cciss: Dynamically allocate the drive_info_struct for each logical drive.
[deliverable/linux.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
70
71 #include "cciss_cmd.h"
72 #include "cciss.h"
73 #include <linux/cciss_ioctl.h>
74
75 /* define the PCI info for the cards we can control */
76 static const struct pci_device_id cciss_pci_device_id[] = {
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
104 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
105 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
106 {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
110
111 /* board_id = Subsystem Device ID & Vendor ID
112 * product = Marketing Name for the board
113 * access = Address of the struct of function pointers
114 */
115 static struct board_type products[] = {
116 {0x40700E11, "Smart Array 5300", &SA5_access},
117 {0x40800E11, "Smart Array 5i", &SA5B_access},
118 {0x40820E11, "Smart Array 532", &SA5B_access},
119 {0x40830E11, "Smart Array 5312", &SA5B_access},
120 {0x409A0E11, "Smart Array 641", &SA5_access},
121 {0x409B0E11, "Smart Array 642", &SA5_access},
122 {0x409C0E11, "Smart Array 6400", &SA5_access},
123 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124 {0x40910E11, "Smart Array 6i", &SA5_access},
125 {0x3225103C, "Smart Array P600", &SA5_access},
126 {0x3223103C, "Smart Array P800", &SA5_access},
127 {0x3234103C, "Smart Array P400", &SA5_access},
128 {0x3235103C, "Smart Array P400i", &SA5_access},
129 {0x3211103C, "Smart Array E200i", &SA5_access},
130 {0x3212103C, "Smart Array E200", &SA5_access},
131 {0x3213103C, "Smart Array E200i", &SA5_access},
132 {0x3214103C, "Smart Array E200i", &SA5_access},
133 {0x3215103C, "Smart Array E200i", &SA5_access},
134 {0x3237103C, "Smart Array E500", &SA5_access},
135 {0x323D103C, "Smart Array P700m", &SA5_access},
136 {0x3241103C, "Smart Array P212", &SA5_access},
137 {0x3243103C, "Smart Array P410", &SA5_access},
138 {0x3245103C, "Smart Array P410i", &SA5_access},
139 {0x3247103C, "Smart Array P411", &SA5_access},
140 {0x3249103C, "Smart Array P812", &SA5_access},
141 {0x324A103C, "Smart Array P712m", &SA5_access},
142 {0x324B103C, "Smart Array P711m", &SA5_access},
143 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
144 };
145
146 /* How long to wait (in milliseconds) for board to go into simple mode */
147 #define MAX_CONFIG_WAIT 30000
148 #define MAX_IOCTL_CONFIG_WAIT 1000
149
150 /*define how many times we will try a command because of bus resets */
151 #define MAX_CMD_RETRIES 3
152
153 #define MAX_CTLR 32
154
155 /* Originally cciss driver only supports 8 major numbers */
156 #define MAX_CTLR_ORIG 8
157
158 static ctlr_info_t *hba[MAX_CTLR];
159
160 static struct task_struct *cciss_scan_thread;
161 static DEFINE_MUTEX(scan_mutex);
162 static LIST_HEAD(scan_q);
163
164 static void do_cciss_request(struct request_queue *q);
165 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
166 static int cciss_open(struct block_device *bdev, fmode_t mode);
167 static int cciss_release(struct gendisk *disk, fmode_t mode);
168 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
169 unsigned int cmd, unsigned long arg);
170 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
171
172 static int cciss_revalidate(struct gendisk *disk);
173 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
174 static int deregister_disk(ctlr_info_t *h, int drv_index,
175 int clear_all, int via_ioctl);
176
177 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
178 sector_t *total_size, unsigned int *block_size);
179 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
180 sector_t *total_size, unsigned int *block_size);
181 static void cciss_geometry_inquiry(int ctlr, int logvol,
182 int withirq, sector_t total_size,
183 unsigned int block_size, InquiryData_struct *inq_buff,
184 drive_info_struct *drv);
185 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
186 __u32);
187 static void start_io(ctlr_info_t *h);
188 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
189 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
190 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
191 __u8 page_code, unsigned char scsi3addr[],
192 int cmd_type);
193 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
194 int attempt_retry);
195 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
196
197 static void fail_all_cmds(unsigned long ctlr);
198 static int add_to_scan_list(struct ctlr_info *h);
199 static int scan_thread(void *data);
200 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
201 static void cciss_hba_release(struct device *dev);
202 static void cciss_device_release(struct device *dev);
203 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
204 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
205
206 #ifdef CONFIG_PROC_FS
207 static void cciss_procinit(int i);
208 #else
209 static void cciss_procinit(int i)
210 {
211 }
212 #endif /* CONFIG_PROC_FS */
213
214 #ifdef CONFIG_COMPAT
215 static int cciss_compat_ioctl(struct block_device *, fmode_t,
216 unsigned, unsigned long);
217 #endif
218
219 static const struct block_device_operations cciss_fops = {
220 .owner = THIS_MODULE,
221 .open = cciss_open,
222 .release = cciss_release,
223 .locked_ioctl = cciss_ioctl,
224 .getgeo = cciss_getgeo,
225 #ifdef CONFIG_COMPAT
226 .compat_ioctl = cciss_compat_ioctl,
227 #endif
228 .revalidate_disk = cciss_revalidate,
229 };
230
231 /*
232 * Enqueuing and dequeuing functions for cmdlists.
233 */
234 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
235 {
236 hlist_add_head(&c->list, list);
237 }
238
239 static inline void removeQ(CommandList_struct *c)
240 {
241 /*
242 * After kexec/dump some commands might still
243 * be in flight, which the firmware will try
244 * to complete. Resetting the firmware doesn't work
245 * with old fw revisions, so we have to mark
246 * them off as 'stale' to prevent the driver from
247 * falling over.
248 */
249 if (WARN_ON(hlist_unhashed(&c->list))) {
250 c->cmd_type = CMD_MSG_STALE;
251 return;
252 }
253
254 hlist_del_init(&c->list);
255 }
256
257 #include "cciss_scsi.c" /* For SCSI tape support */
258
259 #ifdef CONFIG_PROC_FS
260
261 /*
262 * Report information about this controller.
263 */
264 #define ENG_GIG 1000000000
265 #define ENG_GIG_FACTOR (ENG_GIG/512)
266 #define ENGAGE_SCSI "engage scsi"
267 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
268 "UNKNOWN"
269 };
270 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
271
272 static struct proc_dir_entry *proc_cciss;
273
274 static void cciss_seq_show_header(struct seq_file *seq)
275 {
276 ctlr_info_t *h = seq->private;
277
278 seq_printf(seq, "%s: HP %s Controller\n"
279 "Board ID: 0x%08lx\n"
280 "Firmware Version: %c%c%c%c\n"
281 "IRQ: %d\n"
282 "Logical drives: %d\n"
283 "Current Q depth: %d\n"
284 "Current # commands on controller: %d\n"
285 "Max Q depth since init: %d\n"
286 "Max # commands on controller since init: %d\n"
287 "Max SG entries since init: %d\n",
288 h->devname,
289 h->product_name,
290 (unsigned long)h->board_id,
291 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
292 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
293 h->num_luns,
294 h->Qdepth, h->commands_outstanding,
295 h->maxQsinceinit, h->max_outstanding, h->maxSG);
296
297 #ifdef CONFIG_CISS_SCSI_TAPE
298 cciss_seq_tape_report(seq, h->ctlr);
299 #endif /* CONFIG_CISS_SCSI_TAPE */
300 }
301
302 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
303 {
304 ctlr_info_t *h = seq->private;
305 unsigned ctlr = h->ctlr;
306 unsigned long flags;
307
308 /* prevent displaying bogus info during configuration
309 * or deconfiguration of a logical volume
310 */
311 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
312 if (h->busy_configuring) {
313 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
314 return ERR_PTR(-EBUSY);
315 }
316 h->busy_configuring = 1;
317 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
318
319 if (*pos == 0)
320 cciss_seq_show_header(seq);
321
322 return pos;
323 }
324
325 static int cciss_seq_show(struct seq_file *seq, void *v)
326 {
327 sector_t vol_sz, vol_sz_frac;
328 ctlr_info_t *h = seq->private;
329 unsigned ctlr = h->ctlr;
330 loff_t *pos = v;
331 drive_info_struct *drv = h->drv[*pos];
332
333 if (*pos > h->highest_lun)
334 return 0;
335
336 if (drv->heads == 0)
337 return 0;
338
339 vol_sz = drv->nr_blocks;
340 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
341 vol_sz_frac *= 100;
342 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
343
344 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
345 drv->raid_level = RAID_UNKNOWN;
346 seq_printf(seq, "cciss/c%dd%d:"
347 "\t%4u.%02uGB\tRAID %s\n",
348 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
349 raid_label[drv->raid_level]);
350 return 0;
351 }
352
353 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
354 {
355 ctlr_info_t *h = seq->private;
356
357 if (*pos > h->highest_lun)
358 return NULL;
359 *pos += 1;
360
361 return pos;
362 }
363
364 static void cciss_seq_stop(struct seq_file *seq, void *v)
365 {
366 ctlr_info_t *h = seq->private;
367
368 /* Only reset h->busy_configuring if we succeeded in setting
369 * it during cciss_seq_start. */
370 if (v == ERR_PTR(-EBUSY))
371 return;
372
373 h->busy_configuring = 0;
374 }
375
376 static const struct seq_operations cciss_seq_ops = {
377 .start = cciss_seq_start,
378 .show = cciss_seq_show,
379 .next = cciss_seq_next,
380 .stop = cciss_seq_stop,
381 };
382
383 static int cciss_seq_open(struct inode *inode, struct file *file)
384 {
385 int ret = seq_open(file, &cciss_seq_ops);
386 struct seq_file *seq = file->private_data;
387
388 if (!ret)
389 seq->private = PDE(inode)->data;
390
391 return ret;
392 }
393
394 static ssize_t
395 cciss_proc_write(struct file *file, const char __user *buf,
396 size_t length, loff_t *ppos)
397 {
398 int err;
399 char *buffer;
400
401 #ifndef CONFIG_CISS_SCSI_TAPE
402 return -EINVAL;
403 #endif
404
405 if (!buf || length > PAGE_SIZE - 1)
406 return -EINVAL;
407
408 buffer = (char *)__get_free_page(GFP_KERNEL);
409 if (!buffer)
410 return -ENOMEM;
411
412 err = -EFAULT;
413 if (copy_from_user(buffer, buf, length))
414 goto out;
415 buffer[length] = '\0';
416
417 #ifdef CONFIG_CISS_SCSI_TAPE
418 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
419 struct seq_file *seq = file->private_data;
420 ctlr_info_t *h = seq->private;
421 int rc;
422
423 rc = cciss_engage_scsi(h->ctlr);
424 if (rc != 0)
425 err = -rc;
426 else
427 err = length;
428 } else
429 #endif /* CONFIG_CISS_SCSI_TAPE */
430 err = -EINVAL;
431 /* might be nice to have "disengage" too, but it's not
432 safely possible. (only 1 module use count, lock issues.) */
433
434 out:
435 free_page((unsigned long)buffer);
436 return err;
437 }
438
439 static struct file_operations cciss_proc_fops = {
440 .owner = THIS_MODULE,
441 .open = cciss_seq_open,
442 .read = seq_read,
443 .llseek = seq_lseek,
444 .release = seq_release,
445 .write = cciss_proc_write,
446 };
447
448 static void __devinit cciss_procinit(int i)
449 {
450 struct proc_dir_entry *pde;
451
452 if (proc_cciss == NULL)
453 proc_cciss = proc_mkdir("driver/cciss", NULL);
454 if (!proc_cciss)
455 return;
456 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
457 S_IROTH, proc_cciss,
458 &cciss_proc_fops, hba[i]);
459 }
460 #endif /* CONFIG_PROC_FS */
461
462 #define MAX_PRODUCT_NAME_LEN 19
463
464 #define to_hba(n) container_of(n, struct ctlr_info, dev)
465 #define to_drv(n) container_of(n, drive_info_struct, dev)
466
467 static ssize_t host_store_rescan(struct device *dev,
468 struct device_attribute *attr,
469 const char *buf, size_t count)
470 {
471 struct ctlr_info *h = to_hba(dev);
472
473 add_to_scan_list(h);
474 wake_up_process(cciss_scan_thread);
475 wait_for_completion_interruptible(&h->scan_wait);
476
477 return count;
478 }
479 DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
480
481 static ssize_t dev_show_unique_id(struct device *dev,
482 struct device_attribute *attr,
483 char *buf)
484 {
485 drive_info_struct *drv = to_drv(dev);
486 struct ctlr_info *h = to_hba(drv->dev.parent);
487 __u8 sn[16];
488 unsigned long flags;
489 int ret = 0;
490
491 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
492 if (h->busy_configuring)
493 ret = -EBUSY;
494 else
495 memcpy(sn, drv->serial_no, sizeof(sn));
496 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
497
498 if (ret)
499 return ret;
500 else
501 return snprintf(buf, 16 * 2 + 2,
502 "%02X%02X%02X%02X%02X%02X%02X%02X"
503 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
504 sn[0], sn[1], sn[2], sn[3],
505 sn[4], sn[5], sn[6], sn[7],
506 sn[8], sn[9], sn[10], sn[11],
507 sn[12], sn[13], sn[14], sn[15]);
508 }
509 DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
510
511 static ssize_t dev_show_vendor(struct device *dev,
512 struct device_attribute *attr,
513 char *buf)
514 {
515 drive_info_struct *drv = to_drv(dev);
516 struct ctlr_info *h = to_hba(drv->dev.parent);
517 char vendor[VENDOR_LEN + 1];
518 unsigned long flags;
519 int ret = 0;
520
521 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
522 if (h->busy_configuring)
523 ret = -EBUSY;
524 else
525 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
526 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
527
528 if (ret)
529 return ret;
530 else
531 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
532 }
533 DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
534
535 static ssize_t dev_show_model(struct device *dev,
536 struct device_attribute *attr,
537 char *buf)
538 {
539 drive_info_struct *drv = to_drv(dev);
540 struct ctlr_info *h = to_hba(drv->dev.parent);
541 char model[MODEL_LEN + 1];
542 unsigned long flags;
543 int ret = 0;
544
545 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
546 if (h->busy_configuring)
547 ret = -EBUSY;
548 else
549 memcpy(model, drv->model, MODEL_LEN + 1);
550 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
551
552 if (ret)
553 return ret;
554 else
555 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
556 }
557 DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
558
559 static ssize_t dev_show_rev(struct device *dev,
560 struct device_attribute *attr,
561 char *buf)
562 {
563 drive_info_struct *drv = to_drv(dev);
564 struct ctlr_info *h = to_hba(drv->dev.parent);
565 char rev[REV_LEN + 1];
566 unsigned long flags;
567 int ret = 0;
568
569 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
570 if (h->busy_configuring)
571 ret = -EBUSY;
572 else
573 memcpy(rev, drv->rev, REV_LEN + 1);
574 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
575
576 if (ret)
577 return ret;
578 else
579 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
580 }
581 DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
582
583 static ssize_t cciss_show_lunid(struct device *dev,
584 struct device_attribute *attr, char *buf)
585 {
586 drive_info_struct *drv = to_drv(dev);
587 struct ctlr_info *h = to_hba(drv->dev.parent);
588 unsigned long flags;
589 unsigned char lunid[8];
590
591 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
592 if (h->busy_configuring) {
593 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
594 return -EBUSY;
595 }
596 if (!drv->heads) {
597 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
598 return -ENOTTY;
599 }
600 memcpy(lunid, drv->LunID, sizeof(lunid));
601 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
602 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
603 lunid[0], lunid[1], lunid[2], lunid[3],
604 lunid[4], lunid[5], lunid[6], lunid[7]);
605 }
606 DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
607
608 static ssize_t cciss_show_raid_level(struct device *dev,
609 struct device_attribute *attr, char *buf)
610 {
611 drive_info_struct *drv = to_drv(dev);
612 struct ctlr_info *h = to_hba(drv->dev.parent);
613 int raid;
614 unsigned long flags;
615
616 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
617 if (h->busy_configuring) {
618 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
619 return -EBUSY;
620 }
621 raid = drv->raid_level;
622 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
623 if (raid < 0 || raid > RAID_UNKNOWN)
624 raid = RAID_UNKNOWN;
625
626 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
627 raid_label[raid]);
628 }
629 DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
630
631 static ssize_t cciss_show_usage_count(struct device *dev,
632 struct device_attribute *attr, char *buf)
633 {
634 drive_info_struct *drv = to_drv(dev);
635 struct ctlr_info *h = to_hba(drv->dev.parent);
636 unsigned long flags;
637 int count;
638
639 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
640 if (h->busy_configuring) {
641 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
642 return -EBUSY;
643 }
644 count = drv->usage_count;
645 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
646 return snprintf(buf, 20, "%d\n", count);
647 }
648 DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
649
650 static struct attribute *cciss_host_attrs[] = {
651 &dev_attr_rescan.attr,
652 NULL
653 };
654
655 static struct attribute_group cciss_host_attr_group = {
656 .attrs = cciss_host_attrs,
657 };
658
659 static struct attribute_group *cciss_host_attr_groups[] = {
660 &cciss_host_attr_group,
661 NULL
662 };
663
664 static struct device_type cciss_host_type = {
665 .name = "cciss_host",
666 .groups = cciss_host_attr_groups,
667 .release = cciss_hba_release,
668 };
669
670 static struct attribute *cciss_dev_attrs[] = {
671 &dev_attr_unique_id.attr,
672 &dev_attr_model.attr,
673 &dev_attr_vendor.attr,
674 &dev_attr_rev.attr,
675 &dev_attr_lunid.attr,
676 &dev_attr_raid_level.attr,
677 &dev_attr_usage_count.attr,
678 NULL
679 };
680
681 static struct attribute_group cciss_dev_attr_group = {
682 .attrs = cciss_dev_attrs,
683 };
684
685 static const struct attribute_group *cciss_dev_attr_groups[] = {
686 &cciss_dev_attr_group,
687 NULL
688 };
689
690 static struct device_type cciss_dev_type = {
691 .name = "cciss_device",
692 .groups = cciss_dev_attr_groups,
693 .release = cciss_device_release,
694 };
695
696 static struct bus_type cciss_bus_type = {
697 .name = "cciss",
698 };
699
700 /*
701 * cciss_hba_release is called when the reference count
702 * of h->dev goes to zero.
