regmap: fix NULL pointer dereference in _regmap_write/read
[deliverable/linux.git] / drivers / base / regmap / regmap.c
1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23
24 #include "internal.h"
25
26 /*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32 #undef LOG_DEVICE
33
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 unsigned int mask, unsigned int val,
36 bool *change);
37
38 static int _regmap_bus_reg_read(void *context, unsigned int reg,
39 unsigned int *val);
40 static int _regmap_bus_read(void *context, unsigned int reg,
41 unsigned int *val);
42 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
43 unsigned int val);
44 static int _regmap_bus_reg_write(void *context, unsigned int reg,
45 unsigned int val);
46 static int _regmap_bus_raw_write(void *context, unsigned int reg,
47 unsigned int val);
48
49 bool regmap_reg_in_ranges(unsigned int reg,
50 const struct regmap_range *ranges,
51 unsigned int nranges)
52 {
53 const struct regmap_range *r;
54 int i;
55
56 for (i = 0, r = ranges; i < nranges; i++, r++)
57 if (regmap_reg_in_range(reg, r))
58 return true;
59 return false;
60 }
61 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
62
63 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
64 const struct regmap_access_table *table)
65 {
66 /* Check "no ranges" first */
67 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
68 return false;
69
70 /* In case zero "yes ranges" are supplied, any reg is OK */
71 if (!table->n_yes_ranges)
72 return true;
73
74 return regmap_reg_in_ranges(reg, table->yes_ranges,
75 table->n_yes_ranges);
76 }
77 EXPORT_SYMBOL_GPL(regmap_check_range_table);
78
79 bool regmap_writeable(struct regmap *map, unsigned int reg)
80 {
81 if (map->max_register && reg > map->max_register)
82 return false;
83
84 if (map->writeable_reg)
85 return map->writeable_reg(map->dev, reg);
86
87 if (map->wr_table)
88 return regmap_check_range_table(map, reg, map->wr_table);
89
90 return true;
91 }
92
93 bool regmap_readable(struct regmap *map, unsigned int reg)
94 {
95 if (map->max_register && reg > map->max_register)
96 return false;
97
98 if (map->format.format_write)
99 return false;
100
101 if (map->readable_reg)
102 return map->readable_reg(map->dev, reg);
103
104 if (map->rd_table)
105 return regmap_check_range_table(map, reg, map->rd_table);
106
107 return true;
108 }
109
110 bool regmap_volatile(struct regmap *map, unsigned int reg)
111 {
112 if (!regmap_readable(map, reg))
113 return false;
114
115 if (map->volatile_reg)
116 return map->volatile_reg(map->dev, reg);
117
118 if (map->volatile_table)
119 return regmap_check_range_table(map, reg, map->volatile_table);
120
121 if (map->cache_ops)
122 return false;
123 else
124 return true;
125 }
126
127 bool regmap_precious(struct regmap *map, unsigned int reg)
128 {
129 if (!regmap_readable(map, reg))
130 return false;
131
132 if (map->precious_reg)
133 return map->precious_reg(map->dev, reg);
134
135 if (map->precious_table)
136 return regmap_check_range_table(map, reg, map->precious_table);
137
138 return false;
139 }
140
141 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
142 size_t num)
143 {
144 unsigned int i;
145
146 for (i = 0; i < num; i++)
147 if (!regmap_volatile(map, reg + i))
148 return false;
149
150 return true;
151 }
152
153 static void regmap_format_2_6_write(struct regmap *map,
154 unsigned int reg, unsigned int val)
155 {
156 u8 *out = map->work_buf;
157
158 *out = (reg << 6) | val;
159 }
160
161 static void regmap_format_4_12_write(struct regmap *map,
162 unsigned int reg, unsigned int val)
163 {
164 __be16 *out = map->work_buf;
165 *out = cpu_to_be16((reg << 12) | val);
166 }
167
168 static void regmap_format_7_9_write(struct regmap *map,
169 unsigned int reg, unsigned int val)
170 {
171 __be16 *out = map->work_buf;
172 *out = cpu_to_be16((reg << 9) | val);
173 }
174
175 static void regmap_format_10_14_write(struct regmap *map,
176 unsigned int reg, unsigned int val)
177 {
178 u8 *out = map->work_buf;
179
180 out[2] = val;
181 out[1] = (val >> 8) | (reg << 6);
182 out[0] = reg >> 2;
183 }
184
185 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
186 {
187 u8 *b = buf;
188
189 b[0] = val << shift;
190 }
191
192 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
193 {
194 __be16 *b = buf;
195
196 b[0] = cpu_to_be16(val << shift);
197 }
198
199 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
200 {
201 __le16 *b = buf;
202
203 b[0] = cpu_to_le16(val << shift);
204 }
205
206 static void regmap_format_16_native(void *buf, unsigned int val,
207 unsigned int shift)
208 {
209 *(u16 *)buf = val << shift;
210 }
211
212 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
213 {
214 u8 *b = buf;
215
216 val <<= shift;
217
218 b[0] = val >> 16;
219 b[1] = val >> 8;
220 b[2] = val;
221 }
222
223 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
224 {
225 __be32 *b = buf;
226
227 b[0] = cpu_to_be32(val << shift);
228 }
229
230 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
231 {
232 __le32 *b = buf;
233
234 b[0] = cpu_to_le32(val << shift);
235 }
236
237 static void regmap_format_32_native(void *buf, unsigned int val,
238 unsigned int shift)
239 {
240 *(u32 *)buf = val << shift;
241 }
242
243 static void regmap_parse_inplace_noop(void *buf)
244 {
245 }
246
247 static unsigned int regmap_parse_8(const void *buf)
248 {
249 const u8 *b = buf;
250
251 return b[0];
252 }
253
254 static unsigned int regmap_parse_16_be(const void *buf)
255 {
256 const __be16 *b = buf;
257
258 return be16_to_cpu(b[0]);
259 }
260
261 static unsigned int regmap_parse_16_le(const void *buf)
262 {
263 const __le16 *b = buf;
264
265 return le16_to_cpu(b[0]);
266 }
267
268 static void regmap_parse_16_be_inplace(void *buf)
269 {
270 __be16 *b = buf;
271
272 b[0] = be16_to_cpu(b[0]);
273 }
274
275 static void regmap_parse_16_le_inplace(void *buf)
276 {
277 __le16 *b = buf;
278
279 b[0] = le16_to_cpu(b[0]);
280 }
281
282 static unsigned int regmap_parse_16_native(const void *buf)
283 {
284 return *(u16 *)buf;
285 }
286
287 static unsigned int regmap_parse_24(const void *buf)
288 {
289 const u8 *b = buf;
290 unsigned int ret = b[2];
291 ret |= ((unsigned int)b[1]) << 8;
292 ret |= ((unsigned int)b[0]) << 16;
293
294 return ret;
295 }
296
297 static unsigned int regmap_parse_32_be(const void *buf)
298 {
299 const __be32 *b = buf;
300
301 return be32_to_cpu(b[0]);
302 }
303
304 static unsigned int regmap_parse_32_le(const void *buf)
305 {
306 const __le32 *b = buf;
307
308 return le32_to_cpu(b[0]);
309 }
310
311 static void regmap_parse_32_be_inplace(void *buf)
312 {
313 __be32 *b = buf;
314
315 b[0] = be32_to_cpu(b[0]);
316 }
317
318 static void regmap_parse_32_le_inplace(void *buf)
319 {
320 __le32 *b = buf;
321
322 b[0] = le32_to_cpu(b[0]);
323 }
324
325 static unsigned int regmap_parse_32_native(const void *buf)
326 {
327 return *(u32 *)buf;
328 }
329
330 static void regmap_lock_mutex(void *__map)
331 {
332 struct regmap *map = __map;
333 mutex_lock(&map->mutex);
334 }
335
336 static void regmap_unlock_mutex(void *__map)
337 {
338 struct regmap *map = __map;
339 mutex_unlock(&map->mutex);
340 }
341
342 static void regmap_lock_spinlock(void *__map)
343 __acquires(&map->spinlock)
344 {
345 struct regmap *map = __map;
346 unsigned long flags;
347
348 spin_lock_irqsave(&map->spinlock, flags);
349 map->spinlock_flags = flags;
350 }
351
352 static void regmap_unlock_spinlock(void *__map)
353 __releases(&map->spinlock)
354 {
355 struct regmap *map = __map;
356 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
357 }
358
359 static void dev_get_regmap_release(struct device *dev, void *res)
360 {
361 /*
362 * We don't actually have anything to do here; the goal here
363 * is not to manage the regmap but to provide a simple way to
364 * get the regmap back given a struct device.
