block: remove wrappers for request type/flags
[deliverable/linux.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
68
69 static int cciss_allow_hpsa;
70 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
71 MODULE_PARM_DESC(cciss_allow_hpsa,
72 "Prevent cciss driver from accessing hardware known to be "
73 " supported by the hpsa driver");
74
75 #include "cciss_cmd.h"
76 #include "cciss.h"
77 #include <linux/cciss_ioctl.h>
78
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id cciss_pci_device_id[] = {
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254},
113 {0,}
114 };
115
116 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
117
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
121 */
122 static struct board_type products[] = {
123 {0x40700E11, "Smart Array 5300", &SA5_access},
124 {0x40800E11, "Smart Array 5i", &SA5B_access},
125 {0x40820E11, "Smart Array 532", &SA5B_access},
126 {0x40830E11, "Smart Array 5312", &SA5B_access},
127 {0x409A0E11, "Smart Array 641", &SA5_access},
128 {0x409B0E11, "Smart Array 642", &SA5_access},
129 {0x409C0E11, "Smart Array 6400", &SA5_access},
130 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131 {0x40910E11, "Smart Array 6i", &SA5_access},
132 {0x3225103C, "Smart Array P600", &SA5_access},
133 {0x3235103C, "Smart Array P400i", &SA5_access},
134 {0x3211103C, "Smart Array E200i", &SA5_access},
135 {0x3212103C, "Smart Array E200", &SA5_access},
136 {0x3213103C, "Smart Array E200i", &SA5_access},
137 {0x3214103C, "Smart Array E200i", &SA5_access},
138 {0x3215103C, "Smart Array E200i", &SA5_access},
139 {0x3237103C, "Smart Array E500", &SA5_access},
140 /* controllers below this line are also supported by the hpsa driver. */
141 #define HPSA_BOUNDARY 0x3223103C
142 {0x3223103C, "Smart Array P800", &SA5_access},
143 {0x3234103C, "Smart Array P400", &SA5_access},
144 {0x323D103C, "Smart Array P700m", &SA5_access},
145 {0x3241103C, "Smart Array P212", &SA5_access},
146 {0x3243103C, "Smart Array P410", &SA5_access},
147 {0x3245103C, "Smart Array P410i", &SA5_access},
148 {0x3247103C, "Smart Array P411", &SA5_access},
149 {0x3249103C, "Smart Array P812", &SA5_access},
150 {0x324A103C, "Smart Array P712m", &SA5_access},
151 {0x324B103C, "Smart Array P711m", &SA5_access},
152 {0x3250103C, "Smart Array", &SA5_access},
153 {0x3251103C, "Smart Array", &SA5_access},
154 {0x3252103C, "Smart Array", &SA5_access},
155 {0x3253103C, "Smart Array", &SA5_access},
156 {0x3254103C, "Smart Array", &SA5_access},
157 };
158
159 /* How long to wait (in milliseconds) for board to go into simple mode */
160 #define MAX_CONFIG_WAIT 30000
161 #define MAX_IOCTL_CONFIG_WAIT 1000
162
163 /*define how many times we will try a command because of bus resets */
164 #define MAX_CMD_RETRIES 3
165
166 #define MAX_CTLR 32
167
168 /* Originally cciss driver only supports 8 major numbers */
169 #define MAX_CTLR_ORIG 8
170
171 static ctlr_info_t *hba[MAX_CTLR];
172
173 static struct task_struct *cciss_scan_thread;
174 static DEFINE_MUTEX(scan_mutex);
175 static LIST_HEAD(scan_q);
176
177 static void do_cciss_request(struct request_queue *q);
178 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
179 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
180 static int cciss_open(struct block_device *bdev, fmode_t mode);
181 static int cciss_release(struct gendisk *disk, fmode_t mode);
182 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
183 unsigned int cmd, unsigned long arg);
184 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
185
186 static int cciss_revalidate(struct gendisk *disk);
187 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
188 static int deregister_disk(ctlr_info_t *h, int drv_index,
189 int clear_all, int via_ioctl);
190
191 static void cciss_read_capacity(int ctlr, int logvol,
192 sector_t *total_size, unsigned int *block_size);
193 static void cciss_read_capacity_16(int ctlr, int logvol,
194 sector_t *total_size, unsigned int *block_size);
195 static void cciss_geometry_inquiry(int ctlr, int logvol,
196 sector_t total_size,
197 unsigned int block_size, InquiryData_struct *inq_buff,
198 drive_info_struct *drv);
199 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
200 __u32);
201 static void start_io(ctlr_info_t *h);
202 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
203 __u8 page_code, unsigned char scsi3addr[],
204 int cmd_type);
205 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
206 int attempt_retry);
207 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
208
209 static int add_to_scan_list(struct ctlr_info *h);
210 static int scan_thread(void *data);
211 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
212 static void cciss_hba_release(struct device *dev);
213 static void cciss_device_release(struct device *dev);
214 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
215 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
216 static inline u32 next_command(ctlr_info_t *h);
217
218 /* performant mode helper functions */
219 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
220 int *bucket_map);
221 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
222
223 #ifdef CONFIG_PROC_FS
224 static void cciss_procinit(int i);
225 #else
226 static void cciss_procinit(int i)
227 {
228 }
229 #endif /* CONFIG_PROC_FS */
230
231 #ifdef CONFIG_COMPAT
232 static int cciss_compat_ioctl(struct block_device *, fmode_t,
233 unsigned, unsigned long);
234 #endif
235
236 static const struct block_device_operations cciss_fops = {
237 .owner = THIS_MODULE,
238 .open = cciss_open,
239 .release = cciss_release,
240 .locked_ioctl = cciss_ioctl,
241 .getgeo = cciss_getgeo,
242 #ifdef CONFIG_COMPAT
243 .compat_ioctl = cciss_compat_ioctl,
244 #endif
245 .revalidate_disk = cciss_revalidate,
246 };
247
248 /* set_performant_mode: Modify the tag for cciss performant
249 * set bit 0 for pull model, bits 3-1 for block fetch
250 * register number
251 */
252 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
253 {
254 if (likely(h->transMethod == CFGTBL_Trans_Performant))
255 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
256 }
257
258 /*
259 * Enqueuing and dequeuing functions for cmdlists.
260 */
261 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
262 {
263 hlist_add_head(&c->list, list);
264 }
265
266 static inline void removeQ(CommandList_struct *c)
267 {
268 /*
269 * After kexec/dump some commands might still
270 * be in flight, which the firmware will try
271 * to complete. Resetting the firmware doesn't work
272 * with old fw revisions, so we have to mark
273 * them off as 'stale' to prevent the driver from
274 * falling over.
275 */
276 if (WARN_ON(hlist_unhashed(&c->list))) {
277 c->cmd_type = CMD_MSG_STALE;
278 return;
279 }
280
281 hlist_del_init(&c->list);
282 }
283
284 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
285 CommandList_struct *c)
286 {
287 unsigned long flags;
288 set_performant_mode(h, c);
289 spin_lock_irqsave(&h->lock, flags);
290 addQ(&h->reqQ, c);
291 h->Qdepth++;
292 start_io(h);
293 spin_unlock_irqrestore(&h->lock, flags);
294 }
295
296 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
297 int nr_cmds)
298 {
299 int i;
300
301 if (!cmd_sg_list)
302 return;
303 for (i = 0; i < nr_cmds; i++) {
304 kfree(cmd_sg_list[i]);
305 cmd_sg_list[i] = NULL;
306 }
307 kfree(cmd_sg_list);
308 }
309
310 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
311 ctlr_info_t *h, int chainsize, int nr_cmds)
312 {
313 int j;
314 SGDescriptor_struct **cmd_sg_list;
315
316 if (chainsize <= 0)
317 return NULL;
318
319 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
320 if (!cmd_sg_list)
321 return NULL;
322
323 /* Build up chain blocks for each command */
324 for (j = 0; j < nr_cmds; j++) {
325 /* Need a block of chainsized s/g elements. */
326 cmd_sg_list[j] = kmalloc((chainsize *
327 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
328 if (!cmd_sg_list[j]) {
329 dev_err(&h->pdev->dev, "Cannot get memory "
330 "for s/g chains.\n");
331 goto clean;
332 }
333 }
334 return cmd_sg_list;
335 clean:
336 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
337 return NULL;
338 }
339
340 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
341 {
342 SGDescriptor_struct *chain_sg;
343 u64bit temp64;
344
345 if (c->Header.SGTotal <= h->max_cmd_sgentries)
346 return;
347
348 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
349 temp64.val32.lower = chain_sg->Addr.lower;
350 temp64.val32.upper = chain_sg->Addr.upper;
351 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
352 }
353
354 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
355 SGDescriptor_struct *chain_block, int len)
356 {
357 SGDescriptor_struct *chain_sg;
358 u64bit temp64;
359
360 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
361 chain_sg->Ext = CCISS_SG_CHAIN;
362 chain_sg->Len = len;
363 temp64.val = pci_map_single(h->pdev, chain_block, len,
364 PCI_DMA_TODEVICE);
365 chain_sg->Addr.lower = temp64.val32.lower;
366 chain_sg->Addr.upper = temp64.val32.upper;
367 }
368
369 #include "cciss_scsi.c" /* For SCSI tape support */
370
371 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
372 "UNKNOWN"
373 };
374 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
375
376 #ifdef CONFIG_PROC_FS
377
378 /*
379 * Report information about this controller.
380 */
381 #define ENG_GIG 1000000000
382 #define ENG_GIG_FACTOR (ENG_GIG/512)
383 #define ENGAGE_SCSI "engage scsi"
384
385 static struct proc_dir_entry *proc_cciss;
386
387 static void cciss_seq_show_header(struct seq_file *seq)
388 {
389 ctlr_info_t *h = seq->private;
390
391 seq_printf(seq, "%s: HP %s Controller\n"
392 "Board ID: 0x%08lx\n"
393 "Firmware Version: %c%c%c%c\n"
394 "IRQ: %d\n"
395 "Logical drives: %d\n"
396 "Current Q depth: %d\n"
397 "Current # commands on controller: %d\n"
398 "Max Q depth since init: %d\n"
399 "Max # commands on controller since init: %d\n"
400 "Max SG entries since init: %d\n",
401 h->devname,
402 h->product_name,
403 (unsigned long)h->board_id,
404 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
405 h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
406 h->num_luns,
407 h->Qdepth, h->commands_outstanding,
408 h->maxQsinceinit, h->max_outstanding, h->maxSG);
409
410 #ifdef CONFIG_CISS_SCSI_TAPE
411 cciss_seq_tape_report(seq, h->ctlr);
412 #endif /* CONFIG_CISS_SCSI_TAPE */
413 }
414
415 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
416 {
417 ctlr_info_t *h = seq->private;
418 unsigned ctlr = h->ctlr;
419 unsigned long flags;
420
421 /* prevent displaying bogus info during configuration
422 * or deconfiguration of a logical volume
423 */
424 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
425 if (h->busy_configuring) {
426 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
427 return ERR_PTR(-EBUSY);
428 }
429 h->busy_configuring = 1;
430 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
431
432 if (*pos == 0)
433 cciss_seq_show_header(seq);
434
435 return pos;
436 }
437
438 static int cciss_seq_show(struct seq_file *seq, void *v)
439 {
440 sector_t vol_sz, vol_sz_frac;
441 ctlr_info_t *h = seq->private;
442 unsigned ctlr = h->ctlr;
443 loff_t *pos = v;
444 drive_info_struct *drv = h->drv[*pos];
445
446 if (*pos > h->highest_lun)
447 return 0;
448
449 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
450 return 0;
451
452 if (drv->heads == 0)
453 return 0;
454
455 vol_sz = drv->nr_blocks;
456 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
457 vol_sz_frac *= 100;
458 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
459
460 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
461 drv->raid_level = RAID_UNKNOWN;
462 seq_printf(seq, "cciss/c%dd%d:"
463 "\t%4u.%02uGB\tRAID %s\n",
464 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
465 raid_label[drv->raid_level]);
466 return 0;
467 }
468
469 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
470 {
471 ctlr_info_t *h = seq->private;
472
473 if (*pos > h->highest_lun)
474 return NULL;
475 *pos += 1;
476
477 return pos;
478 }
479
480 static void cciss_seq_stop(struct seq_file *seq, void *v)
481 {
482 ctlr_info_t *h = seq->private;
483
484 /* Only reset h->busy_configuring if we succeeded in setting
485 * it during cciss_seq_start. */
486 if (v == ERR_PTR(-EBUSY))
487 return;
488
489 h->busy_configuring = 0;
490 }
491
492 static const struct seq_operations cciss_seq_ops = {
493 .start = cciss_seq_start,
494 .show = cciss_seq_show,
495 .next = cciss_seq_next,
496 .stop = cciss_seq_stop,
497 };
498
499 static int cciss_seq_open(struct inode *inode, struct file *file)
500 {
501 int ret = seq_open(file, &cciss_seq_ops);
502 struct seq_file *seq = file->private_data;
503
504 if (!ret)
505 seq->private = PDE(inode)->data;
506
507 return ret;
508 }
509
510 static ssize_t
511 cciss_proc_write(struct file *file, const char __user *buf,
512 size_t length, loff_t *ppos)
513 {
514 int err;
515 char *buffer;
516
517 #ifndef CONFIG_CISS_SCSI_TAPE
518 return -EINVAL;
519 #endif
520
521 if (!buf || length > PAGE_SIZE - 1)
522 return -EINVAL;
523
524 buffer = (char *)__get_free_page(GFP_KERNEL);
525 if (!buffer)
526 return -ENOMEM;
527
528 err = -EFAULT;
529 if (copy_from_user(buffer, buf, length))
530 goto out;
531 buffer[length] = '\0';
532
533 #ifdef CONFIG_CISS_SCSI_TAPE
534 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
535 struct seq_file *seq = file->private_data;
536 ctlr_info_t *h = seq->private;
537
538 err = cciss_engage_scsi(h->ctlr);
539 if (err == 0)
540 err = length;
541 } else
542 #endif /* CONFIG_CISS_SCSI_TAPE */
543 err = -EINVAL;
544 /* might be nice to have "disengage" too, but it's not
545 safely possible. (only 1 module use count, lock issues.) */
546
547 out:
548 free_page((unsigned long)buffer);
549 return err;
550 }
551
552 static const struct file_operations cciss_proc_fops = {
553 .owner = THIS_MODULE,
554 .open = cciss_seq_open,
555 .read = seq_read,
556 .llseek = seq_lseek,
557 .release = seq_release,
558 .write = cciss_proc_write,
559 };
560
561 static void __devinit cciss_procinit(int i)
562 {
563 struct proc_dir_entry *pde;
564
565 if (proc_cciss == NULL)
566 proc_cciss = proc_mkdir("driver/cciss", NULL);
567 if (!proc_cciss)
568 return;
569 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
570 S_IROTH, proc_cciss,
571 &cciss_proc_fops, hba[i]);
572 }
573 #endif /* CONFIG_PROC_FS */
574
575 #define MAX_PRODUCT_NAME_LEN 19
576
577 #define to_hba(n) container_of(n, struct ctlr_info, dev)
578 #define to_drv(n) container_of(n, drive_info_struct, dev)
579
580 static ssize_t host_store_rescan(struct device *dev,
581 struct device_attribute *attr,
582 const char *buf, size_t count)
583 {
584 struct ctlr_info *h = to_hba(dev);
585
586 add_to_scan_list(h);
587 wake_up_process(cciss_scan_thread);
588 wait_for_completion_interruptible(&h->scan_wait);
589
590 return count;
591 }
592 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
593
594 static ssize_t dev_show_unique_id(struct device *dev,
595 struct device_attribute *attr,
596 char *buf)
597 {
598 drive_info_struct *drv = to_drv(dev);
599 struct ctlr_info *h = to_hba(drv->dev.parent);
600 __u8 sn[16];
601 unsigned long flags;
602 int ret = 0;
603
604 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
605 if (h->busy_configuring)
606 ret = -EBUSY;
607 else
608 memcpy(sn, drv->serial_no, sizeof(sn));
609 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
610
611 if (ret)
612 return ret;
613 else
614 return snprintf(buf, 16 * 2 + 2,
615 "%02X%02X%02X%02X%02X%02X%02X%02X"
616 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
617 sn[0], sn[1], sn[2], sn[3],
618 sn[4], sn[5], sn[6], sn[7],
619 sn[8], sn[9], sn[10], sn[11],
620 sn[12], sn[13], sn[14], sn[15]);
621 }
622 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
623
624 static ssize_t dev_show_vendor(struct device *dev,
625 struct device_attribute *attr,
626 char *buf)
627 {
628 drive_info_struct *drv = to_drv(dev);
629 struct ctlr_info *h = to_hba(drv->dev.parent);
630 char vendor[VENDOR_LEN + 1];
631 unsigned long flags;
632 int ret = 0;
633
634 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
635 if (h->busy_configuring)
636 ret = -EBUSY;
637 else
638 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
639 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
640
641 if (ret)
642 return ret;
643 else
644 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
645 }
646 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
647
648 static ssize_t dev_show_model(struct device *dev,
649 struct device_attribute *attr,
650 char *buf)
651 {
652 drive_info_struct *drv = to_drv(dev);
653 struct ctlr_info *h = to_hba(drv->dev.parent);
654 char model[MODEL_LEN + 1];
655 unsigned long flags;
656 int ret = 0;
657
658 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
659 if (h->busy_configuring)
660 ret = -EBUSY;
661 else
662 memcpy(model, drv->model, MODEL_LEN + 1);
663 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
664
665 if (ret)
666 return ret;
667 else
668 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
669 }
670 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
671
672 static ssize_t dev_show_rev(struct device *dev,
673 struct device_attribute *attr,
674 char *buf)
675 {
676 drive_info_struct *drv = to_drv(dev);
677 struct ctlr_info *h = to_hba(drv->dev.parent);
678 char rev[REV_LEN + 1];
679 unsigned long flags;
680 int ret = 0;
681
682 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
683 if (h->busy_configuring)
684 ret = -EBUSY;
685 else
686 memcpy(rev, drv->rev, REV_LEN + 1);
687 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
688
689 if (ret)
690 return ret;
691 else
692 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
693 }
694 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
695
696 static ssize_t cciss_show_lunid(struct device *dev,
697 struct device_attribute *attr, char *buf)
698 {
699 drive_info_struct *drv = to_drv(dev);
700 struct ctlr_info *h = to_hba(drv->dev.parent);
701 unsigned long flags;
702 unsigned char lunid[8];
703
704 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
705 if (h->busy_configuring) {
706 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
707 return -EBUSY;
708 }
709 if (!drv->heads) {
710 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
711 return -ENOTTY;
712 }
713 memcpy(lunid, drv->LunID, sizeof(lunid));
714 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
715 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
716 lunid[0], lunid[1], lunid[2], lunid[3],
717 lunid[4], lunid[5], lunid[6], lunid[7]);
718 }
719 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
720
721 static ssize_t cciss_show_raid_level(struct device *dev,
722 struct device_attribute *attr, char *buf)
723 {
724 drive_info_struct *drv = to_drv(dev);
725 struct ctlr_info *h = to_hba(drv->dev.parent);
726 int raid;
727 unsigned long flags;
728
729 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
730 if (h->busy_configuring) {
731 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
732 return -EBUSY;
733 }
734 raid = drv->raid_level;
735 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
736 if (raid < 0 || raid > RAID_UNKNOWN)
737 raid = RAID_UNKNOWN;
738
739 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
740 raid_label[raid]);
741 }
742 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
743
744 static ssize_t cciss_show_usage_count(struct device *dev,
745 struct device_attribute *attr, char *buf)
746 {
747 drive_info_struct *drv = to_drv(dev);
748 struct ctlr_info *h = to_hba(drv->dev.parent);
749 unsigned long flags;
750 int count;
751
752 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
753 if (h->busy_configuring) {
754 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
755 return -EBUSY;
756 }
757 count = drv->usage_count;
758 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
759 return snprintf(buf, 20, "%d\n", count);
760 }
761 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
762
763 static struct attribute *cciss_host_attrs[] = {
764 &dev_attr_rescan.attr,
765 NULL
766 };
767
768 static struct attribute_group cciss_host_attr_group = {
769 .attrs = cciss_host_attrs,
770 };
771
772 static const struct attribute_group *cciss_host_attr_groups[] = {
773 &cciss_host_attr_group,
774 NULL
775 };
776
777 static struct device_type cciss_host_type = {
778 .name = "cciss_host",
779 .groups = cciss_host_attr_groups,
780 .release = cciss_hba_release,
781 };
782
783 static struct attribute *cciss_dev_attrs[] = {
784 &dev_attr_unique_id.attr,
785 &dev_attr_model.attr,
786 &dev_attr_vendor.attr,
787 &dev_attr_rev.attr,
788 &dev_attr_lunid.attr,
789 &dev_attr_raid_level.attr,
790 &dev_attr_usage_count.attr,
791 NULL
792 };
793
794 static struct attribute_group cciss_dev_attr_group = {
795 .attrs = cciss_dev_attrs,
796 };
797
798 static const struct attribute_group *cciss_dev_attr_groups[] = {
799 &cciss_dev_attr_group,
800 NULL
801 };
802
803 static struct device_type cciss_dev_type = {
804 .name = "cciss_device",
805 .groups = cciss_dev_attr_groups,
806 .release = cciss_device_release,
807 };
808
809 static struct bus_type cciss_bus_type = {
810 .name = "cciss",
811 };
812
813 /*
814 * cciss_hba_release is called when the reference count
815 * of h->dev goes to zero.