703 */
704 static void cciss_hba_release(struct device *dev)
705 {
706 /*
707 * nothing to do, but need this to avoid a warning
708 * about not having a release handler from lib/kref.c.
709 */
710 }
711
712 /*
713 * Initialize sysfs entry for each controller. This sets up and registers
714 * the 'cciss#' directory for each individual controller under
715 * /sys/bus/pci/devices/<dev>/.
716 */
717 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
718 {
719 device_initialize(&h->dev);
720 h->dev.type = &cciss_host_type;
721 h->dev.bus = &cciss_bus_type;
722 dev_set_name(&h->dev, "%s", h->devname);
723 h->dev.parent = &h->pdev->dev;
724
725 return device_add(&h->dev);
726 }
727
728 /*
729 * Remove sysfs entries for an hba.
730 */
731 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
732 {
733 device_del(&h->dev);
734 put_device(&h->dev); /* final put. */
735 }
736
737 /* cciss_device_release is called when the reference count
738 * of h->drv[x]dev goes to zero.
739 */
740 static void cciss_device_release(struct device *dev)
741 {
742 drive_info_struct *drv = to_drv(dev);
743 kfree(drv);
744 }
745
746 /*
747 * Initialize sysfs for each logical drive. This sets up and registers
748 * the 'c#d#' directory for each individual logical drive under
749 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
750 * /sys/block/cciss!c#d# to this entry.
751 */
752 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
753 int drv_index)
754 {
755 struct device *dev;
756
757 if (h->drv[drv_index]->device_initialized)
758 return 0;
759
760 dev = &h->drv[drv_index]->dev;
761 device_initialize(dev);
762 dev->type = &cciss_dev_type;
763 dev->bus = &cciss_bus_type;
764 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
765 dev->parent = &h->dev;
766 h->drv[drv_index]->device_initialized = 1;
767 return device_add(dev);
768 }
769
770 /*
771 * Remove sysfs entries for a logical drive.
772 */
773 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
774 int ctlr_exiting)
775 {
776 struct device *dev = &h->drv[drv_index]->dev;
777
778 /* special case for c*d0, we only destroy it on controller exit */
779 if (drv_index == 0 && !ctlr_exiting)
780 return;
781
782 device_del(dev);
783 put_device(dev); /* the "final" put. */
784 h->drv[drv_index] = NULL;
785 }
786
787 /*
788 * For operations that cannot sleep, a command block is allocated at init,
789 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
790 * which ones are free or in use. For operations that can wait for kmalloc
791 * to possible sleep, this routine can be called with get_from_pool set to 0.
792 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
793 */
794 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
795 {
796 CommandList_struct *c;
797 int i;
798 u64bit temp64;
799 dma_addr_t cmd_dma_handle, err_dma_handle;
800
801 if (!get_from_pool) {
802 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
803 sizeof(CommandList_struct), &cmd_dma_handle);
804 if (c == NULL)
805 return NULL;
806 memset(c, 0, sizeof(CommandList_struct));
807
808 c->cmdindex = -1;
809
810 c->err_info = (ErrorInfo_struct *)
811 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
812 &err_dma_handle);
813
814 if (c->err_info == NULL) {
815 pci_free_consistent(h->pdev,
816 sizeof(CommandList_struct), c, cmd_dma_handle);
817 return NULL;
818 }
819 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
820 } else { /* get it out of the controllers pool */
821
822 do {
823 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
824 if (i == h->nr_cmds)
825 return NULL;
826 } while (test_and_set_bit
827 (i & (BITS_PER_LONG - 1),
828 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
829 #ifdef CCISS_DEBUG
830 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
831 #endif
832 c = h->cmd_pool + i;
833 memset(c, 0, sizeof(CommandList_struct));
834 cmd_dma_handle = h->cmd_pool_dhandle
835 + i * sizeof(CommandList_struct);
836 c->err_info = h->errinfo_pool + i;
837 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
838 err_dma_handle = h->errinfo_pool_dhandle
839 + i * sizeof(ErrorInfo_struct);
840 h->nr_allocs++;
841
842 c->cmdindex = i;
843 }
844
845 INIT_HLIST_NODE(&c->list);
846 c->busaddr = (__u32) cmd_dma_handle;
847 temp64.val = (__u64) err_dma_handle;
848 c->ErrDesc.Addr.lower = temp64.val32.lower;
849 c->ErrDesc.Addr.upper = temp64.val32.upper;
850 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
851
852 c->ctlr = h->ctlr;
853 return c;
854 }
855
856 /*
857 * Frees a command block that was previously allocated with cmd_alloc().
858 */
859 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
860 {
861 int i;
862 u64bit temp64;
863
864 if (!got_from_pool) {
865 temp64.val32.lower = c->ErrDesc.Addr.lower;
866 temp64.val32.upper = c->ErrDesc.Addr.upper;
867 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
868 c->err_info, (dma_addr_t) temp64.val);
869 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
870 c, (dma_addr_t) c->busaddr);
871 } else {
872 i = c - h->cmd_pool;
873 clear_bit(i & (BITS_PER_LONG - 1),
874 h->cmd_pool_bits + (i / BITS_PER_LONG));
875 h->nr_frees++;
876 }
877 }
878
879 static inline ctlr_info_t *get_host(struct gendisk *disk)
880 {
881 return disk->queue->queuedata;
882 }
883
884 static inline drive_info_struct *get_drv(struct gendisk *disk)
885 {
886 return disk->private_data;
887 }
888
889 /*
890 * Open. Make sure the device is really there.
891 */
892 static int cciss_open(struct block_device *bdev, fmode_t mode)
893 {
894 ctlr_info_t *host = get_host(bdev->bd_disk);
895 drive_info_struct *drv = get_drv(bdev->bd_disk);
896
897 #ifdef CCISS_DEBUG
898 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
899 #endif /* CCISS_DEBUG */
900
901 if (drv->busy_configuring)
902 return -EBUSY;
903 /*
904 * Root is allowed to open raw volume zero even if it's not configured
905 * so array config can still work. Root is also allowed to open any
906 * volume that has a LUN ID, so it can issue IOCTL to reread the
907 * disk information. I don't think I really like this
908 * but I'm already using way to many device nodes to claim another one
909 * for "raw controller".
910 */
911 if (drv->heads == 0) {
912 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
913 /* if not node 0 make sure it is a partition = 0 */
914 if (MINOR(bdev->bd_dev) & 0x0f) {
915 return -ENXIO;
916 /* if it is, make sure we have a LUN ID */
917 } else if (memcmp(drv->LunID, CTLR_LUNID,
918 sizeof(drv->LunID))) {
919 return -ENXIO;
920 }
921 }
922 if (!capable(CAP_SYS_ADMIN))
923 return -EPERM;
924 }
925 drv->usage_count++;
926 host->usage_count++;
927 return 0;
928 }
929
930 /*
931 * Close. Sync first.
932 */
933 static int cciss_release(struct gendisk *disk, fmode_t mode)
934 {
935 ctlr_info_t *host = get_host(disk);
936 drive_info_struct *drv = get_drv(disk);
937
938 #ifdef CCISS_DEBUG
939 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
940 #endif /* CCISS_DEBUG */
941
942 drv->usage_count--;
943 host->usage_count--;
944 return 0;
945 }
946
947 #ifdef CONFIG_COMPAT
948
949 static int do_ioctl(struct block_device *bdev, fmode_t mode,
950 unsigned cmd, unsigned long arg)
951 {
952 int ret;
953 lock_kernel();
954 ret = cciss_ioctl(bdev, mode, cmd, arg);
955 unlock_kernel();
956 return ret;
957 }
958
959 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
960 unsigned cmd, unsigned long arg);
961 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
962 unsigned cmd, unsigned long arg);
963
964 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
965 unsigned cmd, unsigned long arg)
966 {
967 switch (cmd) {
968 case CCISS_GETPCIINFO:
969 case CCISS_GETINTINFO:
970 case CCISS_SETINTINFO:
971 case CCISS_GETNODENAME:
972 case CCISS_SETNODENAME:
973 case CCISS_GETHEARTBEAT:
974 case CCISS_GETBUSTYPES:
975 case CCISS_GETFIRMVER:
976 case CCISS_GETDRIVVER:
977 case CCISS_REVALIDVOLS:
978 case CCISS_DEREGDISK:
979 case CCISS_REGNEWDISK:
980 case CCISS_REGNEWD:
981 case CCISS_RESCANDISK:
982 case CCISS_GETLUNINFO:
983 return do_ioctl(bdev, mode, cmd, arg);
984
985 case CCISS_PASSTHRU32:
986 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
987 case CCISS_BIG_PASSTHRU32:
988 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
989
990 default:
991 return -ENOIOCTLCMD;
992 }
993 }
994
995 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
996 unsigned cmd, unsigned long arg)
997 {
998 IOCTL32_Command_struct __user *arg32 =
999 (IOCTL32_Command_struct __user *) arg;
1000 IOCTL_Command_struct arg64;
1001 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1002 int err;
1003 u32 cp;
1004
1005 err = 0;
1006 err |=
1007 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1008 sizeof(arg64.LUN_info));
1009 err |=
1010 copy_from_user(&arg64.Request, &arg32->Request,
1011 sizeof(arg64.Request));
1012 err |=
1013 copy_from_user(&arg64.error_info, &arg32->error_info,
1014 sizeof(arg64.error_info));
1015 err |= get_user(arg64.buf_size, &arg32->buf_size);
1016 err |= get_user(cp, &arg32->buf);
1017 arg64.buf = compat_ptr(cp);
1018 err |= copy_to_user(p, &arg64, sizeof(arg64));
1019
1020 if (err)
1021 return -EFAULT;
1022
1023 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1024 if (err)
1025 return err;
1026 err |=
1027 copy_in_user(&arg32->error_info, &p->error_info,
1028 sizeof(arg32->error_info));
1029 if (err)
1030 return -EFAULT;
1031 return err;
1032 }
1033
1034 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1035 unsigned cmd, unsigned long arg)
1036 {
1037 BIG_IOCTL32_Command_struct __user *arg32 =
1038 (BIG_IOCTL32_Command_struct __user *) arg;
1039 BIG_IOCTL_Command_struct arg64;
1040 BIG_IOCTL_Command_struct __user *p =
1041 compat_alloc_user_space(sizeof(arg64));
1042 int err;
1043 u32 cp;
1044
1045 err = 0;
1046 err |=
1047 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1048 sizeof(arg64.LUN_info));
1049 err |=
1050 copy_from_user(&arg64.Request, &arg32->Request,
1051 sizeof(arg64.Request));
1052 err |=
1053 copy_from_user(&arg64.error_info, &arg32->error_info,
1054 sizeof(arg64.error_info));
1055 err |= get_user(arg64.buf_size, &arg32->buf_size);
1056 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1057 err |= get_user(cp, &arg32->buf);
1058 arg64.buf = compat_ptr(cp);
1059 err |= copy_to_user(p, &arg64, sizeof(arg64));
1060
1061 if (err)
1062 return -EFAULT;
1063
1064 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1065 if (err)
1066 return err;
1067 err |=
1068 copy_in_user(&arg32->error_info, &p->error_info,
1069 sizeof(arg32->error_info));
1070 if (err)
1071 return -EFAULT;
1072 return err;
1073 }
1074 #endif
1075
1076 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1077 {
1078 drive_info_struct *drv = get_drv(bdev->bd_disk);
1079
1080 if (!drv->cylinders)
1081 return -ENXIO;
1082
1083 geo->heads = drv->heads;
1084 geo->sectors = drv->sectors;
1085 geo->cylinders = drv->cylinders;
1086 return 0;
1087 }
1088
1089 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1090 {
1091 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1092 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1093 (void)check_for_unit_attention(host, c);
1094 }
1095 /*
1096 * ioctl
1097 */
1098 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1099 unsigned int cmd, unsigned long arg)
1100 {
1101 struct gendisk *disk = bdev->bd_disk;
1102 ctlr_info_t *host = get_host(disk);
1103 drive_info_struct *drv = get_drv(disk);
1104 int ctlr = host->ctlr;
1105 void __user *argp = (void __user *)arg;
1106
1107 #ifdef CCISS_DEBUG
1108 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1109 #endif /* CCISS_DEBUG */
1110
1111 switch (cmd) {
1112 case CCISS_GETPCIINFO:
1113 {
1114 cciss_pci_info_struct pciinfo;
1115
1116 if (!arg)
1117 return -EINVAL;
1118 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1119 pciinfo.bus = host->pdev->bus->number;
1120 pciinfo.dev_fn = host->pdev->devfn;
1121 pciinfo.board_id = host->board_id;
1122 if (copy_to_user
1123 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1124 return -EFAULT;
1125 return 0;
1126 }
1127 case CCISS_GETINTINFO:
1128 {
1129 cciss_coalint_struct intinfo;
1130 if (!arg)
1131 return -EINVAL;
1132 intinfo.delay =
1133 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1134 intinfo.count =
1135 readl(&host->cfgtable->HostWrite.CoalIntCount);
1136 if (copy_to_user
1137 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1138 return -EFAULT;
1139 return 0;
1140 }
1141 case CCISS_SETINTINFO:
1142 {
1143 cciss_coalint_struct intinfo;
1144 unsigned long flags;
1145 int i;
1146
1147 if (!arg)
1148 return -EINVAL;
1149 if (!capable(CAP_SYS_ADMIN))
1150 return -EPERM;
1151 if (copy_from_user
1152 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1153 return -EFAULT;
1154 if ((intinfo.delay == 0) && (intinfo.count == 0))
1155 {
1156 // printk("cciss_ioctl: delay and count cannot be 0\n");
1157 return -EINVAL;
1158 }
1159 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1160 /* Update the field, and then ring the doorbell */
1161 writel(intinfo.delay,
1162 &(host->cfgtable->HostWrite.CoalIntDelay));
1163 writel(intinfo.count,
1164 &(host->cfgtable->HostWrite.CoalIntCount));
1165 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1166
1167 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1168 if (!(readl(host->vaddr + SA5_DOORBELL)
1169 & CFGTBL_ChangeReq))
1170 break;
1171 /* delay and try again */
1172 udelay(1000);
1173 }
1174 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1175 if (i >= MAX_IOCTL_CONFIG_WAIT)
1176 return -EAGAIN;
1177 return 0;
1178 }
1179 case CCISS_GETNODENAME:
1180 {
1181 NodeName_type NodeName;
1182 int i;
1183
1184 if (!arg)
1185 return -EINVAL;
1186 for (i = 0; i < 16; i++)
1187 NodeName[i] =
1188 readb(&host->cfgtable->ServerName[i]);
1189 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1190 return -EFAULT;
1191 return 0;
1192 }
1193 case CCISS_SETNODENAME:
1194 {
1195 NodeName_type NodeName;
1196 unsigned long flags;
1197 int i;
1198
1199 if (!arg)
1200 return -EINVAL;
1201 if (!capable(CAP_SYS_ADMIN))
1202 return -EPERM;
1203
1204 if (copy_from_user
1205 (NodeName, argp, sizeof(NodeName_type)))
1206 return -EFAULT;
1207
1208 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1209
1210 /* Update the field, and then ring the doorbell */
1211 for (i = 0; i < 16; i++)
1212 writeb(NodeName[i],
1213 &host->cfgtable->ServerName[i]);
1214
1215 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1216
1217 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1218 if (!(readl(host->vaddr + SA5_DOORBELL)
1219 & CFGTBL_ChangeReq))
1220 break;
1221 /* delay and try again */
1222 udelay(1000);
1223 }
1224 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1225 if (i >= MAX_IOCTL_CONFIG_WAIT)
1226 return -EAGAIN;
1227 return 0;
1228 }
1229
1230 case CCISS_GETHEARTBEAT:
1231 {
1232 Heartbeat_type heartbeat;
1233
1234 if (!arg)
1235 return -EINVAL;
1236 heartbeat = readl(&host->cfgtable->HeartBeat);
1237 if (copy_to_user
1238 (argp, &heartbeat, sizeof(Heartbeat_type)))
1239 return -EFAULT;
1240 return 0;
1241 }
1242 case CCISS_GETBUSTYPES:
1243 {
1244 BusTypes_type BusTypes;
1245
1246 if (!arg)
1247 return -EINVAL;
1248 BusTypes = readl(&host->cfgtable->BusTypes);
1249 if (copy_to_user
1250 (argp, &BusTypes, sizeof(BusTypes_type)))
1251 return -EFAULT;
1252 return 0;
1253 }
1254 case CCISS_GETFIRMVER:
1255 {
1256 FirmwareVer_type firmware;
1257
1258 if (!arg)
1259 return -EINVAL;
1260 memcpy(firmware, host->firm_ver, 4);
1261
1262 if (copy_to_user
1263 (argp, firmware, sizeof(FirmwareVer_type)))
1264 return -EFAULT;
1265 return 0;
1266 }
1267 case CCISS_GETDRIVVER:
1268 {
1269 DriverVer_type DriverVer = DRIVER_VERSION;
1270
1271 if (!arg)
1272 return -EINVAL;
1273
1274 if (copy_to_user
1275 (argp, &DriverVer, sizeof(DriverVer_type)))
1276 return -EFAULT;
1277 return 0;
1278 }
1279
1280 case CCISS_DEREGDISK:
1281 case CCISS_REGNEWD:
1282 case CCISS_REVALIDVOLS:
1283 return rebuild_lun_table(host, 0, 1);
1284
1285 case CCISS_GETLUNINFO:{
1286 LogvolInfo_struct luninfo;
1287
1288 memcpy(&luninfo.LunID, drv->LunID,
