Merge branch 'for-upstream' of git://openrisc.net/jonas/linux
[deliverable/linux.git] / drivers / base / regmap / regmap.c
1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23
24 #include "internal.h"
25
26 /*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32 #undef LOG_DEVICE
33
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 unsigned int mask, unsigned int val,
36 bool *change);
37
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 unsigned int val);
44
45 static void async_cleanup(struct work_struct *work)
46 {
47 struct regmap_async *async = container_of(work, struct regmap_async,
48 cleanup);
49
50 kfree(async->work_buf);
51 kfree(async);
52 }
53
54 bool regmap_reg_in_ranges(unsigned int reg,
55 const struct regmap_range *ranges,
56 unsigned int nranges)
57 {
58 const struct regmap_range *r;
59 int i;
60
61 for (i = 0, r = ranges; i < nranges; i++, r++)
62 if (regmap_reg_in_range(reg, r))
63 return true;
64 return false;
65 }
66 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
67
68 static bool _regmap_check_range_table(struct regmap *map,
69 unsigned int reg,
70 const struct regmap_access_table *table)
71 {
72 /* Check "no ranges" first */
73 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
74 return false;
75
76 /* In case zero "yes ranges" are supplied, any reg is OK */
77 if (!table->n_yes_ranges)
78 return true;
79
80 return regmap_reg_in_ranges(reg, table->yes_ranges,
81 table->n_yes_ranges);
82 }
83
84 bool regmap_writeable(struct regmap *map, unsigned int reg)
85 {
86 if (map->max_register && reg > map->max_register)
87 return false;
88
89 if (map->writeable_reg)
90 return map->writeable_reg(map->dev, reg);
91
92 if (map->wr_table)
93 return _regmap_check_range_table(map, reg, map->wr_table);
94
95 return true;
96 }
97
98 bool regmap_readable(struct regmap *map, unsigned int reg)
99 {
100 if (map->max_register && reg > map->max_register)
101 return false;
102
103 if (map->format.format_write)
104 return false;
105
106 if (map->readable_reg)
107 return map->readable_reg(map->dev, reg);
108
109 if (map->rd_table)
110 return _regmap_check_range_table(map, reg, map->rd_table);
111
112 return true;
113 }
114
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117 if (!regmap_readable(map, reg))
118 return false;
119
120 if (map->volatile_reg)
121 return map->volatile_reg(map->dev, reg);
122
123 if (map->volatile_table)
124 return _regmap_check_range_table(map, reg, map->volatile_table);
125
126 return true;
127 }
128
129 bool regmap_precious(struct regmap *map, unsigned int reg)
130 {
131 if (!regmap_readable(map, reg))
132 return false;
133
134 if (map->precious_reg)
135 return map->precious_reg(map->dev, reg);
136
137 if (map->precious_table)
138 return _regmap_check_range_table(map, reg, map->precious_table);
139
140 return false;
141 }
142
143 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
144 size_t num)
145 {
146 unsigned int i;
147
148 for (i = 0; i < num; i++)
149 if (!regmap_volatile(map, reg + i))
150 return false;
151
152 return true;
153 }
154
155 static void regmap_format_2_6_write(struct regmap *map,
156 unsigned int reg, unsigned int val)
157 {
158 u8 *out = map->work_buf;
159
160 *out = (reg << 6) | val;
161 }
162
163 static void regmap_format_4_12_write(struct regmap *map,
164 unsigned int reg, unsigned int val)
165 {
166 __be16 *out = map->work_buf;
167 *out = cpu_to_be16((reg << 12) | val);
168 }
169
170 static void regmap_format_7_9_write(struct regmap *map,
171 unsigned int reg, unsigned int val)
172 {
173 __be16 *out = map->work_buf;
174 *out = cpu_to_be16((reg << 9) | val);
175 }
176
177 static void regmap_format_10_14_write(struct regmap *map,
178 unsigned int reg, unsigned int val)
179 {
180 u8 *out = map->work_buf;
181
182 out[2] = val;
183 out[1] = (val >> 8) | (reg << 6);
184 out[0] = reg >> 2;
185 }
186
187 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
188 {
189 u8 *b = buf;
190
191 b[0] = val << shift;
192 }
193
194 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
195 {
196 __be16 *b = buf;
197
198 b[0] = cpu_to_be16(val << shift);
199 }
200
201 static void regmap_format_16_native(void *buf, unsigned int val,
202 unsigned int shift)
203 {
204 *(u16 *)buf = val << shift;
205 }
206
207 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
208 {
209 u8 *b = buf;
210
211 val <<= shift;
212
213 b[0] = val >> 16;
214 b[1] = val >> 8;
215 b[2] = val;
216 }
217
218 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
219 {
220 __be32 *b = buf;
221
222 b[0] = cpu_to_be32(val << shift);
223 }
224
225 static void regmap_format_32_native(void *buf, unsigned int val,
226 unsigned int shift)
227 {
228 *(u32 *)buf = val << shift;
229 }
230
231 static unsigned int regmap_parse_8(void *buf)
232 {
233 u8 *b = buf;
234
235 return b[0];
236 }
237
238 static unsigned int regmap_parse_16_be(void *buf)
239 {
240 __be16 *b = buf;
241
242 b[0] = be16_to_cpu(b[0]);
243
244 return b[0];
245 }
246
247 static unsigned int regmap_parse_16_native(void *buf)
248 {
249 return *(u16 *)buf;
250 }
251
252 static unsigned int regmap_parse_24(void *buf)
253 {
254 u8 *b = buf;
255 unsigned int ret = b[2];
256 ret |= ((unsigned int)b[1]) << 8;
257 ret |= ((unsigned int)b[0]) << 16;
258
259 return ret;
260 }
261
262 static unsigned int regmap_parse_32_be(void *buf)
263 {
264 __be32 *b = buf;
265
266 b[0] = be32_to_cpu(b[0]);
267
268 return b[0];
269 }
270
271 static unsigned int regmap_parse_32_native(void *buf)
272 {
273 return *(u32 *)buf;
274 }
275
276 static void regmap_lock_mutex(void *__map)
277 {
278 struct regmap *map = __map;
279 mutex_lock(&map->mutex);
280 }
281
282 static void regmap_unlock_mutex(void *__map)
283 {
284 struct regmap *map = __map;
285 mutex_unlock(&map->mutex);
286 }
287
288 static void regmap_lock_spinlock(void *__map)
289 {
290 struct regmap *map = __map;
291 spin_lock(&map->spinlock);
292 }
293
294 static void regmap_unlock_spinlock(void *__map)
295 {
296 struct regmap *map = __map;
297 spin_unlock(&map->spinlock);
298 }
299
300 static void dev_get_regmap_release(struct device *dev, void *res)
301 {
302 /*
303 * We don't actually have anything to do here; the goal here
304 * is not to manage the regmap but to provide a simple way to
305 * get the regmap back given a struct device.
