regmap: add regmap_field_update_bits_base()
[deliverable/linux.git] / drivers / base / regmap / regmap.c
1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25
26 #include "internal.h"
27
28 /*
29 * Sometimes for failures during very early init the trace
30 * infrastructure isn't available early enough to be used. For this
31 * sort of problem defining LOG_DEVICE will add printks for basic
32 * register I/O on a specific device.
33 */
34 #undef LOG_DEVICE
35
36 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
37 unsigned int mask, unsigned int val,
38 bool *change, bool force_write);
39
40 static int _regmap_bus_reg_read(void *context, unsigned int reg,
41 unsigned int *val);
42 static int _regmap_bus_read(void *context, unsigned int reg,
43 unsigned int *val);
44 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
45 unsigned int val);
46 static int _regmap_bus_reg_write(void *context, unsigned int reg,
47 unsigned int val);
48 static int _regmap_bus_raw_write(void *context, unsigned int reg,
49 unsigned int val);
50
51 bool regmap_reg_in_ranges(unsigned int reg,
52 const struct regmap_range *ranges,
53 unsigned int nranges)
54 {
55 const struct regmap_range *r;
56 int i;
57
58 for (i = 0, r = ranges; i < nranges; i++, r++)
59 if (regmap_reg_in_range(reg, r))
60 return true;
61 return false;
62 }
63 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
64
65 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
66 const struct regmap_access_table *table)
67 {
68 /* Check "no ranges" first */
69 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
70 return false;
71
72 /* In case zero "yes ranges" are supplied, any reg is OK */
73 if (!table->n_yes_ranges)
74 return true;
75
76 return regmap_reg_in_ranges(reg, table->yes_ranges,
77 table->n_yes_ranges);
78 }
79 EXPORT_SYMBOL_GPL(regmap_check_range_table);
80
81 bool regmap_writeable(struct regmap *map, unsigned int reg)
82 {
83 if (map->max_register && reg > map->max_register)
84 return false;
85
86 if (map->writeable_reg)
87 return map->writeable_reg(map->dev, reg);
88
89 if (map->wr_table)
90 return regmap_check_range_table(map, reg, map->wr_table);
91
92 return true;
93 }
94
95 bool regmap_readable(struct regmap *map, unsigned int reg)
96 {
97 if (!map->reg_read)
98 return false;
99
100 if (map->max_register && reg > map->max_register)
101 return false;
102
103 if (map->format.format_write)
104 return false;
105
106 if (map->readable_reg)
107 return map->readable_reg(map->dev, reg);
108
109 if (map->rd_table)
110 return regmap_check_range_table(map, reg, map->rd_table);
111
112 return true;
113 }
114
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117 if (!map->format.format_write && !regmap_readable(map, reg))
118 return false;
119
120 if (map->volatile_reg)
121 return map->volatile_reg(map->dev, reg);
122
123 if (map->volatile_table)
124 return regmap_check_range_table(map, reg, map->volatile_table);
125
126 if (map->cache_ops)
127 return false;
128 else
129 return true;
130 }
131
132 bool regmap_precious(struct regmap *map, unsigned int reg)
133 {
134 if (!regmap_readable(map, reg))
135 return false;
136
137 if (map->precious_reg)
138 return map->precious_reg(map->dev, reg);
139
140 if (map->precious_table)
141 return regmap_check_range_table(map, reg, map->precious_table);
142
143 return false;
144 }
145
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147 size_t num)
148 {
149 unsigned int i;
150
151 for (i = 0; i < num; i++)
152 if (!regmap_volatile(map, reg + i))
153 return false;
154
155 return true;
156 }
157
158 static void regmap_format_2_6_write(struct regmap *map,
159 unsigned int reg, unsigned int val)
160 {
161 u8 *out = map->work_buf;
162
163 *out = (reg << 6) | val;
164 }
165
166 static void regmap_format_4_12_write(struct regmap *map,
167 unsigned int reg, unsigned int val)
168 {
169 __be16 *out = map->work_buf;
170 *out = cpu_to_be16((reg << 12) | val);
171 }
172
173 static void regmap_format_7_9_write(struct regmap *map,
174 unsigned int reg, unsigned int val)
175 {
176 __be16 *out = map->work_buf;
177 *out = cpu_to_be16((reg << 9) | val);
178 }
179
180 static void regmap_format_10_14_write(struct regmap *map,
181 unsigned int reg, unsigned int val)
182 {
183 u8 *out = map->work_buf;
184
185 out[2] = val;
186 out[1] = (val >> 8) | (reg << 6);
187 out[0] = reg >> 2;
188 }
189
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 {
192 u8 *b = buf;
193
194 b[0] = val << shift;
195 }
196
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 {
199 __be16 *b = buf;
200
201 b[0] = cpu_to_be16(val << shift);
202 }
203
204 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
205 {
206 __le16 *b = buf;
207
208 b[0] = cpu_to_le16(val << shift);
209 }
210
211 static void regmap_format_16_native(void *buf, unsigned int val,
212 unsigned int shift)
213 {
214 *(u16 *)buf = val << shift;
215 }
216
217 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 {
219 u8 *b = buf;
220
221 val <<= shift;
222
223 b[0] = val >> 16;
224 b[1] = val >> 8;
225 b[2] = val;
226 }
227
228 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 {
230 __be32 *b = buf;
231
232 b[0] = cpu_to_be32(val << shift);
233 }
234
235 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
236 {
237 __le32 *b = buf;
238
239 b[0] = cpu_to_le32(val << shift);
240 }
241
242 static void regmap_format_32_native(void *buf, unsigned int val,
243 unsigned int shift)
244 {
245 *(u32 *)buf = val << shift;
246 }
247
248 #ifdef CONFIG_64BIT
249 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
250 {
251 __be64 *b = buf;
252
253 b[0] = cpu_to_be64((u64)val << shift);
254 }
255
256 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
257 {
258 __le64 *b = buf;
259
260 b[0] = cpu_to_le64((u64)val << shift);
261 }
262
263 static void regmap_format_64_native(void *buf, unsigned int val,
264 unsigned int shift)
265 {
266 *(u64 *)buf = (u64)val << shift;
267 }
268 #endif
269
270 static void regmap_parse_inplace_noop(void *buf)
271 {
272 }
273
274 static unsigned int regmap_parse_8(const void *buf)
275 {
276 const u8 *b = buf;
277
278 return b[0];
279 }
280
281 static unsigned int regmap_parse_16_be(const void *buf)
282 {
283 const __be16 *b = buf;
284
285 return be16_to_cpu(b[0]);
286 }
287
288 static unsigned int regmap_parse_16_le(const void *buf)
289 {
290 const __le16 *b = buf;
291
292 return le16_to_cpu(b[0]);
293 }
294
295 static void regmap_parse_16_be_inplace(void *buf)
296 {
297 __be16 *b = buf;
298
299 b[0] = be16_to_cpu(b[0]);
300 }
301
302 static void regmap_parse_16_le_inplace(void *buf)
303 {
304 __le16 *b = buf;
305
306 b[0] = le16_to_cpu(b[0]);
307 }
308
309 static unsigned int regmap_parse_16_native(const void *buf)
310 {
311 return *(u16 *)buf;
312 }
313
314 static unsigned int regmap_parse_24(const void *buf)
315 {
316 const u8 *b = buf;
317 unsigned int ret = b[2];
318 ret |= ((unsigned int)b[1]) << 8;
319 ret |= ((unsigned int)b[0]) << 16;
320
321 return ret;
322 }
323
324 static unsigned int regmap_parse_32_be(const void *buf)
325 {
326 const __be32 *b = buf;
327
328 return be32_to_cpu(b[0]);
329 }
330
331 static unsigned int regmap_parse_32_le(const void *buf)
332 {
333 const __le32 *b = buf;
334
335 return le32_to_cpu(b[0]);
336 }
337
338 static void regmap_parse_32_be_inplace(void *buf)
339 {
340 __be32 *b = buf;
341
342 b[0] = be32_to_cpu(b[0]);
343 }
344
345 static void regmap_parse_32_le_inplace(void *buf)
346 {
347 __le32 *b = buf;
348
349 b[0] = le32_to_cpu(b[0]);
350 }
351
352 static unsigned int regmap_parse_32_native(const void *buf)
353 {
354 return *(u32 *)buf;
355 }
356
357 #ifdef CONFIG_64BIT
358 static unsigned int regmap_parse_64_be(const void *buf)
359 {
360 const __be64 *b = buf;
361
362 return be64_to_cpu(b[0]);
363 }
364
365 static unsigned int regmap_parse_64_le(const void *buf)
366 {
367 const __le64 *b = buf;
368
369 return le64_to_cpu(b[0]);
370 }
371
372 static void regmap_parse_64_be_inplace(void *buf)
373 {
374 __be64 *b = buf;
375
376 b[0] = be64_to_cpu(b[0]);
377 }
378
379 static void regmap_parse_64_le_inplace(void *buf)
380 {
381 __le64 *b = buf;
382
383 b[0] = le64_to_cpu(b[0]);
384 }
385
386 static unsigned int regmap_parse_64_native(const void *buf)
387 {
388 return *(u64 *)buf;
389 }
390 #endif
391
392 static void regmap_lock_mutex(void *__map)
393 {
394 struct regmap *map = __map;
395 mutex_lock(&map->mutex);
396 }
397
398 static void regmap_unlock_mutex(void *__map)
399 {
400 struct regmap *map = __map;
401 mutex_unlock(&map->mutex);
402 }
403
404 static void regmap_lock_spinlock(void *__map)
405 __acquires(&map->spinlock)
406 {
407 struct regmap *map = __map;
408 unsigned long flags;
409
410 spin_lock_irqsave(&map->spinlock, flags);
411 map->spinlock_flags = flags;
412 }
413
414 static void regmap_unlock_spinlock(void *__map)
415 __releases(&map->spinlock)
416 {
417 struct regmap *map = __map;
418 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
419 }
420
421 static void dev_get_regmap_release(struct device *dev, void *res)
422 {
423 /*
424 * We don't actually have anything to do here; the goal here
425 * is not to manage the regmap but to provide a simple way to
426 * get the regmap back given a struct device.
