Merge branches 'topic/core' and 'topic/range' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / drivers / base / regmap / regmap.c
1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/regmap.h>
22
23 #include "internal.h"
24
25 /*
26 * Sometimes for failures during very early init the trace
27 * infrastructure isn't available early enough to be used. For this
28 * sort of problem defining LOG_DEVICE will add printks for basic
29 * register I/O on a specific device.
30 */
31 #undef LOG_DEVICE
32
33 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
34 unsigned int mask, unsigned int val,
35 bool *change);
36
37 bool regmap_writeable(struct regmap *map, unsigned int reg)
38 {
39 if (map->max_register && reg > map->max_register)
40 return false;
41
42 if (map->writeable_reg)
43 return map->writeable_reg(map->dev, reg);
44
45 return true;
46 }
47
48 bool regmap_readable(struct regmap *map, unsigned int reg)
49 {
50 if (map->max_register && reg > map->max_register)
51 return false;
52
53 if (map->format.format_write)
54 return false;
55
56 if (map->readable_reg)
57 return map->readable_reg(map->dev, reg);
58
59 return true;
60 }
61
62 bool regmap_volatile(struct regmap *map, unsigned int reg)
63 {
64 if (!regmap_readable(map, reg))
65 return false;
66
67 if (map->volatile_reg)
68 return map->volatile_reg(map->dev, reg);
69
70 return true;
71 }
72
73 bool regmap_precious(struct regmap *map, unsigned int reg)
74 {
75 if (!regmap_readable(map, reg))
76 return false;
77
78 if (map->precious_reg)
79 return map->precious_reg(map->dev, reg);
80
81 return false;
82 }
83
84 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
85 unsigned int num)
86 {
87 unsigned int i;
88
89 for (i = 0; i < num; i++)
90 if (!regmap_volatile(map, reg + i))
91 return false;
92
93 return true;
94 }
95
96 static void regmap_format_2_6_write(struct regmap *map,
97 unsigned int reg, unsigned int val)
98 {
99 u8 *out = map->work_buf;
100
101 *out = (reg << 6) | val;
102 }
103
104 static void regmap_format_4_12_write(struct regmap *map,
105 unsigned int reg, unsigned int val)
106 {
107 __be16 *out = map->work_buf;
108 *out = cpu_to_be16((reg << 12) | val);
109 }
110
111 static void regmap_format_7_9_write(struct regmap *map,
112 unsigned int reg, unsigned int val)
113 {
114 __be16 *out = map->work_buf;
115 *out = cpu_to_be16((reg << 9) | val);
116 }
117
118 static void regmap_format_10_14_write(struct regmap *map,
119 unsigned int reg, unsigned int val)
120 {
121 u8 *out = map->work_buf;
122
123 out[2] = val;
124 out[1] = (val >> 8) | (reg << 6);
125 out[0] = reg >> 2;
126 }
127
128 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
129 {
130 u8 *b = buf;
131
132 b[0] = val << shift;
133 }
134
135 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
136 {
137 __be16 *b = buf;
138
139 b[0] = cpu_to_be16(val << shift);
140 }
141
142 static void regmap_format_16_native(void *buf, unsigned int val,
143 unsigned int shift)
144 {
145 *(u16 *)buf = val << shift;
146 }
147
148 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
149 {
150 u8 *b = buf;
151
152 val <<= shift;
153
154 b[0] = val >> 16;
155 b[1] = val >> 8;
156 b[2] = val;
157 }
158
159 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
160 {
161 __be32 *b = buf;
162
163 b[0] = cpu_to_be32(val << shift);
164 }
165
166 static void regmap_format_32_native(void *buf, unsigned int val,
167 unsigned int shift)
168 {
169 *(u32 *)buf = val << shift;
170 }
171
172 static unsigned int regmap_parse_8(void *buf)
173 {
174 u8 *b = buf;
175
176 return b[0];
177 }
178
179 static unsigned int regmap_parse_16_be(void *buf)
180 {
181 __be16 *b = buf;
182
183 b[0] = be16_to_cpu(b[0]);
184
185 return b[0];
186 }
187
188 static unsigned int regmap_parse_16_native(void *buf)
189 {
190 return *(u16 *)buf;
191 }
192
193 static unsigned int regmap_parse_24(void *buf)
194 {
195 u8 *b = buf;
196 unsigned int ret = b[2];
197 ret |= ((unsigned int)b[1]) << 8;
198 ret |= ((unsigned int)b[0]) << 16;
199
200 return ret;
201 }
202
203 static unsigned int regmap_parse_32_be(void *buf)
204 {
205 __be32 *b = buf;
206
207 b[0] = be32_to_cpu(b[0]);
208
209 return b[0];
210 }
211
212 static unsigned int regmap_parse_32_native(void *buf)
213 {
214 return *(u32 *)buf;
215 }
216
217 static void regmap_lock_mutex(struct regmap *map)
218 {
219 mutex_lock(&map->mutex);
220 }
221
222 static void regmap_unlock_mutex(struct regmap *map)
223 {
224 mutex_unlock(&map->mutex);
225 }
226
227 static void regmap_lock_spinlock(struct regmap *map)
228 {
229 spin_lock(&map->spinlock);
230 }
231
232 static void regmap_unlock_spinlock(struct regmap *map)
233 {
234 spin_unlock(&map->spinlock);
235 }
236
237 static void dev_get_regmap_release(struct device *dev, void *res)
238 {
239 /*
240 * We don't actually have anything to do here; the goal here
241 * is not to manage the regmap but to provide a simple way to
242 * get the regmap back given a struct device.