306 */
307 }
308
309 static bool _regmap_range_add(struct regmap *map,
310 struct regmap_range_node *data)
311 {
312 struct rb_root *root = &map->range_tree;
313 struct rb_node **new = &(root->rb_node), *parent = NULL;
314
315 while (*new) {
316 struct regmap_range_node *this =
317 container_of(*new, struct regmap_range_node, node);
318
319 parent = *new;
320 if (data->range_max < this->range_min)
321 new = &((*new)->rb_left);
322 else if (data->range_min > this->range_max)
323 new = &((*new)->rb_right);
324 else
325 return false;
326 }
327
328 rb_link_node(&data->node, parent, new);
329 rb_insert_color(&data->node, root);
330
331 return true;
332 }
333
334 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
335 unsigned int reg)
336 {
337 struct rb_node *node = map->range_tree.rb_node;
338
339 while (node) {
340 struct regmap_range_node *this =
341 container_of(node, struct regmap_range_node, node);
342
343 if (reg < this->range_min)
344 node = node->rb_left;
345 else if (reg > this->range_max)
346 node = node->rb_right;
347 else
348 return this;
349 }
350
351 return NULL;
352 }
353
354 static void regmap_range_exit(struct regmap *map)
355 {
356 struct rb_node *next;
357 struct regmap_range_node *range_node;
358
359 next = rb_first(&map->range_tree);
360 while (next) {
361 range_node = rb_entry(next, struct regmap_range_node, node);
362 next = rb_next(&range_node->node);
363 rb_erase(&range_node->node, &map->range_tree);
364 kfree(range_node);
365 }
366
367 kfree(map->selector_work_buf);
368 }
369
370 /**
371 * regmap_init(): Initialise register map
372 *
373 * @dev: Device that will be interacted with
374 * @bus: Bus-specific callbacks to use with device
375 * @bus_context: Data passed to bus-specific callbacks
376 * @config: Configuration for register map
377 *
378 * The return value will be an ERR_PTR() on error or a valid pointer to
379 * a struct regmap. This function should generally not be called
380 * directly, it should be called by bus-specific init functions.
381 */
382 struct regmap *regmap_init(struct device *dev,
383 const struct regmap_bus *bus,
384 void *bus_context,
385 const struct regmap_config *config)
386 {
387 struct regmap *map, **m;
388 int ret = -EINVAL;
389 enum regmap_endian reg_endian, val_endian;
390 int i, j;
391
392 if (!config)
393 goto err;
394
395 map = kzalloc(sizeof(*map), GFP_KERNEL);
396 if (map == NULL) {
397 ret = -ENOMEM;
398 goto err;
399 }
400
401 if (config->lock && config->unlock) {
402 map->lock = config->lock;
403 map->unlock = config->unlock;
404 map->lock_arg = config->lock_arg;
405 } else {
406 if ((bus && bus->fast_io) ||
407 config->fast_io) {
408 spin_lock_init(&map->spinlock);
409 map->lock = regmap_lock_spinlock;
410 map->unlock = regmap_unlock_spinlock;
411 } else {
412 mutex_init(&map->mutex);
413 map->lock = regmap_lock_mutex;
414 map->unlock = regmap_unlock_mutex;
415 }
416 map->lock_arg = map;
417 }
418 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
419 map->format.pad_bytes = config->pad_bits / 8;
420 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
421 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
422 config->val_bits + config->pad_bits, 8);
423 map->reg_shift = config->pad_bits % 8;
424 if (config->reg_stride)
425 map->reg_stride = config->reg_stride;
426 else
427 map->reg_stride = 1;
428 map->use_single_rw = config->use_single_rw;
429 map->dev = dev;
430 map->bus = bus;
431 map->bus_context = bus_context;
432 map->max_register = config->max_register;
433 map->wr_table = config->wr_table;
434 map->rd_table = config->rd_table;
435 map->volatile_table = config->volatile_table;
436 map->precious_table = config->precious_table;
437 map->writeable_reg = config->writeable_reg;
438 map->readable_reg = config->readable_reg;
439 map->volatile_reg = config->volatile_reg;
440 map->precious_reg = config->precious_reg;
441 map->cache_type = config->cache_type;
442 map->name = config->name;
443
444 spin_lock_init(&map->async_lock);
445 INIT_LIST_HEAD(&map->async_list);
446 init_waitqueue_head(&map->async_waitq);
447
448 if (config->read_flag_mask || config->write_flag_mask) {
449 map->read_flag_mask = config->read_flag_mask;
450 map->write_flag_mask = config->write_flag_mask;
451 } else if (bus) {
452 map->read_flag_mask = bus->read_flag_mask;
453 }
454
455 if (!bus) {
456 map->reg_read = config->reg_read;
457 map->reg_write = config->reg_write;
458
459 map->defer_caching = false;
460 goto skip_format_initialization;
461 } else {
462 map->reg_read = _regmap_bus_read;
463 }
464
465 reg_endian = config->reg_format_endian;
466 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
467 reg_endian = bus->reg_format_endian_default;
468 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
469 reg_endian = REGMAP_ENDIAN_BIG;
470
471 val_endian = config->val_format_endian;
472 if (val_endian == REGMAP_ENDIAN_DEFAULT)
473 val_endian = bus->val_format_endian_default;
474 if (val_endian == REGMAP_ENDIAN_DEFAULT)
475 val_endian = REGMAP_ENDIAN_BIG;
476
477 switch (config->reg_bits + map->reg_shift) {
478 case 2:
479 switch (config->val_bits) {
480 case 6:
481 map->format.format_write = regmap_format_2_6_write;
482 break;
483 default:
484 goto err_map;
485 }
486 break;
487
488 case 4:
489 switch (config->val_bits) {
490 case 12:
491 map->format.format_write = regmap_format_4_12_write;
492 break;
493 default:
494 goto err_map;
495 }
496 break;
497
498 case 7:
499 switch (config->val_bits) {
500 case 9:
501 map->format.format_write = regmap_format_7_9_write;
502 break;
503 default:
504 goto err_map;
505 }
506 break;
507
508 case 10:
509 switch (config->val_bits) {
510 case 14:
511 map->format.format_write = regmap_format_10_14_write;
512 break;
513 default:
514 goto err_map;
515 }
516 break;
517
518 case 8:
519 map->format.format_reg = regmap_format_8;
520 break;
521
522 case 16:
523 switch (reg_endian) {
524 case REGMAP_ENDIAN_BIG:
525 map->format.format_reg = regmap_format_16_be;
526 break;
527 case REGMAP_ENDIAN_NATIVE:
528 map->format.format_reg = regmap_format_16_native;
529 break;
