_offset;
1090
1091 /* If the write goes beyond the end of the window split it */
1092 while (val_num > win_residue) {
1093 dev_dbg(map->dev, "Writing window %d/%zu\n",
1094 win_residue, val_len / map->format.val_bytes);
1095 ret = _regmap_raw_write(map, reg, val, win_residue *
1096 map->format.val_bytes, async);
1097 if (ret != 0)
1098 return ret;
1099
1100 reg += win_residue;
1101 val_num -= win_residue;
1102 val += win_residue * map->format.val_bytes;
1103 val_len -= win_residue * map->format.val_bytes;
1104
1105 win_offset = (reg - range->range_min) %
1106 range->window_len;
1107 win_residue = range->window_len - win_offset;
1108 }
1109
1110 ret = _regmap_select_page(map, &reg, range, val_num);
1111 if (ret != 0)
1112 return ret;
1113 }
1114
1115 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1116
1117 u8[0] |= map->write_flag_mask;
1118
1119 /*
1120 * Essentially all I/O mechanisms will be faster with a single
1121 * buffer to write. Since register syncs often generate raw
1122 * writes of single registers optimise that case.
1123 */
1124 if (val != work_val && val_len == map->format.val_bytes) {
1125 memcpy(work_val, val, map->format.val_bytes);
1126 val = work_val;
1127 }
1128
1129 if (async && map->bus->async_write) {
1130 struct regmap_async *async;
1131
1132 trace_regmap_async_write_start(map->dev, reg, val_len);
1133
1134 spin_lock_irqsave(&map->async_lock, flags);
1135 async = list_first_entry_or_null(&map->async_free,
1136 struct regmap_async,
1137 list);
1138 if (async)
1139 list_del(&async->list);
1140 spin_unlock_irqrestore(&map->async_lock, flags);
1141
1142 if (!async) {
1143 async = map->bus->async_alloc();
1144 if (!async)
1145 return -ENOMEM;
1146
1147 async->work_buf = kzalloc(map->format.buf_size,
1148 GFP_KERNEL | GFP_DMA);
1149 if (!async->work_buf) {
1150 kfree(async);
1151 return -ENOMEM;
1152 }
1153 }
1154
1155 async->map = map;
1156
1157 /* If the caller supplied the value we can use it safely. */
1158 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1159 map->format.reg_bytes + map->format.val_bytes);
1160 if (val == work_val)
1161 val = async->work_buf + map->format.pad_bytes +
1162 map->format.reg_bytes;
1163
1164 spin_lock_irqsave(&map->async_lock, flags);
1165 list_add_tail(&async->list, &map->async_list);
1166 spin_unlock_irqrestore(&map->async_lock, flags);
1167
1168 ret = map->bus->async_write(map->bus_context, async->work_buf,
1169 map->format.reg_bytes +
1170 map->format.pad_bytes,
1171 val, val_len, async);
1172
1173 if (ret != 0) {
1174 dev_err(map->dev, "Failed to schedule write: %d\n",
1175 ret);
1176
1177 spin_lock_irqsave(&map->async_lock, flags);
1178 list_move(&async->list, &map->async_free);
1179 spin_unlock_irqrestore(&map->async_lock, flags);
1180 }
1181
1182 return ret;
1183 }
1184
1185 trace_regmap_hw_write_start(map->dev, reg,
1186 val_len / map->format.val_bytes);
1187
1188 /* If we're doing a single register write we can probably just
1189 * send the work_buf directly, otherwise try to do a gather
1190 * write.