816 */
817 static void cciss_hba_release(struct device *dev)
818 {
819 /*
820 * nothing to do, but need this to avoid a warning
821 * about not having a release handler from lib/kref.c.
822 */
823 }
824
825 /*
826 * Initialize sysfs entry for each controller. This sets up and registers
827 * the 'cciss#' directory for each individual controller under
828 * /sys/bus/pci/devices/<dev>/.
829 */
830 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
831 {
832 device_initialize(&h->dev);
833 h->dev.type = &cciss_host_type;
834 h->dev.bus = &cciss_bus_type;
835 dev_set_name(&h->dev, "%s", h->devname);
836 h->dev.parent = &h->pdev->dev;
837
838 return device_add(&h->dev);
839 }
840
841 /*
842 * Remove sysfs entries for an hba.
843 */
844 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
845 {
846 device_del(&h->dev);
847 put_device(&h->dev); /* final put. */
848 }
849
850 /* cciss_device_release is called when the reference count
851 * of h->drv[x]dev goes to zero.
852 */
853 static void cciss_device_release(struct device *dev)
854 {
855 drive_info_struct *drv = to_drv(dev);
856 kfree(drv);
857 }
858
859 /*
860 * Initialize sysfs for each logical drive. This sets up and registers
861 * the 'c#d#' directory for each individual logical drive under
862 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
863 * /sys/block/cciss!c#d# to this entry.
864 */
865 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
866 int drv_index)
867 {
868 struct device *dev;
869
870 if (h->drv[drv_index]->device_initialized)
871 return 0;
872
873 dev = &h->drv[drv_index]->dev;
874 device_initialize(dev);
875 dev->type = &cciss_dev_type;
876 dev->bus = &cciss_bus_type;
877 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
878 dev->parent = &h->dev;
879 h->drv[drv_index]->device_initialized = 1;
880 return device_add(dev);
881 }
882
883 /*
884 * Remove sysfs entries for a logical drive.
885 */
886 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
887 int ctlr_exiting)
888 {
889 struct device *dev = &h->drv[drv_index]->dev;
890
891 /* special case for c*d0, we only destroy it on controller exit */
892 if (drv_index == 0 && !ctlr_exiting)
893 return;
894
895 device_del(dev);
896 put_device(dev); /* the "final" put. */
897 h->drv[drv_index] = NULL;
898 }
899
900 /*
901 * For operations that cannot sleep, a command block is allocated at init,
902 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
903 * which ones are free or in use. For operations that can wait for kmalloc
904 * to possible sleep, this routine can be called with get_from_pool set to 0.
905 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
906 */
907 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
908 {
909 CommandList_struct *c;
910 int i;
911 u64bit temp64;
912 dma_addr_t cmd_dma_handle, err_dma_handle;
913
914 if (!get_from_pool) {
915 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
916 sizeof(CommandList_struct), &cmd_dma_handle);
917 if (c == NULL)
918 return NULL;
919 memset(c, 0, sizeof(CommandList_struct));
920
921 c->cmdindex = -1;
922
923 c->err_info = (ErrorInfo_struct *)
924 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
925 &err_dma_handle);
926
927 if (c->err_info == NULL) {
928 pci_free_consistent(h->pdev,
929 sizeof(CommandList_struct), c, cmd_dma_handle);
930 return NULL;
931 }
932 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
933 } else { /* get it out of the controllers pool */
934
935 do {
936 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
937 if (i == h->nr_cmds)
938 return NULL;
939 } while (test_and_set_bit
940 (i & (BITS_PER_LONG - 1),
941 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
942 #ifdef CCISS_DEBUG
943 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
944 #endif
945 c = h->cmd_pool + i;
946 memset(c, 0, sizeof(CommandList_struct));
947 cmd_dma_handle = h->cmd_pool_dhandle
948 + i * sizeof(CommandList_struct);
949 c->err_info = h->errinfo_pool + i;
950 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
951 err_dma_handle = h->errinfo_pool_dhandle
952 + i * sizeof(ErrorInfo_struct);
953 h->nr_allocs++;
954
955 c->cmdindex = i;
956 }
957
958 INIT_HLIST_NODE(&c->list);
959 c->busaddr = (__u32) cmd_dma_handle;
960 temp64.val = (__u64) err_dma_handle;
961 c->ErrDesc.Addr.lower = temp64.val32.lower;
962 c->ErrDesc.Addr.upper = temp64.val32.upper;
963 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
964
965 c->ctlr = h->ctlr;
966 return c;
967 }
968
969 /*
970 * Frees a command block that was previously allocated with cmd_alloc().
971 */
972 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
973 {
974 int i;
975 u64bit temp64;
976
977 if (!got_from_pool) {
978 temp64.val32.lower = c->ErrDesc.Addr.lower;
979 temp64.val32.upper = c->ErrDesc.Addr.upper;
980 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
981 c->err_info, (dma_addr_t) temp64.val);
982 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
983 c, (dma_addr_t) c->busaddr);
984 } else {
985 i = c - h->cmd_pool;
986 clear_bit(i & (BITS_PER_LONG - 1),
987 h->cmd_pool_bits + (i / BITS_PER_LONG));
988 h->nr_frees++;
989 }
990 }
991
992 static inline ctlr_info_t *get_host(struct gendisk *disk)
993 {
994 return disk->queue->queuedata;
995 }
996
997 static inline drive_info_struct *get_drv(struct gendisk *disk)
998 {
999 return disk->private_data;
1000 }
1001
1002 /*
1003 * Open. Make sure the device is really there.
1004 */
1005 static int cciss_open(struct block_device *bdev, fmode_t mode)
1006 {
1007 ctlr_info_t *host = get_host(bdev->bd_disk);
1008 drive_info_struct *drv = get_drv(bdev->bd_disk);
1009
1010 #ifdef CCISS_DEBUG
1011 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
1012 #endif /* CCISS_DEBUG */
1013
1014 if (drv->busy_configuring)
1015 return -EBUSY;
1016 /*
1017 * Root is allowed to open raw volume zero even if it's not configured
1018 * so array config can still work. Root is also allowed to open any
1019 * volume that has a LUN ID, so it can issue IOCTL to reread the
1020 * disk information. I don't think I really like this
1021 * but I'm already using way to many device nodes to claim another one
1022 * for "raw controller".
1023 */
1024 if (drv->heads == 0) {
1025 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1026 /* if not node 0 make sure it is a partition = 0 */
1027 if (MINOR(bdev->bd_dev) & 0x0f) {
1028 return -ENXIO;
1029 /* if it is, make sure we have a LUN ID */
1030 } else if (memcmp(drv->LunID, CTLR_LUNID,
1031 sizeof(drv->LunID))) {
1032 return -ENXIO;
1033 }
1034 }
1035 if (!capable(CAP_SYS_ADMIN))
1036 return -EPERM;
1037 }
1038 drv->usage_count++;
1039 host->usage_count++;
1040 return 0;
1041 }
1042
1043 /*
1044 * Close. Sync first.
1045 */
1046 static int cciss_release(struct gendisk *disk, fmode_t mode)
1047 {
1048 ctlr_info_t *host = get_host(disk);
1049 drive_info_struct *drv = get_drv(disk);
1050
1051 #ifdef CCISS_DEBUG
1052 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
1053 #endif /* CCISS_DEBUG */
1054
1055 drv->usage_count--;
1056 host->usage_count--;
1057 return 0;
1058 }
1059
1060 #ifdef CONFIG_COMPAT
1061
1062 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1063 unsigned cmd, unsigned long arg)
1064 {
1065 int ret;
1066 lock_kernel();
1067 ret = cciss_ioctl(bdev, mode, cmd, arg);
1068 unlock_kernel();
1069 return ret;
1070 }
1071
1072 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1073 unsigned cmd, unsigned long arg);
1074 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1075 unsigned cmd, unsigned long arg);
1076
1077 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1078 unsigned cmd, unsigned long arg)
1079 {
1080 switch (cmd) {
1081 case CCISS_GETPCIINFO:
1082 case CCISS_GETINTINFO:
1083 case CCISS_SETINTINFO:
1084 case CCISS_GETNODENAME:
1085 case CCISS_SETNODENAME:
1086 case CCISS_GETHEARTBEAT:
1087 case CCISS_GETBUSTYPES:
1088 case CCISS_GETFIRMVER:
1089 case CCISS_GETDRIVVER:
1090 case CCISS_REVALIDVOLS:
1091 case CCISS_DEREGDISK:
1092 case CCISS_REGNEWDISK:
1093 case CCISS_REGNEWD:
1094 case CCISS_RESCANDISK:
1095 case CCISS_GETLUNINFO:
1096 return do_ioctl(bdev, mode, cmd, arg);
1097
1098 case CCISS_PASSTHRU32:
1099 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1100 case CCISS_BIG_PASSTHRU32:
1101 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1102
1103 default:
1104 return -ENOIOCTLCMD;
1105 }
1106 }
1107
1108 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1109 unsigned cmd, unsigned long arg)
1110 {
1111 IOCTL32_Command_struct __user *arg32 =
1112 (IOCTL32_Command_struct __user *) arg;
1113 IOCTL_Command_struct arg64;
1114 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1115 int err;
1116 u32 cp;
1117
1118 err = 0;
1119 err |=
1120 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1121 sizeof(arg64.LUN_info));
1122 err |=
1123 copy_from_user(&arg64.Request, &arg32->Request,
1124 sizeof(arg64.Request));
1125 err |=
1126 copy_from_user(&arg64.error_info, &arg32->error_info,
1127 sizeof(arg64.error_info));
1128 err |= get_user(arg64.buf_size, &arg32->buf_size);
1129 err |= get_user(cp, &arg32->buf);
1130 arg64.buf = compat_ptr(cp);
1131 err |= copy_to_user(p, &arg64, sizeof(arg64));
1132
1133 if (err)
1134 return -EFAULT;
1135
1136 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1137 if (err)
1138 return err;
1139 err |=
1140 copy_in_user(&arg32->error_info, &p->error_info,
1141 sizeof(arg32->error_info));
1142 if (err)
1143 return -EFAULT;
1144 return err;
1145 }
1146
1147 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1148 unsigned cmd, unsigned long arg)
1149 {
1150 BIG_IOCTL32_Command_struct __user *arg32 =
1151 (BIG_IOCTL32_Command_struct __user *) arg;
1152 BIG_IOCTL_Command_struct arg64;
1153 BIG_IOCTL_Command_struct __user *p =
1154 compat_alloc_user_space(sizeof(arg64));
1155 int err;
1156 u32 cp;
1157
1158 err = 0;
1159 err |=
1160 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1161 sizeof(arg64.LUN_info));
1162 err |=
1163 copy_from_user(&arg64.Request, &arg32->Request,
1164 sizeof(arg64.Request));
1165 err |=
1166 copy_from_user(&arg64.error_info, &arg32->error_info,
1167 sizeof(arg64.error_info));
1168 err |= get_user(arg64.buf_size, &arg32->buf_size);
1169 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1170 err |= get_user(cp, &arg32->buf);
1171 arg64.buf = compat_ptr(cp);
1172 err |= copy_to_user(p, &arg64, sizeof(arg64));
1173
1174 if (err)
1175 return -EFAULT;
1176
1177 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1178 if (err)
1179 return err;
1180 err |=
1181 copy_in_user(&arg32->error_info, &p->error_info,
1182 sizeof(arg32->error_info));
1183 if (err)
1184 return -EFAULT;
1185 return err;
1186 }
1187 #endif
1188
1189 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1190 {
1191 drive_info_struct *drv = get_drv(bdev->bd_disk);
1192
1193 if (!drv->cylinders)
1194 return -ENXIO;
1195
1196 geo->heads = drv->heads;
1197 geo->sectors = drv->sectors;
1198 geo->cylinders = drv->cylinders;
1199 return 0;
1200 }
1201
1202 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1203 {
1204 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1205 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1206 (void)check_for_unit_attention(host, c);
1207 }
1208 /*
1209 * ioctl
1210 */
1211 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1212 unsigned int cmd, unsigned long arg)
1213 {
1214 struct gendisk *disk = bdev->bd_disk;
1215 ctlr_info_t *host = get_host(disk);
1216 drive_info_struct *drv = get_drv(disk);
1217 int ctlr = host->ctlr;
1218 void __user *argp = (void __user *)arg;
1219
1220 #ifdef CCISS_DEBUG
1221 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1222 #endif /* CCISS_DEBUG */
1223
1224 switch (cmd) {
1225 case CCISS_GETPCIINFO:
1226 {
1227 cciss_pci_info_struct pciinfo;
1228
1229 if (!arg)
1230 return -EINVAL;
1231 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1232 pciinfo.bus = host->pdev->bus->number;
1233 pciinfo.dev_fn = host->pdev->devfn;
1234 pciinfo.board_id = host->board_id;
1235 if (copy_to_user
1236 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1237 return -EFAULT;
1238 return 0;
1239 }
1240 case CCISS_GETINTINFO:
1241 {
1242 cciss_coalint_struct intinfo;
1243 if (!arg)
1244 return -EINVAL;
1245 intinfo.delay =
1246 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1247 intinfo.count =
1248 readl(&host->cfgtable->HostWrite.CoalIntCount);
1249 if (copy_to_user
1250 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1251 return -EFAULT;
1252 return 0;
1253 }
1254 case CCISS_SETINTINFO:
1255 {
1256 cciss_coalint_struct intinfo;
1257 unsigned long flags;
1258 int i;
1259
1260 if (!arg)
1261 return -EINVAL;
1262 if (!capable(CAP_SYS_ADMIN))
1263 return -EPERM;
1264 if (copy_from_user
1265 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1266 return -EFAULT;
1267 if ((intinfo.delay == 0) && (intinfo.count == 0))
1268 {
1269 // printk("cciss_ioctl: delay and count cannot be 0\n");
1270 return -EINVAL;
1271 }
1272 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1273 /* Update the field, and then ring the doorbell */
1274 writel(intinfo.delay,
1275 &(host->cfgtable->HostWrite.CoalIntDelay));
1276 writel(intinfo.count,
1277 &(host->cfgtable->HostWrite.CoalIntCount));
1278 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1279
1280 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1281 if (!(readl(host->vaddr + SA5_DOORBELL)
1282 & CFGTBL_ChangeReq))
1283 break;
1284 /* delay and try again */
1285 udelay(1000);
1286 }
1287 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1288 if (i >= MAX_IOCTL_CONFIG_WAIT)
1289 return -EAGAIN;
1290 return 0;
1291 }
1292 case CCISS_GETNODENAME:
1293 {
1294 NodeName_type NodeName;
1295 int i;
1296
1297 if (!arg)
1298 return -EINVAL;
1299 for (i = 0; i < 16; i++)
1300 NodeName[i] =
1301 readb(&host->cfgtable->ServerName[i]);
1302 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1303 return -EFAULT;
1304 return 0;
1305 }
1306 case CCISS_SETNODENAME:
1307 {
1308 NodeName_type NodeName;
1309 unsigned long flags;
1310 int i;
1311
1312 if (!arg)
1313 return -EINVAL;
1314 if (!capable(CAP_SYS_ADMIN))
1315 return -EPERM;
1316
1317 if (copy_from_user
1318 (NodeName, argp, sizeof(NodeName_type)))
1319 return -EFAULT;
1320
1321 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1322
1323 /* Update the field, and then ring the doorbell */
1324 for (i = 0; i < 16; i++)
1325 writeb(NodeName[i],
1326 &host->cfgtable->ServerName[i]);
1327
1328 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1329
1330 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1331 if (!(readl(host->vaddr + SA5_DOORBELL)
1332 & CFGTBL_ChangeReq))
1333 break;
1334 /* delay and try again */
1335 udelay(1000);
1336 }
1337 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1338 if (i >= MAX_IOCTL_CONFIG_WAIT)
1339 return -EAGAIN;
1340 return 0;
1341 }
1342
1343 case CCISS_GETHEARTBEAT:
1344 {
1345 Heartbeat_type heartbeat;
1346
1347 if (!arg)
1348 return -EINVAL;
1349 heartbeat = readl(&host->cfgtable->HeartBeat);
1350 if (copy_to_user
1351 (argp, &heartbeat, sizeof(Heartbeat_type)))
1352 return -EFAULT;
1353 return 0;
1354 }
1355 case CCISS_GETBUSTYPES:
1356 {
1357 BusTypes_type BusTypes;
1358
1359 if (!arg)
1360 return -EINVAL;
1361 BusTypes = readl(&host->cfgtable->BusTypes);
1362 if (copy_to_user
1363 (argp, &BusTypes, sizeof(BusTypes_type)))
1364 return -EFAULT;
1365 return 0;
1366 }
1367 case CCISS_GETFIRMVER:
1368 {
1369 FirmwareVer_type firmware;
1370
1371 if (!arg)
1372 return -EINVAL;
1373 memcpy(firmware, host->firm_ver, 4);
1374
1375 if (copy_to_user
1376 (argp, firmware, sizeof(FirmwareVer_type)))
1377 return -EFAULT;
1378 return 0;
1379 }
1380 case CCISS_GETDRIVVER:
1381 {
1382 DriverVer_type DriverVer = DRIVER_VERSION;
1383
1384 if (!arg)
1385 return -EINVAL;
1386
1387 if (copy_to_user