530 default:
531 goto err_map;
532 }
533 break;
534
535 case 24:
536 if (reg_endian != REGMAP_ENDIAN_BIG)
537 goto err_map;
538 map->format.format_reg = regmap_format_24;
539 break;
540
541 case 32:
542 switch (reg_endian) {
543 case REGMAP_ENDIAN_BIG:
544 map->format.format_reg = regmap_format_32_be;
545 break;
546 case REGMAP_ENDIAN_NATIVE:
547 map->format.format_reg = regmap_format_32_native;
548 break;
549 default:
550 goto err_map;
551 }
552 break;
553
554 default:
555 goto err_map;
556 }
557
558 switch (config->val_bits) {
559 case 8:
560 map->format.format_val = regmap_format_8;
561 map->format.parse_val = regmap_parse_8;
562 break;
563 case 16:
564 switch (val_endian) {
565 case REGMAP_ENDIAN_BIG:
566 map->format.format_val = regmap_format_16_be;
567 map->format.parse_val = regmap_parse_16_be;
568 break;
569 case REGMAP_ENDIAN_NATIVE:
570 map->format.format_val = regmap_format_16_native;
571 map->format.parse_val = regmap_parse_16_native;
572 break;
573 default:
574 goto err_map;
575 }
576 break;
577 case 24:
578 if (val_endian != REGMAP_ENDIAN_BIG)
579 goto err_map;
580 map->format.format_val = regmap_format_24;
581 map->format.parse_val = regmap_parse_24;
582 break;
583 case 32:
584 switch (val_endian) {
585 case REGMAP_ENDIAN_BIG:
586 map->format.format_val = regmap_format_32_be;
587 map->format.parse_val = regmap_parse_32_be;
588 break;
589 case REGMAP_ENDIAN_NATIVE:
590 map->format.format_val = regmap_format_32_native;
591 map->format.parse_val = regmap_parse_32_native;
592 break;
593 default:
594 goto err_map;
595 }
596 break;
597 }
598
599 if (map->format.format_write) {
600 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
601 (val_endian != REGMAP_ENDIAN_BIG))
602 goto err_map;
603 map->use_single_rw = true;
604 }
605
606 if (!map->format.format_write &&
607 !(map->format.format_reg && map->format.format_val))
608 goto err_map;
609
610 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
611 if (map->work_buf == NULL) {
612 ret = -ENOMEM;
613 goto err_map;
614 }
615
616 if (map->format.format_write) {
617 map->defer_caching = false;
618 map->reg_write = _regmap_bus_formatted_write;
619 } else if (map->format.format_val) {
620 map->defer_caching = true;
621 map->reg_write = _regmap_bus_raw_write;
622 }
623
624 skip_format_initialization:
625
626 map->range_tree = RB_ROOT;
627 for (i = 0; i < config->num_ranges; i++) {
628 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
629 struct regmap_range_node *new;
630
631 /* Sanity check */
632 if (range_cfg->range_max < range_cfg->range_min) {
633 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
634 range_cfg->range_max, range_cfg->range_min);
635 goto err_range;
636 }
637
638 if (range_cfg->range_max > map->max_register) {
639 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
640 range_cfg->range_max, map->max_register);
641 goto err_range;
642 }
643
644 if (range_cfg->selector_reg > map->max_register) {
645 dev_err(map->dev,
646 "Invalid range %d: selector out of map\n", i);
647 goto err_range;
648 }
649
650 if (range_cfg->window_len == 0) {
651 dev_err(map->dev, "Invalid range %d: window_len 0\n",
652 i);
653 goto err_range;
654 }
655
656 /* Make sure, that this register range has no selector
657 or data window within its boundary */
658 for (j = 0; j < config->num_ranges; j++) {
659 unsigned sel_reg = config->ranges[j].selector_reg;
660 unsigned win_min = config->ranges[j].window_start;
661 unsigned win_max = win_min +
662 config->ranges[j].window_len - 1;
663
664 if (range_cfg->range_min <= sel_reg &&
665 sel_reg <= range_cfg->range_max) {
666 dev_err(map->dev,
667 "Range %d: selector for %d in window\n",
668 i, j);
669 goto err_range;
670 }
671
672 if (!(win_max < range_cfg->range_min ||
673 win_min > range_cfg->range_max)) {
674 dev_err(map->dev,
675 "Range %d: window for %d in window\n",
676 i, j);
677 goto err_range;
678 }
679 }
680
681 new = kzalloc(sizeof(*new), GFP_KERNEL);
682 if (new == NULL) {
683 ret = -ENOMEM;
684 goto err_range;
685 }
686
687 new->map = map;
688 new->name = range_cfg->name;
689 new->range_min = range_cfg->range_min;
690 new->range_max = range_cfg->range_max;
691 new->selector_reg = range_cfg->selector_reg;
692 new->selector_mask = range_cfg->selector_mask;
693 new->selector_shift = range_cfg->selector_shift;
694 new->window_start = range_cfg->window_start;
695 new->window_len = range_cfg->window_len;
696
697 if (_regmap_range_add(map, new) == false) {
698 dev_err(map->dev, "Failed to add range %d\n", i);
699 kfree(new);
700 goto err_range;
701 }
702
703 if (map->selector_work_buf == NULL) {
704 map->selector_work_buf =
705 kzalloc(map->format.buf_size, GFP_KERNEL);
706 if (map->selector_work_buf == NULL) {
707 ret = -ENOMEM;
708 goto err_range;
709 }
710 }
711 }
712
713 ret = regcache_init(map, config);
714 if (ret != 0)
715 goto err_range;
716
717 regmap_debugfs_init(map, config->name);
718
719 /* Add a devres resource for dev_get_regmap() */
720 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
721 if (!m) {
722 ret = -ENOMEM;
723 goto err_debugfs;
724 }
725 *m = map;
726 devres_add(dev, m);
727
728 return map;
729
730 err_debugfs:
731 regmap_debugfs_exit(map);
732 regcache_exit(map);
733 err_range:
734 regmap_range_exit(map);
735 kfree(map->work_buf);
736 err_map:
737 kfree(map);
738 err:
739 return ERR_PTR(ret);
740 }
741 EXPORT_SYMBOL_GPL(regmap_init);
742
743 static void devm_regmap_release(struct device *dev, void *res)
744 {
745 regmap_exit(*(struct regmap **)res);
746 }
747
748 /**
749 * devm_regmap_init(): Initialise managed register map
750 *
751 * @dev: Device that will be interacted with
752 * @bus: Bus-specific callbacks to use with device
753 * @bus_context: Data passed to bus-specific callbacks
754 * @config: Configuration for register map
755 *
756 * The return value will be an ERR_PTR() on error or a valid pointer
757 * to a struct regmap. This function should generally not be called
758 * directly, it should be called by bus-specific init functions. The
759 * map will be automatically freed by the device management code.