243 */
244 }
245
246 static bool _regmap_range_add(struct regmap *map,
247 struct regmap_range_node *data)
248 {
249 struct rb_root *root = &map->range_tree;
250 struct rb_node **new = &(root->rb_node), *parent = NULL;
251
252 while (*new) {
253 struct regmap_range_node *this =
254 container_of(*new, struct regmap_range_node, node);
255
256 parent = *new;
257 if (data->range_max < this->range_min)
258 new = &((*new)->rb_left);
259 else if (data->range_min > this->range_max)
260 new = &((*new)->rb_right);
261 else
262 return false;
263 }
264
265 rb_link_node(&data->node, parent, new);
266 rb_insert_color(&data->node, root);
267
268 return true;
269 }
270
271 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
272 unsigned int reg)
273 {
274 struct rb_node *node = map->range_tree.rb_node;
275
276 while (node) {
277 struct regmap_range_node *this =
278 container_of(node, struct regmap_range_node, node);
279
280 if (reg < this->range_min)
281 node = node->rb_left;
282 else if (reg > this->range_max)
283 node = node->rb_right;
284 else
285 return this;
286 }
287
288 return NULL;
289 }
290
291 static void regmap_range_exit(struct regmap *map)
292 {
293 struct rb_node *next;
294 struct regmap_range_node *range_node;
295
296 next = rb_first(&map->range_tree);
297 while (next) {
298 range_node = rb_entry(next, struct regmap_range_node, node);
299 next = rb_next(&range_node->node);
300 rb_erase(&range_node->node, &map->range_tree);
301 kfree(range_node);
302 }
303
304 kfree(map->selector_work_buf);
305 }
306
307 /**
308 * regmap_init(): Initialise register map
309 *
310 * @dev: Device that will be interacted with
311 * @bus: Bus-specific callbacks to use with device
312 * @bus_context: Data passed to bus-specific callbacks
313 * @config: Configuration for register map
314 *
315 * The return value will be an ERR_PTR() on error or a valid pointer to
316 * a struct regmap. This function should generally not be called
317 * directly, it should be called by bus-specific init functions.
318 */
319 struct regmap *regmap_init(struct device *dev,
320 const struct regmap_bus *bus,
321 void *bus_context,
322 const struct regmap_config *config)
323 {
324 struct regmap *map, **m;
325 int ret = -EINVAL;
326 enum regmap_endian reg_endian, val_endian;
327 int i, j;
328
329 if (!bus || !config)
330 goto err;
331
332 map = kzalloc(sizeof(*map), GFP_KERNEL);
333 if (map == NULL) {
334 ret = -ENOMEM;
335 goto err;
336 }
337
338 if (bus->fast_io) {
339 spin_lock_init(&map->spinlock);
340 map->lock = regmap_lock_spinlock;
341 map->unlock = regmap_unlock_spinlock;
342 } else {
343 mutex_init(&map->mutex);
344 map->lock = regmap_lock_mutex;
345 map->unlock = regmap_unlock_mutex;
346 }
347 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
348 map->format.pad_bytes = config->pad_bits / 8;
349 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
350 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
351 config->val_bits + config->pad_bits, 8);
352 map->reg_shift = config->pad_bits % 8;
353 if (config->reg_stride)
354 map->reg_stride = config->reg_stride;
355 else
356 map->reg_stride = 1;
357 map->use_single_rw = config->use_single_rw;
358 map->dev = dev;
359 map->bus = bus;
360 map->bus_context = bus_context;
361 map->max_register = config->max_register;
362 map->writeable_reg = config->writeable_reg;
363 map->readable_reg = config->readable_reg;
364 map->volatile_reg = config->volatile_reg;
365 map->precious_reg = config->precious_reg;
366 map->cache_type = config->cache_type;
367 map->name = config->name;
368
369 if (config->read_flag_mask || config->write_flag_mask) {
370 map->read_flag_mask = config->read_flag_mask;
371 map->write_flag_mask = config->write_flag_mask;
372 } else {
373 map->read_flag_mask = bus->read_flag_mask;
374 }
375
376 reg_endian = config->reg_format_endian;
377 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
378 reg_endian = bus->reg_format_endian_default;
379 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
380 reg_endian = REGMAP_ENDIAN_BIG;
381
382 val_endian = config->val_format_endian;
383 if (val_endian == REGMAP_ENDIAN_DEFAULT)
384 val_endian = bus->val_format_endian_default;
385 if (val_endian == REGMAP_ENDIAN_DEFAULT)
386 val_endian = REGMAP_ENDIAN_BIG;
387
388 switch (config->reg_bits + map->reg_shift) {
389 case 2:
390 switch (config->val_bits) {
391 case 6:
392 map->format.format_write = regmap_format_2_6_write;
393 break;
394 default:
395 goto err_map;
396 }
397 break;
398
399 case 4:
400 switch (config->val_bits) {
401 case 12:
402 map->format.format_write = regmap_format_4_12_write;
403 break;
404 default:
405 goto err_map;
