cciss: Dynamically allocate struct device for each logical drive as needed.
[deliverable/linux.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
70
71 #include "cciss_cmd.h"
72 #include "cciss.h"
73 #include <linux/cciss_ioctl.h>
74
75 /* define the PCI info for the cards we can control */
76 static const struct pci_device_id cciss_pci_device_id[] = {
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
104 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
105 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
106 {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
110
111 /* board_id = Subsystem Device ID & Vendor ID
112 * product = Marketing Name for the board
113 * access = Address of the struct of function pointers
114 */
115 static struct board_type products[] = {
116 {0x40700E11, "Smart Array 5300", &SA5_access},
117 {0x40800E11, "Smart Array 5i", &SA5B_access},
118 {0x40820E11, "Smart Array 532", &SA5B_access},
119 {0x40830E11, "Smart Array 5312", &SA5B_access},
120 {0x409A0E11, "Smart Array 641", &SA5_access},
121 {0x409B0E11, "Smart Array 642", &SA5_access},
122 {0x409C0E11, "Smart Array 6400", &SA5_access},
123 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124 {0x40910E11, "Smart Array 6i", &SA5_access},
125 {0x3225103C, "Smart Array P600", &SA5_access},
126 {0x3223103C, "Smart Array P800", &SA5_access},
127 {0x3234103C, "Smart Array P400", &SA5_access},
128 {0x3235103C, "Smart Array P400i", &SA5_access},
129 {0x3211103C, "Smart Array E200i", &SA5_access},
130 {0x3212103C, "Smart Array E200", &SA5_access},
131 {0x3213103C, "Smart Array E200i", &SA5_access},
132 {0x3214103C, "Smart Array E200i", &SA5_access},
133 {0x3215103C, "Smart Array E200i", &SA5_access},
134 {0x3237103C, "Smart Array E500", &SA5_access},
135 {0x323D103C, "Smart Array P700m", &SA5_access},
136 {0x3241103C, "Smart Array P212", &SA5_access},
137 {0x3243103C, "Smart Array P410", &SA5_access},
138 {0x3245103C, "Smart Array P410i", &SA5_access},
139 {0x3247103C, "Smart Array P411", &SA5_access},
140 {0x3249103C, "Smart Array P812", &SA5_access},
141 {0x324A103C, "Smart Array P712m", &SA5_access},
142 {0x324B103C, "Smart Array P711m", &SA5_access},
143 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
144 };
145
146 /* How long to wait (in milliseconds) for board to go into simple mode */
147 #define MAX_CONFIG_WAIT 30000
148 #define MAX_IOCTL_CONFIG_WAIT 1000
149
150 /*define how many times we will try a command because of bus resets */
151 #define MAX_CMD_RETRIES 3
152
153 #define MAX_CTLR 32
154
155 /* Originally cciss driver only supports 8 major numbers */
156 #define MAX_CTLR_ORIG 8
157
158 static ctlr_info_t *hba[MAX_CTLR];
159
160 static struct task_struct *cciss_scan_thread;
161 static DEFINE_MUTEX(scan_mutex);
162 static LIST_HEAD(scan_q);
163
164 static void do_cciss_request(struct request_queue *q);
165 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
166 static int cciss_open(struct block_device *bdev, fmode_t mode);
167 static int cciss_release(struct gendisk *disk, fmode_t mode);
168 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
169 unsigned int cmd, unsigned long arg);
170 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
171
172 static int cciss_revalidate(struct gendisk *disk);
173 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
174 static int deregister_disk(ctlr_info_t *h, int drv_index,
175 int clear_all);
176
177 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
178 sector_t *total_size, unsigned int *block_size);
179 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
180 sector_t *total_size, unsigned int *block_size);
181 static void cciss_geometry_inquiry(int ctlr, int logvol,
182 int withirq, sector_t total_size,
183 unsigned int block_size, InquiryData_struct *inq_buff,
184 drive_info_struct *drv);
185 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
186 __u32);
187 static void start_io(ctlr_info_t *h);
188 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
189 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
190 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
191 __u8 page_code, unsigned char scsi3addr[],
192 int cmd_type);
193 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
194 int attempt_retry);
195 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
196
197 static void fail_all_cmds(unsigned long ctlr);
198 static int add_to_scan_list(struct ctlr_info *h);
199 static int scan_thread(void *data);
200 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
201 static void cciss_hba_release(struct device *dev);
202 static void cciss_device_release(struct device *dev);
203
204 #ifdef CONFIG_PROC_FS
205 static void cciss_procinit(int i);
206 #else
207 static void cciss_procinit(int i)
208 {
209 }
210 #endif /* CONFIG_PROC_FS */
211
212 #ifdef CONFIG_COMPAT
213 static int cciss_compat_ioctl(struct block_device *, fmode_t,
214 unsigned, unsigned long);
215 #endif
216
217 static const struct block_device_operations cciss_fops = {
218 .owner = THIS_MODULE,
219 .open = cciss_open,
220 .release = cciss_release,
221 .locked_ioctl = cciss_ioctl,
222 .getgeo = cciss_getgeo,
223 #ifdef CONFIG_COMPAT
224 .compat_ioctl = cciss_compat_ioctl,
225 #endif
226 .revalidate_disk = cciss_revalidate,
227 };
228
229 /*
230 * Enqueuing and dequeuing functions for cmdlists.
231 */
232 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
233 {
234 hlist_add_head(&c->list, list);
235 }
236
237 static inline void removeQ(CommandList_struct *c)
238 {
239 /*
240 * After kexec/dump some commands might still
241 * be in flight, which the firmware will try
242 * to complete. Resetting the firmware doesn't work
243 * with old fw revisions, so we have to mark
244 * them off as 'stale' to prevent the driver from
245 * falling over.
246 */
247 if (WARN_ON(hlist_unhashed(&c->list))) {
248 c->cmd_type = CMD_MSG_STALE;
249 return;
250 }
251
252 hlist_del_init(&c->list);
253 }
254
255 #include "cciss_scsi.c" /* For SCSI tape support */
256
257 #define RAID_UNKNOWN 6
258
259 #ifdef CONFIG_PROC_FS
260
261 /*
262 * Report information about this controller.
263 */
264 #define ENG_GIG 1000000000
265 #define ENG_GIG_FACTOR (ENG_GIG/512)
266 #define ENGAGE_SCSI "engage scsi"
267 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
268 "UNKNOWN"
269 };
270
271 static struct proc_dir_entry *proc_cciss;
272
273 static void cciss_seq_show_header(struct seq_file *seq)
274 {
275 ctlr_info_t *h = seq->private;
276
277 seq_printf(seq, "%s: HP %s Controller\n"
278 "Board ID: 0x%08lx\n"
279 "Firmware Version: %c%c%c%c\n"
280 "IRQ: %d\n"
281 "Logical drives: %d\n"
282 "Current Q depth: %d\n"
283 "Current # commands on controller: %d\n"
284 "Max Q depth since init: %d\n"
285 "Max # commands on controller since init: %d\n"
286 "Max SG entries since init: %d\n",
287 h->devname,
288 h->product_name,
289 (unsigned long)h->board_id,
290 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
291 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
292 h->num_luns,
293 h->Qdepth, h->commands_outstanding,
294 h->maxQsinceinit, h->max_outstanding, h->maxSG);
295
296 #ifdef CONFIG_CISS_SCSI_TAPE
297 cciss_seq_tape_report(seq, h->ctlr);
298 #endif /* CONFIG_CISS_SCSI_TAPE */
299 }
300
301 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
302 {
303 ctlr_info_t *h = seq->private;
304 unsigned ctlr = h->ctlr;
305 unsigned long flags;
306
307 /* prevent displaying bogus info during configuration
308 * or deconfiguration of a logical volume
309 */
310 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
311 if (h->busy_configuring) {
312 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
313 return ERR_PTR(-EBUSY);
314 }
315 h->busy_configuring = 1;
316 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
317
318 if (*pos == 0)
319 cciss_seq_show_header(seq);
320
321 return pos;
322 }
323
324 static int cciss_seq_show(struct seq_file *seq, void *v)
325 {
326 sector_t vol_sz, vol_sz_frac;
327 ctlr_info_t *h = seq->private;
328 unsigned ctlr = h->ctlr;
329 loff_t *pos = v;
330 drive_info_struct *drv = &h->drv[*pos];
331
332 if (*pos > h->highest_lun)
333 return 0;
334
335 if (drv->heads == 0)
336 return 0;
337
338 vol_sz = drv->nr_blocks;
339 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
340 vol_sz_frac *= 100;
341 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
342
343 if (drv->raid_level > 5)
344 drv->raid_level = RAID_UNKNOWN;
345 seq_printf(seq, "cciss/c%dd%d:"
346 "\t%4u.%02uGB\tRAID %s\n",
347 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
348 raid_label[drv->raid_level]);
349 return 0;
350 }
351
352 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
353 {
354 ctlr_info_t *h = seq->private;
355
356 if (*pos > h->highest_lun)
357 return NULL;
358 *pos += 1;
359
360 return pos;
361 }
362
363 static void cciss_seq_stop(struct seq_file *seq, void *v)
364 {
365 ctlr_info_t *h = seq->private;
366
367 /* Only reset h->busy_configuring if we succeeded in setting
368 * it during cciss_seq_start. */
369 if (v == ERR_PTR(-EBUSY))
370 return;
371
372 h->busy_configuring = 0;
373 }
374
375 static const struct seq_operations cciss_seq_ops = {
376 .start = cciss_seq_start,
377 .show = cciss_seq_show,
378 .next = cciss_seq_next,
379 .stop = cciss_seq_stop,
380 };
381
382 static int cciss_seq_open(struct inode *inode, struct file *file)
383 {
384 int ret = seq_open(file, &cciss_seq_ops);
385 struct seq_file *seq = file->private_data;
386
387 if (!ret)
388 seq->private = PDE(inode)->data;
389
390 return ret;
391 }
392
393 static ssize_t
394 cciss_proc_write(struct file *file, const char __user *buf,
395 size_t length, loff_t *ppos)
396 {
397 int err;
398 char *buffer;
399
400 #ifndef CONFIG_CISS_SCSI_TAPE
401 return -EINVAL;
402 #endif
403
404 if (!buf || length > PAGE_SIZE - 1)
405 return -EINVAL;
406
407 buffer = (char *)__get_free_page(GFP_KERNEL);
408 if (!buffer)
409 return -ENOMEM;
410
411 err = -EFAULT;
412 if (copy_from_user(buffer, buf, length))
413 goto out;
414 buffer[length] = '\0';
415
416 #ifdef CONFIG_CISS_SCSI_TAPE
417 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
418 struct seq_file *seq = file->private_data;
419 ctlr_info_t *h = seq->private;
420 int rc;
421
422 rc = cciss_engage_scsi(h->ctlr);
423 if (rc != 0)
424 err = -rc;
425 else
426 err = length;
427 } else
428 #endif /* CONFIG_CISS_SCSI_TAPE */
429 err = -EINVAL;
430 /* might be nice to have "disengage" too, but it's not
431 safely possible. (only 1 module use count, lock issues.) */
432
433 out:
434 free_page((unsigned long)buffer);
435 return err;
436 }
437
438 static struct file_operations cciss_proc_fops = {
439 .owner = THIS_MODULE,
440 .open = cciss_seq_open,
441 .read = seq_read,
442 .llseek = seq_lseek,
443 .release = seq_release,
444 .write = cciss_proc_write,
445 };
446
447 static void __devinit cciss_procinit(int i)
448 {
449 struct proc_dir_entry *pde;
450
451 if (proc_cciss == NULL)
452 proc_cciss = proc_mkdir("driver/cciss", NULL);
453 if (!proc_cciss)
454 return;
455 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
456 S_IROTH, proc_cciss,
457 &cciss_proc_fops, hba[i]);
458 }
459 #endif /* CONFIG_PROC_FS */
460
461 #define MAX_PRODUCT_NAME_LEN 19
462
463 #define to_hba(n) container_of(n, struct ctlr_info, dev)
464
465 static ssize_t host_store_rescan(struct device *dev,
466 struct device_attribute *attr,
467 const char *buf, size_t count)
468 {
469 struct ctlr_info *h = to_hba(dev);
470
471 add_to_scan_list(h);
472 wake_up_process(cciss_scan_thread);
473 wait_for_completion_interruptible(&h->scan_wait);
474
475 return count;
476 }
477 DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
478
479 static ssize_t dev_show_unique_id(struct device *dev,
480 struct device_attribute *attr,
481 char *buf)
482 {
483 drive_info_struct *drv = dev_get_drvdata(dev);
484 struct ctlr_info *h = to_hba(drv->dev->parent);
485 __u8 sn[16];
486 unsigned long flags;
487 int ret = 0;
488
489 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
490 if (h->busy_configuring)
491 ret = -EBUSY;
492 else
493 memcpy(sn, drv->serial_no, sizeof(sn));
494 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
495
496 if (ret)
497 return ret;
498 else
499 return snprintf(buf, 16 * 2 + 2,
500 "%02X%02X%02X%02X%02X%02X%02X%02X"
501 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
502 sn[0], sn[1], sn[2], sn[3],
503 sn[4], sn[5], sn[6], sn[7],
504 sn[8], sn[9], sn[10], sn[11],
505 sn[12], sn[13], sn[14], sn[15]);
506 }
507 DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
508
509 static ssize_t dev_show_vendor(struct device *dev,
510 struct device_attribute *attr,
511 char *buf)
512 {
513 drive_info_struct *drv = dev_get_drvdata(dev);
514 struct ctlr_info *h = to_hba(drv->dev->parent);
515 char vendor[VENDOR_LEN + 1];
516 unsigned long flags;
517 int ret = 0;
518
519 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
520 if (h->busy_configuring)
521 ret = -EBUSY;
522 else
523 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
524 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
525
526 if (ret)
527 return ret;
528 else
529 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
530 }
531 DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
532
533 static ssize_t dev_show_model(struct device *dev,
534 struct device_attribute *attr,
535 char *buf)
536 {
537 drive_info_struct *drv = dev_get_drvdata(dev);
538 struct ctlr_info *h = to_hba(drv->dev->parent);
539 char model[MODEL_LEN + 1];
540 unsigned long flags;
541 int ret = 0;
542
543 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
544 if (h->busy_configuring)
545 ret = -EBUSY;
546 else
547 memcpy(model, drv->model, MODEL_LEN + 1);
548 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
549
550 if (ret)
551 return ret;
552 else
553 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
554 }
555 DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
556
557 static ssize_t dev_show_rev(struct device *dev,
558 struct device_attribute *attr,
559 char *buf)
560 {
561 drive_info_struct *drv = dev_get_drvdata(dev);
562 struct ctlr_info *h = to_hba(drv->dev->parent);
563 char rev[REV_LEN + 1];
564 unsigned long flags;
565 int ret = 0;
566
567 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
568 if (h->busy_configuring)
569 ret = -EBUSY;
570 else
571 memcpy(rev, drv->rev, REV_LEN + 1);
572 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
573
574 if (ret)
575 return ret;
576 else
577 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
578 }
579 DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
580
581 static struct attribute *cciss_host_attrs[] = {
582 &dev_attr_rescan.attr,
583 NULL
584 };
585
586 static struct attribute_group cciss_host_attr_group = {
587 .attrs = cciss_host_attrs,
588 };
589
590 static struct attribute_group *cciss_host_attr_groups[] = {
591 &cciss_host_attr_group,
592 NULL
593 };
594
595 static struct device_type cciss_host_type = {
596 .name = "cciss_host",
597 .groups = cciss_host_attr_groups,
598 .release = cciss_hba_release,
599 };
600
601 static struct attribute *cciss_dev_attrs[] = {
602 &dev_attr_unique_id.attr,
603 &dev_attr_model.attr,
604 &dev_attr_vendor.attr,
605 &dev_attr_rev.attr,
606 NULL
607 };
608
609 static struct attribute_group cciss_dev_attr_group = {
610 .attrs = cciss_dev_attrs,
611 };
612
613 static const struct attribute_group *cciss_dev_attr_groups[] = {
614 &cciss_dev_attr_group,
615 NULL
616 };
617
618 static struct device_type cciss_dev_type = {
619 .name = "cciss_device",
620 .groups = cciss_dev_attr_groups,
621 .release = cciss_device_release,
622 };
623
624 static struct bus_type cciss_bus_type = {
625 .name = "cciss",
626 };
627
628 /*
629 * cciss_hba_release is called when the reference count
630 * of h->dev goes to zero.
631 */
632 static void cciss_hba_release(struct device *dev)
633 {
634 /*
635 * nothing to do, but need this to avoid a warning
636 * about not having a release handler from lib/kref.c.