1191 */
1192 if (val == work_val)
1193 ret = map->bus->write(map->bus_context, map->work_buf,
1194 map->format.reg_bytes +
1195 map->format.pad_bytes +
1196 val_len);
1197 else if (map->bus->gather_write)
1198 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1199 map->format.reg_bytes +
1200 map->format.pad_bytes,
1201 val, val_len);
1202
1203 /* If that didn't work fall back on linearising by hand. */
1204 if (ret == -ENOTSUPP) {
1205 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1206 buf = kzalloc(len, GFP_KERNEL);
1207 if (!buf)
1208 return -ENOMEM;
1209
1210 memcpy(buf, map->work_buf, map->format.reg_bytes);
1211 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1212 val, val_len);
1213 ret = map->bus->write(map->bus_context, buf, len);
1214
1215 kfree(buf);
1216 }
1217
1218 trace_regmap_hw_write_done(map->dev, reg,
1219 val_len / map->format.val_bytes);
1220
1221 return ret;
1222 }
1223
1224 /**
1225 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1226 *
1227 * @map: Map to check.
1228 */
1229 bool regmap_can_raw_write(struct regmap *map)
1230 {
1231 return map->bus && map->format.format_val && map->format.format_reg;
1232 }
1233 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1234
1235 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1236 unsigned int val)
1237 {
1238 int ret;
1239 struct regmap_range_node *range;
1240 struct regmap *map = context;
1241
1242 WARN_ON(!map->bus || !map->format.format_write);
1243
1244 range = _regmap_range_lookup(map, reg);
1245 if (range) {
1246 ret = _regmap_select_page(map, &reg, range, 1);
1247 if (ret != 0)
1248 return ret;
1249 }
1250
1251 map->format.format_write(map, reg, val);
1252
1253 trace_regmap_hw_write_start(map->dev, reg, 1);
1254
1255 ret = map->bus->write(map->bus_context, map->work_buf,
1256 map->format.buf_size);
1257
1258 trace_regmap_hw_write_done(map->dev, reg, 1);
1259
1260 return ret;
1261 }
1262
1263 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1264 unsigned int val)
1265 {
1266 struct regmap *map = context;
1267
1268 WARN_ON(!map->bus || !map->format.format_val);
1269
1270 map->format.format_val(map->work_buf + map->format.reg_bytes
1271 + map->format.pad_bytes, val, 0);
1272 return _regmap_raw_write(map, reg,
1273 map->work_buf +
1274 map->format.reg_bytes +
1275 map->format.pad_bytes,
1276 map->format.val_bytes, false);
1277 }
1278
1279 static inline void *_regmap_map_get_context(struct regmap *map)
1280 {
1281 return (map->bus) ? map : map->bus_context;
1282 }
1283
1284 int _regmap_write(struct regmap *map, unsigned int reg,
1285 unsigned int val)
1286 {
1287 int ret;
1288 void *context = _regmap_map_get_context(map);
1289
1290 if (!regmap_writeable(map, reg))
1291 return -EIO;
1292
1293 if (!map->cache_bypass && !map->defer_caching) {
1294 ret = regcache_write(map, reg, val);
1295 if (ret != 0)
1296 return ret;
1297 if (map->cache_only) {
1298 map->cache_dirty = true;
1299 return 0;
1300 }
1301 }
1302
1303 #ifdef LOG_DEVICE
1304 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1305 dev_info(map->dev, "%x <= %x\n", reg, val);
1306 #endif
1307
1308 trace_regmap_reg_write(map->dev, reg, val);
1309
1310 return map->reg_write(context, reg, val);
1311 }
1312
1313 /**
1314 * regmap_write(): Write a value to a single register
1315 *
1316 * @map: Register map to write to
1317 * @reg: Register to write to
1318 * @val: Value to be written
1319 *
1320 * A value of zero will be returned on success, a negative errno will
1321 * be returned in error cases.
1322 */
1323 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1324 {
1325 int ret;
1326
1327 if (reg % map->reg_stride)
1328 return -EINVAL;
1329
1330 map->lock(map->lock_arg);
1331
1332 ret = _regmap_write(map, reg, val);
1333
1334 map->unlock(map->lock_arg);
1335
1336 return ret;
1337 }
1338 EXPORT_SYMBOL_GPL(regmap_write);
1339
1340 /**
1341 * regmap_raw_write(): Write raw values to one or more registers
1342 *
1343 * @map: Register map to write to
1344 * @reg: Initial register to write to
1345 * @val: Block of data to be written, laid out for direct transmission to the
1346 * device
1347 * @val_len: Length of data pointed to by val.