406 }
407 break;
408
409 case 7:
410 switch (config->val_bits) {
411 case 9:
412 map->format.format_write = regmap_format_7_9_write;
413 break;
414 default:
415 goto err_map;
416 }
417 break;
418
419 case 10:
420 switch (config->val_bits) {
421 case 14:
422 map->format.format_write = regmap_format_10_14_write;
423 break;
424 default:
425 goto err_map;
426 }
427 break;
428
429 case 8:
430 map->format.format_reg = regmap_format_8;
431 break;
432
433 case 16:
434 switch (reg_endian) {
435 case REGMAP_ENDIAN_BIG:
436 map->format.format_reg = regmap_format_16_be;
437 break;
438 case REGMAP_ENDIAN_NATIVE:
439 map->format.format_reg = regmap_format_16_native;
440 break;
441 default:
442 goto err_map;
443 }
444 break;
445
446 case 32:
447 switch (reg_endian) {
448 case REGMAP_ENDIAN_BIG:
449 map->format.format_reg = regmap_format_32_be;
450 break;
451 case REGMAP_ENDIAN_NATIVE:
452 map->format.format_reg = regmap_format_32_native;
453 break;
454 default:
455 goto err_map;
456 }
457 break;
458
459 default:
460 goto err_map;
461 }
462
463 switch (config->val_bits) {
464 case 8:
465 map->format.format_val = regmap_format_8;
466 map->format.parse_val = regmap_parse_8;
467 break;
468 case 16:
469 switch (val_endian) {
470 case REGMAP_ENDIAN_BIG:
471 map->format.format_val = regmap_format_16_be;
472 map->format.parse_val = regmap_parse_16_be;
473 break;
474 case REGMAP_ENDIAN_NATIVE:
475 map->format.format_val = regmap_format_16_native;
476 map->format.parse_val = regmap_parse_16_native;
477 break;
478 default:
479 goto err_map;
480 }
481 break;
482 case 24:
483 if (val_endian != REGMAP_ENDIAN_BIG)
484 goto err_map;
485 map->format.format_val = regmap_format_24;
486 map->format.parse_val = regmap_parse_24;
487 break;
488 case 32:
489 switch (val_endian) {
490 case REGMAP_ENDIAN_BIG:
491 map->format.format_val = regmap_format_32_be;
492 map->format.parse_val = regmap_parse_32_be;
493 break;
494 case REGMAP_ENDIAN_NATIVE:
495 map->format.format_val = regmap_format_32_native;
496 map->format.parse_val = regmap_parse_32_native;
497 break;
498 default:
499 goto err_map;
500 }
501 break;
502 }
503
504 if (map->format.format_write) {
505 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
506 (val_endian != REGMAP_ENDIAN_BIG))
507 goto err_map;
508 map->use_single_rw = true;
509 }
510
511 if (!map->format.format_write &&
512 !(map->format.format_reg && map->format.format_val))
513 goto err_map;
514
515 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
516 if (map->work_buf == NULL) {
517 ret = -ENOMEM;
518 goto err_map;
519 }
520
521 map->range_tree = RB_ROOT;
522 for (i = 0; i < config->num_ranges; i++) {
523 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
524 struct regmap_range_node *new;
525
526 /* Sanity check */
527 if (range_cfg->range_max < range_cfg->range_min) {
528 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
529 range_cfg->range_max, range_cfg->range_min);
530 goto err_range;
531 }
532
533 if (range_cfg->range_max > map->max_register) {
534 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
535 range_cfg->range_max, map->max_register);
536 goto err_range;
537 }
538
539 if (range_cfg->selector_reg > map->max_register) {
540 dev_err(map->dev,
541 "Invalid range %d: selector out of map\n", i);
542 goto err_range;
543 }
544
545 if (range_cfg->window_len == 0) {
546 dev_err(map->dev, "Invalid range %d: window_len 0\n",
547 i);
548 goto err_range;
549 }
550
551 /* Make sure, that this register range has no selector
552 or data window within its boundary */
553 for (j = 0; j < config->num_ranges; j++) {
554 unsigned sel_reg = config->ranges[j].selector_reg;
555 unsigned win_min = config->ranges[j].window_start;
556 unsigned win_max = win_min +
557 config->ranges[j].window_len - 1;
558
559 if (range_cfg->range_min <= sel_reg &&
560 sel_reg <= range_cfg->range_max) {
561 dev_err(map->dev,
562 "Range %d: selector for %d in window\n",
563 i, j);
564 goto err_range;
565 }
566
567 if (!(win_max < range_cfg->range_min ||
568 win_min > range_cfg->range_max)) {
569 dev_err(map->dev,
570 "Range %d: window for %d in window\n",
571 i, j);
572 goto err_range;
573 }
574 }
575
576 new = kzalloc(sizeof(*new), GFP_KERNEL);
577 if (new == NULL) {
578 ret = -ENOMEM;
579 goto err_range;
580 }
581
582 new->map = map;
583 new->name = range_cfg->name;
584 new->range_min = range_cfg->range_min;
585 new->range_max = range_cfg->range_max;
586 new->selector_reg = range_cfg->selector_reg;
587 new->selector_mask = range_cfg->selector_mask;
588 new->selector_shift = range_cfg->selector_shift;
589 new->window_start = range_cfg->window_start;
590 new->window_len = range_cfg->window_len;
