regmap: Add bypassed version of regmap_multi_reg_write
[deliverable/linux.git] / drivers / base / regmap / regmap.c
1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23
24 #include "internal.h"
25
26 /*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32 #undef LOG_DEVICE
33
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 unsigned int mask, unsigned int val,
36 bool *change);
37
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 unsigned int val);
44
45 bool regmap_reg_in_ranges(unsigned int reg,
46 const struct regmap_range *ranges,
47 unsigned int nranges)
48 {
49 const struct regmap_range *r;
50 int i;
51
52 for (i = 0, r = ranges; i < nranges; i++, r++)
53 if (regmap_reg_in_range(reg, r))
54 return true;
55 return false;
56 }
57 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
58
59 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
60 const struct regmap_access_table *table)
61 {
62 /* Check "no ranges" first */
63 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
64 return false;
65
66 /* In case zero "yes ranges" are supplied, any reg is OK */
67 if (!table->n_yes_ranges)
68 return true;
69
70 return regmap_reg_in_ranges(reg, table->yes_ranges,
71 table->n_yes_ranges);
72 }
73 EXPORT_SYMBOL_GPL(regmap_check_range_table);
74
75 bool regmap_writeable(struct regmap *map, unsigned int reg)
76 {
77 if (map->max_register && reg > map->max_register)
78 return false;
79
80 if (map->writeable_reg)
81 return map->writeable_reg(map->dev, reg);
82
83 if (map->wr_table)
84 return regmap_check_range_table(map, reg, map->wr_table);
85
86 return true;
87 }
88
89 bool regmap_readable(struct regmap *map, unsigned int reg)
90 {
91 if (map->max_register && reg > map->max_register)
92 return false;
93
94 if (map->format.format_write)
95 return false;
96
97 if (map->readable_reg)
98 return map->readable_reg(map->dev, reg);
99
100 if (map->rd_table)
101 return regmap_check_range_table(map, reg, map->rd_table);
102
103 return true;
104 }
105
106 bool regmap_volatile(struct regmap *map, unsigned int reg)
107 {
108 if (!regmap_readable(map, reg))
109 return false;
110
111 if (map->volatile_reg)
112 return map->volatile_reg(map->dev, reg);
113
114 if (map->volatile_table)
115 return regmap_check_range_table(map, reg, map->volatile_table);
116
117 if (map->cache_ops)
118 return false;
119 else
120 return true;
121 }
122
123 bool regmap_precious(struct regmap *map, unsigned int reg)
124 {
125 if (!regmap_readable(map, reg))
126 return false;
127
128 if (map->precious_reg)
129 return map->precious_reg(map->dev, reg);
130
131 if (map->precious_table)
132 return regmap_check_range_table(map, reg, map->precious_table);
133
134 return false;
135 }
136
137 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
138 size_t num)
139 {
140 unsigned int i;
141
142 for (i = 0; i < num; i++)
143 if (!regmap_volatile(map, reg + i))
144 return false;
145
146 return true;
147 }
148
149 static void regmap_format_2_6_write(struct regmap *map,
150 unsigned int reg, unsigned int val)
151 {
152 u8 *out = map->work_buf;
153
154 *out = (reg << 6) | val;
155 }
156
157 static void regmap_format_4_12_write(struct regmap *map,
158 unsigned int reg, unsigned int val)
159 {
160 __be16 *out = map->work_buf;
161 *out = cpu_to_be16((reg << 12) | val);
162 }
163
164 static void regmap_format_7_9_write(struct regmap *map,
165 unsigned int reg, unsigned int val)
166 {
167 __be16 *out = map->work_buf;
168 *out = cpu_to_be16((reg << 9) | val);
169 }
170
171 static void regmap_format_10_14_write(struct regmap *map,
172 unsigned int reg, unsigned int val)
173 {
174 u8 *out = map->work_buf;
175
176 out[2] = val;
177 out[1] = (val >> 8) | (reg << 6);
178 out[0] = reg >> 2;
179 }
180
181 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182 {
183 u8 *b = buf;
184
185 b[0] = val << shift;
186 }
187
188 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189 {
190 __be16 *b = buf;
191
192 b[0] = cpu_to_be16(val << shift);
193 }
194
195 static void regmap_format_16_native(void *buf, unsigned int val,
196 unsigned int shift)
197 {
198 *(u16 *)buf = val << shift;
199 }
200
201 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
202 {
203 u8 *b = buf;
204
205 val <<= shift;
206
207 b[0] = val >> 16;
208 b[1] = val >> 8;
209 b[2] = val;
210 }
211
212 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
213 {
214 __be32 *b = buf;
215
216 b[0] = cpu_to_be32(val << shift);
217 }
218
219 static void regmap_format_32_native(void *buf, unsigned int val,
220 unsigned int shift)
221 {
222 *(u32 *)buf = val << shift;
223 }
224
225 static void regmap_parse_inplace_noop(void *buf)
226 {
227 }
228
229 static unsigned int regmap_parse_8(const void *buf)
230 {
231 const u8 *b = buf;
232
233 return b[0];
234 }
235
236 static unsigned int regmap_parse_16_be(const void *buf)
237 {
238 const __be16 *b = buf;
239
240 return be16_to_cpu(b[0]);
241 }
242
243 static void regmap_parse_16_be_inplace(void *buf)
244 {
245 __be16 *b = buf;
246
247 b[0] = be16_to_cpu(b[0]);
248 }
249
250 static unsigned int regmap_parse_16_native(const void *buf)
251 {
252 return *(u16 *)buf;
253 }
254
255 static unsigned int regmap_parse_24(const void *buf)
256 {
257 const u8 *b = buf;
258 unsigned int ret = b[2];
259 ret |= ((unsigned int)b[1]) << 8;
260 ret |= ((unsigned int)b[0]) << 16;
261
262 return ret;
263 }
264
265 static unsigned int regmap_parse_32_be(const void *buf)
266 {
267 const __be32 *b = buf;
268
269 return be32_to_cpu(b[0]);
270 }
271
272 static void regmap_parse_32_be_inplace(void *buf)
273 {
274 __be32 *b = buf;
275
276 b[0] = be32_to_cpu(b[0]);
277 }
278
279 static unsigned int regmap_parse_32_native(const void *buf)
280 {
281 return *(u32 *)buf;
282 }
283
284 static void regmap_lock_mutex(void *__map)
285 {
286 struct regmap *map = __map;
287 mutex_lock(&map->mutex);
288 }
289
290 static void regmap_unlock_mutex(void *__map)
291 {
292 struct regmap *map = __map;
293 mutex_unlock(&map->mutex);
294 }
295
296 static void regmap_lock_spinlock(void *__map)
297 __acquires(&map->spinlock)
298 {
299 struct regmap *map = __map;
300 unsigned long flags;
301
302 spin_lock_irqsave(&map->spinlock, flags);
303 map->spinlock_flags = flags;
304 }
305
306 static void regmap_unlock_spinlock(void *__map)
307 __releases(&map->spinlock)
308 {
309 struct regmap *map = __map;
310 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
311 }
312
313 static void dev_get_regmap_release(struct device *dev, void *res)
314 {
315 /*
316 * We don't actually have anything to do here; the goal here
317 * is not to manage the regmap but to provide a simple way to
318 * get the regmap back given a struct device.