1348 *
1349 * This function is intended to be used for things like firmware
1350 * download where a large block of data needs to be transferred to the
1351 * device. No formatting will be done on the data provided.
1352 *
1353 * A value of zero will be returned on success, a negative errno will
1354 * be returned in error cases.
1355 */
1356 int regmap_raw_write(struct regmap *map, unsigned int reg,
1357 const void *val, size_t val_len)
1358 {
1359 int ret;
1360
1361 if (!regmap_can_raw_write(map))
1362 return -EINVAL;
1363 if (val_len % map->format.val_bytes)
1364 return -EINVAL;
1365
1366 map->lock(map->lock_arg);
1367
1368 ret = _regmap_raw_write(map, reg, val, val_len, false);
1369
1370 map->unlock(map->lock_arg);
1371
1372 return ret;
1373 }
1374 EXPORT_SYMBOL_GPL(regmap_raw_write);
1375
1376 /**
1377 * regmap_field_write(): Write a value to a single register field
1378 *
1379 * @field: Register field to write to
1380 * @val: Value to be written
1381 *
1382 * A value of zero will be returned on success, a negative errno will
1383 * be returned in error cases.
1384 */
1385 int regmap_field_write(struct regmap_field *field, unsigned int val)
1386 {
1387 return regmap_update_bits(field->regmap, field->reg,
1388 field->mask, val << field->shift);
1389 }
1390 EXPORT_SYMBOL_GPL(regmap_field_write);
1391
1392 /*
1393 * regmap_bulk_write(): Write multiple registers to the device
1394 *
1395 * @map: Register map to write to
1396 * @reg: First register to be write from
1397 * @val: Block of data to be written, in native register size for device
1398 * @val_count: Number of registers to write
1399 *
1400 * This function is intended to be used for writing a large block of
1401 * data to the device either in single transfer or multiple transfer.
1402 *
1403 * A value of zero will be returned on success, a negative errno will
1404 * be returned in error cases.
1405 */
1406 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1407 size_t val_count)
1408 {
1409 int ret = 0, i;
1410 size_t val_bytes = map->format.val_bytes;
1411 void *wval;
1412
1413 if (!map->bus)
1414 return -EINVAL;
1415 if (!map->format.parse_inplace)
1416 return -EINVAL;
1417 if (reg % map->reg_stride)
1418 return -EINVAL;
1419
1420 map->lock(map->lock_arg);
1421
1422 /* No formatting is require if val_byte is 1 */
1423 if (val_bytes == 1) {
1424 wval = (void *)val;
1425 } else {
1426 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1427 if (!wval) {
1428 ret = -ENOMEM;
1429 dev_err(map->dev, "Error in memory allocation\n");
1430 goto out;
1431 }
1432 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1433 map->format.parse_inplace(wval + i);
1434 }
1435 /*
1436 * Some devices does not support bulk write, for
1437 * them we have a series of single write operations.
1438 */
1439 if (map->use_single_rw) {
1440 for (i = 0; i < val_count; i++) {
1441 ret = regmap_raw_write(map,
1442 reg + (i * map->reg_stride),
1443 val + (i * val_bytes),
1444 val_bytes);
1445 if (ret != 0)
1446 return ret;
1447 }
1448 } else {
1449 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count,
1450 false);
1451 }
1452
1453 if (val_bytes != 1)
1454 kfree(wval);
1455
1456 out:
1457 map->unlock(map->lock_arg);
1458 return ret;
1459 }
1460 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1461
1462 /**
1463 * regmap_raw_write_async(): Write raw values to one or more registers
1464 * asynchronously
1465 *
1466 * @map: Register map to write to
1467 * @reg: Initial register to write to
1468 * @val: Block of data to be written, laid out for direct transmission to the
1469 * device. Must be valid until regmap_async_complete() is called.