591
592 if (_regmap_range_add(map, new) == false) {
593 dev_err(map->dev, "Failed to add range %d\n", i);
594 kfree(new);
595 goto err_range;
596 }
597
598 if (map->selector_work_buf == NULL) {
599 map->selector_work_buf =
600 kzalloc(map->format.buf_size, GFP_KERNEL);
601 if (map->selector_work_buf == NULL) {
602 ret = -ENOMEM;
603 goto err_range;
604 }
605 }
606 }
607
608 ret = regcache_init(map, config);
609 if (ret != 0)
610 goto err_range;
611
612 regmap_debugfs_init(map, config->name);
613
614 /* Add a devres resource for dev_get_regmap() */
615 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
616 if (!m) {
617 ret = -ENOMEM;
618 goto err_debugfs;
619 }
620 *m = map;
621 devres_add(dev, m);
622
623 return map;
624
625 err_debugfs:
626 regmap_debugfs_exit(map);
627 regcache_exit(map);
628 err_range:
629 regmap_range_exit(map);
630 kfree(map->work_buf);
631 err_map:
632 kfree(map);
633 err:
634 return ERR_PTR(ret);
635 }
636 EXPORT_SYMBOL_GPL(regmap_init);
637
638 static void devm_regmap_release(struct device *dev, void *res)
639 {
640 regmap_exit(*(struct regmap **)res);
641 }
642
643 /**
644 * devm_regmap_init(): Initialise managed register map
645 *
646 * @dev: Device that will be interacted with
647 * @bus: Bus-specific callbacks to use with device
648 * @bus_context: Data passed to bus-specific callbacks
649 * @config: Configuration for register map
650 *
651 * The return value will be an ERR_PTR() on error or a valid pointer
652 * to a struct regmap. This function should generally not be called
653 * directly, it should be called by bus-specific init functions. The
654 * map will be automatically freed by the device management code.
655 */
656 struct regmap *devm_regmap_init(struct device *dev,
657 const struct regmap_bus *bus,
658 void *bus_context,
659 const struct regmap_config *config)
660 {
661 struct regmap **ptr, *regmap;
662
663 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
664 if (!ptr)
665 return ERR_PTR(-ENOMEM);
666
667 regmap = regmap_init(dev, bus, bus_context, config);
668 if (!IS_ERR(regmap)) {
669 *ptr = regmap;
670 devres_add(dev, ptr);
671 } else {
672 devres_free(ptr);
673 }
674
675 return regmap;
676 }
677 EXPORT_SYMBOL_GPL(devm_regmap_init);
678
679 /**
680 * regmap_reinit_cache(): Reinitialise the current register cache
681 *
682 * @map: Register map to operate on.
683 * @config: New configuration. Only the cache data will be used.
684 *
685 * Discard any existing register cache for the map and initialize a
686 * new cache. This can be used to restore the cache to defaults or to
687 * update the cache configuration to reflect runtime discovery of the
688 * hardware.
689 *
690 * No explicit locking is done here, the user needs to ensure that
691 * this function will not race with other calls to regmap.
692 */
693 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
694 {
695 regcache_exit(map);
696 regmap_debugfs_exit(map);
697
698 map->max_register = config->max_register;
699 map->writeable_reg = config->writeable_reg;
700 map->readable_reg = config->readable_reg;
701 map->volatile_reg = config->volatile_reg;
702 map->precious_reg = config->precious_reg;
703 map->cache_type = config->cache_type;
704
705 regmap_debugfs_init(map, config->name);
706
707 map->cache_bypass = false;
708 map->cache_only = false;
709
710 return regcache_init(map, config);
711 }
712 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
713
714 /**
715 * regmap_exit(): Free a previously allocated register map
716 */
717 void regmap_exit(struct regmap *map)
718 {
719 regcache_exit(map);
720 regmap_debugfs_exit(map);
721 regmap_range_exit(map);
722 if (map->bus->free_context)
723 map->bus->free_context(map->bus_context);
724 kfree(map->work_buf);
725 kfree(map);
726 }
727 EXPORT_SYMBOL_GPL(regmap_exit);
728
729 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
730 {
731 struct regmap **r = res;
732 if (!r || !*r) {
733 WARN_ON(!r || !*r);
734 return 0;
735 }
736
737 /* If the user didn't specify a name match any */
738 if (data)
739 return (*r)->name == data;
740 else
741 return 1;
742 }
743
744 /**
745 * dev_get_regmap(): Obtain the regmap (if any) for a device
746 *
747 * @dev: Device to retrieve the map for
748 * @name: Optional name for the register map, usually NULL.
749 *
750 * Returns the regmap for the device if one is present, or NULL. If
751 * name is specified then it must match the name specified when
752 * registering the device, if it is NULL then the first regmap found
753 * will be used. Devices with multiple register maps are very rare,
754 * generic code should normally not need to specify a name.