1388 (argp, &DriverVer, sizeof(DriverVer_type)))
1389 return -EFAULT;
1390 return 0;
1391 }
1392
1393 case CCISS_DEREGDISK:
1394 case CCISS_REGNEWD:
1395 case CCISS_REVALIDVOLS:
1396 return rebuild_lun_table(host, 0, 1);
1397
1398 case CCISS_GETLUNINFO:{
1399 LogvolInfo_struct luninfo;
1400
1401 memcpy(&luninfo.LunID, drv->LunID,
1402 sizeof(luninfo.LunID));
1403 luninfo.num_opens = drv->usage_count;
1404 luninfo.num_parts = 0;
1405 if (copy_to_user(argp, &luninfo,
1406 sizeof(LogvolInfo_struct)))
1407 return -EFAULT;
1408 return 0;
1409 }
1410 case CCISS_PASSTHRU:
1411 {
1412 IOCTL_Command_struct iocommand;
1413 CommandList_struct *c;
1414 char *buff = NULL;
1415 u64bit temp64;
1416 DECLARE_COMPLETION_ONSTACK(wait);
1417
1418 if (!arg)
1419 return -EINVAL;
1420
1421 if (!capable(CAP_SYS_RAWIO))
1422 return -EPERM;
1423
1424 if (copy_from_user
1425 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1426 return -EFAULT;
1427 if ((iocommand.buf_size < 1) &&
1428 (iocommand.Request.Type.Direction != XFER_NONE)) {
1429 return -EINVAL;
1430 }
1431 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1432 /* Check kmalloc limits */
1433 if (iocommand.buf_size > 128000)
1434 return -EINVAL;
1435 #endif
1436 if (iocommand.buf_size > 0) {
1437 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1438 if (buff == NULL)
1439 return -EFAULT;
1440 }
1441 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1442 /* Copy the data into the buffer we created */
1443 if (copy_from_user
1444 (buff, iocommand.buf, iocommand.buf_size)) {
1445 kfree(buff);
1446 return -EFAULT;
1447 }
1448 } else {
1449 memset(buff, 0, iocommand.buf_size);
1450 }
1451 if ((c = cmd_alloc(host, 0)) == NULL) {
1452 kfree(buff);
1453 return -ENOMEM;
1454 }
1455 /* Fill in the command type */
1456 c->cmd_type = CMD_IOCTL_PEND;
1457 /* Fill in Command Header */
1458 c->Header.ReplyQueue = 0; /* unused in simple mode */
1459 if (iocommand.buf_size > 0) /* buffer to fill */
1460 {
1461 c->Header.SGList = 1;
1462 c->Header.SGTotal = 1;
1463 } else /* no buffers to fill */
1464 {
1465 c->Header.SGList = 0;
1466 c->Header.SGTotal = 0;
1467 }
1468 c->Header.LUN = iocommand.LUN_info;
1469 /* use the kernel address the cmd block for tag */
1470 c->Header.Tag.lower = c->busaddr;
1471
1472 /* Fill in Request block */
1473 c->Request = iocommand.Request;
1474
1475 /* Fill in the scatter gather information */
1476 if (iocommand.buf_size > 0) {
1477 temp64.val = pci_map_single(host->pdev, buff,
1478 iocommand.buf_size,
1479 PCI_DMA_BIDIRECTIONAL);
1480 c->SG[0].Addr.lower = temp64.val32.lower;
1481 c->SG[0].Addr.upper = temp64.val32.upper;
1482 c->SG[0].Len = iocommand.buf_size;
1483 c->SG[0].Ext = 0; /* we are not chaining */
1484 }
1485 c->waiting = &wait;
1486
1487 enqueue_cmd_and_start_io(host, c);
1488 wait_for_completion(&wait);
1489
1490 /* unlock the buffers from DMA */
1491 temp64.val32.lower = c->SG[0].Addr.lower;
1492 temp64.val32.upper = c->SG[0].Addr.upper;
1493 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1494 iocommand.buf_size,
1495 PCI_DMA_BIDIRECTIONAL);
1496
1497 check_ioctl_unit_attention(host, c);
1498
1499 /* Copy the error information out */
1500 iocommand.error_info = *(c->err_info);
1501 if (copy_to_user
1502 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1503 kfree(buff);
1504 cmd_free(host, c, 0);
1505 return -EFAULT;
1506 }
1507
1508 if (iocommand.Request.Type.Direction == XFER_READ) {
1509 /* Copy the data out of the buffer we created */
1510 if (copy_to_user
1511 (iocommand.buf, buff, iocommand.buf_size)) {
1512 kfree(buff);
1513 cmd_free(host, c, 0);
1514 return -EFAULT;
1515 }
1516 }
1517 kfree(buff);
1518 cmd_free(host, c, 0);
1519 return 0;
1520 }
1521 case CCISS_BIG_PASSTHRU:{
1522 BIG_IOCTL_Command_struct *ioc;
1523 CommandList_struct *c;
1524 unsigned char **buff = NULL;
1525 int *buff_size = NULL;
1526 u64bit temp64;
1527 BYTE sg_used = 0;
1528 int status = 0;
1529 int i;
1530 DECLARE_COMPLETION_ONSTACK(wait);
1531 __u32 left;
1532 __u32 sz;
1533 BYTE __user *data_ptr;
1534
1535 if (!arg)
1536 return -EINVAL;
1537 if (!capable(CAP_SYS_RAWIO))
1538 return -EPERM;
1539 ioc = (BIG_IOCTL_Command_struct *)
1540 kmalloc(sizeof(*ioc), GFP_KERNEL);
1541 if (!ioc) {
1542 status = -ENOMEM;
1543 goto cleanup1;
1544 }
1545 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1546 status = -EFAULT;
1547 goto cleanup1;
1548 }
1549 if ((ioc->buf_size < 1) &&
1550 (ioc->Request.Type.Direction != XFER_NONE)) {
1551 status = -EINVAL;
1552 goto cleanup1;
1553 }
1554 /* Check kmalloc limits using all SGs */
1555 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1556 status = -EINVAL;
1557 goto cleanup1;
1558 }
1559 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1560 status = -EINVAL;
1561 goto cleanup1;
1562 }
1563 buff =
1564 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1565 if (!buff) {
1566 status = -ENOMEM;
1567 goto cleanup1;
1568 }
1569 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1570 GFP_KERNEL);
1571 if (!buff_size) {
1572 status = -ENOMEM;
1573 goto cleanup1;
1574 }
1575 left = ioc->buf_size;
1576 data_ptr = ioc->buf;
1577 while (left) {
1578 sz = (left >
1579 ioc->malloc_size) ? ioc->
1580 malloc_size : left;
1581 buff_size[sg_used] = sz;
1582 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1583 if (buff[sg_used] == NULL) {
1584 status = -ENOMEM;
1585 goto cleanup1;
1586 }
1587 if (ioc->Request.Type.Direction == XFER_WRITE) {
1588 if (copy_from_user
1589 (buff[sg_used], data_ptr, sz)) {
1590 status = -EFAULT;
1591 goto cleanup1;
1592 }
1593 } else {
1594 memset(buff[sg_used], 0, sz);
1595 }
1596 left -= sz;
1597 data_ptr += sz;
1598 sg_used++;
1599 }
1600 if ((c = cmd_alloc(host, 0)) == NULL) {
1601 status = -ENOMEM;
1602 goto cleanup1;
1603 }
1604 c->cmd_type = CMD_IOCTL_PEND;
1605 c->Header.ReplyQueue = 0;
1606
1607 if (ioc->buf_size > 0) {
1608 c->Header.SGList = sg_used;
1609 c->Header.SGTotal = sg_used;
1610 } else {
1611 c->Header.SGList = 0;
1612 c->Header.SGTotal = 0;
1613 }
1614 c->Header.LUN = ioc->LUN_info;
1615 c->Header.Tag.lower = c->busaddr;
1616
1617 c->Request = ioc->Request;
1618 if (ioc->buf_size > 0) {
1619 for (i = 0; i < sg_used; i++) {
1620 temp64.val =
1621 pci_map_single(host->pdev, buff[i],
1622 buff_size[i],
1623 PCI_DMA_BIDIRECTIONAL);
1624 c->SG[i].Addr.lower =
1625 temp64.val32.lower;
1626 c->SG[i].Addr.upper =
1627 temp64.val32.upper;
1628 c->SG[i].Len = buff_size[i];
1629 c->SG[i].Ext = 0; /* we are not chaining */
1630 }
1631 }
1632 c->waiting = &wait;
1633 enqueue_cmd_and_start_io(host, c);
1634 wait_for_completion(&wait);
1635 /* unlock the buffers from DMA */
1636 for (i = 0; i < sg_used; i++) {
1637 temp64.val32.lower = c->SG[i].Addr.lower;
1638 temp64.val32.upper = c->SG[i].Addr.upper;
1639 pci_unmap_single(host->pdev,
1640 (dma_addr_t) temp64.val, buff_size[i],
1641 PCI_DMA_BIDIRECTIONAL);
1642 }
1643 check_ioctl_unit_attention(host, c);
1644 /* Copy the error information out */
1645 ioc->error_info = *(c->err_info);
1646 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1647 cmd_free(host, c, 0);
1648 status = -EFAULT;
1649 goto cleanup1;
1650 }
1651 if (ioc->Request.Type.Direction == XFER_READ) {
1652 /* Copy the data out of the buffer we created */
1653 BYTE __user *ptr = ioc->buf;
1654 for (i = 0; i < sg_used; i++) {
1655 if (copy_to_user
1656 (ptr, buff[i], buff_size[i])) {
1657 cmd_free(host, c, 0);
1658 status = -EFAULT;
1659 goto cleanup1;
1660 }
1661 ptr += buff_size[i];
1662 }
1663 }
1664 cmd_free(host, c, 0);
1665 status = 0;
1666 cleanup1:
1667 if (buff) {
1668 for (i = 0; i < sg_used; i++)
1669 kfree(buff[i]);
1670 kfree(buff);
1671 }
1672 kfree(buff_size);
1673 kfree(ioc);
1674 return status;
1675 }
1676
1677 /* scsi_cmd_ioctl handles these, below, though some are not */
1678 /* very meaningful for cciss. SG_IO is the main one people want. */
1679
1680 case SG_GET_VERSION_NUM:
1681 case SG_SET_TIMEOUT:
1682 case SG_GET_TIMEOUT:
1683 case SG_GET_RESERVED_SIZE:
1684 case SG_SET_RESERVED_SIZE:
1685 case SG_EMULATED_HOST:
1686 case SG_IO:
1687 case SCSI_IOCTL_SEND_COMMAND:
1688 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1689
1690 /* scsi_cmd_ioctl would normally handle these, below, but */
1691 /* they aren't a good fit for cciss, as CD-ROMs are */
1692 /* not supported, and we don't have any bus/target/lun */
1693 /* which we present to the kernel. */
1694
1695 case CDROM_SEND_PACKET:
1696 case CDROMCLOSETRAY:
1697 case CDROMEJECT:
1698 case SCSI_IOCTL_GET_IDLUN:
1699 case SCSI_IOCTL_GET_BUS_NUMBER:
1700 default:
1701 return -ENOTTY;
1702 }
1703 }
1704
1705 static void cciss_check_queues(ctlr_info_t *h)
1706 {
1707 int start_queue = h->next_to_run;
1708 int i;
1709
1710 /* check to see if we have maxed out the number of commands that can
1711 * be placed on the queue. If so then exit. We do this check here
1712 * in case the interrupt we serviced was from an ioctl and did not
1713 * free any new commands.
1714 */
1715 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1716 return;
1717
1718 /* We have room on the queue for more commands. Now we need to queue
1719 * them up. We will also keep track of the next queue to run so
1720 * that every queue gets a chance to be started first.
1721 */
1722 for (i = 0; i < h->highest_lun + 1; i++) {
1723 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1724 /* make sure the disk has been added and the drive is real
1725 * because this can be called from the middle of init_one.
1726 */
1727 if (!h->drv[curr_queue])
1728 continue;
1729 if (!(h->drv[curr_queue]->queue) ||
1730 !(h->drv[curr_queue]->heads))
1731 continue;
1732 blk_start_queue(h->gendisk[curr_queue]->queue);
1733
1734 /* check to see if we have maxed out the number of commands
1735 * that can be placed on the queue.
1736 */
1737 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1738 if (curr_queue == start_queue) {
1739 h->next_to_run =
1740 (start_queue + 1) % (h->highest_lun + 1);
1741 break;
1742 } else {
1743 h->next_to_run = curr_queue;
1744 break;
1745 }
1746 }
1747 }
1748 }
1749
1750 static void cciss_softirq_done(struct request *rq)
1751 {
1752 CommandList_struct *cmd = rq->completion_data;
1753 ctlr_info_t *h = hba[cmd->ctlr];
1754 SGDescriptor_struct *curr_sg = cmd->SG;
1755 u64bit temp64;
1756 unsigned long flags;
1757 int i, ddir;
1758 int sg_index = 0;
1759
1760 if (cmd->Request.Type.Direction == XFER_READ)
1761 ddir = PCI_DMA_FROMDEVICE;
1762 else
1763 ddir = PCI_DMA_TODEVICE;
1764
1765 /* command did not need to be retried */
1766 /* unmap the DMA mapping for all the scatter gather elements */
1767 for (i = 0; i < cmd->Header.SGList; i++) {
1768 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1769 cciss_unmap_sg_chain_block(h, cmd);
1770 /* Point to the next block */
1771 curr_sg = h->cmd_sg_list[cmd->cmdindex];
1772 sg_index = 0;
1773 }
1774 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1775 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1776 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1777 ddir);
1778 ++sg_index;
1779 }
1780
1781 #ifdef CCISS_DEBUG
1782 printk("Done with %p\n", rq);
1783 #endif /* CCISS_DEBUG */
1784
1785 /* set the residual count for pc requests */
1786 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1787 rq->resid_len = cmd->err_info->ResidualCnt;
1788
1789 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1790
1791 spin_lock_irqsave(&h->lock, flags);
1792 cmd_free(h, cmd, 1);
1793 cciss_check_queues(h);
1794 spin_unlock_irqrestore(&h->lock, flags);
1795 }
1796
1797 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1798 unsigned char scsi3addr[], uint32_t log_unit)
1799 {
1800 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1801 sizeof(h->drv[log_unit]->LunID));
1802 }
1803
1804 /* This function gets the SCSI vendor, model, and revision of a logical drive
1805 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1806 * they cannot be read.
1807 */
1808 static void cciss_get_device_descr(int ctlr, int logvol,
1809 char *vendor, char *model, char *rev)
1810 {
1811 int rc;
1812 InquiryData_struct *inq_buf;
1813 unsigned char scsi3addr[8];
1814
1815 *vendor = '\0';
1816 *model = '\0';
1817 *rev = '\0';
1818
1819 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1820 if (!inq_buf)
1821 return;
1822
1823 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1824 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
1825 scsi3addr, TYPE_CMD);
1826 if (rc == IO_OK) {
1827 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1828 vendor[VENDOR_LEN] = '\0';
1829 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1830 model[MODEL_LEN] = '\0';
1831 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1832 rev[REV_LEN] = '\0';
1833 }
1834
1835 kfree(inq_buf);
1836 return;
1837 }
1838
1839 /* This function gets the serial number of a logical drive via
1840 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1841 * number cannot be had, for whatever reason, 16 bytes of 0xff
1842 * are returned instead.
1843 */
1844 static void cciss_get_serial_no(int ctlr, int logvol,
1845 unsigned char *serial_no, int buflen)
1846 {
1847 #define PAGE_83_INQ_BYTES 64
1848 int rc;
1849 unsigned char *buf;
1850 unsigned char scsi3addr[8];
1851
1852 if (buflen > 16)
1853 buflen = 16;
1854 memset(serial_no, 0xff, buflen);
1855 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1856 if (!buf)
1857 return;
1858 memset(serial_no, 0, buflen);
1859 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1860 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1861 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1862 if (rc == IO_OK)
1863 memcpy(serial_no, &buf[8], buflen);
1864 kfree(buf);
1865 return;
1866 }
1867
1868 /*
1869 * cciss_add_disk sets up the block device queue for a logical drive
1870 */
1871 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1872 int drv_index)
1873 {
1874 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1875 if (!disk->queue)
1876 goto init_queue_failure;
1877 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1878 disk->major = h->major;
1879 disk->first_minor = drv_index << NWD_SHIFT;
1880 disk->fops = &cciss_fops;
1881 if (cciss_create_ld_sysfs_entry(h, drv_index))
1882 goto cleanup_queue;
1883 disk->private_data = h->drv[drv_index];
1884 disk->driverfs_dev = &h->drv[drv_index]->dev;
1885
1886 /* Set up queue information */
1887 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1888
1889 /* This is a hardware imposed limit. */
1890 blk_queue_max_segments(disk->queue, h->maxsgentries);
1891
1892 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1893
1894 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1895
1896 disk->queue->queuedata = h;
1897
1898 blk_queue_logical_block_size(disk->queue,
1899 h->drv[drv_index]->block_size);
1900
1901 /* Make sure all queue data is written out before */
1902 /* setting h->drv[drv_index]->queue, as setting this */
1903 /* allows the interrupt handler to start the queue */
1904 wmb();
1905 h->drv[drv_index]->queue = disk->queue;
1906 add_disk(disk);
1907 return 0;
1908
1909 cleanup_queue:
1910 blk_cleanup_queue(disk->queue);
1911 disk->queue = NULL;
1912 init_queue_failure:
1913 return -1;
1914 }
1915
1916 /* This function will check the usage_count of the drive to be updated/added.
1917 * If the usage_count is zero and it is a heretofore unknown drive, or,
1918 * the drive's capacity, geometry, or serial number has changed,
1919 * then the drive information will be updated and the disk will be
1920 * re-registered with the kernel. If these conditions don't hold,
1921 * then it will be left alone for the next reboot. The exception to this
1922 * is disk 0 which will always be left registered with the kernel since it
1923 * is also the controller node. Any changes to disk 0 will show up on
1924 * the next reboot.