319 */
320 }
321
322 static bool _regmap_range_add(struct regmap *map,
323 struct regmap_range_node *data)
324 {
325 struct rb_root *root = &map->range_tree;
326 struct rb_node **new = &(root->rb_node), *parent = NULL;
327
328 while (*new) {
329 struct regmap_range_node *this =
330 container_of(*new, struct regmap_range_node, node);
331
332 parent = *new;
333 if (data->range_max < this->range_min)
334 new = &((*new)->rb_left);
335 else if (data->range_min > this->range_max)
336 new = &((*new)->rb_right);
337 else
338 return false;
339 }
340
341 rb_link_node(&data->node, parent, new);
342 rb_insert_color(&data->node, root);
343
344 return true;
345 }
346
347 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
348 unsigned int reg)
349 {
350 struct rb_node *node = map->range_tree.rb_node;
351
352 while (node) {
353 struct regmap_range_node *this =
354 container_of(node, struct regmap_range_node, node);
355
356 if (reg < this->range_min)
357 node = node->rb_left;
358 else if (reg > this->range_max)
359 node = node->rb_right;
360 else
361 return this;
362 }
363
364 return NULL;
365 }
366
367 static void regmap_range_exit(struct regmap *map)
368 {
369 struct rb_node *next;
370 struct regmap_range_node *range_node;
371
372 next = rb_first(&map->range_tree);
373 while (next) {
374 range_node = rb_entry(next, struct regmap_range_node, node);
375 next = rb_next(&range_node->node);
376 rb_erase(&range_node->node, &map->range_tree);
377 kfree(range_node);
378 }
379
380 kfree(map->selector_work_buf);
381 }
382
383 /**
384 * regmap_init(): Initialise register map
385 *
386 * @dev: Device that will be interacted with
387 * @bus: Bus-specific callbacks to use with device
388 * @bus_context: Data passed to bus-specific callbacks
389 * @config: Configuration for register map
390 *
391 * The return value will be an ERR_PTR() on error or a valid pointer to
392 * a struct regmap. This function should generally not be called
393 * directly, it should be called by bus-specific init functions.
394 */
395 struct regmap *regmap_init(struct device *dev,
396 const struct regmap_bus *bus,
397 void *bus_context,
398 const struct regmap_config *config)
399 {
400 struct regmap *map, **m;
401 int ret = -EINVAL;
402 enum regmap_endian reg_endian, val_endian;
403 int i, j;
404
405 if (!config)
406 goto err;
407
408 map = kzalloc(sizeof(*map), GFP_KERNEL);
409 if (map == NULL) {
410 ret = -ENOMEM;
411 goto err;
412 }
413
414 if (config->lock && config->unlock) {
415 map->lock = config->lock;
416 map->unlock = config->unlock;
417 map->lock_arg = config->lock_arg;
418 } else {
419 if ((bus && bus->fast_io) ||
420 config->fast_io) {
421 spin_lock_init(&map->spinlock);
422 map->lock = regmap_lock_spinlock;
423 map->unlock = regmap_unlock_spinlock;
424 } else {
425 mutex_init(&map->mutex);
426 map->lock = regmap_lock_mutex;
427 map->unlock = regmap_unlock_mutex;
428 }
429 map->lock_arg = map;
430 }
431 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
432 map->format.pad_bytes = config->pad_bits / 8;
433 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
434 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
435 config->val_bits + config->pad_bits, 8);
436 map->reg_shift = config->pad_bits % 8;
437 if (config->reg_stride)
438 map->reg_stride = config->reg_stride;
439 else
440 map->reg_stride = 1;
441 map->use_single_rw = config->use_single_rw;
442 map->dev = dev;
443 map->bus = bus;
444 map->bus_context = bus_context;
445 map->max_register = config->max_register;
446 map->wr_table = config->wr_table;
447 map->rd_table = config->rd_table;
448 map->volatile_table = config->volatile_table;
449 map->precious_table = config->precious_table;
450 map->writeable_reg = config->writeable_reg;
451 map->readable_reg = config->readable_reg;
452 map->volatile_reg = config->volatile_reg;
453 map->precious_reg = config->precious_reg;
454 map->cache_type = config->cache_type;
455 map->name = config->name;
456
457 spin_lock_init(&map->async_lock);
458 INIT_LIST_HEAD(&map->async_list);
459 INIT_LIST_HEAD(&map->async_free);
460 init_waitqueue_head(&map->async_waitq);
461
462 if (config->read_flag_mask || config->write_flag_mask) {
463 map->read_flag_mask = config->read_flag_mask;
464 map->write_flag_mask = config->write_flag_mask;
465 } else if (bus) {
466 map->read_flag_mask = bus->read_flag_mask;
467 }
468
469 if (!bus) {
470 map->reg_read = config->reg_read;
471 map->reg_write = config->reg_write;
472
473 map->defer_caching = false;
474 goto skip_format_initialization;
475 } else {
476 map->reg_read = _regmap_bus_read;
477 }
478
479 reg_endian = config->reg_format_endian;
480 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
481 reg_endian = bus->reg_format_endian_default;
482 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
483 reg_endian = REGMAP_ENDIAN_BIG;
484
485 val_endian = config->val_format_endian;
486 if (val_endian == REGMAP_ENDIAN_DEFAULT)
487 val_endian = bus->val_format_endian_default;
488 if (val_endian == REGMAP_ENDIAN_DEFAULT)
489 val_endian = REGMAP_ENDIAN_BIG;
490
491 switch (config->reg_bits + map->reg_shift) {
492 case 2:
493 switch (config->val_bits) {
494 case 6:
495 map->format.format_write = regmap_format_2_6_write;
496 break;
497 default:
498 goto err_map;
499 }
500 break;
501
502 case 4:
503 switch (config->val_bits) {
504 case 12:
505 map->format.format_write = regmap_format_4_12_write;
506 break;
507 default:
508 goto err_map;
509 }
510 break;
511
512 case 7:
513 switch (config->val_bits) {
514 case 9:
515 map->format.format_write = regmap_format_7_9_write;
516 break;
517 default:
518 goto err_map;
519 }
520 break;
521
522 case 10:
523 switch (config->val_bits) {
524 case 14:
525 map->format.format_write = regmap_format_10_14_write;
526 break;
527 default:
528 goto err_map;
529 }
530 break;
531
532 case 8:
533 map->format.format_reg = regmap_format_8;
534 break;
535
536 case 16:
537 switch (reg_endian) {
538 case REGMAP_ENDIAN_BIG:
539 map->format.format_reg = regmap_format_16_be;
540 break;
541 case REGMAP_ENDIAN_NATIVE:
542 map->format.format_reg = regmap_format_16_native;
543 break;
544 default:
545 goto err_map;
546 }
547 break;
548
549 case 24:
550 if (reg_endian != REGMAP_ENDIAN_BIG)
551 goto err_map;
552 map->format.format_reg = regmap_format_24;
553 break;
554
555 case 32:
556 switch (reg_endian) {
557 case REGMAP_ENDIAN_BIG:
558 map->format.format_reg = regmap_format_32_be;
559 break;
560 case REGMAP_ENDIAN_NATIVE:
561 map->format.format_reg = regmap_format_32_native;
562 break;
563 default:
564 goto err_map;
565 }
566 break;
567
568 default:
569 goto err_map;
570 }
571
572 if (val_endian == REGMAP_ENDIAN_NATIVE)
573 map->format.parse_inplace = regmap_parse_inplace_noop;
574
575 switch (config->val_bits) {
576 case 8:
577 map->format.format_val = regmap_format_8;
578 map->format.parse_val = regmap_parse_8;
579 map->format.parse_inplace = regmap_parse_inplace_noop;
580 break;
581 case 16:
582 switch (val_endian) {
583 case REGMAP_ENDIAN_BIG:
584 map->format.format_val = regmap_format_16_be;
585 map->format.parse_val = regmap_parse_16_be;
586 map->format.parse_inplace = regmap_parse_16_be_inplace;
587 break;
588 case REGMAP_ENDIAN_NATIVE:
589 map->format.format_val = regmap_format_16_native;
590 map->format.parse_val = regmap_parse_16_native;
591 break;
592 default:
593 goto err_map;
594 }
595 break;
596 case 24:
597 if (val_endian != REGMAP_ENDIAN_BIG)
598 goto err_map;
599 map->format.format_val = regmap_format_24;
600 map->format.parse_val = regmap_parse_24;
601 break;
602 case 32:
603 switch (val_endian) {
604 case REGMAP_ENDIAN_BIG:
605 map->format.format_val = regmap_format_32_be;
606 map->format.parse_val = regmap_parse_32_be;
607 map->format.parse_inplace = regmap_parse_32_be_inplace;
608 break;
609 case REGMAP_ENDIAN_NATIVE:
610 map->format.format_val = regmap_format_32_native;
611 map->format.parse_val = regmap_parse_32_native;
612 break;
613 default:
614 goto err_map;
615 }
616 break;
617 }
