regmap: add regmap_fields_force_write()
[deliverable/linux.git] / drivers / base / regmap / regmap.c
1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
36 unsigned int mask, unsigned int val,
37 bool *change, bool force_write);
38
39 static int _regmap_bus_reg_read(void *context, unsigned int reg,
40 unsigned int *val);
41 static int _regmap_bus_read(void *context, unsigned int reg,
42 unsigned int *val);
43 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
44 unsigned int val);
45 static int _regmap_bus_reg_write(void *context, unsigned int reg,
46 unsigned int val);
47 static int _regmap_bus_raw_write(void *context, unsigned int reg,
48 unsigned int val);
49
50 bool regmap_reg_in_ranges(unsigned int reg,
51 const struct regmap_range *ranges,
52 unsigned int nranges)
53 {
54 const struct regmap_range *r;
55 int i;
56
57 for (i = 0, r = ranges; i < nranges; i++, r++)
58 if (regmap_reg_in_range(reg, r))
59 return true;
60 return false;
61 }
62 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
63
64 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
65 const struct regmap_access_table *table)
66 {
67 /* Check "no ranges" first */
68 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
69 return false;
70
71 /* In case zero "yes ranges" are supplied, any reg is OK */
72 if (!table->n_yes_ranges)
73 return true;
74
75 return regmap_reg_in_ranges(reg, table->yes_ranges,
76 table->n_yes_ranges);
77 }
78 EXPORT_SYMBOL_GPL(regmap_check_range_table);
79
80 bool regmap_writeable(struct regmap *map, unsigned int reg)
81 {
82 if (map->max_register && reg > map->max_register)
83 return false;
84
85 if (map->writeable_reg)
86 return map->writeable_reg(map->dev, reg);
87
88 if (map->wr_table)
89 return regmap_check_range_table(map, reg, map->wr_table);
90
91 return true;
92 }
93
94 bool regmap_readable(struct regmap *map, unsigned int reg)
95 {
96 if (map->max_register && reg > map->max_register)
97 return false;
98
99 if (map->format.format_write)
100 return false;
101
102 if (map->readable_reg)
103 return map->readable_reg(map->dev, reg);
104
105 if (map->rd_table)
106 return regmap_check_range_table(map, reg, map->rd_table);
107
108 return true;
109 }
110
111 bool regmap_volatile(struct regmap *map, unsigned int reg)
112 {
113 if (!map->format.format_write && !regmap_readable(map, reg))
114 return false;
115
116 if (map->volatile_reg)
117 return map->volatile_reg(map->dev, reg);
118
119 if (map->volatile_table)
120 return regmap_check_range_table(map, reg, map->volatile_table);
121
122 if (map->cache_ops)
123 return false;
124 else
125 return true;
126 }
127
128 bool regmap_precious(struct regmap *map, unsigned int reg)
129 {
130 if (!regmap_readable(map, reg))
131 return false;
132
133 if (map->precious_reg)
134 return map->precious_reg(map->dev, reg);
135
136 if (map->precious_table)
137 return regmap_check_range_table(map, reg, map->precious_table);
138
139 return false;
140 }
141
142 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
143 size_t num)
144 {
145 unsigned int i;
146
147 for (i = 0; i < num; i++)
148 if (!regmap_volatile(map, reg + i))
149 return false;
150
151 return true;
152 }
153
154 static void regmap_format_2_6_write(struct regmap *map,
155 unsigned int reg, unsigned int val)
156 {
157 u8 *out = map->work_buf;
158
159 *out = (reg << 6) | val;
160 }
161
162 static void regmap_format_4_12_write(struct regmap *map,
163 unsigned int reg, unsigned int val)
164 {
165 __be16 *out = map->work_buf;
166 *out = cpu_to_be16((reg << 12) | val);
167 }
168
169 static void regmap_format_7_9_write(struct regmap *map,
170 unsigned int reg, unsigned int val)
171 {
172 __be16 *out = map->work_buf;
173 *out = cpu_to_be16((reg << 9) | val);
174 }
175
176 static void regmap_format_10_14_write(struct regmap *map,
177 unsigned int reg, unsigned int val)
178 {
179 u8 *out = map->work_buf;
180
181 out[2] = val;
182 out[1] = (val >> 8) | (reg << 6);
183 out[0] = reg >> 2;
184 }
185
186 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187 {
188 u8 *b = buf;
189
190 b[0] = val << shift;
191 }
192
193 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194 {
195 __be16 *b = buf;
196
197 b[0] = cpu_to_be16(val << shift);
198 }
199
200 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
201 {
202 __le16 *b = buf;
203
204 b[0] = cpu_to_le16(val << shift);
205 }
206
207 static void regmap_format_16_native(void *buf, unsigned int val,
208 unsigned int shift)
209 {
210 *(u16 *)buf = val << shift;
211 }
212
213 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214 {
215 u8 *b = buf;
216
217 val <<= shift;
218
219 b[0] = val >> 16;
220 b[1] = val >> 8;
221 b[2] = val;
222 }
223
224 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225 {
226 __be32 *b = buf;
227
228 b[0] = cpu_to_be32(val << shift);
229 }
230
231 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
232 {
233 __le32 *b = buf;
234
235 b[0] = cpu_to_le32(val << shift);
236 }
237
238 static void regmap_format_32_native(void *buf, unsigned int val,
239 unsigned int shift)
240 {
241 *(u32 *)buf = val << shift;
242 }
243
244 static void regmap_parse_inplace_noop(void *buf)
245 {
246 }
247
248 static unsigned int regmap_parse_8(const void *buf)
249 {
250 const u8 *b = buf;
251
252 return b[0];
253 }
254
255 static unsigned int regmap_parse_16_be(const void *buf)
256 {
257 const __be16 *b = buf;
258
259 return be16_to_cpu(b[0]);
260 }
261
262 static unsigned int regmap_parse_16_le(const void *buf)
263 {
264 const __le16 *b = buf;
265
266 return le16_to_cpu(b[0]);
267 }
268
269 static void regmap_parse_16_be_inplace(void *buf)
270 {
271 __be16 *b = buf;
272
273 b[0] = be16_to_cpu(b[0]);
274 }
275
276 static void regmap_parse_16_le_inplace(void *buf)
277 {
278 __le16 *b = buf;
279
280 b[0] = le16_to_cpu(b[0]);
281 }
282
283 static unsigned int regmap_parse_16_native(const void *buf)
284 {
285 return *(u16 *)buf;
286 }
287
288 static unsigned int regmap_parse_24(const void *buf)
289 {
290 const u8 *b = buf;
291 unsigned int ret = b[2];
292 ret |= ((unsigned int)b[1]) << 8;
293 ret |= ((unsigned int)b[0]) << 16;
294
295 return ret;
296 }
297
298 static unsigned int regmap_parse_32_be(const void *buf)
299 {
300 const __be32 *b = buf;
301
302 return be32_to_cpu(b[0]);
303 }
304
305 static unsigned int regmap_parse_32_le(const void *buf)
306 {
307 const __le32 *b = buf;
308
309 return le32_to_cpu(b[0]);
310 }
311
312 static void regmap_parse_32_be_inplace(void *buf)
313 {
314 __be32 *b = buf;
315
316 b[0] = be32_to_cpu(b[0]);
317 }
318
319 static void regmap_parse_32_le_inplace(void *buf)
320 {
321 __le32 *b = buf;
322
323 b[0] = le32_to_cpu(b[0]);
324 }
325
326 static unsigned int regmap_parse_32_native(const void *buf)
327 {
328 return *(u32 *)buf;
329 }
330
331 static void regmap_lock_mutex(void *__map)
332 {
333 struct regmap *map = __map;
334 mutex_lock(&map->mutex);
335 }
336
337 static void regmap_unlock_mutex(void *__map)
338 {
339 struct regmap *map = __map;
340 mutex_unlock(&map->mutex);
341 }
342
343 static void regmap_lock_spinlock(void *__map)
344 __acquires(&map->spinlock)
345 {
346 struct regmap *map = __map;
347 unsigned long flags;
348
349 spin_lock_irqsave(&map->spinlock, flags);
350 map->spinlock_flags = flags;
351 }
352
353 static void regmap_unlock_spinlock(void *__map)
354 __releases(&map->spinlock)
355 {
356 struct regmap *map = __map;
357 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358 }
359
360 static void dev_get_regmap_release(struct device *dev, void *res)
361 {
362 /*
363 * We don't actually have anything to do here; the goal here
364 * is not to manage the regmap but to provide a simple way to
365 * get the regmap back given a struct device.