427 */
428 }
429
430 static bool _regmap_range_add(struct regmap *map,
431 struct regmap_range_node *data)
432 {
433 struct rb_root *root = &map->range_tree;
434 struct rb_node **new = &(root->rb_node), *parent = NULL;
435
436 while (*new) {
437 struct regmap_range_node *this =
438 container_of(*new, struct regmap_range_node, node);
439
440 parent = *new;
441 if (data->range_max < this->range_min)
442 new = &((*new)->rb_left);
443 else if (data->range_min > this->range_max)
444 new = &((*new)->rb_right);
445 else
446 return false;
447 }
448
449 rb_link_node(&data->node, parent, new);
450 rb_insert_color(&data->node, root);
451
452 return true;
453 }
454
455 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
456 unsigned int reg)
457 {
458 struct rb_node *node = map->range_tree.rb_node;
459
460 while (node) {
461 struct regmap_range_node *this =
462 container_of(node, struct regmap_range_node, node);
463
464 if (reg < this->range_min)
465 node = node->rb_left;
466 else if (reg > this->range_max)
467 node = node->rb_right;
468 else
469 return this;
470 }
471
472 return NULL;
473 }
474
475 static void regmap_range_exit(struct regmap *map)
476 {
477 struct rb_node *next;
478 struct regmap_range_node *range_node;
479
480 next = rb_first(&map->range_tree);
481 while (next) {
482 range_node = rb_entry(next, struct regmap_range_node, node);
483 next = rb_next(&range_node->node);
484 rb_erase(&range_node->node, &map->range_tree);
485 kfree(range_node);
486 }
487
488 kfree(map->selector_work_buf);
489 }
490
491 int regmap_attach_dev(struct device *dev, struct regmap *map,
492 const struct regmap_config *config)
493 {
494 struct regmap **m;
495
496 map->dev = dev;
497
498 regmap_debugfs_init(map, config->name);
499
500 /* Add a devres resource for dev_get_regmap() */
501 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
502 if (!m) {
503 regmap_debugfs_exit(map);
504 return -ENOMEM;
505 }
506 *m = map;
507 devres_add(dev, m);
508
509 return 0;
510 }
511 EXPORT_SYMBOL_GPL(regmap_attach_dev);
512
513 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
514 const struct regmap_config *config)
515 {
516 enum regmap_endian endian;
517
518 /* Retrieve the endianness specification from the regmap config */
519 endian = config->reg_format_endian;
520
521 /* If the regmap config specified a non-default value, use that */
522 if (endian != REGMAP_ENDIAN_DEFAULT)
523 return endian;
524
525 /* Retrieve the endianness specification from the bus config */
526 if (bus && bus->reg_format_endian_default)
527 endian = bus->reg_format_endian_default;
528
529 /* If the bus specified a non-default value, use that */
530 if (endian != REGMAP_ENDIAN_DEFAULT)
531 return endian;
532
533 /* Use this if no other value was found */
534 return REGMAP_ENDIAN_BIG;
535 }
536
537 enum regmap_endian regmap_get_val_endian(struct device *dev,
538 const struct regmap_bus *bus,
539 const struct regmap_config *config)
540 {
541 struct device_node *np;
542 enum regmap_endian endian;
543
544 /* Retrieve the endianness specification from the regmap config */
545 endian = config->val_format_endian;
546
547 /* If the regmap config specified a non-default value, use that */
548 if (endian != REGMAP_ENDIAN_DEFAULT)
549 return endian;
550
551 /* If the dev and dev->of_node exist try to get endianness from DT */
552 if (dev && dev->of_node) {
553 np = dev->of_node;
554
555 /* Parse the device's DT node for an endianness specification */
556 if (of_property_read_bool(np, "big-endian"))
557 endian = REGMAP_ENDIAN_BIG;
558 else if (of_property_read_bool(np, "little-endian"))
559 endian = REGMAP_ENDIAN_LITTLE;
560
561 /* If the endianness was specified in DT, use that */
562 if (endian != REGMAP_ENDIAN_DEFAULT)
563 return endian;
564 }
565
566 /* Retrieve the endianness specification from the bus config */
567 if (bus && bus->val_format_endian_default)
568 endian = bus->val_format_endian_default;
569
570 /* If the bus specified a non-default value, use that */
571 if (endian != REGMAP_ENDIAN_DEFAULT)
572 return endian;
573
574 /* Use this if no other value was found */
575 return REGMAP_ENDIAN_BIG;
576 }
577 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
578
579 struct regmap *__regmap_init(struct device *dev,
580 const struct regmap_bus *bus,
581 void *bus_context,
582 const struct regmap_config *config,
583 struct lock_class_key *lock_key,
584 const char *lock_name)
585 {
586 struct regmap *map;
587 int ret = -EINVAL;
588 enum regmap_endian reg_endian, val_endian;
589 int i, j;
590
591 if (!config)
592 goto err;
593
594 map = kzalloc(sizeof(*map), GFP_KERNEL);
595 if (map == NULL) {
596 ret = -ENOMEM;
597 goto err;
598 }
599
600 if (config->lock && config->unlock) {
601 map->lock = config->lock;
602 map->unlock = config->unlock;
603 map->lock_arg = config->lock_arg;
604 } else {
605 if ((bus && bus->fast_io) ||
606 config->fast_io) {
607 spin_lock_init(&map->spinlock);
608 map->lock = regmap_lock_spinlock;
609 map->unlock = regmap_unlock_spinlock;
610 lockdep_set_class_and_name(&map->spinlock,
611 lock_key, lock_name);
612 } else {
613 mutex_init(&map->mutex);
614 map->lock = regmap_lock_mutex;
615 map->unlock = regmap_unlock_mutex;
616 lockdep_set_class_and_name(&map->mutex,
617 lock_key, lock_name);
618 }
619 map->lock_arg = map;
620 }
621
622 /*
623 * When we write in fast-paths with regmap_bulk_write() don't allocate
624 * scratch buffers with sleeping allocations.
625 */
626 if ((bus && bus->fast_io) || config->fast_io)
627 map->alloc_flags = GFP_ATOMIC;
628 else
629 map->alloc_flags = GFP_KERNEL;
630
631 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
632 map->format.pad_bytes = config->pad_bits / 8;
633 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
634 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
635 config->val_bits + config->pad_bits, 8);
636 map->reg_shift = config->pad_bits % 8;
637 if (config->reg_stride)
638 map->reg_stride = config->reg_stride;
639 else
640 map->reg_stride = 1;
641 map->use_single_read = config->use_single_rw || !bus || !bus->read;
642 map->use_single_write = config->use_single_rw || !bus || !bus->write;
643 map->can_multi_write = config->can_multi_write && bus && bus->write;
644 if (bus) {
645 map->max_raw_read = bus->max_raw_read;
646 map->max_raw_write = bus->max_raw_write;
647 }
648 map->dev = dev;
649 map->bus = bus;
650 map->bus_context = bus_context;
651 map->max_register = config->max_register;
652 map->wr_table = config->wr_table;
653 map->rd_table = config->rd_table;
654 map->volatile_table = config->volatile_table;
655 map->precious_table = config->precious_table;
656 map->writeable_reg = config->writeable_reg;
657 map->readable_reg = config->readable_reg;
658 map->volatile_reg = config->volatile_reg;
659 map->precious_reg = config->precious_reg;
660 map->cache_type = config->cache_type;
661 map->name = config->name;
662
663 spin_lock_init(&map->async_lock);
664 INIT_LIST_HEAD(&map->async_list);
665 INIT_LIST_HEAD(&map->async_free);
666 init_waitqueue_head(&map->async_waitq);
667
668 if (config->read_flag_mask || config->write_flag_mask) {
669 map->read_flag_mask = config->read_flag_mask;
670 map->write_flag_mask = config->write_flag_mask;
671 } else if (bus) {
672 map->read_flag_mask = bus->read_flag_mask;
673 }
674
675 if (!bus) {
676 map->reg_read = config->reg_read;
677 map->reg_write = config->reg_write;
678
679 map->defer_caching = false;
680 goto skip_format_initialization;
681 } else if (!bus->read || !bus->write) {
682 map->reg_read = _regmap_bus_reg_read;
683 map->reg_write = _regmap_bus_reg_write;
684
685 map->defer_caching = false;
686 goto skip_format_initialization;
687 } else {
688 map->reg_read = _regmap_bus_read;
689 map->reg_update_bits = bus->reg_update_bits;
690 }
691
692 reg_endian = regmap_get_reg_endian(bus, config);
693 val_endian = regmap_get_val_endian(dev, bus, config);
694
695 switch (config->reg_bits + map->reg_shift) {
696 case 2:
697 switch (config->val_bits) {
698 case 6:
699 map->format.format_write = regmap_format_2_6_write;
700 break;
701 default:
702 goto err_map;
703 }
704 break;
705
706 case 4:
707 switch (config->val_bits) {
708 case 12:
709 map->format.format_write = regmap_format_4_12_write;
710 break;
711 default:
712 goto err_map;
713 }
714 break;
715
716 case 7:
717 switch (config->val_bits) {
718 case 9:
719 map->format.format_write = regmap_format_7_9_write;
720 break;
721 default:
722 goto err_map;
723 }
724 break;
725
726 case 10:
727 switch (config->val_bits) {
728 case 14:
729 map->format.format_write = regmap_format_10_14_write;
730 break;
731 default:
732 goto err_map;
733 }
734 break;
735
736 case 8:
737 map->format.format_reg = regmap_format_8;
738 break;
739
740 case 16:
741 switch (reg_endian) {
742 case REGMAP_ENDIAN_BIG:
743 map->format.format_reg = regmap_format_16_be;
744 break;
745 case REGMAP_ENDIAN_NATIVE:
746 map->format.format_reg = regmap_format_16_native;
747 break;
748 default:
749 goto err_map;
750 }
751 break;
752
753 case 24:
754 if (reg_endian != REGMAP_ENDIAN_BIG)
755 goto err_map;
756 map->format.format_reg = regmap_format_24;
757 break;
758
759 case 32:
760 switch (reg_endian) {
761 case REGMAP_ENDIAN_BIG:
762 map->format.format_reg = regmap_format_32_be;
763 break;
764 case REGMAP_ENDIAN_NATIVE:
765 map->format.format_reg = regmap_format_32_native;
766 break;
767 default:
768 goto err_map;
769 }
770 break;
771
772 #ifdef CONFIG_64BIT
773 case 64:
774 switch (reg_endian) {
775 case REGMAP_ENDIAN_BIG:
776 map->format.format_reg = regmap_format_64_be;
777 break;
778 case REGMAP_ENDIAN_NATIVE:
779 map->format.format_reg = regmap_format_64_native;
780 break;
781 default:
782 goto err_map;
783 }
784 break;
785 #endif
786
787 default:
788 goto err_map;
789 }
790
791 if (val_endian == REGMAP_ENDIAN_NATIVE)