755 */
756 struct regmap *dev_get_regmap(struct device *dev, const char *name)
757 {
758 struct regmap **r = devres_find(dev, dev_get_regmap_release,
759 dev_get_regmap_match, (void *)name);
760
761 if (!r)
762 return NULL;
763 return *r;
764 }
765 EXPORT_SYMBOL_GPL(dev_get_regmap);
766
767 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
768 struct regmap_range_node *range,
769 unsigned int val_num)
770 {
771 void *orig_work_buf;
772 unsigned int win_offset;
773 unsigned int win_page;
774 bool page_chg;
775 int ret;
776
777 win_offset = (*reg - range->range_min) % range->window_len;
778 win_page = (*reg - range->range_min) / range->window_len;
779
780 if (val_num > 1) {
781 /* Bulk write shouldn't cross range boundary */
782 if (*reg + val_num - 1 > range->range_max)
783 return -EINVAL;
784
785 /* ... or single page boundary */
786 if (val_num > range->window_len - win_offset)
787 return -EINVAL;
788 }
789
790 /* It is possible to have selector register inside data window.
791 In that case, selector register is located on every page and
792 it needs no page switching, when accessed alone. */
793 if (val_num > 1 ||
794 range->window_start + win_offset != range->selector_reg) {
795 /* Use separate work_buf during page switching */
796 orig_work_buf = map->work_buf;
797 map->work_buf = map->selector_work_buf;
798
799 ret = _regmap_update_bits(map, range->selector_reg,
800 range->selector_mask,
801 win_page << range->selector_shift,
802 &page_chg);
803
804 map->work_buf = orig_work_buf;
805
806 if (ret != 0)
807 return ret;
808 }
809
810 *reg = range->window_start + win_offset;
811
812 return 0;
813 }
814
815 static int _regmap_raw_write(struct regmap *map, unsigned int reg,
816 const void *val, size_t val_len)
817 {
818 struct regmap_range_node *range;
819 u8 *u8 = map->work_buf;
820 void *buf;
821 int ret = -ENOTSUPP;
822 size_t len;
823 int i;
824
825 /* Check for unwritable registers before we start */
826 if (map->writeable_reg)
827 for (i = 0; i < val_len / map->format.val_bytes; i++)
828 if (!map->writeable_reg(map->dev,
829 reg + (i * map->reg_stride)))
830 return -EINVAL;
831
832 if (!map->cache_bypass && map->format.parse_val) {
833 unsigned int ival;
834 int val_bytes = map->format.val_bytes;
835 for (i = 0; i < val_len / val_bytes; i++) {
836 memcpy(map->work_buf, val + (i * val_bytes), val_bytes);
837 ival = map->format.parse_val(map->work_buf);
838 ret = regcache_write(map, reg + (i * map->reg_stride),
839 ival);
840 if (ret) {
841 dev_err(map->dev,
842 "Error in caching of register: %x ret: %d\n",
843 reg + i, ret);
844 return ret;
845 }
846 }
847 if (map->cache_only) {
848 map->cache_dirty = true;
849 return 0;
850 }
851 }
852
853 range = _regmap_range_lookup(map, reg);
854 if (range) {
855 int val_num = val_len / map->format.val_bytes;
856 int win_offset = (reg - range->range_min) % range->window_len;
857 int win_residue = range->window_len - win_offset;
858
859 /* If the write goes beyond the end of the window split it */
860 while (val_num > win_residue) {
861 dev_dbg(map->dev, "Writing window %d/%zu\n",
862 win_residue, val_len / map->format.val_bytes);
863 ret = _regmap_raw_write(map, reg, val, win_residue *
864 map->format.val_bytes);
865 if (ret != 0)
866 return ret;
867
868 reg += win_residue;
869 val_num -= win_residue;
870 val += win_residue * map->format.val_bytes;
871 val_len -= win_residue * map->format.val_bytes;
872
873 win_offset = (reg - range->range_min) %
874 range->window_len;
875 win_residue = range->window_len - win_offset;
876 }
877
878 ret = _regmap_select_page(map, &reg, range, val_num);
879 if (ret != 0)
880 return ret;
881 }
882
883 map->format.format_reg(map->work_buf, reg, map->reg_shift);
884
885 u8[0] |= map->write_flag_mask;
886
887 trace_regmap_hw_write_start(map->dev, reg,
888 val_len / map->format.val_bytes);
889
890 /* If we're doing a single register write we can probably just
891 * send the work_buf directly, otherwise try to do a gather
892 * write.