1289 sizeof(luninfo.LunID));
1290 luninfo.num_opens = drv->usage_count;
1291 luninfo.num_parts = 0;
1292 if (copy_to_user(argp, &luninfo,
1293 sizeof(LogvolInfo_struct)))
1294 return -EFAULT;
1295 return 0;
1296 }
1297 case CCISS_PASSTHRU:
1298 {
1299 IOCTL_Command_struct iocommand;
1300 CommandList_struct *c;
1301 char *buff = NULL;
1302 u64bit temp64;
1303 unsigned long flags;
1304 DECLARE_COMPLETION_ONSTACK(wait);
1305
1306 if (!arg)
1307 return -EINVAL;
1308
1309 if (!capable(CAP_SYS_RAWIO))
1310 return -EPERM;
1311
1312 if (copy_from_user
1313 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1314 return -EFAULT;
1315 if ((iocommand.buf_size < 1) &&
1316 (iocommand.Request.Type.Direction != XFER_NONE)) {
1317 return -EINVAL;
1318 }
1319 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1320 /* Check kmalloc limits */
1321 if (iocommand.buf_size > 128000)
1322 return -EINVAL;
1323 #endif
1324 if (iocommand.buf_size > 0) {
1325 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1326 if (buff == NULL)
1327 return -EFAULT;
1328 }
1329 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1330 /* Copy the data into the buffer we created */
1331 if (copy_from_user
1332 (buff, iocommand.buf, iocommand.buf_size)) {
1333 kfree(buff);
1334 return -EFAULT;
1335 }
1336 } else {
1337 memset(buff, 0, iocommand.buf_size);
1338 }
1339 if ((c = cmd_alloc(host, 0)) == NULL) {
1340 kfree(buff);
1341 return -ENOMEM;
1342 }
1343 // Fill in the command type
1344 c->cmd_type = CMD_IOCTL_PEND;
1345 // Fill in Command Header
1346 c->Header.ReplyQueue = 0; // unused in simple mode
1347 if (iocommand.buf_size > 0) // buffer to fill
1348 {
1349 c->Header.SGList = 1;
1350 c->Header.SGTotal = 1;
1351 } else // no buffers to fill
1352 {
1353 c->Header.SGList = 0;
1354 c->Header.SGTotal = 0;
1355 }
1356 c->Header.LUN = iocommand.LUN_info;
1357 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1358
1359 // Fill in Request block
1360 c->Request = iocommand.Request;
1361
1362 // Fill in the scatter gather information
1363 if (iocommand.buf_size > 0) {
1364 temp64.val = pci_map_single(host->pdev, buff,
1365 iocommand.buf_size,
1366 PCI_DMA_BIDIRECTIONAL);
1367 c->SG[0].Addr.lower = temp64.val32.lower;
1368 c->SG[0].Addr.upper = temp64.val32.upper;
1369 c->SG[0].Len = iocommand.buf_size;
1370 c->SG[0].Ext = 0; // we are not chaining
1371 }
1372 c->waiting = &wait;
1373
1374 /* Put the request on the tail of the request queue */
1375 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1376 addQ(&host->reqQ, c);
1377 host->Qdepth++;
1378 start_io(host);
1379 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1380
1381 wait_for_completion(&wait);
1382
1383 /* unlock the buffers from DMA */
1384 temp64.val32.lower = c->SG[0].Addr.lower;
1385 temp64.val32.upper = c->SG[0].Addr.upper;
1386 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1387 iocommand.buf_size,
1388 PCI_DMA_BIDIRECTIONAL);
1389
1390 check_ioctl_unit_attention(host, c);
1391
1392 /* Copy the error information out */
1393 iocommand.error_info = *(c->err_info);
1394 if (copy_to_user
1395 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1396 kfree(buff);
1397 cmd_free(host, c, 0);
1398 return -EFAULT;
1399 }
1400
1401 if (iocommand.Request.Type.Direction == XFER_READ) {
1402 /* Copy the data out of the buffer we created */
1403 if (copy_to_user
1404 (iocommand.buf, buff, iocommand.buf_size)) {
1405 kfree(buff);
1406 cmd_free(host, c, 0);
1407 return -EFAULT;
1408 }
1409 }
1410 kfree(buff);
1411 cmd_free(host, c, 0);
1412 return 0;
1413 }
1414 case CCISS_BIG_PASSTHRU:{
1415 BIG_IOCTL_Command_struct *ioc;
1416 CommandList_struct *c;
1417 unsigned char **buff = NULL;
1418 int *buff_size = NULL;
1419 u64bit temp64;
1420 unsigned long flags;
1421 BYTE sg_used = 0;
1422 int status = 0;
1423 int i;
1424 DECLARE_COMPLETION_ONSTACK(wait);
1425 __u32 left;
1426 __u32 sz;
1427 BYTE __user *data_ptr;
1428
1429 if (!arg)
1430 return -EINVAL;
1431 if (!capable(CAP_SYS_RAWIO))
1432 return -EPERM;
1433 ioc = (BIG_IOCTL_Command_struct *)
1434 kmalloc(sizeof(*ioc), GFP_KERNEL);
1435 if (!ioc) {
1436 status = -ENOMEM;
1437 goto cleanup1;
1438 }
1439 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1440 status = -EFAULT;
1441 goto cleanup1;
1442 }
1443 if ((ioc->buf_size < 1) &&
1444 (ioc->Request.Type.Direction != XFER_NONE)) {
1445 status = -EINVAL;
1446 goto cleanup1;
1447 }
1448 /* Check kmalloc limits using all SGs */
1449 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1450 status = -EINVAL;
1451 goto cleanup1;
1452 }
1453 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1454 status = -EINVAL;
1455 goto cleanup1;
1456 }
1457 buff =
1458 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1459 if (!buff) {
1460 status = -ENOMEM;
1461 goto cleanup1;
1462 }
1463 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1464 GFP_KERNEL);
1465 if (!buff_size) {
1466 status = -ENOMEM;
1467 goto cleanup1;
1468 }
1469 left = ioc->buf_size;
1470 data_ptr = ioc->buf;
1471 while (left) {
1472 sz = (left >
1473 ioc->malloc_size) ? ioc->
1474 malloc_size : left;
1475 buff_size[sg_used] = sz;
1476 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1477 if (buff[sg_used] == NULL) {
1478 status = -ENOMEM;
1479 goto cleanup1;
1480 }
1481 if (ioc->Request.Type.Direction == XFER_WRITE) {
1482 if (copy_from_user
1483 (buff[sg_used], data_ptr, sz)) {
1484 status = -EFAULT;
1485 goto cleanup1;
1486 }
1487 } else {
1488 memset(buff[sg_used], 0, sz);
1489 }
1490 left -= sz;
1491 data_ptr += sz;
1492 sg_used++;
1493 }
1494 if ((c = cmd_alloc(host, 0)) == NULL) {
1495 status = -ENOMEM;
1496 goto cleanup1;
1497 }
1498 c->cmd_type = CMD_IOCTL_PEND;
1499 c->Header.ReplyQueue = 0;
1500
1501 if (ioc->buf_size > 0) {
1502 c->Header.SGList = sg_used;
1503 c->Header.SGTotal = sg_used;
1504 } else {
1505 c->Header.SGList = 0;
1506 c->Header.SGTotal = 0;
1507 }
1508 c->Header.LUN = ioc->LUN_info;
1509 c->Header.Tag.lower = c->busaddr;
1510
1511 c->Request = ioc->Request;
1512 if (ioc->buf_size > 0) {
1513 int i;
1514 for (i = 0; i < sg_used; i++) {
1515 temp64.val =
1516 pci_map_single(host->pdev, buff[i],
1517 buff_size[i],
1518 PCI_DMA_BIDIRECTIONAL);
1519 c->SG[i].Addr.lower =
1520 temp64.val32.lower;
1521 c->SG[i].Addr.upper =
1522 temp64.val32.upper;
1523 c->SG[i].Len = buff_size[i];
1524 c->SG[i].Ext = 0; /* we are not chaining */
1525 }
1526 }
1527 c->waiting = &wait;
1528 /* Put the request on the tail of the request queue */
1529 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1530 addQ(&host->reqQ, c);
1531 host->Qdepth++;
1532 start_io(host);
1533 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1534 wait_for_completion(&wait);
1535 /* unlock the buffers from DMA */
1536 for (i = 0; i < sg_used; i++) {
1537 temp64.val32.lower = c->SG[i].Addr.lower;
1538 temp64.val32.upper = c->SG[i].Addr.upper;
1539 pci_unmap_single(host->pdev,
1540 (dma_addr_t) temp64.val, buff_size[i],
1541 PCI_DMA_BIDIRECTIONAL);
1542 }
1543 check_ioctl_unit_attention(host, c);
1544 /* Copy the error information out */
1545 ioc->error_info = *(c->err_info);
1546 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1547 cmd_free(host, c, 0);
1548 status = -EFAULT;
1549 goto cleanup1;
1550 }
1551 if (ioc->Request.Type.Direction == XFER_READ) {
1552 /* Copy the data out of the buffer we created */
1553 BYTE __user *ptr = ioc->buf;
1554 for (i = 0; i < sg_used; i++) {
1555 if (copy_to_user
1556 (ptr, buff[i], buff_size[i])) {
1557 cmd_free(host, c, 0);
1558 status = -EFAULT;
1559 goto cleanup1;
1560 }
1561 ptr += buff_size[i];
1562 }
1563 }
1564 cmd_free(host, c, 0);
1565 status = 0;
1566 cleanup1:
1567 if (buff) {
1568 for (i = 0; i < sg_used; i++)
1569 kfree(buff[i]);
1570 kfree(buff);
1571 }
1572 kfree(buff_size);
1573 kfree(ioc);
1574 return status;
1575 }
1576
1577 /* scsi_cmd_ioctl handles these, below, though some are not */
1578 /* very meaningful for cciss. SG_IO is the main one people want. */
1579
1580 case SG_GET_VERSION_NUM:
1581 case SG_SET_TIMEOUT:
1582 case SG_GET_TIMEOUT:
1583 case SG_GET_RESERVED_SIZE:
1584 case SG_SET_RESERVED_SIZE:
1585 case SG_EMULATED_HOST:
1586 case SG_IO:
1587 case SCSI_IOCTL_SEND_COMMAND:
1588 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1589
1590 /* scsi_cmd_ioctl would normally handle these, below, but */
1591 /* they aren't a good fit for cciss, as CD-ROMs are */
1592 /* not supported, and we don't have any bus/target/lun */
1593 /* which we present to the kernel. */
1594
1595 case CDROM_SEND_PACKET:
1596 case CDROMCLOSETRAY:
1597 case CDROMEJECT:
1598 case SCSI_IOCTL_GET_IDLUN:
1599 case SCSI_IOCTL_GET_BUS_NUMBER:
1600 default:
1601 return -ENOTTY;
1602 }
1603 }
1604
1605 static void cciss_check_queues(ctlr_info_t *h)
1606 {
1607 int start_queue = h->next_to_run;
1608 int i;
1609
1610 /* check to see if we have maxed out the number of commands that can
1611 * be placed on the queue. If so then exit. We do this check here
1612 * in case the interrupt we serviced was from an ioctl and did not
1613 * free any new commands.
1614 */
1615 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1616 return;
1617
1618 /* We have room on the queue for more commands. Now we need to queue
1619 * them up. We will also keep track of the next queue to run so
1620 * that every queue gets a chance to be started first.
1621 */
1622 for (i = 0; i < h->highest_lun + 1; i++) {
1623 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1624 /* make sure the disk has been added and the drive is real
1625 * because this can be called from the middle of init_one.
1626 */
1627 if (!h->drv[curr_queue])
1628 continue;
1629 if (!(h->drv[curr_queue]->queue) ||
1630 !(h->drv[curr_queue]->heads))
1631 continue;
1632 blk_start_queue(h->gendisk[curr_queue]->queue);
1633
1634 /* check to see if we have maxed out the number of commands
1635 * that can be placed on the queue.
1636 */
1637 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1638 if (curr_queue == start_queue) {
1639 h->next_to_run =
1640 (start_queue + 1) % (h->highest_lun + 1);
1641 break;
1642 } else {
1643 h->next_to_run = curr_queue;
1644 break;
1645 }
1646 }
1647 }
1648 }
1649
1650 static void cciss_softirq_done(struct request *rq)
1651 {
1652 CommandList_struct *cmd = rq->completion_data;
1653 ctlr_info_t *h = hba[cmd->ctlr];
1654 unsigned long flags;
1655 u64bit temp64;
1656 int i, ddir;
1657
1658 if (cmd->Request.Type.Direction == XFER_READ)
1659 ddir = PCI_DMA_FROMDEVICE;
1660 else
1661 ddir = PCI_DMA_TODEVICE;
1662
1663 /* command did not need to be retried */
1664 /* unmap the DMA mapping for all the scatter gather elements */
1665 for (i = 0; i < cmd->Header.SGList; i++) {
1666 temp64.val32.lower = cmd->SG[i].Addr.lower;
1667 temp64.val32.upper = cmd->SG[i].Addr.upper;
1668 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1669 }
1670
1671 #ifdef CCISS_DEBUG
1672 printk("Done with %p\n", rq);
1673 #endif /* CCISS_DEBUG */
1674
1675 /* set the residual count for pc requests */
1676 if (blk_pc_request(rq))
1677 rq->resid_len = cmd->err_info->ResidualCnt;
1678
1679 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1680
1681 spin_lock_irqsave(&h->lock, flags);
1682 cmd_free(h, cmd, 1);
1683 cciss_check_queues(h);
1684 spin_unlock_irqrestore(&h->lock, flags);
1685 }
1686
1687 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1688 unsigned char scsi3addr[], uint32_t log_unit)
1689 {
1690 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1691 sizeof(h->drv[log_unit]->LunID));
1692 }
1693
1694 /* This function gets the SCSI vendor, model, and revision of a logical drive
1695 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1696 * they cannot be read.
1697 */
1698 static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1699 char *vendor, char *model, char *rev)
1700 {
1701 int rc;
1702 InquiryData_struct *inq_buf;
1703 unsigned char scsi3addr[8];
1704
1705 *vendor = '\0';
1706 *model = '\0';
1707 *rev = '\0';
1708
1709 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1710 if (!inq_buf)
1711 return;
1712
1713 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1714 if (withirq)
1715 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1716 sizeof(InquiryData_struct), 0,
1717 scsi3addr, TYPE_CMD);
1718 else
1719 rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1720 sizeof(InquiryData_struct), 0,
1721 scsi3addr, TYPE_CMD);
1722 if (rc == IO_OK) {
1723 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1724 vendor[VENDOR_LEN] = '\0';
1725 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1726 model[MODEL_LEN] = '\0';
1727 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1728 rev[REV_LEN] = '\0';
1729 }
1730
1731 kfree(inq_buf);
1732 return;
1733 }
1734
1735 /* This function gets the serial number of a logical drive via
1736 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1737 * number cannot be had, for whatever reason, 16 bytes of 0xff
1738 * are returned instead.
1739 */
1740 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1741 unsigned char *serial_no, int buflen)
1742 {
1743 #define PAGE_83_INQ_BYTES 64
1744 int rc;
1745 unsigned char *buf;
1746 unsigned char scsi3addr[8];
1747
1748 if (buflen > 16)
1749 buflen = 16;
1750 memset(serial_no, 0xff, buflen);
1751 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1752 if (!buf)
1753 return;
1754 memset(serial_no, 0, buflen);
1755 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1756 if (withirq)
1757 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1758 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1759 else
1760 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1761 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1762 if (rc == IO_OK)
1763 memcpy(serial_no, &buf[8], buflen);
1764 kfree(buf);
1765 return;
1766 }
1767
1768 /*
1769 * cciss_add_disk sets up the block device queue for a logical drive
1770 */
1771 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1772 int drv_index)
1773 {
1774 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1775 if (!disk->queue)
1776 goto init_queue_failure;
1777 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1778 disk->major = h->major;
1779 disk->first_minor = drv_index << NWD_SHIFT;
1780 disk->fops = &cciss_fops;
1781 if (cciss_create_ld_sysfs_entry(h, drv_index))
1782 goto cleanup_queue;
1783 disk->private_data = h->drv[drv_index];
1784 disk->driverfs_dev = &h->drv[drv_index]->dev;
1785
1786 /* Set up queue information */
1787 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1788
1789 /* This is a hardware imposed limit. */
1790 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1791
1792 /* This is a limit in the driver and could be eliminated. */
1793 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1794
1795 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1796
1797 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1798
1799 disk->queue->queuedata = h;
1800
1801 blk_queue_logical_block_size(disk->queue,
1802 h->drv[drv_index]->block_size);
1803
1804 /* Make sure all queue data is written out before */
1805 /* setting h->drv[drv_index]->queue, as setting this */
1806 /* allows the interrupt handler to start the queue */
1807 wmb();
1808 h->drv[drv_index]->queue = disk->queue;
1809 add_disk(disk);
1810 return 0;
1811
1812 cleanup_queue:
1813 blk_cleanup_queue(disk->queue);
1814 disk->queue = NULL;
1815 init_queue_failure:
1816 return -1;
1817 }
1818
1819 /* This function will check the usage_count of the drive to be updated/added.
1820 * If the usage_count is zero and it is a heretofore unknown drive, or,
1821 * the drive's capacity, geometry, or serial number has changed,
1822 * then the drive information will be updated and the disk will be
1823 * re-registered with the kernel. If these conditions don't hold,
1824 * then it will be left alone for the next reboot. The exception to this
1825 * is disk 0 which will always be left registered with the kernel since it
1826 * is also the controller node. Any changes to disk 0 will show up on
1827 * the next reboot.