637 */
638 }
639
640 /*
641 * Initialize sysfs entry for each controller. This sets up and registers
642 * the 'cciss#' directory for each individual controller under
643 * /sys/bus/pci/devices/<dev>/.
644 */
645 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
646 {
647 device_initialize(&h->dev);
648 h->dev.type = &cciss_host_type;
649 h->dev.bus = &cciss_bus_type;
650 dev_set_name(&h->dev, "%s", h->devname);
651 h->dev.parent = &h->pdev->dev;
652
653 return device_add(&h->dev);
654 }
655
656 /*
657 * Remove sysfs entries for an hba.
658 */
659 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
660 {
661 device_del(&h->dev);
662 put_device(&h->dev); /* final put. */
663 }
664
665 /* cciss_device_release is called when the reference count
666 * of h->drv[x].dev goes to zero.
667 */
668 static void cciss_device_release(struct device *dev)
669 {
670 kfree(dev);
671 }
672
673 /*
674 * Initialize sysfs for each logical drive. This sets up and registers
675 * the 'c#d#' directory for each individual logical drive under
676 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
677 * /sys/block/cciss!c#d# to this entry.
678 */
679 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
680 int drv_index)
681 {
682 struct device *dev;
683
684 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
685 if (!dev)
686 return -ENOMEM;
687 device_initialize(dev);
688 dev->type = &cciss_dev_type;
689 dev->bus = &cciss_bus_type;
690 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
691 dev->parent = &h->dev;
692 h->drv[drv_index].dev = dev;
693 dev_set_drvdata(dev, &h->drv[drv_index]);
694 return device_add(dev);
695 }
696
697 /*
698 * Remove sysfs entries for a logical drive.
699 */
700 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index)
701 {
702 struct device *dev = h->drv[drv_index].dev;
703 device_del(dev);
704 put_device(dev); /* the "final" put. */
705 h->drv[drv_index].dev = NULL;
706 }
707
708 /*
709 * For operations that cannot sleep, a command block is allocated at init,
710 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
711 * which ones are free or in use. For operations that can wait for kmalloc
712 * to possible sleep, this routine can be called with get_from_pool set to 0.
713 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
714 */
715 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
716 {
717 CommandList_struct *c;
718 int i;
719 u64bit temp64;
720 dma_addr_t cmd_dma_handle, err_dma_handle;
721
722 if (!get_from_pool) {
723 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
724 sizeof(CommandList_struct), &cmd_dma_handle);
725 if (c == NULL)
726 return NULL;
727 memset(c, 0, sizeof(CommandList_struct));
728
729 c->cmdindex = -1;
730
731 c->err_info = (ErrorInfo_struct *)
732 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
733 &err_dma_handle);
734
735 if (c->err_info == NULL) {
736 pci_free_consistent(h->pdev,
737 sizeof(CommandList_struct), c, cmd_dma_handle);
738 return NULL;
739 }
740 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
741 } else { /* get it out of the controllers pool */
742
743 do {
744 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
745 if (i == h->nr_cmds)
746 return NULL;
747 } while (test_and_set_bit
748 (i & (BITS_PER_LONG - 1),
749 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
750 #ifdef CCISS_DEBUG
751 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
752 #endif
753 c = h->cmd_pool + i;
754 memset(c, 0, sizeof(CommandList_struct));
755 cmd_dma_handle = h->cmd_pool_dhandle
756 + i * sizeof(CommandList_struct);
757 c->err_info = h->errinfo_pool + i;
758 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
759 err_dma_handle = h->errinfo_pool_dhandle
760 + i * sizeof(ErrorInfo_struct);
761 h->nr_allocs++;
762
763 c->cmdindex = i;
764 }
765
766 INIT_HLIST_NODE(&c->list);
767 c->busaddr = (__u32) cmd_dma_handle;
768 temp64.val = (__u64) err_dma_handle;
769 c->ErrDesc.Addr.lower = temp64.val32.lower;
770 c->ErrDesc.Addr.upper = temp64.val32.upper;
771 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
772
773 c->ctlr = h->ctlr;
774 return c;
775 }
776
777 /*
778 * Frees a command block that was previously allocated with cmd_alloc().
779 */
780 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
781 {
782 int i;
783 u64bit temp64;
784
785 if (!got_from_pool) {
786 temp64.val32.lower = c->ErrDesc.Addr.lower;
787 temp64.val32.upper = c->ErrDesc.Addr.upper;
788 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
789 c->err_info, (dma_addr_t) temp64.val);
790 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
791 c, (dma_addr_t) c->busaddr);
792 } else {
793 i = c - h->cmd_pool;
794 clear_bit(i & (BITS_PER_LONG - 1),
795 h->cmd_pool_bits + (i / BITS_PER_LONG));
796 h->nr_frees++;
797 }
798 }
799
800 static inline ctlr_info_t *get_host(struct gendisk *disk)
801 {
802 return disk->queue->queuedata;
803 }
804
805 static inline drive_info_struct *get_drv(struct gendisk *disk)
806 {
807 return disk->private_data;
808 }
809
810 /*
811 * Open. Make sure the device is really there.
812 */
813 static int cciss_open(struct block_device *bdev, fmode_t mode)
814 {
815 ctlr_info_t *host = get_host(bdev->bd_disk);
816 drive_info_struct *drv = get_drv(bdev->bd_disk);
817
818 #ifdef CCISS_DEBUG
819 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
820 #endif /* CCISS_DEBUG */
821
822 if (host->busy_initializing || drv->busy_configuring)
823 return -EBUSY;
824 /*
825 * Root is allowed to open raw volume zero even if it's not configured
826 * so array config can still work. Root is also allowed to open any
827 * volume that has a LUN ID, so it can issue IOCTL to reread the
828 * disk information. I don't think I really like this
829 * but I'm already using way to many device nodes to claim another one
830 * for "raw controller".
831 */
832 if (drv->heads == 0) {
833 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
834 /* if not node 0 make sure it is a partition = 0 */
835 if (MINOR(bdev->bd_dev) & 0x0f) {
836 return -ENXIO;
837 /* if it is, make sure we have a LUN ID */
838 } else if (drv->LunID == 0) {
839 return -ENXIO;
840 }
841 }
842 if (!capable(CAP_SYS_ADMIN))
843 return -EPERM;
844 }
845 drv->usage_count++;
846 host->usage_count++;
847 return 0;
848 }
849
850 /*
851 * Close. Sync first.
852 */
853 static int cciss_release(struct gendisk *disk, fmode_t mode)
854 {
855 ctlr_info_t *host = get_host(disk);
856 drive_info_struct *drv = get_drv(disk);
857
858 #ifdef CCISS_DEBUG
859 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
860 #endif /* CCISS_DEBUG */
861
862 drv->usage_count--;
863 host->usage_count--;
864 return 0;
865 }
866
867 #ifdef CONFIG_COMPAT
868
869 static int do_ioctl(struct block_device *bdev, fmode_t mode,
870 unsigned cmd, unsigned long arg)
871 {
872 int ret;
873 lock_kernel();
874 ret = cciss_ioctl(bdev, mode, cmd, arg);
875 unlock_kernel();
876 return ret;
877 }
878
879 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
880 unsigned cmd, unsigned long arg);
881 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
882 unsigned cmd, unsigned long arg);
883
884 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
885 unsigned cmd, unsigned long arg)
886 {
887 switch (cmd) {
888 case CCISS_GETPCIINFO:
889 case CCISS_GETINTINFO:
890 case CCISS_SETINTINFO:
891 case CCISS_GETNODENAME:
892 case CCISS_SETNODENAME:
893 case CCISS_GETHEARTBEAT:
894 case CCISS_GETBUSTYPES:
895 case CCISS_GETFIRMVER:
896 case CCISS_GETDRIVVER:
897 case CCISS_REVALIDVOLS:
898 case CCISS_DEREGDISK:
899 case CCISS_REGNEWDISK:
900 case CCISS_REGNEWD:
901 case CCISS_RESCANDISK:
902 case CCISS_GETLUNINFO:
903 return do_ioctl(bdev, mode, cmd, arg);
904
905 case CCISS_PASSTHRU32:
906 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
907 case CCISS_BIG_PASSTHRU32:
908 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
909
910 default:
911 return -ENOIOCTLCMD;
912 }
913 }
914
915 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
916 unsigned cmd, unsigned long arg)
917 {
918 IOCTL32_Command_struct __user *arg32 =
919 (IOCTL32_Command_struct __user *) arg;
920 IOCTL_Command_struct arg64;
921 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
922 int err;
923 u32 cp;
924
925 err = 0;
926 err |=
927 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
928 sizeof(arg64.LUN_info));
929 err |=
930 copy_from_user(&arg64.Request, &arg32->Request,
931 sizeof(arg64.Request));
932 err |=
933 copy_from_user(&arg64.error_info, &arg32->error_info,
934 sizeof(arg64.error_info));
935 err |= get_user(arg64.buf_size, &arg32->buf_size);
936 err |= get_user(cp, &arg32->buf);
937 arg64.buf = compat_ptr(cp);
938 err |= copy_to_user(p, &arg64, sizeof(arg64));
939
940 if (err)
941 return -EFAULT;
942
943 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
944 if (err)
945 return err;
946 err |=
947 copy_in_user(&arg32->error_info, &p->error_info,
948 sizeof(arg32->error_info));
949 if (err)
950 return -EFAULT;
951 return err;
952 }
953
954 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
955 unsigned cmd, unsigned long arg)
956 {
957 BIG_IOCTL32_Command_struct __user *arg32 =
958 (BIG_IOCTL32_Command_struct __user *) arg;
959 BIG_IOCTL_Command_struct arg64;
960 BIG_IOCTL_Command_struct __user *p =
961 compat_alloc_user_space(sizeof(arg64));
962 int err;
963 u32 cp;
964
965 err = 0;
966 err |=
967 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
968 sizeof(arg64.LUN_info));
969 err |=
970 copy_from_user(&arg64.Request, &arg32->Request,
971 sizeof(arg64.Request));
972 err |=
973 copy_from_user(&arg64.error_info, &arg32->error_info,
974 sizeof(arg64.error_info));
975 err |= get_user(arg64.buf_size, &arg32->buf_size);
976 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
977 err |= get_user(cp, &arg32->buf);
978 arg64.buf = compat_ptr(cp);
979 err |= copy_to_user(p, &arg64, sizeof(arg64));
980
981 if (err)
982 return -EFAULT;
983
984 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
985 if (err)
986 return err;
987 err |=
988 copy_in_user(&arg32->error_info, &p->error_info,
989 sizeof(arg32->error_info));
990 if (err)
991 return -EFAULT;
992 return err;
993 }
994 #endif
995
996 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
997 {
998 drive_info_struct *drv = get_drv(bdev->bd_disk);
999
1000 if (!drv->cylinders)
1001 return -ENXIO;
1002
1003 geo->heads = drv->heads;
1004 geo->sectors = drv->sectors;
1005 geo->cylinders = drv->cylinders;
1006 return 0;
1007 }
1008
1009 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1010 {
1011 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1012 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1013 (void)check_for_unit_attention(host, c);
1014 }
1015 /*
1016 * ioctl
1017 */
1018 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1019 unsigned int cmd, unsigned long arg)
1020 {
1021 struct gendisk *disk = bdev->bd_disk;
1022 ctlr_info_t *host = get_host(disk);
1023 drive_info_struct *drv = get_drv(disk);
1024 int ctlr = host->ctlr;
1025 void __user *argp = (void __user *)arg;
1026
1027 #ifdef CCISS_DEBUG
1028 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1029 #endif /* CCISS_DEBUG */
1030
1031 switch (cmd) {
1032 case CCISS_GETPCIINFO:
1033 {
1034 cciss_pci_info_struct pciinfo;
1035
1036 if (!arg)
1037 return -EINVAL;
1038 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1039 pciinfo.bus = host->pdev->bus->number;
1040 pciinfo.dev_fn = host->pdev->devfn;
1041 pciinfo.board_id = host->board_id;
1042 if (copy_to_user
1043 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1044 return -EFAULT;
1045 return 0;
1046 }
1047 case CCISS_GETINTINFO:
1048 {
1049 cciss_coalint_struct intinfo;
1050 if (!arg)
1051 return -EINVAL;
1052 intinfo.delay =
1053 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1054 intinfo.count =
1055 readl(&host->cfgtable->HostWrite.CoalIntCount);
1056 if (copy_to_user
1057 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1058 return -EFAULT;
1059 return 0;
1060 }
1061 case CCISS_SETINTINFO:
1062 {
1063 cciss_coalint_struct intinfo;
1064 unsigned long flags;
1065 int i;
1066
1067 if (!arg)
1068 return -EINVAL;
1069 if (!capable(CAP_SYS_ADMIN))
1070 return -EPERM;
1071 if (copy_from_user
1072 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1073 return -EFAULT;
1074 if ((intinfo.delay == 0) && (intinfo.count == 0))
1075 {
1076 // printk("cciss_ioctl: delay and count cannot be 0\n");
1077 return -EINVAL;
1078 }
1079 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1080 /* Update the field, and then ring the doorbell */
1081 writel(intinfo.delay,
1082 &(host->cfgtable->HostWrite.CoalIntDelay));
1083 writel(intinfo.count,
1084 &(host->cfgtable->HostWrite.CoalIntCount));
1085 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1086
1087 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1088 if (!(readl(host->vaddr + SA5_DOORBELL)
1089 & CFGTBL_ChangeReq))
1090 break;
1091 /* delay and try again */
1092 udelay(1000);
1093 }
1094 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1095 if (i >= MAX_IOCTL_CONFIG_WAIT)
1096 return -EAGAIN;
1097 return 0;
1098 }
1099 case CCISS_GETNODENAME:
1100 {
1101 NodeName_type NodeName;
1102 int i;
1103
1104 if (!arg)
1105 return -EINVAL;
1106 for (i = 0; i < 16; i++)
1107 NodeName[i] =
1108 readb(&host->cfgtable->ServerName[i]);
1109 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1110 return -EFAULT;
1111 return 0;
1112 }
1113 case CCISS_SETNODENAME:
1114 {
1115 NodeName_type NodeName;
1116 unsigned long flags;
1117 int i;
1118
1119 if (!arg)
1120 return -EINVAL;
1121 if (!capable(CAP_SYS_ADMIN))
1122 return -EPERM;
1123
1124 if (copy_from_user
1125 (NodeName, argp, sizeof(NodeName_type)))
1126 return -EFAULT;
1127
1128 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1129
1130 /* Update the field, and then ring the doorbell */
1131 for (i = 0; i < 16; i++)
1132 writeb(NodeName[i],
1133 &host->cfgtable->ServerName[i]);
1134
1135 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1136
1137 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1138 if (!(readl(host->vaddr + SA5_DOORBELL)
1139 & CFGTBL_ChangeReq))
1140 break;
1141 /* delay and try again */
1142 udelay(1000);
1143 }
1144 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1145 if (i >= MAX_IOCTL_CONFIG_WAIT)
1146 return -EAGAIN;
1147 return 0;
1148 }
1149
1150 case CCISS_GETHEARTBEAT:
1151 {
1152 Heartbeat_type heartbeat;
1153
1154 if (!arg)
1155 return -EINVAL;
1156 heartbeat = readl(&host->cfgtable->HeartBeat);
1157 if (copy_to_user
1158 (argp, &heartbeat, sizeof(Heartbeat_type)))
1159 return -EFAULT;
1160 return 0;
1161 }
1162 case CCISS_GETBUSTYPES:
1163 {
1164 BusTypes_type BusTypes;
1165
1166 if (!arg)
1167 return -EINVAL;
1168 BusTypes = readl(&host->cfgtable->BusTypes);
1169 if (copy_to_user
1170 (argp, &BusTypes, sizeof(BusTypes_type)))
1171 return -EFAULT;
1172 return 0;
1173 }
1174 case CCISS_GETFIRMVER:
1175 {
1176 FirmwareVer_type firmware;
1177
1178 if (!arg)
1179 return -EINVAL;
1180 memcpy(firmware, host->firm_ver, 4);
1181
1182 if (copy_to_user
1183 (argp, firmware, sizeof(FirmwareVer_type)))
1184 return -EFAULT;
1185 return 0;
1186 }
1187 case CCISS_GETDRIVVER:
1188 {
1189 DriverVer_type DriverVer = DRIVER_VERSION;
1190
1191 if (!arg)
1192 return -EINVAL;
1193
1194 if (copy_to_user
1195 (argp, &DriverVer, sizeof(DriverVer_type)))
1196 return -EFAULT;
1197 return 0;
1198 }
1199
1200 case CCISS_DEREGDISK:
1201 case CCISS_REGNEWD:
1202 case CCISS_REVALIDVOLS:
1203 return rebuild_lun_table(host, 0);
1204