893 */
894 if (val == (map->work_buf + map->format.pad_bytes +
895 map->format.reg_bytes))
896 ret = map->bus->write(map->bus_context, map->work_buf,
897 map->format.reg_bytes +
898 map->format.pad_bytes +
899 val_len);
900 else if (map->bus->gather_write)
901 ret = map->bus->gather_write(map->bus_context, map->work_buf,
902 map->format.reg_bytes +
903 map->format.pad_bytes,
904 val, val_len);
905
906 /* If that didn't work fall back on linearising by hand. */
907 if (ret == -ENOTSUPP) {
908 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
909 buf = kzalloc(len, GFP_KERNEL);
910 if (!buf)
911 return -ENOMEM;
912
913 memcpy(buf, map->work_buf, map->format.reg_bytes);
914 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
915 val, val_len);
916 ret = map->bus->write(map->bus_context, buf, len);
917
918 kfree(buf);
919 }
920
921 trace_regmap_hw_write_done(map->dev, reg,
922 val_len / map->format.val_bytes);
923
924 return ret;
925 }
926
927 int _regmap_write(struct regmap *map, unsigned int reg,
928 unsigned int val)
929 {
930 struct regmap_range_node *range;
931 int ret;
932 BUG_ON(!map->format.format_write && !map->format.format_val);
933
934 if (!map->cache_bypass && map->format.format_write) {
935 ret = regcache_write(map, reg, val);
936 if (ret != 0)
937 return ret;
938 if (map->cache_only) {
939 map->cache_dirty = true;
940 return 0;
941 }
942 }
943
944 #ifdef LOG_DEVICE
945 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
946 dev_info(map->dev, "%x <= %x\n", reg, val);
947 #endif
948
949 trace_regmap_reg_write(map->dev, reg, val);
950
951 if (map->format.format_write) {
952 range = _regmap_range_lookup(map, reg);
953 if (range) {
954 ret = _regmap_select_page(map, &reg, range, 1);
955 if (ret != 0)
956 return ret;
957 }
958
959 map->format.format_write(map, reg, val);
960
961 trace_regmap_hw_write_start(map->dev, reg, 1);
962
963 ret = map->bus->write(map->bus_context, map->work_buf,
964 map->format.buf_size);
965
966 trace_regmap_hw_write_done(map->dev, reg, 1);
967
968 return ret;
969 } else {
970 map->format.format_val(map->work_buf + map->format.reg_bytes
971 + map->format.pad_bytes, val, 0);
972 return _regmap_raw_write(map, reg,
973 map->work_buf +
974 map->format.reg_bytes +
975 map->format.pad_bytes,
976 map->format.val_bytes);
977 }
978 }
979
980 /**
981 * regmap_write(): Write a value to a single register
982 *
983 * @map: Register map to write to
984 * @reg: Register to write to
985 * @val: Value to be written
986 *
987 * A value of zero will be returned on success, a negative errno will
988 * be returned in error cases.
989 */
990 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
991 {
992 int ret;
993
994 if (reg % map->reg_stride)
995 return -EINVAL;
996
997 map->lock(map);
998
999 ret = _regmap_write(map, reg, val);
1000
1001 map->unlock(map);
1002
1003 return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(regmap_write);
1006
1007 /**
1008 * regmap_raw_write(): Write raw values to one or more registers
1009 *
1010 * @map: Register map to write to
1011 * @reg: Initial register to write to
1012 * @val: Block of data to be written, laid out for direct transmission to the
1013 * device
1014 * @val_len: Length of data pointed to by val.
1015 *
1016 * This function is intended to be used for things like firmware
1017 * download where a large block of data needs to be transferred to the
1018 * device. No formatting will be done on the data provided.
1019 *
1020 * A value of zero will be returned on success, a negative errno will
1021 * be returned in error cases.
1022 */
1023 int regmap_raw_write(struct regmap *map, unsigned int reg,
1024 const void *val, size_t val_len)
1025 {
1026 int ret;
1027
1028 if (val_len % map->format.val_bytes)
1029 return -EINVAL;
1030 if (reg % map->reg_stride)
1031 return -EINVAL;
1032
1033 map->lock(map);
1034
1035 ret = _regmap_raw_write(map, reg, val, val_len);
1036
1037 map->unlock(map);
1038
1039 return ret;
1040 }
1041 EXPORT_SYMBOL_GPL(regmap_raw_write);
1042
1043 /*
1044 * regmap_bulk_write(): Write multiple registers to the device
1045 *
1046 * @map: Register map to write to
1047 * @reg: First register to be write from
1048 * @val: Block of data to be written, in native register size for device
1049 * @val_count: Number of registers to write
1050 *
1051 * This function is intended to be used for writing a large block of
1052 * data to be device either in single transfer or multiple transfer.
1053 *
1054 * A value of zero will be returned on success, a negative errno will
1055 * be returned in error cases.
1056 */
1057 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1058 size_t val_count)
1059 {
1060 int ret = 0, i;
1061 size_t val_bytes = map->format.val_bytes;
1062 void *wval;
1063
1064 if (!map->format.parse_val)
1065 return -EINVAL;
1066 if (reg % map->reg_stride)
1067 return -EINVAL;
1068
1069 map->lock(map);
1070
1071 /* No formatting is require if val_byte is 1 */
1072 if (val_bytes == 1) {
1073 wval = (void *)val;
1074 } else {
1075 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1076 if (!wval) {
1077 ret = -ENOMEM;
1078 dev_err(map->dev, "Error in memory allocation\n");
1079 goto out;
1080 }
1081 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1082 map->format.parse_val(wval + i);
1083 }
1084 /*
1085 * Some devices does not support bulk write, for
1086 * them we have a series of single write operations.
1087 */
1088 if (map->use_single_rw) {
1089 for (i = 0; i < val_count; i++) {
1090 ret = regmap_raw_write(map,
1091 reg + (i * map->reg_stride),
1092 val + (i * val_bytes),
1093 val_bytes);
1094 if (ret != 0)
1095 return ret;
1096 }
1097 } else {
1098 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1099 }
1100
1101 if (val_bytes != 1)
1102 kfree(wval);
1103
1104 out:
1105 map->unlock(map);
1106 return ret;
1107 }
1108 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1109
1110 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1111 unsigned int val_len)
1112 {
1113 struct regmap_range_node *range;
1114 u8 *u8 = map->work_buf;
1115 int ret;
1116
1117 range = _regmap_range_lookup(map, reg);
1118 if (range) {
1119 ret = _regmap_select_page(map, &reg, range,
1120 val_len / map->format.val_bytes);
1121 if (ret != 0)
1122 return ret;
1123 }
1124
1125 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1126
1127 /*
1128 * Some buses or devices flag reads by setting the high bits in the
1129 * register addresss; since it's always the high bits for all
1130 * current formats we can do this here rather than in
1131 * formatting. This may break if we get interesting formats.