1925 */
1926 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1927 int via_ioctl)
1928 {
1929 ctlr_info_t *h = hba[ctlr];
1930 struct gendisk *disk;
1931 InquiryData_struct *inq_buff = NULL;
1932 unsigned int block_size;
1933 sector_t total_size;
1934 unsigned long flags = 0;
1935 int ret = 0;
1936 drive_info_struct *drvinfo;
1937
1938 /* Get information about the disk and modify the driver structure */
1939 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1940 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1941 if (inq_buff == NULL || drvinfo == NULL)
1942 goto mem_msg;
1943
1944 /* testing to see if 16-byte CDBs are already being used */
1945 if (h->cciss_read == CCISS_READ_16) {
1946 cciss_read_capacity_16(h->ctlr, drv_index,
1947 &total_size, &block_size);
1948
1949 } else {
1950 cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
1951 /* if read_capacity returns all F's this volume is >2TB */
1952 /* in size so we switch to 16-byte CDB's for all */
1953 /* read/write ops */
1954 if (total_size == 0xFFFFFFFFULL) {
1955 cciss_read_capacity_16(ctlr, drv_index,
1956 &total_size, &block_size);
1957 h->cciss_read = CCISS_READ_16;
1958 h->cciss_write = CCISS_WRITE_16;
1959 } else {
1960 h->cciss_read = CCISS_READ_10;
1961 h->cciss_write = CCISS_WRITE_10;
1962 }
1963 }
1964
1965 cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
1966 inq_buff, drvinfo);
1967 drvinfo->block_size = block_size;
1968 drvinfo->nr_blocks = total_size + 1;
1969
1970 cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
1971 drvinfo->model, drvinfo->rev);
1972 cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
1973 sizeof(drvinfo->serial_no));
1974 /* Save the lunid in case we deregister the disk, below. */
1975 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1976 sizeof(drvinfo->LunID));
1977
1978 /* Is it the same disk we already know, and nothing's changed? */
1979 if (h->drv[drv_index]->raid_level != -1 &&
1980 ((memcmp(drvinfo->serial_no,
1981 h->drv[drv_index]->serial_no, 16) == 0) &&
1982 drvinfo->block_size == h->drv[drv_index]->block_size &&
1983 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1984 drvinfo->heads == h->drv[drv_index]->heads &&
1985 drvinfo->sectors == h->drv[drv_index]->sectors &&
1986 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1987 /* The disk is unchanged, nothing to update */
1988 goto freeret;
1989
1990 /* If we get here it's not the same disk, or something's changed,
1991 * so we need to * deregister it, and re-register it, if it's not
1992 * in use.
1993 * If the disk already exists then deregister it before proceeding
1994 * (unless it's the first disk (for the controller node).
1995 */
1996 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1997 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1998 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1999 h->drv[drv_index]->busy_configuring = 1;
2000 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2001
2002 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2003 * which keeps the interrupt handler from starting
2004 * the queue.
2005 */
2006 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2007 }
2008
2009 /* If the disk is in use return */
2010 if (ret)
2011 goto freeret;
2012
2013 /* Save the new information from cciss_geometry_inquiry
2014 * and serial number inquiry. If the disk was deregistered
2015 * above, then h->drv[drv_index] will be NULL.
2016 */
2017 if (h->drv[drv_index] == NULL) {
2018 drvinfo->device_initialized = 0;
2019 h->drv[drv_index] = drvinfo;
2020 drvinfo = NULL; /* so it won't be freed below. */
2021 } else {
2022 /* special case for cxd0 */
2023 h->drv[drv_index]->block_size = drvinfo->block_size;
2024 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2025 h->drv[drv_index]->heads = drvinfo->heads;
2026 h->drv[drv_index]->sectors = drvinfo->sectors;
2027 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2028 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2029 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2030 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2031 VENDOR_LEN + 1);
2032 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2033 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2034 }
2035
2036 ++h->num_luns;
2037 disk = h->gendisk[drv_index];
2038 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2039
2040 /* If it's not disk 0 (drv_index != 0)
2041 * or if it was disk 0, but there was previously
2042 * no actual corresponding configured logical drive
2043 * (raid_leve == -1) then we want to update the
2044 * logical drive's information.
2045 */
2046 if (drv_index || first_time) {
2047 if (cciss_add_disk(h, disk, drv_index) != 0) {
2048 cciss_free_gendisk(h, drv_index);
2049 cciss_free_drive_info(h, drv_index);
2050 printk(KERN_WARNING "cciss:%d could not update "
2051 "disk %d\n", h->ctlr, drv_index);
2052 --h->num_luns;
2053 }
2054 }
2055
2056 freeret:
2057 kfree(inq_buff);
2058 kfree(drvinfo);
2059 return;
2060 mem_msg:
2061 printk(KERN_ERR "cciss: out of memory\n");
2062 goto freeret;
2063 }
2064
2065 /* This function will find the first index of the controllers drive array
2066 * that has a null drv pointer and allocate the drive info struct and
2067 * will return that index This is where new drives will be added.
2068 * If the index to be returned is greater than the highest_lun index for
2069 * the controller then highest_lun is set * to this new index.
2070 * If there are no available indexes or if tha allocation fails, then -1
2071 * is returned. * "controller_node" is used to know if this is a real
2072 * logical drive, or just the controller node, which determines if this
2073 * counts towards highest_lun.
2074 */
2075 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2076 {
2077 int i;
2078 drive_info_struct *drv;
2079
2080 /* Search for an empty slot for our drive info */
2081 for (i = 0; i < CISS_MAX_LUN; i++) {
2082
2083 /* if not cxd0 case, and it's occupied, skip it. */
2084 if (h->drv[i] && i != 0)
2085 continue;
2086 /*
2087 * If it's cxd0 case, and drv is alloc'ed already, and a
2088 * disk is configured there, skip it.
2089 */
2090 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2091 continue;
2092
2093 /*
2094 * We've found an empty slot. Update highest_lun
2095 * provided this isn't just the fake cxd0 controller node.
2096 */
2097 if (i > h->highest_lun && !controller_node)
2098 h->highest_lun = i;
2099
2100 /* If adding a real disk at cxd0, and it's already alloc'ed */
2101 if (i == 0 && h->drv[i] != NULL)
2102 return i;
2103
2104 /*
2105 * Found an empty slot, not already alloc'ed. Allocate it.
2106 * Mark it with raid_level == -1, so we know it's new later on.
2107 */
2108 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2109 if (!drv)
2110 return -1;
2111 drv->raid_level = -1; /* so we know it's new */
2112 h->drv[i] = drv;
2113 return i;
2114 }
2115 return -1;
2116 }
2117
2118 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2119 {
2120 kfree(h->drv[drv_index]);
2121 h->drv[drv_index] = NULL;
2122 }
2123
2124 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2125 {
2126 put_disk(h->gendisk[drv_index]);
2127 h->gendisk[drv_index] = NULL;
2128 }
2129
2130 /* cciss_add_gendisk finds a free hba[]->drv structure
2131 * and allocates a gendisk if needed, and sets the lunid
2132 * in the drvinfo structure. It returns the index into
2133 * the ->drv[] array, or -1 if none are free.
2134 * is_controller_node indicates whether highest_lun should
2135 * count this disk, or if it's only being added to provide
2136 * a means to talk to the controller in case no logical
2137 * drives have yet been configured.
2138 */
2139 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2140 int controller_node)
2141 {
2142 int drv_index;
2143
2144 drv_index = cciss_alloc_drive_info(h, controller_node);
2145 if (drv_index == -1)
2146 return -1;
2147
2148 /*Check if the gendisk needs to be allocated */
2149 if (!h->gendisk[drv_index]) {
2150 h->gendisk[drv_index] =
2151 alloc_disk(1 << NWD_SHIFT);
2152 if (!h->gendisk[drv_index]) {
2153 printk(KERN_ERR "cciss%d: could not "
2154 "allocate a new disk %d\n",
2155 h->ctlr, drv_index);
2156 goto err_free_drive_info;
2157 }
2158 }
2159 memcpy(h->drv[drv_index]->LunID, lunid,
2160 sizeof(h->drv[drv_index]->LunID));
2161 if (cciss_create_ld_sysfs_entry(h, drv_index))
2162 goto err_free_disk;
2163 /* Don't need to mark this busy because nobody */
2164 /* else knows about this disk yet to contend */
2165 /* for access to it. */
2166 h->drv[drv_index]->busy_configuring = 0;
2167 wmb();
2168 return drv_index;
2169
2170 err_free_disk:
2171 cciss_free_gendisk(h, drv_index);
2172 err_free_drive_info:
2173 cciss_free_drive_info(h, drv_index);
2174 return -1;
2175 }
2176
2177 /* This is for the special case of a controller which
2178 * has no logical drives. In this case, we still need
2179 * to register a disk so the controller can be accessed
2180 * by the Array Config Utility.
2181 */
2182 static void cciss_add_controller_node(ctlr_info_t *h)
2183 {
2184 struct gendisk *disk;
2185 int drv_index;
2186
2187 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2188 return;
2189
2190 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2191 if (drv_index == -1)
2192 goto error;
2193 h->drv[drv_index]->block_size = 512;
2194 h->drv[drv_index]->nr_blocks = 0;
2195 h->drv[drv_index]->heads = 0;
2196 h->drv[drv_index]->sectors = 0;
2197 h->drv[drv_index]->cylinders = 0;
2198 h->drv[drv_index]->raid_level = -1;
2199 memset(h->drv[drv_index]->serial_no, 0, 16);
2200 disk = h->gendisk[drv_index];
2201 if (cciss_add_disk(h, disk, drv_index) == 0)
2202 return;
2203 cciss_free_gendisk(h, drv_index);
2204 cciss_free_drive_info(h, drv_index);
2205 error:
2206 printk(KERN_WARNING "cciss%d: could not "
2207 "add disk 0.\n", h->ctlr);
2208 return;
2209 }
2210
2211 /* This function will add and remove logical drives from the Logical
2212 * drive array of the controller and maintain persistency of ordering
2213 * so that mount points are preserved until the next reboot. This allows
2214 * for the removal of logical drives in the middle of the drive array
2215 * without a re-ordering of those drives.
2216 * INPUT
2217 * h = The controller to perform the operations on
2218 */
2219 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2220 int via_ioctl)
2221 {
2222 int ctlr = h->ctlr;
2223 int num_luns;
2224 ReportLunData_struct *ld_buff = NULL;
2225 int return_code;
2226 int listlength = 0;
2227 int i;
2228 int drv_found;
2229 int drv_index = 0;
2230 unsigned char lunid[8] = CTLR_LUNID;
2231 unsigned long flags;
2232
2233 if (!capable(CAP_SYS_RAWIO))
2234 return -EPERM;
2235
2236 /* Set busy_configuring flag for this operation */
2237 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2238 if (h->busy_configuring) {
2239 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2240 return -EBUSY;
2241 }
2242 h->busy_configuring = 1;
2243 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2244
2245 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2246 if (ld_buff == NULL)
2247 goto mem_msg;
2248
2249 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2250 sizeof(ReportLunData_struct),
2251 0, CTLR_LUNID, TYPE_CMD);
2252
2253 if (return_code == IO_OK)
2254 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2255 else { /* reading number of logical volumes failed */
2256 printk(KERN_WARNING "cciss: report logical volume"
2257 " command failed\n");
2258 listlength = 0;
2259 goto freeret;
2260 }
2261
2262 num_luns = listlength / 8; /* 8 bytes per entry */
2263 if (num_luns > CISS_MAX_LUN) {
2264 num_luns = CISS_MAX_LUN;
2265 printk(KERN_WARNING "cciss: more luns configured"
2266 " on controller than can be handled by"
2267 " this driver.\n");
2268 }
2269
2270 if (num_luns == 0)
2271 cciss_add_controller_node(h);
2272
2273 /* Compare controller drive array to driver's drive array
2274 * to see if any drives are missing on the controller due
2275 * to action of Array Config Utility (user deletes drive)
2276 * and deregister logical drives which have disappeared.
2277 */
2278 for (i = 0; i <= h->highest_lun; i++) {
2279 int j;
2280 drv_found = 0;
2281
2282 /* skip holes in the array from already deleted drives */
2283 if (h->drv[i] == NULL)
2284 continue;
2285
2286 for (j = 0; j < num_luns; j++) {
2287 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2288 if (memcmp(h->drv[i]->LunID, lunid,
2289 sizeof(lunid)) == 0) {
2290 drv_found = 1;
2291 break;
2292 }
2293 }
2294 if (!drv_found) {
2295 /* Deregister it from the OS, it's gone. */
2296 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2297 h->drv[i]->busy_configuring = 1;
2298 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2299 return_code = deregister_disk(h, i, 1, via_ioctl);
2300 if (h->drv[i] != NULL)
2301 h->drv[i]->busy_configuring = 0;
2302 }
2303 }
2304
2305 /* Compare controller drive array to driver's drive array.
2306 * Check for updates in the drive information and any new drives
2307 * on the controller due to ACU adding logical drives, or changing
2308 * a logical drive's size, etc. Reregister any new/changed drives
2309 */
2310 for (i = 0; i < num_luns; i++) {
2311 int j;
2312
2313 drv_found = 0;
2314
2315 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2316 /* Find if the LUN is already in the drive array
2317 * of the driver. If so then update its info
2318 * if not in use. If it does not exist then find
2319 * the first free index and add it.
2320 */
2321 for (j = 0; j <= h->highest_lun; j++) {
2322 if (h->drv[j] != NULL &&
2323 memcmp(h->drv[j]->LunID, lunid,
2324 sizeof(h->drv[j]->LunID)) == 0) {
2325 drv_index = j;
2326 drv_found = 1;
2327 break;
2328 }
2329 }
2330
2331 /* check if the drive was found already in the array */
2332 if (!drv_found) {
2333 drv_index = cciss_add_gendisk(h, lunid, 0);
2334 if (drv_index == -1)
2335 goto freeret;
2336 }
2337 cciss_update_drive_info(ctlr, drv_index, first_time,
2338 via_ioctl);
2339 } /* end for */
2340
2341 freeret:
2342 kfree(ld_buff);
2343 h->busy_configuring = 0;
2344 /* We return -1 here to tell the ACU that we have registered/updated
2345 * all of the drives that we can and to keep it from calling us
2346 * additional times.
2347 */
2348 return -1;
2349 mem_msg:
2350 printk(KERN_ERR "cciss: out of memory\n");
2351 h->busy_configuring = 0;
2352 goto freeret;
2353 }
2354
2355 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2356 {
2357 /* zero out the disk size info */
2358 drive_info->nr_blocks = 0;
2359 drive_info->block_size = 0;
2360 drive_info->heads = 0;
2361 drive_info->sectors = 0;
2362 drive_info->cylinders = 0;
2363 drive_info->raid_level = -1;
2364 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2365 memset(drive_info->model, 0, sizeof(drive_info->model));
2366 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2367 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2368 /*
2369 * don't clear the LUNID though, we need to remember which
2370 * one this one is.
2371 */
2372 }
2373
2374 /* This function will deregister the disk and it's queue from the
2375 * kernel. It must be called with the controller lock held and the
2376 * drv structures busy_configuring flag set. It's parameters are:
2377 *
2378 * disk = This is the disk to be deregistered
2379 * drv = This is the drive_info_struct associated with the disk to be
2380 * deregistered. It contains information about the disk used
2381 * by the driver.
2382 * clear_all = This flag determines whether or not the disk information
2383 * is going to be completely cleared out and the highest_lun
2384 * reset. Sometimes we want to clear out information about
2385 * the disk in preparation for re-adding it. In this case
2386 * the highest_lun should be left unchanged and the LunID
2387 * should not be cleared.
2388 * via_ioctl
2389 * This indicates whether we've reached this path via ioctl.
2390 * This affects the maximum usage count allowed for c0d0 to be messed with.
2391 * If this path is reached via ioctl(), then the max_usage_count will
2392 * be 1, as the process calling ioctl() has got to have the device open.
2393 * If we get here via sysfs, then the max usage count will be zero.
2394 */
2395 static int deregister_disk(ctlr_info_t *h, int drv_index,
2396 int clear_all, int via_ioctl)
2397 {
2398 int i;
2399 struct gendisk *disk;
2400 drive_info_struct *drv;
2401 int recalculate_highest_lun;
2402
2403 if (!capable(CAP_SYS_RAWIO))
2404 return -EPERM;
2405
2406 drv = h->drv[drv_index];
2407 disk = h->gendisk[drv_index];
2408
2409 /* make sure logical volume is NOT is use */
2410 if (clear_all || (h->gendisk[0] == disk)) {
2411 if (drv->usage_count > via_ioctl)
2412 return -EBUSY;
2413 } else if (drv->usage_count > 0)
2414 return -EBUSY;
2415
2416 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2417
2418 /* invalidate the devices and deregister the disk. If it is disk
2419 * zero do not deregister it but just zero out it's values. This
2420 * allows us to delete disk zero but keep the controller registered.
2421 */
2422 if (h->gendisk[0] != disk) {
2423 struct request_queue *q = disk->queue;
2424 if (disk->flags & GENHD_FL_UP) {
2425 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2426 del_gendisk(disk);
2427 }
2428 if (q)
2429 blk_cleanup_queue(q);
2430 /* If clear_all is set then we are deleting the logical
2431 * drive, not just refreshing its info. For drives
2432 * other than disk 0 we will call put_disk. We do not
2433 * do this for disk 0 as we need it to be able to
2434 * configure the controller.
2435 */
2436 if (clear_all){
2437 /* This isn't pretty, but we need to find the
2438 * disk in our array and NULL our the pointer.
2439 * This is so that we will call alloc_disk if
2440 * this index is used again later.
2441 */
2442 for (i=0; i < CISS_MAX_LUN; i++){
2443 if (h->gendisk[i] == disk) {
2444 h->gendisk[i] = NULL;
2445 break;
2446 }
2447 }
2448 put_disk(disk);
2449 }
2450 } else {
2451 set_capacity(disk, 0);
2452 cciss_clear_drive_info(drv);
2453 }
2454
2455 --h->num_luns;
2456
2457 /* if it was the last disk, find the new hightest lun */
2458 if (clear_all && recalculate_highest_lun) {
2459 int newhighest = -1;
2460 for (i = 0; i <= h->highest_lun; i++) {
2461 /* if the disk has size > 0, it is available */
2462 if (h->drv[i] && h->drv[i]->heads)
2463 newhighest = i;
2464 }
2465 h->highest_lun = newhighest;
2466 }
2467 return 0;
2468 }
2469
2470 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2471 size_t size, __u8 page_code, unsigned char *scsi3addr,
2472 int cmd_type)
2473 {
2474 ctlr_info_t *h = hba[ctlr];
2475 u64bit buff_dma_handle;
2476 int status = IO_OK;
2477
2478 c->cmd_type = CMD_IOCTL_PEND;
2479 c->Header.ReplyQueue = 0;
2480 if (buff != NULL) {
2481 c->Header.SGList = 1;
2482 c->Header.SGTotal = 1;
2483 } else {
2484 c->Header.SGList = 0;
2485 c->Header.SGTotal = 0;
2486 }
2487 c->Header.Tag.lower = c->busaddr;
2488 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2489
2490 c->Request.Type.Type = cmd_type;
2491 if (cmd_type == TYPE_CMD) {
2492 switch (cmd) {
2493 case CISS_INQUIRY:
2494 /* are we trying to read a vital product page */
2495 if (page_code != 0) {
2496 c->Request.CDB[1] = 0x01;
2497 c->Request.CDB[2] = page_code;
2498 }
2499 c->Request.CDBLen = 6;
2500 c->Request.Type.Attribute = ATTR_SIMPLE;
2501 c->Request.Type.Direction = XFER_READ;
2502 c->Request.Timeout = 0;
2503 c->Request.CDB[0] = CISS_INQUIRY;
2504 c->Request.CDB[4] = size & 0xFF;
2505 break;
2506 case CISS_REPORT_LOG:
2507 case CISS_REPORT_PHYS:
2508 /* Talking to controller so It's a physical command
2509 mode = 00 target = 0. Nothing to write.