1470 * @val_len: Length of data pointed to by val.
1471 *
1472 * This function is intended to be used for things like firmware
1473 * download where a large block of data needs to be transferred to the
1474 * device. No formatting will be done on the data provided.
1475 *
1476 * If supported by the underlying bus the write will be scheduled
1477 * asynchronously, helping maximise I/O speed on higher speed buses
1478 * like SPI. regmap_async_complete() can be called to ensure that all
1479 * asynchrnous writes have been completed.
1480 *
1481 * A value of zero will be returned on success, a negative errno will
1482 * be returned in error cases.
1483 */
1484 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1485 const void *val, size_t val_len)
1486 {
1487 int ret;
1488
1489 if (val_len % map->format.val_bytes)
1490 return -EINVAL;
1491 if (reg % map->reg_stride)
1492 return -EINVAL;
1493
1494 map->lock(map->lock_arg);
1495
1496 ret = _regmap_raw_write(map, reg, val, val_len, true);
1497
1498 map->unlock(map->lock_arg);
1499
1500 return ret;
1501 }
1502 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1503
1504 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1505 unsigned int val_len)
1506 {
1507 struct regmap_range_node *range;
1508 u8 *u8 = map->work_buf;
1509 int ret;
1510
1511 WARN_ON(!map->bus);
1512
1513 range = _regmap_range_lookup(map, reg);
1514 if (range) {
1515 ret = _regmap_select_page(map, &reg, range,
1516 val_len / map->format.val_bytes);
1517 if (ret != 0)
1518 return ret;
1519 }
1520
1521 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1522
1523 /*
1524 * Some buses or devices flag reads by setting the high bits in the
1525 * register addresss; since it's always the high bits for all
1526 * current formats we can do this here rather than in
1527 * formatting. This may break if we get interesting formats.
1528 */
1529 u8[0] |= map->read_flag_mask;
1530
1531 trace_regmap_hw_read_start(map->dev, reg,
1532 val_len / map->format.val_bytes);
1533
1534 ret = map->bus->read(map->bus_context, map->work_buf,
1535 map->format.reg_bytes + map->format.pad_bytes,
1536 val, val_len);
1537
1538 trace_regmap_hw_read_done(map->dev, reg,
1539 val_len / map->format.val_bytes);
1540
1541 return ret;
1542 }
1543
1544 static int _regmap_bus_read(void *context, unsigned int reg,
1545 unsigned int *val)
1546 {
1547 int ret;
1548 struct regmap *map = context;
1549
1550 if (!map->format.parse_val)
1551 return -EINVAL;
1552
1553 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1554 if (ret == 0)
1555 *val = map->format.parse_val(map->work_buf);
1556
1557 return ret;
1558 }
1559
1560 static int _regmap_read(struct regmap *map, unsigned int reg,
1561 unsigned int *val)
1562 {
1563 int ret;
1564 void *context = _regmap_map_get_context(map);
1565
1566 WARN_ON(!map->reg_read);
1567
1568 if (!map->cache_bypass) {
1569 ret = regcache_read(map, reg, val);
1570 if (ret == 0)
1571 return 0;
1572 }
1573
1574 if (map->cache_only)
1575 return -EBUSY;
1576
1577 ret = map->reg_read(context, reg, val);
1578 if (ret == 0) {
1579 #ifdef LOG_DEVICE
1580 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1581 dev_info(map->dev, "%x => %x\n", reg, *val);
1582 #endif
1583
1584 trace_regmap_reg_read(map->dev, reg, *val);
1585
1586 if (!map->cache_bypass)
1587 regcache_write(map, reg, *val);
1588 }
1589
1590 return ret;
1591 }
1592
1593 /**
1594 * regmap_read(): Read a value from a single register
1595 *
1596 * @map: Register map to write to
1597 * @reg: Register to be read from
1598 * @val: Pointer to store read value
1599 *
1600 * A value of zero will be returned on success, a negative errno will
1601 * be returned in error cases.