760 */
761 struct regmap *devm_regmap_init(struct device *dev,
762 const struct regmap_bus *bus,
763 void *bus_context,
764 const struct regmap_config *config)
765 {
766 struct regmap **ptr, *regmap;
767
768 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
769 if (!ptr)
770 return ERR_PTR(-ENOMEM);
771
772 regmap = regmap_init(dev, bus, bus_context, config);
773 if (!IS_ERR(regmap)) {
774 *ptr = regmap;
775 devres_add(dev, ptr);
776 } else {
777 devres_free(ptr);
778 }
779
780 return regmap;
781 }
782 EXPORT_SYMBOL_GPL(devm_regmap_init);
783
784 /**
785 * regmap_reinit_cache(): Reinitialise the current register cache
786 *
787 * @map: Register map to operate on.
788 * @config: New configuration. Only the cache data will be used.
789 *
790 * Discard any existing register cache for the map and initialize a
791 * new cache. This can be used to restore the cache to defaults or to
792 * update the cache configuration to reflect runtime discovery of the
793 * hardware.
794 *
795 * No explicit locking is done here, the user needs to ensure that
796 * this function will not race with other calls to regmap.
797 */
798 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
799 {
800 regcache_exit(map);
801 regmap_debugfs_exit(map);
802
803 map->max_register = config->max_register;
804 map->writeable_reg = config->writeable_reg;
805 map->readable_reg = config->readable_reg;
806 map->volatile_reg = config->volatile_reg;
807 map->precious_reg = config->precious_reg;
808 map->cache_type = config->cache_type;
809
810 regmap_debugfs_init(map, config->name);
811
812 map->cache_bypass = false;
813 map->cache_only = false;
814
815 return regcache_init(map, config);
816 }
817 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
818
819 /**
820 * regmap_exit(): Free a previously allocated register map
821 */
822 void regmap_exit(struct regmap *map)
823 {
824 regcache_exit(map);
825 regmap_debugfs_exit(map);
826 regmap_range_exit(map);
827 if (map->bus && map->bus->free_context)
828 map->bus->free_context(map->bus_context);
829 kfree(map->work_buf);
830 kfree(map);
831 }
832 EXPORT_SYMBOL_GPL(regmap_exit);
833
834 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
835 {
836 struct regmap **r = res;
837 if (!r || !*r) {
838 WARN_ON(!r || !*r);
839 return 0;
840 }
841
842 /* If the user didn't specify a name match any */
843 if (data)
844 return (*r)->name == data;
845 else
846 return 1;
847 }
848
849 /**
850 * dev_get_regmap(): Obtain the regmap (if any) for a device
851 *
852 * @dev: Device to retrieve the map for
853 * @name: Optional name for the register map, usually NULL.
854 *
855 * Returns the regmap for the device if one is present, or NULL. If
856 * name is specified then it must match the name specified when
857 * registering the device, if it is NULL then the first regmap found
858 * will be used. Devices with multiple register maps are very rare,
859 * generic code should normally not need to specify a name.
860 */
861 struct regmap *dev_get_regmap(struct device *dev, const char *name)
862 {
863 struct regmap **r = devres_find(dev, dev_get_regmap_release,
864 dev_get_regmap_match, (void *)name);
865
866 if (!r)
867 return NULL;
868 return *r;
869 }
870 EXPORT_SYMBOL_GPL(dev_get_regmap);
871
872 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
873 struct regmap_range_node *range,
874 unsigned int val_num)
875 {
876 void *orig_work_buf;
877 unsigned int win_offset;
878 unsigned int win_page;
879 bool page_chg;
880 int ret;
881
882 win_offset = (*reg - range->range_min) % range->window_len;
883 win_page = (*reg - range->range_min) / range->window_len;
884
885 if (val_num > 1) {
886 /* Bulk write shouldn't cross range boundary */
887 if (*reg + val_num - 1 > range->range_max)
888 return -EINVAL;
889
890 /* ... or single page boundary */
891 if (val_num > range->window_len - win_offset)
892 return -EINVAL;
893 }
894
895 /* It is possible to have selector register inside data window.