1205 case CCISS_GETLUNINFO:{
1206 LogvolInfo_struct luninfo;
1207
1208 luninfo.LunID = drv->LunID;
1209 luninfo.num_opens = drv->usage_count;
1210 luninfo.num_parts = 0;
1211 if (copy_to_user(argp, &luninfo,
1212 sizeof(LogvolInfo_struct)))
1213 return -EFAULT;
1214 return 0;
1215 }
1216 case CCISS_PASSTHRU:
1217 {
1218 IOCTL_Command_struct iocommand;
1219 CommandList_struct *c;
1220 char *buff = NULL;
1221 u64bit temp64;
1222 unsigned long flags;
1223 DECLARE_COMPLETION_ONSTACK(wait);
1224
1225 if (!arg)
1226 return -EINVAL;
1227
1228 if (!capable(CAP_SYS_RAWIO))
1229 return -EPERM;
1230
1231 if (copy_from_user
1232 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1233 return -EFAULT;
1234 if ((iocommand.buf_size < 1) &&
1235 (iocommand.Request.Type.Direction != XFER_NONE)) {
1236 return -EINVAL;
1237 }
1238 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1239 /* Check kmalloc limits */
1240 if (iocommand.buf_size > 128000)
1241 return -EINVAL;
1242 #endif
1243 if (iocommand.buf_size > 0) {
1244 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1245 if (buff == NULL)
1246 return -EFAULT;
1247 }
1248 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1249 /* Copy the data into the buffer we created */
1250 if (copy_from_user
1251 (buff, iocommand.buf, iocommand.buf_size)) {
1252 kfree(buff);
1253 return -EFAULT;
1254 }
1255 } else {
1256 memset(buff, 0, iocommand.buf_size);
1257 }
1258 if ((c = cmd_alloc(host, 0)) == NULL) {
1259 kfree(buff);
1260 return -ENOMEM;
1261 }
1262 // Fill in the command type
1263 c->cmd_type = CMD_IOCTL_PEND;
1264 // Fill in Command Header
1265 c->Header.ReplyQueue = 0; // unused in simple mode
1266 if (iocommand.buf_size > 0) // buffer to fill
1267 {
1268 c->Header.SGList = 1;
1269 c->Header.SGTotal = 1;
1270 } else // no buffers to fill
1271 {
1272 c->Header.SGList = 0;
1273 c->Header.SGTotal = 0;
1274 }
1275 c->Header.LUN = iocommand.LUN_info;
1276 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1277
1278 // Fill in Request block
1279 c->Request = iocommand.Request;
1280
1281 // Fill in the scatter gather information
1282 if (iocommand.buf_size > 0) {
1283 temp64.val = pci_map_single(host->pdev, buff,
1284 iocommand.buf_size,
1285 PCI_DMA_BIDIRECTIONAL);
1286 c->SG[0].Addr.lower = temp64.val32.lower;
1287 c->SG[0].Addr.upper = temp64.val32.upper;
1288 c->SG[0].Len = iocommand.buf_size;
1289 c->SG[0].Ext = 0; // we are not chaining
1290 }
1291 c->waiting = &wait;
1292
1293 /* Put the request on the tail of the request queue */
1294 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1295 addQ(&host->reqQ, c);
1296 host->Qdepth++;
1297 start_io(host);
1298 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1299
1300 wait_for_completion(&wait);
1301
1302 /* unlock the buffers from DMA */
1303 temp64.val32.lower = c->SG[0].Addr.lower;
1304 temp64.val32.upper = c->SG[0].Addr.upper;
1305 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1306 iocommand.buf_size,
1307 PCI_DMA_BIDIRECTIONAL);
1308
1309 check_ioctl_unit_attention(host, c);
1310
1311 /* Copy the error information out */
1312 iocommand.error_info = *(c->err_info);
1313 if (copy_to_user
1314 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1315 kfree(buff);
1316 cmd_free(host, c, 0);
1317 return -EFAULT;
1318 }
1319
1320 if (iocommand.Request.Type.Direction == XFER_READ) {
1321 /* Copy the data out of the buffer we created */
1322 if (copy_to_user
1323 (iocommand.buf, buff, iocommand.buf_size)) {
1324 kfree(buff);
1325 cmd_free(host, c, 0);
1326 return -EFAULT;
1327 }
1328 }
1329 kfree(buff);
1330 cmd_free(host, c, 0);
1331 return 0;
1332 }
1333 case CCISS_BIG_PASSTHRU:{
1334 BIG_IOCTL_Command_struct *ioc;
1335 CommandList_struct *c;
1336 unsigned char **buff = NULL;
1337 int *buff_size = NULL;
1338 u64bit temp64;
1339 unsigned long flags;
1340 BYTE sg_used = 0;
1341 int status = 0;
1342 int i;
1343 DECLARE_COMPLETION_ONSTACK(wait);
1344 __u32 left;
1345 __u32 sz;
1346 BYTE __user *data_ptr;
1347
1348 if (!arg)
1349 return -EINVAL;
1350 if (!capable(CAP_SYS_RAWIO))
1351 return -EPERM;
1352 ioc = (BIG_IOCTL_Command_struct *)
1353 kmalloc(sizeof(*ioc), GFP_KERNEL);
1354 if (!ioc) {
1355 status = -ENOMEM;
1356 goto cleanup1;
1357 }
1358 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1359 status = -EFAULT;
1360 goto cleanup1;
1361 }
1362 if ((ioc->buf_size < 1) &&
1363 (ioc->Request.Type.Direction != XFER_NONE)) {
1364 status = -EINVAL;
1365 goto cleanup1;
1366 }
1367 /* Check kmalloc limits using all SGs */
1368 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1369 status = -EINVAL;
1370 goto cleanup1;
1371 }
1372 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1373 status = -EINVAL;
1374 goto cleanup1;
1375 }
1376 buff =
1377 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1378 if (!buff) {
1379 status = -ENOMEM;
1380 goto cleanup1;
1381 }
1382 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1383 GFP_KERNEL);
1384 if (!buff_size) {
1385 status = -ENOMEM;
1386 goto cleanup1;
1387 }
1388 left = ioc->buf_size;
1389 data_ptr = ioc->buf;
1390 while (left) {
1391 sz = (left >
1392 ioc->malloc_size) ? ioc->
1393 malloc_size : left;
1394 buff_size[sg_used] = sz;
1395 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1396 if (buff[sg_used] == NULL) {
1397 status = -ENOMEM;
1398 goto cleanup1;
1399 }
1400 if (ioc->Request.Type.Direction == XFER_WRITE) {
1401 if (copy_from_user
1402 (buff[sg_used], data_ptr, sz)) {
1403 status = -EFAULT;
1404 goto cleanup1;
1405 }
1406 } else {
1407 memset(buff[sg_used], 0, sz);
1408 }
1409 left -= sz;
1410 data_ptr += sz;
1411 sg_used++;
1412 }
1413 if ((c = cmd_alloc(host, 0)) == NULL) {
1414 status = -ENOMEM;
1415 goto cleanup1;
1416 }
1417 c->cmd_type = CMD_IOCTL_PEND;
1418 c->Header.ReplyQueue = 0;
1419
1420 if (ioc->buf_size > 0) {
1421 c->Header.SGList = sg_used;
1422 c->Header.SGTotal = sg_used;
1423 } else {
1424 c->Header.SGList = 0;
1425 c->Header.SGTotal = 0;
1426 }
1427 c->Header.LUN = ioc->LUN_info;
1428 c->Header.Tag.lower = c->busaddr;
1429
1430 c->Request = ioc->Request;
1431 if (ioc->buf_size > 0) {
1432 int i;
1433 for (i = 0; i < sg_used; i++) {
1434 temp64.val =
1435 pci_map_single(host->pdev, buff[i],
1436 buff_size[i],
1437 PCI_DMA_BIDIRECTIONAL);
1438 c->SG[i].Addr.lower =
1439 temp64.val32.lower;
1440 c->SG[i].Addr.upper =
1441 temp64.val32.upper;
1442 c->SG[i].Len = buff_size[i];
1443 c->SG[i].Ext = 0; /* we are not chaining */
1444 }
1445 }
1446 c->waiting = &wait;
1447 /* Put the request on the tail of the request queue */
1448 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1449 addQ(&host->reqQ, c);
1450 host->Qdepth++;
1451 start_io(host);
1452 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1453 wait_for_completion(&wait);
1454 /* unlock the buffers from DMA */
1455 for (i = 0; i < sg_used; i++) {
1456 temp64.val32.lower = c->SG[i].Addr.lower;
1457 temp64.val32.upper = c->SG[i].Addr.upper;
1458 pci_unmap_single(host->pdev,
1459 (dma_addr_t) temp64.val, buff_size[i],
1460 PCI_DMA_BIDIRECTIONAL);
1461 }
1462 check_ioctl_unit_attention(host, c);
1463 /* Copy the error information out */
1464 ioc->error_info = *(c->err_info);
1465 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1466 cmd_free(host, c, 0);
1467 status = -EFAULT;
1468 goto cleanup1;
1469 }
1470 if (ioc->Request.Type.Direction == XFER_READ) {
1471 /* Copy the data out of the buffer we created */
1472 BYTE __user *ptr = ioc->buf;
1473 for (i = 0; i < sg_used; i++) {
1474 if (copy_to_user
1475 (ptr, buff[i], buff_size[i])) {
1476 cmd_free(host, c, 0);
1477 status = -EFAULT;
1478 goto cleanup1;
1479 }
1480 ptr += buff_size[i];
1481 }
1482 }
1483 cmd_free(host, c, 0);
1484 status = 0;
1485 cleanup1:
1486 if (buff) {
1487 for (i = 0; i < sg_used; i++)
1488 kfree(buff[i]);
1489 kfree(buff);
1490 }
1491 kfree(buff_size);
1492 kfree(ioc);
1493 return status;
1494 }
1495
1496 /* scsi_cmd_ioctl handles these, below, though some are not */
1497 /* very meaningful for cciss. SG_IO is the main one people want. */
1498
1499 case SG_GET_VERSION_NUM:
1500 case SG_SET_TIMEOUT:
1501 case SG_GET_TIMEOUT:
1502 case SG_GET_RESERVED_SIZE:
1503 case SG_SET_RESERVED_SIZE:
1504 case SG_EMULATED_HOST:
1505 case SG_IO:
1506 case SCSI_IOCTL_SEND_COMMAND:
1507 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1508
1509 /* scsi_cmd_ioctl would normally handle these, below, but */
1510 /* they aren't a good fit for cciss, as CD-ROMs are */
1511 /* not supported, and we don't have any bus/target/lun */
1512 /* which we present to the kernel. */
1513
1514 case CDROM_SEND_PACKET:
1515 case CDROMCLOSETRAY:
1516 case CDROMEJECT:
1517 case SCSI_IOCTL_GET_IDLUN:
1518 case SCSI_IOCTL_GET_BUS_NUMBER:
1519 default:
1520 return -ENOTTY;
1521 }
1522 }
1523
1524 static void cciss_check_queues(ctlr_info_t *h)
1525 {
1526 int start_queue = h->next_to_run;
1527 int i;
1528
1529 /* check to see if we have maxed out the number of commands that can
1530 * be placed on the queue. If so then exit. We do this check here
1531 * in case the interrupt we serviced was from an ioctl and did not
1532 * free any new commands.
1533 */
1534 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1535 return;
1536
1537 /* We have room on the queue for more commands. Now we need to queue
1538 * them up. We will also keep track of the next queue to run so
1539 * that every queue gets a chance to be started first.
1540 */
1541 for (i = 0; i < h->highest_lun + 1; i++) {
1542 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1543 /* make sure the disk has been added and the drive is real
1544 * because this can be called from the middle of init_one.
1545 */
1546 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1547 continue;
1548 blk_start_queue(h->gendisk[curr_queue]->queue);
1549
1550 /* check to see if we have maxed out the number of commands
1551 * that can be placed on the queue.
1552 */
1553 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1554 if (curr_queue == start_queue) {
1555 h->next_to_run =
1556 (start_queue + 1) % (h->highest_lun + 1);
1557 break;
1558 } else {
1559 h->next_to_run = curr_queue;
1560 break;
1561 }
1562 }
1563 }
1564 }
1565
1566 static void cciss_softirq_done(struct request *rq)
1567 {
1568 CommandList_struct *cmd = rq->completion_data;
1569 ctlr_info_t *h = hba[cmd->ctlr];
1570 unsigned long flags;
1571 u64bit temp64;
1572 int i, ddir;
1573
1574 if (cmd->Request.Type.Direction == XFER_READ)
1575 ddir = PCI_DMA_FROMDEVICE;
1576 else
1577 ddir = PCI_DMA_TODEVICE;
1578
1579 /* command did not need to be retried */
1580 /* unmap the DMA mapping for all the scatter gather elements */
1581 for (i = 0; i < cmd->Header.SGList; i++) {
1582 temp64.val32.lower = cmd->SG[i].Addr.lower;
1583 temp64.val32.upper = cmd->SG[i].Addr.upper;
1584 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1585 }
1586
1587 #ifdef CCISS_DEBUG
1588 printk("Done with %p\n", rq);
1589 #endif /* CCISS_DEBUG */
1590
1591 /* set the residual count for pc requests */
1592 if (blk_pc_request(rq))
1593 rq->resid_len = cmd->err_info->ResidualCnt;
1594
1595 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1596
1597 spin_lock_irqsave(&h->lock, flags);
1598 cmd_free(h, cmd, 1);
1599 cciss_check_queues(h);
1600 spin_unlock_irqrestore(&h->lock, flags);
1601 }
1602
1603 static void log_unit_to_scsi3addr(ctlr_info_t *h, unsigned char scsi3addr[],
1604 uint32_t log_unit)
1605 {
1606 log_unit = h->drv[log_unit].LunID & 0x03fff;
1607 memset(&scsi3addr[4], 0, 4);
1608 memcpy(&scsi3addr[0], &log_unit, 4);
1609 scsi3addr[3] |= 0x40;
1610 }
1611
1612 /* This function gets the SCSI vendor, model, and revision of a logical drive
1613 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1614 * they cannot be read.
1615 */
1616 static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1617 char *vendor, char *model, char *rev)
1618 {
1619 int rc;
1620 InquiryData_struct *inq_buf;
1621 unsigned char scsi3addr[8];
1622
1623 *vendor = '\0';
1624 *model = '\0';
1625 *rev = '\0';
1626
1627 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1628 if (!inq_buf)
1629 return;
1630
1631 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1632 if (withirq)
1633 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1634 sizeof(InquiryData_struct), 0,
1635 scsi3addr, TYPE_CMD);
1636 else
1637 rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1638 sizeof(InquiryData_struct), 0,
1639 scsi3addr, TYPE_CMD);
1640 if (rc == IO_OK) {
1641 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1642 vendor[VENDOR_LEN] = '\0';
1643 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1644 model[MODEL_LEN] = '\0';
1645 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1646 rev[REV_LEN] = '\0';
1647 }
1648
1649 kfree(inq_buf);
1650 return;
1651 }
1652
1653 /* This function gets the serial number of a logical drive via
1654 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1655 * number cannot be had, for whatever reason, 16 bytes of 0xff
1656 * are returned instead.
1657 */
1658 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1659 unsigned char *serial_no, int buflen)
1660 {
1661 #define PAGE_83_INQ_BYTES 64
1662 int rc;
1663 unsigned char *buf;
1664 unsigned char scsi3addr[8];
1665
1666 if (buflen > 16)
1667 buflen = 16;
1668 memset(serial_no, 0xff, buflen);
1669 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1670 if (!buf)
1671 return;
1672 memset(serial_no, 0, buflen);
1673 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1674 if (withirq)
1675 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1676 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1677 else
1678 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1679 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1680 if (rc == IO_OK)
1681 memcpy(serial_no, &buf[8], buflen);
1682 kfree(buf);
1683 return;
1684 }
1685
1686 /*
1687 * cciss_add_disk sets up the block device queue for a logical drive
1688 */
1689 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1690 int drv_index)
1691 {
1692 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1693 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1694 disk->major = h->major;
1695 disk->first_minor = drv_index << NWD_SHIFT;
1696 disk->fops = &cciss_fops;
1697 if (h->drv[drv_index].dev == NULL) {
1698 if (cciss_create_ld_sysfs_entry(h, drv_index))
1699 goto cleanup_queue;
1700 }
1701 disk->private_data = &h->drv[drv_index];
1702 disk->driverfs_dev = h->drv[drv_index].dev;
1703
1704 /* Set up queue information */
1705 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1706
1707 /* This is a hardware imposed limit. */
1708 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1709
1710 /* This is a limit in the driver and could be eliminated. */
1711 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1712
1713 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1714
1715 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1716
1717 disk->queue->queuedata = h;
1718
1719 blk_queue_logical_block_size(disk->queue,
1720 h->drv[drv_index].block_size);
1721
1722 /* Make sure all queue data is written out before */
1723 /* setting h->drv[drv_index].queue, as setting this */
1724 /* allows the interrupt handler to start the queue */
1725 wmb();
1726 h->drv[drv_index].queue = disk->queue;
1727 add_disk(disk);
1728 return 0;
1729
1730 cleanup_queue:
1731 blk_cleanup_queue(disk->queue);
1732 disk->queue = NULL;
1733 return -1;
1734 }
1735
1736 /* This function will check the usage_count of the drive to be updated/added.