2510 */
2511 c->Request.CDBLen = 12;
2512 c->Request.Type.Attribute = ATTR_SIMPLE;
2513 c->Request.Type.Direction = XFER_READ;
2514 c->Request.Timeout = 0;
2515 c->Request.CDB[0] = cmd;
2516 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2517 c->Request.CDB[7] = (size >> 16) & 0xFF;
2518 c->Request.CDB[8] = (size >> 8) & 0xFF;
2519 c->Request.CDB[9] = size & 0xFF;
2520 break;
2521
2522 case CCISS_READ_CAPACITY:
2523 c->Request.CDBLen = 10;
2524 c->Request.Type.Attribute = ATTR_SIMPLE;
2525 c->Request.Type.Direction = XFER_READ;
2526 c->Request.Timeout = 0;
2527 c->Request.CDB[0] = cmd;
2528 break;
2529 case CCISS_READ_CAPACITY_16:
2530 c->Request.CDBLen = 16;
2531 c->Request.Type.Attribute = ATTR_SIMPLE;
2532 c->Request.Type.Direction = XFER_READ;
2533 c->Request.Timeout = 0;
2534 c->Request.CDB[0] = cmd;
2535 c->Request.CDB[1] = 0x10;
2536 c->Request.CDB[10] = (size >> 24) & 0xFF;
2537 c->Request.CDB[11] = (size >> 16) & 0xFF;
2538 c->Request.CDB[12] = (size >> 8) & 0xFF;
2539 c->Request.CDB[13] = size & 0xFF;
2540 c->Request.Timeout = 0;
2541 c->Request.CDB[0] = cmd;
2542 break;
2543 case CCISS_CACHE_FLUSH:
2544 c->Request.CDBLen = 12;
2545 c->Request.Type.Attribute = ATTR_SIMPLE;
2546 c->Request.Type.Direction = XFER_WRITE;
2547 c->Request.Timeout = 0;
2548 c->Request.CDB[0] = BMIC_WRITE;
2549 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2550 break;
2551 case TEST_UNIT_READY:
2552 c->Request.CDBLen = 6;
2553 c->Request.Type.Attribute = ATTR_SIMPLE;
2554 c->Request.Type.Direction = XFER_NONE;
2555 c->Request.Timeout = 0;
2556 break;
2557 default:
2558 printk(KERN_WARNING
2559 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2560 return IO_ERROR;
2561 }
2562 } else if (cmd_type == TYPE_MSG) {
2563 switch (cmd) {
2564 case 0: /* ABORT message */
2565 c->Request.CDBLen = 12;
2566 c->Request.Type.Attribute = ATTR_SIMPLE;
2567 c->Request.Type.Direction = XFER_WRITE;
2568 c->Request.Timeout = 0;
2569 c->Request.CDB[0] = cmd; /* abort */
2570 c->Request.CDB[1] = 0; /* abort a command */
2571 /* buff contains the tag of the command to abort */
2572 memcpy(&c->Request.CDB[4], buff, 8);
2573 break;
2574 case 1: /* RESET message */
2575 c->Request.CDBLen = 16;
2576 c->Request.Type.Attribute = ATTR_SIMPLE;
2577 c->Request.Type.Direction = XFER_NONE;
2578 c->Request.Timeout = 0;
2579 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2580 c->Request.CDB[0] = cmd; /* reset */
2581 c->Request.CDB[1] = 0x03; /* reset a target */
2582 break;
2583 case 3: /* No-Op message */
2584 c->Request.CDBLen = 1;
2585 c->Request.Type.Attribute = ATTR_SIMPLE;
2586 c->Request.Type.Direction = XFER_WRITE;
2587 c->Request.Timeout = 0;
2588 c->Request.CDB[0] = cmd;
2589 break;
2590 default:
2591 printk(KERN_WARNING
2592 "cciss%d: unknown message type %d\n", ctlr, cmd);
2593 return IO_ERROR;
2594 }
2595 } else {
2596 printk(KERN_WARNING
2597 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2598 return IO_ERROR;
2599 }
2600 /* Fill in the scatter gather information */
2601 if (size > 0) {
2602 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2603 buff, size,
2604 PCI_DMA_BIDIRECTIONAL);
2605 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2606 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2607 c->SG[0].Len = size;
2608 c->SG[0].Ext = 0; /* we are not chaining */
2609 }
2610 return status;
2611 }
2612
2613 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2614 {
2615 switch (c->err_info->ScsiStatus) {
2616 case SAM_STAT_GOOD:
2617 return IO_OK;
2618 case SAM_STAT_CHECK_CONDITION:
2619 switch (0xf & c->err_info->SenseInfo[2]) {
2620 case 0: return IO_OK; /* no sense */
2621 case 1: return IO_OK; /* recovered error */
2622 default:
2623 if (check_for_unit_attention(h, c))
2624 return IO_NEEDS_RETRY;
2625 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2626 "check condition, sense key = 0x%02x\n",
2627 h->ctlr, c->Request.CDB[0],
2628 c->err_info->SenseInfo[2]);
2629 }
2630 break;
2631 default:
2632 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2633 "scsi status = 0x%02x\n", h->ctlr,
2634 c->Request.CDB[0], c->err_info->ScsiStatus);
2635 break;
2636 }
2637 return IO_ERROR;
2638 }
2639
2640 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2641 {
2642 int return_status = IO_OK;
2643
2644 if (c->err_info->CommandStatus == CMD_SUCCESS)
2645 return IO_OK;
2646
2647 switch (c->err_info->CommandStatus) {
2648 case CMD_TARGET_STATUS:
2649 return_status = check_target_status(h, c);
2650 break;
2651 case CMD_DATA_UNDERRUN:
2652 case CMD_DATA_OVERRUN:
2653 /* expected for inquiry and report lun commands */
2654 break;
2655 case CMD_INVALID:
2656 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2657 "reported invalid\n", c->Request.CDB[0]);
2658 return_status = IO_ERROR;
2659 break;
2660 case CMD_PROTOCOL_ERR:
2661 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2662 "protocol error \n", c->Request.CDB[0]);
2663 return_status = IO_ERROR;
2664 break;
2665 case CMD_HARDWARE_ERR:
2666 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2667 " hardware error\n", c->Request.CDB[0]);
2668 return_status = IO_ERROR;
2669 break;
2670 case CMD_CONNECTION_LOST:
2671 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2672 "connection lost\n", c->Request.CDB[0]);
2673 return_status = IO_ERROR;
2674 break;
2675 case CMD_ABORTED:
2676 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2677 "aborted\n", c->Request.CDB[0]);
2678 return_status = IO_ERROR;
2679 break;
2680 case CMD_ABORT_FAILED:
2681 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2682 "abort failed\n", c->Request.CDB[0]);
2683 return_status = IO_ERROR;
2684 break;
2685 case CMD_UNSOLICITED_ABORT:
2686 printk(KERN_WARNING
2687 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2688 c->Request.CDB[0]);
2689 return_status = IO_NEEDS_RETRY;
2690 break;
2691 default:
2692 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2693 "unknown status %x\n", c->Request.CDB[0],
2694 c->err_info->CommandStatus);
2695 return_status = IO_ERROR;
2696 }
2697 return return_status;
2698 }
2699
2700 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2701 int attempt_retry)
2702 {
2703 DECLARE_COMPLETION_ONSTACK(wait);
2704 u64bit buff_dma_handle;
2705 int return_status = IO_OK;
2706
2707 resend_cmd2:
2708 c->waiting = &wait;
2709 enqueue_cmd_and_start_io(h, c);
2710
2711 wait_for_completion(&wait);
2712
2713 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2714 goto command_done;
2715
2716 return_status = process_sendcmd_error(h, c);
2717
2718 if (return_status == IO_NEEDS_RETRY &&
2719 c->retry_count < MAX_CMD_RETRIES) {
2720 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2721 c->Request.CDB[0]);
2722 c->retry_count++;
2723 /* erase the old error information */
2724 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2725 return_status = IO_OK;
2726 INIT_COMPLETION(wait);
2727 goto resend_cmd2;
2728 }
2729
2730 command_done:
2731 /* unlock the buffers from DMA */
2732 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2733 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2734 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2735 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2736 return return_status;
2737 }
2738
2739 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2740 __u8 page_code, unsigned char scsi3addr[],
2741 int cmd_type)
2742 {
2743 ctlr_info_t *h = hba[ctlr];
2744 CommandList_struct *c;
2745 int return_status;
2746
2747 c = cmd_alloc(h, 0);
2748 if (!c)
2749 return -ENOMEM;
2750 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2751 scsi3addr, cmd_type);
2752 if (return_status == IO_OK)
2753 return_status = sendcmd_withirq_core(h, c, 1);
2754
2755 cmd_free(h, c, 0);
2756 return return_status;
2757 }
2758
2759 static void cciss_geometry_inquiry(int ctlr, int logvol,
2760 sector_t total_size,
2761 unsigned int block_size,
2762 InquiryData_struct *inq_buff,
2763 drive_info_struct *drv)
2764 {
2765 int return_code;
2766 unsigned long t;
2767 unsigned char scsi3addr[8];
2768
2769 memset(inq_buff, 0, sizeof(InquiryData_struct));
2770 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2771 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
2772 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2773 if (return_code == IO_OK) {
2774 if (inq_buff->data_byte[8] == 0xFF) {
2775 printk(KERN_WARNING
2776 "cciss: reading geometry failed, volume "
2777 "does not support reading geometry\n");
2778 drv->heads = 255;
2779 drv->sectors = 32; /* Sectors per track */
2780 drv->cylinders = total_size + 1;
2781 drv->raid_level = RAID_UNKNOWN;
2782 } else {
2783 drv->heads = inq_buff->data_byte[6];
2784 drv->sectors = inq_buff->data_byte[7];
2785 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2786 drv->cylinders += inq_buff->data_byte[5];
2787 drv->raid_level = inq_buff->data_byte[8];
2788 }
2789 drv->block_size = block_size;
2790 drv->nr_blocks = total_size + 1;
2791 t = drv->heads * drv->sectors;
2792 if (t > 1) {
2793 sector_t real_size = total_size + 1;
2794 unsigned long rem = sector_div(real_size, t);
2795 if (rem)
2796 real_size++;
2797 drv->cylinders = real_size;
2798 }
2799 } else { /* Get geometry failed */
2800 printk(KERN_WARNING "cciss: reading geometry failed\n");
2801 }
2802 }
2803
2804 static void
2805 cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
2806 unsigned int *block_size)
2807 {
2808 ReadCapdata_struct *buf;
2809 int return_code;
2810 unsigned char scsi3addr[8];
2811
2812 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2813 if (!buf) {
2814 printk(KERN_WARNING "cciss: out of memory\n");
2815 return;
2816 }
2817
2818 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2819 return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
2820 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2821 if (return_code == IO_OK) {
2822 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2823 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2824 } else { /* read capacity command failed */
2825 printk(KERN_WARNING "cciss: read capacity failed\n");
2826 *total_size = 0;
2827 *block_size = BLOCK_SIZE;
2828 }
2829 kfree(buf);
2830 }
2831
2832 static void cciss_read_capacity_16(int ctlr, int logvol,
2833 sector_t *total_size, unsigned int *block_size)
2834 {
2835 ReadCapdata_struct_16 *buf;
2836 int return_code;
2837 unsigned char scsi3addr[8];
2838
2839 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2840 if (!buf) {
2841 printk(KERN_WARNING "cciss: out of memory\n");
2842 return;
2843 }
2844
2845 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2846 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2847 ctlr, buf, sizeof(ReadCapdata_struct_16),
2848 0, scsi3addr, TYPE_CMD);
2849 if (return_code == IO_OK) {
2850 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2851 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2852 } else { /* read capacity command failed */
2853 printk(KERN_WARNING "cciss: read capacity failed\n");
2854 *total_size = 0;
2855 *block_size = BLOCK_SIZE;
2856 }
2857 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2858 (unsigned long long)*total_size+1, *block_size);
2859 kfree(buf);
2860 }
2861
2862 static int cciss_revalidate(struct gendisk *disk)
2863 {
2864 ctlr_info_t *h = get_host(disk);
2865 drive_info_struct *drv = get_drv(disk);
2866 int logvol;
2867 int FOUND = 0;
2868 unsigned int block_size;
2869 sector_t total_size;
2870 InquiryData_struct *inq_buff = NULL;
2871
2872 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2873 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2874 sizeof(drv->LunID)) == 0) {
2875 FOUND = 1;
2876 break;
2877 }
2878 }
2879
2880 if (!FOUND)
2881 return 1;
2882
2883 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2884 if (inq_buff == NULL) {
2885 printk(KERN_WARNING "cciss: out of memory\n");
2886 return 1;
2887 }
2888 if (h->cciss_read == CCISS_READ_10) {
2889 cciss_read_capacity(h->ctlr, logvol,
2890 &total_size, &block_size);
2891 } else {
2892 cciss_read_capacity_16(h->ctlr, logvol,
2893 &total_size, &block_size);
2894 }
2895 cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
2896 inq_buff, drv);
2897
2898 blk_queue_logical_block_size(drv->queue, drv->block_size);
2899 set_capacity(disk, drv->nr_blocks);
2900
2901 kfree(inq_buff);
2902 return 0;
2903 }
2904
2905 /*
2906 * Map (physical) PCI mem into (virtual) kernel space
2907 */
2908 static void __iomem *remap_pci_mem(ulong base, ulong size)
2909 {
2910 ulong page_base = ((ulong) base) & PAGE_MASK;
2911 ulong page_offs = ((ulong) base) - page_base;
2912 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2913
2914 return page_remapped ? (page_remapped + page_offs) : NULL;
2915 }
2916
2917 /*
2918 * Takes jobs of the Q and sends them to the hardware, then puts it on
2919 * the Q to wait for completion.
2920 */
2921 static void start_io(ctlr_info_t *h)
2922 {
2923 CommandList_struct *c;
2924
2925 while (!hlist_empty(&h->reqQ)) {
2926 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2927 /* can't do anything if fifo is full */
2928 if ((h->access.fifo_full(h))) {
2929 printk(KERN_WARNING "cciss: fifo full\n");
2930 break;
2931 }
2932
2933 /* Get the first entry from the Request Q */
2934 removeQ(c);
2935 h->Qdepth--;
2936
2937 /* Tell the controller execute command */
2938 h->access.submit_command(h, c);
2939
2940 /* Put job onto the completed Q */
2941 addQ(&h->cmpQ, c);
2942 }
2943 }
2944
2945 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2946 /* Zeros out the error record and then resends the command back */
2947 /* to the controller */
2948 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2949 {
2950 /* erase the old error information */
2951 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2952
2953 /* add it to software queue and then send it to the controller */
2954 addQ(&h->reqQ, c);
2955 h->Qdepth++;
2956 if (h->Qdepth > h->maxQsinceinit)
2957 h->maxQsinceinit = h->Qdepth;
2958
2959 start_io(h);
2960 }
2961
2962 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2963 unsigned int msg_byte, unsigned int host_byte,
2964 unsigned int driver_byte)
2965 {
2966 /* inverse of macros in scsi.h */
2967 return (scsi_status_byte & 0xff) |
2968 ((msg_byte & 0xff) << 8) |
2969 ((host_byte & 0xff) << 16) |
2970 ((driver_byte & 0xff) << 24);
2971 }
2972
2973 static inline int evaluate_target_status(ctlr_info_t *h,
2974 CommandList_struct *cmd, int *retry_cmd)
2975 {
2976 unsigned char sense_key;
2977 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2978 int error_value;
2979
2980 *retry_cmd = 0;
2981 /* If we get in here, it means we got "target status", that is, scsi status */
2982 status_byte = cmd->err_info->ScsiStatus;
2983 driver_byte = DRIVER_OK;
2984 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2985
2986 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
2987 host_byte = DID_PASSTHROUGH;
2988 else
2989 host_byte = DID_OK;
2990
2991 error_value = make_status_bytes(status_byte, msg_byte,
2992 host_byte, driver_byte);
2993
2994 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2995 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
2996 printk(KERN_WARNING "cciss: cmd %p "
2997 "has SCSI Status 0x%x\n",
2998 cmd, cmd->err_info->ScsiStatus);
2999 return error_value;
3000 }
3001
3002 /* check the sense key */
3003 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3004 /* no status or recovered error */
3005 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3006 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3007 error_value = 0;
3008
3009 if (check_for_unit_attention(h, cmd)) {
3010 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3011 return 0;
3012 }
3013
3014 /* Not SG_IO or similar? */
3015 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3016 if (error_value != 0)
3017 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3018 " sense key = 0x%x\n", cmd, sense_key);
3019 return error_value;
3020 }
3021
3022 /* SG_IO or similar, copy sense data back */
3023 if (cmd->rq->sense) {
3024 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3025 cmd->rq->sense_len = cmd->err_info->SenseLen;
3026 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3027 cmd->rq->sense_len);
3028 } else
3029 cmd->rq->sense_len = 0;
3030
3031 return error_value;
3032 }
3033
3034 /* checks the status of the job and calls complete buffers to mark all
3035 * buffers for the completed job. Note that this function does not need
3036 * to hold the hba/queue lock.