365 */
366 }
367
368 static bool _regmap_range_add(struct regmap *map,
369 struct regmap_range_node *data)
370 {
371 struct rb_root *root = &map->range_tree;
372 struct rb_node **new = &(root->rb_node), *parent = NULL;
373
374 while (*new) {
375 struct regmap_range_node *this =
376 container_of(*new, struct regmap_range_node, node);
377
378 parent = *new;
379 if (data->range_max < this->range_min)
380 new = &((*new)->rb_left);
381 else if (data->range_min > this->range_max)
382 new = &((*new)->rb_right);
383 else
384 return false;
385 }
386
387 rb_link_node(&data->node, parent, new);
388 rb_insert_color(&data->node, root);
389
390 return true;
391 }
392
393 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
394 unsigned int reg)
395 {
396 struct rb_node *node = map->range_tree.rb_node;
397
398 while (node) {
399 struct regmap_range_node *this =
400 container_of(node, struct regmap_range_node, node);
401
402 if (reg < this->range_min)
403 node = node->rb_left;
404 else if (reg > this->range_max)
405 node = node->rb_right;
406 else
407 return this;
408 }
409
410 return NULL;
411 }
412
413 static void regmap_range_exit(struct regmap *map)
414 {
415 struct rb_node *next;
416 struct regmap_range_node *range_node;
417
418 next = rb_first(&map->range_tree);
419 while (next) {
420 range_node = rb_entry(next, struct regmap_range_node, node);
421 next = rb_next(&range_node->node);
422 rb_erase(&range_node->node, &map->range_tree);
423 kfree(range_node);
424 }
425
426 kfree(map->selector_work_buf);
427 }
428
429 int regmap_attach_dev(struct device *dev, struct regmap *map,
430 const struct regmap_config *config)
431 {
432 struct regmap **m;
433
434 map->dev = dev;
435
436 regmap_debugfs_init(map, config->name);
437
438 /* Add a devres resource for dev_get_regmap() */
439 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
440 if (!m) {
441 regmap_debugfs_exit(map);
442 return -ENOMEM;
443 }
444 *m = map;
445 devres_add(dev, m);
446
447 return 0;
448 }
449 EXPORT_SYMBOL_GPL(regmap_attach_dev);
450
451 /**
452 * regmap_init(): Initialise register map
453 *
454 * @dev: Device that will be interacted with
455 * @bus: Bus-specific callbacks to use with device
456 * @bus_context: Data passed to bus-specific callbacks
457 * @config: Configuration for register map
458 *
459 * The return value will be an ERR_PTR() on error or a valid pointer to
460 * a struct regmap. This function should generally not be called
461 * directly, it should be called by bus-specific init functions.
462 */
463 struct regmap *regmap_init(struct device *dev,
464 const struct regmap_bus *bus,
465 void *bus_context,
466 const struct regmap_config *config)
467 {
468 struct regmap *map;
469 int ret = -EINVAL;
470 enum regmap_endian reg_endian, val_endian;
471 int i, j;
472
473 if (!config)
474 goto err;
475
476 map = kzalloc(sizeof(*map), GFP_KERNEL);
477 if (map == NULL) {
478 ret = -ENOMEM;
479 goto err;
480 }
481
482 if (config->lock && config->unlock) {
483 map->lock = config->lock;
484 map->unlock = config->unlock;
485 map->lock_arg = config->lock_arg;
486 } else {
487 if ((bus && bus->fast_io) ||
488 config->fast_io) {
489 spin_lock_init(&map->spinlock);
490 map->lock = regmap_lock_spinlock;
491 map->unlock = regmap_unlock_spinlock;
492 } else {
493 mutex_init(&map->mutex);
494 map->lock = regmap_lock_mutex;
495 map->unlock = regmap_unlock_mutex;
496 }
497 map->lock_arg = map;
498 }
499 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
500 map->format.pad_bytes = config->pad_bits / 8;
501 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
502 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
503 config->val_bits + config->pad_bits, 8);
504 map->reg_shift = config->pad_bits % 8;
505 if (config->reg_stride)
506 map->reg_stride = config->reg_stride;
507 else
508 map->reg_stride = 1;
509 map->use_single_rw = config->use_single_rw;
510 map->can_multi_write = config->can_multi_write;
511 map->dev = dev;
512 map->bus = bus;
513 map->bus_context = bus_context;
514 map->max_register = config->max_register;
515 map->wr_table = config->wr_table;
516 map->rd_table = config->rd_table;
517 map->volatile_table = config->volatile_table;
518 map->precious_table = config->precious_table;
519 map->writeable_reg = config->writeable_reg;
520 map->readable_reg = config->readable_reg;
521 map->volatile_reg = config->volatile_reg;
522 map->precious_reg = config->precious_reg;
523 map->cache_type = config->cache_type;
524 map->name = config->name;
525
526 spin_lock_init(&map->async_lock);
527 INIT_LIST_HEAD(&map->async_list);
528 INIT_LIST_HEAD(&map->async_free);
529 init_waitqueue_head(&map->async_waitq);
530
531 if (config->read_flag_mask || config->write_flag_mask) {
532 map->read_flag_mask = config->read_flag_mask;
533 map->write_flag_mask = config->write_flag_mask;
534 } else if (bus) {
535 map->read_flag_mask = bus->read_flag_mask;
536 }
537
538 if (!bus) {
539 map->reg_read = config->reg_read;
540 map->reg_write = config->reg_write;
541
542 map->defer_caching = false;
543 goto skip_format_initialization;
544 } else if (!bus->read || !bus->write) {
545 map->reg_read = _regmap_bus_reg_read;
546 map->reg_write = _regmap_bus_reg_write;
547
548 map->defer_caching = false;
549 goto skip_format_initialization;
550 } else {
551 map->reg_read = _regmap_bus_read;
552 }
553
554 reg_endian = config->reg_format_endian;
555 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
556 reg_endian = bus->reg_format_endian_default;
557 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
558 reg_endian = REGMAP_ENDIAN_BIG;
559
560 val_endian = config->val_format_endian;
561 if (val_endian == REGMAP_ENDIAN_DEFAULT)
562 val_endian = bus->val_format_endian_default;
563 if (val_endian == REGMAP_ENDIAN_DEFAULT)
564 val_endian = REGMAP_ENDIAN_BIG;
565
566 switch (config->reg_bits + map->reg_shift) {
567 case 2:
568 switch (config->val_bits) {
569 case 6:
570 map->format.format_write = regmap_format_2_6_write;
571 break;
572 default:
573 goto err_map;
574 }
575 break;
576
577 case 4:
578 switch (config->val_bits) {
579 case 12:
580 map->format.format_write = regmap_format_4_12_write;
581 break;
582 default:
583 goto err_map;
584 }
585 break;
586
587 case 7:
588 switch (config->val_bits) {
589 case 9:
590 map->format.format_write = regmap_format_7_9_write;
591 break;
592 default:
593 goto err_map;
594 }
595 break;
596
597 case 10:
598 switch (config->val_bits) {
599 case 14:
600 map->format.format_write = regmap_format_10_14_write;
601 break;
602 default:
603 goto err_map;
604 }
605 break;
606
607 case 8:
608 map->format.format_reg = regmap_format_8;
609 break;
610
611 case 16:
612 switch (reg_endian) {
613 case REGMAP_ENDIAN_BIG:
614 map->format.format_reg = regmap_format_16_be;
615 break;
616 case REGMAP_ENDIAN_NATIVE:
617 map->format.format_reg = regmap_format_16_native;
618 break;
619 default:
620 goto err_map;
621 }
622 break;
623
624 case 24:
625 if (reg_endian != REGMAP_ENDIAN_BIG)
626 goto err_map;
627 map->format.format_reg = regmap_format_24;
628 break;
629
630 case 32:
631 switch (reg_endian) {
632 case REGMAP_ENDIAN_BIG:
633 map->format.format_reg = regmap_format_32_be;
634 break;
635 case REGMAP_ENDIAN_NATIVE:
636 map->format.format_reg = regmap_format_32_native;
637 break;
638 default:
639 goto err_map;
640 }
641 break;
642
643 default:
644 goto err_map;
645 }
646
647 if (val_endian == REGMAP_ENDIAN_NATIVE)
648 map->format.parse_inplace = regmap_parse_inplace_noop;
649
650 switch (config->val_bits) {
651 case 8:
652 map->format.format_val = regmap_format_8;
653 map->format.parse_val = regmap_parse_8;
654 map->format.parse_inplace = regmap_parse_inplace_noop;
655 break;
656 case 16:
657 switch (val_endian) {
658 case REGMAP_ENDIAN_BIG:
659 map->format.format_val = regmap_format_16_be;
660 map->format.parse_val = regmap_parse_16_be;
661 map->format.parse_inplace = regmap_parse_16_be_inplace;
662 break;
663 case REGMAP_ENDIAN_LITTLE:
664 map->format.format_val = regmap_format_16_le;
665 map->format.parse_val = regmap_parse_16_le;
666 map->format.parse_inplace = regmap_parse_16_le_inplace;
667 break;
668 case REGMAP_ENDIAN_NATIVE:
669 map->format.format_val = regmap_format_16_native;
670 map->format.parse_val = regmap_parse_16_native;
671 break;
672 default:
673 goto err_map;
674 }
675 break;
676 case 24:
677 if (val_endian != REGMAP_ENDIAN_BIG)
678 goto err_map;
679 map->format.format_val = regmap_format_24;
680 map->format.parse_val = regmap_parse_24;
681 break;
682 case 32:
683 switch (val_endian) {
684 case REGMAP_ENDIAN_BIG:
685 map->format.format_val = regmap_format_32_be;
686 map->format.parse_val = regmap_parse_32_be;
687 map->format.parse_inplace = regmap_parse_32_be_inplace;
688 break;
689 case REGMAP_ENDIAN_LITTLE:
690 map->format.format_val = regmap_format_32_le;