1737 * If the usage_count is zero and it is a heretofore unknown drive, or,
1738 * the drive's capacity, geometry, or serial number has changed,
1739 * then the drive information will be updated and the disk will be
1740 * re-registered with the kernel. If these conditions don't hold,
1741 * then it will be left alone for the next reboot. The exception to this
1742 * is disk 0 which will always be left registered with the kernel since it
1743 * is also the controller node. Any changes to disk 0 will show up on
1744 * the next reboot.
1745 */
1746 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1747 {
1748 ctlr_info_t *h = hba[ctlr];
1749 struct gendisk *disk;
1750 InquiryData_struct *inq_buff = NULL;
1751 unsigned int block_size;
1752 sector_t total_size;
1753 unsigned long flags = 0;
1754 int ret = 0;
1755 drive_info_struct *drvinfo;
1756
1757 /* Get information about the disk and modify the driver structure */
1758 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1759 drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1760 if (inq_buff == NULL || drvinfo == NULL)
1761 goto mem_msg;
1762
1763 /* testing to see if 16-byte CDBs are already being used */
1764 if (h->cciss_read == CCISS_READ_16) {
1765 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1766 &total_size, &block_size);
1767
1768 } else {
1769 cciss_read_capacity(ctlr, drv_index, 1,
1770 &total_size, &block_size);
1771
1772 /* if read_capacity returns all F's this volume is >2TB */
1773 /* in size so we switch to 16-byte CDB's for all */
1774 /* read/write ops */
1775 if (total_size == 0xFFFFFFFFULL) {
1776 cciss_read_capacity_16(ctlr, drv_index, 1,
1777 &total_size, &block_size);
1778 h->cciss_read = CCISS_READ_16;
1779 h->cciss_write = CCISS_WRITE_16;
1780 } else {
1781 h->cciss_read = CCISS_READ_10;
1782 h->cciss_write = CCISS_WRITE_10;
1783 }
1784 }
1785
1786 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1787 inq_buff, drvinfo);
1788 drvinfo->block_size = block_size;
1789 drvinfo->nr_blocks = total_size + 1;
1790
1791 cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1792 drvinfo->model, drvinfo->rev);
1793 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1794 sizeof(drvinfo->serial_no));
1795
1796 /* Is it the same disk we already know, and nothing's changed? */
1797 if (h->drv[drv_index].raid_level != -1 &&
1798 ((memcmp(drvinfo->serial_no,
1799 h->drv[drv_index].serial_no, 16) == 0) &&
1800 drvinfo->block_size == h->drv[drv_index].block_size &&
1801 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1802 drvinfo->heads == h->drv[drv_index].heads &&
1803 drvinfo->sectors == h->drv[drv_index].sectors &&
1804 drvinfo->cylinders == h->drv[drv_index].cylinders))
1805 /* The disk is unchanged, nothing to update */
1806 goto freeret;
1807
1808 /* If we get here it's not the same disk, or something's changed,
1809 * so we need to * deregister it, and re-register it, if it's not
1810 * in use.
1811 * If the disk already exists then deregister it before proceeding
1812 * (unless it's the first disk (for the controller node).
1813 */
1814 if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1815 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1816 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1817 h->drv[drv_index].busy_configuring = 1;
1818 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1819
1820 /* deregister_disk sets h->drv[drv_index].queue = NULL
1821 * which keeps the interrupt handler from starting
1822 * the queue.
1823 */
1824 ret = deregister_disk(h, drv_index, 0);
1825 h->drv[drv_index].busy_configuring = 0;
1826 }
1827
1828 /* If the disk is in use return */
1829 if (ret)
1830 goto freeret;
1831
1832 /* Save the new information from cciss_geometry_inquiry
1833 * and serial number inquiry.
1834 */
1835 h->drv[drv_index].block_size = drvinfo->block_size;
1836 h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1837 h->drv[drv_index].heads = drvinfo->heads;
1838 h->drv[drv_index].sectors = drvinfo->sectors;
1839 h->drv[drv_index].cylinders = drvinfo->cylinders;
1840 h->drv[drv_index].raid_level = drvinfo->raid_level;
1841 memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1842 memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
1843 memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
1844 memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);
1845
1846 ++h->num_luns;
1847 disk = h->gendisk[drv_index];
1848 set_capacity(disk, h->drv[drv_index].nr_blocks);
1849
1850 /* If it's not disk 0 (drv_index != 0)
1851 * or if it was disk 0, but there was previously
1852 * no actual corresponding configured logical drive
1853 * (raid_leve == -1) then we want to update the
1854 * logical drive's information.
1855 */
1856 if (drv_index || first_time)
1857 cciss_add_disk(h, disk, drv_index);
1858
1859 freeret:
1860 kfree(inq_buff);
1861 kfree(drvinfo);
1862 return;
1863 mem_msg:
1864 printk(KERN_ERR "cciss: out of memory\n");
1865 goto freeret;
1866 }
1867
1868 /* This function will find the first index of the controllers drive array
1869 * that has a -1 for the raid_level and will return that index. This is
1870 * where new drives will be added. If the index to be returned is greater
1871 * than the highest_lun index for the controller then highest_lun is set
1872 * to this new index. If there are no available indexes then -1 is returned.
1873 * "controller_node" is used to know if this is a real logical drive, or just
1874 * the controller node, which determines if this counts towards highest_lun.
1875 */
1876 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1877 {
1878 int i;
1879
1880 for (i = 0; i < CISS_MAX_LUN; i++) {
1881 if (hba[ctlr]->drv[i].raid_level == -1) {
1882 if (i > hba[ctlr]->highest_lun)
1883 if (!controller_node)
1884 hba[ctlr]->highest_lun = i;
1885 return i;
1886 }
1887 }
1888 return -1;
1889 }
1890
1891 /* cciss_add_gendisk finds a free hba[]->drv structure
1892 * and allocates a gendisk if needed, and sets the lunid
1893 * in the drvinfo structure. It returns the index into
1894 * the ->drv[] array, or -1 if none are free.
1895 * is_controller_node indicates whether highest_lun should
1896 * count this disk, or if it's only being added to provide
1897 * a means to talk to the controller in case no logical
1898 * drives have yet been configured.
1899 */
1900 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1901 {
1902 int drv_index;
1903
1904 drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1905 if (drv_index == -1)
1906 return -1;
1907 /*Check if the gendisk needs to be allocated */
1908 if (!h->gendisk[drv_index]) {
1909 h->gendisk[drv_index] =
1910 alloc_disk(1 << NWD_SHIFT);
1911 if (!h->gendisk[drv_index]) {
1912 printk(KERN_ERR "cciss%d: could not "
1913 "allocate a new disk %d\n",
1914 h->ctlr, drv_index);
1915 return -1;
1916 }
1917 }
1918 h->drv[drv_index].LunID = lunid;
1919 if (cciss_create_ld_sysfs_entry(h, drv_index))
1920 goto err_free_disk;
1921
1922 /* Don't need to mark this busy because nobody */
1923 /* else knows about this disk yet to contend */
1924 /* for access to it. */
1925 h->drv[drv_index].busy_configuring = 0;
1926 wmb();
1927 return drv_index;
1928
1929 err_free_disk:
1930 put_disk(h->gendisk[drv_index]);
1931 h->gendisk[drv_index] = NULL;
1932 return -1;
1933 }
1934
1935 /* This is for the special case of a controller which
1936 * has no logical drives. In this case, we still need
1937 * to register a disk so the controller can be accessed
1938 * by the Array Config Utility.
1939 */
1940 static void cciss_add_controller_node(ctlr_info_t *h)
1941 {
1942 struct gendisk *disk;
1943 int drv_index;
1944
1945 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1946 return;
1947
1948 drv_index = cciss_add_gendisk(h, 0, 1);
1949 if (drv_index == -1) {
1950 printk(KERN_WARNING "cciss%d: could not "
1951 "add disk 0.\n", h->ctlr);
1952 return;
1953 }
1954 h->drv[drv_index].block_size = 512;
1955 h->drv[drv_index].nr_blocks = 0;
1956 h->drv[drv_index].heads = 0;
1957 h->drv[drv_index].sectors = 0;
1958 h->drv[drv_index].cylinders = 0;
1959 h->drv[drv_index].raid_level = -1;
1960 memset(h->drv[drv_index].serial_no, 0, 16);
1961 disk = h->gendisk[drv_index];
1962 cciss_add_disk(h, disk, drv_index);
1963 }
1964
1965 /* This function will add and remove logical drives from the Logical
1966 * drive array of the controller and maintain persistency of ordering
1967 * so that mount points are preserved until the next reboot. This allows
1968 * for the removal of logical drives in the middle of the drive array
1969 * without a re-ordering of those drives.
1970 * INPUT
1971 * h = The controller to perform the operations on
1972 */
1973 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1974 {
1975 int ctlr = h->ctlr;
1976 int num_luns;
1977 ReportLunData_struct *ld_buff = NULL;
1978 int return_code;
1979 int listlength = 0;
1980 int i;
1981 int drv_found;
1982 int drv_index = 0;
1983 __u32 lunid = 0;
1984 unsigned long flags;
1985
1986 if (!capable(CAP_SYS_RAWIO))
1987 return -EPERM;
1988
1989 /* Set busy_configuring flag for this operation */
1990 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1991 if (h->busy_configuring) {
1992 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1993 return -EBUSY;
1994 }
1995 h->busy_configuring = 1;
1996 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1997
1998 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1999 if (ld_buff == NULL)
2000 goto mem_msg;
2001
2002 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2003 sizeof(ReportLunData_struct),
2004 0, CTLR_LUNID, TYPE_CMD);
2005
2006 if (return_code == IO_OK)
2007 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2008 else { /* reading number of logical volumes failed */
2009 printk(KERN_WARNING "cciss: report logical volume"
2010 " command failed\n");
2011 listlength = 0;
2012 goto freeret;
2013 }
2014
2015 num_luns = listlength / 8; /* 8 bytes per entry */
2016 if (num_luns > CISS_MAX_LUN) {
2017 num_luns = CISS_MAX_LUN;
2018 printk(KERN_WARNING "cciss: more luns configured"
2019 " on controller than can be handled by"
2020 " this driver.\n");
2021 }
2022
2023 if (num_luns == 0)
2024 cciss_add_controller_node(h);
2025
2026 /* Compare controller drive array to driver's drive array
2027 * to see if any drives are missing on the controller due
2028 * to action of Array Config Utility (user deletes drive)
2029 * and deregister logical drives which have disappeared.
2030 */
2031 for (i = 0; i <= h->highest_lun; i++) {
2032 int j;
2033 drv_found = 0;
2034
2035 /* skip holes in the array from already deleted drives */
2036 if (h->drv[i].raid_level == -1)
2037 continue;
2038
2039 for (j = 0; j < num_luns; j++) {
2040 memcpy(&lunid, &ld_buff->LUN[j][0], 4);
2041 lunid = le32_to_cpu(lunid);
2042 if (h->drv[i].LunID == lunid) {
2043 drv_found = 1;
2044 break;
2045 }
2046 }
2047 if (!drv_found) {
2048 /* Deregister it from the OS, it's gone. */
2049 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2050 h->drv[i].busy_configuring = 1;
2051 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2052 return_code = deregister_disk(h, i, 1);
2053 h->drv[i].busy_configuring = 0;
2054 }
2055 }
2056
2057 /* Compare controller drive array to driver's drive array.
2058 * Check for updates in the drive information and any new drives
2059 * on the controller due to ACU adding logical drives, or changing
2060 * a logical drive's size, etc. Reregister any new/changed drives
2061 */
2062 for (i = 0; i < num_luns; i++) {
2063 int j;
2064
2065 drv_found = 0;
2066
2067 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
2068 lunid = le32_to_cpu(lunid);
2069
2070 /* Find if the LUN is already in the drive array
2071 * of the driver. If so then update its info
2072 * if not in use. If it does not exist then find
2073 * the first free index and add it.
2074 */
2075 for (j = 0; j <= h->highest_lun; j++) {
2076 if (h->drv[j].raid_level != -1 &&
2077 h->drv[j].LunID == lunid) {
2078 drv_index = j;
2079 drv_found = 1;
2080 break;
2081 }
2082 }
2083
2084 /* check if the drive was found already in the array */
2085 if (!drv_found) {
2086 drv_index = cciss_add_gendisk(h, lunid, 0);
2087 if (drv_index == -1)
2088 goto freeret;
2089 }
2090 cciss_update_drive_info(ctlr, drv_index, first_time);
2091 } /* end for */
2092
2093 freeret:
2094 kfree(ld_buff);
2095 h->busy_configuring = 0;
2096 /* We return -1 here to tell the ACU that we have registered/updated
2097 * all of the drives that we can and to keep it from calling us
2098 * additional times.
2099 */
2100 return -1;
2101 mem_msg:
2102 printk(KERN_ERR "cciss: out of memory\n");
2103 h->busy_configuring = 0;
2104 goto freeret;
2105 }
2106
2107 /* This function will deregister the disk and it's queue from the
2108 * kernel. It must be called with the controller lock held and the
2109 * drv structures busy_configuring flag set. It's parameters are:
2110 *
2111 * disk = This is the disk to be deregistered
2112 * drv = This is the drive_info_struct associated with the disk to be
2113 * deregistered. It contains information about the disk used
2114 * by the driver.
2115 * clear_all = This flag determines whether or not the disk information
2116 * is going to be completely cleared out and the highest_lun
2117 * reset. Sometimes we want to clear out information about
2118 * the disk in preparation for re-adding it. In this case
2119 * the highest_lun should be left unchanged and the LunID
2120 * should not be cleared.
2121 */
2122 static int deregister_disk(ctlr_info_t *h, int drv_index,
2123 int clear_all)
2124 {
2125 int i;
2126 struct gendisk *disk;
2127 drive_info_struct *drv;
2128
2129 if (!capable(CAP_SYS_RAWIO))
2130 return -EPERM;
2131
2132 drv = &h->drv[drv_index];
2133 disk = h->gendisk[drv_index];
2134
2135 /* make sure logical volume is NOT is use */
2136 if (clear_all || (h->gendisk[0] == disk)) {
2137 if (drv->usage_count > 1)
2138 return -EBUSY;
2139 } else if (drv->usage_count > 0)
2140 return -EBUSY;
2141
2142 /* invalidate the devices and deregister the disk. If it is disk
2143 * zero do not deregister it but just zero out it's values. This
2144 * allows us to delete disk zero but keep the controller registered.
2145 */
2146 if (h->gendisk[0] != disk) {
2147 struct request_queue *q = disk->queue;
2148 if (disk->flags & GENHD_FL_UP)
2149 del_gendisk(disk);
2150 if (q) {
2151 blk_cleanup_queue(q);
2152 /* Set drv->queue to NULL so that we do not try
2153 * to call blk_start_queue on this queue in the
2154 * interrupt handler
2155 */
2156 drv->queue = NULL;
2157 }
2158 /* If clear_all is set then we are deleting the logical
2159 * drive, not just refreshing its info. For drives
2160 * other than disk 0 we will call put_disk. We do not
2161 * do this for disk 0 as we need it to be able to
2162 * configure the controller.
2163 */
2164 if (clear_all){
2165 /* This isn't pretty, but we need to find the
2166 * disk in our array and NULL our the pointer.
2167 * This is so that we will call alloc_disk if
2168 * this index is used again later.