1132 */
1133 u8[0] |= map->read_flag_mask;
1134
1135 trace_regmap_hw_read_start(map->dev, reg,
1136 val_len / map->format.val_bytes);
1137
1138 ret = map->bus->read(map->bus_context, map->work_buf,
1139 map->format.reg_bytes + map->format.pad_bytes,
1140 val, val_len);
1141
1142 trace_regmap_hw_read_done(map->dev, reg,
1143 val_len / map->format.val_bytes);
1144
1145 return ret;
1146 }
1147
1148 static int _regmap_read(struct regmap *map, unsigned int reg,
1149 unsigned int *val)
1150 {
1151 int ret;
1152
1153 if (!map->cache_bypass) {
1154 ret = regcache_read(map, reg, val);
1155 if (ret == 0)
1156 return 0;
1157 }
1158
1159 if (!map->format.parse_val)
1160 return -EINVAL;
1161
1162 if (map->cache_only)
1163 return -EBUSY;
1164
1165 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1166 if (ret == 0) {
1167 *val = map->format.parse_val(map->work_buf);
1168
1169 #ifdef LOG_DEVICE
1170 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1171 dev_info(map->dev, "%x => %x\n", reg, *val);
1172 #endif
1173
1174 trace_regmap_reg_read(map->dev, reg, *val);
1175 }
1176
1177 if (ret == 0 && !map->cache_bypass)
1178 regcache_write(map, reg, *val);
1179
1180 return ret;
1181 }
1182
1183 /**
1184 * regmap_read(): Read a value from a single register
1185 *
1186 * @map: Register map to write to
1187 * @reg: Register to be read from
1188 * @val: Pointer to store read value
1189 *
1190 * A value of zero will be returned on success, a negative errno will
1191 * be returned in error cases.
1192 */
1193 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1194 {
1195 int ret;
1196
1197 if (reg % map->reg_stride)
1198 return -EINVAL;
1199
1200 map->lock(map);
1201
1202 ret = _regmap_read(map, reg, val);
1203
1204 map->unlock(map);
1205
1206 return ret;
1207 }
1208 EXPORT_SYMBOL_GPL(regmap_read);
1209
1210 /**
1211 * regmap_raw_read(): Read raw data from the device
1212 *
1213 * @map: Register map to write to
1214 * @reg: First register to be read from
1215 * @val: Pointer to store read value
1216 * @val_len: Size of data to read
1217 *
1218 * A value of zero will be returned on success, a negative errno will
1219 * be returned in error cases.
1220 */
1221 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1222 size_t val_len)
1223 {
1224 size_t val_bytes = map->format.val_bytes;
1225 size_t val_count = val_len / val_bytes;
1226 unsigned int v;
1227 int ret, i;
1228
1229 if (val_len % map->format.val_bytes)
1230 return -EINVAL;
1231 if (reg % map->reg_stride)
1232 return -EINVAL;
1233
1234 map->lock(map);
1235
1236 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1237 map->cache_type == REGCACHE_NONE) {
1238 /* Physical block read if there's no cache involved */
1239 ret = _regmap_raw_read(map, reg, val, val_len);
1240
1241 } else {
1242 /* Otherwise go word by word for the cache; should be low
1243 * cost as we expect to hit the cache.
1244 */
1245 for (i = 0; i < val_count; i++) {
1246 ret = _regmap_read(map, reg + (i * map->reg_stride),
1247 &v);
1248 if (ret != 0)
1249 goto out;
1250
1251 map->format.format_val(val + (i * val_bytes), v, 0);
1252 }
1253 }
1254
1255 out:
1256 map->unlock(map);
1257
1258 return ret;
1259 }
1260 EXPORT_SYMBOL_GPL(regmap_raw_read);
1261
1262 /**
1263 * regmap_bulk_read(): Read multiple registers from the device
1264 *
1265 * @map: Register map to write to
1266 * @reg: First register to be read from
1267 * @val: Pointer to store read value, in native register size for device
1268 * @val_count: Number of registers to read
1269 *
1270 * A value of zero will be returned on success, a negative errno will
1271 * be returned in error cases.
1272 */
1273 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1274 size_t val_count)
1275 {
1276 int ret, i;
1277 size_t val_bytes = map->format.val_bytes;
1278 bool vol = regmap_volatile_range(map, reg, val_count);
1279
1280 if (!map->format.parse_val)
1281 return -EINVAL;
1282 if (reg % map->reg_stride)
1283 return -EINVAL;
1284
1285 if (vol || map->cache_type == REGCACHE_NONE) {
1286 /*
1287 * Some devices does not support bulk read, for
1288 * them we have a series of single read operations.