366 */
367 }
368
369 static bool _regmap_range_add(struct regmap *map,
370 struct regmap_range_node *data)
371 {
372 struct rb_root *root = &map->range_tree;
373 struct rb_node **new = &(root->rb_node), *parent = NULL;
374
375 while (*new) {
376 struct regmap_range_node *this =
377 container_of(*new, struct regmap_range_node, node);
378
379 parent = *new;
380 if (data->range_max < this->range_min)
381 new = &((*new)->rb_left);
382 else if (data->range_min > this->range_max)
383 new = &((*new)->rb_right);
384 else
385 return false;
386 }
387
388 rb_link_node(&data->node, parent, new);
389 rb_insert_color(&data->node, root);
390
391 return true;
392 }
393
394 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
395 unsigned int reg)
396 {
397 struct rb_node *node = map->range_tree.rb_node;
398
399 while (node) {
400 struct regmap_range_node *this =
401 container_of(node, struct regmap_range_node, node);
402
403 if (reg < this->range_min)
404 node = node->rb_left;
405 else if (reg > this->range_max)
406 node = node->rb_right;
407 else
408 return this;
409 }
410
411 return NULL;
412 }
413
414 static void regmap_range_exit(struct regmap *map)
415 {
416 struct rb_node *next;
417 struct regmap_range_node *range_node;
418
419 next = rb_first(&map->range_tree);
420 while (next) {
421 range_node = rb_entry(next, struct regmap_range_node, node);
422 next = rb_next(&range_node->node);
423 rb_erase(&range_node->node, &map->range_tree);
424 kfree(range_node);
425 }
426
427 kfree(map->selector_work_buf);
428 }
429
430 int regmap_attach_dev(struct device *dev, struct regmap *map,
431 const struct regmap_config *config)
432 {
433 struct regmap **m;
434
435 map->dev = dev;
436
437 regmap_debugfs_init(map, config->name);
438
439 /* Add a devres resource for dev_get_regmap() */
440 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
441 if (!m) {
442 regmap_debugfs_exit(map);
443 return -ENOMEM;
444 }
445 *m = map;
446 devres_add(dev, m);
447
448 return 0;
449 }
450 EXPORT_SYMBOL_GPL(regmap_attach_dev);
451
452 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
453 const struct regmap_config *config)
454 {
455 enum regmap_endian endian;
456
457 /* Retrieve the endianness specification from the regmap config */
458 endian = config->reg_format_endian;
459
460 /* If the regmap config specified a non-default value, use that */
461 if (endian != REGMAP_ENDIAN_DEFAULT)
462 return endian;
463
464 /* Retrieve the endianness specification from the bus config */
465 if (bus && bus->reg_format_endian_default)
466 endian = bus->reg_format_endian_default;
467
468 /* If the bus specified a non-default value, use that */
469 if (endian != REGMAP_ENDIAN_DEFAULT)
470 return endian;
471
472 /* Use this if no other value was found */
473 return REGMAP_ENDIAN_BIG;
474 }
475
476 enum regmap_endian regmap_get_val_endian(struct device *dev,
477 const struct regmap_bus *bus,
478 const struct regmap_config *config)
479 {
480 struct device_node *np;
481 enum regmap_endian endian;
482
483 /* Retrieve the endianness specification from the regmap config */
484 endian = config->val_format_endian;
485
486 /* If the regmap config specified a non-default value, use that */
487 if (endian != REGMAP_ENDIAN_DEFAULT)
488 return endian;
489
490 /* If the dev and dev->of_node exist try to get endianness from DT */
491 if (dev && dev->of_node) {
492 np = dev->of_node;
493
494 /* Parse the device's DT node for an endianness specification */
495 if (of_property_read_bool(np, "big-endian"))
496 endian = REGMAP_ENDIAN_BIG;
497 else if (of_property_read_bool(np, "little-endian"))
498 endian = REGMAP_ENDIAN_LITTLE;
499
500 /* If the endianness was specified in DT, use that */
501 if (endian != REGMAP_ENDIAN_DEFAULT)
502 return endian;
503 }
504
505 /* Retrieve the endianness specification from the bus config */
506 if (bus && bus->val_format_endian_default)
507 endian = bus->val_format_endian_default;
508
509 /* If the bus specified a non-default value, use that */
510 if (endian != REGMAP_ENDIAN_DEFAULT)
511 return endian;
512
513 /* Use this if no other value was found */
514 return REGMAP_ENDIAN_BIG;
515 }
516 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
517
518 /**
519 * regmap_init(): Initialise register map
520 *
521 * @dev: Device that will be interacted with
522 * @bus: Bus-specific callbacks to use with device
523 * @bus_context: Data passed to bus-specific callbacks
524 * @config: Configuration for register map
525 *
526 * The return value will be an ERR_PTR() on error or a valid pointer to
527 * a struct regmap. This function should generally not be called
528 * directly, it should be called by bus-specific init functions.
529 */
530 struct regmap *regmap_init(struct device *dev,
531 const struct regmap_bus *bus,
532 void *bus_context,
533 const struct regmap_config *config)
534 {
535 struct regmap *map;
536 int ret = -EINVAL;
537 enum regmap_endian reg_endian, val_endian;
538 int i, j;
539
540 if (!config)
541 goto err;
542
543 map = kzalloc(sizeof(*map), GFP_KERNEL);
544 if (map == NULL) {
545 ret = -ENOMEM;
546 goto err;
547 }
548
549 if (config->lock && config->unlock) {
550 map->lock = config->lock;
551 map->unlock = config->unlock;
552 map->lock_arg = config->lock_arg;
553 } else {
554 if ((bus && bus->fast_io) ||
555 config->fast_io) {
556 spin_lock_init(&map->spinlock);
557 map->lock = regmap_lock_spinlock;
558 map->unlock = regmap_unlock_spinlock;
559 } else {
560 mutex_init(&map->mutex);
561 map->lock = regmap_lock_mutex;
562 map->unlock = regmap_unlock_mutex;
563 }
564 map->lock_arg = map;
565 }
566 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
567 map->format.pad_bytes = config->pad_bits / 8;
568 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
569 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
570 config->val_bits + config->pad_bits, 8);
571 map->reg_shift = config->pad_bits % 8;
572 if (config->reg_stride)
573 map->reg_stride = config->reg_stride;
574 else
575 map->reg_stride = 1;
576 map->use_single_rw = config->use_single_rw;
577 map->can_multi_write = config->can_multi_write;
578 map->dev = dev;
579 map->bus = bus;
580 map->bus_context = bus_context;
581 map->max_register = config->max_register;
582 map->wr_table = config->wr_table;
583 map->rd_table = config->rd_table;
584 map->volatile_table = config->volatile_table;
585 map->precious_table = config->precious_table;
586 map->writeable_reg = config->writeable_reg;
587 map->readable_reg = config->readable_reg;
588 map->volatile_reg = config->volatile_reg;
589 map->precious_reg = config->precious_reg;
590 map->cache_type = config->cache_type;
591 map->name = config->name;
592
593 spin_lock_init(&map->async_lock);
594 INIT_LIST_HEAD(&map->async_list);
595 INIT_LIST_HEAD(&map->async_free);
596 init_waitqueue_head(&map->async_waitq);
597
598 if (config->read_flag_mask || config->write_flag_mask) {
599 map->read_flag_mask = config->read_flag_mask;
600 map->write_flag_mask = config->write_flag_mask;
601 } else if (bus) {
602 map->read_flag_mask = bus->read_flag_mask;
603 }
604
605 if (!bus) {
606 map->reg_read = config->reg_read;
607 map->reg_write = config->reg_write;
608
609 map->defer_caching = false;
610 goto skip_format_initialization;
611 } else if (!bus->read || !bus->write) {
612 map->reg_read = _regmap_bus_reg_read;
613 map->reg_write = _regmap_bus_reg_write;
614
615 map->defer_caching = false;
616 goto skip_format_initialization;
617 } else {
618 map->reg_read = _regmap_bus_read;
619 }
620
621 reg_endian = regmap_get_reg_endian(bus, config);
622 val_endian = regmap_get_val_endian(dev, bus, config);
623
624 switch (config->reg_bits + map->reg_shift) {
625 case 2:
626 switch (config->val_bits) {
627 case 6:
628 map->format.format_write = regmap_format_2_6_write;
629 break;
630 default:
631 goto err_map;
632 }
633 break;
634
635 case 4:
636 switch (config->val_bits) {
637 case 12:
638 map->format.format_write = regmap_format_4_12_write;
639 break;
640 default:
641 goto err_map;
642 }
643 break;
644
645 case 7:
646 switch (config->val_bits) {
647 case 9:
648 map->format.format_write = regmap_format_7_9_write;
649 break;
650 default:
651 goto err_map;
652 }
653 break;
654
655 case 10:
656 switch (config->val_bits) {
657 case 14:
658 map->format.format_write = regmap_format_10_14_write;
659 break;
660 default:
661 goto err_map;
662 }
663 break;
664
665 case 8:
666 map->format.format_reg = regmap_format_8;
667 break;
668
669 case 16:
670 switch (reg_endian) {
671 case REGMAP_ENDIAN_BIG:
672 map->format.format_reg = regmap_format_16_be;
673 break;
674 case REGMAP_ENDIAN_NATIVE:
675 map->format.format_reg = regmap_format_16_native;
676 break;
677 default:
678 goto err_map;
679 }
680 break;
681
682 case 24:
683 if (reg_endian != REGMAP_ENDIAN_BIG)
684 goto err_map;
685 map->format.format_reg = regmap_format_24;
686 break;
687
688 case 32:
689 switch (reg_endian) {
690 case REGMAP_ENDIAN_BIG:
691 map->format.format_reg = regmap_format_32_be;
692 break;
693 case REGMAP_ENDIAN_NATIVE:
694 map->format.format_reg = regmap_format_32_native;
695 break;
696 default:
697 goto err_map;
698 }
699 break;
700
701 default:
702 goto err_map;
703 }
704
705 if (val_endian == REGMAP_ENDIAN_NATIVE)
706 map->format.parse_inplace = regmap_parse_inplace_noop;
707
708 switch (config->val_bits) {
709 case 8:
710 map->format.format_val = regmap_format_8;
711 map->format.parse_val = regmap_parse_8;
712 map->format.parse_inplace = regmap_parse_inplace_noop;