618
619 if (map->format.format_write) {
620 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
621 (val_endian != REGMAP_ENDIAN_BIG))
622 goto err_map;
623 map->use_single_rw = true;
624 }
625
626 if (!map->format.format_write &&
627 !(map->format.format_reg && map->format.format_val))
628 goto err_map;
629
630 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
631 if (map->work_buf == NULL) {
632 ret = -ENOMEM;
633 goto err_map;
634 }
635
636 if (map->format.format_write) {
637 map->defer_caching = false;
638 map->reg_write = _regmap_bus_formatted_write;
639 } else if (map->format.format_val) {
640 map->defer_caching = true;
641 map->reg_write = _regmap_bus_raw_write;
642 }
643
644 skip_format_initialization:
645
646 map->range_tree = RB_ROOT;
647 for (i = 0; i < config->num_ranges; i++) {
648 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
649 struct regmap_range_node *new;
650
651 /* Sanity check */
652 if (range_cfg->range_max < range_cfg->range_min) {
653 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
654 range_cfg->range_max, range_cfg->range_min);
655 goto err_range;
656 }
657
658 if (range_cfg->range_max > map->max_register) {
659 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
660 range_cfg->range_max, map->max_register);
661 goto err_range;
662 }
663
664 if (range_cfg->selector_reg > map->max_register) {
665 dev_err(map->dev,
666 "Invalid range %d: selector out of map\n", i);
667 goto err_range;
668 }
669
670 if (range_cfg->window_len == 0) {
671 dev_err(map->dev, "Invalid range %d: window_len 0\n",
672 i);
673 goto err_range;
674 }
675
676 /* Make sure, that this register range has no selector
677 or data window within its boundary */
678 for (j = 0; j < config->num_ranges; j++) {
679 unsigned sel_reg = config->ranges[j].selector_reg;
680 unsigned win_min = config->ranges[j].window_start;
681 unsigned win_max = win_min +
682 config->ranges[j].window_len - 1;
683
684 /* Allow data window inside its own virtual range */
685 if (j == i)
686 continue;
687
688 if (range_cfg->range_min <= sel_reg &&
689 sel_reg <= range_cfg->range_max) {
690 dev_err(map->dev,
691 "Range %d: selector for %d in window\n",
692 i, j);
693 goto err_range;
694 }
695
696 if (!(win_max < range_cfg->range_min ||
697 win_min > range_cfg->range_max)) {
698 dev_err(map->dev,
699 "Range %d: window for %d in window\n",
700 i, j);
701 goto err_range;
702 }
703 }
704
705 new = kzalloc(sizeof(*new), GFP_KERNEL);
706 if (new == NULL) {
707 ret = -ENOMEM;
708 goto err_range;
709 }
710
711 new->map = map;
712 new->name = range_cfg->name;
713 new->range_min = range_cfg->range_min;
714 new->range_max = range_cfg->range_max;
715 new->selector_reg = range_cfg->selector_reg;
716 new->selector_mask = range_cfg->selector_mask;
717 new->selector_shift = range_cfg->selector_shift;
718 new->window_start = range_cfg->window_start;
719 new->window_len = range_cfg->window_len;
720
721 if (_regmap_range_add(map, new) == false) {
722 dev_err(map->dev, "Failed to add range %d\n", i);
723 kfree(new);
724 goto err_range;
725 }
726
727 if (map->selector_work_buf == NULL) {
728 map->selector_work_buf =
729 kzalloc(map->format.buf_size, GFP_KERNEL);
730 if (map->selector_work_buf == NULL) {
731 ret = -ENOMEM;
732 goto err_range;
733 }
734 }
735 }
736
737 regmap_debugfs_init(map, config->name);
738
739 ret = regcache_init(map, config);
740 if (ret != 0)
741 goto err_range;
742
743 /* Add a devres resource for dev_get_regmap() */
744 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
745 if (!m) {
746 ret = -ENOMEM;
747 goto err_debugfs;
748 }
749 *m = map;
750 devres_add(dev, m);
751
752 return map;
753
754 err_debugfs:
755 regmap_debugfs_exit(map);
756 regcache_exit(map);
757 err_range:
758 regmap_range_exit(map);
759 kfree(map->work_buf);
760 err_map:
761 kfree(map);
762 err:
763 return ERR_PTR(ret);
764 }
765 EXPORT_SYMBOL_GPL(regmap_init);
766
767 static void devm_regmap_release(struct device *dev, void *res)
768 {
769 regmap_exit(*(struct regmap **)res);
770 }
771
772 /**
773 * devm_regmap_init(): Initialise managed register map
774 *
775 * @dev: Device that will be interacted with
776 * @bus: Bus-specific callbacks to use with device
777 * @bus_context: Data passed to bus-specific callbacks
778 * @config: Configuration for register map
779 *
780 * The return value will be an ERR_PTR() on error or a valid pointer
781 * to a struct regmap. This function should generally not be called
782 * directly, it should be called by bus-specific init functions. The
783 * map will be automatically freed by the device management code.
784 */
785 struct regmap *devm_regmap_init(struct device *dev,
786 const struct regmap_bus *bus,
787 void *bus_context,
788 const struct regmap_config *config)
789 {
790 struct regmap **ptr, *regmap;
791
792 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
793 if (!ptr)
794 return ERR_PTR(-ENOMEM);
795
796 regmap = regmap_init(dev, bus, bus_context, config);
797 if (!IS_ERR(regmap)) {
798 *ptr = regmap;
799 devres_add(dev, ptr);
800 } else {
801 devres_free(ptr);
802 }
803
804 return regmap;
805 }
806 EXPORT_SYMBOL_GPL(devm_regmap_init);
807
808 static void regmap_field_init(struct regmap_field *rm_field,
809 struct regmap *regmap, struct reg_field reg_field)
810 {
811 int field_bits = reg_field.msb - reg_field.lsb + 1;
812 rm_field->regmap = regmap;
813 rm_field->reg = reg_field.reg;
814 rm_field->shift = reg_field.lsb;
815 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
816 rm_field->id_size = reg_field.id_size;
817 rm_field->id_offset = reg_field.id_offset;
818 }
819
820 /**
821 * devm_regmap_field_alloc(): Allocate and initialise a register field
822 * in a register map.
823 *
824 * @dev: Device that will be interacted with
825 * @regmap: regmap bank in which this register field is located.
826 * @reg_field: Register field with in the bank.
827 *
828 * The return value will be an ERR_PTR() on error or a valid pointer
829 * to a struct regmap_field. The regmap_field will be automatically freed
830 * by the device management code.
831 */
832 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
833 struct regmap *regmap, struct reg_field reg_field)
834 {
835 struct regmap_field *rm_field = devm_kzalloc(dev,
836 sizeof(*rm_field), GFP_KERNEL);
837 if (!rm_field)
838 return ERR_PTR(-ENOMEM);
839
840 regmap_field_init(rm_field, regmap, reg_field);
841
842 return rm_field;
843
844 }
845 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
846
847 /**
848 * devm_regmap_field_free(): Free register field allocated using
849 * devm_regmap_field_alloc. Usally drivers need not call this function,
850 * as the memory allocated via devm will be freed as per device-driver
851 * life-cyle.
852 *
853 * @dev: Device that will be interacted with
854 * @field: regmap field which should be freed.
855 */
856 void devm_regmap_field_free(struct device *dev,
857 struct regmap_field *field)
858 {
859 devm_kfree(dev, field);
860 }
861 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
862
863 /**
864 * regmap_field_alloc(): Allocate and initialise a register field
865 * in a register map.
866 *
867 * @regmap: regmap bank in which this register field is located.
868 * @reg_field: Register field with in the bank.
869 *
870 * The return value will be an ERR_PTR() on error or a valid pointer
871 * to a struct regmap_field. The regmap_field should be freed by the
872 * user once its finished working with it using regmap_field_free().
873 */
874 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
875 struct reg_field reg_field)
876 {
877 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
878
879 if (!rm_field)
880 return ERR_PTR(-ENOMEM);
881
882 regmap_field_init(rm_field, regmap, reg_field);
883
884 return rm_field;
885 }
886 EXPORT_SYMBOL_GPL(regmap_field_alloc);
887
888 /**
889 * regmap_field_free(): Free register field allocated using regmap_field_alloc
890 *
891 * @field: regmap field which should be freed.