1289 */
1290 if (map->use_single_rw) {
1291 for (i = 0; i < val_count; i++) {
1292 ret = regmap_raw_read(map,
1293 reg + (i * map->reg_stride),
1294 val + (i * val_bytes),
1295 val_bytes);
1296 if (ret != 0)
1297 return ret;
1298 }
1299 } else {
1300 ret = regmap_raw_read(map, reg, val,
1301 val_bytes * val_count);
1302 if (ret != 0)
1303 return ret;
1304 }
1305
1306 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1307 map->format.parse_val(val + i);
1308 } else {
1309 for (i = 0; i < val_count; i++) {
1310 unsigned int ival;
1311 ret = regmap_read(map, reg + (i * map->reg_stride),
1312 &ival);
1313 if (ret != 0)
1314 return ret;
1315 memcpy(val + (i * val_bytes), &ival, val_bytes);
1316 }
1317 }
1318
1319 return 0;
1320 }
1321 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1322
1323 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1324 unsigned int mask, unsigned int val,
1325 bool *change)
1326 {
1327 int ret;
1328 unsigned int tmp, orig;
1329
1330 ret = _regmap_read(map, reg, &orig);
1331 if (ret != 0)
1332 return ret;
1333
1334 tmp = orig & ~mask;
1335 tmp |= val & mask;
1336
1337 if (tmp != orig) {
1338 ret = _regmap_write(map, reg, tmp);
1339 *change = true;
1340 } else {
1341 *change = false;
1342 }
1343
1344 return ret;
1345 }
1346
1347 /**
1348 * regmap_update_bits: Perform a read/modify/write cycle on the register map
1349 *
1350 * @map: Register map to update
1351 * @reg: Register to update
1352 * @mask: Bitmask to change
1353 * @val: New value for bitmask
1354 *
1355 * Returns zero for success, a negative number on error.
1356 */
1357 int regmap_update_bits(struct regmap *map, unsigned int reg,
1358 unsigned int mask, unsigned int val)
1359 {
1360 bool change;
1361 int ret;
1362
1363 map->lock(map);
1364 ret = _regmap_update_bits(map, reg, mask, val, &change);
1365 map->unlock(map);
1366
1367 return ret;
1368 }
1369 EXPORT_SYMBOL_GPL(regmap_update_bits);
1370
1371 /**
1372 * regmap_update_bits_check: Perform a read/modify/write cycle on the
1373 * register map and report if updated
1374 *
1375 * @map: Register map to update
1376 * @reg: Register to update
1377 * @mask: Bitmask to change
1378 * @val: New value for bitmask
1379 * @change: Boolean indicating if a write was done
1380 *
1381 * Returns zero for success, a negative number on error.
1382 */
1383 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1384 unsigned int mask, unsigned int val,
1385 bool *change)
1386 {
1387 int ret;
1388
1389 map->lock(map);
1390 ret = _regmap_update_bits(map, reg, mask, val, change);
1391 map->unlock(map);
1392 return ret;
1393 }
1394 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1395
1396 /**
1397 * regmap_register_patch: Register and apply register updates to be applied
1398 * on device initialistion
1399 *
1400 * @map: Register map to apply updates to.
1401 * @regs: Values to update.
1402 * @num_regs: Number of entries in regs.
1403 *
1404 * Register a set of register updates to be applied to the device
1405 * whenever the device registers are synchronised with the cache and
1406 * apply them immediately. Typically this is used to apply
1407 * corrections to be applied to the device defaults on startup, such
1408 * as the updates some vendors provide to undocumented registers.
1409 */
1410 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1411 int num_regs)
1412 {
1413 int i, ret;
1414 bool bypass;
1415
1416 /* If needed the implementation can be extended to support this */
1417 if (map->patch)
1418 return -EBUSY;
1419
1420 map->lock(map);
1421
1422 bypass = map->cache_bypass;
1423
1424 map->cache_bypass = true;
1425
1426 /* Write out first; it's useful to apply even if we fail later. */
1427 for (i = 0; i < num_regs; i++) {
1428 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1429 if (ret != 0) {
1430 dev_err(map->dev, "Failed to write %x = %x: %d\n",
1431 regs[i].reg, regs[i].def, ret);
1432 goto out;
1433 }
1434 }
1435
1436 map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
1437 if (map->patch != NULL) {
1438 memcpy(map->patch, regs,
1439 num_regs * sizeof(struct reg_default));
1440 map->patch_regs = num_regs;
1441 } else {
1442 ret = -ENOMEM;
1443 }
1444
1445 out:
1446 map->cache_bypass = bypass;
1447
1448 map->unlock(map);
1449
1450 return ret;
1451 }
1452 EXPORT_SYMBOL_GPL(regmap_register_patch);
1453
1454 /*
1455 * regmap_get_val_bytes(): Report the size of a register value
1456 *
1457 * Report the size of a register value, mainly intended to for use by
1458 * generic infrastructure built on top of regmap.
1459 */
1460 int regmap_get_val_bytes(struct regmap *map)
1461 {
1462 if (map->format.format_write)
1463 return -EINVAL;
1464
1465 return map->format.val_bytes;
1466 }
1467 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1468
1469 static int __init regmap_initcall(void)
1470 {
1471 regmap_debugfs_initcall();
1472
1473 return 0;
1474 }
1475 postcore_initcall(regmap_initcall);
This page took 0.104635 seconds and 6 git commands to generate.