896 In that case, selector register is located on every page and
897 it needs no page switching, when accessed alone. */
898 if (val_num > 1 ||
899 range->window_start + win_offset != range->selector_reg) {
900 /* Use separate work_buf during page switching */
901 orig_work_buf = map->work_buf;
902 map->work_buf = map->selector_work_buf;
903
904 ret = _regmap_update_bits(map, range->selector_reg,
905 range->selector_mask,
906 win_page << range->selector_shift,
907 &page_chg);
908
909 map->work_buf = orig_work_buf;
910
911 if (ret != 0)
912 return ret;
913 }
914
915 *reg = range->window_start + win_offset;
916
917 return 0;
918 }
919
920 static int _regmap_raw_write(struct regmap *map, unsigned int reg,
921 const void *val, size_t val_len, bool async)
922 {
923 struct regmap_range_node *range;
924 unsigned long flags;
925 u8 *u8 = map->work_buf;
926 void *work_val = map->work_buf + map->format.reg_bytes +
927 map->format.pad_bytes;
928 void *buf;
929 int ret = -ENOTSUPP;
930 size_t len;
931 int i;
932
933 BUG_ON(!map->bus);
934
935 /* Check for unwritable registers before we start */
936 if (map->writeable_reg)
937 for (i = 0; i < val_len / map->format.val_bytes; i++)
938 if (!map->writeable_reg(map->dev,
939 reg + (i * map->reg_stride)))
940 return -EINVAL;
941
942 if (!map->cache_bypass && map->format.parse_val) {
943 unsigned int ival;
944 int val_bytes = map->format.val_bytes;
945 for (i = 0; i < val_len / val_bytes; i++) {
946 memcpy(map->work_buf, val + (i * val_bytes), val_bytes);
947 ival = map->format.parse_val(map->work_buf);
948 ret = regcache_write(map, reg + (i * map->reg_stride),
949 ival);
950 if (ret) {
951 dev_err(map->dev,
952 "Error in caching of register: %x ret: %d\n",
953 reg + i, ret);
954 return ret;
955 }
956 }
957 if (map->cache_only) {
958 map->cache_dirty = true;
959 return 0;
960 }
961 }
962
963 range = _regmap_range_lookup(map, reg);
964 if (range) {
965 int val_num = val_len / map->format.val_bytes;
966 int win_offset = (reg - range->range_min) % range->window_len;
967 int win_residue = range->window_len - win_offset;
968
969 /* If the write goes beyond the end of the window split it */
970 while (val_num > win_residue) {
971 dev_dbg(map->dev, "Writing window %d/%zu\n",
972 win_residue, val_len / map->format.val_bytes);
973 ret = _regmap_raw_write(map, reg, val, win_residue *
974 map->format.val_bytes, async);
975 if (ret != 0)
976 return ret;
977
978 reg += win_residue;
979 val_num -= win_residue;
980 val += win_residue * map->format.val_bytes;
981 val_len -= win_residue * map->format.val_bytes;
982
983 win_offset = (reg - range->range_min) %
984 range->window_len;
985 win_residue = range->window_len - win_offset;
986 }
987
988 ret = _regmap_select_page(map, &reg, range, val_num);
989 if (ret != 0)
990 return ret;
991 }
992
993 map->format.format_reg(map->work_buf, reg, map->reg_shift);
994
995 u8[0] |= map->write_flag_mask;
996
997 if (async && map->bus->async_write) {
998 struct regmap_async *async = map->bus->async_alloc();
999 if (!async)
1000 return -ENOMEM;
1001
1002 async->work_buf = kzalloc(map->format.buf_size,
1003 GFP_KERNEL | GFP_DMA);
1004 if (!async->work_buf) {
1005 kfree(async);
1006 return -ENOMEM;
1007 }
1008
1009 INIT_WORK(&async->cleanup, async_cleanup);
1010 async->map = map;
1011
1012 /* If the caller supplied the value we can use it safely. */
1013 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1014 map->format.reg_bytes + map->format.val_bytes);
1015 if (val == work_val)
1016 val = async->work_buf + map->format.pad_bytes +
1017 map->format.reg_bytes;
1018
1019 spin_lock_irqsave(&map->async_lock, flags);
1020 list_add_tail(&async->list, &map->async_list);
1021 spin_unlock_irqrestore(&map->async_lock, flags);
1022
1023 ret = map->bus->async_write(map->bus_context, async->work_buf,
1024 map->format.reg_bytes +
1025 map->format.pad_bytes,
1026 val, val_len, async);
1027
1028 if (ret != 0) {
1029 dev_err(map->dev, "Failed to schedule write: %d\n",
1030 ret);
1031
1032 spin_lock_irqsave(&map->async_lock, flags);
1033 list_del(&async->list);
1034 spin_unlock_irqrestore(&map->async_lock, flags);
1035
1036 kfree(async->work_buf);
1037 kfree(async);
1038 }
1039 }
1040
1041 trace_regmap_hw_write_start(map->dev, reg,
1042 val_len / map->format.val_bytes);
1043
1044 /* If we're doing a single register write we can probably just
1045 * send the work_buf directly, otherwise try to do a gather
1046 * write.
1047 */
1048 if (val == work_val)
1049 ret = map->bus->write(map->bus_context, map->work_buf,
1050 map->format.reg_bytes +
1051 map->format.pad_bytes +
1052 val_len);
1053 else if (map->bus->gather_write)
1054 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1055 map->format.reg_bytes +
1056 map->format.pad_bytes,
1057 val, val_len);
1058
1059 /* If that didn't work fall back on linearising by hand. */
1060 if (ret == -ENOTSUPP) {
1061 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1062 buf = kzalloc(len, GFP_KERNEL);
1063 if (!buf)
1064 return -ENOMEM;
1065
1066 memcpy(buf, map->work_buf, map->format.reg_bytes);
1067 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1068 val, val_len);
1069 ret = map->bus->write(map->bus_context, buf, len);
1070
1071 kfree(buf);
1072 }
1073
1074 trace_regmap_hw_write_done(map->dev, reg,
1075 val_len / map->format.val_bytes);
1076
1077 return ret;
1078 }
1079
1080 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1081 unsigned int val)
1082 {
1083 int ret;
1084 struct regmap_range_node *range;
1085 struct regmap *map = context;
1086
1087 BUG_ON(!map->bus || !map->format.format_write);
1088
1089 range = _regmap_range_lookup(map, reg);
1090 if (range) {
1091 ret = _regmap_select_page(map, &reg, range, 1);
1092 if (ret != 0)
1093 return ret;
1094 }
1095
1096 map->format.format_write(map, reg, val);
1097
1098 trace_regmap_hw_write_start(map->dev, reg, 1);
1099
1100 ret = map->bus->write(map->bus_context, map->work_buf,
1101 map->format.buf_size);
1102
1103 trace_regmap_hw_write_done(map->dev, reg, 1);
1104
1105 return ret;
1106 }
1107
1108 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1109 unsigned int val)
1110 {
1111 struct regmap *map = context;
1112
1113 BUG_ON(!map->bus || !map->format.format_val);
1114
1115 map->format.format_val(map->work_buf + map->format.reg_bytes
1116 + map->format.pad_bytes, val, 0);
1117 return _regmap_raw_write(map, reg,
1118 map->work_buf +
1119 map->format.reg_bytes +
1120 map->format.pad_bytes,
1121 map->format.val_bytes, false);
1122 }
1123
1124 static inline void *_regmap_map_get_context(struct regmap *map)
1125 {
1126 return (map->bus) ? map : map->bus_context;
1127 }
1128
1129 int _regmap_write(struct regmap *map, unsigned int reg,
1130 unsigned int val)
1131 {
1132 int ret;
1133 void *context = _regmap_map_get_context(map);
1134
1135 if (!map->cache_bypass && !map->defer_caching) {
1136 ret = regcache_write(map, reg, val);
1137 if (ret != 0)
1138 return ret;
1139 if (map->cache_only) {
1140 map->cache_dirty = true;
1141 return 0;
1142 }
1143 }
1144
1145 #ifdef LOG_DEVICE
1146 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1147 dev_info(map->dev, "%x <= %x\n", reg, val);
1148 #endif
1149
1150 trace_regmap_reg_write(map->dev, reg, val);
1151
1152 return map->reg_write(context, reg, val);
1153 }
1154
1155 /**
1156 * regmap_write(): Write a value to a single register
1157 *
1158 * @map: Register map to write to
1159 * @reg: Register to write to
1160 * @val: Value to be written
1161 *
1162 * A value of zero will be returned on success, a negative errno will
1163 * be returned in error cases.