1602 */
1603 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1604 {
1605 int ret;
1606
1607 if (reg % map->reg_stride)
1608 return -EINVAL;
1609
1610 map->lock(map->lock_arg);
1611
1612 ret = _regmap_read(map, reg, val);
1613
1614 map->unlock(map->lock_arg);
1615
1616 return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(regmap_read);
1619
1620 /**
1621 * regmap_raw_read(): Read raw data from the device
1622 *
1623 * @map: Register map to write to
1624 * @reg: First register to be read from
1625 * @val: Pointer to store read value
1626 * @val_len: Size of data to read
1627 *
1628 * A value of zero will be returned on success, a negative errno will
1629 * be returned in error cases.
1630 */
1631 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1632 size_t val_len)
1633 {
1634 size_t val_bytes = map->format.val_bytes;
1635 size_t val_count = val_len / val_bytes;
1636 unsigned int v;
1637 int ret, i;
1638
1639 if (!map->bus)
1640 return -EINVAL;
1641 if (val_len % map->format.val_bytes)
1642 return -EINVAL;
1643 if (reg % map->reg_stride)
1644 return -EINVAL;
1645
1646 map->lock(map->lock_arg);
1647
1648 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1649 map->cache_type == REGCACHE_NONE) {
1650 /* Physical block read if there's no cache involved */
1651 ret = _regmap_raw_read(map, reg, val, val_len);
1652
1653 } else {
1654 /* Otherwise go word by word for the cache; should be low
1655 * cost as we expect to hit the cache.
1656 */
1657 for (i = 0; i < val_count; i++) {
1658 ret = _regmap_read(map, reg + (i * map->reg_stride),
1659 &v);
1660 if (ret != 0)
1661 goto out;
1662
1663 map->format.format_val(val + (i * val_bytes), v, 0);
1664 }
1665 }
1666
1667 out:
1668 map->unlock(map->lock_arg);
1669
1670 return ret;
1671 }
1672 EXPORT_SYMBOL_GPL(regmap_raw_read);
1673
1674 /**
1675 * regmap_field_read(): Read a value to a single register field
1676 *
1677 * @field: Register field to read from
1678 * @val: Pointer to store read value
1679 *
1680 * A value of zero will be returned on success, a negative errno will
1681 * be returned in error cases.
1682 */
1683 int regmap_field_read(struct regmap_field *field, unsigned int *val)
1684 {
1685 int ret;
1686 unsigned int reg_val;
1687 ret = regmap_read(field->regmap, field->reg, &reg_val);
1688 if (ret != 0)
1689 return ret;
1690
1691 reg_val &= field->mask;
1692 reg_val >>= field->shift;
1693 *val = reg_val;
1694
1695 return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(regmap_field_read);
1698
1699 /**
1700 * regmap_bulk_read(): Read multiple registers from the device
1701 *
1702 * @map: Register map to write to
1703 * @reg: First register to be read from
1704 * @val: Pointer to store read value, in native register size for device
1705 * @val_count: Number of registers to read
1706 *
1707 * A value of zero will be returned on success, a negative errno will
1708 * be returned in error cases.
1709 */
1710 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1711 size_t val_count)
1712 {
1713 int ret, i;
1714 size_t val_bytes = map->format.val_bytes;
1715 bool vol = regmap_volatile_range(map, reg, val_count);
1716
1717 if (!map->bus)
1718 return -EINVAL;
1719 if (!map->format.parse_inplace)
1720 return -EINVAL;
1721 if (reg % map->reg_stride)
1722 return -EINVAL;
1723
1724 if (vol || map->cache_type == REGCACHE_NONE) {
1725 /*
1726 * Some devices does not support bulk read, for
1727 * them we have a series of single read operations.