792 map->format.parse_inplace = regmap_parse_inplace_noop;
793
794 switch (config->val_bits) {
795 case 8:
796 map->format.format_val = regmap_format_8;
797 map->format.parse_val = regmap_parse_8;
798 map->format.parse_inplace = regmap_parse_inplace_noop;
799 break;
800 case 16:
801 switch (val_endian) {
802 case REGMAP_ENDIAN_BIG:
803 map->format.format_val = regmap_format_16_be;
804 map->format.parse_val = regmap_parse_16_be;
805 map->format.parse_inplace = regmap_parse_16_be_inplace;
806 break;
807 case REGMAP_ENDIAN_LITTLE:
808 map->format.format_val = regmap_format_16_le;
809 map->format.parse_val = regmap_parse_16_le;
810 map->format.parse_inplace = regmap_parse_16_le_inplace;
811 break;
812 case REGMAP_ENDIAN_NATIVE:
813 map->format.format_val = regmap_format_16_native;
814 map->format.parse_val = regmap_parse_16_native;
815 break;
816 default:
817 goto err_map;
818 }
819 break;
820 case 24:
821 if (val_endian != REGMAP_ENDIAN_BIG)
822 goto err_map;
823 map->format.format_val = regmap_format_24;
824 map->format.parse_val = regmap_parse_24;
825 break;
826 case 32:
827 switch (val_endian) {
828 case REGMAP_ENDIAN_BIG:
829 map->format.format_val = regmap_format_32_be;
830 map->format.parse_val = regmap_parse_32_be;
831 map->format.parse_inplace = regmap_parse_32_be_inplace;
832 break;
833 case REGMAP_ENDIAN_LITTLE:
834 map->format.format_val = regmap_format_32_le;
835 map->format.parse_val = regmap_parse_32_le;
836 map->format.parse_inplace = regmap_parse_32_le_inplace;
837 break;
838 case REGMAP_ENDIAN_NATIVE:
839 map->format.format_val = regmap_format_32_native;
840 map->format.parse_val = regmap_parse_32_native;
841 break;
842 default:
843 goto err_map;
844 }
845 break;
846 #ifdef CONFIG_64BIT
847 case 64:
848 switch (val_endian) {
849 case REGMAP_ENDIAN_BIG:
850 map->format.format_val = regmap_format_64_be;
851 map->format.parse_val = regmap_parse_64_be;
852 map->format.parse_inplace = regmap_parse_64_be_inplace;
853 break;
854 case REGMAP_ENDIAN_LITTLE:
855 map->format.format_val = regmap_format_64_le;
856 map->format.parse_val = regmap_parse_64_le;
857 map->format.parse_inplace = regmap_parse_64_le_inplace;
858 break;
859 case REGMAP_ENDIAN_NATIVE:
860 map->format.format_val = regmap_format_64_native;
861 map->format.parse_val = regmap_parse_64_native;
862 break;
863 default:
864 goto err_map;
865 }
866 break;
867 #endif
868 }
869
870 if (map->format.format_write) {
871 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
872 (val_endian != REGMAP_ENDIAN_BIG))
873 goto err_map;
874 map->use_single_write = true;
875 }
876
877 if (!map->format.format_write &&
878 !(map->format.format_reg && map->format.format_val))
879 goto err_map;
880
881 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
882 if (map->work_buf == NULL) {
883 ret = -ENOMEM;
884 goto err_map;
885 }
886
887 if (map->format.format_write) {
888 map->defer_caching = false;
889 map->reg_write = _regmap_bus_formatted_write;
890 } else if (map->format.format_val) {
891 map->defer_caching = true;
892 map->reg_write = _regmap_bus_raw_write;
893 }
894
895 skip_format_initialization:
896
897 map->range_tree = RB_ROOT;
898 for (i = 0; i < config->num_ranges; i++) {
899 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
900 struct regmap_range_node *new;
901
902 /* Sanity check */
903 if (range_cfg->range_max < range_cfg->range_min) {
904 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
905 range_cfg->range_max, range_cfg->range_min);
906 goto err_range;
907 }
908
909 if (range_cfg->range_max > map->max_register) {
910 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
911 range_cfg->range_max, map->max_register);
912 goto err_range;
913 }
914
915 if (range_cfg->selector_reg > map->max_register) {
916 dev_err(map->dev,
917 "Invalid range %d: selector out of map\n", i);
918 goto err_range;
919 }
920
921 if (range_cfg->window_len == 0) {
922 dev_err(map->dev, "Invalid range %d: window_len 0\n",
923 i);
924 goto err_range;
925 }
926
927 /* Make sure, that this register range has no selector
928 or data window within its boundary */
929 for (j = 0; j < config->num_ranges; j++) {
930 unsigned sel_reg = config->ranges[j].selector_reg;
931 unsigned win_min = config->ranges[j].window_start;
932 unsigned win_max = win_min +
933 config->ranges[j].window_len - 1;
934
935 /* Allow data window inside its own virtual range */
936 if (j == i)
937 continue;
938
939 if (range_cfg->range_min <= sel_reg &&
940 sel_reg <= range_cfg->range_max) {
941 dev_err(map->dev,
942 "Range %d: selector for %d in window\n",
943 i, j);
944 goto err_range;
945 }
946
947 if (!(win_max < range_cfg->range_min ||
948 win_min > range_cfg->range_max)) {
949 dev_err(map->dev,
950 "Range %d: window for %d in window\n",
951 i, j);
952 goto err_range;
953 }
954 }
955
956 new = kzalloc(sizeof(*new), GFP_KERNEL);
957 if (new == NULL) {
958 ret = -ENOMEM;
959 goto err_range;
960 }
961
962 new->map = map;
963 new->name = range_cfg->name;
964 new->range_min = range_cfg->range_min;
965 new->range_max = range_cfg->range_max;
966 new->selector_reg = range_cfg->selector_reg;
967 new->selector_mask = range_cfg->selector_mask;
968 new->selector_shift = range_cfg->selector_shift;
969 new->window_start = range_cfg->window_start;
970 new->window_len = range_cfg->window_len;
971
972 if (!_regmap_range_add(map, new)) {
973 dev_err(map->dev, "Failed to add range %d\n", i);
974 kfree(new);
975 goto err_range;
976 }
977
978 if (map->selector_work_buf == NULL) {
979 map->selector_work_buf =
980 kzalloc(map->format.buf_size, GFP_KERNEL);
981 if (map->selector_work_buf == NULL) {
982 ret = -ENOMEM;
983 goto err_range;
984 }
985 }
986 }
987
988 ret = regcache_init(map, config);
989 if (ret != 0)
990 goto err_range;
991
992 if (dev) {
993 ret = regmap_attach_dev(dev, map, config);
994 if (ret != 0)
995 goto err_regcache;
996 }
997
998 return map;
999
1000 err_regcache:
1001 regcache_exit(map);
1002 err_range:
1003 regmap_range_exit(map);
1004 kfree(map->work_buf);
1005 err_map:
1006 kfree(map);
1007 err:
1008 return ERR_PTR(ret);
1009 }
1010 EXPORT_SYMBOL_GPL(__regmap_init);
1011
1012 static void devm_regmap_release(struct device *dev, void *res)
1013 {
1014 regmap_exit(*(struct regmap **)res);
1015 }
1016
1017 struct regmap *__devm_regmap_init(struct device *dev,
1018 const struct regmap_bus *bus,
1019 void *bus_context,
1020 const struct regmap_config *config,
1021 struct lock_class_key *lock_key,
1022 const char *lock_name)
1023 {
1024 struct regmap **ptr, *regmap;
1025
1026 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1027 if (!ptr)
1028 return ERR_PTR(-ENOMEM);
1029
1030 regmap = __regmap_init(dev, bus, bus_context, config,
1031 lock_key, lock_name);
1032 if (!IS_ERR(regmap)) {
1033 *ptr = regmap;
1034 devres_add(dev, ptr);
1035 } else {
1036 devres_free(ptr);
1037 }
1038
1039 return regmap;
1040 }
1041 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1042
1043 static void regmap_field_init(struct regmap_field *rm_field,
1044 struct regmap *regmap, struct reg_field reg_field)
1045 {
1046 rm_field->regmap = regmap;
1047 rm_field->reg = reg_field.reg;
1048 rm_field->shift = reg_field.lsb;
1049 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1050 rm_field->id_size = reg_field.id_size;
1051 rm_field->id_offset = reg_field.id_offset;
1052 }
1053
1054 /**
1055 * devm_regmap_field_alloc(): Allocate and initialise a register field
1056 * in a register map.
1057 *
1058 * @dev: Device that will be interacted with
1059 * @regmap: regmap bank in which this register field is located.
1060 * @reg_field: Register field with in the bank.
1061 *
1062 * The return value will be an ERR_PTR() on error or a valid pointer
1063 * to a struct regmap_field. The regmap_field will be automatically freed
1064 * by the device management code.
1065 */
1066 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1067 struct regmap *regmap, struct reg_field reg_field)
1068 {
1069 struct regmap_field *rm_field = devm_kzalloc(dev,
1070 sizeof(*rm_field), GFP_KERNEL);
1071 if (!rm_field)
1072 return ERR_PTR(-ENOMEM);
1073
1074 regmap_field_init(rm_field, regmap, reg_field);
1075
1076 return rm_field;
1077
1078 }
1079 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1080
1081 /**
1082 * devm_regmap_field_free(): Free register field allocated using
1083 * devm_regmap_field_alloc. Usally drivers need not call this function,
1084 * as the memory allocated via devm will be freed as per device-driver
1085 * life-cyle.
1086 *
1087 * @dev: Device that will be interacted with
1088 * @field: regmap field which should be freed.
1089 */
1090 void devm_regmap_field_free(struct device *dev,
1091 struct regmap_field *field)
1092 {
1093 devm_kfree(dev, field);
1094 }
1095 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1096
1097 /**
1098 * regmap_field_alloc(): Allocate and initialise a register field
1099 * in a register map.
1100 *
1101 * @regmap: regmap bank in which this register field is located.
1102 * @reg_field: Register field with in the bank.
1103 *
1104 * The return value will be an ERR_PTR() on error or a valid pointer
1105 * to a struct regmap_field. The regmap_field should be freed by the
1106 * user once its finished working with it using regmap_field_free().
1107 */
1108 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1109 struct reg_field reg_field)
1110 {
1111 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1112
1113 if (!rm_field)
1114 return ERR_PTR(-ENOMEM);
1115
1116 regmap_field_init(rm_field, regmap, reg_field);
1117
1118 return rm_field;
1119 }
1120 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1121
1122 /**
1123 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1124 *
1125 * @field: regmap field which should be freed.