691 map->format.parse_val = regmap_parse_32_le;
692 map->format.parse_inplace = regmap_parse_32_le_inplace;
693 break;
694 case REGMAP_ENDIAN_NATIVE:
695 map->format.format_val = regmap_format_32_native;
696 map->format.parse_val = regmap_parse_32_native;
697 break;
698 default:
699 goto err_map;
700 }
701 break;
702 }
703
704 if (map->format.format_write) {
705 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
706 (val_endian != REGMAP_ENDIAN_BIG))
707 goto err_map;
708 map->use_single_rw = true;
709 }
710
711 if (!map->format.format_write &&
712 !(map->format.format_reg && map->format.format_val))
713 goto err_map;
714
715 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
716 if (map->work_buf == NULL) {
717 ret = -ENOMEM;
718 goto err_map;
719 }
720
721 if (map->format.format_write) {
722 map->defer_caching = false;
723 map->reg_write = _regmap_bus_formatted_write;
724 } else if (map->format.format_val) {
725 map->defer_caching = true;
726 map->reg_write = _regmap_bus_raw_write;
727 }
728
729 skip_format_initialization:
730
731 map->range_tree = RB_ROOT;
732 for (i = 0; i < config->num_ranges; i++) {
733 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
734 struct regmap_range_node *new;
735
736 /* Sanity check */
737 if (range_cfg->range_max < range_cfg->range_min) {
738 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
739 range_cfg->range_max, range_cfg->range_min);
740 goto err_range;
741 }
742
743 if (range_cfg->range_max > map->max_register) {
744 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
745 range_cfg->range_max, map->max_register);
746 goto err_range;
747 }
748
749 if (range_cfg->selector_reg > map->max_register) {
750 dev_err(map->dev,
751 "Invalid range %d: selector out of map\n", i);
752 goto err_range;
753 }
754
755 if (range_cfg->window_len == 0) {
756 dev_err(map->dev, "Invalid range %d: window_len 0\n",
757 i);
758 goto err_range;
759 }
760
761 /* Make sure, that this register range has no selector
762 or data window within its boundary */
763 for (j = 0; j < config->num_ranges; j++) {
764 unsigned sel_reg = config->ranges[j].selector_reg;
765 unsigned win_min = config->ranges[j].window_start;
766 unsigned win_max = win_min +
767 config->ranges[j].window_len - 1;
768
769 /* Allow data window inside its own virtual range */
770 if (j == i)
771 continue;
772
773 if (range_cfg->range_min <= sel_reg &&
774 sel_reg <= range_cfg->range_max) {
775 dev_err(map->dev,
776 "Range %d: selector for %d in window\n",
777 i, j);
778 goto err_range;
779 }
780
781 if (!(win_max < range_cfg->range_min ||
782 win_min > range_cfg->range_max)) {
783 dev_err(map->dev,
784 "Range %d: window for %d in window\n",
785 i, j);
786 goto err_range;
787 }
788 }
789
790 new = kzalloc(sizeof(*new), GFP_KERNEL);
791 if (new == NULL) {
792 ret = -ENOMEM;
793 goto err_range;
794 }
795
796 new->map = map;
797 new->name = range_cfg->name;
798 new->range_min = range_cfg->range_min;
799 new->range_max = range_cfg->range_max;
800 new->selector_reg = range_cfg->selector_reg;
801 new->selector_mask = range_cfg->selector_mask;
802 new->selector_shift = range_cfg->selector_shift;
803 new->window_start = range_cfg->window_start;
804 new->window_len = range_cfg->window_len;
805
806 if (!_regmap_range_add(map, new)) {
807 dev_err(map->dev, "Failed to add range %d\n", i);
808 kfree(new);
809 goto err_range;
810 }
811
812 if (map->selector_work_buf == NULL) {
813 map->selector_work_buf =
814 kzalloc(map->format.buf_size, GFP_KERNEL);
815 if (map->selector_work_buf == NULL) {
816 ret = -ENOMEM;
817 goto err_range;
818 }
819 }
820 }
821
822 ret = regcache_init(map, config);
823 if (ret != 0)
824 goto err_range;
825
826 if (dev) {
827 ret = regmap_attach_dev(dev, map, config);
828 if (ret != 0)
829 goto err_regcache;
830 }
831
832 return map;
833
834 err_regcache:
835 regcache_exit(map);
836 err_range:
837 regmap_range_exit(map);
838 kfree(map->work_buf);
839 err_map:
840 kfree(map);
841 err:
842 return ERR_PTR(ret);
843 }
844 EXPORT_SYMBOL_GPL(regmap_init);
845
846 static void devm_regmap_release(struct device *dev, void *res)
847 {
848 regmap_exit(*(struct regmap **)res);
849 }
850
851 /**
852 * devm_regmap_init(): Initialise managed register map
853 *
854 * @dev: Device that will be interacted with
855 * @bus: Bus-specific callbacks to use with device
856 * @bus_context: Data passed to bus-specific callbacks
857 * @config: Configuration for register map
858 *
859 * The return value will be an ERR_PTR() on error or a valid pointer
860 * to a struct regmap. This function should generally not be called
861 * directly, it should be called by bus-specific init functions. The
862 * map will be automatically freed by the device management code.
863 */
864 struct regmap *devm_regmap_init(struct device *dev,
865 const struct regmap_bus *bus,
866 void *bus_context,
867 const struct regmap_config *config)
868 {
869 struct regmap **ptr, *regmap;
870
871 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
872 if (!ptr)
873 return ERR_PTR(-ENOMEM);
874
875 regmap = regmap_init(dev, bus, bus_context, config);
876 if (!IS_ERR(regmap)) {
877 *ptr = regmap;
878 devres_add(dev, ptr);
879 } else {
880 devres_free(ptr);
881 }
882
883 return regmap;
884 }
885 EXPORT_SYMBOL_GPL(devm_regmap_init);
886
887 static void regmap_field_init(struct regmap_field *rm_field,
888 struct regmap *regmap, struct reg_field reg_field)
889 {
890 int field_bits = reg_field.msb - reg_field.lsb + 1;
891 rm_field->regmap = regmap;
892 rm_field->reg = reg_field.reg;
893 rm_field->shift = reg_field.lsb;
894 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
895 rm_field->id_size = reg_field.id_size;
896 rm_field->id_offset = reg_field.id_offset;
897 }
898
899 /**
900 * devm_regmap_field_alloc(): Allocate and initialise a register field
901 * in a register map.
902 *
903 * @dev: Device that will be interacted with
904 * @regmap: regmap bank in which this register field is located.
905 * @reg_field: Register field with in the bank.
906 *
907 * The return value will be an ERR_PTR() on error or a valid pointer
908 * to a struct regmap_field. The regmap_field will be automatically freed
909 * by the device management code.
910 */
911 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
912 struct regmap *regmap, struct reg_field reg_field)
913 {
914 struct regmap_field *rm_field = devm_kzalloc(dev,
915 sizeof(*rm_field), GFP_KERNEL);
916 if (!rm_field)
917 return ERR_PTR(-ENOMEM);
918
919 regmap_field_init(rm_field, regmap, reg_field);
920
921 return rm_field;
922
923 }
924 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
925
926 /**
927 * devm_regmap_field_free(): Free register field allocated using
928 * devm_regmap_field_alloc. Usally drivers need not call this function,
929 * as the memory allocated via devm will be freed as per device-driver
930 * life-cyle.
931 *
932 * @dev: Device that will be interacted with
933 * @field: regmap field which should be freed.
934 */
935 void devm_regmap_field_free(struct device *dev,
936 struct regmap_field *field)
937 {
938 devm_kfree(dev, field);
939 }
940 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
941
942 /**
943 * regmap_field_alloc(): Allocate and initialise a register field
944 * in a register map.
945 *
946 * @regmap: regmap bank in which this register field is located.
947 * @reg_field: Register field with in the bank.
948 *
949 * The return value will be an ERR_PTR() on error or a valid pointer
950 * to a struct regmap_field. The regmap_field should be freed by the
951 * user once its finished working with it using regmap_field_free().
952 */
953 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
954 struct reg_field reg_field)
955 {
956 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
957
958 if (!rm_field)
959 return ERR_PTR(-ENOMEM);
960
961 regmap_field_init(rm_field, regmap, reg_field);
962
963 return rm_field;
964 }
965 EXPORT_SYMBOL_GPL(regmap_field_alloc);
966
967 /**
968 * regmap_field_free(): Free register field allocated using regmap_field_alloc
969 *
970 * @field: regmap field which should be freed.
971 */
972 void regmap_field_free(struct regmap_field *field)
973 {
974 kfree(field);
975 }
976 EXPORT_SYMBOL_GPL(regmap_field_free);
977
978 /**
979 * regmap_reinit_cache(): Reinitialise the current register cache
980 *
981 * @map: Register map to operate on.
982 * @config: New configuration. Only the cache data will be used.
983 *
984 * Discard any existing register cache for the map and initialize a
985 * new cache. This can be used to restore the cache to defaults or to
986 * update the cache configuration to reflect runtime discovery of the
987 * hardware.
988 *
989 * No explicit locking is done here, the user needs to ensure that
990 * this function will not race with other calls to regmap.