1828 */
1829 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1830 int via_ioctl)
1831 {
1832 ctlr_info_t *h = hba[ctlr];
1833 struct gendisk *disk;
1834 InquiryData_struct *inq_buff = NULL;
1835 unsigned int block_size;
1836 sector_t total_size;
1837 unsigned long flags = 0;
1838 int ret = 0;
1839 drive_info_struct *drvinfo;
1840
1841 /* Get information about the disk and modify the driver structure */
1842 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1843 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1844 if (inq_buff == NULL || drvinfo == NULL)
1845 goto mem_msg;
1846
1847 /* testing to see if 16-byte CDBs are already being used */
1848 if (h->cciss_read == CCISS_READ_16) {
1849 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1850 &total_size, &block_size);
1851
1852 } else {
1853 cciss_read_capacity(ctlr, drv_index, 1,
1854 &total_size, &block_size);
1855
1856 /* if read_capacity returns all F's this volume is >2TB */
1857 /* in size so we switch to 16-byte CDB's for all */
1858 /* read/write ops */
1859 if (total_size == 0xFFFFFFFFULL) {
1860 cciss_read_capacity_16(ctlr, drv_index, 1,
1861 &total_size, &block_size);
1862 h->cciss_read = CCISS_READ_16;
1863 h->cciss_write = CCISS_WRITE_16;
1864 } else {
1865 h->cciss_read = CCISS_READ_10;
1866 h->cciss_write = CCISS_WRITE_10;
1867 }
1868 }
1869
1870 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1871 inq_buff, drvinfo);
1872 drvinfo->block_size = block_size;
1873 drvinfo->nr_blocks = total_size + 1;
1874
1875 cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1876 drvinfo->model, drvinfo->rev);
1877 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1878 sizeof(drvinfo->serial_no));
1879 /* Save the lunid in case we deregister the disk, below. */
1880 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1881 sizeof(drvinfo->LunID));
1882
1883 /* Is it the same disk we already know, and nothing's changed? */
1884 if (h->drv[drv_index]->raid_level != -1 &&
1885 ((memcmp(drvinfo->serial_no,
1886 h->drv[drv_index]->serial_no, 16) == 0) &&
1887 drvinfo->block_size == h->drv[drv_index]->block_size &&
1888 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1889 drvinfo->heads == h->drv[drv_index]->heads &&
1890 drvinfo->sectors == h->drv[drv_index]->sectors &&
1891 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1892 /* The disk is unchanged, nothing to update */
1893 goto freeret;
1894
1895 /* If we get here it's not the same disk, or something's changed,
1896 * so we need to * deregister it, and re-register it, if it's not
1897 * in use.
1898 * If the disk already exists then deregister it before proceeding
1899 * (unless it's the first disk (for the controller node).
1900 */
1901 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1902 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1903 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1904 h->drv[drv_index]->busy_configuring = 1;
1905 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1906
1907 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1908 * which keeps the interrupt handler from starting
1909 * the queue.
1910 */
1911 ret = deregister_disk(h, drv_index, 0, via_ioctl);
1912 }
1913
1914 /* If the disk is in use return */
1915 if (ret)
1916 goto freeret;
1917
1918 /* Save the new information from cciss_geometry_inquiry
1919 * and serial number inquiry. If the disk was deregistered
1920 * above, then h->drv[drv_index] will be NULL.
1921 */
1922 if (h->drv[drv_index] == NULL) {
1923 drvinfo->device_initialized = 0;
1924 h->drv[drv_index] = drvinfo;
1925 drvinfo = NULL; /* so it won't be freed below. */
1926 } else {
1927 /* special case for cxd0 */
1928 h->drv[drv_index]->block_size = drvinfo->block_size;
1929 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
1930 h->drv[drv_index]->heads = drvinfo->heads;
1931 h->drv[drv_index]->sectors = drvinfo->sectors;
1932 h->drv[drv_index]->cylinders = drvinfo->cylinders;
1933 h->drv[drv_index]->raid_level = drvinfo->raid_level;
1934 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
1935 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
1936 VENDOR_LEN + 1);
1937 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
1938 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
1939 }
1940
1941 ++h->num_luns;
1942 disk = h->gendisk[drv_index];
1943 set_capacity(disk, h->drv[drv_index]->nr_blocks);
1944
1945 /* If it's not disk 0 (drv_index != 0)
1946 * or if it was disk 0, but there was previously
1947 * no actual corresponding configured logical drive
1948 * (raid_leve == -1) then we want to update the
1949 * logical drive's information.
1950 */
1951 if (drv_index || first_time) {
1952 if (cciss_add_disk(h, disk, drv_index) != 0) {
1953 cciss_free_gendisk(h, drv_index);
1954 cciss_free_drive_info(h, drv_index);
1955 printk(KERN_WARNING "cciss:%d could not update "
1956 "disk %d\n", h->ctlr, drv_index);
1957 --h->num_luns;
1958 }
1959 }
1960
1961 freeret:
1962 kfree(inq_buff);
1963 kfree(drvinfo);
1964 return;
1965 mem_msg:
1966 printk(KERN_ERR "cciss: out of memory\n");
1967 goto freeret;
1968 }
1969
1970 /* This function will find the first index of the controllers drive array
1971 * that has a null drv pointer and allocate the drive info struct and
1972 * will return that index This is where new drives will be added.
1973 * If the index to be returned is greater than the highest_lun index for
1974 * the controller then highest_lun is set * to this new index.
1975 * If there are no available indexes or if tha allocation fails, then -1
1976 * is returned. * "controller_node" is used to know if this is a real
1977 * logical drive, or just the controller node, which determines if this
1978 * counts towards highest_lun.
1979 */
1980 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
1981 {
1982 int i;
1983 drive_info_struct *drv;
1984
1985 /* Search for an empty slot for our drive info */
1986 for (i = 0; i < CISS_MAX_LUN; i++) {
1987
1988 /* if not cxd0 case, and it's occupied, skip it. */
1989 if (h->drv[i] && i != 0)
1990 continue;
1991 /*
1992 * If it's cxd0 case, and drv is alloc'ed already, and a
1993 * disk is configured there, skip it.
1994 */
1995 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
1996 continue;
1997
1998 /*
1999 * We've found an empty slot. Update highest_lun
2000 * provided this isn't just the fake cxd0 controller node.
2001 */
2002 if (i > h->highest_lun && !controller_node)
2003 h->highest_lun = i;
2004
2005 /* If adding a real disk at cxd0, and it's already alloc'ed */
2006 if (i == 0 && h->drv[i] != NULL)
2007 return i;
2008
2009 /*
2010 * Found an empty slot, not already alloc'ed. Allocate it.
2011 * Mark it with raid_level == -1, so we know it's new later on.
2012 */
2013 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2014 if (!drv)
2015 return -1;
2016 drv->raid_level = -1; /* so we know it's new */
2017 h->drv[i] = drv;
2018 return i;
2019 }
2020 return -1;
2021 }
2022
2023 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2024 {
2025 kfree(h->drv[drv_index]);
2026 h->drv[drv_index] = NULL;
2027 }
2028
2029 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2030 {
2031 put_disk(h->gendisk[drv_index]);
2032 h->gendisk[drv_index] = NULL;
2033 }
2034
2035 /* cciss_add_gendisk finds a free hba[]->drv structure
2036 * and allocates a gendisk if needed, and sets the lunid
2037 * in the drvinfo structure. It returns the index into
2038 * the ->drv[] array, or -1 if none are free.
2039 * is_controller_node indicates whether highest_lun should
2040 * count this disk, or if it's only being added to provide
2041 * a means to talk to the controller in case no logical
2042 * drives have yet been configured.
2043 */
2044 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2045 int controller_node)
2046 {
2047 int drv_index;
2048
2049 drv_index = cciss_alloc_drive_info(h, controller_node);
2050 if (drv_index == -1)
2051 return -1;
2052
2053 /*Check if the gendisk needs to be allocated */
2054 if (!h->gendisk[drv_index]) {
2055 h->gendisk[drv_index] =
2056 alloc_disk(1 << NWD_SHIFT);
2057 if (!h->gendisk[drv_index]) {
2058 printk(KERN_ERR "cciss%d: could not "
2059 "allocate a new disk %d\n",
2060 h->ctlr, drv_index);
2061 goto err_free_drive_info;
2062 }
2063 }
2064 memcpy(h->drv[drv_index]->LunID, lunid,
2065 sizeof(h->drv[drv_index]->LunID));
2066 if (cciss_create_ld_sysfs_entry(h, drv_index))
2067 goto err_free_disk;
2068 /* Don't need to mark this busy because nobody */
2069 /* else knows about this disk yet to contend */
2070 /* for access to it. */
2071 h->drv[drv_index]->busy_configuring = 0;
2072 wmb();
2073 return drv_index;
2074
2075 err_free_disk:
2076 cciss_free_gendisk(h, drv_index);
2077 err_free_drive_info:
2078 cciss_free_drive_info(h, drv_index);
2079 return -1;
2080 }
2081
2082 /* This is for the special case of a controller which
2083 * has no logical drives. In this case, we still need
2084 * to register a disk so the controller can be accessed
2085 * by the Array Config Utility.
2086 */
2087 static void cciss_add_controller_node(ctlr_info_t *h)
2088 {
2089 struct gendisk *disk;
2090 int drv_index;
2091
2092 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2093 return;
2094
2095 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2096 if (drv_index == -1)
2097 goto error;
2098 h->drv[drv_index]->block_size = 512;
2099 h->drv[drv_index]->nr_blocks = 0;
2100 h->drv[drv_index]->heads = 0;
2101 h->drv[drv_index]->sectors = 0;
2102 h->drv[drv_index]->cylinders = 0;
2103 h->drv[drv_index]->raid_level = -1;
2104 memset(h->drv[drv_index]->serial_no, 0, 16);
2105 disk = h->gendisk[drv_index];
2106 if (cciss_add_disk(h, disk, drv_index) == 0)
2107 return;
2108 cciss_free_gendisk(h, drv_index);
2109 cciss_free_drive_info(h, drv_index);
2110 error:
2111 printk(KERN_WARNING "cciss%d: could not "
2112 "add disk 0.\n", h->ctlr);
2113 return;
2114 }
2115
2116 /* This function will add and remove logical drives from the Logical
2117 * drive array of the controller and maintain persistency of ordering
2118 * so that mount points are preserved until the next reboot. This allows
2119 * for the removal of logical drives in the middle of the drive array
2120 * without a re-ordering of those drives.
2121 * INPUT
2122 * h = The controller to perform the operations on
2123 */
2124 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2125 int via_ioctl)
2126 {
2127 int ctlr = h->ctlr;
2128 int num_luns;
2129 ReportLunData_struct *ld_buff = NULL;
2130 int return_code;
2131 int listlength = 0;
2132 int i;
2133 int drv_found;
2134 int drv_index = 0;
2135 unsigned char lunid[8] = CTLR_LUNID;
2136 unsigned long flags;
2137
2138 if (!capable(CAP_SYS_RAWIO))
2139 return -EPERM;
2140
2141 /* Set busy_configuring flag for this operation */
2142 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2143 if (h->busy_configuring) {
2144 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2145 return -EBUSY;
2146 }
2147 h->busy_configuring = 1;
2148 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2149
2150 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2151 if (ld_buff == NULL)
2152 goto mem_msg;
2153
2154 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2155 sizeof(ReportLunData_struct),
2156 0, CTLR_LUNID, TYPE_CMD);
2157
2158 if (return_code == IO_OK)
2159 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2160 else { /* reading number of logical volumes failed */
2161 printk(KERN_WARNING "cciss: report logical volume"
2162 " command failed\n");
2163 listlength = 0;
2164 goto freeret;
2165 }
2166
2167 num_luns = listlength / 8; /* 8 bytes per entry */
2168 if (num_luns > CISS_MAX_LUN) {
2169 num_luns = CISS_MAX_LUN;
2170 printk(KERN_WARNING "cciss: more luns configured"
2171 " on controller than can be handled by"
2172 " this driver.\n");
2173 }
2174
2175 if (num_luns == 0)
2176 cciss_add_controller_node(h);
2177
2178 /* Compare controller drive array to driver's drive array
2179 * to see if any drives are missing on the controller due
2180 * to action of Array Config Utility (user deletes drive)
2181 * and deregister logical drives which have disappeared.
2182 */
2183 for (i = 0; i <= h->highest_lun; i++) {
2184 int j;
2185 drv_found = 0;
2186
2187 /* skip holes in the array from already deleted drives */
2188 if (h->drv[i] == NULL)
2189 continue;
2190
2191 for (j = 0; j < num_luns; j++) {
2192 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2193 if (memcmp(h->drv[i]->LunID, lunid,
2194 sizeof(lunid)) == 0) {
2195 drv_found = 1;
2196 break;
2197 }
2198 }
2199 if (!drv_found) {
2200 /* Deregister it from the OS, it's gone. */
2201 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2202 h->drv[i]->busy_configuring = 1;
2203 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2204 return_code = deregister_disk(h, i, 1, via_ioctl);
2205 if (h->drv[i] != NULL)
2206 h->drv[i]->busy_configuring = 0;
2207 }
2208 }
2209
2210 /* Compare controller drive array to driver's drive array.
2211 * Check for updates in the drive information and any new drives
2212 * on the controller due to ACU adding logical drives, or changing
2213 * a logical drive's size, etc. Reregister any new/changed drives
2214 */
2215 for (i = 0; i < num_luns; i++) {
2216 int j;
2217
2218 drv_found = 0;
2219
2220 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2221 /* Find if the LUN is already in the drive array
2222 * of the driver. If so then update its info
2223 * if not in use. If it does not exist then find
2224 * the first free index and add it.
2225 */
2226 for (j = 0; j <= h->highest_lun; j++) {
2227 if (h->drv[j] != NULL &&
2228 memcmp(h->drv[j]->LunID, lunid,
2229 sizeof(h->drv[j]->LunID)) == 0) {
2230 drv_index = j;
2231 drv_found = 1;
2232 break;
2233 }
2234 }
2235
2236 /* check if the drive was found already in the array */
2237 if (!drv_found) {
2238 drv_index = cciss_add_gendisk(h, lunid, 0);
2239 if (drv_index == -1)
2240 goto freeret;
2241 }
2242 cciss_update_drive_info(ctlr, drv_index, first_time,
2243 via_ioctl);
2244 } /* end for */
2245
2246 freeret:
2247 kfree(ld_buff);
2248 h->busy_configuring = 0;
2249 /* We return -1 here to tell the ACU that we have registered/updated
2250 * all of the drives that we can and to keep it from calling us
2251 * additional times.
2252 */
2253 return -1;
2254 mem_msg:
2255 printk(KERN_ERR "cciss: out of memory\n");
2256 h->busy_configuring = 0;
2257 goto freeret;
2258 }
2259
2260 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2261 {
2262 /* zero out the disk size info */
2263 drive_info->nr_blocks = 0;
2264 drive_info->block_size = 0;
2265 drive_info->heads = 0;
2266 drive_info->sectors = 0;
2267 drive_info->cylinders = 0;
2268 drive_info->raid_level = -1;
2269 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2270 memset(drive_info->model, 0, sizeof(drive_info->model));
2271 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2272 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2273 /*
2274 * don't clear the LUNID though, we need to remember which
2275 * one this one is.
2276 */
2277 }
2278
2279 /* This function will deregister the disk and it's queue from the
2280 * kernel. It must be called with the controller lock held and the
2281 * drv structures busy_configuring flag set. It's parameters are:
2282 *
2283 * disk = This is the disk to be deregistered
2284 * drv = This is the drive_info_struct associated with the disk to be
2285 * deregistered. It contains information about the disk used
2286 * by the driver.
2287 * clear_all = This flag determines whether or not the disk information
2288 * is going to be completely cleared out and the highest_lun
2289 * reset. Sometimes we want to clear out information about
2290 * the disk in preparation for re-adding it. In this case
2291 * the highest_lun should be left unchanged and the LunID
2292 * should not be cleared.
2293 * via_ioctl
2294 * This indicates whether we've reached this path via ioctl.
2295 * This affects the maximum usage count allowed for c0d0 to be messed with.
2296 * If this path is reached via ioctl(), then the max_usage_count will
2297 * be 1, as the process calling ioctl() has got to have the device open.
2298 * If we get here via sysfs, then the max usage count will be zero.
2299 */
2300 static int deregister_disk(ctlr_info_t *h, int drv_index,
2301 int clear_all, int via_ioctl)
2302 {
2303 int i;
2304 struct gendisk *disk;
2305 drive_info_struct *drv;
2306 int recalculate_highest_lun;
2307
2308 if (!capable(CAP_SYS_RAWIO))
2309 return -EPERM;
2310
2311 drv = h->drv[drv_index];
2312 disk = h->gendisk[drv_index];
2313
2314 /* make sure logical volume is NOT is use */
2315 if (clear_all || (h->gendisk[0] == disk)) {
2316 if (drv->usage_count > via_ioctl)
2317 return -EBUSY;
2318 } else if (drv->usage_count > 0)
2319 return -EBUSY;
2320
2321 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2322
2323 /* invalidate the devices and deregister the disk. If it is disk
2324 * zero do not deregister it but just zero out it's values. This
2325 * allows us to delete disk zero but keep the controller registered.
2326 */
2327 if (h->gendisk[0] != disk) {
2328 struct request_queue *q = disk->queue;
2329 if (disk->flags & GENHD_FL_UP) {
2330 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2331 del_gendisk(disk);
2332 }
2333 if (q)
2334 blk_cleanup_queue(q);
2335 /* If clear_all is set then we are deleting the logical
2336 * drive, not just refreshing its info. For drives
2337 * other than disk 0 we will call put_disk. We do not
2338 * do this for disk 0 as we need it to be able to
2339 * configure the controller.
2340 */
2341 if (clear_all){
2342 /* This isn't pretty, but we need to find the
2343 * disk in our array and NULL our the pointer.