892 */
893 void regmap_field_free(struct regmap_field *field)
894 {
895 kfree(field);
896 }
897 EXPORT_SYMBOL_GPL(regmap_field_free);
898
899 /**
900 * regmap_reinit_cache(): Reinitialise the current register cache
901 *
902 * @map: Register map to operate on.
903 * @config: New configuration. Only the cache data will be used.
904 *
905 * Discard any existing register cache for the map and initialize a
906 * new cache. This can be used to restore the cache to defaults or to
907 * update the cache configuration to reflect runtime discovery of the
908 * hardware.
909 *
910 * No explicit locking is done here, the user needs to ensure that
911 * this function will not race with other calls to regmap.
912 */
913 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
914 {
915 regcache_exit(map);
916 regmap_debugfs_exit(map);
917
918 map->max_register = config->max_register;
919 map->writeable_reg = config->writeable_reg;
920 map->readable_reg = config->readable_reg;
921 map->volatile_reg = config->volatile_reg;
922 map->precious_reg = config->precious_reg;
923 map->cache_type = config->cache_type;
924
925 regmap_debugfs_init(map, config->name);
926
927 map->cache_bypass = false;
928 map->cache_only = false;
929
930 return regcache_init(map, config);
931 }
932 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
933
934 /**
935 * regmap_exit(): Free a previously allocated register map
936 */
937 void regmap_exit(struct regmap *map)
938 {
939 struct regmap_async *async;
940
941 regcache_exit(map);
942 regmap_debugfs_exit(map);
943 regmap_range_exit(map);
944 if (map->bus && map->bus->free_context)
945 map->bus->free_context(map->bus_context);
946 kfree(map->work_buf);
947 while (!list_empty(&map->async_free)) {
948 async = list_first_entry_or_null(&map->async_free,
949 struct regmap_async,
950 list);
951 list_del(&async->list);
952 kfree(async->work_buf);
953 kfree(async);
954 }
955 kfree(map);
956 }
957 EXPORT_SYMBOL_GPL(regmap_exit);
958
959 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
960 {
961 struct regmap **r = res;
962 if (!r || !*r) {
963 WARN_ON(!r || !*r);
964 return 0;
965 }
966
967 /* If the user didn't specify a name match any */
968 if (data)
969 return (*r)->name == data;
970 else
971 return 1;
972 }
973
974 /**
975 * dev_get_regmap(): Obtain the regmap (if any) for a device
976 *
977 * @dev: Device to retrieve the map for
978 * @name: Optional name for the register map, usually NULL.
979 *
980 * Returns the regmap for the device if one is present, or NULL. If
981 * name is specified then it must match the name specified when
982 * registering the device, if it is NULL then the first regmap found
983 * will be used. Devices with multiple register maps are very rare,
984 * generic code should normally not need to specify a name.
985 */
986 struct regmap *dev_get_regmap(struct device *dev, const char *name)
987 {
988 struct regmap **r = devres_find(dev, dev_get_regmap_release,
989 dev_get_regmap_match, (void *)name);
990
991 if (!r)
992 return NULL;
993 return *r;
994 }
995 EXPORT_SYMBOL_GPL(dev_get_regmap);
996
997 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
998 struct regmap_range_node *range,
999 unsigned int val_num)
1000 {
1001 void *orig_work_buf;
1002 unsigned int win_offset;
1003 unsigned int win_page;
1004 bool page_chg;
1005 int ret;
1006
1007 win_offset = (*reg - range->range_min) % range->window_len;
1008 win_page = (*reg - range->range_min) / range->window_len;
1009
1010 if (val_num > 1) {
1011 /* Bulk write shouldn't cross range boundary */
1012 if (*reg + val_num - 1 > range->range_max)
1013 return -EINVAL;
1014
1015 /* ... or single page boundary */
1016 if (val_num > range->window_len - win_offset)
1017 return -EINVAL;
1018 }
1019
1020 /* It is possible to have selector register inside data window.
1021 In that case, selector register is located on every page and
1022 it needs no page switching, when accessed alone. */
1023 if (val_num > 1 ||
1024 range->window_start + win_offset != range->selector_reg) {
1025 /* Use separate work_buf during page switching */
1026 orig_work_buf = map->work_buf;
1027 map->work_buf = map->selector_work_buf;
1028
1029 ret = _regmap_update_bits(map, range->selector_reg,
1030 range->selector_mask,
1031 win_page << range->selector_shift,
1032 &page_chg);
1033
1034 map->work_buf = orig_work_buf;
1035
1036 if (ret != 0)
1037 return ret;
1038 }
1039
1040 *reg = range->window_start + win_offset;
1041
1042 return 0;
1043 }
1044
1045 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1046 const void *val, size_t val_len)
1047 {
1048 struct regmap_range_node *range;
1049 unsigned long flags;
1050 u8 *u8 = map->work_buf;
1051 void *work_val = map->work_buf + map->format.reg_bytes +
1052 map->format.pad_bytes;
1053 void *buf;
1054 int ret = -ENOTSUPP;
1055 size_t len;
1056 int i;
1057
1058 WARN_ON(!map->bus);
1059
1060 /* Check for unwritable registers before we start */
1061 if (map->writeable_reg)
1062 for (i = 0; i < val_len / map->format.val_bytes; i++)
1063 if (!map->writeable_reg(map->dev,
1064 reg + (i * map->reg_stride)))
1065 return -EINVAL;
1066
1067 if (!map->cache_bypass && map->format.parse_val) {
1068 unsigned int ival;
1069 int val_bytes = map->format.val_bytes;
1070 for (i = 0; i < val_len / val_bytes; i++) {
1071 ival = map->format.parse_val(val + (i * val_bytes));
1072 ret = regcache_write(map, reg + (i * map->reg_stride),
1073 ival);
1074 if (ret) {
1075 dev_err(map->dev,
1076 "Error in caching of register: %x ret: %d\n",
1077 reg + i, ret);
1078 return ret;
1079 }
1080 }
1081 if (map->cache_only) {
1082 map->cache_dirty = true;
1083 return 0;
1084 }
1085 }
1086
1087 range = _regmap_range_lookup(map, reg);
1088 if (range) {
1089 int val_num = val_len / map->format.val_bytes;
1090 int win_offset = (reg - range->range_min) % range->window_len;
1091 int win_residue = range->window_len - win_offset;
1092
1093 /* If the write goes beyond the end of the window split it */
1094 while (val_num > win_residue) {
1095 dev_dbg(map->dev, "Writing window %d/%zu\n",
1096 win_residue, val_len / map->format.val_bytes);
1097 ret = _regmap_raw_write(map, reg, val, win_residue *
1098 map->format.val_bytes);
1099 if (ret != 0)
1100 return ret;
1101
1102 reg += win_residue;
1103 val_num -= win_residue;
1104 val += win_residue * map->format.val_bytes;
1105 val_len -= win_residue * map->format.val_bytes;
1106
1107 win_offset = (reg - range->range_min) %
1108 range->window_len;
1109 win_residue = range->window_len - win_offset;
1110 }
1111
1112 ret = _regmap_select_page(map, &reg, range, val_num);
1113 if (ret != 0)
1114 return ret;
1115 }
1116
1117 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1118
1119 u8[0] |= map->write_flag_mask;
1120
1121 /*
1122 * Essentially all I/O mechanisms will be faster with a single
1123 * buffer to write. Since register syncs often generate raw
1124 * writes of single registers optimise that case.