1126 */
1127 void regmap_field_free(struct regmap_field *field)
1128 {
1129 kfree(field);
1130 }
1131 EXPORT_SYMBOL_GPL(regmap_field_free);
1132
1133 /**
1134 * regmap_reinit_cache(): Reinitialise the current register cache
1135 *
1136 * @map: Register map to operate on.
1137 * @config: New configuration. Only the cache data will be used.
1138 *
1139 * Discard any existing register cache for the map and initialize a
1140 * new cache. This can be used to restore the cache to defaults or to
1141 * update the cache configuration to reflect runtime discovery of the
1142 * hardware.
1143 *
1144 * No explicit locking is done here, the user needs to ensure that
1145 * this function will not race with other calls to regmap.
1146 */
1147 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1148 {
1149 regcache_exit(map);
1150 regmap_debugfs_exit(map);
1151
1152 map->max_register = config->max_register;
1153 map->writeable_reg = config->writeable_reg;
1154 map->readable_reg = config->readable_reg;
1155 map->volatile_reg = config->volatile_reg;
1156 map->precious_reg = config->precious_reg;
1157 map->cache_type = config->cache_type;
1158
1159 regmap_debugfs_init(map, config->name);
1160
1161 map->cache_bypass = false;
1162 map->cache_only = false;
1163
1164 return regcache_init(map, config);
1165 }
1166 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1167
1168 /**
1169 * regmap_exit(): Free a previously allocated register map
1170 */
1171 void regmap_exit(struct regmap *map)
1172 {
1173 struct regmap_async *async;
1174
1175 regcache_exit(map);
1176 regmap_debugfs_exit(map);
1177 regmap_range_exit(map);
1178 if (map->bus && map->bus->free_context)
1179 map->bus->free_context(map->bus_context);
1180 kfree(map->work_buf);
1181 while (!list_empty(&map->async_free)) {
1182 async = list_first_entry_or_null(&map->async_free,
1183 struct regmap_async,
1184 list);
1185 list_del(&async->list);
1186 kfree(async->work_buf);
1187 kfree(async);
1188 }
1189 kfree(map);
1190 }
1191 EXPORT_SYMBOL_GPL(regmap_exit);
1192
1193 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1194 {
1195 struct regmap **r = res;
1196 if (!r || !*r) {
1197 WARN_ON(!r || !*r);
1198 return 0;
1199 }
1200
1201 /* If the user didn't specify a name match any */
1202 if (data)
1203 return (*r)->name == data;
1204 else
1205 return 1;
1206 }
1207
1208 /**
1209 * dev_get_regmap(): Obtain the regmap (if any) for a device
1210 *
1211 * @dev: Device to retrieve the map for
1212 * @name: Optional name for the register map, usually NULL.
1213 *
1214 * Returns the regmap for the device if one is present, or NULL. If
1215 * name is specified then it must match the name specified when
1216 * registering the device, if it is NULL then the first regmap found
1217 * will be used. Devices with multiple register maps are very rare,
1218 * generic code should normally not need to specify a name.
1219 */
1220 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1221 {
1222 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1223 dev_get_regmap_match, (void *)name);
1224
1225 if (!r)
1226 return NULL;
1227 return *r;
1228 }
1229 EXPORT_SYMBOL_GPL(dev_get_regmap);
1230
1231 /**
1232 * regmap_get_device(): Obtain the device from a regmap
1233 *
1234 * @map: Register map to operate on.
1235 *
1236 * Returns the underlying device that the regmap has been created for.
1237 */
1238 struct device *regmap_get_device(struct regmap *map)
1239 {
1240 return map->dev;
1241 }
1242 EXPORT_SYMBOL_GPL(regmap_get_device);
1243
1244 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1245 struct regmap_range_node *range,
1246 unsigned int val_num)
1247 {
1248 void *orig_work_buf;
1249 unsigned int win_offset;
1250 unsigned int win_page;
1251 bool page_chg;
1252 int ret;
1253
1254 win_offset = (*reg - range->range_min) % range->window_len;
1255 win_page = (*reg - range->range_min) / range->window_len;
1256
1257 if (val_num > 1) {
1258 /* Bulk write shouldn't cross range boundary */
1259 if (*reg + val_num - 1 > range->range_max)
1260 return -EINVAL;
1261
1262 /* ... or single page boundary */
1263 if (val_num > range->window_len - win_offset)
1264 return -EINVAL;
1265 }
1266
1267 /* It is possible to have selector register inside data window.
1268 In that case, selector register is located on every page and
1269 it needs no page switching, when accessed alone. */
1270 if (val_num > 1 ||
1271 range->window_start + win_offset != range->selector_reg) {
1272 /* Use separate work_buf during page switching */
1273 orig_work_buf = map->work_buf;
1274 map->work_buf = map->selector_work_buf;
1275
1276 ret = _regmap_update_bits(map, range->selector_reg,
1277 range->selector_mask,
1278 win_page << range->selector_shift,
1279 &page_chg, false);
1280
1281 map->work_buf = orig_work_buf;
1282
1283 if (ret != 0)
1284 return ret;
1285 }
1286
1287 *reg = range->window_start + win_offset;
1288
1289 return 0;
1290 }
1291
1292 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1293 const void *val, size_t val_len)
1294 {
1295 struct regmap_range_node *range;
1296 unsigned long flags;
1297 u8 *u8 = map->work_buf;
1298 void *work_val = map->work_buf + map->format.reg_bytes +
1299 map->format.pad_bytes;
1300 void *buf;
1301 int ret = -ENOTSUPP;
1302 size_t len;
1303 int i;
1304
1305 WARN_ON(!map->bus);
1306
1307 /* Check for unwritable registers before we start */
1308 if (map->writeable_reg)
1309 for (i = 0; i < val_len / map->format.val_bytes; i++)
1310 if (!map->writeable_reg(map->dev,
1311 reg + (i * map->reg_stride)))
1312 return -EINVAL;
1313
1314 if (!map->cache_bypass && map->format.parse_val) {
1315 unsigned int ival;
1316 int val_bytes = map->format.val_bytes;
1317 for (i = 0; i < val_len / val_bytes; i++) {
1318 ival = map->format.parse_val(val + (i * val_bytes));
1319 ret = regcache_write(map, reg + (i * map->reg_stride),
1320 ival);
1321 if (ret) {
1322 dev_err(map->dev,
1323 "Error in caching of register: %x ret: %d\n",
1324 reg + i, ret);
1325 return ret;
1326 }
1327 }
1328 if (map->cache_only) {
1329 map->cache_dirty = true;
1330 return 0;
1331 }
1332 }
1333
1334 range = _regmap_range_lookup(map, reg);
1335 if (range) {
1336 int val_num = val_len / map->format.val_bytes;
1337 int win_offset = (reg - range->range_min) % range->window_len;
1338 int win_residue = range->window_len - win_offset;
1339
1340 /* If the write goes beyond the end of the window split it */
1341 while (val_num > win_residue) {
1342 dev_dbg(map->dev, "Writing window %d/%zu\n",
1343 win_residue, val_len / map->format.val_bytes);
1344 ret = _regmap_raw_write(map, reg, val, win_residue *
1345 map->format.val_bytes);
1346 if (ret != 0)
1347 return ret;
1348
1349 reg += win_residue;
1350 val_num -= win_residue;
1351 val += win_residue * map->format.val_bytes;
1352 val_len -= win_residue * map->format.val_bytes;
1353
1354 win_offset = (reg - range->range_min) %
1355 range->window_len;
1356 win_residue = range->window_len - win_offset;
1357 }
1358
1359 ret = _regmap_select_page(map, &reg, range, val_num);
1360 if (ret != 0)
1361 return ret;
1362 }
1363
1364 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1365
1366 u8[0] |= map->write_flag_mask;
1367
1368 /*
1369 * Essentially all I/O mechanisms will be faster with a single
1370 * buffer to write. Since register syncs often generate raw
1371 * writes of single registers optimise that case.
1372 */
1373 if (val != work_val && val_len == map->format.val_bytes) {
1374 memcpy(work_val, val, map->format.val_bytes);
1375 val = work_val;
1376 }
1377
1378 if (map->async && map->bus->async_write) {
1379 struct regmap_async *async;
1380
1381 trace_regmap_async_write_start(map, reg, val_len);
1382
1383 spin_lock_irqsave(&map->async_lock, flags);
1384 async = list_first_entry_or_null(&map->async_free,
1385 struct regmap_async,
1386 list);
1387 if (async)
1388 list_del(&async->list);
1389 spin_unlock_irqrestore(&map->async_lock, flags);
1390
1391 if (!async) {
1392 async = map->bus->async_alloc();
1393 if (!async)
1394 return -ENOMEM;
1395
1396 async->work_buf = kzalloc(map->format.buf_size,
1397 GFP_KERNEL | GFP_DMA);
1398 if (!async->work_buf) {
1399 kfree(async);
1400 return -ENOMEM;
1401 }
1402 }
1403
1404 async->map = map;
1405
1406 /* If the caller supplied the value we can use it safely. */
1407 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1408 map->format.reg_bytes + map->format.val_bytes);
1409
1410 spin_lock_irqsave(&map->async_lock, flags);
1411 list_add_tail(&async->list, &map->async_list);
1412 spin_unlock_irqrestore(&map->async_lock, flags);
1413
1414 if (val != work_val)
1415 ret = map->bus->async_write(map->bus_context,
1416 async->work_buf,
1417 map->format.reg_bytes +
1418 map->format.pad_bytes,
1419 val, val_len, async);
1420 else
1421 ret = map->bus->async_write(map->bus_context,
1422 async->work_buf,
1423 map->format.reg_bytes +
1424 map->format.pad_bytes +
1425 val_len, NULL, 0, async);
1426
1427 if (ret != 0) {
1428 dev_err(map->dev, "Failed to schedule write: %d\n",
1429 ret);
1430
1431 spin_lock_irqsave(&map->async_lock, flags);
1432 list_move(&async->list, &map->async_free);
1433 spin_unlock_irqrestore(&map->async_lock, flags);
1434 }
1435
1436 return ret;
1437 }
1438
1439 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1440
1441 /* If we're doing a single register write we can probably just
1442 * send the work_buf directly, otherwise try to do a gather
1443 * write.