2169 */
2170 for (i=0; i < CISS_MAX_LUN; i++){
2171 if (h->gendisk[i] == disk) {
2172 h->gendisk[i] = NULL;
2173 break;
2174 }
2175 }
2176 put_disk(disk);
2177 }
2178 } else {
2179 set_capacity(disk, 0);
2180 }
2181
2182 --h->num_luns;
2183 /* zero out the disk size info */
2184 drv->nr_blocks = 0;
2185 drv->block_size = 0;
2186 drv->heads = 0;
2187 drv->sectors = 0;
2188 drv->cylinders = 0;
2189 drv->raid_level = -1; /* This can be used as a flag variable to
2190 * indicate that this element of the drive
2191 * array is free.
2192 */
2193 cciss_destroy_ld_sysfs_entry(h, drv_index);
2194
2195 if (clear_all) {
2196 /* check to see if it was the last disk */
2197 if (drv == h->drv + h->highest_lun) {
2198 /* if so, find the new hightest lun */
2199 int i, newhighest = -1;
2200 for (i = 0; i <= h->highest_lun; i++) {
2201 /* if the disk has size > 0, it is available */
2202 if (h->drv[i].heads)
2203 newhighest = i;
2204 }
2205 h->highest_lun = newhighest;
2206 }
2207
2208 drv->LunID = 0;
2209 }
2210 return 0;
2211 }
2212
2213 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2214 size_t size, __u8 page_code, unsigned char *scsi3addr,
2215 int cmd_type)
2216 {
2217 ctlr_info_t *h = hba[ctlr];
2218 u64bit buff_dma_handle;
2219 int status = IO_OK;
2220
2221 c->cmd_type = CMD_IOCTL_PEND;
2222 c->Header.ReplyQueue = 0;
2223 if (buff != NULL) {
2224 c->Header.SGList = 1;
2225 c->Header.SGTotal = 1;
2226 } else {
2227 c->Header.SGList = 0;
2228 c->Header.SGTotal = 0;
2229 }
2230 c->Header.Tag.lower = c->busaddr;
2231 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2232
2233 c->Request.Type.Type = cmd_type;
2234 if (cmd_type == TYPE_CMD) {
2235 switch (cmd) {
2236 case CISS_INQUIRY:
2237 /* are we trying to read a vital product page */
2238 if (page_code != 0) {
2239 c->Request.CDB[1] = 0x01;
2240 c->Request.CDB[2] = page_code;
2241 }
2242 c->Request.CDBLen = 6;
2243 c->Request.Type.Attribute = ATTR_SIMPLE;
2244 c->Request.Type.Direction = XFER_READ;
2245 c->Request.Timeout = 0;
2246 c->Request.CDB[0] = CISS_INQUIRY;
2247 c->Request.CDB[4] = size & 0xFF;
2248 break;
2249 case CISS_REPORT_LOG:
2250 case CISS_REPORT_PHYS:
2251 /* Talking to controller so It's a physical command
2252 mode = 00 target = 0. Nothing to write.
2253 */
2254 c->Request.CDBLen = 12;
2255 c->Request.Type.Attribute = ATTR_SIMPLE;
2256 c->Request.Type.Direction = XFER_READ;
2257 c->Request.Timeout = 0;
2258 c->Request.CDB[0] = cmd;
2259 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
2260 c->Request.CDB[7] = (size >> 16) & 0xFF;
2261 c->Request.CDB[8] = (size >> 8) & 0xFF;
2262 c->Request.CDB[9] = size & 0xFF;
2263 break;
2264
2265 case CCISS_READ_CAPACITY:
2266 c->Request.CDBLen = 10;
2267 c->Request.Type.Attribute = ATTR_SIMPLE;
2268 c->Request.Type.Direction = XFER_READ;
2269 c->Request.Timeout = 0;
2270 c->Request.CDB[0] = cmd;
2271 break;
2272 case CCISS_READ_CAPACITY_16:
2273 c->Request.CDBLen = 16;
2274 c->Request.Type.Attribute = ATTR_SIMPLE;
2275 c->Request.Type.Direction = XFER_READ;
2276 c->Request.Timeout = 0;
2277 c->Request.CDB[0] = cmd;
2278 c->Request.CDB[1] = 0x10;
2279 c->Request.CDB[10] = (size >> 24) & 0xFF;
2280 c->Request.CDB[11] = (size >> 16) & 0xFF;
2281 c->Request.CDB[12] = (size >> 8) & 0xFF;
2282 c->Request.CDB[13] = size & 0xFF;
2283 c->Request.Timeout = 0;
2284 c->Request.CDB[0] = cmd;
2285 break;
2286 case CCISS_CACHE_FLUSH:
2287 c->Request.CDBLen = 12;
2288 c->Request.Type.Attribute = ATTR_SIMPLE;
2289 c->Request.Type.Direction = XFER_WRITE;
2290 c->Request.Timeout = 0;
2291 c->Request.CDB[0] = BMIC_WRITE;
2292 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2293 break;
2294 case TEST_UNIT_READY:
2295 c->Request.CDBLen = 6;
2296 c->Request.Type.Attribute = ATTR_SIMPLE;
2297 c->Request.Type.Direction = XFER_NONE;
2298 c->Request.Timeout = 0;
2299 break;
2300 default:
2301 printk(KERN_WARNING
2302 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2303 return IO_ERROR;
2304 }
2305 } else if (cmd_type == TYPE_MSG) {
2306 switch (cmd) {
2307 case 0: /* ABORT message */
2308 c->Request.CDBLen = 12;
2309 c->Request.Type.Attribute = ATTR_SIMPLE;
2310 c->Request.Type.Direction = XFER_WRITE;
2311 c->Request.Timeout = 0;
2312 c->Request.CDB[0] = cmd; /* abort */
2313 c->Request.CDB[1] = 0; /* abort a command */
2314 /* buff contains the tag of the command to abort */
2315 memcpy(&c->Request.CDB[4], buff, 8);
2316 break;
2317 case 1: /* RESET message */
2318 c->Request.CDBLen = 16;
2319 c->Request.Type.Attribute = ATTR_SIMPLE;
2320 c->Request.Type.Direction = XFER_NONE;
2321 c->Request.Timeout = 0;
2322 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2323 c->Request.CDB[0] = cmd; /* reset */
2324 c->Request.CDB[1] = 0x03; /* reset a target */
2325 break;
2326 case 3: /* No-Op message */
2327 c->Request.CDBLen = 1;
2328 c->Request.Type.Attribute = ATTR_SIMPLE;
2329 c->Request.Type.Direction = XFER_WRITE;
2330 c->Request.Timeout = 0;
2331 c->Request.CDB[0] = cmd;
2332 break;
2333 default:
2334 printk(KERN_WARNING
2335 "cciss%d: unknown message type %d\n", ctlr, cmd);
2336 return IO_ERROR;
2337 }
2338 } else {
2339 printk(KERN_WARNING
2340 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2341 return IO_ERROR;
2342 }
2343 /* Fill in the scatter gather information */
2344 if (size > 0) {
2345 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2346 buff, size,
2347 PCI_DMA_BIDIRECTIONAL);
2348 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2349 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2350 c->SG[0].Len = size;
2351 c->SG[0].Ext = 0; /* we are not chaining */
2352 }
2353 return status;
2354 }
2355
2356 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2357 {
2358 switch (c->err_info->ScsiStatus) {
2359 case SAM_STAT_GOOD:
2360 return IO_OK;
2361 case SAM_STAT_CHECK_CONDITION:
2362 switch (0xf & c->err_info->SenseInfo[2]) {
2363 case 0: return IO_OK; /* no sense */
2364 case 1: return IO_OK; /* recovered error */
2365 default:
2366 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2367 "check condition, sense key = 0x%02x\n",
2368 h->ctlr, c->Request.CDB[0],
2369 c->err_info->SenseInfo[2]);
2370 }
2371 break;
2372 default:
2373 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2374 "scsi status = 0x%02x\n", h->ctlr,
2375 c->Request.CDB[0], c->err_info->ScsiStatus);
2376 break;
2377 }
2378 return IO_ERROR;
2379 }
2380
2381 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2382 {
2383 int return_status = IO_OK;
2384
2385 if (c->err_info->CommandStatus == CMD_SUCCESS)
2386 return IO_OK;
2387
2388 switch (c->err_info->CommandStatus) {
2389 case CMD_TARGET_STATUS:
2390 return_status = check_target_status(h, c);
2391 break;
2392 case CMD_DATA_UNDERRUN:
2393 case CMD_DATA_OVERRUN:
2394 /* expected for inquiry and report lun commands */
2395 break;
2396 case CMD_INVALID:
2397 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2398 "reported invalid\n", c->Request.CDB[0]);
2399 return_status = IO_ERROR;
2400 break;
2401 case CMD_PROTOCOL_ERR:
2402 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2403 "protocol error \n", c->Request.CDB[0]);
2404 return_status = IO_ERROR;
2405 break;
2406 case CMD_HARDWARE_ERR:
2407 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2408 " hardware error\n", c->Request.CDB[0]);
2409 return_status = IO_ERROR;
2410 break;
2411 case CMD_CONNECTION_LOST:
2412 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2413 "connection lost\n", c->Request.CDB[0]);
2414 return_status = IO_ERROR;
2415 break;
2416 case CMD_ABORTED:
2417 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2418 "aborted\n", c->Request.CDB[0]);
2419 return_status = IO_ERROR;
2420 break;
2421 case CMD_ABORT_FAILED:
2422 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2423 "abort failed\n", c->Request.CDB[0]);
2424 return_status = IO_ERROR;
2425 break;
2426 case CMD_UNSOLICITED_ABORT:
2427 printk(KERN_WARNING
2428 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2429 c->Request.CDB[0]);
2430 return_status = IO_NEEDS_RETRY;
2431 break;
2432 default:
2433 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2434 "unknown status %x\n", c->Request.CDB[0],
2435 c->err_info->CommandStatus);
2436 return_status = IO_ERROR;
2437 }
2438 return return_status;
2439 }
2440
2441 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2442 int attempt_retry)
2443 {
2444 DECLARE_COMPLETION_ONSTACK(wait);
2445 u64bit buff_dma_handle;
2446 unsigned long flags;
2447 int return_status = IO_OK;
2448
2449 resend_cmd2:
2450 c->waiting = &wait;
2451 /* Put the request on the tail of the queue and send it */
2452 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2453 addQ(&h->reqQ, c);
2454 h->Qdepth++;
2455 start_io(h);
2456 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2457
2458 wait_for_completion(&wait);
2459
2460 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2461 goto command_done;
2462
2463 return_status = process_sendcmd_error(h, c);
2464
2465 if (return_status == IO_NEEDS_RETRY &&
2466 c->retry_count < MAX_CMD_RETRIES) {
2467 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2468 c->Request.CDB[0]);
2469 c->retry_count++;
2470 /* erase the old error information */
2471 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2472 return_status = IO_OK;
2473 INIT_COMPLETION(wait);
2474 goto resend_cmd2;
2475 }
2476
2477 command_done:
2478 /* unlock the buffers from DMA */
2479 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2480 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2481 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2482 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2483 return return_status;
2484 }
2485
2486 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2487 __u8 page_code, unsigned char scsi3addr[],
2488 int cmd_type)
2489 {
2490 ctlr_info_t *h = hba[ctlr];
2491 CommandList_struct *c;
2492 int return_status;
2493
2494 c = cmd_alloc(h, 0);
2495 if (!c)
2496 return -ENOMEM;
2497 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2498 scsi3addr, cmd_type);
2499 if (return_status == IO_OK)
2500 return_status = sendcmd_withirq_core(h, c, 1);
2501
2502 cmd_free(h, c, 0);
2503 return return_status;
2504 }
2505
2506 static void cciss_geometry_inquiry(int ctlr, int logvol,
2507 int withirq, sector_t total_size,
2508 unsigned int block_size,
2509 InquiryData_struct *inq_buff,
2510 drive_info_struct *drv)
2511 {
2512 int return_code;
2513 unsigned long t;
2514 unsigned char scsi3addr[8];
2515
2516 memset(inq_buff, 0, sizeof(InquiryData_struct));
2517 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2518 if (withirq)
2519 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2520 inq_buff, sizeof(*inq_buff),
2521 0xC1, scsi3addr, TYPE_CMD);
2522 else
2523 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2524 sizeof(*inq_buff), 0xC1, scsi3addr,
2525 TYPE_CMD);
2526 if (return_code == IO_OK) {
2527 if (inq_buff->data_byte[8] == 0xFF) {
2528 printk(KERN_WARNING
2529 "cciss: reading geometry failed, volume "
2530 "does not support reading geometry\n");
2531 drv->heads = 255;
2532 drv->sectors = 32; // Sectors per track
2533 drv->cylinders = total_size + 1;
2534 drv->raid_level = RAID_UNKNOWN;
2535 } else {
2536 drv->heads = inq_buff->data_byte[6];
2537 drv->sectors = inq_buff->data_byte[7];
2538 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2539 drv->cylinders += inq_buff->data_byte[5];
2540 drv->raid_level = inq_buff->data_byte[8];
2541 }
2542 drv->block_size = block_size;
2543 drv->nr_blocks = total_size + 1;
2544 t = drv->heads * drv->sectors;
2545 if (t > 1) {
2546 sector_t real_size = total_size + 1;
2547 unsigned long rem = sector_div(real_size, t);
2548 if (rem)
2549 real_size++;
2550 drv->cylinders = real_size;
2551 }
2552 } else { /* Get geometry failed */
2553 printk(KERN_WARNING "cciss: reading geometry failed\n");
2554 }
2555 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2556 drv->heads, drv->sectors, drv->cylinders);
2557 }
2558
2559 static void
2560 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2561 unsigned int *block_size)
2562 {
2563 ReadCapdata_struct *buf;
2564 int return_code;
2565 unsigned char scsi3addr[8];
2566
2567 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2568 if (!buf) {
2569 printk(KERN_WARNING "cciss: out of memory\n");
2570 return;
2571 }
2572
2573 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2574 if (withirq)
2575 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2576 ctlr, buf, sizeof(ReadCapdata_struct),
2577 0, scsi3addr, TYPE_CMD);
2578 else
2579 return_code = sendcmd(CCISS_READ_CAPACITY,
2580 ctlr, buf, sizeof(ReadCapdata_struct),
2581 0, scsi3addr, TYPE_CMD);
2582 if (return_code == IO_OK) {
2583 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2584 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2585 } else { /* read capacity command failed */
2586 printk(KERN_WARNING "cciss: read capacity failed\n");
2587 *total_size = 0;
2588 *block_size = BLOCK_SIZE;
2589 }
2590 if (*total_size != 0)
2591 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2592 (unsigned long long)*total_size+1, *block_size);
2593 kfree(buf);
2594 }
2595
2596 static void
2597 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2598 {
2599 ReadCapdata_struct_16 *buf;
2600 int return_code;
2601 unsigned char scsi3addr[8];
2602
2603 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2604 if (!buf) {
2605 printk(KERN_WARNING "cciss: out of memory\n");
2606 return;
2607 }
2608
2609 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2610 if (withirq) {
2611 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2612 ctlr, buf, sizeof(ReadCapdata_struct_16),
2613 0, scsi3addr, TYPE_CMD);
2614 }
2615 else {
2616 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2617 ctlr, buf, sizeof(ReadCapdata_struct_16),
2618 0, scsi3addr, TYPE_CMD);
2619 }
2620 if (return_code == IO_OK) {
2621 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2622 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2623 } else { /* read capacity command failed */
2624 printk(KERN_WARNING "cciss: read capacity failed\n");
2625 *total_size = 0;
2626 *block_size = BLOCK_SIZE;
2627 }
2628 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2629 (unsigned long long)*total_size+1, *block_size);
2630 kfree(buf);
2631 }
2632
2633 static int cciss_revalidate(struct gendisk *disk)
2634 {
2635 ctlr_info_t *h = get_host(disk);
2636 drive_info_struct *drv = get_drv(disk);
2637 int logvol;
2638 int FOUND = 0;
2639 unsigned int block_size;
2640 sector_t total_size;
2641 InquiryData_struct *inq_buff = NULL;
2642
2643 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2644 if (h->drv[logvol].LunID == drv->LunID) {
2645 FOUND = 1;
2646 break;
2647 }
2648 }
2649
2650 if (!FOUND)
2651 return 1;
2652
2653 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2654 if (inq_buff == NULL) {
2655 printk(KERN_WARNING "cciss: out of memory\n");
2656 return 1;
2657 }
2658 if (h->cciss_read == CCISS_READ_10) {
2659 cciss_read_capacity(h->ctlr, logvol, 1,
2660 &total_size, &block_size);
2661 } else {
2662 cciss_read_capacity_16(h->ctlr, logvol, 1,
2663 &total_size, &block_size);
2664 }
2665 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2666 inq_buff, drv);
2667
2668 blk_queue_logical_block_size(drv->queue, drv->block_size);
2669 set_capacity(disk, drv->nr_blocks);
2670
2671 kfree(inq_buff);
2672 return 0;
2673 }
2674
2675 /*
2676 * Wait polling for a command to complete.