991 */
992 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
993 {
994 regcache_exit(map);
995 regmap_debugfs_exit(map);
996
997 map->max_register = config->max_register;
998 map->writeable_reg = config->writeable_reg;
999 map->readable_reg = config->readable_reg;
1000 map->volatile_reg = config->volatile_reg;
1001 map->precious_reg = config->precious_reg;
1002 map->cache_type = config->cache_type;
1003
1004 regmap_debugfs_init(map, config->name);
1005
1006 map->cache_bypass = false;
1007 map->cache_only = false;
1008
1009 return regcache_init(map, config);
1010 }
1011 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1012
1013 /**
1014 * regmap_exit(): Free a previously allocated register map
1015 */
1016 void regmap_exit(struct regmap *map)
1017 {
1018 struct regmap_async *async;
1019
1020 regcache_exit(map);
1021 regmap_debugfs_exit(map);
1022 regmap_range_exit(map);
1023 if (map->bus && map->bus->free_context)
1024 map->bus->free_context(map->bus_context);
1025 kfree(map->work_buf);
1026 while (!list_empty(&map->async_free)) {
1027 async = list_first_entry_or_null(&map->async_free,
1028 struct regmap_async,
1029 list);
1030 list_del(&async->list);
1031 kfree(async->work_buf);
1032 kfree(async);
1033 }
1034 kfree(map);
1035 }
1036 EXPORT_SYMBOL_GPL(regmap_exit);
1037
1038 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1039 {
1040 struct regmap **r = res;
1041 if (!r || !*r) {
1042 WARN_ON(!r || !*r);
1043 return 0;
1044 }
1045
1046 /* If the user didn't specify a name match any */
1047 if (data)
1048 return (*r)->name == data;
1049 else
1050 return 1;
1051 }
1052
1053 /**
1054 * dev_get_regmap(): Obtain the regmap (if any) for a device
1055 *
1056 * @dev: Device to retrieve the map for
1057 * @name: Optional name for the register map, usually NULL.
1058 *
1059 * Returns the regmap for the device if one is present, or NULL. If
1060 * name is specified then it must match the name specified when
1061 * registering the device, if it is NULL then the first regmap found
1062 * will be used. Devices with multiple register maps are very rare,
1063 * generic code should normally not need to specify a name.
1064 */
1065 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1066 {
1067 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1068 dev_get_regmap_match, (void *)name);
1069
1070 if (!r)
1071 return NULL;
1072 return *r;
1073 }
1074 EXPORT_SYMBOL_GPL(dev_get_regmap);
1075
1076 /**
1077 * regmap_get_device(): Obtain the device from a regmap
1078 *
1079 * @map: Register map to operate on.
1080 *
1081 * Returns the underlying device that the regmap has been created for.
1082 */
1083 struct device *regmap_get_device(struct regmap *map)
1084 {
1085 return map->dev;
1086 }
1087 EXPORT_SYMBOL_GPL(regmap_get_device);
1088
1089 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1090 struct regmap_range_node *range,
1091 unsigned int val_num)
1092 {
1093 void *orig_work_buf;
1094 unsigned int win_offset;
1095 unsigned int win_page;
1096 bool page_chg;
1097 int ret;
1098
1099 win_offset = (*reg - range->range_min) % range->window_len;
1100 win_page = (*reg - range->range_min) / range->window_len;
1101
1102 if (val_num > 1) {
1103 /* Bulk write shouldn't cross range boundary */
1104 if (*reg + val_num - 1 > range->range_max)
1105 return -EINVAL;
1106
1107 /* ... or single page boundary */
1108 if (val_num > range->window_len - win_offset)
1109 return -EINVAL;
1110 }
1111
1112 /* It is possible to have selector register inside data window.
1113 In that case, selector register is located on every page and
1114 it needs no page switching, when accessed alone. */
1115 if (val_num > 1 ||
1116 range->window_start + win_offset != range->selector_reg) {
1117 /* Use separate work_buf during page switching */
1118 orig_work_buf = map->work_buf;
1119 map->work_buf = map->selector_work_buf;
1120
1121 ret = _regmap_update_bits(map, range->selector_reg,
1122 range->selector_mask,
1123 win_page << range->selector_shift,
1124 &page_chg);
1125
1126 map->work_buf = orig_work_buf;
1127
1128 if (ret != 0)
1129 return ret;
1130 }
1131
1132 *reg = range->window_start + win_offset;
1133
1134 return 0;
1135 }
1136
1137 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1138 const void *val, size_t val_len)
1139 {
1140 struct regmap_range_node *range;
1141 unsigned long flags;
1142 u8 *u8 = map->work_buf;
1143 void *work_val = map->work_buf + map->format.reg_bytes +
1144 map->format.pad_bytes;
1145 void *buf;
1146 int ret = -ENOTSUPP;
1147 size_t len;
1148 int i;
1149
1150 WARN_ON(!map->bus);
1151
1152 /* Check for unwritable registers before we start */
1153 if (map->writeable_reg)
1154 for (i = 0; i < val_len / map->format.val_bytes; i++)
1155 if (!map->writeable_reg(map->dev,
1156 reg + (i * map->reg_stride)))
1157 return -EINVAL;
1158
1159 if (!map->cache_bypass && map->format.parse_val) {
1160 unsigned int ival;
1161 int val_bytes = map->format.val_bytes;
1162 for (i = 0; i < val_len / val_bytes; i++) {
1163 ival = map->format.parse_val(val + (i * val_bytes));
1164 ret = regcache_write(map, reg + (i * map->reg_stride),
1165 ival);
1166 if (ret) {
1167 dev_err(map->dev,
1168 "Error in caching of register: %x ret: %d\n",
1169 reg + i, ret);
1170 return ret;
1171 }
1172 }
1173 if (map->cache_only) {
1174 map->cache_dirty = true;
1175 return 0;
1176 }
1177 }
1178
1179 range = _regmap_range_lookup(map, reg);
1180 if (range) {
1181 int val_num = val_len / map->format.val_bytes;
1182 int win_offset = (reg - range->range_min) % range->window_len;
1183 int win_residue = range->window_len - win_offset;
1184
1185 /* If the write goes beyond the end of the window split it */
1186 while (val_num > win_residue) {
1187 dev_dbg(map->dev, "Writing window %d/%zu\n",
1188 win_residue, val_len / map->format.val_bytes);
1189 ret = _regmap_raw_write(map, reg, val, win_residue *
1190 map->format.val_bytes);
1191 if (ret != 0)
1192 return ret;
1193
1194 reg += win_residue;
1195 val_num -= win_residue;
1196 val += win_residue * map->format.val_bytes;
1197 val_len -= win_residue * map->format.val_bytes;
1198
1199 win_offset = (reg - range->range_min) %
1200 range->window_len;
1201 win_residue = range->window_len - win_offset;
1202 }
1203
1204 ret = _regmap_select_page(map, &reg, range, val_num);
1205 if (ret != 0)
1206 return ret;
1207 }
1208
1209 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1210
1211 u8[0] |= map->write_flag_mask;
1212
1213 /*
1214 * Essentially all I/O mechanisms will be faster with a single
1215 * buffer to write. Since register syncs often generate raw
1216 * writes of single registers optimise that case.
1217 */
1218 if (val != work_val && val_len == map->format.val_bytes) {
1219 memcpy(work_val, val, map->format.val_bytes);
1220 val = work_val;
1221 }
1222
1223 if (map->async && map->bus->async_write) {
1224 struct regmap_async *async;
1225
1226 trace_regmap_async_write_start(map->dev, reg, val_len);
1227
1228 spin_lock_irqsave(&map->async_lock, flags);
1229 async = list_first_entry_or_null(&map->async_free,
1230 struct regmap_async,
1231 list);
1232 if (async)
1233 list_del(&async->list);
1234 spin_unlock_irqrestore(&map->async_lock, flags);
1235
1236 if (!async) {
1237 async = map->bus->async_alloc();
1238 if (!async)
1239 return -ENOMEM;
1240
1241 async->work_buf = kzalloc(map->format.buf_size,
1242 GFP_KERNEL | GFP_DMA);
1243 if (!async->work_buf) {
1244 kfree(async);
1245 return -ENOMEM;
1246 }
1247 }
1248
1249 async->map = map;
1250
1251 /* If the caller supplied the value we can use it safely. */
1252 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1253 map->format.reg_bytes + map->format.val_bytes);
1254
1255 spin_lock_irqsave(&map->async_lock, flags);
1256 list_add_tail(&async->list, &map->async_list);
1257 spin_unlock_irqrestore(&map->async_lock, flags);
1258
1259 if (val != work_val)
1260 ret = map->bus->async_write(map->bus_context,
1261 async->work_buf,
1262 map->format.reg_bytes +
1263 map->format.pad_bytes,
1264 val, val_len, async);
1265 else
1266 ret = map->bus->async_write(map->bus_context,
1267 async->work_buf,
1268 map->format.reg_bytes +
1269 map->format.pad_bytes +
1270 val_len, NULL, 0, async);
1271
1272 if (ret != 0) {
1273 dev_err(map->dev, "Failed to schedule write: %d\n",
1274 ret);
1275
1276 spin_lock_irqsave(&map->async_lock, flags);
1277 list_move(&async->list, &map->async_free);
1278 spin_unlock_irqrestore(&map->async_lock, flags);
1279 }
1280
1281 return ret;
1282 }
1283
1284 trace_regmap_hw_write_start(map->dev, reg,
1285 val_len / map->format.val_bytes);
1286
1287 /* If we're doing a single register write we can probably just
1288 * send the work_buf directly, otherwise try to do a gather
1289 * write.