3037 */
3038 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3039 int timeout)
3040 {
3041 int retry_cmd = 0;
3042 struct request *rq = cmd->rq;
3043
3044 rq->errors = 0;
3045
3046 if (timeout)
3047 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3048
3049 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3050 goto after_error_processing;
3051
3052 switch (cmd->err_info->CommandStatus) {
3053 case CMD_TARGET_STATUS:
3054 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3055 break;
3056 case CMD_DATA_UNDERRUN:
3057 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3058 printk(KERN_WARNING "cciss: cmd %p has"
3059 " completed with data underrun "
3060 "reported\n", cmd);
3061 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3062 }
3063 break;
3064 case CMD_DATA_OVERRUN:
3065 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3066 printk(KERN_WARNING "cciss: cmd %p has"
3067 " completed with data overrun "
3068 "reported\n", cmd);
3069 break;
3070 case CMD_INVALID:
3071 printk(KERN_WARNING "cciss: cmd %p is "
3072 "reported invalid\n", cmd);
3073 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3074 cmd->err_info->CommandStatus, DRIVER_OK,
3075 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3076 DID_PASSTHROUGH : DID_ERROR);
3077 break;
3078 case CMD_PROTOCOL_ERR:
3079 printk(KERN_WARNING "cciss: cmd %p has "
3080 "protocol error \n", cmd);
3081 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3082 cmd->err_info->CommandStatus, DRIVER_OK,
3083 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3084 DID_PASSTHROUGH : DID_ERROR);
3085 break;
3086 case CMD_HARDWARE_ERR:
3087 printk(KERN_WARNING "cciss: cmd %p had "
3088 " hardware error\n", cmd);
3089 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3090 cmd->err_info->CommandStatus, DRIVER_OK,
3091 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3092 DID_PASSTHROUGH : DID_ERROR);
3093 break;
3094 case CMD_CONNECTION_LOST:
3095 printk(KERN_WARNING "cciss: cmd %p had "
3096 "connection lost\n", cmd);
3097 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3098 cmd->err_info->CommandStatus, DRIVER_OK,
3099 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3100 DID_PASSTHROUGH : DID_ERROR);
3101 break;
3102 case CMD_ABORTED:
3103 printk(KERN_WARNING "cciss: cmd %p was "
3104 "aborted\n", cmd);
3105 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3106 cmd->err_info->CommandStatus, DRIVER_OK,
3107 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3108 DID_PASSTHROUGH : DID_ABORT);
3109 break;
3110 case CMD_ABORT_FAILED:
3111 printk(KERN_WARNING "cciss: cmd %p reports "
3112 "abort failed\n", cmd);
3113 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3114 cmd->err_info->CommandStatus, DRIVER_OK,
3115 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3116 DID_PASSTHROUGH : DID_ERROR);
3117 break;
3118 case CMD_UNSOLICITED_ABORT:
3119 printk(KERN_WARNING "cciss%d: unsolicited "
3120 "abort %p\n", h->ctlr, cmd);
3121 if (cmd->retry_count < MAX_CMD_RETRIES) {
3122 retry_cmd = 1;
3123 printk(KERN_WARNING
3124 "cciss%d: retrying %p\n", h->ctlr, cmd);
3125 cmd->retry_count++;
3126 } else
3127 printk(KERN_WARNING
3128 "cciss%d: %p retried too "
3129 "many times\n", h->ctlr, cmd);
3130 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3131 cmd->err_info->CommandStatus, DRIVER_OK,
3132 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3133 DID_PASSTHROUGH : DID_ABORT);
3134 break;
3135 case CMD_TIMEOUT:
3136 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3137 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3138 cmd->err_info->CommandStatus, DRIVER_OK,
3139 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3140 DID_PASSTHROUGH : DID_ERROR);
3141 break;
3142 default:
3143 printk(KERN_WARNING "cciss: cmd %p returned "
3144 "unknown status %x\n", cmd,
3145 cmd->err_info->CommandStatus);
3146 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3147 cmd->err_info->CommandStatus, DRIVER_OK,
3148 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3149 DID_PASSTHROUGH : DID_ERROR);
3150 }
3151
3152 after_error_processing:
3153
3154 /* We need to return this command */
3155 if (retry_cmd) {
3156 resend_cciss_cmd(h, cmd);
3157 return;
3158 }
3159 cmd->rq->completion_data = cmd;
3160 blk_complete_request(cmd->rq);
3161 }
3162
3163 static inline u32 cciss_tag_contains_index(u32 tag)
3164 {
3165 #define DIRECT_LOOKUP_BIT 0x10
3166 return tag & DIRECT_LOOKUP_BIT;
3167 }
3168
3169 static inline u32 cciss_tag_to_index(u32 tag)
3170 {
3171 #define DIRECT_LOOKUP_SHIFT 5
3172 return tag >> DIRECT_LOOKUP_SHIFT;
3173 }
3174
3175 static inline u32 cciss_tag_discard_error_bits(u32 tag)
3176 {
3177 #define CCISS_ERROR_BITS 0x03
3178 return tag & ~CCISS_ERROR_BITS;
3179 }
3180
3181 static inline void cciss_mark_tag_indexed(u32 *tag)
3182 {
3183 *tag |= DIRECT_LOOKUP_BIT;
3184 }
3185
3186 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3187 {
3188 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3189 }
3190
3191 /*
3192 * Get a request and submit it to the controller.
3193 */
3194 static void do_cciss_request(struct request_queue *q)
3195 {
3196 ctlr_info_t *h = q->queuedata;
3197 CommandList_struct *c;
3198 sector_t start_blk;
3199 int seg;
3200 struct request *creq;
3201 u64bit temp64;
3202 struct scatterlist *tmp_sg;
3203 SGDescriptor_struct *curr_sg;
3204 drive_info_struct *drv;
3205 int i, dir;
3206 int sg_index = 0;
3207 int chained = 0;
3208
3209 /* We call start_io here in case there is a command waiting on the
3210 * queue that has not been sent.
3211 */
3212 if (blk_queue_plugged(q))
3213 goto startio;
3214
3215 queue:
3216 creq = blk_peek_request(q);
3217 if (!creq)
3218 goto startio;
3219
3220 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3221
3222 if ((c = cmd_alloc(h, 1)) == NULL)
3223 goto full;
3224
3225 blk_start_request(creq);
3226
3227 tmp_sg = h->scatter_list[c->cmdindex];
3228 spin_unlock_irq(q->queue_lock);
3229
3230 c->cmd_type = CMD_RWREQ;
3231 c->rq = creq;
3232
3233 /* fill in the request */
3234 drv = creq->rq_disk->private_data;
3235 c->Header.ReplyQueue = 0; /* unused in simple mode */
3236 /* got command from pool, so use the command block index instead */
3237 /* for direct lookups. */
3238 /* The first 2 bits are reserved for controller error reporting. */
3239 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3240 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3241 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3242 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3243 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3244 c->Request.Type.Attribute = ATTR_SIMPLE;
3245 c->Request.Type.Direction =
3246 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3247 c->Request.Timeout = 0; /* Don't time out */
3248 c->Request.CDB[0] =
3249 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3250 start_blk = blk_rq_pos(creq);
3251 #ifdef CCISS_DEBUG
3252 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3253 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3254 #endif /* CCISS_DEBUG */
3255
3256 sg_init_table(tmp_sg, h->maxsgentries);
3257 seg = blk_rq_map_sg(q, creq, tmp_sg);
3258
3259 /* get the DMA records for the setup */
3260 if (c->Request.Type.Direction == XFER_READ)
3261 dir = PCI_DMA_FROMDEVICE;
3262 else
3263 dir = PCI_DMA_TODEVICE;
3264
3265 curr_sg = c->SG;
3266 sg_index = 0;
3267 chained = 0;
3268
3269 for (i = 0; i < seg; i++) {
3270 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3271 !chained && ((seg - i) > 1)) {
3272 /* Point to next chain block. */
3273 curr_sg = h->cmd_sg_list[c->cmdindex];
3274 sg_index = 0;
3275 chained = 1;
3276 }
3277 curr_sg[sg_index].Len = tmp_sg[i].length;
3278 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3279 tmp_sg[i].offset,
3280 tmp_sg[i].length, dir);
3281 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3282 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3283 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3284 ++sg_index;
3285 }
3286 if (chained)
3287 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3288 (seg - (h->max_cmd_sgentries - 1)) *
3289 sizeof(SGDescriptor_struct));
3290
3291 /* track how many SG entries we are using */
3292 if (seg > h->maxSG)
3293 h->maxSG = seg;
3294
3295 #ifdef CCISS_DEBUG
3296 printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
3297 "chained[%d]\n",
3298 blk_rq_sectors(creq), seg, chained);
3299 #endif /* CCISS_DEBUG */
3300
3301 c->Header.SGTotal = seg + chained;
3302 if (seg <= h->max_cmd_sgentries)
3303 c->Header.SGList = c->Header.SGTotal;
3304 else
3305 c->Header.SGList = h->max_cmd_sgentries;
3306 set_performant_mode(h, c);
3307
3308 if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3309 if(h->cciss_read == CCISS_READ_10) {
3310 c->Request.CDB[1] = 0;
3311 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3312 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3313 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3314 c->Request.CDB[5] = start_blk & 0xff;
3315 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3316 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3317 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3318 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3319 } else {
3320 u32 upper32 = upper_32_bits(start_blk);
3321
3322 c->Request.CDBLen = 16;
3323 c->Request.CDB[1]= 0;
3324 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3325 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3326 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3327 c->Request.CDB[5]= upper32 & 0xff;
3328 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3329 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3330 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3331 c->Request.CDB[9]= start_blk & 0xff;
3332 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3333 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3334 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3335 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3336 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3337 }
3338 } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3339 c->Request.CDBLen = creq->cmd_len;
3340 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3341 } else {
3342 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3343 BUG();
3344 }
3345
3346 spin_lock_irq(q->queue_lock);
3347
3348 addQ(&h->reqQ, c);
3349 h->Qdepth++;
3350 if (h->Qdepth > h->maxQsinceinit)
3351 h->maxQsinceinit = h->Qdepth;
3352
3353 goto queue;
3354 full:
3355 blk_stop_queue(q);
3356 startio:
3357 /* We will already have the driver lock here so not need
3358 * to lock it.
3359 */
3360 start_io(h);
3361 }
3362
3363 static inline unsigned long get_next_completion(ctlr_info_t *h)
3364 {
3365 return h->access.command_completed(h);
3366 }
3367
3368 static inline int interrupt_pending(ctlr_info_t *h)
3369 {
3370 return h->access.intr_pending(h);
3371 }
3372
3373 static inline long interrupt_not_for_us(ctlr_info_t *h)
3374 {
3375 return !(h->msi_vector || h->msix_vector) &&
3376 ((h->access.intr_pending(h) == 0) ||
3377 (h->interrupts_enabled == 0));
3378 }
3379
3380 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3381 u32 raw_tag)
3382 {
3383 if (unlikely(tag_index >= h->nr_cmds)) {
3384 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3385 return 1;
3386 }
3387 return 0;
3388 }
3389
3390 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3391 u32 raw_tag)
3392 {
3393 removeQ(c);
3394 if (likely(c->cmd_type == CMD_RWREQ))
3395 complete_command(h, c, 0);
3396 else if (c->cmd_type == CMD_IOCTL_PEND)
3397 complete(c->waiting);
3398 #ifdef CONFIG_CISS_SCSI_TAPE
3399 else if (c->cmd_type == CMD_SCSI)
3400 complete_scsi_command(c, 0, raw_tag);
3401 #endif
3402 }
3403
3404 static inline u32 next_command(ctlr_info_t *h)
3405 {
3406 u32 a;
3407
3408 if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
3409 return h->access.command_completed(h);
3410
3411 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3412 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3413 (h->reply_pool_head)++;
3414 h->commands_outstanding--;
3415 } else {
3416 a = FIFO_EMPTY;
3417 }
3418 /* Check for wraparound */
3419 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3420 h->reply_pool_head = h->reply_pool;
3421 h->reply_pool_wraparound ^= 1;
3422 }
3423 return a;
3424 }
3425
3426 /* process completion of an indexed ("direct lookup") command */
3427 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3428 {
3429 u32 tag_index;
3430 CommandList_struct *c;
3431
3432 tag_index = cciss_tag_to_index(raw_tag);
3433 if (bad_tag(h, tag_index, raw_tag))
3434 return next_command(h);
3435 c = h->cmd_pool + tag_index;
3436 finish_cmd(h, c, raw_tag);
3437 return next_command(h);
3438 }
3439
3440 /* process completion of a non-indexed command */
3441 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3442 {
3443 u32 tag;
3444 CommandList_struct *c = NULL;
3445 struct hlist_node *tmp;
3446 __u32 busaddr_masked, tag_masked;
3447
3448 tag = cciss_tag_discard_error_bits(raw_tag);
3449 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3450 busaddr_masked = cciss_tag_discard_error_bits(c->busaddr);
3451 tag_masked = cciss_tag_discard_error_bits(tag);
3452 if (busaddr_masked == tag_masked) {
3453 finish_cmd(h, c, raw_tag);
3454 return next_command(h);
3455 }
3456 }
3457 bad_tag(h, h->nr_cmds + 1, raw_tag);
3458 return next_command(h);
3459 }
3460
3461 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3462 {
3463 ctlr_info_t *h = dev_id;
3464 unsigned long flags;
3465 u32 raw_tag;
3466
3467 if (interrupt_not_for_us(h))
3468 return IRQ_NONE;
3469 /*
3470 * If there are completed commands in the completion queue,
3471 * we had better do something about it.
3472 */
3473 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3474 while (interrupt_pending(h)) {
3475 raw_tag = get_next_completion(h);
3476 while (raw_tag != FIFO_EMPTY) {
3477 if (cciss_tag_contains_index(raw_tag))
3478 raw_tag = process_indexed_cmd(h, raw_tag);
3479 else
3480 raw_tag = process_nonindexed_cmd(h, raw_tag);
3481 }
3482 }
3483
3484 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3485 return IRQ_HANDLED;
3486 }
3487
3488 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3489 * check the interrupt pending register because it is not set.
3490 */
3491 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3492 {
3493 ctlr_info_t *h = dev_id;
3494 unsigned long flags;
3495 u32 raw_tag;
3496
3497 if (interrupt_not_for_us(h))
3498 return IRQ_NONE;
3499 /*
3500 * If there are completed commands in the completion queue,
3501 * we had better do something about it.
3502 */
3503 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3504 raw_tag = get_next_completion(h);
3505 while (raw_tag != FIFO_EMPTY) {
3506 if (cciss_tag_contains_index(raw_tag))
3507 raw_tag = process_indexed_cmd(h, raw_tag);
3508 else
3509 raw_tag = process_nonindexed_cmd(h, raw_tag);
3510 }
3511
3512 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3513 return IRQ_HANDLED;
3514 }
3515
3516 /**
3517 * add_to_scan_list() - add controller to rescan queue
3518 * @h: Pointer to the controller.
3519 *
3520 * Adds the controller to the rescan queue if not already on the queue.
3521 *
3522 * returns 1 if added to the queue, 0 if skipped (could be on the
3523 * queue already, or the controller could be initializing or shutting
3524 * down).
3525 **/
3526 static int add_to_scan_list(struct ctlr_info *h)
3527 {
3528 struct ctlr_info *test_h;
3529 int found = 0;
3530 int ret = 0;
3531
3532 if (h->busy_initializing)
3533 return 0;
3534
3535 if (!mutex_trylock(&h->busy_shutting_down))
3536 return 0;
3537
3538 mutex_lock(&scan_mutex);
3539 list_for_each_entry(test_h, &scan_q, scan_list) {
3540 if (test_h == h) {
3541 found = 1;
3542 break;
3543 }
3544 }
3545 if (!found && !h->busy_scanning) {
3546 INIT_COMPLETION(h->scan_wait);
3547 list_add_tail(&h->scan_list, &scan_q);
3548 ret = 1;
3549 }
3550 mutex_unlock(&scan_mutex);
3551 mutex_unlock(&h->busy_shutting_down);
3552
3553 return ret;
3554 }
3555
3556 /**
3557 * remove_from_scan_list() - remove controller from rescan queue
3558 * @h: Pointer to the controller.
3559 *
3560 * Removes the controller from the rescan queue if present. Blocks if
3561 * the controller is currently conducting a rescan. The controller
3562 * can be in one of three states:
3563 * 1. Doesn't need a scan
3564 * 2. On the scan list, but not scanning yet (we remove it)
3565 * 3. Busy scanning (and not on the list). In this case we want to wait for
3566 * the scan to complete to make sure the scanning thread for this
3567 * controller is completely idle.
3568 **/
3569 static void remove_from_scan_list(struct ctlr_info *h)
3570 {
3571 struct ctlr_info *test_h, *tmp_h;
3572
3573 mutex_lock(&scan_mutex);
3574 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3575 if (test_h == h) { /* state 2. */
3576 list_del(&h->scan_list);
3577 complete_all(&h->scan_wait);
3578 mutex_unlock(&scan_mutex);
3579 return;
3580 }
3581 }
3582 if (h->busy_scanning) { /* state 3. */
3583 mutex_unlock(&scan_mutex);
3584 wait_for_completion(&h->scan_wait);
3585 } else { /* state 1, nothing to do. */
3586 mutex_unlock(&scan_mutex);
3587 }
3588 }
3589
3590 /**
3591 * scan_thread() - kernel thread used to rescan controllers
3592 * @data: Ignored.
3593 *
3594 * A kernel thread used scan for drive topology changes on
3595 * controllers. The thread processes only one controller at a time
3596 * using a queue. Controllers are added to the queue using
3597 * add_to_scan_list() and removed from the queue either after done
3598 * processing or using remove_from_scan_list().
3599 *
3600 * returns 0.
3601 **/
3602 static int scan_thread(void *data)
3603 {
3604 struct ctlr_info *h;
3605
3606 while (1) {
3607 set_current_state(TASK_INTERRUPTIBLE);
3608 schedule();
3609 if (kthread_should_stop())
3610 break;
3611
3612 while (1) {
3613 mutex_lock(&scan_mutex);
3614 if (list_empty(&scan_q)) {
3615 mutex_unlock(&scan_mutex);
3616 break;
3617 }
3618
3619 h = list_entry(scan_q.next,
3620 struct ctlr_info,
3621 scan_list);
3622 list_del(&h->scan_list);
3623 h->busy_scanning = 1;
3624 mutex_unlock(&scan_mutex);
3625
3626 rebuild_lun_table(h, 0, 0);
3627 complete_all(&h->scan_wait);
3628 mutex_lock(&scan_mutex);
3629 h->busy_scanning = 0;
3630 mutex_unlock(&scan_mutex);
3631 }
3632 }
3633
3634 return 0;
3635 }
3636
3637 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3638 {
3639 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3640 return 0;
3641
3642 switch (c->err_info->SenseInfo[12]) {
3643 case STATE_CHANGED:
3644 printk(KERN_WARNING "cciss%d: a state change "
3645 "detected, command retried\n", h->ctlr);
3646 return 1;
3647 break;
3648 case LUN_FAILED:
3649 printk(KERN_WARNING "cciss%d: LUN failure "
3650 "detected, action required\n", h->ctlr);
3651 return 1;
3652 break;
3653 case REPORT_LUNS_CHANGED:
3654 printk(KERN_WARNING "cciss%d: report LUN data "
3655 "changed\n", h->ctlr);
3656 /*
3657 * Here, we could call add_to_scan_list and wake up the scan thread,
3658 * except that it's quite likely that we will get more than one
3659 * REPORT_LUNS_CHANGED condition in quick succession, which means
3660 * that those which occur after the first one will likely happen
3661 * *during* the scan_thread's rescan. And the rescan code is not
3662 * robust enough to restart in the middle, undoing what it has already
3663 * done, and it's not clear that it's even possible to do this, since
3664 * part of what it does is notify the block layer, which starts
3665 * doing it's own i/o to read partition tables and so on, and the
3666 * driver doesn't have visibility to know what might need undoing.
3667 * In any event, if possible, it is horribly complicated to get right
3668 * so we just don't do it for now.