2677 * The memory mapped FIFO is polled for the completion.
2678 * Used only at init time, interrupts from the HBA are disabled.
2679 */
2680 static unsigned long pollcomplete(int ctlr)
2681 {
2682 unsigned long done;
2683 int i;
2684
2685 /* Wait (up to 20 seconds) for a command to complete */
2686
2687 for (i = 20 * HZ; i > 0; i--) {
2688 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2689 if (done == FIFO_EMPTY)
2690 schedule_timeout_uninterruptible(1);
2691 else
2692 return done;
2693 }
2694 /* Invalid address to tell caller we ran out of time */
2695 return 1;
2696 }
2697
2698 /* Send command c to controller h and poll for it to complete.
2699 * Turns interrupts off on the board. Used at driver init time
2700 * and during SCSI error recovery.
2701 */
2702 static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2703 {
2704 int i;
2705 unsigned long complete;
2706 int status = IO_ERROR;
2707 u64bit buff_dma_handle;
2708
2709 resend_cmd1:
2710
2711 /* Disable interrupt on the board. */
2712 h->access.set_intr_mask(h, CCISS_INTR_OFF);
2713
2714 /* Make sure there is room in the command FIFO */
2715 /* Actually it should be completely empty at this time */
2716 /* unless we are in here doing error handling for the scsi */
2717 /* tape side of the driver. */
2718 for (i = 200000; i > 0; i--) {
2719 /* if fifo isn't full go */
2720 if (!(h->access.fifo_full(h)))
2721 break;
2722 udelay(10);
2723 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2724 " waiting!\n", h->ctlr);
2725 }
2726 h->access.submit_command(h, c); /* Send the cmd */
2727 do {
2728 complete = pollcomplete(h->ctlr);
2729
2730 #ifdef CCISS_DEBUG
2731 printk(KERN_DEBUG "cciss: command completed\n");
2732 #endif /* CCISS_DEBUG */
2733
2734 if (complete == 1) {
2735 printk(KERN_WARNING
2736 "cciss cciss%d: SendCmd Timeout out, "
2737 "No command list address returned!\n", h->ctlr);
2738 status = IO_ERROR;
2739 break;
2740 }
2741
2742 /* Make sure it's the command we're expecting. */
2743 if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2744 printk(KERN_WARNING "cciss%d: Unexpected command "
2745 "completion.\n", h->ctlr);
2746 continue;
2747 }
2748
2749 /* It is our command. If no error, we're done. */
2750 if (!(complete & CISS_ERROR_BIT)) {
2751 status = IO_OK;
2752 break;
2753 }
2754
2755 /* There is an error... */
2756
2757 /* if data overrun or underun on Report command ignore it */
2758 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2759 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2760 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2761 ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2762 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2763 complete = c->busaddr;
2764 status = IO_OK;
2765 break;
2766 }
2767
2768 if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2769 printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2770 h->ctlr, c);
2771 if (c->retry_count < MAX_CMD_RETRIES) {
2772 printk(KERN_WARNING "cciss%d: retrying %p\n",
2773 h->ctlr, c);
2774 c->retry_count++;
2775 /* erase the old error information */
2776 memset(c->err_info, 0, sizeof(c->err_info));
2777 goto resend_cmd1;
2778 }
2779 printk(KERN_WARNING "cciss%d: retried %p too many "
2780 "times\n", h->ctlr, c);
2781 status = IO_ERROR;
2782 break;
2783 }
2784
2785 if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2786 printk(KERN_WARNING "cciss%d: command could not be "
2787 "aborted.\n", h->ctlr);
2788 status = IO_ERROR;
2789 break;
2790 }
2791
2792 if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2793 status = check_target_status(h, c);
2794 break;
2795 }
2796
2797 printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2798 printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2799 c->Request.CDB[0], c->err_info->CommandStatus);
2800 status = IO_ERROR;
2801 break;
2802
2803 } while (1);
2804
2805 /* unlock the data buffer from DMA */
2806 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2807 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2808 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2809 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2810 return status;
2811 }
2812
2813 /*
2814 * Send a command to the controller, and wait for it to complete.
2815 * Used at init time, and during SCSI error recovery.
2816 */
2817 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2818 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2819 {
2820 CommandList_struct *c;
2821 int status;
2822
2823 c = cmd_alloc(hba[ctlr], 1);
2824 if (!c) {
2825 printk(KERN_WARNING "cciss: unable to get memory");
2826 return IO_ERROR;
2827 }
2828 status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2829 scsi3addr, cmd_type);
2830 if (status == IO_OK)
2831 status = sendcmd_core(hba[ctlr], c);
2832 cmd_free(hba[ctlr], c, 1);
2833 return status;
2834 }
2835
2836 /*
2837 * Map (physical) PCI mem into (virtual) kernel space
2838 */
2839 static void __iomem *remap_pci_mem(ulong base, ulong size)
2840 {
2841 ulong page_base = ((ulong) base) & PAGE_MASK;
2842 ulong page_offs = ((ulong) base) - page_base;
2843 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2844
2845 return page_remapped ? (page_remapped + page_offs) : NULL;
2846 }
2847
2848 /*
2849 * Takes jobs of the Q and sends them to the hardware, then puts it on
2850 * the Q to wait for completion.
2851 */
2852 static void start_io(ctlr_info_t *h)
2853 {
2854 CommandList_struct *c;
2855
2856 while (!hlist_empty(&h->reqQ)) {
2857 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2858 /* can't do anything if fifo is full */
2859 if ((h->access.fifo_full(h))) {
2860 printk(KERN_WARNING "cciss: fifo full\n");
2861 break;
2862 }
2863
2864 /* Get the first entry from the Request Q */
2865 removeQ(c);
2866 h->Qdepth--;
2867
2868 /* Tell the controller execute command */
2869 h->access.submit_command(h, c);
2870
2871 /* Put job onto the completed Q */
2872 addQ(&h->cmpQ, c);
2873 }
2874 }
2875
2876 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2877 /* Zeros out the error record and then resends the command back */
2878 /* to the controller */
2879 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2880 {
2881 /* erase the old error information */
2882 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2883
2884 /* add it to software queue and then send it to the controller */
2885 addQ(&h->reqQ, c);
2886 h->Qdepth++;
2887 if (h->Qdepth > h->maxQsinceinit)
2888 h->maxQsinceinit = h->Qdepth;
2889
2890 start_io(h);
2891 }
2892
2893 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2894 unsigned int msg_byte, unsigned int host_byte,
2895 unsigned int driver_byte)
2896 {
2897 /* inverse of macros in scsi.h */
2898 return (scsi_status_byte & 0xff) |
2899 ((msg_byte & 0xff) << 8) |
2900 ((host_byte & 0xff) << 16) |
2901 ((driver_byte & 0xff) << 24);
2902 }
2903
2904 static inline int evaluate_target_status(ctlr_info_t *h,
2905 CommandList_struct *cmd, int *retry_cmd)
2906 {
2907 unsigned char sense_key;
2908 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2909 int error_value;
2910
2911 *retry_cmd = 0;
2912 /* If we get in here, it means we got "target status", that is, scsi status */
2913 status_byte = cmd->err_info->ScsiStatus;
2914 driver_byte = DRIVER_OK;
2915 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2916
2917 if (blk_pc_request(cmd->rq))
2918 host_byte = DID_PASSTHROUGH;
2919 else
2920 host_byte = DID_OK;
2921
2922 error_value = make_status_bytes(status_byte, msg_byte,
2923 host_byte, driver_byte);
2924
2925 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2926 if (!blk_pc_request(cmd->rq))
2927 printk(KERN_WARNING "cciss: cmd %p "
2928 "has SCSI Status 0x%x\n",
2929 cmd, cmd->err_info->ScsiStatus);
2930 return error_value;
2931 }
2932
2933 /* check the sense key */
2934 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2935 /* no status or recovered error */
2936 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2937 error_value = 0;
2938
2939 if (check_for_unit_attention(h, cmd)) {
2940 *retry_cmd = !blk_pc_request(cmd->rq);
2941 return 0;
2942 }
2943
2944 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2945 if (error_value != 0)
2946 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2947 " sense key = 0x%x\n", cmd, sense_key);
2948 return error_value;
2949 }
2950
2951 /* SG_IO or similar, copy sense data back */
2952 if (cmd->rq->sense) {
2953 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2954 cmd->rq->sense_len = cmd->err_info->SenseLen;
2955 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2956 cmd->rq->sense_len);
2957 } else
2958 cmd->rq->sense_len = 0;
2959
2960 return error_value;
2961 }
2962
2963 /* checks the status of the job and calls complete buffers to mark all
2964 * buffers for the completed job. Note that this function does not need
2965 * to hold the hba/queue lock.
2966 */
2967 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2968 int timeout)
2969 {
2970 int retry_cmd = 0;
2971 struct request *rq = cmd->rq;
2972
2973 rq->errors = 0;
2974
2975 if (timeout)
2976 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2977
2978 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2979 goto after_error_processing;
2980
2981 switch (cmd->err_info->CommandStatus) {
2982 case CMD_TARGET_STATUS:
2983 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
2984 break;
2985 case CMD_DATA_UNDERRUN:
2986 if (blk_fs_request(cmd->rq)) {
2987 printk(KERN_WARNING "cciss: cmd %p has"
2988 " completed with data underrun "
2989 "reported\n", cmd);
2990 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
2991 }
2992 break;
2993 case CMD_DATA_OVERRUN:
2994 if (blk_fs_request(cmd->rq))
2995 printk(KERN_WARNING "cciss: cmd %p has"
2996 " completed with data overrun "
2997 "reported\n", cmd);
2998 break;
2999 case CMD_INVALID:
3000 printk(KERN_WARNING "cciss: cmd %p is "
3001 "reported invalid\n", cmd);
3002 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3003 cmd->err_info->CommandStatus, DRIVER_OK,
3004 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3005 break;
3006 case CMD_PROTOCOL_ERR:
3007 printk(KERN_WARNING "cciss: cmd %p has "
3008 "protocol error \n", cmd);
3009 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3010 cmd->err_info->CommandStatus, DRIVER_OK,
3011 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3012 break;
3013 case CMD_HARDWARE_ERR:
3014 printk(KERN_WARNING "cciss: cmd %p had "
3015 " hardware error\n", cmd);
3016 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3017 cmd->err_info->CommandStatus, DRIVER_OK,
3018 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3019 break;
3020 case CMD_CONNECTION_LOST:
3021 printk(KERN_WARNING "cciss: cmd %p had "
3022 "connection lost\n", cmd);
3023 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3024 cmd->err_info->CommandStatus, DRIVER_OK,
3025 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3026 break;
3027 case CMD_ABORTED:
3028 printk(KERN_WARNING "cciss: cmd %p was "
3029 "aborted\n", cmd);
3030 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3031 cmd->err_info->CommandStatus, DRIVER_OK,
3032 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3033 break;
3034 case CMD_ABORT_FAILED:
3035 printk(KERN_WARNING "cciss: cmd %p reports "
3036 "abort failed\n", cmd);
3037 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3038 cmd->err_info->CommandStatus, DRIVER_OK,
3039 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3040 break;
3041 case CMD_UNSOLICITED_ABORT:
3042 printk(KERN_WARNING "cciss%d: unsolicited "
3043 "abort %p\n", h->ctlr, cmd);
3044 if (cmd->retry_count < MAX_CMD_RETRIES) {
3045 retry_cmd = 1;
3046 printk(KERN_WARNING
3047 "cciss%d: retrying %p\n", h->ctlr, cmd);
3048 cmd->retry_count++;
3049 } else
3050 printk(KERN_WARNING
3051 "cciss%d: %p retried too "
3052 "many times\n", h->ctlr, cmd);
3053 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3054 cmd->err_info->CommandStatus, DRIVER_OK,
3055 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3056 break;
3057 case CMD_TIMEOUT:
3058 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3059 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3060 cmd->err_info->CommandStatus, DRIVER_OK,
3061 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3062 break;
3063 default:
3064 printk(KERN_WARNING "cciss: cmd %p returned "
3065 "unknown status %x\n", cmd,
3066 cmd->err_info->CommandStatus);
3067 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3068 cmd->err_info->CommandStatus, DRIVER_OK,
3069 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3070 }
3071
3072 after_error_processing:
3073
3074 /* We need to return this command */
3075 if (retry_cmd) {
3076 resend_cciss_cmd(h, cmd);
3077 return;
3078 }
3079 cmd->rq->completion_data = cmd;
3080 blk_complete_request(cmd->rq);
3081 }
3082
3083 /*
3084 * Get a request and submit it to the controller.
3085 */
3086 static void do_cciss_request(struct request_queue *q)
3087 {
3088 ctlr_info_t *h = q->queuedata;
3089 CommandList_struct *c;
3090 sector_t start_blk;
3091 int seg;
3092 struct request *creq;
3093 u64bit temp64;
3094 struct scatterlist tmp_sg[MAXSGENTRIES];
3095 drive_info_struct *drv;
3096 int i, dir;
3097
3098 /* We call start_io here in case there is a command waiting on the
3099 * queue that has not been sent.
3100 */
3101 if (blk_queue_plugged(q))
3102 goto startio;
3103
3104 queue:
3105 creq = blk_peek_request(q);
3106 if (!creq)
3107 goto startio;
3108
3109 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3110
3111 if ((c = cmd_alloc(h, 1)) == NULL)
3112 goto full;
3113
3114 blk_start_request(creq);
3115
3116 spin_unlock_irq(q->queue_lock);
3117
3118 c->cmd_type = CMD_RWREQ;
3119 c->rq = creq;
3120
3121 /* fill in the request */
3122 drv = creq->rq_disk->private_data;
3123 c->Header.ReplyQueue = 0; // unused in simple mode
3124 /* got command from pool, so use the command block index instead */
3125 /* for direct lookups. */
3126 /* The first 2 bits are reserved for controller error reporting. */
3127 c->Header.Tag.lower = (c->cmdindex << 3);
3128 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3129 c->Header.LUN.LogDev.VolId = drv->LunID;
3130 c->Header.LUN.LogDev.Mode = 1;
3131 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3132 c->Request.Type.Type = TYPE_CMD; // It is a command.
3133 c->Request.Type.Attribute = ATTR_SIMPLE;
3134 c->Request.Type.Direction =
3135 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3136 c->Request.Timeout = 0; // Don't time out
3137 c->Request.CDB[0] =
3138 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3139 start_blk = blk_rq_pos(creq);
3140 #ifdef CCISS_DEBUG
3141 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3142 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3143 #endif /* CCISS_DEBUG */
3144
3145 sg_init_table(tmp_sg, MAXSGENTRIES);
3146 seg = blk_rq_map_sg(q, creq, tmp_sg);
3147
3148 /* get the DMA records for the setup */
3149 if (c->Request.Type.Direction == XFER_READ)
3150 dir = PCI_DMA_FROMDEVICE;
3151 else
3152 dir = PCI_DMA_TODEVICE;
3153
3154 for (i = 0; i < seg; i++) {
3155 c->SG[i].Len = tmp_sg[i].length;
3156 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3157 tmp_sg[i].offset,
3158 tmp_sg[i].length, dir);
3159 c->SG[i].Addr.lower = temp64.val32.lower;
3160 c->SG[i].Addr.upper = temp64.val32.upper;
3161 c->SG[i].Ext = 0; // we are not chaining
3162 }
3163 /* track how many SG entries we are using */
3164 if (seg > h->maxSG)
3165 h->maxSG = seg;
3166
3167 #ifdef CCISS_DEBUG
3168 printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3169 blk_rq_sectors(creq), seg);
3170 #endif /* CCISS_DEBUG */
3171
3172 c->Header.SGList = c->Header.SGTotal = seg;
3173 if (likely(blk_fs_request(creq))) {
3174 if(h->cciss_read == CCISS_READ_10) {
3175 c->Request.CDB[1] = 0;
3176 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
3177 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3178 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3179 c->Request.CDB[5] = start_blk & 0xff;
3180 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
3181 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3182 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3183 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3184 } else {
3185 u32 upper32 = upper_32_bits(start_blk);
3186
3187 c->Request.CDBLen = 16;
3188 c->Request.CDB[1]= 0;
3189 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
3190 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3191 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3192 c->Request.CDB[5]= upper32 & 0xff;
3193 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3194 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3195 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3196 c->Request.CDB[9]= start_blk & 0xff;
3197 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3198 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3199 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3200 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3201 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3202 }
3203 } else if (blk_pc_request(creq)) {
3204 c->Request.CDBLen = creq->cmd_len;
3205 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3206 } else {
3207 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3208 BUG();
3209 }
3210
3211 spin_lock_irq(q->queue_lock);
3212
3213 addQ(&h->reqQ, c);
3214 h->Qdepth++;
3215 if (h->Qdepth > h->maxQsinceinit)
3216 h->maxQsinceinit = h->Qdepth;
3217
3218 goto queue;
3219 full:
3220 blk_stop_queue(q);
3221 startio:
3222 /* We will already have the driver lock here so not need
3223 * to lock it.