2344 * This is so that we will call alloc_disk if
2345 * this index is used again later.
2346 */
2347 for (i=0; i < CISS_MAX_LUN; i++){
2348 if (h->gendisk[i] == disk) {
2349 h->gendisk[i] = NULL;
2350 break;
2351 }
2352 }
2353 put_disk(disk);
2354 }
2355 } else {
2356 set_capacity(disk, 0);
2357 cciss_clear_drive_info(drv);
2358 }
2359
2360 --h->num_luns;
2361
2362 /* if it was the last disk, find the new hightest lun */
2363 if (clear_all && recalculate_highest_lun) {
2364 int i, newhighest = -1;
2365 for (i = 0; i <= h->highest_lun; i++) {
2366 /* if the disk has size > 0, it is available */
2367 if (h->drv[i] && h->drv[i]->heads)
2368 newhighest = i;
2369 }
2370 h->highest_lun = newhighest;
2371 }
2372 return 0;
2373 }
2374
2375 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2376 size_t size, __u8 page_code, unsigned char *scsi3addr,
2377 int cmd_type)
2378 {
2379 ctlr_info_t *h = hba[ctlr];
2380 u64bit buff_dma_handle;
2381 int status = IO_OK;
2382
2383 c->cmd_type = CMD_IOCTL_PEND;
2384 c->Header.ReplyQueue = 0;
2385 if (buff != NULL) {
2386 c->Header.SGList = 1;
2387 c->Header.SGTotal = 1;
2388 } else {
2389 c->Header.SGList = 0;
2390 c->Header.SGTotal = 0;
2391 }
2392 c->Header.Tag.lower = c->busaddr;
2393 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2394
2395 c->Request.Type.Type = cmd_type;
2396 if (cmd_type == TYPE_CMD) {
2397 switch (cmd) {
2398 case CISS_INQUIRY:
2399 /* are we trying to read a vital product page */
2400 if (page_code != 0) {
2401 c->Request.CDB[1] = 0x01;
2402 c->Request.CDB[2] = page_code;
2403 }
2404 c->Request.CDBLen = 6;
2405 c->Request.Type.Attribute = ATTR_SIMPLE;
2406 c->Request.Type.Direction = XFER_READ;
2407 c->Request.Timeout = 0;
2408 c->Request.CDB[0] = CISS_INQUIRY;
2409 c->Request.CDB[4] = size & 0xFF;
2410 break;
2411 case CISS_REPORT_LOG:
2412 case CISS_REPORT_PHYS:
2413 /* Talking to controller so It's a physical command
2414 mode = 00 target = 0. Nothing to write.
2415 */
2416 c->Request.CDBLen = 12;
2417 c->Request.Type.Attribute = ATTR_SIMPLE;
2418 c->Request.Type.Direction = XFER_READ;
2419 c->Request.Timeout = 0;
2420 c->Request.CDB[0] = cmd;
2421 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
2422 c->Request.CDB[7] = (size >> 16) & 0xFF;
2423 c->Request.CDB[8] = (size >> 8) & 0xFF;
2424 c->Request.CDB[9] = size & 0xFF;
2425 break;
2426
2427 case CCISS_READ_CAPACITY:
2428 c->Request.CDBLen = 10;
2429 c->Request.Type.Attribute = ATTR_SIMPLE;
2430 c->Request.Type.Direction = XFER_READ;
2431 c->Request.Timeout = 0;
2432 c->Request.CDB[0] = cmd;
2433 break;
2434 case CCISS_READ_CAPACITY_16:
2435 c->Request.CDBLen = 16;
2436 c->Request.Type.Attribute = ATTR_SIMPLE;
2437 c->Request.Type.Direction = XFER_READ;
2438 c->Request.Timeout = 0;
2439 c->Request.CDB[0] = cmd;
2440 c->Request.CDB[1] = 0x10;
2441 c->Request.CDB[10] = (size >> 24) & 0xFF;
2442 c->Request.CDB[11] = (size >> 16) & 0xFF;
2443 c->Request.CDB[12] = (size >> 8) & 0xFF;
2444 c->Request.CDB[13] = size & 0xFF;
2445 c->Request.Timeout = 0;
2446 c->Request.CDB[0] = cmd;
2447 break;
2448 case CCISS_CACHE_FLUSH:
2449 c->Request.CDBLen = 12;
2450 c->Request.Type.Attribute = ATTR_SIMPLE;
2451 c->Request.Type.Direction = XFER_WRITE;
2452 c->Request.Timeout = 0;
2453 c->Request.CDB[0] = BMIC_WRITE;
2454 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2455 break;
2456 case TEST_UNIT_READY:
2457 c->Request.CDBLen = 6;
2458 c->Request.Type.Attribute = ATTR_SIMPLE;
2459 c->Request.Type.Direction = XFER_NONE;
2460 c->Request.Timeout = 0;
2461 break;
2462 default:
2463 printk(KERN_WARNING
2464 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2465 return IO_ERROR;
2466 }
2467 } else if (cmd_type == TYPE_MSG) {
2468 switch (cmd) {
2469 case 0: /* ABORT message */
2470 c->Request.CDBLen = 12;
2471 c->Request.Type.Attribute = ATTR_SIMPLE;
2472 c->Request.Type.Direction = XFER_WRITE;
2473 c->Request.Timeout = 0;
2474 c->Request.CDB[0] = cmd; /* abort */
2475 c->Request.CDB[1] = 0; /* abort a command */
2476 /* buff contains the tag of the command to abort */
2477 memcpy(&c->Request.CDB[4], buff, 8);
2478 break;
2479 case 1: /* RESET message */
2480 c->Request.CDBLen = 16;
2481 c->Request.Type.Attribute = ATTR_SIMPLE;
2482 c->Request.Type.Direction = XFER_NONE;
2483 c->Request.Timeout = 0;
2484 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2485 c->Request.CDB[0] = cmd; /* reset */
2486 c->Request.CDB[1] = 0x03; /* reset a target */
2487 break;
2488 case 3: /* No-Op message */
2489 c->Request.CDBLen = 1;
2490 c->Request.Type.Attribute = ATTR_SIMPLE;
2491 c->Request.Type.Direction = XFER_WRITE;
2492 c->Request.Timeout = 0;
2493 c->Request.CDB[0] = cmd;
2494 break;
2495 default:
2496 printk(KERN_WARNING
2497 "cciss%d: unknown message type %d\n", ctlr, cmd);
2498 return IO_ERROR;
2499 }
2500 } else {
2501 printk(KERN_WARNING
2502 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2503 return IO_ERROR;
2504 }
2505 /* Fill in the scatter gather information */
2506 if (size > 0) {
2507 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2508 buff, size,
2509 PCI_DMA_BIDIRECTIONAL);
2510 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2511 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2512 c->SG[0].Len = size;
2513 c->SG[0].Ext = 0; /* we are not chaining */
2514 }
2515 return status;
2516 }
2517
2518 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2519 {
2520 switch (c->err_info->ScsiStatus) {
2521 case SAM_STAT_GOOD:
2522 return IO_OK;
2523 case SAM_STAT_CHECK_CONDITION:
2524 switch (0xf & c->err_info->SenseInfo[2]) {
2525 case 0: return IO_OK; /* no sense */
2526 case 1: return IO_OK; /* recovered error */
2527 default:
2528 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2529 "check condition, sense key = 0x%02x\n",
2530 h->ctlr, c->Request.CDB[0],
2531 c->err_info->SenseInfo[2]);
2532 }
2533 break;
2534 default:
2535 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2536 "scsi status = 0x%02x\n", h->ctlr,
2537 c->Request.CDB[0], c->err_info->ScsiStatus);
2538 break;
2539 }
2540 return IO_ERROR;
2541 }
2542
2543 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2544 {
2545 int return_status = IO_OK;
2546
2547 if (c->err_info->CommandStatus == CMD_SUCCESS)
2548 return IO_OK;
2549
2550 switch (c->err_info->CommandStatus) {
2551 case CMD_TARGET_STATUS:
2552 return_status = check_target_status(h, c);
2553 break;
2554 case CMD_DATA_UNDERRUN:
2555 case CMD_DATA_OVERRUN:
2556 /* expected for inquiry and report lun commands */
2557 break;
2558 case CMD_INVALID:
2559 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2560 "reported invalid\n", c->Request.CDB[0]);
2561 return_status = IO_ERROR;
2562 break;
2563 case CMD_PROTOCOL_ERR:
2564 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2565 "protocol error \n", c->Request.CDB[0]);
2566 return_status = IO_ERROR;
2567 break;
2568 case CMD_HARDWARE_ERR:
2569 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2570 " hardware error\n", c->Request.CDB[0]);
2571 return_status = IO_ERROR;
2572 break;
2573 case CMD_CONNECTION_LOST:
2574 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2575 "connection lost\n", c->Request.CDB[0]);
2576 return_status = IO_ERROR;
2577 break;
2578 case CMD_ABORTED:
2579 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2580 "aborted\n", c->Request.CDB[0]);
2581 return_status = IO_ERROR;
2582 break;
2583 case CMD_ABORT_FAILED:
2584 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2585 "abort failed\n", c->Request.CDB[0]);
2586 return_status = IO_ERROR;
2587 break;
2588 case CMD_UNSOLICITED_ABORT:
2589 printk(KERN_WARNING
2590 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2591 c->Request.CDB[0]);
2592 return_status = IO_NEEDS_RETRY;
2593 break;
2594 default:
2595 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2596 "unknown status %x\n", c->Request.CDB[0],
2597 c->err_info->CommandStatus);
2598 return_status = IO_ERROR;
2599 }
2600 return return_status;
2601 }
2602
2603 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2604 int attempt_retry)
2605 {
2606 DECLARE_COMPLETION_ONSTACK(wait);
2607 u64bit buff_dma_handle;
2608 unsigned long flags;
2609 int return_status = IO_OK;
2610
2611 resend_cmd2:
2612 c->waiting = &wait;
2613 /* Put the request on the tail of the queue and send it */
2614 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2615 addQ(&h->reqQ, c);
2616 h->Qdepth++;
2617 start_io(h);
2618 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2619
2620 wait_for_completion(&wait);
2621
2622 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2623 goto command_done;
2624
2625 return_status = process_sendcmd_error(h, c);
2626
2627 if (return_status == IO_NEEDS_RETRY &&
2628 c->retry_count < MAX_CMD_RETRIES) {
2629 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2630 c->Request.CDB[0]);
2631 c->retry_count++;
2632 /* erase the old error information */
2633 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2634 return_status = IO_OK;
2635 INIT_COMPLETION(wait);
2636 goto resend_cmd2;
2637 }
2638
2639 command_done:
2640 /* unlock the buffers from DMA */
2641 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2642 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2643 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2644 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2645 return return_status;
2646 }
2647
2648 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2649 __u8 page_code, unsigned char scsi3addr[],
2650 int cmd_type)
2651 {
2652 ctlr_info_t *h = hba[ctlr];
2653 CommandList_struct *c;
2654 int return_status;
2655
2656 c = cmd_alloc(h, 0);
2657 if (!c)
2658 return -ENOMEM;
2659 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2660 scsi3addr, cmd_type);
2661 if (return_status == IO_OK)
2662 return_status = sendcmd_withirq_core(h, c, 1);
2663
2664 cmd_free(h, c, 0);
2665 return return_status;
2666 }
2667
2668 static void cciss_geometry_inquiry(int ctlr, int logvol,
2669 int withirq, sector_t total_size,
2670 unsigned int block_size,
2671 InquiryData_struct *inq_buff,
2672 drive_info_struct *drv)
2673 {
2674 int return_code;
2675 unsigned long t;
2676 unsigned char scsi3addr[8];
2677
2678 memset(inq_buff, 0, sizeof(InquiryData_struct));
2679 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2680 if (withirq)
2681 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2682 inq_buff, sizeof(*inq_buff),
2683 0xC1, scsi3addr, TYPE_CMD);
2684 else
2685 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2686 sizeof(*inq_buff), 0xC1, scsi3addr,
2687 TYPE_CMD);
2688 if (return_code == IO_OK) {
2689 if (inq_buff->data_byte[8] == 0xFF) {
2690 printk(KERN_WARNING
2691 "cciss: reading geometry failed, volume "
2692 "does not support reading geometry\n");
2693 drv->heads = 255;
2694 drv->sectors = 32; // Sectors per track
2695 drv->cylinders = total_size + 1;
2696 drv->raid_level = RAID_UNKNOWN;
2697 } else {
2698 drv->heads = inq_buff->data_byte[6];
2699 drv->sectors = inq_buff->data_byte[7];
2700 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2701 drv->cylinders += inq_buff->data_byte[5];
2702 drv->raid_level = inq_buff->data_byte[8];
2703 }
2704 drv->block_size = block_size;
2705 drv->nr_blocks = total_size + 1;
2706 t = drv->heads * drv->sectors;
2707 if (t > 1) {
2708 sector_t real_size = total_size + 1;
2709 unsigned long rem = sector_div(real_size, t);
2710 if (rem)
2711 real_size++;
2712 drv->cylinders = real_size;
2713 }
2714 } else { /* Get geometry failed */
2715 printk(KERN_WARNING "cciss: reading geometry failed\n");
2716 }
2717 }
2718
2719 static void
2720 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2721 unsigned int *block_size)
2722 {
2723 ReadCapdata_struct *buf;
2724 int return_code;
2725 unsigned char scsi3addr[8];
2726
2727 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2728 if (!buf) {
2729 printk(KERN_WARNING "cciss: out of memory\n");
2730 return;
2731 }
2732
2733 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2734 if (withirq)
2735 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2736 ctlr, buf, sizeof(ReadCapdata_struct),
2737 0, scsi3addr, TYPE_CMD);
2738 else
2739 return_code = sendcmd(CCISS_READ_CAPACITY,
2740 ctlr, buf, sizeof(ReadCapdata_struct),
2741 0, scsi3addr, TYPE_CMD);
2742 if (return_code == IO_OK) {
2743 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2744 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2745 } else { /* read capacity command failed */
2746 printk(KERN_WARNING "cciss: read capacity failed\n");
2747 *total_size = 0;
2748 *block_size = BLOCK_SIZE;
2749 }
2750 kfree(buf);
2751 }
2752
2753 static void
2754 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2755 {
2756 ReadCapdata_struct_16 *buf;
2757 int return_code;
2758 unsigned char scsi3addr[8];
2759
2760 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2761 if (!buf) {
2762 printk(KERN_WARNING "cciss: out of memory\n");
2763 return;
2764 }
2765
2766 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2767 if (withirq) {
2768 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2769 ctlr, buf, sizeof(ReadCapdata_struct_16),
2770 0, scsi3addr, TYPE_CMD);
2771 }
2772 else {
2773 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2774 ctlr, buf, sizeof(ReadCapdata_struct_16),
2775 0, scsi3addr, TYPE_CMD);
2776 }
2777 if (return_code == IO_OK) {
2778 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2779 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2780 } else { /* read capacity command failed */
2781 printk(KERN_WARNING "cciss: read capacity failed\n");
2782 *total_size = 0;
2783 *block_size = BLOCK_SIZE;
2784 }
2785 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2786 (unsigned long long)*total_size+1, *block_size);
2787 kfree(buf);
2788 }
2789
2790 static int cciss_revalidate(struct gendisk *disk)
2791 {
2792 ctlr_info_t *h = get_host(disk);
2793 drive_info_struct *drv = get_drv(disk);
2794 int logvol;
2795 int FOUND = 0;
2796 unsigned int block_size;
2797 sector_t total_size;
2798 InquiryData_struct *inq_buff = NULL;
2799
2800 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2801 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2802 sizeof(drv->LunID)) == 0) {
2803 FOUND = 1;
2804 break;
2805 }
2806 }
2807
2808 if (!FOUND)
2809 return 1;
2810
2811 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2812 if (inq_buff == NULL) {
2813 printk(KERN_WARNING "cciss: out of memory\n");
2814 return 1;
2815 }
2816 if (h->cciss_read == CCISS_READ_10) {
2817 cciss_read_capacity(h->ctlr, logvol, 1,
2818 &total_size, &block_size);
2819 } else {
2820 cciss_read_capacity_16(h->ctlr, logvol, 1,
2821 &total_size, &block_size);
2822 }
2823 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2824 inq_buff, drv);
2825
2826 blk_queue_logical_block_size(drv->queue, drv->block_size);
2827 set_capacity(disk, drv->nr_blocks);
2828
2829 kfree(inq_buff);
2830 return 0;
2831 }
2832
2833 /*
2834 * Wait polling for a command to complete.
2835 * The memory mapped FIFO is polled for the completion.
2836 * Used only at init time, interrupts from the HBA are disabled.
2837 */
2838 static unsigned long pollcomplete(int ctlr)
2839 {
2840 unsigned long done;
2841 int i;
2842
2843 /* Wait (up to 20 seconds) for a command to complete */
2844
2845 for (i = 20 * HZ; i > 0; i--) {
2846 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2847 if (done == FIFO_EMPTY)
2848 schedule_timeout_uninterruptible(1);
2849 else
2850 return done;
2851 }
2852 /* Invalid address to tell caller we ran out of time */
2853 return 1;
2854 }
2855
2856 /* Send command c to controller h and poll for it to complete.
2857 * Turns interrupts off on the board. Used at driver init time
2858 * and during SCSI error recovery.