3669 *
3670 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3671 */
3672 return 1;
3673 break;
3674 case POWER_OR_RESET:
3675 printk(KERN_WARNING "cciss%d: a power on "
3676 "or device reset detected\n", h->ctlr);
3677 return 1;
3678 break;
3679 case UNIT_ATTENTION_CLEARED:
3680 printk(KERN_WARNING "cciss%d: unit attention "
3681 "cleared by another initiator\n", h->ctlr);
3682 return 1;
3683 break;
3684 default:
3685 printk(KERN_WARNING "cciss%d: unknown "
3686 "unit attention detected\n", h->ctlr);
3687 return 1;
3688 }
3689 }
3690
3691 /*
3692 * We cannot read the structure directly, for portability we must use
3693 * the io functions.
3694 * This is for debug only.
3695 */
3696 #ifdef CCISS_DEBUG
3697 static void print_cfg_table(CfgTable_struct *tb)
3698 {
3699 int i;
3700 char temp_name[17];
3701
3702 printk("Controller Configuration information\n");
3703 printk("------------------------------------\n");
3704 for (i = 0; i < 4; i++)
3705 temp_name[i] = readb(&(tb->Signature[i]));
3706 temp_name[4] = '\0';
3707 printk(" Signature = %s\n", temp_name);
3708 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3709 printk(" Transport methods supported = 0x%x\n",
3710 readl(&(tb->TransportSupport)));
3711 printk(" Transport methods active = 0x%x\n",
3712 readl(&(tb->TransportActive)));
3713 printk(" Requested transport Method = 0x%x\n",
3714 readl(&(tb->HostWrite.TransportRequest)));
3715 printk(" Coalesce Interrupt Delay = 0x%x\n",
3716 readl(&(tb->HostWrite.CoalIntDelay)));
3717 printk(" Coalesce Interrupt Count = 0x%x\n",
3718 readl(&(tb->HostWrite.CoalIntCount)));
3719 printk(" Max outstanding commands = 0x%d\n",
3720 readl(&(tb->CmdsOutMax)));
3721 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3722 for (i = 0; i < 16; i++)
3723 temp_name[i] = readb(&(tb->ServerName[i]));
3724 temp_name[16] = '\0';
3725 printk(" Server Name = %s\n", temp_name);
3726 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3727 }
3728 #endif /* CCISS_DEBUG */
3729
3730 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3731 {
3732 int i, offset, mem_type, bar_type;
3733 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3734 return 0;
3735 offset = 0;
3736 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3737 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3738 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3739 offset += 4;
3740 else {
3741 mem_type = pci_resource_flags(pdev, i) &
3742 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3743 switch (mem_type) {
3744 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3745 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3746 offset += 4; /* 32 bit */
3747 break;
3748 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3749 offset += 8;
3750 break;
3751 default: /* reserved in PCI 2.2 */
3752 printk(KERN_WARNING
3753 "Base address is invalid\n");
3754 return -1;
3755 break;
3756 }
3757 }
3758 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3759 return i + 1;
3760 }
3761 return -1;
3762 }
3763
3764 /* Fill in bucket_map[], given nsgs (the max number of
3765 * scatter gather elements supported) and bucket[],
3766 * which is an array of 8 integers. The bucket[] array
3767 * contains 8 different DMA transfer sizes (in 16
3768 * byte increments) which the controller uses to fetch
3769 * commands. This function fills in bucket_map[], which
3770 * maps a given number of scatter gather elements to one of
3771 * the 8 DMA transfer sizes. The point of it is to allow the
3772 * controller to only do as much DMA as needed to fetch the
3773 * command, with the DMA transfer size encoded in the lower
3774 * bits of the command address.
3775 */
3776 static void calc_bucket_map(int bucket[], int num_buckets,
3777 int nsgs, int *bucket_map)
3778 {
3779 int i, j, b, size;
3780
3781 /* even a command with 0 SGs requires 4 blocks */
3782 #define MINIMUM_TRANSFER_BLOCKS 4
3783 #define NUM_BUCKETS 8
3784 /* Note, bucket_map must have nsgs+1 entries. */
3785 for (i = 0; i <= nsgs; i++) {
3786 /* Compute size of a command with i SG entries */
3787 size = i + MINIMUM_TRANSFER_BLOCKS;
3788 b = num_buckets; /* Assume the biggest bucket */
3789 /* Find the bucket that is just big enough */
3790 for (j = 0; j < 8; j++) {
3791 if (bucket[j] >= size) {
3792 b = j;
3793 break;
3794 }
3795 }
3796 /* for a command with i SG entries, use bucket b. */
3797 bucket_map[i] = b;
3798 }
3799 }
3800
3801 static void
3802 cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3803 {
3804 int l = 0;
3805 __u32 trans_support;
3806 __u32 trans_offset;
3807 /*
3808 * 5 = 1 s/g entry or 4k
3809 * 6 = 2 s/g entry or 8k
3810 * 8 = 4 s/g entry or 16k
3811 * 10 = 6 s/g entry or 24k
3812 */
3813 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3814 unsigned long register_value;
3815
3816 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3817
3818 /* Attempt to put controller into performant mode if supported */
3819 /* Does board support performant mode? */
3820 trans_support = readl(&(h->cfgtable->TransportSupport));
3821 if (!(trans_support & PERFORMANT_MODE))
3822 return;
3823
3824 printk(KERN_WARNING "cciss%d: Placing controller into "
3825 "performant mode\n", h->ctlr);
3826 /* Performant mode demands commands on a 32 byte boundary
3827 * pci_alloc_consistent aligns on page boundarys already.
3828 * Just need to check if divisible by 32
3829 */
3830 if ((sizeof(CommandList_struct) % 32) != 0) {
3831 printk(KERN_WARNING "%s %d %s\n",
3832 "cciss info: command size[",
3833 (int)sizeof(CommandList_struct),
3834 "] not divisible by 32, no performant mode..\n");
3835 return;
3836 }
3837
3838 /* Performant mode ring buffer and supporting data structures */
3839 h->reply_pool = (__u64 *)pci_alloc_consistent(
3840 h->pdev, h->max_commands * sizeof(__u64),
3841 &(h->reply_pool_dhandle));
3842
3843 /* Need a block fetch table for performant mode */
3844 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
3845 sizeof(__u32)), GFP_KERNEL);
3846
3847 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
3848 goto clean_up;
3849
3850 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3851
3852 /* Controller spec: zero out this buffer. */
3853 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3854 h->reply_pool_head = h->reply_pool;
3855
3856 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3857 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3858 h->blockFetchTable);
3859 writel(bft[0], &h->transtable->BlockFetch0);
3860 writel(bft[1], &h->transtable->BlockFetch1);
3861 writel(bft[2], &h->transtable->BlockFetch2);
3862 writel(bft[3], &h->transtable->BlockFetch3);
3863 writel(bft[4], &h->transtable->BlockFetch4);
3864 writel(bft[5], &h->transtable->BlockFetch5);
3865 writel(bft[6], &h->transtable->BlockFetch6);
3866 writel(bft[7], &h->transtable->BlockFetch7);
3867
3868 /* size of controller ring buffer */
3869 writel(h->max_commands, &h->transtable->RepQSize);
3870 writel(1, &h->transtable->RepQCount);
3871 writel(0, &h->transtable->RepQCtrAddrLow32);
3872 writel(0, &h->transtable->RepQCtrAddrHigh32);
3873 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3874 writel(0, &h->transtable->RepQAddr0High32);
3875 writel(CFGTBL_Trans_Performant,
3876 &(h->cfgtable->HostWrite.TransportRequest));
3877
3878 h->transMethod = CFGTBL_Trans_Performant;
3879 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3880 /* under certain very rare conditions, this can take awhile.
3881 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3882 * as we enter this code.) */
3883 for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3884 register_value = readl(h->vaddr + SA5_DOORBELL);
3885 if (!(register_value & CFGTBL_ChangeReq))
3886 break;
3887 /* delay and try again */
3888 set_current_state(TASK_INTERRUPTIBLE);
3889 schedule_timeout(10);
3890 }
3891 register_value = readl(&(h->cfgtable->TransportActive));
3892 if (!(register_value & CFGTBL_Trans_Performant)) {
3893 printk(KERN_WARNING "cciss: unable to get board into"
3894 " performant mode\n");
3895 return;
3896 }
3897
3898 /* Change the access methods to the performant access methods */
3899 h->access = SA5_performant_access;
3900
3901 return;
3902 clean_up:
3903 kfree(h->blockFetchTable);
3904 if (h->reply_pool)
3905 pci_free_consistent(h->pdev,
3906 h->max_commands * sizeof(__u64),
3907 h->reply_pool,
3908 h->reply_pool_dhandle);
3909 return;
3910
3911 } /* cciss_put_controller_into_performant_mode */
3912
3913 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3914 * controllers that are capable. If not, we use IO-APIC mode.
3915 */
3916
3917 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3918 struct pci_dev *pdev, __u32 board_id)
3919 {
3920 #ifdef CONFIG_PCI_MSI
3921 int err;
3922 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3923 {0, 2}, {0, 3}
3924 };
3925
3926 /* Some boards advertise MSI but don't really support it */
3927 if ((board_id == 0x40700E11) ||
3928 (board_id == 0x40800E11) ||
3929 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3930 goto default_int_mode;
3931
3932 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3933 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3934 if (!err) {
3935 c->intr[0] = cciss_msix_entries[0].vector;
3936 c->intr[1] = cciss_msix_entries[1].vector;
3937 c->intr[2] = cciss_msix_entries[2].vector;
3938 c->intr[3] = cciss_msix_entries[3].vector;
3939 c->msix_vector = 1;
3940 return;
3941 }
3942 if (err > 0) {
3943 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3944 "available\n", err);
3945 goto default_int_mode;
3946 } else {
3947 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3948 err);
3949 goto default_int_mode;
3950 }
3951 }
3952 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3953 if (!pci_enable_msi(pdev)) {
3954 c->msi_vector = 1;
3955 } else {
3956 printk(KERN_WARNING "cciss: MSI init failed\n");
3957 }
3958 }
3959 default_int_mode:
3960 #endif /* CONFIG_PCI_MSI */
3961 /* if we get here we're going to use the default interrupt mode */
3962 c->intr[PERF_MODE_INT] = pdev->irq;
3963 return;
3964 }
3965
3966 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3967 {
3968 ushort subsystem_vendor_id, subsystem_device_id, command;
3969 __u32 board_id, scratchpad = 0;
3970 __u64 cfg_offset;
3971 __u32 cfg_base_addr;
3972 __u64 cfg_base_addr_index;
3973 int i, prod_index, err;
3974 __u32 trans_offset;
3975
3976 subsystem_vendor_id = pdev->subsystem_vendor;
3977 subsystem_device_id = pdev->subsystem_device;
3978 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3979 subsystem_vendor_id);
3980
3981 for (i = 0; i < ARRAY_SIZE(products); i++) {
3982 /* Stand aside for hpsa driver on request */
3983 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3984 return -ENODEV;
3985 if (board_id == products[i].board_id)
3986 break;
3987 }
3988 prod_index = i;
3989 if (prod_index == ARRAY_SIZE(products)) {
3990 dev_warn(&pdev->dev,
3991 "unrecognized board ID: 0x%08lx, ignoring.\n",
3992 (unsigned long) board_id);
3993 return -ENODEV;
3994 }
3995
3996 /* check to see if controller has been disabled */
3997 /* BEFORE trying to enable it */
3998 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3999 if (!(command & 0x02)) {
4000 printk(KERN_WARNING
4001 "cciss: controller appears to be disabled\n");
4002 return -ENODEV;
4003 }
4004
4005 err = pci_enable_device(pdev);
4006 if (err) {
4007 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
4008 return err;
4009 }
4010
4011 err = pci_request_regions(pdev, "cciss");
4012 if (err) {
4013 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
4014 "aborting\n");
4015 return err;
4016 }
4017
4018 #ifdef CCISS_DEBUG
4019 printk("command = %x\n", command);
4020 printk("irq = %x\n", pdev->irq);
4021 printk("board_id = %x\n", board_id);
4022 #endif /* CCISS_DEBUG */
4023
4024 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4025 * else we use the IO-APIC interrupt assigned to us by system ROM.
4026 */
4027 cciss_interrupt_mode(c, pdev, board_id);
4028
4029 /* find the memory BAR */
4030 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4031 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
4032 break;
4033 }
4034 if (i == DEVICE_COUNT_RESOURCE) {
4035 printk(KERN_WARNING "cciss: No memory BAR found\n");
4036 err = -ENODEV;
4037 goto err_out_free_res;
4038 }
4039
4040 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
4041 * already removed
4042 */
4043
4044 #ifdef CCISS_DEBUG
4045 printk("address 0 = %lx\n", c->paddr);
4046 #endif /* CCISS_DEBUG */
4047 c->vaddr = remap_pci_mem(c->paddr, 0x250);
4048
4049 /* Wait for the board to become ready. (PCI hotplug needs this.)
4050 * We poll for up to 120 secs, once per 100ms. */
4051 for (i = 0; i < 1200; i++) {
4052 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
4053 if (scratchpad == CCISS_FIRMWARE_READY)
4054 break;
4055 set_current_state(TASK_INTERRUPTIBLE);
4056 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
4057 }
4058 if (scratchpad != CCISS_FIRMWARE_READY) {
4059 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
4060 err = -ENODEV;
4061 goto err_out_free_res;
4062 }
4063
4064 /* get the address index number */
4065 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
4066 cfg_base_addr &= (__u32) 0x0000ffff;
4067 #ifdef CCISS_DEBUG
4068 printk("cfg base address = %x\n", cfg_base_addr);
4069 #endif /* CCISS_DEBUG */
4070 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
4071 #ifdef CCISS_DEBUG
4072 printk("cfg base address index = %llx\n",
4073 (unsigned long long)cfg_base_addr_index);
4074 #endif /* CCISS_DEBUG */
4075 if (cfg_base_addr_index == -1) {
4076 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
4077 err = -ENODEV;
4078 goto err_out_free_res;
4079 }
4080
4081 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
4082 #ifdef CCISS_DEBUG
4083 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
4084 #endif /* CCISS_DEBUG */
4085 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
4086 cfg_base_addr_index) +
4087 cfg_offset, sizeof(CfgTable_struct));
4088 /* Find performant mode table. */
4089 trans_offset = readl(&(c->cfgtable->TransMethodOffset));
4090 c->transtable = remap_pci_mem(pci_resource_start(pdev,
4091 cfg_base_addr_index) + cfg_offset+trans_offset,
4092 sizeof(*c->transtable));
4093 c->board_id = board_id;
4094
4095 #ifdef CCISS_DEBUG
4096 print_cfg_table(c->cfgtable);
4097 #endif /* CCISS_DEBUG */
4098
4099 /* Some controllers support Zero Memory Raid (ZMR).
4100 * When configured in ZMR mode the number of supported
4101 * commands drops to 64. So instead of just setting an
4102 * arbitrary value we make the driver a little smarter.
4103 * We read the config table to tell us how many commands
4104 * are supported on the controller then subtract 4 to
4105 * leave a little room for ioctl calls.
4106 */
4107 c->max_commands = readl(&(c->cfgtable->MaxPerformantModeCommands));
4108 c->maxsgentries = readl(&(c->cfgtable->MaxSGElements));
4109
4110 /*
4111 * Limit native command to 32 s/g elements to save dma'able memory.
4112 * Howvever spec says if 0, use 31
4113 */
4114
4115 c->max_cmd_sgentries = 31;
4116 if (c->maxsgentries > 512) {
4117 c->max_cmd_sgentries = 32;
4118 c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1;
4119 c->maxsgentries -= 1; /* account for chain pointer */
4120 } else {
4121 c->maxsgentries = 31; /* Default to traditional value */
4122 c->chainsize = 0; /* traditional */
4123 }
4124
4125 c->product_name = products[prod_index].product_name;
4126 c->access = *(products[prod_index].access);
4127 c->nr_cmds = c->max_commands - 4;
4128 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
4129 (readb(&c->cfgtable->Signature[1]) != 'I') ||
4130 (readb(&c->cfgtable->Signature[2]) != 'S') ||
4131 (readb(&c->cfgtable->Signature[3]) != 'S')) {
4132 printk("Does not appear to be a valid CISS config table\n");
4133 err = -ENODEV;
4134 goto err_out_free_res;
4135 }
4136 #ifdef CONFIG_X86
4137 {
4138 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4139 __u32 prefetch;
4140 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
4141 prefetch |= 0x100;
4142 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
4143 }
4144 #endif
4145
4146 /* Disabling DMA prefetch and refetch for the P600.
4147 * An ASIC bug may result in accesses to invalid memory addresses.
4148 * We've disabled prefetch for some time now. Testing with XEN
4149 * kernels revealed a bug in the refetch if dom0 resides on a P600.
4150 */
4151 if(board_id == 0x3225103C) {
4152 __u32 dma_prefetch;
4153 __u32 dma_refetch;
4154 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
4155 dma_prefetch |= 0x8000;
4156 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
4157 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
4158 dma_refetch |= 0x1;
4159 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
4160 }
4161
4162 #ifdef CCISS_DEBUG
4163 printk(KERN_WARNING "Trying to put board into Performant mode\n");
4164 #endif /* CCISS_DEBUG */
4165 cciss_put_controller_into_performant_mode(c);
4166 return 0;
4167
4168 err_out_free_res:
4169 /*
4170 * Deliberately omit pci_disable_device(): it does something nasty to
4171 * Smart Array controllers that pci_enable_device does not undo
4172 */
4173 pci_release_regions(pdev);
4174 return err;
4175 }
4176
4177 /* Function to find the first free pointer into our hba[] array
4178 * Returns -1 if no free entries are left.