1444 */
1445 if (val == work_val)
1446 ret = map->bus->write(map->bus_context, map->work_buf,
1447 map->format.reg_bytes +
1448 map->format.pad_bytes +
1449 val_len);
1450 else if (map->bus->gather_write)
1451 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1452 map->format.reg_bytes +
1453 map->format.pad_bytes,
1454 val, val_len);
1455
1456 /* If that didn't work fall back on linearising by hand. */
1457 if (ret == -ENOTSUPP) {
1458 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1459 buf = kzalloc(len, GFP_KERNEL);
1460 if (!buf)
1461 return -ENOMEM;
1462
1463 memcpy(buf, map->work_buf, map->format.reg_bytes);
1464 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1465 val, val_len);
1466 ret = map->bus->write(map->bus_context, buf, len);
1467
1468 kfree(buf);
1469 }
1470
1471 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1472
1473 return ret;
1474 }
1475
1476 /**
1477 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1478 *
1479 * @map: Map to check.
1480 */
1481 bool regmap_can_raw_write(struct regmap *map)
1482 {
1483 return map->bus && map->bus->write && map->format.format_val &&
1484 map->format.format_reg;
1485 }
1486 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1487
1488 /**
1489 * regmap_get_raw_read_max - Get the maximum size we can read
1490 *
1491 * @map: Map to check.
1492 */
1493 size_t regmap_get_raw_read_max(struct regmap *map)
1494 {
1495 return map->max_raw_read;
1496 }
1497 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1498
1499 /**
1500 * regmap_get_raw_write_max - Get the maximum size we can read
1501 *
1502 * @map: Map to check.
1503 */
1504 size_t regmap_get_raw_write_max(struct regmap *map)
1505 {
1506 return map->max_raw_write;
1507 }
1508 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1509
1510 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1511 unsigned int val)
1512 {
1513 int ret;
1514 struct regmap_range_node *range;
1515 struct regmap *map = context;
1516
1517 WARN_ON(!map->bus || !map->format.format_write);
1518
1519 range = _regmap_range_lookup(map, reg);
1520 if (range) {
1521 ret = _regmap_select_page(map, &reg, range, 1);
1522 if (ret != 0)
1523 return ret;
1524 }
1525
1526 map->format.format_write(map, reg, val);
1527
1528 trace_regmap_hw_write_start(map, reg, 1);
1529
1530 ret = map->bus->write(map->bus_context, map->work_buf,
1531 map->format.buf_size);
1532
1533 trace_regmap_hw_write_done(map, reg, 1);
1534
1535 return ret;
1536 }
1537
1538 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1539 unsigned int val)
1540 {
1541 struct regmap *map = context;
1542
1543 return map->bus->reg_write(map->bus_context, reg, val);
1544 }
1545
1546 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1547 unsigned int val)
1548 {
1549 struct regmap *map = context;
1550
1551 WARN_ON(!map->bus || !map->format.format_val);
1552
1553 map->format.format_val(map->work_buf + map->format.reg_bytes
1554 + map->format.pad_bytes, val, 0);
1555 return _regmap_raw_write(map, reg,
1556 map->work_buf +
1557 map->format.reg_bytes +
1558 map->format.pad_bytes,
1559 map->format.val_bytes);
1560 }
1561
1562 static inline void *_regmap_map_get_context(struct regmap *map)
1563 {
1564 return (map->bus) ? map : map->bus_context;
1565 }
1566
1567 int _regmap_write(struct regmap *map, unsigned int reg,
1568 unsigned int val)
1569 {
1570 int ret;
1571 void *context = _regmap_map_get_context(map);
1572
1573 if (!regmap_writeable(map, reg))
1574 return -EIO;
1575
1576 if (!map->cache_bypass && !map->defer_caching) {
1577 ret = regcache_write(map, reg, val);
1578 if (ret != 0)
1579 return ret;
1580 if (map->cache_only) {
1581 map->cache_dirty = true;
1582 return 0;
1583 }
1584 }
1585
1586 #ifdef LOG_DEVICE
1587 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1588 dev_info(map->dev, "%x <= %x\n", reg, val);
1589 #endif
1590
1591 trace_regmap_reg_write(map, reg, val);
1592
1593 return map->reg_write(context, reg, val);
1594 }
1595
1596 /**
1597 * regmap_write(): Write a value to a single register
1598 *
1599 * @map: Register map to write to
1600 * @reg: Register to write to
1601 * @val: Value to be written
1602 *
1603 * A value of zero will be returned on success, a negative errno will
1604 * be returned in error cases.
1605 */
1606 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1607 {
1608 int ret;
1609
1610 if (!IS_ALIGNED(reg, map->reg_stride))
1611 return -EINVAL;
1612
1613 map->lock(map->lock_arg);
1614
1615 ret = _regmap_write(map, reg, val);
1616
1617 map->unlock(map->lock_arg);
1618
1619 return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(regmap_write);
1622
1623 /**
1624 * regmap_write_async(): Write a value to a single register asynchronously
1625 *
1626 * @map: Register map to write to
1627 * @reg: Register to write to
1628 * @val: Value to be written
1629 *
1630 * A value of zero will be returned on success, a negative errno will
1631 * be returned in error cases.
1632 */
1633 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1634 {
1635 int ret;
1636
1637 if (!IS_ALIGNED(reg, map->reg_stride))
1638 return -EINVAL;
1639
1640 map->lock(map->lock_arg);
1641
1642 map->async = true;
1643
1644 ret = _regmap_write(map, reg, val);
1645
1646 map->async = false;
1647
1648 map->unlock(map->lock_arg);
1649
1650 return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(regmap_write_async);
1653
1654 /**
1655 * regmap_raw_write(): Write raw values to one or more registers
1656 *
1657 * @map: Register map to write to
1658 * @reg: Initial register to write to
1659 * @val: Block of data to be written, laid out for direct transmission to the
1660 * device
1661 * @val_len: Length of data pointed to by val.
1662 *
1663 * This function is intended to be used for things like firmware
1664 * download where a large block of data needs to be transferred to the
1665 * device. No formatting will be done on the data provided.
1666 *
1667 * A value of zero will be returned on success, a negative errno will
1668 * be returned in error cases.
1669 */
1670 int regmap_raw_write(struct regmap *map, unsigned int reg,
1671 const void *val, size_t val_len)
1672 {
1673 int ret;
1674
1675 if (!regmap_can_raw_write(map))
1676 return -EINVAL;
1677 if (val_len % map->format.val_bytes)
1678 return -EINVAL;
1679 if (map->max_raw_write && map->max_raw_write > val_len)
1680 return -E2BIG;
1681
1682 map->lock(map->lock_arg);
1683
1684 ret = _regmap_raw_write(map, reg, val, val_len);
1685
1686 map->unlock(map->lock_arg);
1687
1688 return ret;
1689 }
1690 EXPORT_SYMBOL_GPL(regmap_raw_write);
1691
1692 /**
1693 * regmap_field_update_bits_base():
1694 * Perform a read/modify/write cycle on the register field
1695 * with change, async, force option
1696 *
1697 * @field: Register field to write to
1698 * @mask: Bitmask to change
1699 * @val: Value to be written
1700 * @change: Boolean indicating if a write was done
1701 * @async: Boolean indicating asynchronously
1702 * @force: Boolean indicating use force update
1703 *
1704 * A value of zero will be returned on success, a negative errno will
1705 * be returned in error cases.
1706 */
1707 int regmap_field_update_bits_base(struct regmap_field *field,
1708 unsigned int mask, unsigned int val,
1709 bool *change, bool async, bool force)
1710 {
1711 mask = (mask << field->shift) & field->mask;
1712
1713 return regmap_update_bits_base(field->regmap, field->reg,
1714 mask, val << field->shift,
1715 change, async, force);
1716 }
1717 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1718
1719 /**
1720 * regmap_field_write(): Write a value to a single register field
1721 *
1722 * @field: Register field to write to
1723 * @val: Value to be written
1724 *
1725 * A value of zero will be returned on success, a negative errno will
1726 * be returned in error cases.
1727 */
1728 int regmap_field_write(struct regmap_field *field, unsigned int val)
1729 {
1730 return regmap_update_bits(field->regmap, field->reg,
1731 field->mask, val << field->shift);
1732 }
1733 EXPORT_SYMBOL_GPL(regmap_field_write);
1734
1735 /**
1736 * regmap_field_update_bits(): Perform a read/modify/write cycle
1737 * on the register field
1738 *
1739 * @field: Register field to write to
1740 * @mask: Bitmask to change
1741 * @val: Value to be written
1742 *
1743 * A value of zero will be returned on success, a negative errno will
1744 * be returned in error cases.
1745 */
1746 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1747 {
1748 mask = (mask << field->shift) & field->mask;
1749
1750 return regmap_update_bits(field->regmap, field->reg,
1751 mask, val << field->shift);
1752 }
1753 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1754
1755 /**
1756 * regmap_fields_write(): Write a value to a single register field with port ID
1757 *
1758 * @field: Register field to write to
1759 * @id: port ID
1760 * @val: Value to be written
1761 *
1762 * A value of zero will be returned on success, a negative errno will
1763 * be returned in error cases.
1764 */
1765 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1766 unsigned int val)
1767 {
1768 if (id >= field->id_size)
1769 return -EINVAL;
1770
1771 return regmap_update_bits(field->regmap,
1772 field->reg + (field->id_offset * id),
1773 field->mask, val << field->shift);
1774 }
1775 EXPORT_SYMBOL_GPL(regmap_fields_write);
1776
1777 int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1778 unsigned int val)
1779 {
1780 if (id >= field->id_size)
1781 return -EINVAL;
1782
1783 return regmap_write_bits(field->regmap,
1784 field->reg + (field->id_offset * id),
1785 field->mask, val << field->shift);
1786 }
1787 EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1788
1789 /**
1790 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1791 * on the register field
1792 *
1793 * @field: Register field to write to
1794 * @id: port ID
1795 * @mask: Bitmask to change
1796 * @val: Value to be written
1797 *
1798 * A value of zero will be returned on success, a negative errno will
1799 * be returned in error cases.
1800 */
1801 int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1802 unsigned int mask, unsigned int val)
1803 {
1804 if (id >= field->id_size)
1805 return -EINVAL;
1806
1807 mask = (mask << field->shift) & field->mask;
1808
1809 return regmap_update_bits(field->regmap,
1810 field->reg + (field->id_offset * id),
1811 mask, val << field->shift);
1812 }
1813 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1814
1815 /*
1816 * regmap_bulk_write(): Write multiple registers to the device
1817 *
1818 * @map: Register map to write to
1819 * @reg: First register to be write from
1820 * @val: Block of data to be written, in native register size for device
1821 * @val_count: Number of registers to write
1822 *
1823 * This function is intended to be used for writing a large block of
1824 * data to the device either in single transfer or multiple transfer.
1825 *
1826 * A value of zero will be returned on success, a negative errno will
1827 * be returned in error cases.