3224 */
3225 start_io(h);
3226 }
3227
3228 static inline unsigned long get_next_completion(ctlr_info_t *h)
3229 {
3230 return h->access.command_completed(h);
3231 }
3232
3233 static inline int interrupt_pending(ctlr_info_t *h)
3234 {
3235 return h->access.intr_pending(h);
3236 }
3237
3238 static inline long interrupt_not_for_us(ctlr_info_t *h)
3239 {
3240 return (((h->access.intr_pending(h) == 0) ||
3241 (h->interrupts_enabled == 0)));
3242 }
3243
3244 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3245 {
3246 ctlr_info_t *h = dev_id;
3247 CommandList_struct *c;
3248 unsigned long flags;
3249 __u32 a, a1, a2;
3250
3251 if (interrupt_not_for_us(h))
3252 return IRQ_NONE;
3253 /*
3254 * If there are completed commands in the completion queue,
3255 * we had better do something about it.
3256 */
3257 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3258 while (interrupt_pending(h)) {
3259 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3260 a1 = a;
3261 if ((a & 0x04)) {
3262 a2 = (a >> 3);
3263 if (a2 >= h->nr_cmds) {
3264 printk(KERN_WARNING
3265 "cciss: controller cciss%d failed, stopping.\n",
3266 h->ctlr);
3267 fail_all_cmds(h->ctlr);
3268 return IRQ_HANDLED;
3269 }
3270
3271 c = h->cmd_pool + a2;
3272 a = c->busaddr;
3273
3274 } else {
3275 struct hlist_node *tmp;
3276
3277 a &= ~3;
3278 c = NULL;
3279 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3280 if (c->busaddr == a)
3281 break;
3282 }
3283 }
3284 /*
3285 * If we've found the command, take it off the
3286 * completion Q and free it
3287 */
3288 if (c && c->busaddr == a) {
3289 removeQ(c);
3290 if (c->cmd_type == CMD_RWREQ) {
3291 complete_command(h, c, 0);
3292 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3293 complete(c->waiting);
3294 }
3295 # ifdef CONFIG_CISS_SCSI_TAPE
3296 else if (c->cmd_type == CMD_SCSI)
3297 complete_scsi_command(c, 0, a1);
3298 # endif
3299 continue;
3300 }
3301 }
3302 }
3303
3304 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3305 return IRQ_HANDLED;
3306 }
3307
3308 /**
3309 * add_to_scan_list() - add controller to rescan queue
3310 * @h: Pointer to the controller.
3311 *
3312 * Adds the controller to the rescan queue if not already on the queue.
3313 *
3314 * returns 1 if added to the queue, 0 if skipped (could be on the
3315 * queue already, or the controller could be initializing or shutting
3316 * down).
3317 **/
3318 static int add_to_scan_list(struct ctlr_info *h)
3319 {
3320 struct ctlr_info *test_h;
3321 int found = 0;
3322 int ret = 0;
3323
3324 if (h->busy_initializing)
3325 return 0;
3326
3327 if (!mutex_trylock(&h->busy_shutting_down))
3328 return 0;
3329
3330 mutex_lock(&scan_mutex);
3331 list_for_each_entry(test_h, &scan_q, scan_list) {
3332 if (test_h == h) {
3333 found = 1;
3334 break;
3335 }
3336 }
3337 if (!found && !h->busy_scanning) {
3338 INIT_COMPLETION(h->scan_wait);
3339 list_add_tail(&h->scan_list, &scan_q);
3340 ret = 1;
3341 }
3342 mutex_unlock(&scan_mutex);
3343 mutex_unlock(&h->busy_shutting_down);
3344
3345 return ret;
3346 }
3347
3348 /**
3349 * remove_from_scan_list() - remove controller from rescan queue
3350 * @h: Pointer to the controller.
3351 *
3352 * Removes the controller from the rescan queue if present. Blocks if
3353 * the controller is currently conducting a rescan.
3354 **/
3355 static void remove_from_scan_list(struct ctlr_info *h)
3356 {
3357 struct ctlr_info *test_h, *tmp_h;
3358 int scanning = 0;
3359
3360 mutex_lock(&scan_mutex);
3361 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3362 if (test_h == h) {
3363 list_del(&h->scan_list);
3364 complete_all(&h->scan_wait);
3365 mutex_unlock(&scan_mutex);
3366 return;
3367 }
3368 }
3369 if (&h->busy_scanning)
3370 scanning = 0;
3371 mutex_unlock(&scan_mutex);
3372
3373 if (scanning)
3374 wait_for_completion(&h->scan_wait);
3375 }
3376
3377 /**
3378 * scan_thread() - kernel thread used to rescan controllers
3379 * @data: Ignored.
3380 *
3381 * A kernel thread used scan for drive topology changes on
3382 * controllers. The thread processes only one controller at a time
3383 * using a queue. Controllers are added to the queue using
3384 * add_to_scan_list() and removed from the queue either after done
3385 * processing or using remove_from_scan_list().
3386 *
3387 * returns 0.
3388 **/
3389 static int scan_thread(void *data)
3390 {
3391 struct ctlr_info *h;
3392
3393 while (1) {
3394 set_current_state(TASK_INTERRUPTIBLE);
3395 schedule();
3396 if (kthread_should_stop())
3397 break;
3398
3399 while (1) {
3400 mutex_lock(&scan_mutex);
3401 if (list_empty(&scan_q)) {
3402 mutex_unlock(&scan_mutex);
3403 break;
3404 }
3405
3406 h = list_entry(scan_q.next,
3407 struct ctlr_info,
3408 scan_list);
3409 list_del(&h->scan_list);
3410 h->busy_scanning = 1;
3411 mutex_unlock(&scan_mutex);
3412
3413 if (h) {
3414 rebuild_lun_table(h, 0);
3415 complete_all(&h->scan_wait);
3416 mutex_lock(&scan_mutex);
3417 h->busy_scanning = 0;
3418 mutex_unlock(&scan_mutex);
3419 }
3420 }
3421 }
3422
3423 return 0;
3424 }
3425
3426 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3427 {
3428 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3429 return 0;
3430
3431 switch (c->err_info->SenseInfo[12]) {
3432 case STATE_CHANGED:
3433 printk(KERN_WARNING "cciss%d: a state change "
3434 "detected, command retried\n", h->ctlr);
3435 return 1;
3436 break;
3437 case LUN_FAILED:
3438 printk(KERN_WARNING "cciss%d: LUN failure "
3439 "detected, action required\n", h->ctlr);
3440 return 1;
3441 break;
3442 case REPORT_LUNS_CHANGED:
3443 printk(KERN_WARNING "cciss%d: report LUN data "
3444 "changed\n", h->ctlr);
3445 add_to_scan_list(h);
3446 wake_up_process(cciss_scan_thread);
3447 return 1;
3448 break;
3449 case POWER_OR_RESET:
3450 printk(KERN_WARNING "cciss%d: a power on "
3451 "or device reset detected\n", h->ctlr);
3452 return 1;
3453 break;
3454 case UNIT_ATTENTION_CLEARED:
3455 printk(KERN_WARNING "cciss%d: unit attention "
3456 "cleared by another initiator\n", h->ctlr);
3457 return 1;
3458 break;
3459 default:
3460 printk(KERN_WARNING "cciss%d: unknown "
3461 "unit attention detected\n", h->ctlr);
3462 return 1;
3463 }
3464 }
3465
3466 /*
3467 * We cannot read the structure directly, for portability we must use
3468 * the io functions.
3469 * This is for debug only.
3470 */
3471 #ifdef CCISS_DEBUG
3472 static void print_cfg_table(CfgTable_struct *tb)
3473 {
3474 int i;
3475 char temp_name[17];
3476
3477 printk("Controller Configuration information\n");
3478 printk("------------------------------------\n");
3479 for (i = 0; i < 4; i++)
3480 temp_name[i] = readb(&(tb->Signature[i]));
3481 temp_name[4] = '\0';
3482 printk(" Signature = %s\n", temp_name);
3483 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3484 printk(" Transport methods supported = 0x%x\n",
3485 readl(&(tb->TransportSupport)));
3486 printk(" Transport methods active = 0x%x\n",
3487 readl(&(tb->TransportActive)));
3488 printk(" Requested transport Method = 0x%x\n",
3489 readl(&(tb->HostWrite.TransportRequest)));
3490 printk(" Coalesce Interrupt Delay = 0x%x\n",
3491 readl(&(tb->HostWrite.CoalIntDelay)));
3492 printk(" Coalesce Interrupt Count = 0x%x\n",
3493 readl(&(tb->HostWrite.CoalIntCount)));
3494 printk(" Max outstanding commands = 0x%d\n",
3495 readl(&(tb->CmdsOutMax)));
3496 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3497 for (i = 0; i < 16; i++)
3498 temp_name[i] = readb(&(tb->ServerName[i]));
3499 temp_name[16] = '\0';
3500 printk(" Server Name = %s\n", temp_name);
3501 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3502 }
3503 #endif /* CCISS_DEBUG */
3504
3505 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3506 {
3507 int i, offset, mem_type, bar_type;
3508 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3509 return 0;
3510 offset = 0;
3511 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3512 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3513 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3514 offset += 4;
3515 else {
3516 mem_type = pci_resource_flags(pdev, i) &
3517 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3518 switch (mem_type) {
3519 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3520 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3521 offset += 4; /* 32 bit */
3522 break;
3523 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3524 offset += 8;
3525 break;
3526 default: /* reserved in PCI 2.2 */
3527 printk(KERN_WARNING
3528 "Base address is invalid\n");
3529 return -1;
3530 break;
3531 }
3532 }
3533 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3534 return i + 1;
3535 }
3536 return -1;
3537 }
3538
3539 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3540 * controllers that are capable. If not, we use IO-APIC mode.
3541 */
3542
3543 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3544 struct pci_dev *pdev, __u32 board_id)
3545 {
3546 #ifdef CONFIG_PCI_MSI
3547 int err;
3548 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3549 {0, 2}, {0, 3}
3550 };
3551
3552 /* Some boards advertise MSI but don't really support it */
3553 if ((board_id == 0x40700E11) ||
3554 (board_id == 0x40800E11) ||
3555 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3556 goto default_int_mode;
3557
3558 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3559 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3560 if (!err) {
3561 c->intr[0] = cciss_msix_entries[0].vector;
3562 c->intr[1] = cciss_msix_entries[1].vector;
3563 c->intr[2] = cciss_msix_entries[2].vector;
3564 c->intr[3] = cciss_msix_entries[3].vector;
3565 c->msix_vector = 1;
3566 return;
3567 }
3568 if (err > 0) {
3569 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3570 "available\n", err);
3571 goto default_int_mode;
3572 } else {
3573 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3574 err);
3575 goto default_int_mode;
3576 }
3577 }
3578 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3579 if (!pci_enable_msi(pdev)) {
3580 c->msi_vector = 1;
3581 } else {
3582 printk(KERN_WARNING "cciss: MSI init failed\n");
3583 }
3584 }
3585 default_int_mode:
3586 #endif /* CONFIG_PCI_MSI */
3587 /* if we get here we're going to use the default interrupt mode */
3588 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3589 return;
3590 }
3591
3592 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3593 {
3594 ushort subsystem_vendor_id, subsystem_device_id, command;
3595 __u32 board_id, scratchpad = 0;
3596 __u64 cfg_offset;
3597 __u32 cfg_base_addr;
3598 __u64 cfg_base_addr_index;
3599 int i, err;
3600
3601 /* check to see if controller has been disabled */
3602 /* BEFORE trying to enable it */
3603 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3604 if (!(command & 0x02)) {
3605 printk(KERN_WARNING
3606 "cciss: controller appears to be disabled\n");
3607 return -ENODEV;
3608 }
3609
3610 err = pci_enable_device(pdev);
3611 if (err) {
3612 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3613 return err;
3614 }
3615
3616 err = pci_request_regions(pdev, "cciss");
3617 if (err) {
3618 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3619 "aborting\n");
3620 return err;
3621 }
3622
3623 subsystem_vendor_id = pdev->subsystem_vendor;
3624 subsystem_device_id = pdev->subsystem_device;
3625 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3626 subsystem_vendor_id);
3627
3628 #ifdef CCISS_DEBUG
3629 printk("command = %x\n", command);
3630 printk("irq = %x\n", pdev->irq);
3631 printk("board_id = %x\n", board_id);
3632 #endif /* CCISS_DEBUG */
3633
3634 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3635 * else we use the IO-APIC interrupt assigned to us by system ROM.
3636 */
3637 cciss_interrupt_mode(c, pdev, board_id);
3638
3639 /* find the memory BAR */
3640 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3641 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3642 break;
3643 }
3644 if (i == DEVICE_COUNT_RESOURCE) {
3645 printk(KERN_WARNING "cciss: No memory BAR found\n");
3646 err = -ENODEV;
3647 goto err_out_free_res;
3648 }
3649
3650 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3651 * already removed
3652 */
3653
3654 #ifdef CCISS_DEBUG
3655 printk("address 0 = %lx\n", c->paddr);
3656 #endif /* CCISS_DEBUG */
3657 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3658
3659 /* Wait for the board to become ready. (PCI hotplug needs this.)
3660 * We poll for up to 120 secs, once per 100ms. */
3661 for (i = 0; i < 1200; i++) {
3662 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3663 if (scratchpad == CCISS_FIRMWARE_READY)
3664 break;
3665 set_current_state(TASK_INTERRUPTIBLE);
3666 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3667 }
3668 if (scratchpad != CCISS_FIRMWARE_READY) {
3669 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3670 err = -ENODEV;
3671 goto err_out_free_res;
3672 }
3673
3674 /* get the address index number */
3675 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3676 cfg_base_addr &= (__u32) 0x0000ffff;
3677 #ifdef CCISS_DEBUG
3678 printk("cfg base address = %x\n", cfg_base_addr);
3679 #endif /* CCISS_DEBUG */
3680 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3681 #ifdef CCISS_DEBUG
3682 printk("cfg base address index = %llx\n",
3683 (unsigned long long)cfg_base_addr_index);
3684 #endif /* CCISS_DEBUG */
3685 if (cfg_base_addr_index == -1) {
3686 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3687 err = -ENODEV;
3688 goto err_out_free_res;
3689 }
3690
3691 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3692 #ifdef CCISS_DEBUG
3693 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3694 #endif /* CCISS_DEBUG */
3695 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3696 cfg_base_addr_index) +
3697 cfg_offset, sizeof(CfgTable_struct));
3698 c->board_id = board_id;
3699
3700 #ifdef CCISS_DEBUG
3701 print_cfg_table(c->cfgtable);
3702 #endif /* CCISS_DEBUG */
3703
3704 /* Some controllers support Zero Memory Raid (ZMR).
3705 * When configured in ZMR mode the number of supported
3706 * commands drops to 64. So instead of just setting an
3707 * arbitrary value we make the driver a little smarter.
3708 * We read the config table to tell us how many commands
3709 * are supported on the controller then subtract 4 to
3710 * leave a little room for ioctl calls.
3711 */
3712 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3713 for (i = 0; i < ARRAY_SIZE(products); i++) {
3714 if (board_id == products[i].board_id) {
3715 c->product_name = products[i].product_name;
3716 c->access = *(products[i].access);
3717 c->nr_cmds = c->max_commands - 4;
3718 break;
3719 }
3720 }
3721 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3722 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3723 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3724 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3725 printk("Does not appear to be a valid CISS config table\n");
3726 err = -ENODEV;
3727 goto err_out_free_res;
3728 }
3729 /* We didn't find the controller in our list. We know the
3730 * signature is valid. If it's an HP device let's try to
3731 * bind to the device and fire it up. Otherwise we bail.