713 break;
714 case 16:
715 switch (val_endian) {
716 case REGMAP_ENDIAN_BIG:
717 map->format.format_val = regmap_format_16_be;
718 map->format.parse_val = regmap_parse_16_be;
719 map->format.parse_inplace = regmap_parse_16_be_inplace;
720 break;
721 case REGMAP_ENDIAN_LITTLE:
722 map->format.format_val = regmap_format_16_le;
723 map->format.parse_val = regmap_parse_16_le;
724 map->format.parse_inplace = regmap_parse_16_le_inplace;
725 break;
726 case REGMAP_ENDIAN_NATIVE:
727 map->format.format_val = regmap_format_16_native;
728 map->format.parse_val = regmap_parse_16_native;
729 break;
730 default:
731 goto err_map;
732 }
733 break;
734 case 24:
735 if (val_endian != REGMAP_ENDIAN_BIG)
736 goto err_map;
737 map->format.format_val = regmap_format_24;
738 map->format.parse_val = regmap_parse_24;
739 break;
740 case 32:
741 switch (val_endian) {
742 case REGMAP_ENDIAN_BIG:
743 map->format.format_val = regmap_format_32_be;
744 map->format.parse_val = regmap_parse_32_be;
745 map->format.parse_inplace = regmap_parse_32_be_inplace;
746 break;
747 case REGMAP_ENDIAN_LITTLE:
748 map->format.format_val = regmap_format_32_le;
749 map->format.parse_val = regmap_parse_32_le;
750 map->format.parse_inplace = regmap_parse_32_le_inplace;
751 break;
752 case REGMAP_ENDIAN_NATIVE:
753 map->format.format_val = regmap_format_32_native;
754 map->format.parse_val = regmap_parse_32_native;
755 break;
756 default:
757 goto err_map;
758 }
759 break;
760 }
761
762 if (map->format.format_write) {
763 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
764 (val_endian != REGMAP_ENDIAN_BIG))
765 goto err_map;
766 map->use_single_rw = true;
767 }
768
769 if (!map->format.format_write &&
770 !(map->format.format_reg && map->format.format_val))
771 goto err_map;
772
773 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
774 if (map->work_buf == NULL) {
775 ret = -ENOMEM;
776 goto err_map;
777 }
778
779 if (map->format.format_write) {
780 map->defer_caching = false;
781 map->reg_write = _regmap_bus_formatted_write;
782 } else if (map->format.format_val) {
783 map->defer_caching = true;
784 map->reg_write = _regmap_bus_raw_write;
785 }
786
787 skip_format_initialization:
788
789 map->range_tree = RB_ROOT;
790 for (i = 0; i < config->num_ranges; i++) {
791 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
792 struct regmap_range_node *new;
793
794 /* Sanity check */
795 if (range_cfg->range_max < range_cfg->range_min) {
796 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
797 range_cfg->range_max, range_cfg->range_min);
798 goto err_range;
799 }
800
801 if (range_cfg->range_max > map->max_register) {
802 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
803 range_cfg->range_max, map->max_register);
804 goto err_range;
805 }
806
807 if (range_cfg->selector_reg > map->max_register) {
808 dev_err(map->dev,
809 "Invalid range %d: selector out of map\n", i);
810 goto err_range;
811 }
812
813 if (range_cfg->window_len == 0) {
814 dev_err(map->dev, "Invalid range %d: window_len 0\n",
815 i);
816 goto err_range;
817 }
818
819 /* Make sure, that this register range has no selector
820 or data window within its boundary */
821 for (j = 0; j < config->num_ranges; j++) {
822 unsigned sel_reg = config->ranges[j].selector_reg;
823 unsigned win_min = config->ranges[j].window_start;
824 unsigned win_max = win_min +
825 config->ranges[j].window_len - 1;
826
827 /* Allow data window inside its own virtual range */
828 if (j == i)
829 continue;
830
831 if (range_cfg->range_min <= sel_reg &&
832 sel_reg <= range_cfg->range_max) {
833 dev_err(map->dev,
834 "Range %d: selector for %d in window\n",
835 i, j);
836 goto err_range;
837 }
838
839 if (!(win_max < range_cfg->range_min ||
840 win_min > range_cfg->range_max)) {
841 dev_err(map->dev,
842 "Range %d: window for %d in window\n",
843 i, j);
844 goto err_range;
845 }
846 }
847
848 new = kzalloc(sizeof(*new), GFP_KERNEL);
849 if (new == NULL) {
850 ret = -ENOMEM;
851 goto err_range;
852 }
853
854 new->map = map;
855 new->name = range_cfg->name;
856 new->range_min = range_cfg->range_min;
857 new->range_max = range_cfg->range_max;
858 new->selector_reg = range_cfg->selector_reg;
859 new->selector_mask = range_cfg->selector_mask;
860 new->selector_shift = range_cfg->selector_shift;
861 new->window_start = range_cfg->window_start;
862 new->window_len = range_cfg->window_len;
863
864 if (!_regmap_range_add(map, new)) {
865 dev_err(map->dev, "Failed to add range %d\n", i);
866 kfree(new);
867 goto err_range;
868 }
869
870 if (map->selector_work_buf == NULL) {
871 map->selector_work_buf =
872 kzalloc(map->format.buf_size, GFP_KERNEL);
873 if (map->selector_work_buf == NULL) {
874 ret = -ENOMEM;
875 goto err_range;
876 }
877 }
878 }
879
880 ret = regcache_init(map, config);
881 if (ret != 0)
882 goto err_range;
883
884 if (dev) {
885 ret = regmap_attach_dev(dev, map, config);
886 if (ret != 0)
887 goto err_regcache;
888 }
889
890 return map;
891
892 err_regcache:
893 regcache_exit(map);
894 err_range:
895 regmap_range_exit(map);
896 kfree(map->work_buf);
897 err_map:
898 kfree(map);
899 err:
900 return ERR_PTR(ret);
901 }
902 EXPORT_SYMBOL_GPL(regmap_init);
903
904 static void devm_regmap_release(struct device *dev, void *res)
905 {
906 regmap_exit(*(struct regmap **)res);
907 }
908
909 /**
910 * devm_regmap_init(): Initialise managed register map
911 *
912 * @dev: Device that will be interacted with
913 * @bus: Bus-specific callbacks to use with device
914 * @bus_context: Data passed to bus-specific callbacks
915 * @config: Configuration for register map
916 *
917 * The return value will be an ERR_PTR() on error or a valid pointer
918 * to a struct regmap. This function should generally not be called
919 * directly, it should be called by bus-specific init functions. The
920 * map will be automatically freed by the device management code.
921 */
922 struct regmap *devm_regmap_init(struct device *dev,
923 const struct regmap_bus *bus,
924 void *bus_context,
925 const struct regmap_config *config)
926 {
927 struct regmap **ptr, *regmap;
928
929 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
930 if (!ptr)
931 return ERR_PTR(-ENOMEM);
932
933 regmap = regmap_init(dev, bus, bus_context, config);
934 if (!IS_ERR(regmap)) {
935 *ptr = regmap;
936 devres_add(dev, ptr);
937 } else {
938 devres_free(ptr);
939 }
940
941 return regmap;
942 }
943 EXPORT_SYMBOL_GPL(devm_regmap_init);
944
945 static void regmap_field_init(struct regmap_field *rm_field,
946 struct regmap *regmap, struct reg_field reg_field)
947 {
948 rm_field->regmap = regmap;
949 rm_field->reg = reg_field.reg;
950 rm_field->shift = reg_field.lsb;
951 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
952 rm_field->id_size = reg_field.id_size;
953 rm_field->id_offset = reg_field.id_offset;
954 }
955
956 /**
957 * devm_regmap_field_alloc(): Allocate and initialise a register field
958 * in a register map.
959 *
960 * @dev: Device that will be interacted with
961 * @regmap: regmap bank in which this register field is located.
962 * @reg_field: Register field with in the bank.
963 *
964 * The return value will be an ERR_PTR() on error or a valid pointer
965 * to a struct regmap_field. The regmap_field will be automatically freed
966 * by the device management code.
967 */
968 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
969 struct regmap *regmap, struct reg_field reg_field)
970 {
971 struct regmap_field *rm_field = devm_kzalloc(dev,
972 sizeof(*rm_field), GFP_KERNEL);
973 if (!rm_field)
974 return ERR_PTR(-ENOMEM);
975
976 regmap_field_init(rm_field, regmap, reg_field);
977
978 return rm_field;
979
980 }
981 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
982
983 /**
984 * devm_regmap_field_free(): Free register field allocated using
985 * devm_regmap_field_alloc. Usally drivers need not call this function,
986 * as the memory allocated via devm will be freed as per device-driver
987 * life-cyle.
988 *
989 * @dev: Device that will be interacted with
990 * @field: regmap field which should be freed.
991 */
992 void devm_regmap_field_free(struct device *dev,
993 struct regmap_field *field)
994 {
995 devm_kfree(dev, field);
996 }
997 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
998
999 /**
1000 * regmap_field_alloc(): Allocate and initialise a register field
1001 * in a register map.
1002 *
1003 * @regmap: regmap bank in which this register field is located.
1004 * @reg_field: Register field with in the bank.
1005 *
1006 * The return value will be an ERR_PTR() on error or a valid pointer
1007 * to a struct regmap_field. The regmap_field should be freed by the
1008 * user once its finished working with it using regmap_field_free().
1009 */
1010 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1011 struct reg_field reg_field)
1012 {
1013 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1014
1015 if (!rm_field)
1016 return ERR_PTR(-ENOMEM);
1017
1018 regmap_field_init(rm_field, regmap, reg_field);
1019
1020 return rm_field;
1021 }
1022 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1023
1024 /**
1025 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1026 *
1027 * @field: regmap field which should be freed.
1028 */
1029 void regmap_field_free(struct regmap_field *field)
1030 {
1031 kfree(field);
1032 }
1033 EXPORT_SYMBOL_GPL(regmap_field_free);
1034
1035 /**
1036 * regmap_reinit_cache(): Reinitialise the current register cache
1037 *
1038 * @map: Register map to operate on.