1290 */
1291 if (val == work_val)
1292 ret = map->bus->write(map->bus_context, map->work_buf,
1293 map->format.reg_bytes +
1294 map->format.pad_bytes +
1295 val_len);
1296 else if (map->bus->gather_write)
1297 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1298 map->format.reg_bytes +
1299 map->format.pad_bytes,
1300 val, val_len);
1301
1302 /* If that didn't work fall back on linearising by hand. */
1303 if (ret == -ENOTSUPP) {
1304 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1305 buf = kzalloc(len, GFP_KERNEL);
1306 if (!buf)
1307 return -ENOMEM;
1308
1309 memcpy(buf, map->work_buf, map->format.reg_bytes);
1310 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1311 val, val_len);
1312 ret = map->bus->write(map->bus_context, buf, len);
1313
1314 kfree(buf);
1315 }
1316
1317 trace_regmap_hw_write_done(map->dev, reg,
1318 val_len / map->format.val_bytes);
1319
1320 return ret;
1321 }
1322
1323 /**
1324 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1325 *
1326 * @map: Map to check.
1327 */
1328 bool regmap_can_raw_write(struct regmap *map)
1329 {
1330 return map->bus && map->format.format_val && map->format.format_reg;
1331 }
1332 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1333
1334 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1335 unsigned int val)
1336 {
1337 int ret;
1338 struct regmap_range_node *range;
1339 struct regmap *map = context;
1340
1341 WARN_ON(!map->bus || !map->format.format_write);
1342
1343 range = _regmap_range_lookup(map, reg);
1344 if (range) {
1345 ret = _regmap_select_page(map, &reg, range, 1);
1346 if (ret != 0)
1347 return ret;
1348 }
1349
1350 map->format.format_write(map, reg, val);
1351
1352 trace_regmap_hw_write_start(map->dev, reg, 1);
1353
1354 ret = map->bus->write(map->bus_context, map->work_buf,
1355 map->format.buf_size);
1356
1357 trace_regmap_hw_write_done(map->dev, reg, 1);
1358
1359 return ret;
1360 }
1361
1362 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1363 unsigned int val)
1364 {
1365 struct regmap *map = context;
1366
1367 return map->bus->reg_write(map->bus_context, reg, val);
1368 }
1369
1370 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1371 unsigned int val)
1372 {
1373 struct regmap *map = context;
1374
1375 WARN_ON(!map->bus || !map->format.format_val);
1376
1377 map->format.format_val(map->work_buf + map->format.reg_bytes
1378 + map->format.pad_bytes, val, 0);
1379 return _regmap_raw_write(map, reg,
1380 map->work_buf +
1381 map->format.reg_bytes +
1382 map->format.pad_bytes,
1383 map->format.val_bytes);
1384 }
1385
1386 static inline void *_regmap_map_get_context(struct regmap *map)
1387 {
1388 return (map->bus) ? map : map->bus_context;
1389 }
1390
1391 int _regmap_write(struct regmap *map, unsigned int reg,
1392 unsigned int val)
1393 {
1394 int ret;
1395 void *context = _regmap_map_get_context(map);
1396
1397 if (!regmap_writeable(map, reg))
1398 return -EIO;
1399
1400 if (!map->cache_bypass && !map->defer_caching) {
1401 ret = regcache_write(map, reg, val);
1402 if (ret != 0)
1403 return ret;
1404 if (map->cache_only) {
1405 map->cache_dirty = true;
1406 return 0;
1407 }
1408 }
1409
1410 #ifdef LOG_DEVICE
1411 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1412 dev_info(map->dev, "%x <= %x\n", reg, val);
1413 #endif
1414
1415 trace_regmap_reg_write(map->dev, reg, val);
1416
1417 return map->reg_write(context, reg, val);
1418 }
1419
1420 /**
1421 * regmap_write(): Write a value to a single register
1422 *
1423 * @map: Register map to write to
1424 * @reg: Register to write to
1425 * @val: Value to be written
1426 *
1427 * A value of zero will be returned on success, a negative errno will
1428 * be returned in error cases.
1429 */
1430 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1431 {
1432 int ret;
1433
1434 if (reg % map->reg_stride)
1435 return -EINVAL;
1436
1437 map->lock(map->lock_arg);
1438
1439 ret = _regmap_write(map, reg, val);
1440
1441 map->unlock(map->lock_arg);
1442
1443 return ret;
1444 }
1445 EXPORT_SYMBOL_GPL(regmap_write);
1446
1447 /**
1448 * regmap_write_async(): Write a value to a single register asynchronously
1449 *
1450 * @map: Register map to write to
1451 * @reg: Register to write to
1452 * @val: Value to be written
1453 *
1454 * A value of zero will be returned on success, a negative errno will
1455 * be returned in error cases.
1456 */
1457 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1458 {
1459 int ret;
1460
1461 if (reg % map->reg_stride)
1462 return -EINVAL;
1463
1464 map->lock(map->lock_arg);
1465
1466 map->async = true;
1467
1468 ret = _regmap_write(map, reg, val);
1469
1470 map->async = false;
1471
1472 map->unlock(map->lock_arg);
1473
1474 return ret;
1475 }
1476 EXPORT_SYMBOL_GPL(regmap_write_async);
1477
1478 /**
1479 * regmap_raw_write(): Write raw values to one or more registers
1480 *
1481 * @map: Register map to write to
1482 * @reg: Initial register to write to
1483 * @val: Block of data to be written, laid out for direct transmission to the
1484 * device
1485 * @val_len: Length of data pointed to by val.
1486 *
1487 * This function is intended to be used for things like firmware
1488 * download where a large block of data needs to be transferred to the
1489 * device. No formatting will be done on the data provided.
1490 *
1491 * A value of zero will be returned on success, a negative errno will
1492 * be returned in error cases.
1493 */
1494 int regmap_raw_write(struct regmap *map, unsigned int reg,
1495 const void *val, size_t val_len)
1496 {
1497 int ret;
1498
1499 if (!regmap_can_raw_write(map))
1500 return -EINVAL;
1501 if (val_len % map->format.val_bytes)
1502 return -EINVAL;
1503
1504 map->lock(map->lock_arg);
1505
1506 ret = _regmap_raw_write(map, reg, val, val_len);
1507
1508 map->unlock(map->lock_arg);
1509
1510 return ret;
1511 }
1512 EXPORT_SYMBOL_GPL(regmap_raw_write);
1513
1514 /**
1515 * regmap_field_write(): Write a value to a single register field
1516 *
1517 * @field: Register field to write to
1518 * @val: Value to be written
1519 *
1520 * A value of zero will be returned on success, a negative errno will
1521 * be returned in error cases.
1522 */
1523 int regmap_field_write(struct regmap_field *field, unsigned int val)
1524 {
1525 return regmap_update_bits(field->regmap, field->reg,
1526 field->mask, val << field->shift);
1527 }
1528 EXPORT_SYMBOL_GPL(regmap_field_write);
1529
1530 /**
1531 * regmap_field_update_bits(): Perform a read/modify/write cycle
1532 * on the register field
1533 *
1534 * @field: Register field to write to
1535 * @mask: Bitmask to change
1536 * @val: Value to be written
1537 *
1538 * A value of zero will be returned on success, a negative errno will
1539 * be returned in error cases.
1540 */
1541 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1542 {
1543 mask = (mask << field->shift) & field->mask;
1544
1545 return regmap_update_bits(field->regmap, field->reg,
1546 mask, val << field->shift);
1547 }
1548 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1549
1550 /**
1551 * regmap_fields_write(): Write a value to a single register field with port ID
1552 *
1553 * @field: Register field to write to
1554 * @id: port ID
1555 * @val: Value to be written
1556 *
1557 * A value of zero will be returned on success, a negative errno will
1558 * be returned in error cases.
1559 */
1560 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1561 unsigned int val)
1562 {
1563 if (id >= field->id_size)
1564 return -EINVAL;
1565
1566 return regmap_update_bits(field->regmap,
1567 field->reg + (field->id_offset * id),
1568 field->mask, val << field->shift);
1569 }
1570 EXPORT_SYMBOL_GPL(regmap_fields_write);
1571
1572 /**
1573 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1574 * on the register field
1575 *
1576 * @field: Register field to write to
1577 * @id: port ID
1578 * @mask: Bitmask to change
1579 * @val: Value to be written
1580 *
1581 * A value of zero will be returned on success, a negative errno will
1582 * be returned in error cases.
1583 */
1584 int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1585 unsigned int mask, unsigned int val)
1586 {
1587 if (id >= field->id_size)
1588 return -EINVAL;
1589
1590 mask = (mask << field->shift) & field->mask;
1591
1592 return regmap_update_bits(field->regmap,
1593 field->reg + (field->id_offset * id),
1594 mask, val << field->shift);
1595 }
1596 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1597
1598 /*
1599 * regmap_bulk_write(): Write multiple registers to the device
1600 *
1601 * @map: Register map to write to
1602 * @reg: First register to be write from
1603 * @val: Block of data to be written, in native register size for device
1604 * @val_count: Number of registers to write
1605 *
1606 * This function is intended to be used for writing a large block of
1607 * data to the device either in single transfer or multiple transfer.