1164 */
1165 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1166 {
1167 int ret;
1168
1169 if (reg % map->reg_stride)
1170 return -EINVAL;
1171
1172 map->lock(map->lock_arg);
1173
1174 ret = _regmap_write(map, reg, val);
1175
1176 map->unlock(map->lock_arg);
1177
1178 return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(regmap_write);
1181
1182 /**
1183 * regmap_raw_write(): Write raw values to one or more registers
1184 *
1185 * @map: Register map to write to
1186 * @reg: Initial register to write to
1187 * @val: Block of data to be written, laid out for direct transmission to the
1188 * device
1189 * @val_len: Length of data pointed to by val.
1190 *
1191 * This function is intended to be used for things like firmware
1192 * download where a large block of data needs to be transferred to the
1193 * device. No formatting will be done on the data provided.
1194 *
1195 * A value of zero will be returned on success, a negative errno will
1196 * be returned in error cases.
1197 */
1198 int regmap_raw_write(struct regmap *map, unsigned int reg,
1199 const void *val, size_t val_len)
1200 {
1201 int ret;
1202
1203 if (!map->bus)
1204 return -EINVAL;
1205 if (val_len % map->format.val_bytes)
1206 return -EINVAL;
1207 if (reg % map->reg_stride)
1208 return -EINVAL;
1209
1210 map->lock(map->lock_arg);
1211
1212 ret = _regmap_raw_write(map, reg, val, val_len, false);
1213
1214 map->unlock(map->lock_arg);
1215
1216 return ret;
1217 }
1218 EXPORT_SYMBOL_GPL(regmap_raw_write);
1219
1220 /*
1221 * regmap_bulk_write(): Write multiple registers to the device
1222 *
1223 * @map: Register map to write to
1224 * @reg: First register to be write from
1225 * @val: Block of data to be written, in native register size for device
1226 * @val_count: Number of registers to write
1227 *
1228 * This function is intended to be used for writing a large block of
1229 * data to the device either in single transfer or multiple transfer.
1230 *
1231 * A value of zero will be returned on success, a negative errno will
1232 * be returned in error cases.
1233 */
1234 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1235 size_t val_count)
1236 {
1237 int ret = 0, i;
1238 size_t val_bytes = map->format.val_bytes;
1239 void *wval;
1240
1241 if (!map->bus)
1242 return -EINVAL;
1243 if (!map->format.parse_val)
1244 return -EINVAL;
1245 if (reg % map->reg_stride)
1246 return -EINVAL;
1247
1248 map->lock(map->lock_arg);
1249
1250 /* No formatting is require if val_byte is 1 */
1251 if (val_bytes == 1) {
1252 wval = (void *)val;
1253 } else {
1254 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1255 if (!wval) {
1256 ret = -ENOMEM;
1257 dev_err(map->dev, "Error in memory allocation\n");
1258 goto out;
1259 }
1260 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1261 map->format.parse_val(wval + i);
1262 }
1263 /*
1264 * Some devices does not support bulk write, for
1265 * them we have a series of single write operations.
1266 */
1267 if (map->use_single_rw) {
1268 for (i = 0; i < val_count; i++) {
1269 ret = regmap_raw_write(map,
1270 reg + (i * map->reg_stride),
1271 val + (i * val_bytes),
1272 val_bytes);
1273 if (ret != 0)
1274 return ret;
1275 }
1276 } else {
1277 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count,
1278 false);
1279 }
1280
1281 if (val_bytes != 1)
1282 kfree(wval);
1283
1284 out:
1285 map->unlock(map->lock_arg);
1286 return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1289
1290 /**
1291 * regmap_raw_write_async(): Write raw values to one or more registers
1292 * asynchronously
1293 *
1294 * @map: Register map to write to
1295 * @reg: Initial register to write to
1296 * @val: Block of data to be written, laid out for direct transmission to the
1297 * device. Must be valid until regmap_async_complete() is called.
1298 * @val_len: Length of data pointed to by val.
1299 *
1300 * This function is intended to be used for things like firmware
1301 * download where a large block of data needs to be transferred to the
1302 * device. No formatting will be done on the data provided.
1303 *
1304 * If supported by the underlying bus the write will be scheduled
1305 * asynchronously, helping maximise I/O speed on higher speed buses
1306 * like SPI. regmap_async_complete() can be called to ensure that all
1307 * asynchrnous writes have been completed.
1308 *
1309 * A value of zero will be returned on success, a negative errno will
1310 * be returned in error cases.
1311 */
1312 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1313 const void *val, size_t val_len)
1314 {
1315 int ret;
1316
1317 if (val_len % map->format.val_bytes)
1318 return -EINVAL;
1319 if (reg % map->reg_stride)
1320 return -EINVAL;
1321
1322 map->lock(map->lock_arg);
1323
1324 ret = _regmap_raw_write(map, reg, val, val_len, true);
1325
1326 map->unlock(map->lock_arg);
1327
1328 return ret;
1329 }
1330 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1331
1332 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1333 unsigned int val_len)
1334 {
1335 struct regmap_range_node *range;
1336 u8 *u8 = map->work_buf;
1337 int ret;
1338
1339 BUG_ON(!map->bus);
1340
1341 range = _regmap_range_lookup(map, reg);
1342 if (range) {
1343 ret = _regmap_select_page(map, &reg, range,
1344 val_len / map->format.val_bytes);
1345 if (ret != 0)
1346 return ret;
1347 }
1348
1349 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1350
1351 /*
1352 * Some buses or devices flag reads by setting the high bits in the
1353 * register addresss; since it's always the high bits for all
1354 * current formats we can do this here rather than in
1355 * formatting. This may break if we get interesting formats.