1039 * @config: New configuration. Only the cache data will be used.
1040 *
1041 * Discard any existing register cache for the map and initialize a
1042 * new cache. This can be used to restore the cache to defaults or to
1043 * update the cache configuration to reflect runtime discovery of the
1044 * hardware.
1045 *
1046 * No explicit locking is done here, the user needs to ensure that
1047 * this function will not race with other calls to regmap.
1048 */
1049 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1050 {
1051 regcache_exit(map);
1052 regmap_debugfs_exit(map);
1053
1054 map->max_register = config->max_register;
1055 map->writeable_reg = config->writeable_reg;
1056 map->readable_reg = config->readable_reg;
1057 map->volatile_reg = config->volatile_reg;
1058 map->precious_reg = config->precious_reg;
1059 map->cache_type = config->cache_type;
1060
1061 regmap_debugfs_init(map, config->name);
1062
1063 map->cache_bypass = false;
1064 map->cache_only = false;
1065
1066 return regcache_init(map, config);
1067 }
1068 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1069
1070 /**
1071 * regmap_exit(): Free a previously allocated register map
1072 */
1073 void regmap_exit(struct regmap *map)
1074 {
1075 struct regmap_async *async;
1076
1077 regcache_exit(map);
1078 regmap_debugfs_exit(map);
1079 regmap_range_exit(map);
1080 if (map->bus && map->bus->free_context)
1081 map->bus->free_context(map->bus_context);
1082 kfree(map->work_buf);
1083 while (!list_empty(&map->async_free)) {
1084 async = list_first_entry_or_null(&map->async_free,
1085 struct regmap_async,
1086 list);
1087 list_del(&async->list);
1088 kfree(async->work_buf);
1089 kfree(async);
1090 }
1091 kfree(map);
1092 }
1093 EXPORT_SYMBOL_GPL(regmap_exit);
1094
1095 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1096 {
1097 struct regmap **r = res;
1098 if (!r || !*r) {
1099 WARN_ON(!r || !*r);
1100 return 0;
1101 }
1102
1103 /* If the user didn't specify a name match any */
1104 if (data)
1105 return (*r)->name == data;
1106 else
1107 return 1;
1108 }
1109
1110 /**
1111 * dev_get_regmap(): Obtain the regmap (if any) for a device
1112 *
1113 * @dev: Device to retrieve the map for
1114 * @name: Optional name for the register map, usually NULL.
1115 *
1116 * Returns the regmap for the device if one is present, or NULL. If
1117 * name is specified then it must match the name specified when
1118 * registering the device, if it is NULL then the first regmap found
1119 * will be used. Devices with multiple register maps are very rare,
1120 * generic code should normally not need to specify a name.
1121 */
1122 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1123 {
1124 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1125 dev_get_regmap_match, (void *)name);
1126
1127 if (!r)
1128 return NULL;
1129 return *r;
1130 }
1131 EXPORT_SYMBOL_GPL(dev_get_regmap);
1132
1133 /**
1134 * regmap_get_device(): Obtain the device from a regmap
1135 *
1136 * @map: Register map to operate on.
1137 *
1138 * Returns the underlying device that the regmap has been created for.
1139 */
1140 struct device *regmap_get_device(struct regmap *map)
1141 {
1142 return map->dev;
1143 }
1144 EXPORT_SYMBOL_GPL(regmap_get_device);
1145
1146 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1147 struct regmap_range_node *range,
1148 unsigned int val_num)
1149 {
1150 void *orig_work_buf;
1151 unsigned int win_offset;
1152 unsigned int win_page;
1153 bool page_chg;
1154 int ret;
1155
1156 win_offset = (*reg - range->range_min) % range->window_len;
1157 win_page = (*reg - range->range_min) / range->window_len;
1158
1159 if (val_num > 1) {
1160 /* Bulk write shouldn't cross range boundary */
1161 if (*reg + val_num - 1 > range->range_max)
1162 return -EINVAL;
1163
1164 /* ... or single page boundary */
1165 if (val_num > range->window_len - win_offset)
1166 return -EINVAL;
1167 }
1168
1169 /* It is possible to have selector register inside data window.
1170 In that case, selector register is located on every page and
1171 it needs no page switching, when accessed alone. */
1172 if (val_num > 1 ||
1173 range->window_start + win_offset != range->selector_reg) {
1174 /* Use separate work_buf during page switching */
1175 orig_work_buf = map->work_buf;
1176 map->work_buf = map->selector_work_buf;
1177
1178 ret = _regmap_update_bits(map, range->selector_reg,
1179 range->selector_mask,
1180 win_page << range->selector_shift,
1181 &page_chg, false);
1182
1183 map->work_buf = orig_work_buf;
1184
1185 if (ret != 0)
1186 return ret;
1187 }
1188
1189 *reg = range->window_start + win_offset;
1190
1191 return 0;
1192 }
1193
1194 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1195 const void *val, size_t val_len)
1196 {
1197 struct regmap_range_node *range;
1198 unsigned long flags;
1199 u8 *u8 = map->work_buf;
1200 void *work_val = map->work_buf + map->format.reg_bytes +
1201 map->format.pad_bytes;
1202 void *buf;
1203 int ret = -ENOTSUPP;
1204 size_t len;
1205 int i;
1206
1207 WARN_ON(!map->bus);
1208
1209 /* Check for unwritable registers before we start */
1210 if (map->writeable_reg)
1211 for (i = 0; i < val_len / map->format.val_bytes; i++)
1212 if (!map->writeable_reg(map->dev,
1213 reg + (i * map->reg_stride)))
1214 return -EINVAL;
1215
1216 if (!map->cache_bypass && map->format.parse_val) {
1217 unsigned int ival;
1218 int val_bytes = map->format.val_bytes;
1219 for (i = 0; i < val_len / val_bytes; i++) {
1220 ival = map->format.parse_val(val + (i * val_bytes));
1221 ret = regcache_write(map, reg + (i * map->reg_stride),
1222 ival);
1223 if (ret) {
1224 dev_err(map->dev,
1225 "Error in caching of register: %x ret: %d\n",
1226 reg + i, ret);
1227 return ret;
1228 }
1229 }
1230 if (map->cache_only) {
1231 map->cache_dirty = true;
1232 return 0;
1233 }
1234 }
1235
1236 range = _regmap_range_lookup(map, reg);
1237 if (range) {
1238 int val_num = val_len / map->format.val_bytes;
1239 int win_offset = (reg - range->range_min) % range->window_len;
1240 int win_residue = range->window_len - win_offset;
1241
1242 /* If the write goes beyond the end of the window split it */
1243 while (val_num > win_residue) {
1244 dev_dbg(map->dev, "Writing window %d/%zu\n",
1245 win_residue, val_len / map->format.val_bytes);
1246 ret = _regmap_raw_write(map, reg, val, win_residue *
1247 map->format.val_bytes);
1248 if (ret != 0)
1249 return ret;
1250
1251 reg += win_residue;
1252 val_num -= win_residue;
1253 val += win_residue * map->format.val_bytes;
1254 val_len -= win_residue * map->format.val_bytes;
1255
1256 win_offset = (reg - range->range_min) %
1257 range->window_len;
1258 win_residue = range->window_len - win_offset;
1259 }
1260
1261 ret = _regmap_select_page(map, &reg, range, val_num);
1262 if (ret != 0)
1263 return ret;
1264 }
1265
1266 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1267
1268 u8[0] |= map->write_flag_mask;
1269
1270 /*
1271 * Essentially all I/O mechanisms will be faster with a single
1272 * buffer to write. Since register syncs often generate raw
1273 * writes of single registers optimise that case.
1274 */
1275 if (val != work_val && val_len == map->format.val_bytes) {
1276 memcpy(work_val, val, map->format.val_bytes);
1277 val = work_val;
1278 }
1279
1280 if (map->async && map->bus->async_write) {
1281 struct regmap_async *async;
1282
1283 trace_regmap_async_write_start(map, reg, val_len);
1284
1285 spin_lock_irqsave(&map->async_lock, flags);
1286 async = list_first_entry_or_null(&map->async_free,
1287 struct regmap_async,
1288 list);
1289 if (async)
1290 list_del(&async->list);
1291 spin_unlock_irqrestore(&map->async_lock, flags);
1292
1293 if (!async) {
1294 async = map->bus->async_alloc();
1295 if (!async)
1296 return -ENOMEM;
1297
1298 async->work_buf = kzalloc(map->format.buf_size,
1299 GFP_KERNEL | GFP_DMA);
1300 if (!async->work_buf) {
1301 kfree(async);
1302 return -ENOMEM;
1303 }
1304 }
1305
1306 async->map = map;
1307
1308 /* If the caller supplied the value we can use it safely. */
1309 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1310 map->format.reg_bytes + map->format.val_bytes);
1311
1312 spin_lock_irqsave(&map->async_lock, flags);
1313 list_add_tail(&async->list, &map->async_list);
1314 spin_unlock_irqrestore(&map->async_lock, flags);
1315
1316 if (val != work_val)
1317 ret = map->bus->async_write(map->bus_context,
1318 async->work_buf,
1319 map->format.reg_bytes +
1320 map->format.pad_bytes,
1321 val, val_len, async);
1322 else
1323 ret = map->bus->async_write(map->bus_context,
1324 async->work_buf,
1325 map->format.reg_bytes +
1326 map->format.pad_bytes +
1327 val_len, NULL, 0, async);
1328
1329 if (ret != 0) {
1330 dev_err(map->dev, "Failed to schedule write: %d\n",
1331 ret);
1332
1333 spin_lock_irqsave(&map->async_lock, flags);
1334 list_move(&async->list, &map->async_free);
1335 spin_unlock_irqrestore(&map->async_lock, flags);
1336 }
1337
1338 return ret;
1339 }
1340
1341 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1342
1343 /* If we're doing a single register write we can probably just
1344 * send the work_buf directly, otherwise try to do a gather
1345 * write.