1728 */
1729 if (map->use_single_rw) {
1730 for (i = 0; i < val_count; i++) {
1731 ret = regmap_raw_read(map,
1732 reg + (i * map->reg_stride),
1733 val + (i * val_bytes),
1734 val_bytes);
1735 if (ret != 0)
1736 return ret;
1737 }
1738 } else {
1739 ret = regmap_raw_read(map, reg, val,
1740 val_bytes * val_count);
1741 if (ret != 0)
1742 return ret;
1743 }
1744
1745 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1746 map->format.parse_inplace(val + i);
1747 } else {
1748 for (i = 0; i < val_count; i++) {
1749 unsigned int ival;
1750 ret = regmap_read(map, reg + (i * map->reg_stride),
1751 &ival);
1752 if (ret != 0)
1753 return ret;
1754 memcpy(val + (i * val_bytes), &ival, val_bytes);
1755 }
1756 }
1757
1758 return 0;
1759 }
1760 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1761
1762 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1763 unsigned int mask, unsigned int val,
1764 bool *change)
1765 {
1766 int ret;
1767 unsigned int tmp, orig;
1768
1769 ret = _regmap_read(map, reg, &orig);
1770 if (ret != 0)
1771 return ret;
1772
1773 tmp = orig & ~mask;
1774 tmp |= val & mask;
1775
1776 if (tmp != orig) {
1777 ret = _regmap_write(map, reg, tmp);
1778 *change = true;
1779 } else {
1780 *change = false;
1781 }
1782
1783 return ret;
1784 }
1785
1786 /**
1787 * regmap_update_bits: Perform a read/modify/write cycle on the register map
1788 *
1789 * @map: Register map to update
1790 * @reg: Register to update
1791 * @mask: Bitmask to change
1792 * @val: New value for bitmask
1793 *
1794 * Returns zero for success, a negative number on error.
1795 */
1796 int regmap_update_bits(struct regmap *map, unsigned int reg,
1797 unsigned int mask, unsigned int val)
1798 {
1799 bool change;
1800 int ret;
1801
1802 map->lock(map->lock_arg);
1803 ret = _regmap_update_bits(map, reg, mask, val, &change);
1804 map->unlock(map->lock_arg);
1805
1806 return ret;
1807 }
1808 EXPORT_SYMBOL_GPL(regmap_update_bits);
1809
1810 /**
1811 * regmap_update_bits_check: Perform a read/modify/write cycle on the
1812 * register map and report if updated
1813 *
1814 * @map: Register map to update
1815 * @reg: Register to update
1816 * @mask: Bitmask to change
1817 * @val: New value for bitmask
1818 * @change: Boolean indicating if a write was done
1819 *
1820 * Returns zero for success, a negative number on error.
1821 */
1822 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1823 unsigned int mask, unsigned int val,
1824 bool *change)
1825 {
1826 int ret;
1827
1828 map->lock(map->lock_arg);
1829 ret = _regmap_update_bits(map, reg, mask, val, change);
1830 map->unlock(map->lock_arg);
1831 return ret;
1832 }
1833 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1834
1835 void regmap_async_complete_cb(struct regmap_async *async, int ret)
1836 {
1837 struct regmap *map = async->map;
1838 bool wake;
1839
1840 trace_regmap_async_io_complete(map->dev);
1841
1842 spin_lock(&map->async_lock);
1843 list_move(&async->list, &map->async_free);
1844 wake = list_empty(&map->async_list);
1845
1846 if (ret != 0)
1847 map->async_ret = ret;
1848
1849 spin_unlock(&map->async_lock);
1850
1851 if (wake)
1852 wake_up(&map->async_waitq);
1853 }
1854 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
1855
1856 static int regmap_async_is_done(struct regmap *map)
1857 {
1858 unsigned long flags;
1859 int ret;
1860
1861 spin_lock_irqsave(&map->async_lock, flags);
1862 ret = list_empty(&map->async_list);
1863 spin_unlock_irqrestore(&map->async_lock, flags);
1864
1865 return ret;
1866 }
1867
1868 /**
1869 * regmap_async_complete: Ensure all asynchronous I/O has completed.