1356 */
1357 u8[0] |= map->read_flag_mask;
1358
1359 trace_regmap_hw_read_start(map->dev, reg,
1360 val_len / map->format.val_bytes);
1361
1362 ret = map->bus->read(map->bus_context, map->work_buf,
1363 map->format.reg_bytes + map->format.pad_bytes,
1364 val, val_len);
1365
1366 trace_regmap_hw_read_done(map->dev, reg,
1367 val_len / map->format.val_bytes);
1368
1369 return ret;
1370 }
1371
1372 static int _regmap_bus_read(void *context, unsigned int reg,
1373 unsigned int *val)
1374 {
1375 int ret;
1376 struct regmap *map = context;
1377
1378 if (!map->format.parse_val)
1379 return -EINVAL;
1380
1381 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1382 if (ret == 0)
1383 *val = map->format.parse_val(map->work_buf);
1384
1385 return ret;
1386 }
1387
1388 static int _regmap_read(struct regmap *map, unsigned int reg,
1389 unsigned int *val)
1390 {
1391 int ret;
1392 void *context = _regmap_map_get_context(map);
1393
1394 BUG_ON(!map->reg_read);
1395
1396 if (!map->cache_bypass) {
1397 ret = regcache_read(map, reg, val);
1398 if (ret == 0)
1399 return 0;
1400 }
1401
1402 if (map->cache_only)
1403 return -EBUSY;
1404
1405 ret = map->reg_read(context, reg, val);
1406 if (ret == 0) {
1407 #ifdef LOG_DEVICE
1408 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1409 dev_info(map->dev, "%x => %x\n", reg, *val);
1410 #endif
1411
1412 trace_regmap_reg_read(map->dev, reg, *val);
1413
1414 if (!map->cache_bypass)
1415 regcache_write(map, reg, *val);
1416 }
1417
1418 return ret;
1419 }
1420
1421 /**
1422 * regmap_read(): Read a value from a single register
1423 *
1424 * @map: Register map to write to
1425 * @reg: Register to be read from
1426 * @val: Pointer to store read value
1427 *
1428 * A value of zero will be returned on success, a negative errno will
1429 * be returned in error cases.
1430 */
1431 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1432 {
1433 int ret;
1434
1435 if (reg % map->reg_stride)
1436 return -EINVAL;
1437
1438 map->lock(map->lock_arg);
1439
1440 ret = _regmap_read(map, reg, val);
1441
1442 map->unlock(map->lock_arg);
1443
1444 return ret;
1445 }
1446 EXPORT_SYMBOL_GPL(regmap_read);
1447
1448 /**
1449 * regmap_raw_read(): Read raw data from the device
1450 *
1451 * @map: Register map to write to
1452 * @reg: First register to be read from
1453 * @val: Pointer to store read value
1454 * @val_len: Size of data to read
1455 *
1456 * A value of zero will be returned on success, a negative errno will
1457 * be returned in error cases.
1458 */
1459 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1460 size_t val_len)
1461 {
1462 size_t val_bytes = map->format.val_bytes;
1463 size_t val_count = val_len / val_bytes;
1464 unsigned int v;
1465 int ret, i;
1466
1467 if (!map->bus)
1468 return -EINVAL;
1469 if (val_len % map->format.val_bytes)
1470 return -EINVAL;
1471 if (reg % map->reg_stride)
1472 return -EINVAL;
1473
1474 map->lock(map->lock_arg);
1475
1476 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1477 map->cache_type == REGCACHE_NONE) {
1478 /* Physical block read if there's no cache involved */
1479 ret = _regmap_raw_read(map, reg, val, val_len);
1480
1481 } else {
1482 /* Otherwise go word by word for the cache; should be low
1483 * cost as we expect to hit the cache.
1484 */
1485 for (i = 0; i < val_count; i++) {
1486 ret = _regmap_read(map, reg + (i * map->reg_stride),
1487 &v);
1488 if (ret != 0)
1489 goto out;
1490
1491 map->format.format_val(val + (i * val_bytes), v, 0);
1492 }
1493 }
1494
1495 out:
1496 map->unlock(map->lock_arg);
1497
1498 return ret;
1499 }
1500 EXPORT_SYMBOL_GPL(regmap_raw_read);
1501
1502 /**
1503 * regmap_bulk_read(): Read multiple registers from the device
1504 *
1505 * @map: Register map to write to
1506 * @reg: First register to be read from
1507 * @val: Pointer to store read value, in native register size for device
1508 * @val_count: Number of registers to read
1509 *
1510 * A value of zero will be returned on success, a negative errno will
1511 * be returned in error cases.
1512 */
1513 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1514 size_t val_count)
1515 {
1516 int ret, i;
1517 size_t val_bytes = map->format.val_bytes;
1518 bool vol = regmap_volatile_range(map, reg, val_count);
1519
1520 if (!map->bus)
1521 return -EINVAL;
1522 if (!map->format.parse_val)
1523 return -EINVAL;
1524 if (reg % map->reg_stride)
1525 return -EINVAL;
1526
1527 if (vol || map->cache_type == REGCACHE_NONE) {
1528 /*
1529 * Some devices does not support bulk read, for
1530 * them we have a series of single read operations.