1828 */
1829 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1830 size_t val_count)
1831 {
1832 int ret = 0, i;
1833 size_t val_bytes = map->format.val_bytes;
1834 size_t total_size = val_bytes * val_count;
1835
1836 if (map->bus && !map->format.parse_inplace)
1837 return -EINVAL;
1838 if (!IS_ALIGNED(reg, map->reg_stride))
1839 return -EINVAL;
1840
1841 /*
1842 * Some devices don't support bulk write, for
1843 * them we have a series of single write operations in the first two if
1844 * blocks.
1845 *
1846 * The first if block is used for memory mapped io. It does not allow
1847 * val_bytes of 3 for example.
1848 * The second one is used for busses which do not have this limitation
1849 * and can write arbitrary value lengths.
1850 */
1851 if (!map->bus) {
1852 map->lock(map->lock_arg);
1853 for (i = 0; i < val_count; i++) {
1854 unsigned int ival;
1855
1856 switch (val_bytes) {
1857 case 1:
1858 ival = *(u8 *)(val + (i * val_bytes));
1859 break;
1860 case 2:
1861 ival = *(u16 *)(val + (i * val_bytes));
1862 break;
1863 case 4:
1864 ival = *(u32 *)(val + (i * val_bytes));
1865 break;
1866 #ifdef CONFIG_64BIT
1867 case 8:
1868 ival = *(u64 *)(val + (i * val_bytes));
1869 break;
1870 #endif
1871 default:
1872 ret = -EINVAL;
1873 goto out;
1874 }
1875
1876 ret = _regmap_write(map, reg + (i * map->reg_stride),
1877 ival);
1878 if (ret != 0)
1879 goto out;
1880 }
1881 out:
1882 map->unlock(map->lock_arg);
1883 } else if (map->use_single_write ||
1884 (map->max_raw_write && map->max_raw_write < total_size)) {
1885 int chunk_stride = map->reg_stride;
1886 size_t chunk_size = val_bytes;
1887 size_t chunk_count = val_count;
1888
1889 if (!map->use_single_write) {
1890 chunk_size = map->max_raw_write;
1891 if (chunk_size % val_bytes)
1892 chunk_size -= chunk_size % val_bytes;
1893 chunk_count = total_size / chunk_size;
1894 chunk_stride *= chunk_size / val_bytes;
1895 }
1896
1897 map->lock(map->lock_arg);
1898 /* Write as many bytes as possible with chunk_size */
1899 for (i = 0; i < chunk_count; i++) {
1900 ret = _regmap_raw_write(map,
1901 reg + (i * chunk_stride),
1902 val + (i * chunk_size),
1903 chunk_size);
1904 if (ret)
1905 break;
1906 }
1907
1908 /* Write remaining bytes */
1909 if (!ret && chunk_size * i < total_size) {
1910 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1911 val + (i * chunk_size),
1912 total_size - i * chunk_size);
1913 }
1914 map->unlock(map->lock_arg);
1915 } else {
1916 void *wval;
1917
1918 if (!val_count)
1919 return -EINVAL;
1920
1921 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1922 if (!wval) {
1923 dev_err(map->dev, "Error in memory allocation\n");
1924 return -ENOMEM;
1925 }
1926 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1927 map->format.parse_inplace(wval + i);
1928
1929 map->lock(map->lock_arg);
1930 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1931 map->unlock(map->lock_arg);
1932
1933 kfree(wval);
1934 }
1935 return ret;
1936 }
1937 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1938
1939 /*
1940 * _regmap_raw_multi_reg_write()
1941 *
1942 * the (register,newvalue) pairs in regs have not been formatted, but
1943 * they are all in the same page and have been changed to being page
1944 * relative. The page register has been written if that was necessary.
1945 */
1946 static int _regmap_raw_multi_reg_write(struct regmap *map,
1947 const struct reg_sequence *regs,
1948 size_t num_regs)
1949 {
1950 int ret;
1951 void *buf;
1952 int i;
1953 u8 *u8;
1954 size_t val_bytes = map->format.val_bytes;
1955 size_t reg_bytes = map->format.reg_bytes;
1956 size_t pad_bytes = map->format.pad_bytes;
1957 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1958 size_t len = pair_size * num_regs;
1959
1960 if (!len)
1961 return -EINVAL;
1962
1963 buf = kzalloc(len, GFP_KERNEL);
1964 if (!buf)
1965 return -ENOMEM;
1966
1967 /* We have to linearise by hand. */
1968
1969 u8 = buf;
1970
1971 for (i = 0; i < num_regs; i++) {
1972 unsigned int reg = regs[i].reg;
1973 unsigned int val = regs[i].def;
1974 trace_regmap_hw_write_start(map, reg, 1);
1975 map->format.format_reg(u8, reg, map->reg_shift);
1976 u8 += reg_bytes + pad_bytes;
1977 map->format.format_val(u8, val, 0);
1978 u8 += val_bytes;
1979 }
1980 u8 = buf;
1981 *u8 |= map->write_flag_mask;
1982
1983 ret = map->bus->write(map->bus_context, buf, len);
1984
1985 kfree(buf);
1986
1987 for (i = 0; i < num_regs; i++) {
1988 int reg = regs[i].reg;
1989 trace_regmap_hw_write_done(map, reg, 1);
1990 }
1991 return ret;
1992 }
1993
1994 static unsigned int _regmap_register_page(struct regmap *map,
1995 unsigned int reg,
1996 struct regmap_range_node *range)
1997 {
1998 unsigned int win_page = (reg - range->range_min) / range->window_len;
1999
2000 return win_page;
2001 }
2002
2003 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2004 struct reg_sequence *regs,
2005 size_t num_regs)
2006 {
2007 int ret;
2008 int i, n;
2009 struct reg_sequence *base;
2010 unsigned int this_page = 0;
2011 unsigned int page_change = 0;
2012 /*
2013 * the set of registers are not neccessarily in order, but
2014 * since the order of write must be preserved this algorithm
2015 * chops the set each time the page changes. This also applies
2016 * if there is a delay required at any point in the sequence.
2017 */
2018 base = regs;
2019 for (i = 0, n = 0; i < num_regs; i++, n++) {
2020 unsigned int reg = regs[i].reg;
2021 struct regmap_range_node *range;
2022
2023 range = _regmap_range_lookup(map, reg);
2024 if (range) {
2025 unsigned int win_page = _regmap_register_page(map, reg,
2026 range);
2027
2028 if (i == 0)
2029 this_page = win_page;
2030 if (win_page != this_page) {
2031 this_page = win_page;
2032 page_change = 1;
2033 }
2034 }
2035
2036 /* If we have both a page change and a delay make sure to
2037 * write the regs and apply the delay before we change the
2038 * page.
2039 */
2040
2041 if (page_change || regs[i].delay_us) {
2042
2043 /* For situations where the first write requires
2044 * a delay we need to make sure we don't call
2045 * raw_multi_reg_write with n=0
2046 * This can't occur with page breaks as we
2047 * never write on the first iteration
2048 */
2049 if (regs[i].delay_us && i == 0)
2050 n = 1;
2051
2052 ret = _regmap_raw_multi_reg_write(map, base, n);
2053 if (ret != 0)
2054 return ret;
2055
2056 if (regs[i].delay_us)
2057 udelay(regs[i].delay_us);
2058
2059 base += n;
2060 n = 0;
2061
2062 if (page_change) {
2063 ret = _regmap_select_page(map,
2064 &base[n].reg,
2065 range, 1);
2066 if (ret != 0)
2067 return ret;
2068
2069 page_change = 0;
2070 }
2071
2072 }
2073
2074 }
2075 if (n > 0)
2076 return _regmap_raw_multi_reg_write(map, base, n);
2077 return 0;
2078 }
2079
2080 static int _regmap_multi_reg_write(struct regmap *map,
2081 const struct reg_sequence *regs,
2082 size_t num_regs)
2083 {
2084 int i;
2085 int ret;
2086
2087 if (!map->can_multi_write) {
2088 for (i = 0; i < num_regs; i++) {
2089 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2090 if (ret != 0)
2091 return ret;
2092
2093 if (regs[i].delay_us)
2094 udelay(regs[i].delay_us);
2095 }
2096 return 0;
2097 }
2098
2099 if (!map->format.parse_inplace)
2100 return -EINVAL;
2101
2102 if (map->writeable_reg)
2103 for (i = 0; i < num_regs; i++) {
2104 int reg = regs[i].reg;
2105 if (!map->writeable_reg(map->dev, reg))
2106 return -EINVAL;
2107 if (!IS_ALIGNED(reg, map->reg_stride))
2108 return -EINVAL;
2109 }
2110
2111 if (!map->cache_bypass) {
2112 for (i = 0; i < num_regs; i++) {
2113 unsigned int val = regs[i].def;
2114 unsigned int reg = regs[i].reg;
2115 ret = regcache_write(map, reg, val);
2116 if (ret) {
2117 dev_err(map->dev,
2118 "Error in caching of register: %x ret: %d\n",
2119 reg, ret);
2120 return ret;
2121 }
2122 }
2123 if (map->cache_only) {
2124 map->cache_dirty = true;
2125 return 0;
2126 }
2127 }
2128
2129 WARN_ON(!map->bus);
2130
2131 for (i = 0; i < num_regs; i++) {
2132 unsigned int reg = regs[i].reg;
2133 struct regmap_range_node *range;
2134
2135 /* Coalesce all the writes between a page break or a delay
2136 * in a sequence
2137 */
2138 range = _regmap_range_lookup(map, reg);
2139 if (range || regs[i].delay_us) {
2140 size_t len = sizeof(struct reg_sequence)*num_regs;
2141 struct reg_sequence *base = kmemdup(regs, len,
2142 GFP_KERNEL);
2143 if (!base)
2144 return -ENOMEM;
2145 ret = _regmap_range_multi_paged_reg_write(map, base,
2146 num_regs);
2147 kfree(base);
2148
2149 return ret;
2150 }
2151 }
2152 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2153 }
2154
2155 /*
2156 * regmap_multi_reg_write(): Write multiple registers to the device
2157 *
2158 * where the set of register,value pairs are supplied in any order,
2159 * possibly not all in a single range.
2160 *
2161 * @map: Register map to write to
2162 * @regs: Array of structures containing register,value to be written
2163 * @num_regs: Number of registers to write
2164 *
2165 * The 'normal' block write mode will send ultimately send data on the
2166 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2167 * addressed. However, this alternative block multi write mode will send
2168 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2169 * must of course support the mode.
2170 *
2171 * A value of zero will be returned on success, a negative errno will be
2172 * returned in error cases.