2859 */
2860 static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2861 {
2862 int i;
2863 unsigned long complete;
2864 int status = IO_ERROR;
2865 u64bit buff_dma_handle;
2866
2867 resend_cmd1:
2868
2869 /* Disable interrupt on the board. */
2870 h->access.set_intr_mask(h, CCISS_INTR_OFF);
2871
2872 /* Make sure there is room in the command FIFO */
2873 /* Actually it should be completely empty at this time */
2874 /* unless we are in here doing error handling for the scsi */
2875 /* tape side of the driver. */
2876 for (i = 200000; i > 0; i--) {
2877 /* if fifo isn't full go */
2878 if (!(h->access.fifo_full(h)))
2879 break;
2880 udelay(10);
2881 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2882 " waiting!\n", h->ctlr);
2883 }
2884 h->access.submit_command(h, c); /* Send the cmd */
2885 do {
2886 complete = pollcomplete(h->ctlr);
2887
2888 #ifdef CCISS_DEBUG
2889 printk(KERN_DEBUG "cciss: command completed\n");
2890 #endif /* CCISS_DEBUG */
2891
2892 if (complete == 1) {
2893 printk(KERN_WARNING
2894 "cciss cciss%d: SendCmd Timeout out, "
2895 "No command list address returned!\n", h->ctlr);
2896 status = IO_ERROR;
2897 break;
2898 }
2899
2900 /* Make sure it's the command we're expecting. */
2901 if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2902 printk(KERN_WARNING "cciss%d: Unexpected command "
2903 "completion.\n", h->ctlr);
2904 continue;
2905 }
2906
2907 /* It is our command. If no error, we're done. */
2908 if (!(complete & CISS_ERROR_BIT)) {
2909 status = IO_OK;
2910 break;
2911 }
2912
2913 /* There is an error... */
2914
2915 /* if data overrun or underun on Report command ignore it */
2916 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2917 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2918 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2919 ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2920 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2921 complete = c->busaddr;
2922 status = IO_OK;
2923 break;
2924 }
2925
2926 if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2927 printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2928 h->ctlr, c);
2929 if (c->retry_count < MAX_CMD_RETRIES) {
2930 printk(KERN_WARNING "cciss%d: retrying %p\n",
2931 h->ctlr, c);
2932 c->retry_count++;
2933 /* erase the old error information */
2934 memset(c->err_info, 0, sizeof(c->err_info));
2935 goto resend_cmd1;
2936 }
2937 printk(KERN_WARNING "cciss%d: retried %p too many "
2938 "times\n", h->ctlr, c);
2939 status = IO_ERROR;
2940 break;
2941 }
2942
2943 if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2944 printk(KERN_WARNING "cciss%d: command could not be "
2945 "aborted.\n", h->ctlr);
2946 status = IO_ERROR;
2947 break;
2948 }
2949
2950 if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2951 status = check_target_status(h, c);
2952 break;
2953 }
2954
2955 printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2956 printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2957 c->Request.CDB[0], c->err_info->CommandStatus);
2958 status = IO_ERROR;
2959 break;
2960
2961 } while (1);
2962
2963 /* unlock the data buffer from DMA */
2964 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2965 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2966 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2967 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2968 return status;
2969 }
2970
2971 /*
2972 * Send a command to the controller, and wait for it to complete.
2973 * Used at init time, and during SCSI error recovery.
2974 */
2975 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2976 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2977 {
2978 CommandList_struct *c;
2979 int status;
2980
2981 c = cmd_alloc(hba[ctlr], 1);
2982 if (!c) {
2983 printk(KERN_WARNING "cciss: unable to get memory");
2984 return IO_ERROR;
2985 }
2986 status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2987 scsi3addr, cmd_type);
2988 if (status == IO_OK)
2989 status = sendcmd_core(hba[ctlr], c);
2990 cmd_free(hba[ctlr], c, 1);
2991 return status;
2992 }
2993
2994 /*
2995 * Map (physical) PCI mem into (virtual) kernel space
2996 */
2997 static void __iomem *remap_pci_mem(ulong base, ulong size)
2998 {
2999 ulong page_base = ((ulong) base) & PAGE_MASK;
3000 ulong page_offs = ((ulong) base) - page_base;
3001 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3002
3003 return page_remapped ? (page_remapped + page_offs) : NULL;
3004 }
3005
3006 /*
3007 * Takes jobs of the Q and sends them to the hardware, then puts it on
3008 * the Q to wait for completion.
3009 */
3010 static void start_io(ctlr_info_t *h)
3011 {
3012 CommandList_struct *c;
3013
3014 while (!hlist_empty(&h->reqQ)) {
3015 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
3016 /* can't do anything if fifo is full */
3017 if ((h->access.fifo_full(h))) {
3018 printk(KERN_WARNING "cciss: fifo full\n");
3019 break;
3020 }
3021
3022 /* Get the first entry from the Request Q */
3023 removeQ(c);
3024 h->Qdepth--;
3025
3026 /* Tell the controller execute command */
3027 h->access.submit_command(h, c);
3028
3029 /* Put job onto the completed Q */
3030 addQ(&h->cmpQ, c);
3031 }
3032 }
3033
3034 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
3035 /* Zeros out the error record and then resends the command back */
3036 /* to the controller */
3037 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3038 {
3039 /* erase the old error information */
3040 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3041
3042 /* add it to software queue and then send it to the controller */
3043 addQ(&h->reqQ, c);
3044 h->Qdepth++;
3045 if (h->Qdepth > h->maxQsinceinit)
3046 h->maxQsinceinit = h->Qdepth;
3047
3048 start_io(h);
3049 }
3050
3051 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3052 unsigned int msg_byte, unsigned int host_byte,
3053 unsigned int driver_byte)
3054 {
3055 /* inverse of macros in scsi.h */
3056 return (scsi_status_byte & 0xff) |
3057 ((msg_byte & 0xff) << 8) |
3058 ((host_byte & 0xff) << 16) |
3059 ((driver_byte & 0xff) << 24);
3060 }
3061
3062 static inline int evaluate_target_status(ctlr_info_t *h,
3063 CommandList_struct *cmd, int *retry_cmd)
3064 {
3065 unsigned char sense_key;
3066 unsigned char status_byte, msg_byte, host_byte, driver_byte;
3067 int error_value;
3068
3069 *retry_cmd = 0;
3070 /* If we get in here, it means we got "target status", that is, scsi status */
3071 status_byte = cmd->err_info->ScsiStatus;
3072 driver_byte = DRIVER_OK;
3073 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3074
3075 if (blk_pc_request(cmd->rq))
3076 host_byte = DID_PASSTHROUGH;
3077 else
3078 host_byte = DID_OK;
3079
3080 error_value = make_status_bytes(status_byte, msg_byte,
3081 host_byte, driver_byte);
3082
3083 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3084 if (!blk_pc_request(cmd->rq))
3085 printk(KERN_WARNING "cciss: cmd %p "
3086 "has SCSI Status 0x%x\n",
3087 cmd, cmd->err_info->ScsiStatus);
3088 return error_value;
3089 }
3090
3091 /* check the sense key */
3092 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3093 /* no status or recovered error */
3094 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
3095 error_value = 0;
3096
3097 if (check_for_unit_attention(h, cmd)) {
3098 *retry_cmd = !blk_pc_request(cmd->rq);
3099 return 0;
3100 }
3101
3102 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
3103 if (error_value != 0)
3104 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3105 " sense key = 0x%x\n", cmd, sense_key);
3106 return error_value;
3107 }
3108
3109 /* SG_IO or similar, copy sense data back */
3110 if (cmd->rq->sense) {
3111 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3112 cmd->rq->sense_len = cmd->err_info->SenseLen;
3113 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3114 cmd->rq->sense_len);
3115 } else
3116 cmd->rq->sense_len = 0;
3117
3118 return error_value;
3119 }
3120
3121 /* checks the status of the job and calls complete buffers to mark all
3122 * buffers for the completed job. Note that this function does not need
3123 * to hold the hba/queue lock.
3124 */
3125 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3126 int timeout)
3127 {
3128 int retry_cmd = 0;
3129 struct request *rq = cmd->rq;
3130
3131 rq->errors = 0;
3132
3133 if (timeout)
3134 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3135
3136 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3137 goto after_error_processing;
3138
3139 switch (cmd->err_info->CommandStatus) {
3140 case CMD_TARGET_STATUS:
3141 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3142 break;
3143 case CMD_DATA_UNDERRUN:
3144 if (blk_fs_request(cmd->rq)) {
3145 printk(KERN_WARNING "cciss: cmd %p has"
3146 " completed with data underrun "
3147 "reported\n", cmd);
3148 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3149 }
3150 break;
3151 case CMD_DATA_OVERRUN:
3152 if (blk_fs_request(cmd->rq))
3153 printk(KERN_WARNING "cciss: cmd %p has"
3154 " completed with data overrun "
3155 "reported\n", cmd);
3156 break;
3157 case CMD_INVALID:
3158 printk(KERN_WARNING "cciss: cmd %p is "
3159 "reported invalid\n", cmd);
3160 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3161 cmd->err_info->CommandStatus, DRIVER_OK,
3162 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3163 break;
3164 case CMD_PROTOCOL_ERR:
3165 printk(KERN_WARNING "cciss: cmd %p has "
3166 "protocol error \n", cmd);
3167 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3168 cmd->err_info->CommandStatus, DRIVER_OK,
3169 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3170 break;
3171 case CMD_HARDWARE_ERR:
3172 printk(KERN_WARNING "cciss: cmd %p had "
3173 " hardware error\n", cmd);
3174 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3175 cmd->err_info->CommandStatus, DRIVER_OK,
3176 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3177 break;
3178 case CMD_CONNECTION_LOST:
3179 printk(KERN_WARNING "cciss: cmd %p had "
3180 "connection lost\n", cmd);
3181 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3182 cmd->err_info->CommandStatus, DRIVER_OK,
3183 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3184 break;
3185 case CMD_ABORTED:
3186 printk(KERN_WARNING "cciss: cmd %p was "
3187 "aborted\n", cmd);
3188 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3189 cmd->err_info->CommandStatus, DRIVER_OK,
3190 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3191 break;
3192 case CMD_ABORT_FAILED:
3193 printk(KERN_WARNING "cciss: cmd %p reports "
3194 "abort failed\n", cmd);
3195 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3196 cmd->err_info->CommandStatus, DRIVER_OK,
3197 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3198 break;
3199 case CMD_UNSOLICITED_ABORT:
3200 printk(KERN_WARNING "cciss%d: unsolicited "
3201 "abort %p\n", h->ctlr, cmd);
3202 if (cmd->retry_count < MAX_CMD_RETRIES) {
3203 retry_cmd = 1;
3204 printk(KERN_WARNING
3205 "cciss%d: retrying %p\n", h->ctlr, cmd);
3206 cmd->retry_count++;
3207 } else
3208 printk(KERN_WARNING
3209 "cciss%d: %p retried too "
3210 "many times\n", h->ctlr, cmd);
3211 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3212 cmd->err_info->CommandStatus, DRIVER_OK,
3213 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3214 break;
3215 case CMD_TIMEOUT:
3216 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3217 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3218 cmd->err_info->CommandStatus, DRIVER_OK,
3219 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3220 break;
3221 default:
3222 printk(KERN_WARNING "cciss: cmd %p returned "
3223 "unknown status %x\n", cmd,
3224 cmd->err_info->CommandStatus);
3225 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3226 cmd->err_info->CommandStatus, DRIVER_OK,
3227 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3228 }
3229
3230 after_error_processing:
3231
3232 /* We need to return this command */
3233 if (retry_cmd) {
3234 resend_cciss_cmd(h, cmd);
3235 return;
3236 }
3237 cmd->rq->completion_data = cmd;
3238 blk_complete_request(cmd->rq);
3239 }
3240
3241 /*
3242 * Get a request and submit it to the controller.
3243 */
3244 static void do_cciss_request(struct request_queue *q)
3245 {
3246 ctlr_info_t *h = q->queuedata;
3247 CommandList_struct *c;
3248 sector_t start_blk;
3249 int seg;
3250 struct request *creq;
3251 u64bit temp64;
3252 struct scatterlist tmp_sg[MAXSGENTRIES];
3253 drive_info_struct *drv;
3254 int i, dir;
3255
3256 /* We call start_io here in case there is a command waiting on the
3257 * queue that has not been sent.
3258 */
3259 if (blk_queue_plugged(q))
3260 goto startio;
3261
3262 queue:
3263 creq = blk_peek_request(q);
3264 if (!creq)
3265 goto startio;
3266
3267 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3268
3269 if ((c = cmd_alloc(h, 1)) == NULL)
3270 goto full;
3271
3272 blk_start_request(creq);
3273
3274 spin_unlock_irq(q->queue_lock);
3275
3276 c->cmd_type = CMD_RWREQ;
3277 c->rq = creq;
3278
3279 /* fill in the request */
3280 drv = creq->rq_disk->private_data;
3281 c->Header.ReplyQueue = 0; // unused in simple mode
3282 /* got command from pool, so use the command block index instead */
3283 /* for direct lookups. */
3284 /* The first 2 bits are reserved for controller error reporting. */
3285 c->Header.Tag.lower = (c->cmdindex << 3);
3286 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3287 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3288 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3289 c->Request.Type.Type = TYPE_CMD; // It is a command.
3290 c->Request.Type.Attribute = ATTR_SIMPLE;
3291 c->Request.Type.Direction =
3292 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3293 c->Request.Timeout = 0; // Don't time out
3294 c->Request.CDB[0] =
3295 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3296 start_blk = blk_rq_pos(creq);
3297 #ifdef CCISS_DEBUG
3298 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3299 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3300 #endif /* CCISS_DEBUG */
3301
3302 sg_init_table(tmp_sg, MAXSGENTRIES);
3303 seg = blk_rq_map_sg(q, creq, tmp_sg);
3304
3305 /* get the DMA records for the setup */
3306 if (c->Request.Type.Direction == XFER_READ)
3307 dir = PCI_DMA_FROMDEVICE;
3308 else
3309 dir = PCI_DMA_TODEVICE;
3310
3311 for (i = 0; i < seg; i++) {
3312 c->SG[i].Len = tmp_sg[i].length;
3313 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3314 tmp_sg[i].offset,
3315 tmp_sg[i].length, dir);
3316 c->SG[i].Addr.lower = temp64.val32.lower;
3317 c->SG[i].Addr.upper = temp64.val32.upper;
3318 c->SG[i].Ext = 0; // we are not chaining
3319 }
3320 /* track how many SG entries we are using */
3321 if (seg > h->maxSG)
3322 h->maxSG = seg;
3323
3324 #ifdef CCISS_DEBUG
3325 printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3326 blk_rq_sectors(creq), seg);
3327 #endif /* CCISS_DEBUG */
3328
3329 c->Header.SGList = c->Header.SGTotal = seg;
3330 if (likely(blk_fs_request(creq))) {
3331 if(h->cciss_read == CCISS_READ_10) {
3332 c->Request.CDB[1] = 0;
3333 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
3334 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3335 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3336 c->Request.CDB[5] = start_blk & 0xff;
3337 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
3338 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3339 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3340 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3341 } else {
3342 u32 upper32 = upper_32_bits(start_blk);
3343
3344 c->Request.CDBLen = 16;
3345 c->Request.CDB[1]= 0;
3346 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
3347 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3348 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3349 c->Request.CDB[5]= upper32 & 0xff;
3350 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3351 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3352 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3353 c->Request.CDB[9]= start_blk & 0xff;
3354 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3355 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3356 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3357 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3358 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3359 }
3360 } else if (blk_pc_request(creq)) {
3361 c->Request.CDBLen = creq->cmd_len;
3362 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3363 } else {
3364 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3365 BUG();
3366 }
3367
3368 spin_lock_irq(q->queue_lock);
3369
3370 addQ(&h->reqQ, c);
3371 h->Qdepth++;
3372 if (h->Qdepth > h->maxQsinceinit)
3373 h->maxQsinceinit = h->Qdepth;
3374
3375 goto queue;
3376 full:
3377 blk_stop_queue(q);
3378 startio:
3379 /* We will already have the driver lock here so not need
3380 * to lock it.
3381 */
3382 start_io(h);
3383 }
3384
3385 static inline unsigned long get_next_completion(ctlr_info_t *h)
3386 {
3387 return h->access.command_completed(h);
3388 }
3389
3390 static inline int interrupt_pending(ctlr_info_t *h)
3391 {
3392 return h->access.intr_pending(h);
3393 }
3394
3395 static inline long interrupt_not_for_us(ctlr_info_t *h)
3396 {
3397 return (((h->access.intr_pending(h) == 0) ||
3398 (h->interrupts_enabled == 0)));
3399 }
3400
3401 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3402 {
3403 ctlr_info_t *h = dev_id;
3404 CommandList_struct *c;
3405 unsigned long flags;
3406 __u32 a, a1, a2;
3407
3408 if (interrupt_not_for_us(h))
3409 return IRQ_NONE;
3410 /*
3411 * If there are completed commands in the completion queue,
3412 * we had better do something about it.
3413 */
3414 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3415 while (interrupt_pending(h)) {
3416 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3417 a1 = a;
3418 if ((a & 0x04)) {
3419 a2 = (a >> 3);
3420 if (a2 >= h->nr_cmds) {
3421 printk(KERN_WARNING
3422 "cciss: controller cciss%d failed, stopping.\n",
3423 h->ctlr);
3424 fail_all_cmds(h->ctlr);
3425 return IRQ_HANDLED;
3426 }
3427
3428 c = h->cmd_pool + a2;
3429 a = c->busaddr;
3430
3431 } else {
3432 struct hlist_node *tmp;
3433
3434 a &= ~3;
3435 c = NULL;
3436 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3437 if (c->busaddr == a)
3438 break;
3439 }
3440 }
3441 /*
3442 * If we've found the command, take it off the
3443 * completion Q and free it
3444 */
3445 if (c && c->busaddr == a) {
3446 removeQ(c);
3447 if (c->cmd_type == CMD_RWREQ) {
3448 complete_command(h, c, 0);
3449 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3450 complete(c->waiting);
3451 }
3452 # ifdef CONFIG_CISS_SCSI_TAPE
3453 else if (c->cmd_type == CMD_SCSI)
3454 complete_scsi_command(c, 0, a1);
3455 # endif
3456 continue;
3457 }
3458 }
3459 }
3460
3461 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3462 return IRQ_HANDLED;
3463 }
3464
3465 /**
3466 * add_to_scan_list() - add controller to rescan queue
3467 * @h: Pointer to the controller.