1346 */
1347 if (val == work_val)
1348 ret = map->bus->write(map->bus_context, map->work_buf,
1349 map->format.reg_bytes +
1350 map->format.pad_bytes +
1351 val_len);
1352 else if (map->bus->gather_write)
1353 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1354 map->format.reg_bytes +
1355 map->format.pad_bytes,
1356 val, val_len);
1357
1358 /* If that didn't work fall back on linearising by hand. */
1359 if (ret == -ENOTSUPP) {
1360 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1361 buf = kzalloc(len, GFP_KERNEL);
1362 if (!buf)
1363 return -ENOMEM;
1364
1365 memcpy(buf, map->work_buf, map->format.reg_bytes);
1366 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1367 val, val_len);
1368 ret = map->bus->write(map->bus_context, buf, len);
1369
1370 kfree(buf);
1371 }
1372
1373 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1374
1375 return ret;
1376 }
1377
1378 /**
1379 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1380 *
1381 * @map: Map to check.
1382 */
1383 bool regmap_can_raw_write(struct regmap *map)
1384 {
1385 return map->bus && map->format.format_val && map->format.format_reg;
1386 }
1387 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1388
1389 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1390 unsigned int val)
1391 {
1392 int ret;
1393 struct regmap_range_node *range;
1394 struct regmap *map = context;
1395
1396 WARN_ON(!map->bus || !map->format.format_write);
1397
1398 range = _regmap_range_lookup(map, reg);
1399 if (range) {
1400 ret = _regmap_select_page(map, &reg, range, 1);
1401 if (ret != 0)
1402 return ret;
1403 }
1404
1405 map->format.format_write(map, reg, val);
1406
1407 trace_regmap_hw_write_start(map, reg, 1);
1408
1409 ret = map->bus->write(map->bus_context, map->work_buf,
1410 map->format.buf_size);
1411
1412 trace_regmap_hw_write_done(map, reg, 1);
1413
1414 return ret;
1415 }
1416
1417 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1418 unsigned int val)
1419 {
1420 struct regmap *map = context;
1421
1422 return map->bus->reg_write(map->bus_context, reg, val);
1423 }
1424
1425 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1426 unsigned int val)
1427 {
1428 struct regmap *map = context;
1429
1430 WARN_ON(!map->bus || !map->format.format_val);
1431
1432 map->format.format_val(map->work_buf + map->format.reg_bytes
1433 + map->format.pad_bytes, val, 0);
1434 return _regmap_raw_write(map, reg,
1435 map->work_buf +
1436 map->format.reg_bytes +
1437 map->format.pad_bytes,
1438 map->format.val_bytes);
1439 }
1440
1441 static inline void *_regmap_map_get_context(struct regmap *map)
1442 {
1443 return (map->bus) ? map : map->bus_context;
1444 }
1445
1446 int _regmap_write(struct regmap *map, unsigned int reg,
1447 unsigned int val)
1448 {
1449 int ret;
1450 void *context = _regmap_map_get_context(map);
1451
1452 if (!regmap_writeable(map, reg))
1453 return -EIO;
1454
1455 if (!map->cache_bypass && !map->defer_caching) {
1456 ret = regcache_write(map, reg, val);
1457 if (ret != 0)
1458 return ret;
1459 if (map->cache_only) {
1460 map->cache_dirty = true;
1461 return 0;
1462 }
1463 }
1464
1465 #ifdef LOG_DEVICE
1466 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1467 dev_info(map->dev, "%x <= %x\n", reg, val);
1468 #endif
1469
1470 trace_regmap_reg_write(map, reg, val);
1471
1472 return map->reg_write(context, reg, val);
1473 }
1474
1475 /**
1476 * regmap_write(): Write a value to a single register
1477 *
1478 * @map: Register map to write to
1479 * @reg: Register to write to
1480 * @val: Value to be written
1481 *
1482 * A value of zero will be returned on success, a negative errno will
1483 * be returned in error cases.
1484 */
1485 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1486 {
1487 int ret;
1488
1489 if (reg % map->reg_stride)
1490 return -EINVAL;
1491
1492 map->lock(map->lock_arg);
1493
1494 ret = _regmap_write(map, reg, val);
1495
1496 map->unlock(map->lock_arg);
1497
1498 return ret;
1499 }
1500 EXPORT_SYMBOL_GPL(regmap_write);
1501
1502 /**
1503 * regmap_write_async(): Write a value to a single register asynchronously
1504 *
1505 * @map: Register map to write to
1506 * @reg: Register to write to
1507 * @val: Value to be written
1508 *
1509 * A value of zero will be returned on success, a negative errno will
1510 * be returned in error cases.
1511 */
1512 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1513 {
1514 int ret;
1515
1516 if (reg % map->reg_stride)
1517 return -EINVAL;
1518
1519 map->lock(map->lock_arg);
1520
1521 map->async = true;
1522
1523 ret = _regmap_write(map, reg, val);
1524
1525 map->async = false;
1526
1527 map->unlock(map->lock_arg);
1528
1529 return ret;
1530 }
1531 EXPORT_SYMBOL_GPL(regmap_write_async);
1532
1533 /**
1534 * regmap_raw_write(): Write raw values to one or more registers
1535 *
1536 * @map: Register map to write to
1537 * @reg: Initial register to write to
1538 * @val: Block of data to be written, laid out for direct transmission to the
1539 * device
1540 * @val_len: Length of data pointed to by val.
1541 *
1542 * This function is intended to be used for things like firmware
1543 * download where a large block of data needs to be transferred to the
1544 * device. No formatting will be done on the data provided.
1545 *
1546 * A value of zero will be returned on success, a negative errno will
1547 * be returned in error cases.
1548 */
1549 int regmap_raw_write(struct regmap *map, unsigned int reg,
1550 const void *val, size_t val_len)
1551 {
1552 int ret;
1553
1554 if (!regmap_can_raw_write(map))
1555 return -EINVAL;
1556 if (val_len % map->format.val_bytes)
1557 return -EINVAL;
1558
1559 map->lock(map->lock_arg);
1560
1561 ret = _regmap_raw_write(map, reg, val, val_len);
1562
1563 map->unlock(map->lock_arg);
1564
1565 return ret;
1566 }
1567 EXPORT_SYMBOL_GPL(regmap_raw_write);
1568
1569 /**
1570 * regmap_field_write(): Write a value to a single register field
1571 *
1572 * @field: Register field to write to
1573 * @val: Value to be written
1574 *
1575 * A value of zero will be returned on success, a negative errno will
1576 * be returned in error cases.
1577 */
1578 int regmap_field_write(struct regmap_field *field, unsigned int val)
1579 {
1580 return regmap_update_bits(field->regmap, field->reg,
1581 field->mask, val << field->shift);
1582 }
1583 EXPORT_SYMBOL_GPL(regmap_field_write);
1584
1585 /**
1586 * regmap_field_update_bits(): Perform a read/modify/write cycle
1587 * on the register field
1588 *
1589 * @field: Register field to write to
1590 * @mask: Bitmask to change
1591 * @val: Value to be written
1592 *
1593 * A value of zero will be returned on success, a negative errno will
1594 * be returned in error cases.
1595 */
1596 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1597 {
1598 mask = (mask << field->shift) & field->mask;
1599
1600 return regmap_update_bits(field->regmap, field->reg,
1601 mask, val << field->shift);
1602 }
1603 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1604
1605 /**
1606 * regmap_fields_write(): Write a value to a single register field with port ID
1607 *
1608 * @field: Register field to write to
1609 * @id: port ID
1610 * @val: Value to be written
1611 *
1612 * A value of zero will be returned on success, a negative errno will
1613 * be returned in error cases.
1614 */
1615 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1616 unsigned int val)
1617 {
1618 if (id >= field->id_size)
1619 return -EINVAL;
1620
1621 return regmap_update_bits(field->regmap,
1622 field->reg + (field->id_offset * id),
1623 field->mask, val << field->shift);
1624 }
1625 EXPORT_SYMBOL_GPL(regmap_fields_write);
1626
1627 int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1628 unsigned int val)
1629 {
1630 if (id >= field->id_size)
1631 return -EINVAL;
1632
1633 return regmap_write_bits(field->regmap,
1634 field->reg + (field->id_offset * id),
1635 field->mask, val << field->shift);
1636 }
1637 EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1638
1639 /**
1640 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1641 * on the register field
1642 *
1643 * @field: Register field to write to
1644 * @id: port ID
1645 * @mask: Bitmask to change
1646 * @val: Value to be written
1647 *
1648 * A value of zero will be returned on success, a negative errno will
1649 * be returned in error cases.
1650 */
1651 int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1652 unsigned int mask, unsigned int val)
1653 {
1654 if (id >= field->id_size)
1655 return -EINVAL;
1656
1657 mask = (mask << field->shift) & field->mask;
1658
1659 return regmap_update_bits(field->regmap,
1660 field->reg + (field->id_offset * id),
1661 mask, val << field->shift);
1662 }
1663 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1664
1665 /*
1666 * regmap_bulk_write(): Write multiple registers to the device
1667 *
1668 * @map: Register map to write to
1669 * @reg: First register to be write from
1670 * @val: Block of data to be written, in native register size for device
1671 * @val_count: Number of registers to write
1672 *
1673 * This function is intended to be used for writing a large block of
1674 * data to the device either in single transfer or multiple transfer.