2173 */
2174 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2175 int num_regs)
2176 {
2177 int ret;
2178
2179 map->lock(map->lock_arg);
2180
2181 ret = _regmap_multi_reg_write(map, regs, num_regs);
2182
2183 map->unlock(map->lock_arg);
2184
2185 return ret;
2186 }
2187 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2188
2189 /*
2190 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2191 * device but not the cache
2192 *
2193 * where the set of register are supplied in any order
2194 *
2195 * @map: Register map to write to
2196 * @regs: Array of structures containing register,value to be written
2197 * @num_regs: Number of registers to write
2198 *
2199 * This function is intended to be used for writing a large block of data
2200 * atomically to the device in single transfer for those I2C client devices
2201 * that implement this alternative block write mode.
2202 *
2203 * A value of zero will be returned on success, a negative errno will
2204 * be returned in error cases.
2205 */
2206 int regmap_multi_reg_write_bypassed(struct regmap *map,
2207 const struct reg_sequence *regs,
2208 int num_regs)
2209 {
2210 int ret;
2211 bool bypass;
2212
2213 map->lock(map->lock_arg);
2214
2215 bypass = map->cache_bypass;
2216 map->cache_bypass = true;
2217
2218 ret = _regmap_multi_reg_write(map, regs, num_regs);
2219
2220 map->cache_bypass = bypass;
2221
2222 map->unlock(map->lock_arg);
2223
2224 return ret;
2225 }
2226 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2227
2228 /**
2229 * regmap_raw_write_async(): Write raw values to one or more registers
2230 * asynchronously
2231 *
2232 * @map: Register map to write to
2233 * @reg: Initial register to write to
2234 * @val: Block of data to be written, laid out for direct transmission to the
2235 * device. Must be valid until regmap_async_complete() is called.
2236 * @val_len: Length of data pointed to by val.
2237 *
2238 * This function is intended to be used for things like firmware
2239 * download where a large block of data needs to be transferred to the
2240 * device. No formatting will be done on the data provided.
2241 *
2242 * If supported by the underlying bus the write will be scheduled
2243 * asynchronously, helping maximise I/O speed on higher speed buses
2244 * like SPI. regmap_async_complete() can be called to ensure that all
2245 * asynchrnous writes have been completed.
2246 *
2247 * A value of zero will be returned on success, a negative errno will
2248 * be returned in error cases.
2249 */
2250 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2251 const void *val, size_t val_len)
2252 {
2253 int ret;
2254
2255 if (val_len % map->format.val_bytes)
2256 return -EINVAL;
2257 if (!IS_ALIGNED(reg, map->reg_stride))
2258 return -EINVAL;
2259
2260 map->lock(map->lock_arg);
2261
2262 map->async = true;
2263
2264 ret = _regmap_raw_write(map, reg, val, val_len);
2265
2266 map->async = false;
2267
2268 map->unlock(map->lock_arg);
2269
2270 return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2273
2274 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2275 unsigned int val_len)
2276 {
2277 struct regmap_range_node *range;
2278 u8 *u8 = map->work_buf;
2279 int ret;
2280
2281 WARN_ON(!map->bus);
2282
2283 range = _regmap_range_lookup(map, reg);
2284 if (range) {
2285 ret = _regmap_select_page(map, &reg, range,
2286 val_len / map->format.val_bytes);
2287 if (ret != 0)
2288 return ret;
2289 }
2290
2291 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2292
2293 /*
2294 * Some buses or devices flag reads by setting the high bits in the
2295 * register address; since it's always the high bits for all
2296 * current formats we can do this here rather than in
2297 * formatting. This may break if we get interesting formats.
2298 */
2299 u8[0] |= map->read_flag_mask;
2300
2301 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2302
2303 ret = map->bus->read(map->bus_context, map->work_buf,
2304 map->format.reg_bytes + map->format.pad_bytes,
2305 val, val_len);
2306
2307 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2308
2309 return ret;
2310 }
2311
2312 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2313 unsigned int *val)
2314 {
2315 struct regmap *map = context;
2316
2317 return map->bus->reg_read(map->bus_context, reg, val);
2318 }
2319
2320 static int _regmap_bus_read(void *context, unsigned int reg,
2321 unsigned int *val)
2322 {
2323 int ret;
2324 struct regmap *map = context;
2325
2326 if (!map->format.parse_val)
2327 return -EINVAL;
2328
2329 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2330 if (ret == 0)
2331 *val = map->format.parse_val(map->work_buf);
2332
2333 return ret;
2334 }
2335
2336 static int _regmap_read(struct regmap *map, unsigned int reg,
2337 unsigned int *val)
2338 {
2339 int ret;
2340 void *context = _regmap_map_get_context(map);
2341
2342 if (!map->cache_bypass) {
2343 ret = regcache_read(map, reg, val);
2344 if (ret == 0)
2345 return 0;
2346 }
2347
2348 if (map->cache_only)
2349 return -EBUSY;
2350
2351 if (!regmap_readable(map, reg))
2352 return -EIO;
2353
2354 ret = map->reg_read(context, reg, val);
2355 if (ret == 0) {
2356 #ifdef LOG_DEVICE
2357 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2358 dev_info(map->dev, "%x => %x\n", reg, *val);
2359 #endif
2360
2361 trace_regmap_reg_read(map, reg, *val);
2362
2363 if (!map->cache_bypass)
2364 regcache_write(map, reg, *val);
2365 }
2366
2367 return ret;
2368 }
2369
2370 /**
2371 * regmap_read(): Read a value from a single register
2372 *
2373 * @map: Register map to read from
2374 * @reg: Register to be read from
2375 * @val: Pointer to store read value
2376 *
2377 * A value of zero will be returned on success, a negative errno will
2378 * be returned in error cases.
2379 */
2380 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2381 {
2382 int ret;
2383
2384 if (!IS_ALIGNED(reg, map->reg_stride))
2385 return -EINVAL;
2386
2387 map->lock(map->lock_arg);
2388
2389 ret = _regmap_read(map, reg, val);
2390
2391 map->unlock(map->lock_arg);
2392
2393 return ret;
2394 }
2395 EXPORT_SYMBOL_GPL(regmap_read);
2396
2397 /**
2398 * regmap_raw_read(): Read raw data from the device
2399 *
2400 * @map: Register map to read from
2401 * @reg: First register to be read from
2402 * @val: Pointer to store read value
2403 * @val_len: Size of data to read
2404 *
2405 * A value of zero will be returned on success, a negative errno will
2406 * be returned in error cases.
2407 */
2408 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2409 size_t val_len)
2410 {
2411 size_t val_bytes = map->format.val_bytes;
2412 size_t val_count = val_len / val_bytes;
2413 unsigned int v;
2414 int ret, i;
2415
2416 if (!map->bus)
2417 return -EINVAL;
2418 if (val_len % map->format.val_bytes)
2419 return -EINVAL;
2420 if (!IS_ALIGNED(reg, map->reg_stride))
2421 return -EINVAL;
2422 if (val_count == 0)
2423 return -EINVAL;
2424
2425 map->lock(map->lock_arg);
2426
2427 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2428 map->cache_type == REGCACHE_NONE) {
2429 if (!map->bus->read) {
2430 ret = -ENOTSUPP;
2431 goto out;
2432 }
2433 if (map->max_raw_read && map->max_raw_read < val_len) {
2434 ret = -E2BIG;
2435 goto out;
2436 }
2437
2438 /* Physical block read if there's no cache involved */
2439 ret = _regmap_raw_read(map, reg, val, val_len);
2440
2441 } else {
2442 /* Otherwise go word by word for the cache; should be low
2443 * cost as we expect to hit the cache.
2444 */
2445 for (i = 0; i < val_count; i++) {
2446 ret = _regmap_read(map, reg + (i * map->reg_stride),
2447 &v);
2448 if (ret != 0)
2449 goto out;
2450
2451 map->format.format_val(val + (i * val_bytes), v, 0);
2452 }
2453 }
2454
2455 out:
2456 map->unlock(map->lock_arg);
2457
2458 return ret;
2459 }
2460 EXPORT_SYMBOL_GPL(regmap_raw_read);
2461
2462 /**
2463 * regmap_field_read(): Read a value to a single register field
2464 *
2465 * @field: Register field to read from
2466 * @val: Pointer to store read value
2467 *
2468 * A value of zero will be returned on success, a negative errno will
2469 * be returned in error cases.
2470 */
2471 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2472 {
2473 int ret;
2474 unsigned int reg_val;
2475 ret = regmap_read(field->regmap, field->reg, &reg_val);
2476 if (ret != 0)
2477 return ret;
2478
2479 reg_val &= field->mask;
2480 reg_val >>= field->shift;
2481 *val = reg_val;
2482
2483 return ret;
2484 }
2485 EXPORT_SYMBOL_GPL(regmap_field_read);
2486
2487 /**
2488 * regmap_fields_read(): Read a value to a single register field with port ID
2489 *
2490 * @field: Register field to read from
2491 * @id: port ID
2492 * @val: Pointer to store read value
2493 *
2494 * A value of zero will be returned on success, a negative errno will
2495 * be returned in error cases.
2496 */
2497 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2498 unsigned int *val)
2499 {
2500 int ret;
2501 unsigned int reg_val;
2502
2503 if (id >= field->id_size)
2504 return -EINVAL;
2505
2506 ret = regmap_read(field->regmap,
2507 field->reg + (field->id_offset * id),
2508 &reg_val);
2509 if (ret != 0)
2510 return ret;
2511
2512 reg_val &= field->mask;
2513 reg_val >>= field->shift;
2514 *val = reg_val;
2515
2516 return ret;
2517 }
2518 EXPORT_SYMBOL_GPL(regmap_fields_read);
2519
2520 /**
2521 * regmap_bulk_read(): Read multiple registers from the device
2522 *
2523 * @map: Register map to read from
2524 * @reg: First register to be read from
2525 * @val: Pointer to store read value, in native register size for device
2526 * @val_count: Number of registers to read
2527 *
2528 * A value of zero will be returned on success, a negative errno will
2529 * be returned in error cases.
2530 */
2531 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2532 size_t val_count)
2533 {
2534 int ret, i;
2535 size_t val_bytes = map->format.val_bytes;
2536 bool vol = regmap_volatile_range(map, reg, val_count);
2537
2538 if (!IS_ALIGNED(reg, map->reg_stride))
2539 return -EINVAL;
2540
2541 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2542 /*
2543 * Some devices does not support bulk read, for
2544 * them we have a series of single read operations.