3468 *
3469 * Adds the controller to the rescan queue if not already on the queue.
3470 *
3471 * returns 1 if added to the queue, 0 if skipped (could be on the
3472 * queue already, or the controller could be initializing or shutting
3473 * down).
3474 **/
3475 static int add_to_scan_list(struct ctlr_info *h)
3476 {
3477 struct ctlr_info *test_h;
3478 int found = 0;
3479 int ret = 0;
3480
3481 if (h->busy_initializing)
3482 return 0;
3483
3484 if (!mutex_trylock(&h->busy_shutting_down))
3485 return 0;
3486
3487 mutex_lock(&scan_mutex);
3488 list_for_each_entry(test_h, &scan_q, scan_list) {
3489 if (test_h == h) {
3490 found = 1;
3491 break;
3492 }
3493 }
3494 if (!found && !h->busy_scanning) {
3495 INIT_COMPLETION(h->scan_wait);
3496 list_add_tail(&h->scan_list, &scan_q);
3497 ret = 1;
3498 }
3499 mutex_unlock(&scan_mutex);
3500 mutex_unlock(&h->busy_shutting_down);
3501
3502 return ret;
3503 }
3504
3505 /**
3506 * remove_from_scan_list() - remove controller from rescan queue
3507 * @h: Pointer to the controller.
3508 *
3509 * Removes the controller from the rescan queue if present. Blocks if
3510 * the controller is currently conducting a rescan.
3511 **/
3512 static void remove_from_scan_list(struct ctlr_info *h)
3513 {
3514 struct ctlr_info *test_h, *tmp_h;
3515 int scanning = 0;
3516
3517 mutex_lock(&scan_mutex);
3518 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3519 if (test_h == h) {
3520 list_del(&h->scan_list);
3521 complete_all(&h->scan_wait);
3522 mutex_unlock(&scan_mutex);
3523 return;
3524 }
3525 }
3526 if (&h->busy_scanning)
3527 scanning = 0;
3528 mutex_unlock(&scan_mutex);
3529
3530 if (scanning)
3531 wait_for_completion(&h->scan_wait);
3532 }
3533
3534 /**
3535 * scan_thread() - kernel thread used to rescan controllers
3536 * @data: Ignored.
3537 *
3538 * A kernel thread used scan for drive topology changes on
3539 * controllers. The thread processes only one controller at a time
3540 * using a queue. Controllers are added to the queue using
3541 * add_to_scan_list() and removed from the queue either after done
3542 * processing or using remove_from_scan_list().
3543 *
3544 * returns 0.
3545 **/
3546 static int scan_thread(void *data)
3547 {
3548 struct ctlr_info *h;
3549
3550 while (1) {
3551 set_current_state(TASK_INTERRUPTIBLE);
3552 schedule();
3553 if (kthread_should_stop())
3554 break;
3555
3556 while (1) {
3557 mutex_lock(&scan_mutex);
3558 if (list_empty(&scan_q)) {
3559 mutex_unlock(&scan_mutex);
3560 break;
3561 }
3562
3563 h = list_entry(scan_q.next,
3564 struct ctlr_info,
3565 scan_list);
3566 list_del(&h->scan_list);
3567 h->busy_scanning = 1;
3568 mutex_unlock(&scan_mutex);
3569
3570 if (h) {
3571 rebuild_lun_table(h, 0, 0);
3572 complete_all(&h->scan_wait);
3573 mutex_lock(&scan_mutex);
3574 h->busy_scanning = 0;
3575 mutex_unlock(&scan_mutex);
3576 }
3577 }
3578 }
3579
3580 return 0;
3581 }
3582
3583 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3584 {
3585 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3586 return 0;
3587
3588 switch (c->err_info->SenseInfo[12]) {
3589 case STATE_CHANGED:
3590 printk(KERN_WARNING "cciss%d: a state change "
3591 "detected, command retried\n", h->ctlr);
3592 return 1;
3593 break;
3594 case LUN_FAILED:
3595 printk(KERN_WARNING "cciss%d: LUN failure "
3596 "detected, action required\n", h->ctlr);
3597 return 1;
3598 break;
3599 case REPORT_LUNS_CHANGED:
3600 printk(KERN_WARNING "cciss%d: report LUN data "
3601 "changed\n", h->ctlr);
3602 add_to_scan_list(h);
3603 wake_up_process(cciss_scan_thread);
3604 return 1;
3605 break;
3606 case POWER_OR_RESET:
3607 printk(KERN_WARNING "cciss%d: a power on "
3608 "or device reset detected\n", h->ctlr);
3609 return 1;
3610 break;
3611 case UNIT_ATTENTION_CLEARED:
3612 printk(KERN_WARNING "cciss%d: unit attention "
3613 "cleared by another initiator\n", h->ctlr);
3614 return 1;
3615 break;
3616 default:
3617 printk(KERN_WARNING "cciss%d: unknown "
3618 "unit attention detected\n", h->ctlr);
3619 return 1;
3620 }
3621 }
3622
3623 /*
3624 * We cannot read the structure directly, for portability we must use
3625 * the io functions.
3626 * This is for debug only.
3627 */
3628 #ifdef CCISS_DEBUG
3629 static void print_cfg_table(CfgTable_struct *tb)
3630 {
3631 int i;
3632 char temp_name[17];
3633
3634 printk("Controller Configuration information\n");
3635 printk("------------------------------------\n");
3636 for (i = 0; i < 4; i++)
3637 temp_name[i] = readb(&(tb->Signature[i]));
3638 temp_name[4] = '\0';
3639 printk(" Signature = %s\n", temp_name);
3640 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3641 printk(" Transport methods supported = 0x%x\n",
3642 readl(&(tb->TransportSupport)));
3643 printk(" Transport methods active = 0x%x\n",
3644 readl(&(tb->TransportActive)));
3645 printk(" Requested transport Method = 0x%x\n",
3646 readl(&(tb->HostWrite.TransportRequest)));
3647 printk(" Coalesce Interrupt Delay = 0x%x\n",
3648 readl(&(tb->HostWrite.CoalIntDelay)));
3649 printk(" Coalesce Interrupt Count = 0x%x\n",
3650 readl(&(tb->HostWrite.CoalIntCount)));
3651 printk(" Max outstanding commands = 0x%d\n",
3652 readl(&(tb->CmdsOutMax)));
3653 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3654 for (i = 0; i < 16; i++)
3655 temp_name[i] = readb(&(tb->ServerName[i]));
3656 temp_name[16] = '\0';
3657 printk(" Server Name = %s\n", temp_name);
3658 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3659 }
3660 #endif /* CCISS_DEBUG */
3661
3662 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3663 {
3664 int i, offset, mem_type, bar_type;
3665 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3666 return 0;
3667 offset = 0;
3668 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3669 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3670 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3671 offset += 4;
3672 else {
3673 mem_type = pci_resource_flags(pdev, i) &
3674 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3675 switch (mem_type) {
3676 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3677 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3678 offset += 4; /* 32 bit */
3679 break;
3680 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3681 offset += 8;
3682 break;
3683 default: /* reserved in PCI 2.2 */
3684 printk(KERN_WARNING
3685 "Base address is invalid\n");
3686 return -1;
3687 break;
3688 }
3689 }
3690 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3691 return i + 1;
3692 }
3693 return -1;
3694 }
3695
3696 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3697 * controllers that are capable. If not, we use IO-APIC mode.
3698 */
3699
3700 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3701 struct pci_dev *pdev, __u32 board_id)
3702 {
3703 #ifdef CONFIG_PCI_MSI
3704 int err;
3705 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3706 {0, 2}, {0, 3}
3707 };
3708
3709 /* Some boards advertise MSI but don't really support it */
3710 if ((board_id == 0x40700E11) ||
3711 (board_id == 0x40800E11) ||
3712 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3713 goto default_int_mode;
3714
3715 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3716 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3717 if (!err) {
3718 c->intr[0] = cciss_msix_entries[0].vector;
3719 c->intr[1] = cciss_msix_entries[1].vector;
3720 c->intr[2] = cciss_msix_entries[2].vector;
3721 c->intr[3] = cciss_msix_entries[3].vector;
3722 c->msix_vector = 1;
3723 return;
3724 }
3725 if (err > 0) {
3726 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3727 "available\n", err);
3728 goto default_int_mode;
3729 } else {
3730 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3731 err);
3732 goto default_int_mode;
3733 }
3734 }
3735 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3736 if (!pci_enable_msi(pdev)) {
3737 c->msi_vector = 1;
3738 } else {
3739 printk(KERN_WARNING "cciss: MSI init failed\n");
3740 }
3741 }
3742 default_int_mode:
3743 #endif /* CONFIG_PCI_MSI */
3744 /* if we get here we're going to use the default interrupt mode */
3745 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3746 return;
3747 }
3748
3749 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3750 {
3751 ushort subsystem_vendor_id, subsystem_device_id, command;
3752 __u32 board_id, scratchpad = 0;
3753 __u64 cfg_offset;
3754 __u32 cfg_base_addr;
3755 __u64 cfg_base_addr_index;
3756 int i, err;
3757
3758 /* check to see if controller has been disabled */
3759 /* BEFORE trying to enable it */
3760 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3761 if (!(command & 0x02)) {
3762 printk(KERN_WARNING
3763 "cciss: controller appears to be disabled\n");
3764 return -ENODEV;
3765 }
3766
3767 err = pci_enable_device(pdev);
3768 if (err) {
3769 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3770 return err;
3771 }
3772
3773 err = pci_request_regions(pdev, "cciss");
3774 if (err) {
3775 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3776 "aborting\n");
3777 return err;
3778 }
3779
3780 subsystem_vendor_id = pdev->subsystem_vendor;
3781 subsystem_device_id = pdev->subsystem_device;
3782 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3783 subsystem_vendor_id);
3784
3785 #ifdef CCISS_DEBUG
3786 printk("command = %x\n", command);
3787 printk("irq = %x\n", pdev->irq);
3788 printk("board_id = %x\n", board_id);
3789 #endif /* CCISS_DEBUG */
3790
3791 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3792 * else we use the IO-APIC interrupt assigned to us by system ROM.
3793 */
3794 cciss_interrupt_mode(c, pdev, board_id);
3795
3796 /* find the memory BAR */
3797 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3798 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3799 break;
3800 }
3801 if (i == DEVICE_COUNT_RESOURCE) {
3802 printk(KERN_WARNING "cciss: No memory BAR found\n");
3803 err = -ENODEV;
3804 goto err_out_free_res;
3805 }
3806
3807 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3808 * already removed
3809 */
3810
3811 #ifdef CCISS_DEBUG
3812 printk("address 0 = %lx\n", c->paddr);
3813 #endif /* CCISS_DEBUG */
3814 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3815
3816 /* Wait for the board to become ready. (PCI hotplug needs this.)
3817 * We poll for up to 120 secs, once per 100ms. */
3818 for (i = 0; i < 1200; i++) {
3819 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3820 if (scratchpad == CCISS_FIRMWARE_READY)
3821 break;
3822 set_current_state(TASK_INTERRUPTIBLE);
3823 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3824 }
3825 if (scratchpad != CCISS_FIRMWARE_READY) {
3826 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3827 err = -ENODEV;
3828 goto err_out_free_res;
3829 }
3830
3831 /* get the address index number */
3832 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3833 cfg_base_addr &= (__u32) 0x0000ffff;
3834 #ifdef CCISS_DEBUG
3835 printk("cfg base address = %x\n", cfg_base_addr);
3836 #endif /* CCISS_DEBUG */
3837 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3838 #ifdef CCISS_DEBUG
3839 printk("cfg base address index = %llx\n",
3840 (unsigned long long)cfg_base_addr_index);
3841 #endif /* CCISS_DEBUG */
3842 if (cfg_base_addr_index == -1) {
3843 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3844 err = -ENODEV;
3845 goto err_out_free_res;
3846 }
3847
3848 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3849 #ifdef CCISS_DEBUG
3850 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3851 #endif /* CCISS_DEBUG */
3852 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3853 cfg_base_addr_index) +
3854 cfg_offset, sizeof(CfgTable_struct));
3855 c->board_id = board_id;
3856
3857 #ifdef CCISS_DEBUG
3858 print_cfg_table(c->cfgtable);
3859 #endif /* CCISS_DEBUG */
3860
3861 /* Some controllers support Zero Memory Raid (ZMR).
3862 * When configured in ZMR mode the number of supported
3863 * commands drops to 64. So instead of just setting an
3864 * arbitrary value we make the driver a little smarter.
3865 * We read the config table to tell us how many commands
3866 * are supported on the controller then subtract 4 to
3867 * leave a little room for ioctl calls.
3868 */
3869 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3870 for (i = 0; i < ARRAY_SIZE(products); i++) {
3871 if (board_id == products[i].board_id) {
3872 c->product_name = products[i].product_name;
3873 c->access = *(products[i].access);
3874 c->nr_cmds = c->max_commands - 4;
3875 break;
3876 }
3877 }
3878 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3879 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3880 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3881 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3882 printk("Does not appear to be a valid CISS config table\n");
3883 err = -ENODEV;
3884 goto err_out_free_res;
3885 }
3886 /* We didn't find the controller in our list. We know the
3887 * signature is valid. If it's an HP device let's try to
3888 * bind to the device and fire it up. Otherwise we bail.
3889 */
3890 if (i == ARRAY_SIZE(products)) {
3891 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3892 c->product_name = products[i-1].product_name;
3893 c->access = *(products[i-1].access);
3894 c->nr_cmds = c->max_commands - 4;
3895 printk(KERN_WARNING "cciss: This is an unknown "
3896 "Smart Array controller.\n"
3897 "cciss: Please update to the latest driver "
3898 "available from www.hp.com.\n");
3899 } else {
3900 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3901 " to access the Smart Array controller %08lx\n"
3902 , (unsigned long)board_id);
3903 err = -ENODEV;
3904 goto err_out_free_res;
3905 }
3906 }
3907 #ifdef CONFIG_X86
3908 {
3909 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3910 __u32 prefetch;
3911 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3912 prefetch |= 0x100;
3913 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3914 }
3915 #endif
3916
3917 /* Disabling DMA prefetch and refetch for the P600.
3918 * An ASIC bug may result in accesses to invalid memory addresses.
3919 * We've disabled prefetch for some time now. Testing with XEN
3920 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3921 */
3922 if(board_id == 0x3225103C) {
3923 __u32 dma_prefetch;
3924 __u32 dma_refetch;
3925 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3926 dma_prefetch |= 0x8000;
3927 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3928 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3929 dma_refetch |= 0x1;
3930 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3931 }
3932
3933 #ifdef CCISS_DEBUG
3934 printk("Trying to put board into Simple mode\n");
3935 #endif /* CCISS_DEBUG */
3936 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3937 /* Update the field, and then ring the doorbell */
3938 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3939 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3940
3941 /* under certain very rare conditions, this can take awhile.
3942 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3943 * as we enter this code.) */
3944 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3945 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3946 break;
3947 /* delay and try again */
3948 set_current_state(TASK_INTERRUPTIBLE);
3949 schedule_timeout(msecs_to_jiffies(1));
3950 }
3951
3952 #ifdef CCISS_DEBUG
3953 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3954 readl(c->vaddr + SA5_DOORBELL));
3955 #endif /* CCISS_DEBUG */
3956 #ifdef CCISS_DEBUG
3957 print_cfg_table(c->cfgtable);
3958 #endif /* CCISS_DEBUG */
3959
3960 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3961 printk(KERN_WARNING "cciss: unable to get board into"
3962 " simple mode\n");
3963 err = -ENODEV;
3964 goto err_out_free_res;
3965 }
3966 return 0;
3967
3968 err_out_free_res:
3969 /*
3970 * Deliberately omit pci_disable_device(): it does something nasty to
3971 * Smart Array controllers that pci_enable_device does not undo
3972 */
3973 pci_release_regions(pdev);
3974 return err;
3975 }
3976
3977 /* Function to find the first free pointer into our hba[] array
3978 * Returns -1 if no free entries are left.