1675 *
1676 * A value of zero will be returned on success, a negative errno will
1677 * be returned in error cases.
1678 */
1679 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1680 size_t val_count)
1681 {
1682 int ret = 0, i;
1683 size_t val_bytes = map->format.val_bytes;
1684
1685 if (map->bus && !map->format.parse_inplace)
1686 return -EINVAL;
1687 if (reg % map->reg_stride)
1688 return -EINVAL;
1689
1690 /*
1691 * Some devices don't support bulk write, for
1692 * them we have a series of single write operations.
1693 */
1694 if (!map->bus || map->use_single_rw) {
1695 map->lock(map->lock_arg);
1696 for (i = 0; i < val_count; i++) {
1697 unsigned int ival;
1698
1699 switch (val_bytes) {
1700 case 1:
1701 ival = *(u8 *)(val + (i * val_bytes));
1702 break;
1703 case 2:
1704 ival = *(u16 *)(val + (i * val_bytes));
1705 break;
1706 case 4:
1707 ival = *(u32 *)(val + (i * val_bytes));
1708 break;
1709 #ifdef CONFIG_64BIT
1710 case 8:
1711 ival = *(u64 *)(val + (i * val_bytes));
1712 break;
1713 #endif
1714 default:
1715 ret = -EINVAL;
1716 goto out;
1717 }
1718
1719 ret = _regmap_write(map, reg + (i * map->reg_stride),
1720 ival);
1721 if (ret != 0)
1722 goto out;
1723 }
1724 out:
1725 map->unlock(map->lock_arg);
1726 } else {
1727 void *wval;
1728
1729 if (!val_count)
1730 return -EINVAL;
1731
1732 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1733 if (!wval) {
1734 dev_err(map->dev, "Error in memory allocation\n");
1735 return -ENOMEM;
1736 }
1737 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1738 map->format.parse_inplace(wval + i);
1739
1740 map->lock(map->lock_arg);
1741 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1742 map->unlock(map->lock_arg);
1743
1744 kfree(wval);
1745 }
1746 return ret;
1747 }
1748 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1749
1750 /*
1751 * _regmap_raw_multi_reg_write()
1752 *
1753 * the (register,newvalue) pairs in regs have not been formatted, but
1754 * they are all in the same page and have been changed to being page
1755 * relative. The page register has been written if that was neccessary.
1756 */
1757 static int _regmap_raw_multi_reg_write(struct regmap *map,
1758 const struct reg_default *regs,
1759 size_t num_regs)
1760 {
1761 int ret;
1762 void *buf;
1763 int i;
1764 u8 *u8;
1765 size_t val_bytes = map->format.val_bytes;
1766 size_t reg_bytes = map->format.reg_bytes;
1767 size_t pad_bytes = map->format.pad_bytes;
1768 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1769 size_t len = pair_size * num_regs;
1770
1771 if (!len)
1772 return -EINVAL;
1773
1774 buf = kzalloc(len, GFP_KERNEL);
1775 if (!buf)
1776 return -ENOMEM;
1777
1778 /* We have to linearise by hand. */
1779
1780 u8 = buf;
1781
1782 for (i = 0; i < num_regs; i++) {
1783 int reg = regs[i].reg;
1784 int val = regs[i].def;
1785 trace_regmap_hw_write_start(map, reg, 1);
1786 map->format.format_reg(u8, reg, map->reg_shift);
1787 u8 += reg_bytes + pad_bytes;
1788 map->format.format_val(u8, val, 0);
1789 u8 += val_bytes;
1790 }
1791 u8 = buf;
1792 *u8 |= map->write_flag_mask;
1793
1794 ret = map->bus->write(map->bus_context, buf, len);
1795
1796 kfree(buf);
1797
1798 for (i = 0; i < num_regs; i++) {
1799 int reg = regs[i].reg;
1800 trace_regmap_hw_write_done(map, reg, 1);
1801 }
1802 return ret;
1803 }
1804
1805 static unsigned int _regmap_register_page(struct regmap *map,
1806 unsigned int reg,
1807 struct regmap_range_node *range)
1808 {
1809 unsigned int win_page = (reg - range->range_min) / range->window_len;
1810
1811 return win_page;
1812 }
1813
1814 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1815 struct reg_default *regs,
1816 size_t num_regs)
1817 {
1818 int ret;
1819 int i, n;
1820 struct reg_default *base;
1821 unsigned int this_page = 0;
1822 /*
1823 * the set of registers are not neccessarily in order, but
1824 * since the order of write must be preserved this algorithm
1825 * chops the set each time the page changes
1826 */
1827 base = regs;
1828 for (i = 0, n = 0; i < num_regs; i++, n++) {
1829 unsigned int reg = regs[i].reg;
1830 struct regmap_range_node *range;
1831
1832 range = _regmap_range_lookup(map, reg);
1833 if (range) {
1834 unsigned int win_page = _regmap_register_page(map, reg,
1835 range);
1836
1837 if (i == 0)
1838 this_page = win_page;
1839 if (win_page != this_page) {
1840 this_page = win_page;
1841 ret = _regmap_raw_multi_reg_write(map, base, n);
1842 if (ret != 0)
1843 return ret;
1844 base += n;
1845 n = 0;
1846 }
1847 ret = _regmap_select_page(map, &base[n].reg, range, 1);
1848 if (ret != 0)
1849 return ret;
1850 }
1851 }
1852 if (n > 0)
1853 return _regmap_raw_multi_reg_write(map, base, n);
1854 return 0;
1855 }
1856
1857 static int _regmap_multi_reg_write(struct regmap *map,
1858 const struct reg_default *regs,
1859 size_t num_regs)
1860 {
1861 int i;
1862 int ret;
1863
1864 if (!map->can_multi_write) {
1865 for (i = 0; i < num_regs; i++) {
1866 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1867 if (ret != 0)
1868 return ret;
1869 }
1870 return 0;
1871 }
1872
1873 if (!map->format.parse_inplace)
1874 return -EINVAL;
1875
1876 if (map->writeable_reg)
1877 for (i = 0; i < num_regs; i++) {
1878 int reg = regs[i].reg;
1879 if (!map->writeable_reg(map->dev, reg))
1880 return -EINVAL;
1881 if (reg % map->reg_stride)
1882 return -EINVAL;
1883 }
1884
1885 if (!map->cache_bypass) {
1886 for (i = 0; i < num_regs; i++) {
1887 unsigned int val = regs[i].def;
1888 unsigned int reg = regs[i].reg;
1889 ret = regcache_write(map, reg, val);
1890 if (ret) {
1891 dev_err(map->dev,
1892 "Error in caching of register: %x ret: %d\n",
1893 reg, ret);
1894 return ret;
1895 }
1896 }
1897 if (map->cache_only) {
1898 map->cache_dirty = true;
1899 return 0;
1900 }
1901 }
1902
1903 WARN_ON(!map->bus);
1904
1905 for (i = 0; i < num_regs; i++) {
1906 unsigned int reg = regs[i].reg;
1907 struct regmap_range_node *range;
1908 range = _regmap_range_lookup(map, reg);
1909 if (range) {
1910 size_t len = sizeof(struct reg_default)*num_regs;
1911 struct reg_default *base = kmemdup(regs, len,
1912 GFP_KERNEL);
1913 if (!base)
1914 return -ENOMEM;
1915 ret = _regmap_range_multi_paged_reg_write(map, base,
1916 num_regs);
1917 kfree(base);
1918
1919 return ret;
1920 }
1921 }
1922 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1923 }
1924
1925 /*
1926 * regmap_multi_reg_write(): Write multiple registers to the device
1927 *
1928 * where the set of register,value pairs are supplied in any order,
1929 * possibly not all in a single range.
1930 *
1931 * @map: Register map to write to
1932 * @regs: Array of structures containing register,value to be written
1933 * @num_regs: Number of registers to write
1934 *
1935 * The 'normal' block write mode will send ultimately send data on the
1936 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1937 * addressed. However, this alternative block multi write mode will send
1938 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1939 * must of course support the mode.
1940 *
1941 * A value of zero will be returned on success, a negative errno will be
1942 * returned in error cases.
1943 */
1944 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1945 int num_regs)
1946 {
1947 int ret;
1948
1949 map->lock(map->lock_arg);
1950
1951 ret = _regmap_multi_reg_write(map, regs, num_regs);
1952
1953 map->unlock(map->lock_arg);
1954
1955 return ret;
1956 }
1957 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1958
1959 /*
1960 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1961 * device but not the cache
1962 *
1963 * where the set of register are supplied in any order
1964 *
1965 * @map: Register map to write to
1966 * @regs: Array of structures containing register,value to be written
1967 * @num_regs: Number of registers to write
1968 *
1969 * This function is intended to be used for writing a large block of data
1970 * atomically to the device in single transfer for those I2C client devices
1971 * that implement this alternative block write mode.
1972 *
1973 * A value of zero will be returned on success, a negative errno will
1974 * be returned in error cases.
1975 */
1976 int regmap_multi_reg_write_bypassed(struct regmap *map,
1977 const struct reg_default *regs,
1978 int num_regs)
1979 {
1980 int ret;
1981 bool bypass;
1982
1983 map->lock(map->lock_arg);
1984
1985 bypass = map->cache_bypass;
1986 map->cache_bypass = true;
1987
1988 ret = _regmap_multi_reg_write(map, regs, num_regs);
1989
1990 map->cache_bypass = bypass;
1991
1992 map->unlock(map->lock_arg);
1993
1994 return ret;
1995 }
1996 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1997
1998 /**
1999 * regmap_raw_write_async(): Write raw values to one or more registers
2000 * asynchronously
2001 *
2002 * @map: Register map to write to
2003 * @reg: Initial register to write to
2004 * @val: Block of data to be written, laid out for direct transmission to the
2005 * device. Must be valid until regmap_async_complete() is called.