1531 */
1532 if (map->use_single_rw) {
1533 for (i = 0; i < val_count; i++) {
1534 ret = regmap_raw_read(map,
1535 reg + (i * map->reg_stride),
1536 val + (i * val_bytes),
1537 val_bytes);
1538 if (ret != 0)
1539 return ret;
1540 }
1541 } else {
1542 ret = regmap_raw_read(map, reg, val,
1543 val_bytes * val_count);
1544 if (ret != 0)
1545 return ret;
1546 }
1547
1548 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1549 map->format.parse_val(val + i);
1550 } else {
1551 for (i = 0; i < val_count; i++) {
1552 unsigned int ival;
1553 ret = regmap_read(map, reg + (i * map->reg_stride),
1554 &ival);
1555 if (ret != 0)
1556 return ret;
1557 memcpy(val + (i * val_bytes), &ival, val_bytes);
1558 }
1559 }
1560
1561 return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1564
1565 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1566 unsigned int mask, unsigned int val,
1567 bool *change)
1568 {
1569 int ret;
1570 unsigned int tmp, orig;
1571
1572 ret = _regmap_read(map, reg, &orig);
1573 if (ret != 0)
1574 return ret;
1575
1576 tmp = orig & ~mask;
1577 tmp |= val & mask;
1578
1579 if (tmp != orig) {
1580 ret = _regmap_write(map, reg, tmp);
1581 *change = true;
1582 } else {
1583 *change = false;
1584 }
1585
1586 return ret;
1587 }
1588
1589 /**
1590 * regmap_update_bits: Perform a read/modify/write cycle on the register map
1591 *
1592 * @map: Register map to update
1593 * @reg: Register to update
1594 * @mask: Bitmask to change
1595 * @val: New value for bitmask
1596 *
1597 * Returns zero for success, a negative number on error.
1598 */
1599 int regmap_update_bits(struct regmap *map, unsigned int reg,
1600 unsigned int mask, unsigned int val)
1601 {
1602 bool change;
1603 int ret;
1604
1605 map->lock(map->lock_arg);
1606 ret = _regmap_update_bits(map, reg, mask, val, &change);
1607 map->unlock(map->lock_arg);
1608
1609 return ret;
1610 }
1611 EXPORT_SYMBOL_GPL(regmap_update_bits);
1612
1613 /**
1614 * regmap_update_bits_check: Perform a read/modify/write cycle on the
1615 * register map and report if updated
1616 *
1617 * @map: Register map to update
1618 * @reg: Register to update
1619 * @mask: Bitmask to change
1620 * @val: New value for bitmask
1621 * @change: Boolean indicating if a write was done
1622 *
1623 * Returns zero for success, a negative number on error.
1624 */
1625 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1626 unsigned int mask, unsigned int val,
1627 bool *change)
1628 {
1629 int ret;
1630
1631 map->lock(map->lock_arg);
1632 ret = _regmap_update_bits(map, reg, mask, val, change);
1633 map->unlock(map->lock_arg);
1634 return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1637
1638 void regmap_async_complete_cb(struct regmap_async *async, int ret)
1639 {
1640 struct regmap *map = async->map;
1641 bool wake;
1642
1643 spin_lock(&map->async_lock);
1644
1645 list_del(&async->list);
1646 wake = list_empty(&map->async_list);
1647
1648 if (ret != 0)
1649 map->async_ret = ret;
1650
1651 spin_unlock(&map->async_lock);
1652
1653 schedule_work(&async->cleanup);
1654
1655 if (wake)
1656 wake_up(&map->async_waitq);
1657 }
1658 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
1659
1660 static int regmap_async_is_done(struct regmap *map)
1661 {
1662 unsigned long flags;
1663 int ret;
1664
1665 spin_lock_irqsave(&map->async_lock, flags);
1666 ret = list_empty(&map->async_list);
1667 spin_unlock_irqrestore(&map->async_lock, flags);
1668
1669 return ret;
1670 }
1671
1672 /**
1673 * regmap_async_complete: Ensure all asynchronous I/O has completed.
1674 *
1675 * @map: Map to operate on.
1676 *
1677 * Blocks until any pending asynchronous I/O has completed. Returns
1678 * an error code for any failed I/O operations.
1679 */
1680 int regmap_async_complete(struct regmap *map)
1681 {
1682 unsigned long flags;
1683 int ret;
1684
1685 /* Nothing to do with no async support */
1686 if (!map->bus->async_write)
1687 return 0;
1688
1689 wait_event(map->async_waitq, regmap_async_is_done(map));
1690
1691 spin_lock_irqsave(&map->async_lock, flags);
1692 ret = map->async_ret;
1693 map->async_ret = 0;
1694 spin_unlock_irqrestore(&map->async_lock, flags);
1695
1696 return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regmap_async_complete);
1699
1700 /**
1701 * regmap_register_patch: Register and apply register updates to be applied
1702 * on device initialistion
1703 *
1704 * @map: Register map to apply updates to.
1705 * @regs: Values to update.
1706 * @num_regs: Number of entries in regs.
1707 *
1708 * Register a set of register updates to be applied to the device
1709 * whenever the device registers are synchronised with the cache and
1710 * apply them immediately. Typically this is used to apply
1711 * corrections to be applied to the device defaults on startup, such
1712 * as the updates some vendors provide to undocumented registers.
1713 */
1714 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1715 int num_regs)
1716 {
1717 int i, ret;
1718 bool bypass;
1719
1720 /* If needed the implementation can be extended to support this */
1721 if (map->patch)
1722 return -EBUSY;
1723
1724 map->lock(map->lock_arg);
1725
1726 bypass = map->cache_bypass;
1727
1728 map->cache_bypass = true;
1729
1730 /* Write out first; it's useful to apply even if we fail later. */
1731 for (i = 0; i < num_regs; i++) {
1732 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1733 if (ret != 0) {
1734 dev_err(map->dev, "Failed to write %x = %x: %d\n",
1735 regs[i].reg, regs[i].def, ret);
1736 goto out;
1737 }
1738 }
1739
1740 map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
1741 if (map->patch != NULL) {
1742 memcpy(map->patch, regs,
1743 num_regs * sizeof(struct reg_default));
1744 map->patch_regs = num_regs;
1745 } else {
1746 ret = -ENOMEM;
1747 }
1748
1749 out:
1750 map->cache_bypass = bypass;
1751
1752 map->unlock(map->lock_arg);
1753
1754 return ret;
1755 }
1756 EXPORT_SYMBOL_GPL(regmap_register_patch);
1757
1758 /*
1759 * regmap_get_val_bytes(): Report the size of a register value
1760 *
1761 * Report the size of a register value, mainly intended to for use by
1762 * generic infrastructure built on top of regmap.
1763 */
1764 int regmap_get_val_bytes(struct regmap *map)
1765 {
1766 if (map->format.format_write)
1767 return -EINVAL;
1768
1769 return map->format.val_bytes;
1770 }
1771 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1772
1773 static int __init regmap_initcall(void)
1774 {
1775 regmap_debugfs_initcall();
1776
1777 return 0;
1778 }
1779 postcore_initcall(regmap_initcall);
This page took 0.067241 seconds and 6 git commands to generate.