2545 */
2546 size_t total_size = val_bytes * val_count;
2547
2548 if (!map->use_single_read &&
2549 (!map->max_raw_read || map->max_raw_read > total_size)) {
2550 ret = regmap_raw_read(map, reg, val,
2551 val_bytes * val_count);
2552 if (ret != 0)
2553 return ret;
2554 } else {
2555 /*
2556 * Some devices do not support bulk read or do not
2557 * support large bulk reads, for them we have a series
2558 * of read operations.
2559 */
2560 int chunk_stride = map->reg_stride;
2561 size_t chunk_size = val_bytes;
2562 size_t chunk_count = val_count;
2563
2564 if (!map->use_single_read) {
2565 chunk_size = map->max_raw_read;
2566 if (chunk_size % val_bytes)
2567 chunk_size -= chunk_size % val_bytes;
2568 chunk_count = total_size / chunk_size;
2569 chunk_stride *= chunk_size / val_bytes;
2570 }
2571
2572 /* Read bytes that fit into a multiple of chunk_size */
2573 for (i = 0; i < chunk_count; i++) {
2574 ret = regmap_raw_read(map,
2575 reg + (i * chunk_stride),
2576 val + (i * chunk_size),
2577 chunk_size);
2578 if (ret != 0)
2579 return ret;
2580 }
2581
2582 /* Read remaining bytes */
2583 if (chunk_size * i < total_size) {
2584 ret = regmap_raw_read(map,
2585 reg + (i * chunk_stride),
2586 val + (i * chunk_size),
2587 total_size - i * chunk_size);
2588 if (ret != 0)
2589 return ret;
2590 }
2591 }
2592
2593 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2594 map->format.parse_inplace(val + i);
2595 } else {
2596 for (i = 0; i < val_count; i++) {
2597 unsigned int ival;
2598 ret = regmap_read(map, reg + (i * map->reg_stride),
2599 &ival);
2600 if (ret != 0)
2601 return ret;
2602
2603 if (map->format.format_val) {
2604 map->format.format_val(val + (i * val_bytes), ival, 0);
2605 } else {
2606 /* Devices providing read and write
2607 * operations can use the bulk I/O
2608 * functions if they define a val_bytes,
2609 * we assume that the values are native
2610 * endian.
2611 */
2612 #ifdef CONFIG_64BIT
2613 u64 *u64 = val;
2614 #endif
2615 u32 *u32 = val;
2616 u16 *u16 = val;
2617 u8 *u8 = val;
2618
2619 switch (map->format.val_bytes) {
2620 #ifdef CONFIG_64BIT
2621 case 8:
2622 u64[i] = ival;
2623 break;
2624 #endif
2625 case 4:
2626 u32[i] = ival;
2627 break;
2628 case 2:
2629 u16[i] = ival;
2630 break;
2631 case 1:
2632 u8[i] = ival;
2633 break;
2634 default:
2635 return -EINVAL;
2636 }
2637 }
2638 }
2639 }
2640
2641 return 0;
2642 }
2643 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2644
2645 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2646 unsigned int mask, unsigned int val,
2647 bool *change, bool force_write)
2648 {
2649 int ret;
2650 unsigned int tmp, orig;
2651
2652 if (change)
2653 *change = false;
2654
2655 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2656 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2657 if (ret == 0 && change)
2658 *change = true;
2659 } else {
2660 ret = _regmap_read(map, reg, &orig);
2661 if (ret != 0)
2662 return ret;
2663
2664 tmp = orig & ~mask;
2665 tmp |= val & mask;
2666
2667 if (force_write || (tmp != orig)) {
2668 ret = _regmap_write(map, reg, tmp);
2669 if (ret == 0 && change)
2670 *change = true;
2671 }
2672 }
2673
2674 return ret;
2675 }
2676
2677 /**
2678 * regmap_update_bits_base:
2679 * Perform a read/modify/write cycle on the
2680 * register map with change, async, force option
2681 *
2682 * @map: Register map to update
2683 * @reg: Register to update
2684 * @mask: Bitmask to change
2685 * @val: New value for bitmask
2686 * @change: Boolean indicating if a write was done
2687 * @async: Boolean indicating asynchronously
2688 * @force: Boolean indicating use force update
2689 *
2690 * if async was true,
2691 * With most buses the read must be done synchronously so this is most
2692 * useful for devices with a cache which do not need to interact with
2693 * the hardware to determine the current register value.
2694 *
2695 * Returns zero for success, a negative number on error.
2696 */
2697 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2698 unsigned int mask, unsigned int val,
2699 bool *change, bool async, bool force)
2700 {
2701 int ret;
2702
2703 map->lock(map->lock_arg);
2704
2705 map->async = async;
2706
2707 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2708
2709 map->async = false;
2710
2711 map->unlock(map->lock_arg);
2712
2713 return ret;
2714 }
2715 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2716
2717 /**
2718 * regmap_write_bits: Perform a read/modify/write cycle on the register map
2719 *
2720 * @map: Register map to update
2721 * @reg: Register to update
2722 * @mask: Bitmask to change
2723 * @val: New value for bitmask
2724 *
2725 * Returns zero for success, a negative number on error.
2726 */
2727 int regmap_write_bits(struct regmap *map, unsigned int reg,
2728 unsigned int mask, unsigned int val)
2729 {
2730 int ret;
2731
2732 map->lock(map->lock_arg);
2733 ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2734 map->unlock(map->lock_arg);
2735
2736 return ret;
2737 }
2738 EXPORT_SYMBOL_GPL(regmap_write_bits);
2739
2740 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2741 {
2742 struct regmap *map = async->map;
2743 bool wake;
2744
2745 trace_regmap_async_io_complete(map);
2746
2747 spin_lock(&map->async_lock);
2748 list_move(&async->list, &map->async_free);
2749 wake = list_empty(&map->async_list);
2750
2751 if (ret != 0)
2752 map->async_ret = ret;
2753
2754 spin_unlock(&map->async_lock);
2755
2756 if (wake)
2757 wake_up(&map->async_waitq);
2758 }
2759 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2760
2761 static int regmap_async_is_done(struct regmap *map)
2762 {
2763 unsigned long flags;
2764 int ret;
2765
2766 spin_lock_irqsave(&map->async_lock, flags);
2767 ret = list_empty(&map->async_list);
2768 spin_unlock_irqrestore(&map->async_lock, flags);
2769
2770 return ret;
2771 }
2772
2773 /**
2774 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2775 *
2776 * @map: Map to operate on.
2777 *
2778 * Blocks until any pending asynchronous I/O has completed. Returns
2779 * an error code for any failed I/O operations.
2780 */
2781 int regmap_async_complete(struct regmap *map)
2782 {
2783 unsigned long flags;
2784 int ret;
2785
2786 /* Nothing to do with no async support */
2787 if (!map->bus || !map->bus->async_write)
2788 return 0;
2789
2790 trace_regmap_async_complete_start(map);
2791
2792 wait_event(map->async_waitq, regmap_async_is_done(map));
2793
2794 spin_lock_irqsave(&map->async_lock, flags);
2795 ret = map->async_ret;
2796 map->async_ret = 0;
2797 spin_unlock_irqrestore(&map->async_lock, flags);
2798
2799 trace_regmap_async_complete_done(map);
2800
2801 return ret;
2802 }
2803 EXPORT_SYMBOL_GPL(regmap_async_complete);
2804
2805 /**
2806 * regmap_register_patch: Register and apply register updates to be applied
2807 * on device initialistion
2808 *
2809 * @map: Register map to apply updates to.
2810 * @regs: Values to update.
2811 * @num_regs: Number of entries in regs.
2812 *
2813 * Register a set of register updates to be applied to the device
2814 * whenever the device registers are synchronised with the cache and
2815 * apply them immediately. Typically this is used to apply
2816 * corrections to be applied to the device defaults on startup, such
2817 * as the updates some vendors provide to undocumented registers.
2818 *
2819 * The caller must ensure that this function cannot be called
2820 * concurrently with either itself or regcache_sync().
2821 */
2822 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2823 int num_regs)
2824 {
2825 struct reg_sequence *p;
2826 int ret;
2827 bool bypass;
2828
2829 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2830 num_regs))
2831 return 0;
2832
2833 p = krealloc(map->patch,
2834 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2835 GFP_KERNEL);
2836 if (p) {
2837 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2838 map->patch = p;
2839 map->patch_regs += num_regs;
2840 } else {
2841 return -ENOMEM;
2842 }
2843
2844 map->lock(map->lock_arg);
2845
2846 bypass = map->cache_bypass;
2847
2848 map->cache_bypass = true;
2849 map->async = true;
2850
2851 ret = _regmap_multi_reg_write(map, regs, num_regs);
2852
2853 map->async = false;
2854 map->cache_bypass = bypass;
2855
2856 map->unlock(map->lock_arg);
2857
2858 regmap_async_complete(map);
2859
2860 return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(regmap_register_patch);
2863
2864 /*
2865 * regmap_get_val_bytes(): Report the size of a register value
2866 *
2867 * Report the size of a register value, mainly intended to for use by
2868 * generic infrastructure built on top of regmap.
2869 */
2870 int regmap_get_val_bytes(struct regmap *map)
2871 {
2872 if (map->format.format_write)
2873 return -EINVAL;
2874
2875 return map->format.val_bytes;
2876 }
2877 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2878
2879 /**
2880 * regmap_get_max_register(): Report the max register value
2881 *
2882 * Report the max register value, mainly intended to for use by
2883 * generic infrastructure built on top of regmap.
2884 */
2885 int regmap_get_max_register(struct regmap *map)
2886 {
2887 return map->max_register ? map->max_register : -EINVAL;
2888 }
2889 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2890
2891 /**
2892 * regmap_get_reg_stride(): Report the register address stride
2893 *
2894 * Report the register address stride, mainly intended to for use by
2895 * generic infrastructure built on top of regmap.
2896 */
2897 int regmap_get_reg_stride(struct regmap *map)
2898 {
2899 return map->reg_stride;
2900 }
2901 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2902
2903 int regmap_parse_val(struct regmap *map, const void *buf,
2904 unsigned int *val)
2905 {
2906 if (!map->format.parse_val)
2907 return -EINVAL;
2908
2909 *val = map->format.parse_val(buf);
2910
2911 return 0;
2912 }
2913 EXPORT_SYMBOL_GPL(regmap_parse_val);
2914
2915 static int __init regmap_initcall(void)
2916 {
2917 regmap_debugfs_initcall();
2918
2919 return 0;
2920 }
2921 postcore_initcall(regmap_initcall);
This page took 0.110777 seconds and 5 git commands to generate.