2006 * @val_len: Length of data pointed to by val.
2007 *
2008 * This function is intended to be used for things like firmware
2009 * download where a large block of data needs to be transferred to the
2010 * device. No formatting will be done on the data provided.
2011 *
2012 * If supported by the underlying bus the write will be scheduled
2013 * asynchronously, helping maximise I/O speed on higher speed buses
2014 * like SPI. regmap_async_complete() can be called to ensure that all
2015 * asynchrnous writes have been completed.
2016 *
2017 * A value of zero will be returned on success, a negative errno will
2018 * be returned in error cases.
2019 */
2020 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2021 const void *val, size_t val_len)
2022 {
2023 int ret;
2024
2025 if (val_len % map->format.val_bytes)
2026 return -EINVAL;
2027 if (reg % map->reg_stride)
2028 return -EINVAL;
2029
2030 map->lock(map->lock_arg);
2031
2032 map->async = true;
2033
2034 ret = _regmap_raw_write(map, reg, val, val_len);
2035
2036 map->async = false;
2037
2038 map->unlock(map->lock_arg);
2039
2040 return ret;
2041 }
2042 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2043
2044 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2045 unsigned int val_len)
2046 {
2047 struct regmap_range_node *range;
2048 u8 *u8 = map->work_buf;
2049 int ret;
2050
2051 WARN_ON(!map->bus);
2052
2053 range = _regmap_range_lookup(map, reg);
2054 if (range) {
2055 ret = _regmap_select_page(map, &reg, range,
2056 val_len / map->format.val_bytes);
2057 if (ret != 0)
2058 return ret;
2059 }
2060
2061 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2062
2063 /*
2064 * Some buses or devices flag reads by setting the high bits in the
2065 * register addresss; since it's always the high bits for all
2066 * current formats we can do this here rather than in
2067 * formatting. This may break if we get interesting formats.
2068 */
2069 u8[0] |= map->read_flag_mask;
2070
2071 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2072
2073 ret = map->bus->read(map->bus_context, map->work_buf,
2074 map->format.reg_bytes + map->format.pad_bytes,
2075 val, val_len);
2076
2077 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2078
2079 return ret;
2080 }
2081
2082 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2083 unsigned int *val)
2084 {
2085 struct regmap *map = context;
2086
2087 return map->bus->reg_read(map->bus_context, reg, val);
2088 }
2089
2090 static int _regmap_bus_read(void *context, unsigned int reg,
2091 unsigned int *val)
2092 {
2093 int ret;
2094 struct regmap *map = context;
2095
2096 if (!map->format.parse_val)
2097 return -EINVAL;
2098
2099 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2100 if (ret == 0)
2101 *val = map->format.parse_val(map->work_buf);
2102
2103 return ret;
2104 }
2105
2106 static int _regmap_read(struct regmap *map, unsigned int reg,
2107 unsigned int *val)
2108 {
2109 int ret;
2110 void *context = _regmap_map_get_context(map);
2111
2112 WARN_ON(!map->reg_read);
2113
2114 if (!map->cache_bypass) {
2115 ret = regcache_read(map, reg, val);
2116 if (ret == 0)
2117 return 0;
2118 }
2119
2120 if (map->cache_only)
2121 return -EBUSY;
2122
2123 if (!regmap_readable(map, reg))
2124 return -EIO;
2125
2126 ret = map->reg_read(context, reg, val);
2127 if (ret == 0) {
2128 #ifdef LOG_DEVICE
2129 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2130 dev_info(map->dev, "%x => %x\n", reg, *val);
2131 #endif
2132
2133 trace_regmap_reg_read(map, reg, *val);
2134
2135 if (!map->cache_bypass)
2136 regcache_write(map, reg, *val);
2137 }
2138
2139 return ret;
2140 }
2141
2142 /**
2143 * regmap_read(): Read a value from a single register
2144 *
2145 * @map: Register map to read from
2146 * @reg: Register to be read from
2147 * @val: Pointer to store read value
2148 *
2149 * A value of zero will be returned on success, a negative errno will
2150 * be returned in error cases.
2151 */
2152 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2153 {
2154 int ret;
2155
2156 if (reg % map->reg_stride)
2157 return -EINVAL;
2158
2159 map->lock(map->lock_arg);
2160
2161 ret = _regmap_read(map, reg, val);
2162
2163 map->unlock(map->lock_arg);
2164
2165 return ret;
2166 }
2167 EXPORT_SYMBOL_GPL(regmap_read);
2168
2169 /**
2170 * regmap_raw_read(): Read raw data from the device
2171 *
2172 * @map: Register map to read from
2173 * @reg: First register to be read from
2174 * @val: Pointer to store read value
2175 * @val_len: Size of data to read
2176 *
2177 * A value of zero will be returned on success, a negative errno will
2178 * be returned in error cases.
2179 */
2180 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2181 size_t val_len)
2182 {
2183 size_t val_bytes = map->format.val_bytes;
2184 size_t val_count = val_len / val_bytes;
2185 unsigned int v;
2186 int ret, i;
2187
2188 if (!map->bus)
2189 return -EINVAL;
2190 if (val_len % map->format.val_bytes)
2191 return -EINVAL;
2192 if (reg % map->reg_stride)
2193 return -EINVAL;
2194
2195 map->lock(map->lock_arg);
2196
2197 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2198 map->cache_type == REGCACHE_NONE) {
2199 /* Physical block read if there's no cache involved */
2200 ret = _regmap_raw_read(map, reg, val, val_len);
2201
2202 } else {
2203 /* Otherwise go word by word for the cache; should be low
2204 * cost as we expect to hit the cache.
2205 */
2206 for (i = 0; i < val_count; i++) {
2207 ret = _regmap_read(map, reg + (i * map->reg_stride),
2208 &v);
2209 if (ret != 0)
2210 goto out;
2211
2212 map->format.format_val(val + (i * val_bytes), v, 0);
2213 }
2214 }
2215
2216 out:
2217 map->unlock(map->lock_arg);
2218
2219 return ret;
2220 }
2221 EXPORT_SYMBOL_GPL(regmap_raw_read);
2222
2223 /**
2224 * regmap_field_read(): Read a value to a single register field
2225 *
2226 * @field: Register field to read from
2227 * @val: Pointer to store read value
2228 *
2229 * A value of zero will be returned on success, a negative errno will
2230 * be returned in error cases.
2231 */
2232 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2233 {
2234 int ret;
2235 unsigned int reg_val;
2236 ret = regmap_read(field->regmap, field->reg, &reg_val);
2237 if (ret != 0)
2238 return ret;
2239
2240 reg_val &= field->mask;
2241 reg_val >>= field->shift;
2242 *val = reg_val;
2243
2244 return ret;
2245 }
2246 EXPORT_SYMBOL_GPL(regmap_field_read);
2247
2248 /**
2249 * regmap_fields_read(): Read a value to a single register field with port ID
2250 *
2251 * @field: Register field to read from
2252 * @id: port ID
2253 * @val: Pointer to store read value
2254 *
2255 * A value of zero will be returned on success, a negative errno will
2256 * be returned in error cases.
2257 */
2258 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2259 unsigned int *val)
2260 {
2261 int ret;
2262 unsigned int reg_val;
2263
2264 if (id >= field->id_size)
2265 return -EINVAL;
2266
2267 ret = regmap_read(field->regmap,
2268 field->reg + (field->id_offset * id),
2269 &reg_val);
2270 if (ret != 0)
2271 return ret;
2272
2273 reg_val &= field->mask;
2274 reg_val >>= field->shift;
2275 *val = reg_val;
2276
2277 return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(regmap_fields_read);
2280
2281 /**
2282 * regmap_bulk_read(): Read multiple registers from the device
2283 *
2284 * @map: Register map to read from
2285 * @reg: First register to be read from
2286 * @val: Pointer to store read value, in native register size for device
2287 * @val_count: Number of registers to read
2288 *
2289 * A value of zero will be returned on success, a negative errno will
2290 * be returned in error cases.
2291 */
2292 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2293 size_t val_count)
2294 {
2295 int ret, i;
2296 size_t val_bytes = map->format.val_bytes;
2297 bool vol = regmap_volatile_range(map, reg, val_count);
2298
2299 if (reg % map->reg_stride)
2300 return -EINVAL;
2301
2302 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2303 /*
2304 * Some devices does not support bulk read, for
2305 * them we have a series of single read operations.