1125 */
1126 if (val != work_val && val_len == map->format.val_bytes) {
1127 memcpy(work_val, val, map->format.val_bytes);
1128 val = work_val;
1129 }
1130
1131 if (map->async && map->bus->async_write) {
1132 struct regmap_async *async;
1133
1134 trace_regmap_async_write_start(map->dev, reg, val_len);
1135
1136 spin_lock_irqsave(&map->async_lock, flags);
1137 async = list_first_entry_or_null(&map->async_free,
1138 struct regmap_async,
1139 list);
1140 if (async)
1141 list_del(&async->list);
1142 spin_unlock_irqrestore(&map->async_lock, flags);
1143
1144 if (!async) {
1145 async = map->bus->async_alloc();
1146 if (!async)
1147 return -ENOMEM;
1148
1149 async->work_buf = kzalloc(map->format.buf_size,
1150 GFP_KERNEL | GFP_DMA);
1151 if (!async->work_buf) {
1152 kfree(async);
1153 return -ENOMEM;
1154 }
1155 }
1156
1157 async->map = map;
1158
1159 /* If the caller supplied the value we can use it safely. */
1160 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1161 map->format.reg_bytes + map->format.val_bytes);
1162
1163 spin_lock_irqsave(&map->async_lock, flags);
1164 list_add_tail(&async->list, &map->async_list);
1165 spin_unlock_irqrestore(&map->async_lock, flags);
1166
1167 if (val != work_val)
1168 ret = map->bus->async_write(map->bus_context,
1169 async->work_buf,
1170 map->format.reg_bytes +
1171 map->format.pad_bytes,
1172 val, val_len, async);
1173 else
1174 ret = map->bus->async_write(map->bus_context,
1175 async->work_buf,
1176 map->format.reg_bytes +
1177 map->format.pad_bytes +
1178 val_len, NULL, 0, async);
1179
1180 if (ret != 0) {
1181 dev_err(map->dev, "Failed to schedule write: %d\n",
1182 ret);
1183
1184 spin_lock_irqsave(&map->async_lock, flags);
1185 list_move(&async->list, &map->async_free);
1186 spin_unlock_irqrestore(&map->async_lock, flags);
1187 }
1188
1189 return ret;
1190 }
1191
1192 trace_regmap_hw_write_start(map->dev, reg,
1193 val_len / map->format.val_bytes);
1194
1195 /* If we're doing a single register write we can probably just
1196 * send the work_buf directly, otherwise try to do a gather
1197 * write.
1198 */
1199 if (val == work_val)
1200 ret = map->bus->write(map->bus_context, map->work_buf,
1201 map->format.reg_bytes +
1202 map->format.pad_bytes +
1203 val_len);
1204 else if (map->bus->gather_write)
1205 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1206 map->format.reg_bytes +
1207 map->format.pad_bytes,
1208 val, val_len);
1209
1210 /* If that didn't work fall back on linearising by hand. */
1211 if (ret == -ENOTSUPP) {
1212 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1213 buf = kzalloc(len, GFP_KERNEL);
1214 if (!buf)
1215 return -ENOMEM;
1216
1217 memcpy(buf, map->work_buf, map->format.reg_bytes);
1218 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1219 val, val_len);
1220 ret = map->bus->write(map->bus_context, buf, len);
1221
1222 kfree(buf);
1223 }
1224
1225 trace_regmap_hw_write_done(map->dev, reg,
1226 val_len / map->format.val_bytes);
1227
1228 return ret;
1229 }
1230
1231 /**
1232 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1233 *
1234 * @map: Map to check.
1235 */
1236 bool regmap_can_raw_write(struct regmap *map)
1237 {
1238 return map->bus && map->format.format_val && map->format.format_reg;
1239 }
1240 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1241
1242 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1243 unsigned int val)
1244 {
1245 int ret;
1246 struct regmap_range_node *range;
1247 struct regmap *map = context;
1248
1249 WARN_ON(!map->bus || !map->format.format_write);
1250
1251 range = _regmap_range_lookup(map, reg);
1252 if (range) {
1253 ret = _regmap_select_page(map, &reg, range, 1);
1254 if (ret != 0)
1255 return ret;
1256 }
1257
1258 map->format.format_write(map, reg, val);
1259
1260 trace_regmap_hw_write_start(map->dev, reg, 1);
1261
1262 ret = map->bus->write(map->bus_context, map->work_buf,
1263 map->format.buf_size);
1264
1265 trace_regmap_hw_write_done(map->dev, reg, 1);
1266
1267 return ret;
1268 }
1269
1270 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1271 unsigned int val)
1272 {
1273 struct regmap *map = context;
1274
1275 WARN_ON(!map->bus || !map->format.format_val);
1276
1277 map->format.format_val(map->work_buf + map->format.reg_bytes
1278 + map->format.pad_bytes, val, 0);
1279 return _regmap_raw_write(map, reg,
1280 map->work_buf +
1281 map->format.reg_bytes +
1282 map->format.pad_bytes,
1283 map->format.val_bytes);
1284 }
1285
1286 static inline void *_regmap_map_get_context(struct regmap *map)
1287 {
1288 return (map->bus) ? map : map->bus_context;
1289 }
1290
1291 int _regmap_write(struct regmap *map, unsigned int reg,
1292 unsigned int val)
1293 {
1294 int ret;
1295 void *context = _regmap_map_get_context(map);
1296
1297 if (!regmap_writeable(map, reg))
1298 return -EIO;
1299
1300 if (!map->cache_bypass && !map->defer_caching) {
1301 ret = regcache_write(map, reg, val);
1302 if (ret != 0)
1303 return ret;
1304 if (map->cache_only) {
1305 map->cache_dirty = true;
1306 return 0;
1307 }
1308 }
1309
1310 #ifdef LOG_DEVICE
1311 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1312 dev_info(map->dev, "%x <= %x\n", reg, val);
1313 #endif
1314
1315 trace_regmap_reg_write(map->dev, reg, val);
1316
1317 return map->reg_write(context, reg, val);
1318 }
1319
1320 /**
1321 * regmap_write(): Write a value to a single register
1322 *
1323 * @map: Register map to write to
1324 * @reg: Register to write to
1325 * @val: Value to be written
1326 *
1327 * A value of zero will be returned on success, a negative errno will
1328 * be returned in error cases.
1329 */
1330 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1331 {
1332 int ret;
1333
1334 if (reg % map->reg_stride)
1335 return -EINVAL;
1336
1337 map->lock(map->lock_arg);
1338
1339 ret = _regmap_write(map, reg, val);
1340
1341 map->unlock(map->lock_arg);
1342
1343 return ret;
1344 }
1345 EXPORT_SYMBOL_GPL(regmap_write);
1346
1347 /**
1348 * regmap_write_async(): Write a value to a single register asynchronously
1349 *
1350 * @map: Register map to write to
1351 * @reg: Register to write to
1352 * @val: Value to be written
1353 *
1354 * A value of zero will be returned on success, a negative errno will
1355 * be returned in error cases.
1356 */
1357 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1358 {
1359 int ret;
1360
1361 if (reg % map->reg_stride)
1362 return -EINVAL;
1363
1364 map->lock(map->lock_arg);
1365
1366 map->async = true;
1367
1368 ret = _regmap_write(map, reg, val);
1369
1370 map->async = false;
1371
1372 map->unlock(map->lock_arg);
1373
1374 return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(regmap_write_async);
1377
1378 /**
1379 * regmap_raw_write(): Write raw values to one or more registers
1380 *
1381 * @map: Register map to write to
1382 * @reg: Initial register to write to
1383 * @val: Block of data to be written, laid out for direct transmission to the
1384 * device
1385 * @val_len: Length of data pointed to by val.
1386 *
1387 * This function is intended to be used for things like firmware
1388 * download where a large block of data needs to be transferred to the
1389 * device. No formatting will be done on the data provided.
1390 *
1391 * A value of zero will be returned on success, a negative errno will
1392 * be returned in error cases.
1393 */
1394 int regmap_raw_write(struct regmap *map, unsigned int reg,
1395 const void *val, size_t val_len)
1396 {
1397 int ret;
1398
1399 if (!regmap_can_raw_write(map))
1400 return -EINVAL;
1401 if (val_len % map->format.val_bytes)
1402 return -EINVAL;
1403
1404 map->lock(map->lock_arg);
1405
1406 ret = _regmap_raw_write(map, reg, val, val_len);
1407
1408 map->unlock(map->lock_arg);
1409
1410 return ret;
1411 }
1412 EXPORT_SYMBOL_GPL(regmap_raw_write);
1413
1414 /**
1415 * regmap_field_write(): Write a value to a single register field
1416 *
1417 * @field: Register field to write to
1418 * @val: Value to be written
1419 *
1420 * A value of zero will be returned on success, a negative errno will
1421 * be returned in error cases.