4179 */
4180 static int alloc_cciss_hba(void)
4181 {
4182 int i;
4183
4184 for (i = 0; i < MAX_CTLR; i++) {
4185 if (!hba[i]) {
4186 ctlr_info_t *p;
4187
4188 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4189 if (!p)
4190 goto Enomem;
4191 hba[i] = p;
4192 return i;
4193 }
4194 }
4195 printk(KERN_WARNING "cciss: This driver supports a maximum"
4196 " of %d controllers.\n", MAX_CTLR);
4197 return -1;
4198 Enomem:
4199 printk(KERN_ERR "cciss: out of memory.\n");
4200 return -1;
4201 }
4202
4203 static void free_hba(int n)
4204 {
4205 ctlr_info_t *h = hba[n];
4206 int i;
4207
4208 hba[n] = NULL;
4209 for (i = 0; i < h->highest_lun + 1; i++)
4210 if (h->gendisk[i] != NULL)
4211 put_disk(h->gendisk[i]);
4212 kfree(h);
4213 }
4214
4215 /* Send a message CDB to the firmware. */
4216 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4217 {
4218 typedef struct {
4219 CommandListHeader_struct CommandHeader;
4220 RequestBlock_struct Request;
4221 ErrDescriptor_struct ErrorDescriptor;
4222 } Command;
4223 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4224 Command *cmd;
4225 dma_addr_t paddr64;
4226 uint32_t paddr32, tag;
4227 void __iomem *vaddr;
4228 int i, err;
4229
4230 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4231 if (vaddr == NULL)
4232 return -ENOMEM;
4233
4234 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4235 CCISS commands, so they must be allocated from the lower 4GiB of
4236 memory. */
4237 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4238 if (err) {
4239 iounmap(vaddr);
4240 return -ENOMEM;
4241 }
4242
4243 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4244 if (cmd == NULL) {
4245 iounmap(vaddr);
4246 return -ENOMEM;
4247 }
4248
4249 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4250 although there's no guarantee, we assume that the address is at
4251 least 4-byte aligned (most likely, it's page-aligned). */
4252 paddr32 = paddr64;
4253
4254 cmd->CommandHeader.ReplyQueue = 0;
4255 cmd->CommandHeader.SGList = 0;
4256 cmd->CommandHeader.SGTotal = 0;
4257 cmd->CommandHeader.Tag.lower = paddr32;
4258 cmd->CommandHeader.Tag.upper = 0;
4259 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4260
4261 cmd->Request.CDBLen = 16;
4262 cmd->Request.Type.Type = TYPE_MSG;
4263 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4264 cmd->Request.Type.Direction = XFER_NONE;
4265 cmd->Request.Timeout = 0; /* Don't time out */
4266 cmd->Request.CDB[0] = opcode;
4267 cmd->Request.CDB[1] = type;
4268 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4269
4270 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4271 cmd->ErrorDescriptor.Addr.upper = 0;
4272 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4273
4274 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4275
4276 for (i = 0; i < 10; i++) {
4277 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4278 if ((tag & ~3) == paddr32)
4279 break;
4280 schedule_timeout_uninterruptible(HZ);
4281 }
4282
4283 iounmap(vaddr);
4284
4285 /* we leak the DMA buffer here ... no choice since the controller could
4286 still complete the command. */
4287 if (i == 10) {
4288 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4289 opcode, type);
4290 return -ETIMEDOUT;
4291 }
4292
4293 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4294
4295 if (tag & 2) {
4296 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4297 opcode, type);
4298 return -EIO;
4299 }
4300
4301 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4302 opcode, type);
4303 return 0;
4304 }
4305
4306 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4307 #define cciss_noop(p) cciss_message(p, 3, 0)
4308
4309 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4310 {
4311 /* the #defines are stolen from drivers/pci/msi.h. */
4312 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4313 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4314
4315 int pos;
4316 u16 control = 0;
4317
4318 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4319 if (pos) {
4320 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4321 if (control & PCI_MSI_FLAGS_ENABLE) {
4322 printk(KERN_INFO "cciss: resetting MSI\n");
4323 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4324 }
4325 }
4326
4327 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4328 if (pos) {
4329 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4330 if (control & PCI_MSIX_FLAGS_ENABLE) {
4331 printk(KERN_INFO "cciss: resetting MSI-X\n");
4332 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4333 }
4334 }
4335
4336 return 0;
4337 }
4338
4339 /* This does a hard reset of the controller using PCI power management
4340 * states. */
4341 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4342 {
4343 u16 pmcsr, saved_config_space[32];
4344 int i, pos;
4345
4346 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4347
4348 /* This is very nearly the same thing as
4349
4350 pci_save_state(pci_dev);
4351 pci_set_power_state(pci_dev, PCI_D3hot);
4352 pci_set_power_state(pci_dev, PCI_D0);
4353 pci_restore_state(pci_dev);
4354
4355 but we can't use these nice canned kernel routines on
4356 kexec, because they also check the MSI/MSI-X state in PCI
4357 configuration space and do the wrong thing when it is
4358 set/cleared. Also, the pci_save/restore_state functions
4359 violate the ordering requirements for restoring the
4360 configuration space from the CCISS document (see the
4361 comment below). So we roll our own .... */
4362
4363 for (i = 0; i < 32; i++)
4364 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4365
4366 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4367 if (pos == 0) {
4368 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4369 return -ENODEV;
4370 }
4371
4372 /* Quoting from the Open CISS Specification: "The Power
4373 * Management Control/Status Register (CSR) controls the power
4374 * state of the device. The normal operating state is D0,
4375 * CSR=00h. The software off state is D3, CSR=03h. To reset
4376 * the controller, place the interface device in D3 then to
4377 * D0, this causes a secondary PCI reset which will reset the
4378 * controller." */
4379
4380 /* enter the D3hot power management state */
4381 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4382 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4383 pmcsr |= PCI_D3hot;
4384 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4385
4386 schedule_timeout_uninterruptible(HZ >> 1);
4387
4388 /* enter the D0 power management state */
4389 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4390 pmcsr |= PCI_D0;
4391 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4392
4393 schedule_timeout_uninterruptible(HZ >> 1);
4394
4395 /* Restore the PCI configuration space. The Open CISS
4396 * Specification says, "Restore the PCI Configuration
4397 * Registers, offsets 00h through 60h. It is important to
4398 * restore the command register, 16-bits at offset 04h,
4399 * last. Do not restore the configuration status register,
4400 * 16-bits at offset 06h." Note that the offset is 2*i. */
4401 for (i = 0; i < 32; i++) {
4402 if (i == 2 || i == 3)
4403 continue;
4404 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4405 }
4406 wmb();
4407 pci_write_config_word(pdev, 4, saved_config_space[2]);
4408
4409 return 0;
4410 }
4411
4412 /*
4413 * This is it. Find all the controllers and register them. I really hate
4414 * stealing all these major device numbers.
4415 * returns the number of block devices registered.
4416 */
4417 static int __devinit cciss_init_one(struct pci_dev *pdev,
4418 const struct pci_device_id *ent)
4419 {
4420 int i;
4421 int j = 0;
4422 int k = 0;
4423 int rc;
4424 int dac, return_code;
4425 InquiryData_struct *inq_buff;
4426
4427 if (reset_devices) {
4428 /* Reset the controller with a PCI power-cycle */
4429 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4430 return -ENODEV;
4431
4432 /* Now try to get the controller to respond to a no-op. Some
4433 devices (notably the HP Smart Array 5i Controller) need
4434 up to 30 seconds to respond. */
4435 for (i=0; i<30; i++) {
4436 if (cciss_noop(pdev) == 0)
4437 break;
4438
4439 schedule_timeout_uninterruptible(HZ);
4440 }
4441 if (i == 30) {
4442 printk(KERN_ERR "cciss: controller seems dead\n");
4443 return -EBUSY;
4444 }
4445 }
4446
4447 i = alloc_cciss_hba();
4448 if (i < 0)
4449 return -1;
4450 hba[i]->busy_initializing = 1;
4451 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4452 INIT_HLIST_HEAD(&hba[i]->reqQ);
4453 mutex_init(&hba[i]->busy_shutting_down);
4454
4455 if (cciss_pci_init(hba[i], pdev) != 0)
4456 goto clean_no_release_regions;
4457
4458 sprintf(hba[i]->devname, "cciss%d", i);
4459 hba[i]->ctlr = i;
4460 hba[i]->pdev = pdev;
4461
4462 init_completion(&hba[i]->scan_wait);
4463
4464 if (cciss_create_hba_sysfs_entry(hba[i]))
4465 goto clean0;
4466
4467 /* configure PCI DMA stuff */
4468 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4469 dac = 1;
4470 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4471 dac = 0;
4472 else {
4473 printk(KERN_ERR "cciss: no suitable DMA available\n");
4474 goto clean1;
4475 }
4476
4477 /*
4478 * register with the major number, or get a dynamic major number
4479 * by passing 0 as argument. This is done for greater than
4480 * 8 controller support.
4481 */
4482 if (i < MAX_CTLR_ORIG)
4483 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4484 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4485 if (rc == -EBUSY || rc == -EINVAL) {
4486 printk(KERN_ERR
4487 "cciss: Unable to get major number %d for %s "
4488 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4489 goto clean1;
4490 } else {
4491 if (i >= MAX_CTLR_ORIG)
4492 hba[i]->major = rc;
4493 }
4494
4495 /* make sure the board interrupts are off */
4496 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4497 if (hba[i]->msi_vector || hba[i]->msix_vector) {
4498 if (request_irq(hba[i]->intr[PERF_MODE_INT],
4499 do_cciss_msix_intr,
4500 IRQF_DISABLED, hba[i]->devname, hba[i])) {
4501 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4502 hba[i]->intr[PERF_MODE_INT], hba[i]->devname);
4503 goto clean2;
4504 }
4505 } else {
4506 if (request_irq(hba[i]->intr[PERF_MODE_INT], do_cciss_intx,
4507 IRQF_DISABLED, hba[i]->devname, hba[i])) {
4508 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4509 hba[i]->intr[PERF_MODE_INT], hba[i]->devname);
4510 goto clean2;
4511 }
4512 }
4513
4514 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4515 hba[i]->devname, pdev->device, pci_name(pdev),
4516 hba[i]->intr[PERF_MODE_INT], dac ? "" : " not");
4517
4518 hba[i]->cmd_pool_bits =
4519 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4520 * sizeof(unsigned long), GFP_KERNEL);
4521 hba[i]->cmd_pool = (CommandList_struct *)
4522 pci_alloc_consistent(hba[i]->pdev,
4523 hba[i]->nr_cmds * sizeof(CommandList_struct),
4524 &(hba[i]->cmd_pool_dhandle));
4525 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4526 pci_alloc_consistent(hba[i]->pdev,
4527 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4528 &(hba[i]->errinfo_pool_dhandle));
4529 if ((hba[i]->cmd_pool_bits == NULL)
4530 || (hba[i]->cmd_pool == NULL)
4531 || (hba[i]->errinfo_pool == NULL)) {
4532 printk(KERN_ERR "cciss: out of memory");
4533 goto clean4;
4534 }
4535
4536 /* Need space for temp scatter list */
4537 hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
4538 sizeof(struct scatterlist *),
4539 GFP_KERNEL);
4540 for (k = 0; k < hba[i]->nr_cmds; k++) {
4541 hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4542 hba[i]->maxsgentries,
4543 GFP_KERNEL);
4544 if (hba[i]->scatter_list[k] == NULL) {
4545 printk(KERN_ERR "cciss%d: could not allocate "
4546 "s/g lists\n", i);
4547 goto clean4;
4548 }
4549 }
4550 hba[i]->cmd_sg_list = cciss_allocate_sg_chain_blocks(hba[i],
4551 hba[i]->chainsize, hba[i]->nr_cmds);
4552 if (!hba[i]->cmd_sg_list && hba[i]->chainsize > 0)
4553 goto clean4;
4554
4555 spin_lock_init(&hba[i]->lock);
4556
4557 /* Initialize the pdev driver private data.
4558 have it point to hba[i]. */
4559 pci_set_drvdata(pdev, hba[i]);
4560 /* command and error info recs zeroed out before
4561 they are used */
4562 memset(hba[i]->cmd_pool_bits, 0,
4563 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4564 * sizeof(unsigned long));
4565
4566 hba[i]->num_luns = 0;
4567 hba[i]->highest_lun = -1;
4568 for (j = 0; j < CISS_MAX_LUN; j++) {
4569 hba[i]->drv[j] = NULL;
4570 hba[i]->gendisk[j] = NULL;
4571 }
4572
4573 cciss_scsi_setup(i);
4574
4575 /* Turn the interrupts on so we can service requests */
4576 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4577
4578 /* Get the firmware version */
4579 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4580 if (inq_buff == NULL) {
4581 printk(KERN_ERR "cciss: out of memory\n");
4582 goto clean4;
4583 }
4584
4585 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4586 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4587 if (return_code == IO_OK) {
4588 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4589 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4590 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4591 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4592 } else { /* send command failed */
4593 printk(KERN_WARNING "cciss: unable to determine firmware"
4594 " version of controller\n");
4595 }
4596 kfree(inq_buff);
4597
4598 cciss_procinit(i);
4599
4600 hba[i]->cciss_max_sectors = 8192;
4601
4602 rebuild_lun_table(hba[i], 1, 0);
4603 hba[i]->busy_initializing = 0;
4604 return 1;
4605
4606 clean4:
4607 kfree(hba[i]->cmd_pool_bits);
4608 /* Free up sg elements */
4609 for (k = 0; k < hba[i]->nr_cmds; k++)
4610 kfree(hba[i]->scatter_list[k]);
4611 kfree(hba[i]->scatter_list);
4612 cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4613 if (hba[i]->cmd_pool)
4614 pci_free_consistent(hba[i]->pdev,
4615 hba[i]->nr_cmds * sizeof(CommandList_struct),
4616 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4617 if (hba[i]->errinfo_pool)
4618 pci_free_consistent(hba[i]->pdev,
4619 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4620 hba[i]->errinfo_pool,
4621 hba[i]->errinfo_pool_dhandle);
4622 free_irq(hba[i]->intr[PERF_MODE_INT], hba[i]);
4623 clean2:
4624 unregister_blkdev(hba[i]->major, hba[i]->devname);
4625 clean1:
4626 cciss_destroy_hba_sysfs_entry(hba[i]);
4627 clean0:
4628 pci_release_regions(pdev);
4629 clean_no_release_regions:
4630 hba[i]->busy_initializing = 0;
4631
4632 /*
4633 * Deliberately omit pci_disable_device(): it does something nasty to
4634 * Smart Array controllers that pci_enable_device does not undo
4635 */
4636 pci_set_drvdata(pdev, NULL);
4637 free_hba(i);
4638 return -1;
4639 }
4640
4641 static void cciss_shutdown(struct pci_dev *pdev)
4642 {
4643 ctlr_info_t *h;
4644 char *flush_buf;
4645 int return_code;
4646
4647 h = pci_get_drvdata(pdev);
4648 flush_buf = kzalloc(4, GFP_KERNEL);
4649 if (!flush_buf) {
4650 printk(KERN_WARNING
4651 "cciss:%d cache not flushed, out of memory.\n",
4652 h->ctlr);
4653 return;
4654 }
4655 /* write all data in the battery backed cache to disk */
4656 memset(flush_buf, 0, 4);
4657 return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
4658 4, 0, CTLR_LUNID, TYPE_CMD);
4659 kfree(flush_buf);
4660 if (return_code != IO_OK)
4661 printk(KERN_WARNING "cciss%d: Error flushing cache\n",
4662 h->ctlr);
4663 h->access.set_intr_mask(h, CCISS_INTR_OFF);
4664 free_irq(h->intr[PERF_MODE_INT], h);
4665 }
4666
4667 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4668 {
4669 ctlr_info_t *tmp_ptr;
4670 int i, j;
4671
4672 if (pci_get_drvdata(pdev) == NULL) {
4673 printk(KERN_ERR "cciss: Unable to remove device \n");
4674 return;
4675 }
4676
4677 tmp_ptr = pci_get_drvdata(pdev);
4678 i = tmp_ptr->ctlr;
4679 if (hba[i] == NULL) {
4680 printk(KERN_ERR "cciss: device appears to "
4681 "already be removed \n");
4682 return;
4683 }
4684
4685 mutex_lock(&hba[i]->busy_shutting_down);
4686
4687 remove_from_scan_list(hba[i]);
4688 remove_proc_entry(hba[i]->devname, proc_cciss);
4689 unregister_blkdev(hba[i]->major, hba[i]->devname);
4690
4691 /* remove it from the disk list */
4692 for (j = 0; j < CISS_MAX_LUN; j++) {
4693 struct gendisk *disk = hba[i]->gendisk[j];
4694 if (disk) {
4695 struct request_queue *q = disk->queue;
4696
4697 if (disk->flags & GENHD_FL_UP) {
4698 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4699 del_gendisk(disk);
4700 }
4701 if (q)
4702 blk_cleanup_queue(q);
4703 }
4704 }
4705
4706 #ifdef CONFIG_CISS_SCSI_TAPE
4707 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4708 #endif
4709
4710 cciss_shutdown(pdev);
4711
4712 #ifdef CONFIG_PCI_MSI
4713 if (hba[i]->msix_vector)
4714 pci_disable_msix(hba[i]->pdev);
4715 else if (hba[i]->msi_vector)
4716 pci_disable_msi(hba[i]->pdev);
4717 #endif /* CONFIG_PCI_MSI */
4718
4719 iounmap(hba[i]->vaddr);
4720
4721 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4722 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4723 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4724 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4725 kfree(hba[i]->cmd_pool_bits);
4726 /* Free up sg elements */
4727 for (j = 0; j < hba[i]->nr_cmds; j++)
4728 kfree(hba[i]->scatter_list[j]);
4729 kfree(hba[i]->scatter_list);
4730 cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4731 /*
4732 * Deliberately omit pci_disable_device(): it does something nasty to
4733 * Smart Array controllers that pci_enable_device does not undo
4734 */
4735 pci_release_regions(pdev);
4736 pci_set_drvdata(pdev, NULL);
4737 cciss_destroy_hba_sysfs_entry(hba[i]);
4738 mutex_unlock(&hba[i]->busy_shutting_down);
4739 free_hba(i);
4740 }
4741
4742 static struct pci_driver cciss_pci_driver = {
4743 .name = "cciss",
4744 .probe = cciss_init_one,
4745 .remove = __devexit_p(cciss_remove_one),
4746 .id_table = cciss_pci_device_id, /* id_table */
4747 .shutdown = cciss_shutdown,
4748 };
4749
4750 /*
4751 * This is it. Register the PCI driver information for the cards we control
4752 * the OS will call our registered routines when it finds one of our cards.
4753 */
4754 static int __init cciss_init(void)
4755 {
4756 int err;
4757
4758 /*
4759 * The hardware requires that commands are aligned on a 64-bit
4760 * boundary. Given that we use pci_alloc_consistent() to allocate an
4761 * array of them, the size must be a multiple of 8 bytes.
4762 */
4763 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
4764 printk(KERN_INFO DRIVER_NAME "\n");
4765
4766 err = bus_register(&cciss_bus_type);
4767 if (err)
4768 return err;
4769
4770 /* Start the scan thread */
4771 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4772 if (IS_ERR(cciss_scan_thread)) {
4773 err = PTR_ERR(cciss_scan_thread);
4774 goto err_bus_unregister;
4775 }
4776
4777 /* Register for our PCI devices */
4778 err = pci_register_driver(&cciss_pci_driver);
4779 if (err)
4780 goto err_thread_stop;
4781
4782 return err;
4783
4784 err_thread_stop:
4785 kthread_stop(cciss_scan_thread);
4786 err_bus_unregister:
4787 bus_unregister(&cciss_bus_type);
4788
4789 return err;
4790 }
4791
4792 static void __exit cciss_cleanup(void)
4793 {
4794 int i;
4795
4796 pci_unregister_driver(&cciss_pci_driver);
4797 /* double check that all controller entrys have been removed */
4798 for (i = 0; i < MAX_CTLR; i++) {
4799 if (hba[i] != NULL) {
4800 printk(KERN_WARNING "cciss: had to remove"
4801 " controller %d\n", i);
4802 cciss_remove_one(hba[i]->pdev);
4803 }
4804 }
4805 kthread_stop(cciss_scan_thread);
4806 remove_proc_entry("driver/cciss", NULL);
4807 bus_unregister(&cciss_bus_type);
4808 }
4809
4810 module_init(cciss_init);
4811 module_exit(cciss_cleanup);
This page took 0.13432 seconds and 5 git commands to generate.