1608 *
1609 * A value of zero will be returned on success, a negative errno will
1610 * be returned in error cases.
1611 */
1612 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1613 size_t val_count)
1614 {
1615 int ret = 0, i;
1616 size_t val_bytes = map->format.val_bytes;
1617
1618 if (map->bus && !map->format.parse_inplace)
1619 return -EINVAL;
1620 if (reg % map->reg_stride)
1621 return -EINVAL;
1622
1623 /*
1624 * Some devices don't support bulk write, for
1625 * them we have a series of single write operations.
1626 */
1627 if (!map->bus || map->use_single_rw) {
1628 map->lock(map->lock_arg);
1629 for (i = 0; i < val_count; i++) {
1630 unsigned int ival;
1631
1632 switch (val_bytes) {
1633 case 1:
1634 ival = *(u8 *)(val + (i * val_bytes));
1635 break;
1636 case 2:
1637 ival = *(u16 *)(val + (i * val_bytes));
1638 break;
1639 case 4:
1640 ival = *(u32 *)(val + (i * val_bytes));
1641 break;
1642 #ifdef CONFIG_64BIT
1643 case 8:
1644 ival = *(u64 *)(val + (i * val_bytes));
1645 break;
1646 #endif
1647 default:
1648 ret = -EINVAL;
1649 goto out;
1650 }
1651
1652 ret = _regmap_write(map, reg + (i * map->reg_stride),
1653 ival);
1654 if (ret != 0)
1655 goto out;
1656 }
1657 out:
1658 map->unlock(map->lock_arg);
1659 } else {
1660 void *wval;
1661
1662 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1663 if (!wval) {
1664 dev_err(map->dev, "Error in memory allocation\n");
1665 return -ENOMEM;
1666 }
1667 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1668 map->format.parse_inplace(wval + i);
1669
1670 map->lock(map->lock_arg);
1671 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1672 map->unlock(map->lock_arg);
1673
1674 kfree(wval);
1675 }
1676 return ret;
1677 }
1678 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1679
1680 /*
1681 * _regmap_raw_multi_reg_write()
1682 *
1683 * the (register,newvalue) pairs in regs have not been formatted, but
1684 * they are all in the same page and have been changed to being page
1685 * relative. The page register has been written if that was neccessary.
1686 */
1687 static int _regmap_raw_multi_reg_write(struct regmap *map,
1688 const struct reg_default *regs,
1689 size_t num_regs)
1690 {
1691 int ret;
1692 void *buf;
1693 int i;
1694 u8 *u8;
1695 size_t val_bytes = map->format.val_bytes;
1696 size_t reg_bytes = map->format.reg_bytes;
1697 size_t pad_bytes = map->format.pad_bytes;
1698 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1699 size_t len = pair_size * num_regs;
1700
1701 if (!len)
1702 return -EINVAL;
1703
1704 buf = kzalloc(len, GFP_KERNEL);
1705 if (!buf)
1706 return -ENOMEM;
1707
1708 /* We have to linearise by hand. */
1709
1710 u8 = buf;
1711
1712 for (i = 0; i < num_regs; i++) {
1713 int reg = regs[i].reg;
1714 int val = regs[i].def;
1715 trace_regmap_hw_write_start(map->dev, reg, 1);
1716 map->format.format_reg(u8, reg, map->reg_shift);
1717 u8 += reg_bytes + pad_bytes;
1718 map->format.format_val(u8, val, 0);
1719 u8 += val_bytes;
1720 }
1721 u8 = buf;
1722 *u8 |= map->write_flag_mask;
1723
1724 ret = map->bus->write(map->bus_context, buf, len);
1725
1726 kfree(buf);
1727
1728 for (i = 0; i < num_regs; i++) {
1729 int reg = regs[i].reg;
1730 trace_regmap_hw_write_done(map->dev, reg, 1);
1731 }
1732 return ret;
1733 }
1734
1735 static unsigned int _regmap_register_page(struct regmap *map,
1736 unsigned int reg,
1737 struct regmap_range_node *range)
1738 {
1739 unsigned int win_page = (reg - range->range_min) / range->window_len;
1740
1741 return win_page;
1742 }
1743
1744 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1745 struct reg_default *regs,
1746 size_t num_regs)
1747 {
1748 int ret;
1749 int i, n;
1750 struct reg_default *base;
1751 unsigned int this_page = 0;
1752 /*
1753 * the set of registers are not neccessarily in order, but
1754 * since the order of write must be preserved this algorithm
1755 * chops the set each time the page changes
1756 */
1757 base = regs;
1758 for (i = 0, n = 0; i < num_regs; i++, n++) {
1759 unsigned int reg = regs[i].reg;
1760 struct regmap_range_node *range;
1761
1762 range = _regmap_range_lookup(map, reg);
1763 if (range) {
1764 unsigned int win_page = _regmap_register_page(map, reg,
1765 range);
1766
1767 if (i == 0)
1768 this_page = win_page;
1769 if (win_page != this_page) {
1770 this_page = win_page;
1771 ret = _regmap_raw_multi_reg_write(map, base, n);
1772 if (ret != 0)
1773 return ret;
1774 base += n;
1775 n = 0;
1776 }
1777 ret = _regmap_select_page(map, &base[n].reg, range, 1);
1778 if (ret != 0)
1779 return ret;
1780 }
1781 }
1782 if (n > 0)
1783 return _regmap_raw_multi_reg_write(map, base, n);
1784 return 0;
1785 }
1786
1787 static int _regmap_multi_reg_write(struct regmap *map,
1788 const struct reg_default *regs,
1789 size_t num_regs)
1790 {
1791 int i;
1792 int ret;
1793
1794 if (!map->can_multi_write) {
1795 for (i = 0; i < num_regs; i++) {
1796 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1797 if (ret != 0)
1798 return ret;
1799 }
1800 return 0;
1801 }
1802
1803 if (!map->format.parse_inplace)
1804 return -EINVAL;
1805
1806 if (map->writeable_reg)
1807 for (i = 0; i < num_regs; i++) {
1808 int reg = regs[i].reg;
1809 if (!map->writeable_reg(map->dev, reg))
1810 return -EINVAL;
1811 if (reg % map->reg_stride)
1812 return -EINVAL;
1813 }
1814
1815 if (!map->cache_bypass) {
1816 for (i = 0; i < num_regs; i++) {
1817 unsigned int val = regs[i].def;
1818 unsigned int reg = regs[i].reg;
1819 ret = regcache_write(map, reg, val);
1820 if (ret) {
1821 dev_err(map->dev,
1822 "Error in caching of register: %x ret: %d\n",
1823 reg, ret);
1824 return ret;
1825 }
1826 }
1827 if (map->cache_only) {
1828 map->cache_dirty = true;
1829 return 0;
1830 }
1831 }
1832
1833 WARN_ON(!map->bus);
1834
1835 for (i = 0; i < num_regs; i++) {
1836 unsigned int reg = regs[i].reg;
1837 struct regmap_range_node *range;
1838 range = _regmap_range_lookup(map, reg);
1839 if (range) {
1840 size_t len = sizeof(struct reg_default)*num_regs;
1841 struct reg_default *base = kmemdup(regs, len,
1842 GFP_KERNEL);
1843 if (!base)
1844 return -ENOMEM;
1845 ret = _regmap_range_multi_paged_reg_write(map, base,
1846 num_regs);
1847 kfree(base);
1848
1849 return ret;
1850 }
1851 }
1852 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1853 }
1854
1855 /*
1856 * regmap_multi_reg_write(): Write multiple registers to the device
1857 *
1858 * where the set of register,value pairs are supplied in any order,
1859 * possibly not all in a single range.
1860 *
1861 * @map: Register map to write to
1862 * @regs: Array of structures containing register,value to be written
1863 * @num_regs: Number of registers to write
1864 *
1865 * The 'normal' block write mode will send ultimately send data on the
1866 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1867 * addressed. However, this alternative block multi write mode will send
1868 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1869 * must of course support the mode.
1870 *
1871 * A value of zero will be returned on success, a negative errno will be
1872 * returned in error cases.
1873 */
1874 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1875 int num_regs)
1876 {
1877 int ret;
1878
1879 map->lock(map->lock_arg);
1880
1881 ret = _regmap_multi_reg_write(map, regs, num_regs);
1882
1883 map->unlock(map->lock_arg);
1884
1885 return ret;
1886 }
1887 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1888
1889 /*
1890 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1891 * device but not the cache
1892 *
1893 * where the set of register are supplied in any order
1894 *
1895 * @map: Register map to write to
1896 * @regs: Array of structures containing register,value to be written
1897 * @num_regs: Number of registers to write
1898 *
1899 * This function is intended to be used for writing a large block of data
1900 * atomically to the device in single transfer for those I2C client devices
1901 * that implement this alternative block write mode.
1902 *
1903 * A value of zero will be returned on success, a negative errno will
1904 * be returned in error cases.