1422 */
1423 int regmap_field_write(struct regmap_field *field, unsigned int val)
1424 {
1425 return regmap_update_bits(field->regmap, field->reg,
1426 field->mask, val << field->shift);
1427 }
1428 EXPORT_SYMBOL_GPL(regmap_field_write);
1429
1430 /**
1431 * regmap_field_update_bits(): Perform a read/modify/write cycle
1432 * on the register field
1433 *
1434 * @field: Register field to write to
1435 * @mask: Bitmask to change
1436 * @val: Value to be written
1437 *
1438 * A value of zero will be returned on success, a negative errno will
1439 * be returned in error cases.
1440 */
1441 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1442 {
1443 mask = (mask << field->shift) & field->mask;
1444
1445 return regmap_update_bits(field->regmap, field->reg,
1446 mask, val << field->shift);
1447 }
1448 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1449
1450 /**
1451 * regmap_fields_write(): Write a value to a single register field with port ID
1452 *
1453 * @field: Register field to write to
1454 * @id: port ID
1455 * @val: Value to be written
1456 *
1457 * A value of zero will be returned on success, a negative errno will
1458 * be returned in error cases.
1459 */
1460 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1461 unsigned int val)
1462 {
1463 if (id >= field->id_size)
1464 return -EINVAL;
1465
1466 return regmap_update_bits(field->regmap,
1467 field->reg + (field->id_offset * id),
1468 field->mask, val << field->shift);
1469 }
1470 EXPORT_SYMBOL_GPL(regmap_fields_write);
1471
1472 /**
1473 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1474 * on the register field
1475 *
1476 * @field: Register field to write to
1477 * @id: port ID
1478 * @mask: Bitmask to change
1479 * @val: Value to be written
1480 *
1481 * A value of zero will be returned on success, a negative errno will
1482 * be returned in error cases.
1483 */
1484 int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1485 unsigned int mask, unsigned int val)
1486 {
1487 if (id >= field->id_size)
1488 return -EINVAL;
1489
1490 mask = (mask << field->shift) & field->mask;
1491
1492 return regmap_update_bits(field->regmap,
1493 field->reg + (field->id_offset * id),
1494 mask, val << field->shift);
1495 }
1496 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1497
1498 /*
1499 * regmap_bulk_write(): Write multiple registers to the device
1500 *
1501 * @map: Register map to write to
1502 * @reg: First register to be write from
1503 * @val: Block of data to be written, in native register size for device
1504 * @val_count: Number of registers to write
1505 *
1506 * This function is intended to be used for writing a large block of
1507 * data to the device either in single transfer or multiple transfer.
1508 *
1509 * A value of zero will be returned on success, a negative errno will
1510 * be returned in error cases.
1511 */
1512 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1513 size_t val_count)
1514 {
1515 int ret = 0, i;
1516 size_t val_bytes = map->format.val_bytes;
1517
1518 if (map->bus && !map->format.parse_inplace)
1519 return -EINVAL;
1520 if (reg % map->reg_stride)
1521 return -EINVAL;
1522
1523 map->lock(map->lock_arg);
1524 /*
1525 * Some devices don't support bulk write, for
1526 * them we have a series of single write operations.
1527 */
1528 if (!map->bus || map->use_single_rw) {
1529 for (i = 0; i < val_count; i++) {
1530 unsigned int ival;
1531
1532 switch (val_bytes) {
1533 case 1:
1534 ival = *(u8 *)(val + (i * val_bytes));
1535 break;
1536 case 2:
1537 ival = *(u16 *)(val + (i * val_bytes));
1538 break;
1539 case 4:
1540 ival = *(u32 *)(val + (i * val_bytes));
1541 break;
1542 #ifdef CONFIG_64BIT
1543 case 8:
1544 ival = *(u64 *)(val + (i * val_bytes));
1545 break;
1546 #endif
1547 default:
1548 ret = -EINVAL;
1549 goto out;
1550 }
1551
1552 ret = _regmap_write(map, reg + (i * map->reg_stride),
1553 ival);
1554 if (ret != 0)
1555 goto out;
1556 }
1557 } else {
1558 void *wval;
1559
1560 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1561 if (!wval) {
1562 ret = -ENOMEM;
1563 dev_err(map->dev, "Error in memory allocation\n");
1564 goto out;
1565 }
1566 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1567 map->format.parse_inplace(wval + i);
1568
1569 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1570
1571 kfree(wval);
1572 }
1573 out:
1574 map->unlock(map->lock_arg);
1575 return ret;
1576 }
1577 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1578
1579 static int _regmap_multi_reg_write(struct regmap *map,
1580 const struct reg_default *regs,
1581 int num_regs)
1582 {
1583 int i, ret;
1584
1585 for (i = 0; i < num_regs; i++) {
1586 if (regs[i].reg % map->reg_stride)
1587 return -EINVAL;
1588 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1589 if (ret != 0) {
1590 dev_err(map->dev, "Failed to write %x = %x: %d\n",
1591 regs[i].reg, regs[i].def, ret);
1592 return ret;
1593 }
1594 }
1595
1596 return 0;
1597 }
1598
1599 /*
1600 * regmap_multi_reg_write(): Write multiple registers to the device
1601 *
1602 * where the set of register are supplied in any order
1603 *
1604 * @map: Register map to write to
1605 * @regs: Array of structures containing register,value to be written
1606 * @num_regs: Number of registers to write
1607 *
1608 * This function is intended to be used for writing a large block of data
1609 * atomically to the device in single transfer for those I2C client devices
1610 * that implement this alternative block write mode.
1611 *
1612 * A value of zero will be returned on success, a negative errno will
1613 * be returned in error cases.
1614 */
1615 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1616 int num_regs)
1617 {
1618 int ret;
1619
1620 map->lock(map->lock_arg);
1621
1622 ret = _regmap_multi_reg_write(map, regs, num_regs);
1623
1624 map->unlock(map->lock_arg);
1625
1626 return ret;
1627 }
1628 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1629
1630 /*
1631 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1632 * device but not the cache
1633 *
1634 * where the set of register are supplied in any order
1635 *
1636 * @map: Register map to write to
1637 * @regs: Array of structures containing register,value to be written
1638 * @num_regs: Number of registers to write
1639 *
1640 * This function is intended to be used for writing a large block of data
1641 * atomically to the device in single transfer for those I2C client devices
1642 * that implement this alternative block write mode.
1643 *
1644 * A value of zero will be returned on success, a negative errno will
1645 * be returned in error cases.
1646 */
1647 int regmap_multi_reg_write_bypassed(struct regmap *map,
1648 const struct reg_default *regs,
1649 int num_regs)
1650 {
1651 int ret;
1652 bool bypass;
1653
1654 map->lock(map->lock_arg);
1655
1656 bypass = map->cache_bypass;
1657 map->cache_bypass = true;
1658
1659 ret = _regmap_multi_reg_write(map, regs, num_regs);
1660
1661 map->cache_bypass = bypass;
1662
1663 map->unlock(map->lock_arg);
1664
1665 return ret;
1666 }
1667 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1668
1669 /**
1670 * regmap_raw_write_async(): Write raw values to one or more registers
1671 * asynchronously
1672 *
1673 * @map: Register map to write to
1674 * @reg: Initial register to write to
1675 * @val: Block of data to be written, laid out for direct transmission to the
1676 * device. Must be valid until regmap_async_complete() is called.
1677 * @val_len: Length of data pointed to by val.
1678 *
1679 * This function is intended to be used for things like firmware
1680 * download where a large block of data needs to be transferred to the
1681 * device. No formatting will be done on the data provided.
1682 *
1683 * If supported by the underlying bus the write will be scheduled
1684 * asynchronously, helping maximise I/O speed on higher speed buses
1685 * like SPI. regmap_async_complete() can be called to ensure that all
1686 * asynchrnous writes have been completed.
1687 *
1688 * A value of zero will be returned on success, a negative errno will
1689 * be returned in error cases.