1870 *
1871 * @map: Map to operate on.
1872 *
1873 * Blocks until any pending asynchronous I/O has completed. Returns
1874 * an error code for any failed I/O operations.
1875 */
1876 int regmap_async_complete(struct regmap *map)
1877 {
1878 unsigned long flags;
1879 int ret;
1880
1881 /* Nothing to do with no async support */
1882 if (!map->bus || !map->bus->async_write)
1883 return 0;
1884
1885 trace_regmap_async_complete_start(map->dev);
1886
1887 wait_event(map->async_waitq, regmap_async_is_done(map));
1888
1889 spin_lock_irqsave(&map->async_lock, flags);
1890 ret = map->async_ret;
1891 map->async_ret = 0;
1892 spin_unlock_irqrestore(&map->async_lock, flags);
1893
1894 trace_regmap_async_complete_done(map->dev);
1895
1896 return ret;
1897 }
1898 EXPORT_SYMBOL_GPL(regmap_async_complete);
1899
1900 /**
1901 * regmap_register_patch: Register and apply register updates to be applied
1902 * on device initialistion
1903 *
1904 * @map: Register map to apply updates to.
1905 * @regs: Values to update.
1906 * @num_regs: Number of entries in regs.
1907 *
1908 * Register a set of register updates to be applied to the device
1909 * whenever the device registers are synchronised with the cache and
1910 * apply them immediately. Typically this is used to apply
1911 * corrections to be applied to the device defaults on startup, such
1912 * as the updates some vendors provide to undocumented registers.
1913 */
1914 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1915 int num_regs)
1916 {
1917 struct reg_default *p;
1918 int i, ret;
1919 bool bypass;
1920
1921 map->lock(map->lock_arg);
1922
1923 bypass = map->cache_bypass;
1924
1925 map->cache_bypass = true;
1926
1927 /* Write out first; it's useful to apply even if we fail later. */
1928 for (i = 0; i < num_regs; i++) {
1929 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1930 if (ret != 0) {
1931 dev_err(map->dev, "Failed to write %x = %x: %d\n",
1932 regs[i].reg, regs[i].def, ret);
1933 goto out;
1934 }
1935 }
1936
1937 p = krealloc(map->patch,
1938 sizeof(struct reg_default) * (map->patch_regs + num_regs),
1939 GFP_KERNEL);
1940 if (p) {
1941 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
1942 map->patch = p;
1943 map->patch_regs += num_regs;
1944 } else {
1945 ret = -ENOMEM;
1946 }
1947
1948 out:
1949 map->cache_bypass = bypass;
1950
1951 map->unlock(map->lock_arg);
1952
1953 return ret;
1954 }
1955 EXPORT_SYMBOL_GPL(regmap_register_patch);
1956
1957 /*
1958 * regmap_get_val_bytes(): Report the size of a register value
1959 *
1960 * Report the size of a register value, mainly intended to for use by
1961 * generic infrastructure built on top of regmap.
1962 */
1963 int regmap_get_val_bytes(struct regmap *map)
1964 {
1965 if (map->format.format_write)
1966 return -EINVAL;
1967
1968 return map->format.val_bytes;
1969 }
1970 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1971
1972 static int __init regmap_initcall(void)
1973 {
1974 regmap_debugfs_initcall();
1975
1976 return 0;
1977 }
1978 postcore_initcall(regmap_initcall);
This page took 0.090948 seconds and 5 git commands to generate.