1905 */
1906 int regmap_multi_reg_write_bypassed(struct regmap *map,
1907 const struct reg_default *regs,
1908 int num_regs)
1909 {
1910 int ret;
1911 bool bypass;
1912
1913 map->lock(map->lock_arg);
1914
1915 bypass = map->cache_bypass;
1916 map->cache_bypass = true;
1917
1918 ret = _regmap_multi_reg_write(map, regs, num_regs);
1919
1920 map->cache_bypass = bypass;
1921
1922 map->unlock(map->lock_arg);
1923
1924 return ret;
1925 }
1926 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1927
1928 /**
1929 * regmap_raw_write_async(): Write raw values to one or more registers
1930 * asynchronously
1931 *
1932 * @map: Register map to write to
1933 * @reg: Initial register to write to
1934 * @val: Block of data to be written, laid out for direct transmission to the
1935 * device. Must be valid until regmap_async_complete() is called.
1936 * @val_len: Length of data pointed to by val.
1937 *
1938 * This function is intended to be used for things like firmware
1939 * download where a large block of data needs to be transferred to the
1940 * device. No formatting will be done on the data provided.
1941 *
1942 * If supported by the underlying bus the write will be scheduled
1943 * asynchronously, helping maximise I/O speed on higher speed buses
1944 * like SPI. regmap_async_complete() can be called to ensure that all
1945 * asynchrnous writes have been completed.
1946 *
1947 * A value of zero will be returned on success, a negative errno will
1948 * be returned in error cases.
1949 */
1950 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1951 const void *val, size_t val_len)
1952 {
1953 int ret;
1954
1955 if (val_len % map->format.val_bytes)
1956 return -EINVAL;
1957 if (reg % map->reg_stride)
1958 return -EINVAL;
1959
1960 map->lock(map->lock_arg);
1961
1962 map->async = true;
1963
1964 ret = _regmap_raw_write(map, reg, val, val_len);
1965
1966 map->async = false;
1967
1968 map->unlock(map->lock_arg);
1969
1970 return ret;
1971 }
1972 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1973
1974 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1975 unsigned int val_len)
1976 {
1977 struct regmap_range_node *range;
1978 u8 *u8 = map->work_buf;
1979 int ret;
1980
1981 WARN_ON(!map->bus);
1982
1983 range = _regmap_range_lookup(map, reg);
1984 if (range) {
1985 ret = _regmap_select_page(map, &reg, range,
1986 val_len / map->format.val_bytes);
1987 if (ret != 0)
1988 return ret;
1989 }
1990
1991 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1992
1993 /*
1994 * Some buses or devices flag reads by setting the high bits in the
1995 * register addresss; since it's always the high bits for all
1996 * current formats we can do this here rather than in
1997 * formatting. This may break if we get interesting formats.
1998 */
1999 u8[0] |= map->read_flag_mask;
2000
2001 trace_regmap_hw_read_start(map->dev, reg,
2002 val_len / map->format.val_bytes);
2003
2004 ret = map->bus->read(map->bus_context, map->work_buf,
2005 map->format.reg_bytes + map->format.pad_bytes,
2006 val, val_len);
2007
2008 trace_regmap_hw_read_done(map->dev, reg,
2009 val_len / map->format.val_bytes);
2010
2011 return ret;
2012 }
2013
2014 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2015 unsigned int *val)
2016 {
2017 struct regmap *map = context;
2018
2019 return map->bus->reg_read(map->bus_context, reg, val);
2020 }
2021
2022 static int _regmap_bus_read(void *context, unsigned int reg,
2023 unsigned int *val)
2024 {
2025 int ret;
2026 struct regmap *map = context;
2027
2028 if (!map->format.parse_val)
2029 return -EINVAL;
2030
2031 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2032 if (ret == 0)
2033 *val = map->format.parse_val(map->work_buf);
2034
2035 return ret;
2036 }
2037
2038 static int _regmap_read(struct regmap *map, unsigned int reg,
2039 unsigned int *val)
2040 {
2041 int ret;
2042 void *context = _regmap_map_get_context(map);
2043
2044 WARN_ON(!map->reg_read);
2045
2046 if (!map->cache_bypass) {
2047 ret = regcache_read(map, reg, val);
2048 if (ret == 0)
2049 return 0;
2050 }
2051
2052 if (map->cache_only)
2053 return -EBUSY;
2054
2055 if (!regmap_readable(map, reg))
2056 return -EIO;
2057
2058 ret = map->reg_read(context, reg, val);
2059 if (ret == 0) {
2060 #ifdef LOG_DEVICE
2061 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2062 dev_info(map->dev, "%x => %x\n", reg, *val);
2063 #endif
2064
2065 trace_regmap_reg_read(map->dev, reg, *val);
2066
2067 if (!map->cache_bypass)
2068 regcache_write(map, reg, *val);
2069 }
2070
2071 return ret;
2072 }
2073
2074 /**
2075 * regmap_read(): Read a value from a single register
2076 *
2077 * @map: Register map to read from
2078 * @reg: Register to be read from
2079 * @val: Pointer to store read value
2080 *
2081 * A value of zero will be returned on success, a negative errno will
2082 * be returned in error cases.
2083 */
2084 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2085 {
2086 int ret;
2087
2088 if (reg % map->reg_stride)
2089 return -EINVAL;
2090
2091 map->lock(map->lock_arg);
2092
2093 ret = _regmap_read(map, reg, val);
2094
2095 map->unlock(map->lock_arg);
2096
2097 return ret;
2098 }
2099 EXPORT_SYMBOL_GPL(regmap_read);
2100
2101 /**
2102 * regmap_raw_read(): Read raw data from the device
2103 *
2104 * @map: Register map to read from
2105 * @reg: First register to be read from
2106 * @val: Pointer to store read value
2107 * @val_len: Size of data to read
2108 *
2109 * A value of zero will be returned on success, a negative errno will
2110 * be returned in error cases.
2111 */
2112 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2113 size_t val_len)
2114 {
2115 size_t val_bytes = map->format.val_bytes;
2116 size_t val_count = val_len / val_bytes;
2117 unsigned int v;
2118 int ret, i;
2119
2120 if (!map->bus)
2121 return -EINVAL;
2122 if (val_len % map->format.val_bytes)
2123 return -EINVAL;
2124 if (reg % map->reg_stride)
2125 return -EINVAL;
2126
2127 map->lock(map->lock_arg);
2128
2129 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2130 map->cache_type == REGCACHE_NONE) {
2131 /* Physical block read if there's no cache involved */
2132 ret = _regmap_raw_read(map, reg, val, val_len);
2133
2134 } else {
2135 /* Otherwise go word by word for the cache; should be low
2136 * cost as we expect to hit the cache.
2137 */
2138 for (i = 0; i < val_count; i++) {
2139 ret = _regmap_read(map, reg + (i * map->reg_stride),
2140 &v);
2141 if (ret != 0)
2142 goto out;
2143
2144 map->format.format_val(val + (i * val_bytes), v, 0);
2145 }
2146 }
2147
2148 out:
2149 map->unlock(map->lock_arg);
2150
2151 return ret;
2152 }
2153 EXPORT_SYMBOL_GPL(regmap_raw_read);
2154
2155 /**
2156 * regmap_field_read(): Read a value to a single register field
2157 *
2158 * @field: Register field to read from
2159 * @val: Pointer to store read value
2160 *
2161 * A value of zero will be returned on success, a negative errno will
2162 * be returned in error cases.
2163 */
2164 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2165 {
2166 int ret;
2167 unsigned int reg_val;
2168 ret = regmap_read(field->regmap, field->reg, &reg_val);
2169 if (ret != 0)
2170 return ret;
2171
2172 reg_val &= field->mask;
2173 reg_val >>= field->shift;
2174 *val = reg_val;
2175
2176 return ret;
2177 }
2178 EXPORT_SYMBOL_GPL(regmap_field_read);
2179
2180 /**
2181 * regmap_fields_read(): Read a value to a single register field with port ID
2182 *
2183 * @field: Register field to read from
2184 * @id: port ID
2185 * @val: Pointer to store read value
2186 *
2187 * A value of zero will be returned on success, a negative errno will
2188 * be returned in error cases.
2189 */
2190 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2191 unsigned int *val)
2192 {
2193 int ret;
2194 unsigned int reg_val;
2195
2196 if (id >= field->id_size)
2197 return -EINVAL;
2198
2199 ret = regmap_read(field->regmap,
2200 field->reg + (field->id_offset * id),
2201 &reg_val);
2202 if (ret != 0)
2203 return ret;
2204
2205 reg_val &= field->mask;
2206 reg_val >>= field->shift;
2207 *val = reg_val;
2208
2209 return ret;
2210 }
2211 EXPORT_SYMBOL_GPL(regmap_fields_read);
2212
2213 /**
2214 * regmap_bulk_read(): Read multiple registers from the device
2215 *
2216 * @map: Register map to read from
2217 * @reg: First register to be read from
2218 * @val: Pointer to store read value, in native register size for device
2219 * @val_count: Number of registers to read
2220 *
2221 * A value of zero will be returned on success, a negative errno will
2222 * be returned in error cases.
2223 */
2224 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2225 size_t val_count)
2226 {
2227 int ret, i;
2228 size_t val_bytes = map->format.val_bytes;
2229 bool vol = regmap_volatile_range(map, reg, val_count);
2230
2231 if (reg % map->reg_stride)
2232 return -EINVAL;
2233
2234 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2235 /*
2236 * Some devices does not support bulk read, for
2237 * them we have a series of single read operations.