1690 */
1691 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1692 const void *val, size_t val_len)
1693 {
1694 int ret;
1695
1696 if (val_len % map->format.val_bytes)
1697 return -EINVAL;
1698 if (reg % map->reg_stride)
1699 return -EINVAL;
1700
1701 map->lock(map->lock_arg);
1702
1703 map->async = true;
1704
1705 ret = _regmap_raw_write(map, reg, val, val_len);
1706
1707 map->async = false;
1708
1709 map->unlock(map->lock_arg);
1710
1711 return ret;
1712 }
1713 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1714
1715 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1716 unsigned int val_len)
1717 {
1718 struct regmap_range_node *range;
1719 u8 *u8 = map->work_buf;
1720 int ret;
1721
1722 WARN_ON(!map->bus);
1723
1724 range = _regmap_range_lookup(map, reg);
1725 if (range) {
1726 ret = _regmap_select_page(map, &reg, range,
1727 val_len / map->format.val_bytes);
1728 if (ret != 0)
1729 return ret;
1730 }
1731
1732 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1733
1734 /*
1735 * Some buses or devices flag reads by setting the high bits in the
1736 * register addresss; since it's always the high bits for all
1737 * current formats we can do this here rather than in
1738 * formatting. This may break if we get interesting formats.
1739 */
1740 u8[0] |= map->read_flag_mask;
1741
1742 trace_regmap_hw_read_start(map->dev, reg,
1743 val_len / map->format.val_bytes);
1744
1745 ret = map->bus->read(map->bus_context, map->work_buf,
1746 map->format.reg_bytes + map->format.pad_bytes,
1747 val, val_len);
1748
1749 trace_regmap_hw_read_done(map->dev, reg,
1750 val_len / map->format.val_bytes);
1751
1752 return ret;
1753 }
1754
1755 static int _regmap_bus_read(void *context, unsigned int reg,
1756 unsigned int *val)
1757 {
1758 int ret;
1759 struct regmap *map = context;
1760
1761 if (!map->format.parse_val)
1762 return -EINVAL;
1763
1764 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1765 if (ret == 0)
1766 *val = map->format.parse_val(map->work_buf);
1767
1768 return ret;
1769 }
1770
1771 static int _regmap_read(struct regmap *map, unsigned int reg,
1772 unsigned int *val)
1773 {
1774 int ret;
1775 void *context = _regmap_map_get_context(map);
1776
1777 WARN_ON(!map->reg_read);
1778
1779 if (!map->cache_bypass) {
1780 ret = regcache_read(map, reg, val);
1781 if (ret == 0)
1782 return 0;
1783 }
1784
1785 if (map->cache_only)
1786 return -EBUSY;
1787
1788 ret = map->reg_read(context, reg, val);
1789 if (ret == 0) {
1790 #ifdef LOG_DEVICE
1791 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1792 dev_info(map->dev, "%x => %x\n", reg, *val);
1793 #endif
1794
1795 trace_regmap_reg_read(map->dev, reg, *val);
1796
1797 if (!map->cache_bypass)
1798 regcache_write(map, reg, *val);
1799 }
1800
1801 return ret;
1802 }
1803
1804 /**
1805 * regmap_read(): Read a value from a single register
1806 *
1807 * @map: Register map to read from
1808 * @reg: Register to be read from
1809 * @val: Pointer to store read value
1810 *
1811 * A value of zero will be returned on success, a negative errno will
1812 * be returned in error cases.
1813 */
1814 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1815 {
1816 int ret;
1817
1818 if (reg % map->reg_stride)
1819 return -EINVAL;
1820
1821 map->lock(map->lock_arg);
1822
1823 ret = _regmap_read(map, reg, val);
1824
1825 map->unlock(map->lock_arg);
1826
1827 return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(regmap_read);
1830
1831 /**
1832 * regmap_raw_read(): Read raw data from the device
1833 *
1834 * @map: Register map to read from
1835 * @reg: First register to be read from
1836 * @val: Pointer to store read value
1837 * @val_len: Size of data to read
1838 *
1839 * A value of zero will be returned on success, a negative errno will
1840 * be returned in error cases.
1841 */
1842 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1843 size_t val_len)
1844 {
1845 size_t val_bytes = map->format.val_bytes;
1846 size_t val_count = val_len / val_bytes;
1847 unsigned int v;
1848 int ret, i;
1849
1850 if (!map->bus)
1851 return -EINVAL;
1852 if (val_len % map->format.val_bytes)
1853 return -EINVAL;
1854 if (reg % map->reg_stride)
1855 return -EINVAL;
1856
1857 map->lock(map->lock_arg);
1858
1859 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1860 map->cache_type == REGCACHE_NONE) {
1861 /* Physical block read if there's no cache involved */
1862 ret = _regmap_raw_read(map, reg, val, val_len);
1863
1864 } else {
1865 /* Otherwise go word by word for the cache; should be low
1866 * cost as we expect to hit the cache.
1867 */
1868 for (i = 0; i < val_count; i++) {
1869 ret = _regmap_read(map, reg + (i * map->reg_stride),
1870 &v);
1871 if (ret != 0)
1872 goto out;
1873
1874 map->format.format_val(val + (i * val_bytes), v, 0);
1875 }
1876 }
1877
1878 out:
1879 map->unlock(map->lock_arg);
1880
1881 return ret;
1882 }
1883 EXPORT_SYMBOL_GPL(regmap_raw_read);
1884
1885 /**
1886 * regmap_field_read(): Read a value to a single register field
1887 *
1888 * @field: Register field to read from
1889 * @val: Pointer to store read value
1890 *
1891 * A value of zero will be returned on success, a negative errno will
1892 * be returned in error cases.
1893 */
1894 int regmap_field_read(struct regmap_field *field, unsigned int *val)
1895 {
1896 int ret;
1897 unsigned int reg_val;
1898 ret = regmap_read(field->regmap, field->reg, &reg_val);
1899 if (ret != 0)
1900 return ret;
1901
1902 reg_val &= field->mask;
1903 reg_val >>= field->shift;
1904 *val = reg_val;
1905
1906 return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(regmap_field_read);
1909
1910 /**
1911 * regmap_fields_read(): Read a value to a single register field with port ID
1912 *
1913 * @field: Register field to read from
1914 * @id: port ID
1915 * @val: Pointer to store read value
1916 *
1917 * A value of zero will be returned on success, a negative errno will
1918 * be returned in error cases.
1919 */
1920 int regmap_fields_read(struct regmap_field *field, unsigned int id,
1921 unsigned int *val)
1922 {
1923 int ret;
1924 unsigned int reg_val;
1925
1926 if (id >= field->id_size)
1927 return -EINVAL;
1928
1929 ret = regmap_read(field->regmap,
1930 field->reg + (field->id_offset * id),
1931 &reg_val);
1932 if (ret != 0)
1933 return ret;
1934
1935 reg_val &= field->mask;
1936 reg_val >>= field->shift;
1937 *val = reg_val;
1938
1939 return ret;
1940 }
1941 EXPORT_SYMBOL_GPL(regmap_fields_read);
1942
1943 /**
1944 * regmap_bulk_read(): Read multiple registers from the device
1945 *
1946 * @map: Register map to read from
1947 * @reg: First register to be read from
1948 * @val: Pointer to store read value, in native register size for device
1949 * @val_count: Number of registers to read
1950 *
1951 * A value of zero will be returned on success, a negative errno will
1952 * be returned in error cases.
1953 */
1954 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1955 size_t val_count)
1956 {
1957 int ret, i;
1958 size_t val_bytes = map->format.val_bytes;
1959 bool vol = regmap_volatile_range(map, reg, val_count);
1960
1961 if (reg % map->reg_stride)
1962 return -EINVAL;
1963
1964 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
1965 /*
1966 * Some devices does not support bulk read, for
1967 * them we have a series of single read operations.
1968 */
1969 if (map->use_single_rw) {
1970 for (i = 0; i < val_count; i++) {
1971 ret = regmap_raw_read(map,
1972 reg + (i * map->reg_stride),
1973 val + (i * val_bytes),
1974 val_bytes);
1975 if (ret != 0)
1976 return ret;
1977 }
1978 } else {
1979 ret = regmap_raw_read(map, reg, val,
1980 val_bytes * val_count);
1981 if (ret != 0)
1982 return ret;
1983 }
1984
1985 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1986 map->format.parse_inplace(val + i);
1987 } else {
1988 for (i = 0; i < val_count; i++) {
1989 unsigned int ival;
1990 ret = regmap_read(map, reg + (i * map->reg_stride),
1991 &ival);
1992 if (ret != 0)
1993 return ret;
1994 memcpy(val + (i * val_bytes), &ival, val_bytes);
1995 }
1996 }
1997
1998 return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2001
2002 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2003 unsigned int mask, unsigned int val,
2004 bool *change)
2005 {
2006 int ret;
2007 unsigned int tmp, orig;
2008
2009 ret = _regmap_read(map, reg, &orig);
2010 if (ret != 0)
2011 return ret;
2012
2013 tmp = orig & ~mask;
2014 tmp |= val & mask;
2015
2016 if (tmp != orig) {
2017 ret = _regmap_write(map, reg, tmp);
2018 *change = true;
2019 } else {
2020 *change = false;
2021 }
2022
2023 return ret;
2024 }
2025
2026 /**
2027 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2028 *
2029 * @map: Register map to update
2030 * @reg: Register to update
2031 * @mask: Bitmask to change
2032 * @val: New value for bitmask
2033 *
2034 * Returns zero for success, a negative number on error.