3979 */
3980 static int alloc_cciss_hba(void)
3981 {
3982 int i;
3983
3984 for (i = 0; i < MAX_CTLR; i++) {
3985 if (!hba[i]) {
3986 ctlr_info_t *p;
3987
3988 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3989 if (!p)
3990 goto Enomem;
3991 hba[i] = p;
3992 return i;
3993 }
3994 }
3995 printk(KERN_WARNING "cciss: This driver supports a maximum"
3996 " of %d controllers.\n", MAX_CTLR);
3997 return -1;
3998 Enomem:
3999 printk(KERN_ERR "cciss: out of memory.\n");
4000 return -1;
4001 }
4002
4003 static void free_hba(int n)
4004 {
4005 ctlr_info_t *h = hba[n];
4006 int i;
4007
4008 hba[n] = NULL;
4009 for (i = 0; i < h->highest_lun + 1; i++)
4010 if (h->gendisk[i] != NULL)
4011 put_disk(h->gendisk[i]);
4012 kfree(h);
4013 }
4014
4015 /* Send a message CDB to the firmware. */
4016 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4017 {
4018 typedef struct {
4019 CommandListHeader_struct CommandHeader;
4020 RequestBlock_struct Request;
4021 ErrDescriptor_struct ErrorDescriptor;
4022 } Command;
4023 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4024 Command *cmd;
4025 dma_addr_t paddr64;
4026 uint32_t paddr32, tag;
4027 void __iomem *vaddr;
4028 int i, err;
4029
4030 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4031 if (vaddr == NULL)
4032 return -ENOMEM;
4033
4034 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4035 CCISS commands, so they must be allocated from the lower 4GiB of
4036 memory. */
4037 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4038 if (err) {
4039 iounmap(vaddr);
4040 return -ENOMEM;
4041 }
4042
4043 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4044 if (cmd == NULL) {
4045 iounmap(vaddr);
4046 return -ENOMEM;
4047 }
4048
4049 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4050 although there's no guarantee, we assume that the address is at
4051 least 4-byte aligned (most likely, it's page-aligned). */
4052 paddr32 = paddr64;
4053
4054 cmd->CommandHeader.ReplyQueue = 0;
4055 cmd->CommandHeader.SGList = 0;
4056 cmd->CommandHeader.SGTotal = 0;
4057 cmd->CommandHeader.Tag.lower = paddr32;
4058 cmd->CommandHeader.Tag.upper = 0;
4059 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4060
4061 cmd->Request.CDBLen = 16;
4062 cmd->Request.Type.Type = TYPE_MSG;
4063 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4064 cmd->Request.Type.Direction = XFER_NONE;
4065 cmd->Request.Timeout = 0; /* Don't time out */
4066 cmd->Request.CDB[0] = opcode;
4067 cmd->Request.CDB[1] = type;
4068 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4069
4070 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4071 cmd->ErrorDescriptor.Addr.upper = 0;
4072 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4073
4074 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4075
4076 for (i = 0; i < 10; i++) {
4077 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4078 if ((tag & ~3) == paddr32)
4079 break;
4080 schedule_timeout_uninterruptible(HZ);
4081 }
4082
4083 iounmap(vaddr);
4084
4085 /* we leak the DMA buffer here ... no choice since the controller could
4086 still complete the command. */
4087 if (i == 10) {
4088 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4089 opcode, type);
4090 return -ETIMEDOUT;
4091 }
4092
4093 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4094
4095 if (tag & 2) {
4096 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4097 opcode, type);
4098 return -EIO;
4099 }
4100
4101 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4102 opcode, type);
4103 return 0;
4104 }
4105
4106 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4107 #define cciss_noop(p) cciss_message(p, 3, 0)
4108
4109 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4110 {
4111 /* the #defines are stolen from drivers/pci/msi.h. */
4112 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4113 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4114
4115 int pos;
4116 u16 control = 0;
4117
4118 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4119 if (pos) {
4120 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4121 if (control & PCI_MSI_FLAGS_ENABLE) {
4122 printk(KERN_INFO "cciss: resetting MSI\n");
4123 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4124 }
4125 }
4126
4127 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4128 if (pos) {
4129 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4130 if (control & PCI_MSIX_FLAGS_ENABLE) {
4131 printk(KERN_INFO "cciss: resetting MSI-X\n");
4132 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4133 }
4134 }
4135
4136 return 0;
4137 }
4138
4139 /* This does a hard reset of the controller using PCI power management
4140 * states. */
4141 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4142 {
4143 u16 pmcsr, saved_config_space[32];
4144 int i, pos;
4145
4146 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4147
4148 /* This is very nearly the same thing as
4149
4150 pci_save_state(pci_dev);
4151 pci_set_power_state(pci_dev, PCI_D3hot);
4152 pci_set_power_state(pci_dev, PCI_D0);
4153 pci_restore_state(pci_dev);
4154
4155 but we can't use these nice canned kernel routines on
4156 kexec, because they also check the MSI/MSI-X state in PCI
4157 configuration space and do the wrong thing when it is
4158 set/cleared. Also, the pci_save/restore_state functions
4159 violate the ordering requirements for restoring the
4160 configuration space from the CCISS document (see the
4161 comment below). So we roll our own .... */
4162
4163 for (i = 0; i < 32; i++)
4164 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4165
4166 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4167 if (pos == 0) {
4168 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4169 return -ENODEV;
4170 }
4171
4172 /* Quoting from the Open CISS Specification: "The Power
4173 * Management Control/Status Register (CSR) controls the power
4174 * state of the device. The normal operating state is D0,
4175 * CSR=00h. The software off state is D3, CSR=03h. To reset
4176 * the controller, place the interface device in D3 then to
4177 * D0, this causes a secondary PCI reset which will reset the
4178 * controller." */
4179
4180 /* enter the D3hot power management state */
4181 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4182 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4183 pmcsr |= PCI_D3hot;
4184 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4185
4186 schedule_timeout_uninterruptible(HZ >> 1);
4187
4188 /* enter the D0 power management state */
4189 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4190 pmcsr |= PCI_D0;
4191 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4192
4193 schedule_timeout_uninterruptible(HZ >> 1);
4194
4195 /* Restore the PCI configuration space. The Open CISS
4196 * Specification says, "Restore the PCI Configuration
4197 * Registers, offsets 00h through 60h. It is important to
4198 * restore the command register, 16-bits at offset 04h,
4199 * last. Do not restore the configuration status register,
4200 * 16-bits at offset 06h." Note that the offset is 2*i. */
4201 for (i = 0; i < 32; i++) {
4202 if (i == 2 || i == 3)
4203 continue;
4204 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4205 }
4206 wmb();
4207 pci_write_config_word(pdev, 4, saved_config_space[2]);
4208
4209 return 0;
4210 }
4211
4212 /*
4213 * This is it. Find all the controllers and register them. I really hate
4214 * stealing all these major device numbers.
4215 * returns the number of block devices registered.
4216 */
4217 static int __devinit cciss_init_one(struct pci_dev *pdev,
4218 const struct pci_device_id *ent)
4219 {
4220 int i;
4221 int j = 0;
4222 int rc;
4223 int dac, return_code;
4224 InquiryData_struct *inq_buff;
4225
4226 if (reset_devices) {
4227 /* Reset the controller with a PCI power-cycle */
4228 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4229 return -ENODEV;
4230
4231 /* Now try to get the controller to respond to a no-op. Some
4232 devices (notably the HP Smart Array 5i Controller) need
4233 up to 30 seconds to respond. */
4234 for (i=0; i<30; i++) {
4235 if (cciss_noop(pdev) == 0)
4236 break;
4237
4238 schedule_timeout_uninterruptible(HZ);
4239 }
4240 if (i == 30) {
4241 printk(KERN_ERR "cciss: controller seems dead\n");
4242 return -EBUSY;
4243 }
4244 }
4245
4246 i = alloc_cciss_hba();
4247 if (i < 0)
4248 return -1;
4249
4250 hba[i]->busy_initializing = 1;
4251 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4252 INIT_HLIST_HEAD(&hba[i]->reqQ);
4253 mutex_init(&hba[i]->busy_shutting_down);
4254
4255 if (cciss_pci_init(hba[i], pdev) != 0)
4256 goto clean0;
4257
4258 sprintf(hba[i]->devname, "cciss%d", i);
4259 hba[i]->ctlr = i;
4260 hba[i]->pdev = pdev;
4261
4262 init_completion(&hba[i]->scan_wait);
4263
4264 if (cciss_create_hba_sysfs_entry(hba[i]))
4265 goto clean0;
4266
4267 /* configure PCI DMA stuff */
4268 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4269 dac = 1;
4270 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4271 dac = 0;
4272 else {
4273 printk(KERN_ERR "cciss: no suitable DMA available\n");
4274 goto clean1;
4275 }
4276
4277 /*
4278 * register with the major number, or get a dynamic major number
4279 * by passing 0 as argument. This is done for greater than
4280 * 8 controller support.
4281 */
4282 if (i < MAX_CTLR_ORIG)
4283 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4284 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4285 if (rc == -EBUSY || rc == -EINVAL) {
4286 printk(KERN_ERR
4287 "cciss: Unable to get major number %d for %s "
4288 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4289 goto clean1;
4290 } else {
4291 if (i >= MAX_CTLR_ORIG)
4292 hba[i]->major = rc;
4293 }
4294
4295 /* make sure the board interrupts are off */
4296 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4297 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4298 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4299 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4300 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4301 goto clean2;
4302 }
4303
4304 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4305 hba[i]->devname, pdev->device, pci_name(pdev),
4306 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4307
4308 hba[i]->cmd_pool_bits =
4309 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4310 * sizeof(unsigned long), GFP_KERNEL);
4311 hba[i]->cmd_pool = (CommandList_struct *)
4312 pci_alloc_consistent(hba[i]->pdev,
4313 hba[i]->nr_cmds * sizeof(CommandList_struct),
4314 &(hba[i]->cmd_pool_dhandle));
4315 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4316 pci_alloc_consistent(hba[i]->pdev,
4317 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4318 &(hba[i]->errinfo_pool_dhandle));
4319 if ((hba[i]->cmd_pool_bits == NULL)
4320 || (hba[i]->cmd_pool == NULL)
4321 || (hba[i]->errinfo_pool == NULL)) {
4322 printk(KERN_ERR "cciss: out of memory");
4323 goto clean4;
4324 }
4325 spin_lock_init(&hba[i]->lock);
4326
4327 /* Initialize the pdev driver private data.
4328 have it point to hba[i]. */
4329 pci_set_drvdata(pdev, hba[i]);
4330 /* command and error info recs zeroed out before
4331 they are used */
4332 memset(hba[i]->cmd_pool_bits, 0,
4333 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4334 * sizeof(unsigned long));
4335
4336 hba[i]->num_luns = 0;
4337 hba[i]->highest_lun = -1;
4338 for (j = 0; j < CISS_MAX_LUN; j++) {
4339 hba[i]->drv[j] = NULL;
4340 hba[i]->gendisk[j] = NULL;
4341 }
4342
4343 cciss_scsi_setup(i);
4344
4345 /* Turn the interrupts on so we can service requests */
4346 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4347
4348 /* Get the firmware version */
4349 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4350 if (inq_buff == NULL) {
4351 printk(KERN_ERR "cciss: out of memory\n");
4352 goto clean4;
4353 }
4354
4355 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4356 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4357 if (return_code == IO_OK) {
4358 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4359 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4360 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4361 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4362 } else { /* send command failed */
4363 printk(KERN_WARNING "cciss: unable to determine firmware"
4364 " version of controller\n");
4365 }
4366 kfree(inq_buff);
4367
4368 cciss_procinit(i);
4369
4370 hba[i]->cciss_max_sectors = 2048;
4371
4372 rebuild_lun_table(hba[i], 1, 0);
4373 hba[i]->busy_initializing = 0;
4374 return 1;
4375
4376 clean4:
4377 kfree(hba[i]->cmd_pool_bits);
4378 if (hba[i]->cmd_pool)
4379 pci_free_consistent(hba[i]->pdev,
4380 hba[i]->nr_cmds * sizeof(CommandList_struct),
4381 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4382 if (hba[i]->errinfo_pool)
4383 pci_free_consistent(hba[i]->pdev,
4384 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4385 hba[i]->errinfo_pool,
4386 hba[i]->errinfo_pool_dhandle);
4387 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4388 clean2:
4389 unregister_blkdev(hba[i]->major, hba[i]->devname);
4390 clean1:
4391 cciss_destroy_hba_sysfs_entry(hba[i]);
4392 clean0:
4393 hba[i]->busy_initializing = 0;
4394
4395 /*
4396 * Deliberately omit pci_disable_device(): it does something nasty to
4397 * Smart Array controllers that pci_enable_device does not undo
4398 */
4399 pci_release_regions(pdev);
4400 pci_set_drvdata(pdev, NULL);
4401 free_hba(i);
4402 return -1;
4403 }
4404
4405 static void cciss_shutdown(struct pci_dev *pdev)
4406 {
4407 ctlr_info_t *tmp_ptr;
4408 int i;
4409 char flush_buf[4];
4410 int return_code;
4411
4412 tmp_ptr = pci_get_drvdata(pdev);
4413 if (tmp_ptr == NULL)
4414 return;
4415 i = tmp_ptr->ctlr;
4416 if (hba[i] == NULL)
4417 return;
4418
4419 /* Turn board interrupts off and send the flush cache command */
4420 /* sendcmd will turn off interrupt, and send the flush...
4421 * To write all data in the battery backed cache to disks */
4422 memset(flush_buf, 0, 4);
4423 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4424 CTLR_LUNID, TYPE_CMD);
4425 if (return_code == IO_OK) {
4426 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4427 } else {
4428 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4429 }
4430 free_irq(hba[i]->intr[2], hba[i]);
4431 }
4432
4433 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4434 {
4435 ctlr_info_t *tmp_ptr;
4436 int i, j;
4437
4438 if (pci_get_drvdata(pdev) == NULL) {
4439 printk(KERN_ERR "cciss: Unable to remove device \n");
4440 return;
4441 }
4442
4443 tmp_ptr = pci_get_drvdata(pdev);
4444 i = tmp_ptr->ctlr;
4445 if (hba[i] == NULL) {
4446 printk(KERN_ERR "cciss: device appears to "
4447 "already be removed \n");
4448 return;
4449 }
4450
4451 mutex_lock(&hba[i]->busy_shutting_down);
4452
4453 remove_from_scan_list(hba[i]);
4454 remove_proc_entry(hba[i]->devname, proc_cciss);
4455 unregister_blkdev(hba[i]->major, hba[i]->devname);
4456
4457 /* remove it from the disk list */
4458 for (j = 0; j < CISS_MAX_LUN; j++) {
4459 struct gendisk *disk = hba[i]->gendisk[j];
4460 if (disk) {
4461 struct request_queue *q = disk->queue;
4462
4463 if (disk->flags & GENHD_FL_UP) {
4464 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4465 del_gendisk(disk);
4466 }
4467 if (q)
4468 blk_cleanup_queue(q);
4469 }
4470 }
4471
4472 #ifdef CONFIG_CISS_SCSI_TAPE
4473 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4474 #endif
4475
4476 cciss_shutdown(pdev);
4477
4478 #ifdef CONFIG_PCI_MSI
4479 if (hba[i]->msix_vector)
4480 pci_disable_msix(hba[i]->pdev);
4481 else if (hba[i]->msi_vector)
4482 pci_disable_msi(hba[i]->pdev);
4483 #endif /* CONFIG_PCI_MSI */
4484
4485 iounmap(hba[i]->vaddr);
4486
4487 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4488 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4489 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4490 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4491 kfree(hba[i]->cmd_pool_bits);
4492 /*
4493 * Deliberately omit pci_disable_device(): it does something nasty to
4494 * Smart Array controllers that pci_enable_device does not undo
4495 */
4496 pci_release_regions(pdev);
4497 pci_set_drvdata(pdev, NULL);
4498 cciss_destroy_hba_sysfs_entry(hba[i]);
4499 mutex_unlock(&hba[i]->busy_shutting_down);
4500 free_hba(i);
4501 }
4502
4503 static struct pci_driver cciss_pci_driver = {
4504 .name = "cciss",
4505 .probe = cciss_init_one,
4506 .remove = __devexit_p(cciss_remove_one),
4507 .id_table = cciss_pci_device_id, /* id_table */
4508 .shutdown = cciss_shutdown,
4509 };
4510
4511 /*
4512 * This is it. Register the PCI driver information for the cards we control
4513 * the OS will call our registered routines when it finds one of our cards.
4514 */
4515 static int __init cciss_init(void)
4516 {
4517 int err;
4518
4519 /*
4520 * The hardware requires that commands are aligned on a 64-bit
4521 * boundary. Given that we use pci_alloc_consistent() to allocate an
4522 * array of them, the size must be a multiple of 8 bytes.
4523 */
4524 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4525
4526 printk(KERN_INFO DRIVER_NAME "\n");
4527
4528 err = bus_register(&cciss_bus_type);
4529 if (err)
4530 return err;
4531
4532 /* Start the scan thread */
4533 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4534 if (IS_ERR(cciss_scan_thread)) {
4535 err = PTR_ERR(cciss_scan_thread);
4536 goto err_bus_unregister;
4537 }
4538
4539 /* Register for our PCI devices */
4540 err = pci_register_driver(&cciss_pci_driver);
4541 if (err)
4542 goto err_thread_stop;
4543
4544 return err;
4545
4546 err_thread_stop:
4547 kthread_stop(cciss_scan_thread);
4548 err_bus_unregister:
4549 bus_unregister(&cciss_bus_type);
4550
4551 return err;
4552 }
4553
4554 static void __exit cciss_cleanup(void)
4555 {
4556 int i;
4557
4558 pci_unregister_driver(&cciss_pci_driver);
4559 /* double check that all controller entrys have been removed */
4560 for (i = 0; i < MAX_CTLR; i++) {
4561 if (hba[i] != NULL) {
4562 printk(KERN_WARNING "cciss: had to remove"
4563 " controller %d\n", i);
4564 cciss_remove_one(hba[i]->pdev);
4565 }
4566 }
4567 kthread_stop(cciss_scan_thread);
4568 remove_proc_entry("driver/cciss", NULL);
4569 bus_unregister(&cciss_bus_type);
4570 }
4571
4572 static void fail_all_cmds(unsigned long ctlr)
4573 {
4574 /* If we get here, the board is apparently dead. */
4575 ctlr_info_t *h = hba[ctlr];
4576 CommandList_struct *c;
4577 unsigned long flags;
4578
4579 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4580 h->alive = 0; /* the controller apparently died... */
4581
4582 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4583
4584 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4585
4586 /* move everything off the request queue onto the completed queue */
4587 while (!hlist_empty(&h->reqQ)) {
4588 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4589 removeQ(c);
4590 h->Qdepth--;
4591 addQ(&h->cmpQ, c);
4592 }
4593
4594 /* Now, fail everything on the completed queue with a HW error */
4595 while (!hlist_empty(&h->cmpQ)) {
4596 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4597 removeQ(c);
4598 if (c->cmd_type != CMD_MSG_STALE)
4599 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4600 if (c->cmd_type == CMD_RWREQ) {
4601 complete_command(h, c, 0);
4602 } else if (c->cmd_type == CMD_IOCTL_PEND)
4603 complete(c->waiting);
4604 #ifdef CONFIG_CISS_SCSI_TAPE
4605 else if (c->cmd_type == CMD_SCSI)
4606 complete_scsi_command(c, 0, 0);
4607 #endif
4608 }
4609 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4610 return;
4611 }
4612
4613 module_init(cciss_init);
4614 module_exit(cciss_cleanup);
This page took 0.18162 seconds and 5 git commands to generate.