2238 */
2239 if (map->use_single_rw) {
2240 for (i = 0; i < val_count; i++) {
2241 ret = regmap_raw_read(map,
2242 reg + (i * map->reg_stride),
2243 val + (i * val_bytes),
2244 val_bytes);
2245 if (ret != 0)
2246 return ret;
2247 }
2248 } else {
2249 ret = regmap_raw_read(map, reg, val,
2250 val_bytes * val_count);
2251 if (ret != 0)
2252 return ret;
2253 }
2254
2255 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2256 map->format.parse_inplace(val + i);
2257 } else {
2258 for (i = 0; i < val_count; i++) {
2259 unsigned int ival;
2260 ret = regmap_read(map, reg + (i * map->reg_stride),
2261 &ival);
2262 if (ret != 0)
2263 return ret;
2264 memcpy(val + (i * val_bytes), &ival, val_bytes);
2265 }
2266 }
2267
2268 return 0;
2269 }
2270 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2271
2272 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2273 unsigned int mask, unsigned int val,
2274 bool *change)
2275 {
2276 int ret;
2277 unsigned int tmp, orig;
2278
2279 ret = _regmap_read(map, reg, &orig);
2280 if (ret != 0)
2281 return ret;
2282
2283 tmp = orig & ~mask;
2284 tmp |= val & mask;
2285
2286 if (tmp != orig) {
2287 ret = _regmap_write(map, reg, tmp);
2288 if (change)
2289 *change = true;
2290 } else {
2291 if (change)
2292 *change = false;
2293 }
2294
2295 return ret;
2296 }
2297
2298 /**
2299 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2300 *
2301 * @map: Register map to update
2302 * @reg: Register to update
2303 * @mask: Bitmask to change
2304 * @val: New value for bitmask
2305 *
2306 * Returns zero for success, a negative number on error.
2307 */
2308 int regmap_update_bits(struct regmap *map, unsigned int reg,
2309 unsigned int mask, unsigned int val)
2310 {
2311 int ret;
2312
2313 map->lock(map->lock_arg);
2314 ret = _regmap_update_bits(map, reg, mask, val, NULL);
2315 map->unlock(map->lock_arg);
2316
2317 return ret;
2318 }
2319 EXPORT_SYMBOL_GPL(regmap_update_bits);
2320
2321 /**
2322 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2323 * map asynchronously
2324 *
2325 * @map: Register map to update
2326 * @reg: Register to update
2327 * @mask: Bitmask to change
2328 * @val: New value for bitmask
2329 *
2330 * With most buses the read must be done synchronously so this is most
2331 * useful for devices with a cache which do not need to interact with
2332 * the hardware to determine the current register value.
2333 *
2334 * Returns zero for success, a negative number on error.
2335 */
2336 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2337 unsigned int mask, unsigned int val)
2338 {
2339 int ret;
2340
2341 map->lock(map->lock_arg);
2342
2343 map->async = true;
2344
2345 ret = _regmap_update_bits(map, reg, mask, val, NULL);
2346
2347 map->async = false;
2348
2349 map->unlock(map->lock_arg);
2350
2351 return ret;
2352 }
2353 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2354
2355 /**
2356 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2357 * register map and report if updated
2358 *
2359 * @map: Register map to update
2360 * @reg: Register to update
2361 * @mask: Bitmask to change
2362 * @val: New value for bitmask
2363 * @change: Boolean indicating if a write was done
2364 *
2365 * Returns zero for success, a negative number on error.
2366 */
2367 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2368 unsigned int mask, unsigned int val,
2369 bool *change)
2370 {
2371 int ret;
2372
2373 map->lock(map->lock_arg);
2374 ret = _regmap_update_bits(map, reg, mask, val, change);
2375 map->unlock(map->lock_arg);
2376 return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2379
2380 /**
2381 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2382 * register map asynchronously and report if
2383 * updated
2384 *
2385 * @map: Register map to update
2386 * @reg: Register to update
2387 * @mask: Bitmask to change
2388 * @val: New value for bitmask
2389 * @change: Boolean indicating if a write was done
2390 *
2391 * With most buses the read must be done synchronously so this is most
2392 * useful for devices with a cache which do not need to interact with
2393 * the hardware to determine the current register value.
2394 *
2395 * Returns zero for success, a negative number on error.
2396 */
2397 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2398 unsigned int mask, unsigned int val,
2399 bool *change)
2400 {
2401 int ret;
2402
2403 map->lock(map->lock_arg);
2404
2405 map->async = true;
2406
2407 ret = _regmap_update_bits(map, reg, mask, val, change);
2408
2409 map->async = false;
2410
2411 map->unlock(map->lock_arg);
2412
2413 return ret;
2414 }
2415 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2416
2417 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2418 {
2419 struct regmap *map = async->map;
2420 bool wake;
2421
2422 trace_regmap_async_io_complete(map->dev);
2423
2424 spin_lock(&map->async_lock);
2425 list_move(&async->list, &map->async_free);
2426 wake = list_empty(&map->async_list);
2427
2428 if (ret != 0)
2429 map->async_ret = ret;
2430
2431 spin_unlock(&map->async_lock);
2432
2433 if (wake)
2434 wake_up(&map->async_waitq);
2435 }
2436 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2437
2438 static int regmap_async_is_done(struct regmap *map)
2439 {
2440 unsigned long flags;
2441 int ret;
2442
2443 spin_lock_irqsave(&map->async_lock, flags);
2444 ret = list_empty(&map->async_list);
2445 spin_unlock_irqrestore(&map->async_lock, flags);
2446
2447 return ret;
2448 }
2449
2450 /**
2451 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2452 *
2453 * @map: Map to operate on.
2454 *
2455 * Blocks until any pending asynchronous I/O has completed. Returns
2456 * an error code for any failed I/O operations.
2457 */
2458 int regmap_async_complete(struct regmap *map)
2459 {
2460 unsigned long flags;
2461 int ret;
2462
2463 /* Nothing to do with no async support */
2464 if (!map->bus || !map->bus->async_write)
2465 return 0;
2466
2467 trace_regmap_async_complete_start(map->dev);
2468
2469 wait_event(map->async_waitq, regmap_async_is_done(map));
2470
2471 spin_lock_irqsave(&map->async_lock, flags);
2472 ret = map->async_ret;
2473 map->async_ret = 0;
2474 spin_unlock_irqrestore(&map->async_lock, flags);
2475
2476 trace_regmap_async_complete_done(map->dev);
2477
2478 return ret;
2479 }
2480 EXPORT_SYMBOL_GPL(regmap_async_complete);
2481
2482 /**
2483 * regmap_register_patch: Register and apply register updates to be applied
2484 * on device initialistion
2485 *
2486 * @map: Register map to apply updates to.
2487 * @regs: Values to update.
2488 * @num_regs: Number of entries in regs.
2489 *
2490 * Register a set of register updates to be applied to the device
2491 * whenever the device registers are synchronised with the cache and
2492 * apply them immediately. Typically this is used to apply
2493 * corrections to be applied to the device defaults on startup, such
2494 * as the updates some vendors provide to undocumented registers.
2495 *
2496 * The caller must ensure that this function cannot be called
2497 * concurrently with either itself or regcache_sync().
2498 */
2499 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2500 int num_regs)
2501 {
2502 struct reg_default *p;
2503 int ret;
2504 bool bypass;
2505
2506 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2507 num_regs))
2508 return 0;
2509
2510 p = krealloc(map->patch,
2511 sizeof(struct reg_default) * (map->patch_regs + num_regs),
2512 GFP_KERNEL);
2513 if (p) {
2514 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2515 map->patch = p;
2516 map->patch_regs += num_regs;
2517 } else {
2518 return -ENOMEM;
2519 }
2520
2521 map->lock(map->lock_arg);
2522
2523 bypass = map->cache_bypass;
2524
2525 map->cache_bypass = true;
2526 map->async = true;
2527
2528 ret = _regmap_multi_reg_write(map, regs, num_regs);
2529 if (ret != 0)
2530 goto out;
2531
2532 out:
2533 map->async = false;
2534 map->cache_bypass = bypass;
2535
2536 map->unlock(map->lock_arg);
2537
2538 regmap_async_complete(map);
2539
2540 return ret;
2541 }
2542 EXPORT_SYMBOL_GPL(regmap_register_patch);
2543
2544 /*
2545 * regmap_get_val_bytes(): Report the size of a register value
2546 *
2547 * Report the size of a register value, mainly intended to for use by
2548 * generic infrastructure built on top of regmap.
2549 */
2550 int regmap_get_val_bytes(struct regmap *map)
2551 {
2552 if (map->format.format_write)
2553 return -EINVAL;
2554
2555 return map->format.val_bytes;
2556 }
2557 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2558
2559 int regmap_parse_val(struct regmap *map, const void *buf,
2560 unsigned int *val)
2561 {
2562 if (!map->format.parse_val)
2563 return -EINVAL;
2564
2565 *val = map->format.parse_val(buf);
2566
2567 return 0;
2568 }
2569 EXPORT_SYMBOL_GPL(regmap_parse_val);
2570
2571 static int __init regmap_initcall(void)
2572 {
2573 regmap_debugfs_initcall();
2574
2575 return 0;
2576 }
2577 postcore_initcall(regmap_initcall);
This page took 0.108535 seconds and 6 git commands to generate.