2035 */
2036 int regmap_update_bits(struct regmap *map, unsigned int reg,
2037 unsigned int mask, unsigned int val)
2038 {
2039 bool change;
2040 int ret;
2041
2042 map->lock(map->lock_arg);
2043 ret = _regmap_update_bits(map, reg, mask, val, &change);
2044 map->unlock(map->lock_arg);
2045
2046 return ret;
2047 }
2048 EXPORT_SYMBOL_GPL(regmap_update_bits);
2049
2050 /**
2051 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2052 * map asynchronously
2053 *
2054 * @map: Register map to update
2055 * @reg: Register to update
2056 * @mask: Bitmask to change
2057 * @val: New value for bitmask
2058 *
2059 * With most buses the read must be done synchronously so this is most
2060 * useful for devices with a cache which do not need to interact with
2061 * the hardware to determine the current register value.
2062 *
2063 * Returns zero for success, a negative number on error.
2064 */
2065 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2066 unsigned int mask, unsigned int val)
2067 {
2068 bool change;
2069 int ret;
2070
2071 map->lock(map->lock_arg);
2072
2073 map->async = true;
2074
2075 ret = _regmap_update_bits(map, reg, mask, val, &change);
2076
2077 map->async = false;
2078
2079 map->unlock(map->lock_arg);
2080
2081 return ret;
2082 }
2083 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2084
2085 /**
2086 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2087 * register map and report if updated
2088 *
2089 * @map: Register map to update
2090 * @reg: Register to update
2091 * @mask: Bitmask to change
2092 * @val: New value for bitmask
2093 * @change: Boolean indicating if a write was done
2094 *
2095 * Returns zero for success, a negative number on error.
2096 */
2097 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2098 unsigned int mask, unsigned int val,
2099 bool *change)
2100 {
2101 int ret;
2102
2103 map->lock(map->lock_arg);
2104 ret = _regmap_update_bits(map, reg, mask, val, change);
2105 map->unlock(map->lock_arg);
2106 return ret;
2107 }
2108 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2109
2110 /**
2111 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2112 * register map asynchronously and report if
2113 * updated
2114 *
2115 * @map: Register map to update
2116 * @reg: Register to update
2117 * @mask: Bitmask to change
2118 * @val: New value for bitmask
2119 * @change: Boolean indicating if a write was done
2120 *
2121 * With most buses the read must be done synchronously so this is most
2122 * useful for devices with a cache which do not need to interact with
2123 * the hardware to determine the current register value.
2124 *
2125 * Returns zero for success, a negative number on error.
2126 */
2127 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2128 unsigned int mask, unsigned int val,
2129 bool *change)
2130 {
2131 int ret;
2132
2133 map->lock(map->lock_arg);
2134
2135 map->async = true;
2136
2137 ret = _regmap_update_bits(map, reg, mask, val, change);
2138
2139 map->async = false;
2140
2141 map->unlock(map->lock_arg);
2142
2143 return ret;
2144 }
2145 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2146
2147 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2148 {
2149 struct regmap *map = async->map;
2150 bool wake;
2151
2152 trace_regmap_async_io_complete(map->dev);
2153
2154 spin_lock(&map->async_lock);
2155 list_move(&async->list, &map->async_free);
2156 wake = list_empty(&map->async_list);
2157
2158 if (ret != 0)
2159 map->async_ret = ret;
2160
2161 spin_unlock(&map->async_lock);
2162
2163 if (wake)
2164 wake_up(&map->async_waitq);
2165 }
2166 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2167
2168 static int regmap_async_is_done(struct regmap *map)
2169 {
2170 unsigned long flags;
2171 int ret;
2172
2173 spin_lock_irqsave(&map->async_lock, flags);
2174 ret = list_empty(&map->async_list);
2175 spin_unlock_irqrestore(&map->async_lock, flags);
2176
2177 return ret;
2178 }
2179
2180 /**
2181 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2182 *
2183 * @map: Map to operate on.
2184 *
2185 * Blocks until any pending asynchronous I/O has completed. Returns
2186 * an error code for any failed I/O operations.
2187 */
2188 int regmap_async_complete(struct regmap *map)
2189 {
2190 unsigned long flags;
2191 int ret;
2192
2193 /* Nothing to do with no async support */
2194 if (!map->bus || !map->bus->async_write)
2195 return 0;
2196
2197 trace_regmap_async_complete_start(map->dev);
2198
2199 wait_event(map->async_waitq, regmap_async_is_done(map));
2200
2201 spin_lock_irqsave(&map->async_lock, flags);
2202 ret = map->async_ret;
2203 map->async_ret = 0;
2204 spin_unlock_irqrestore(&map->async_lock, flags);
2205
2206 trace_regmap_async_complete_done(map->dev);
2207
2208 return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(regmap_async_complete);
2211
2212 /**
2213 * regmap_register_patch: Register and apply register updates to be applied
2214 * on device initialistion
2215 *
2216 * @map: Register map to apply updates to.
2217 * @regs: Values to update.
2218 * @num_regs: Number of entries in regs.
2219 *
2220 * Register a set of register updates to be applied to the device
2221 * whenever the device registers are synchronised with the cache and
2222 * apply them immediately. Typically this is used to apply
2223 * corrections to be applied to the device defaults on startup, such
2224 * as the updates some vendors provide to undocumented registers.
2225 */
2226 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2227 int num_regs)
2228 {
2229 struct reg_default *p;
2230 int i, ret;
2231 bool bypass;
2232
2233 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2234 num_regs))
2235 return 0;
2236
2237 map->lock(map->lock_arg);
2238
2239 bypass = map->cache_bypass;
2240
2241 map->cache_bypass = true;
2242 map->async = true;
2243
2244 /* Write out first; it's useful to apply even if we fail later. */
2245 for (i = 0; i < num_regs; i++) {
2246 if (regs[i].reg % map->reg_stride) {
2247 ret = -EINVAL;
2248 goto out;
2249 }
2250 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2251 if (ret != 0) {
2252 dev_err(map->dev, "Failed to write %x = %x: %d\n",
2253 regs[i].reg, regs[i].def, ret);
2254 goto out;
2255 }
2256 }
2257
2258 p = krealloc(map->patch,
2259 sizeof(struct reg_default) * (map->patch_regs + num_regs),
2260 GFP_KERNEL);
2261 if (p) {
2262 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2263 map->patch = p;
2264 map->patch_regs += num_regs;
2265 } else {
2266 ret = -ENOMEM;
2267 }
2268
2269 out:
2270 map->async = false;
2271 map->cache_bypass = bypass;
2272
2273 map->unlock(map->lock_arg);
2274
2275 regmap_async_complete(map);
2276
2277 return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(regmap_register_patch);
2280
2281 /*
2282 * regmap_get_val_bytes(): Report the size of a register value
2283 *
2284 * Report the size of a register value, mainly intended to for use by
2285 * generic infrastructure built on top of regmap.
2286 */
2287 int regmap_get_val_bytes(struct regmap *map)
2288 {
2289 if (map->format.format_write)
2290 return -EINVAL;
2291
2292 return map->format.val_bytes;
2293 }
2294 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2295
2296 static int __init regmap_initcall(void)
2297 {
2298 regmap_debugfs_initcall();
2299
2300 return 0;
2301 }
2302 postcore_initcall(regmap_initcall);
This page took 0.133166 seconds and 5 git commands to generate.