2306 */
2307 if (map->use_single_rw) {
2308 for (i = 0; i < val_count; i++) {
2309 ret = regmap_raw_read(map,
2310 reg + (i * map->reg_stride),
2311 val + (i * val_bytes),
2312 val_bytes);
2313 if (ret != 0)
2314 return ret;
2315 }
2316 } else {
2317 ret = regmap_raw_read(map, reg, val,
2318 val_bytes * val_count);
2319 if (ret != 0)
2320 return ret;
2321 }
2322
2323 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2324 map->format.parse_inplace(val + i);
2325 } else {
2326 for (i = 0; i < val_count; i++) {
2327 unsigned int ival;
2328 ret = regmap_read(map, reg + (i * map->reg_stride),
2329 &ival);
2330 if (ret != 0)
2331 return ret;
2332 map->format.format_val(val + (i * val_bytes), ival, 0);
2333 }
2334 }
2335
2336 return 0;
2337 }
2338 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2339
2340 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2341 unsigned int mask, unsigned int val,
2342 bool *change, bool force_write)
2343 {
2344 int ret;
2345 unsigned int tmp, orig;
2346
2347 ret = _regmap_read(map, reg, &orig);
2348 if (ret != 0)
2349 return ret;
2350
2351 tmp = orig & ~mask;
2352 tmp |= val & mask;
2353
2354 if (force_write || (tmp != orig)) {
2355 ret = _regmap_write(map, reg, tmp);
2356 if (change)
2357 *change = true;
2358 } else {
2359 if (change)
2360 *change = false;
2361 }
2362
2363 return ret;
2364 }
2365
2366 /**
2367 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2368 *
2369 * @map: Register map to update
2370 * @reg: Register to update
2371 * @mask: Bitmask to change
2372 * @val: New value for bitmask
2373 *
2374 * Returns zero for success, a negative number on error.
2375 */
2376 int regmap_update_bits(struct regmap *map, unsigned int reg,
2377 unsigned int mask, unsigned int val)
2378 {
2379 int ret;
2380
2381 map->lock(map->lock_arg);
2382 ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2383 map->unlock(map->lock_arg);
2384
2385 return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(regmap_update_bits);
2388
2389 /**
2390 * regmap_write_bits: Perform a read/modify/write cycle on the register map
2391 *
2392 * @map: Register map to update
2393 * @reg: Register to update
2394 * @mask: Bitmask to change
2395 * @val: New value for bitmask
2396 *
2397 * Returns zero for success, a negative number on error.
2398 */
2399 int regmap_write_bits(struct regmap *map, unsigned int reg,
2400 unsigned int mask, unsigned int val)
2401 {
2402 int ret;
2403
2404 map->lock(map->lock_arg);
2405 ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2406 map->unlock(map->lock_arg);
2407
2408 return ret;
2409 }
2410 EXPORT_SYMBOL_GPL(regmap_write_bits);
2411
2412 /**
2413 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2414 * map asynchronously
2415 *
2416 * @map: Register map to update
2417 * @reg: Register to update
2418 * @mask: Bitmask to change
2419 * @val: New value for bitmask
2420 *
2421 * With most buses the read must be done synchronously so this is most
2422 * useful for devices with a cache which do not need to interact with
2423 * the hardware to determine the current register value.
2424 *
2425 * Returns zero for success, a negative number on error.
2426 */
2427 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2428 unsigned int mask, unsigned int val)
2429 {
2430 int ret;
2431
2432 map->lock(map->lock_arg);
2433
2434 map->async = true;
2435
2436 ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2437
2438 map->async = false;
2439
2440 map->unlock(map->lock_arg);
2441
2442 return ret;
2443 }
2444 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2445
2446 /**
2447 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2448 * register map and report if updated
2449 *
2450 * @map: Register map to update
2451 * @reg: Register to update
2452 * @mask: Bitmask to change
2453 * @val: New value for bitmask
2454 * @change: Boolean indicating if a write was done
2455 *
2456 * Returns zero for success, a negative number on error.
2457 */
2458 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2459 unsigned int mask, unsigned int val,
2460 bool *change)
2461 {
2462 int ret;
2463
2464 map->lock(map->lock_arg);
2465 ret = _regmap_update_bits(map, reg, mask, val, change, false);
2466 map->unlock(map->lock_arg);
2467 return ret;
2468 }
2469 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2470
2471 /**
2472 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2473 * register map asynchronously and report if
2474 * updated
2475 *
2476 * @map: Register map to update
2477 * @reg: Register to update
2478 * @mask: Bitmask to change
2479 * @val: New value for bitmask
2480 * @change: Boolean indicating if a write was done
2481 *
2482 * With most buses the read must be done synchronously so this is most
2483 * useful for devices with a cache which do not need to interact with
2484 * the hardware to determine the current register value.
2485 *
2486 * Returns zero for success, a negative number on error.
2487 */
2488 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2489 unsigned int mask, unsigned int val,
2490 bool *change)
2491 {
2492 int ret;
2493
2494 map->lock(map->lock_arg);
2495
2496 map->async = true;
2497
2498 ret = _regmap_update_bits(map, reg, mask, val, change, false);
2499
2500 map->async = false;
2501
2502 map->unlock(map->lock_arg);
2503
2504 return ret;
2505 }
2506 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2507
2508 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2509 {
2510 struct regmap *map = async->map;
2511 bool wake;
2512
2513 trace_regmap_async_io_complete(map);
2514
2515 spin_lock(&map->async_lock);
2516 list_move(&async->list, &map->async_free);
2517 wake = list_empty(&map->async_list);
2518
2519 if (ret != 0)
2520 map->async_ret = ret;
2521
2522 spin_unlock(&map->async_lock);
2523
2524 if (wake)
2525 wake_up(&map->async_waitq);
2526 }
2527 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2528
2529 static int regmap_async_is_done(struct regmap *map)
2530 {
2531 unsigned long flags;
2532 int ret;
2533
2534 spin_lock_irqsave(&map->async_lock, flags);
2535 ret = list_empty(&map->async_list);
2536 spin_unlock_irqrestore(&map->async_lock, flags);
2537
2538 return ret;
2539 }
2540
2541 /**
2542 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2543 *
2544 * @map: Map to operate on.
2545 *
2546 * Blocks until any pending asynchronous I/O has completed. Returns
2547 * an error code for any failed I/O operations.
2548 */
2549 int regmap_async_complete(struct regmap *map)
2550 {
2551 unsigned long flags;
2552 int ret;
2553
2554 /* Nothing to do with no async support */
2555 if (!map->bus || !map->bus->async_write)
2556 return 0;
2557
2558 trace_regmap_async_complete_start(map);
2559
2560 wait_event(map->async_waitq, regmap_async_is_done(map));
2561
2562 spin_lock_irqsave(&map->async_lock, flags);
2563 ret = map->async_ret;
2564 map->async_ret = 0;
2565 spin_unlock_irqrestore(&map->async_lock, flags);
2566
2567 trace_regmap_async_complete_done(map);
2568
2569 return ret;
2570 }
2571 EXPORT_SYMBOL_GPL(regmap_async_complete);
2572
2573 /**
2574 * regmap_register_patch: Register and apply register updates to be applied
2575 * on device initialistion
2576 *
2577 * @map: Register map to apply updates to.
2578 * @regs: Values to update.
2579 * @num_regs: Number of entries in regs.
2580 *
2581 * Register a set of register updates to be applied to the device
2582 * whenever the device registers are synchronised with the cache and
2583 * apply them immediately. Typically this is used to apply
2584 * corrections to be applied to the device defaults on startup, such
2585 * as the updates some vendors provide to undocumented registers.
2586 *
2587 * The caller must ensure that this function cannot be called
2588 * concurrently with either itself or regcache_sync().
2589 */
2590 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2591 int num_regs)
2592 {
2593 struct reg_default *p;
2594 int ret;
2595 bool bypass;
2596
2597 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2598 num_regs))
2599 return 0;
2600
2601 p = krealloc(map->patch,
2602 sizeof(struct reg_default) * (map->patch_regs + num_regs),
2603 GFP_KERNEL);
2604 if (p) {
2605 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2606 map->patch = p;
2607 map->patch_regs += num_regs;
2608 } else {
2609 return -ENOMEM;
2610 }
2611
2612 map->lock(map->lock_arg);
2613
2614 bypass = map->cache_bypass;
2615
2616 map->cache_bypass = true;
2617 map->async = true;
2618
2619 ret = _regmap_multi_reg_write(map, regs, num_regs);
2620
2621 map->async = false;
2622 map->cache_bypass = bypass;
2623
2624 map->unlock(map->lock_arg);
2625
2626 regmap_async_complete(map);
2627
2628 return ret;
2629 }
2630 EXPORT_SYMBOL_GPL(regmap_register_patch);
2631
2632 /*
2633 * regmap_get_val_bytes(): Report the size of a register value
2634 *
2635 * Report the size of a register value, mainly intended to for use by
2636 * generic infrastructure built on top of regmap.
2637 */
2638 int regmap_get_val_bytes(struct regmap *map)
2639 {
2640 if (map->format.format_write)
2641 return -EINVAL;
2642
2643 return map->format.val_bytes;
2644 }
2645 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2646
2647 /**
2648 * regmap_get_max_register(): Report the max register value
2649 *
2650 * Report the max register value, mainly intended to for use by
2651 * generic infrastructure built on top of regmap.
2652 */
2653 int regmap_get_max_register(struct regmap *map)
2654 {
2655 return map->max_register ? map->max_register : -EINVAL;
2656 }
2657 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2658
2659 /**
2660 * regmap_get_reg_stride(): Report the register address stride
2661 *
2662 * Report the register address stride, mainly intended to for use by
2663 * generic infrastructure built on top of regmap.
2664 */
2665 int regmap_get_reg_stride(struct regmap *map)
2666 {
2667 return map->reg_stride;
2668 }
2669 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2670
2671 int regmap_parse_val(struct regmap *map, const void *buf,
2672 unsigned int *val)
2673 {
2674 if (!map->format.parse_val)
2675 return -EINVAL;
2676
2677 *val = map->format.parse_val(buf);
2678
2679 return 0;
2680 }
2681 EXPORT_SYMBOL_GPL(regmap_parse_val);
2682
2683 static int __init regmap_initcall(void)
2684 {
2685 regmap_debugfs_initcall();
2686
2687 return 0;
2688 }
2689 postcore_initcall(regmap_initcall);
This page took 0.115631 seconds and 5 git commands to generate.