3732 */
3733 if (i == ARRAY_SIZE(products)) {
3734 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3735 c->product_name = products[i-1].product_name;
3736 c->access = *(products[i-1].access);
3737 c->nr_cmds = c->max_commands - 4;
3738 printk(KERN_WARNING "cciss: This is an unknown "
3739 "Smart Array controller.\n"
3740 "cciss: Please update to the latest driver "
3741 "available from www.hp.com.\n");
3742 } else {
3743 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3744 " to access the Smart Array controller %08lx\n"
3745 , (unsigned long)board_id);
3746 err = -ENODEV;
3747 goto err_out_free_res;
3748 }
3749 }
3750 #ifdef CONFIG_X86
3751 {
3752 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3753 __u32 prefetch;
3754 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3755 prefetch |= 0x100;
3756 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3757 }
3758 #endif
3759
3760 /* Disabling DMA prefetch and refetch for the P600.
3761 * An ASIC bug may result in accesses to invalid memory addresses.
3762 * We've disabled prefetch for some time now. Testing with XEN
3763 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3764 */
3765 if(board_id == 0x3225103C) {
3766 __u32 dma_prefetch;
3767 __u32 dma_refetch;
3768 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3769 dma_prefetch |= 0x8000;
3770 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3771 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3772 dma_refetch |= 0x1;
3773 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3774 }
3775
3776 #ifdef CCISS_DEBUG
3777 printk("Trying to put board into Simple mode\n");
3778 #endif /* CCISS_DEBUG */
3779 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3780 /* Update the field, and then ring the doorbell */
3781 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3782 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3783
3784 /* under certain very rare conditions, this can take awhile.
3785 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3786 * as we enter this code.) */
3787 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3788 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3789 break;
3790 /* delay and try again */
3791 set_current_state(TASK_INTERRUPTIBLE);
3792 schedule_timeout(msecs_to_jiffies(1));
3793 }
3794
3795 #ifdef CCISS_DEBUG
3796 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3797 readl(c->vaddr + SA5_DOORBELL));
3798 #endif /* CCISS_DEBUG */
3799 #ifdef CCISS_DEBUG
3800 print_cfg_table(c->cfgtable);
3801 #endif /* CCISS_DEBUG */
3802
3803 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3804 printk(KERN_WARNING "cciss: unable to get board into"
3805 " simple mode\n");
3806 err = -ENODEV;
3807 goto err_out_free_res;
3808 }
3809 return 0;
3810
3811 err_out_free_res:
3812 /*
3813 * Deliberately omit pci_disable_device(): it does something nasty to
3814 * Smart Array controllers that pci_enable_device does not undo
3815 */
3816 pci_release_regions(pdev);
3817 return err;
3818 }
3819
3820 /* Function to find the first free pointer into our hba[] array
3821 * Returns -1 if no free entries are left.
3822 */
3823 static int alloc_cciss_hba(void)
3824 {
3825 int i;
3826
3827 for (i = 0; i < MAX_CTLR; i++) {
3828 if (!hba[i]) {
3829 ctlr_info_t *p;
3830
3831 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3832 if (!p)
3833 goto Enomem;
3834 hba[i] = p;
3835 return i;
3836 }
3837 }
3838 printk(KERN_WARNING "cciss: This driver supports a maximum"
3839 " of %d controllers.\n", MAX_CTLR);
3840 return -1;
3841 Enomem:
3842 printk(KERN_ERR "cciss: out of memory.\n");
3843 return -1;
3844 }
3845
3846 static void free_hba(int i)
3847 {
3848 ctlr_info_t *p = hba[i];
3849 int n;
3850
3851 hba[i] = NULL;
3852 for (n = 0; n < CISS_MAX_LUN; n++)
3853 put_disk(p->gendisk[n]);
3854 kfree(p);
3855 }
3856
3857 /* Send a message CDB to the firmware. */
3858 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3859 {
3860 typedef struct {
3861 CommandListHeader_struct CommandHeader;
3862 RequestBlock_struct Request;
3863 ErrDescriptor_struct ErrorDescriptor;
3864 } Command;
3865 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3866 Command *cmd;
3867 dma_addr_t paddr64;
3868 uint32_t paddr32, tag;
3869 void __iomem *vaddr;
3870 int i, err;
3871
3872 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3873 if (vaddr == NULL)
3874 return -ENOMEM;
3875
3876 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3877 CCISS commands, so they must be allocated from the lower 4GiB of
3878 memory. */
3879 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3880 if (err) {
3881 iounmap(vaddr);
3882 return -ENOMEM;
3883 }
3884
3885 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3886 if (cmd == NULL) {
3887 iounmap(vaddr);
3888 return -ENOMEM;
3889 }
3890
3891 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3892 although there's no guarantee, we assume that the address is at
3893 least 4-byte aligned (most likely, it's page-aligned). */
3894 paddr32 = paddr64;
3895
3896 cmd->CommandHeader.ReplyQueue = 0;
3897 cmd->CommandHeader.SGList = 0;
3898 cmd->CommandHeader.SGTotal = 0;
3899 cmd->CommandHeader.Tag.lower = paddr32;
3900 cmd->CommandHeader.Tag.upper = 0;
3901 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3902
3903 cmd->Request.CDBLen = 16;
3904 cmd->Request.Type.Type = TYPE_MSG;
3905 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3906 cmd->Request.Type.Direction = XFER_NONE;
3907 cmd->Request.Timeout = 0; /* Don't time out */
3908 cmd->Request.CDB[0] = opcode;
3909 cmd->Request.CDB[1] = type;
3910 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
3911
3912 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
3913 cmd->ErrorDescriptor.Addr.upper = 0;
3914 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
3915
3916 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3917
3918 for (i = 0; i < 10; i++) {
3919 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3920 if ((tag & ~3) == paddr32)
3921 break;
3922 schedule_timeout_uninterruptible(HZ);
3923 }
3924
3925 iounmap(vaddr);
3926
3927 /* we leak the DMA buffer here ... no choice since the controller could
3928 still complete the command. */
3929 if (i == 10) {
3930 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
3931 opcode, type);
3932 return -ETIMEDOUT;
3933 }
3934
3935 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3936
3937 if (tag & 2) {
3938 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
3939 opcode, type);
3940 return -EIO;
3941 }
3942
3943 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
3944 opcode, type);
3945 return 0;
3946 }
3947
3948 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
3949 #define cciss_noop(p) cciss_message(p, 3, 0)
3950
3951 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
3952 {
3953 /* the #defines are stolen from drivers/pci/msi.h. */
3954 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
3955 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
3956
3957 int pos;
3958 u16 control = 0;
3959
3960 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3961 if (pos) {
3962 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3963 if (control & PCI_MSI_FLAGS_ENABLE) {
3964 printk(KERN_INFO "cciss: resetting MSI\n");
3965 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
3966 }
3967 }
3968
3969 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3970 if (pos) {
3971 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3972 if (control & PCI_MSIX_FLAGS_ENABLE) {
3973 printk(KERN_INFO "cciss: resetting MSI-X\n");
3974 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
3975 }
3976 }
3977
3978 return 0;
3979 }
3980
3981 /* This does a hard reset of the controller using PCI power management
3982 * states. */
3983 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
3984 {
3985 u16 pmcsr, saved_config_space[32];
3986 int i, pos;
3987
3988 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
3989
3990 /* This is very nearly the same thing as
3991
3992 pci_save_state(pci_dev);
3993 pci_set_power_state(pci_dev, PCI_D3hot);
3994 pci_set_power_state(pci_dev, PCI_D0);
3995 pci_restore_state(pci_dev);
3996
3997 but we can't use these nice canned kernel routines on
3998 kexec, because they also check the MSI/MSI-X state in PCI
3999 configuration space and do the wrong thing when it is
4000 set/cleared. Also, the pci_save/restore_state functions
4001 violate the ordering requirements for restoring the
4002 configuration space from the CCISS document (see the
4003 comment below). So we roll our own .... */
4004
4005 for (i = 0; i < 32; i++)
4006 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4007
4008 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4009 if (pos == 0) {
4010 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4011 return -ENODEV;
4012 }
4013
4014 /* Quoting from the Open CISS Specification: "The Power
4015 * Management Control/Status Register (CSR) controls the power
4016 * state of the device. The normal operating state is D0,
4017 * CSR=00h. The software off state is D3, CSR=03h. To reset
4018 * the controller, place the interface device in D3 then to
4019 * D0, this causes a secondary PCI reset which will reset the
4020 * controller." */
4021
4022 /* enter the D3hot power management state */
4023 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4024 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4025 pmcsr |= PCI_D3hot;
4026 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4027
4028 schedule_timeout_uninterruptible(HZ >> 1);
4029
4030 /* enter the D0 power management state */
4031 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4032 pmcsr |= PCI_D0;
4033 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4034
4035 schedule_timeout_uninterruptible(HZ >> 1);
4036
4037 /* Restore the PCI configuration space. The Open CISS
4038 * Specification says, "Restore the PCI Configuration
4039 * Registers, offsets 00h through 60h. It is important to
4040 * restore the command register, 16-bits at offset 04h,
4041 * last. Do not restore the configuration status register,
4042 * 16-bits at offset 06h." Note that the offset is 2*i. */
4043 for (i = 0; i < 32; i++) {
4044 if (i == 2 || i == 3)
4045 continue;
4046 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4047 }
4048 wmb();
4049 pci_write_config_word(pdev, 4, saved_config_space[2]);
4050
4051 return 0;
4052 }
4053
4054 /*
4055 * This is it. Find all the controllers and register them. I really hate
4056 * stealing all these major device numbers.
4057 * returns the number of block devices registered.
4058 */
4059 static int __devinit cciss_init_one(struct pci_dev *pdev,
4060 const struct pci_device_id *ent)
4061 {
4062 int i;
4063 int j = 0;
4064 int rc;
4065 int dac, return_code;
4066 InquiryData_struct *inq_buff;
4067
4068 if (reset_devices) {
4069 /* Reset the controller with a PCI power-cycle */
4070 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4071 return -ENODEV;
4072
4073 /* Now try to get the controller to respond to a no-op. Some
4074 devices (notably the HP Smart Array 5i Controller) need
4075 up to 30 seconds to respond. */
4076 for (i=0; i<30; i++) {
4077 if (cciss_noop(pdev) == 0)
4078 break;
4079
4080 schedule_timeout_uninterruptible(HZ);
4081 }
4082 if (i == 30) {
4083 printk(KERN_ERR "cciss: controller seems dead\n");
4084 return -EBUSY;
4085 }
4086 }
4087
4088 i = alloc_cciss_hba();
4089 if (i < 0)
4090 return -1;
4091
4092 hba[i]->busy_initializing = 1;
4093 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4094 INIT_HLIST_HEAD(&hba[i]->reqQ);
4095 mutex_init(&hba[i]->busy_shutting_down);
4096
4097 if (cciss_pci_init(hba[i], pdev) != 0)
4098 goto clean0;
4099
4100 sprintf(hba[i]->devname, "cciss%d", i);
4101 hba[i]->ctlr = i;
4102 hba[i]->pdev = pdev;
4103
4104 init_completion(&hba[i]->scan_wait);
4105
4106 if (cciss_create_hba_sysfs_entry(hba[i]))
4107 goto clean0;
4108
4109 /* configure PCI DMA stuff */
4110 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4111 dac = 1;
4112 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4113 dac = 0;
4114 else {
4115 printk(KERN_ERR "cciss: no suitable DMA available\n");
4116 goto clean1;
4117 }
4118
4119 /*
4120 * register with the major number, or get a dynamic major number
4121 * by passing 0 as argument. This is done for greater than
4122 * 8 controller support.
4123 */
4124 if (i < MAX_CTLR_ORIG)
4125 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4126 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4127 if (rc == -EBUSY || rc == -EINVAL) {
4128 printk(KERN_ERR
4129 "cciss: Unable to get major number %d for %s "
4130 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4131 goto clean1;
4132 } else {
4133 if (i >= MAX_CTLR_ORIG)
4134 hba[i]->major = rc;
4135 }
4136
4137 /* make sure the board interrupts are off */
4138 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4139 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4140 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4141 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4142 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4143 goto clean2;
4144 }
4145
4146 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4147 hba[i]->devname, pdev->device, pci_name(pdev),
4148 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4149
4150 hba[i]->cmd_pool_bits =
4151 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4152 * sizeof(unsigned long), GFP_KERNEL);
4153 hba[i]->cmd_pool = (CommandList_struct *)
4154 pci_alloc_consistent(hba[i]->pdev,
4155 hba[i]->nr_cmds * sizeof(CommandList_struct),
4156 &(hba[i]->cmd_pool_dhandle));
4157 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4158 pci_alloc_consistent(hba[i]->pdev,
4159 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4160 &(hba[i]->errinfo_pool_dhandle));
4161 if ((hba[i]->cmd_pool_bits == NULL)
4162 || (hba[i]->cmd_pool == NULL)
4163 || (hba[i]->errinfo_pool == NULL)) {
4164 printk(KERN_ERR "cciss: out of memory");
4165 goto clean4;
4166 }
4167 spin_lock_init(&hba[i]->lock);
4168
4169 /* Initialize the pdev driver private data.
4170 have it point to hba[i]. */
4171 pci_set_drvdata(pdev, hba[i]);
4172 /* command and error info recs zeroed out before
4173 they are used */
4174 memset(hba[i]->cmd_pool_bits, 0,
4175 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4176 * sizeof(unsigned long));
4177
4178 hba[i]->num_luns = 0;
4179 hba[i]->highest_lun = -1;
4180 for (j = 0; j < CISS_MAX_LUN; j++) {
4181 hba[i]->drv[j].raid_level = -1;
4182 hba[i]->drv[j].queue = NULL;
4183 hba[i]->gendisk[j] = NULL;
4184 }
4185
4186 cciss_scsi_setup(i);
4187
4188 /* Turn the interrupts on so we can service requests */
4189 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4190
4191 /* Get the firmware version */
4192 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4193 if (inq_buff == NULL) {
4194 printk(KERN_ERR "cciss: out of memory\n");
4195 goto clean4;
4196 }
4197
4198 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4199 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4200 if (return_code == IO_OK) {
4201 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4202 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4203 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4204 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4205 } else { /* send command failed */
4206 printk(KERN_WARNING "cciss: unable to determine firmware"
4207 " version of controller\n");
4208 }
4209 kfree(inq_buff);
4210
4211 cciss_procinit(i);
4212
4213 hba[i]->cciss_max_sectors = 2048;
4214
4215 rebuild_lun_table(hba[i], 1);
4216 hba[i]->busy_initializing = 0;
4217 return 1;
4218
4219 clean4:
4220 kfree(hba[i]->cmd_pool_bits);
4221 if (hba[i]->cmd_pool)
4222 pci_free_consistent(hba[i]->pdev,
4223 hba[i]->nr_cmds * sizeof(CommandList_struct),
4224 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4225 if (hba[i]->errinfo_pool)
4226 pci_free_consistent(hba[i]->pdev,
4227 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4228 hba[i]->errinfo_pool,
4229 hba[i]->errinfo_pool_dhandle);
4230 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4231 clean2:
4232 unregister_blkdev(hba[i]->major, hba[i]->devname);
4233 clean1:
4234 cciss_destroy_hba_sysfs_entry(hba[i]);
4235 clean0:
4236 hba[i]->busy_initializing = 0;
4237 /* cleanup any queues that may have been initialized */
4238 for (j=0; j <= hba[i]->highest_lun; j++){
4239 drive_info_struct *drv = &(hba[i]->drv[j]);
4240 if (drv->queue)
4241 blk_cleanup_queue(drv->queue);
4242 }
4243 /*
4244 * Deliberately omit pci_disable_device(): it does something nasty to
4245 * Smart Array controllers that pci_enable_device does not undo
4246 */
4247 pci_release_regions(pdev);
4248 pci_set_drvdata(pdev, NULL);
4249 free_hba(i);
4250 return -1;
4251 }
4252
4253 static void cciss_shutdown(struct pci_dev *pdev)
4254 {
4255 ctlr_info_t *tmp_ptr;
4256 int i;
4257 char flush_buf[4];
4258 int return_code;
4259
4260 tmp_ptr = pci_get_drvdata(pdev);
4261 if (tmp_ptr == NULL)
4262 return;
4263 i = tmp_ptr->ctlr;
4264 if (hba[i] == NULL)
4265 return;
4266
4267 /* Turn board interrupts off and send the flush cache command */
4268 /* sendcmd will turn off interrupt, and send the flush...
4269 * To write all data in the battery backed cache to disks */
4270 memset(flush_buf, 0, 4);
4271 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4272 CTLR_LUNID, TYPE_CMD);
4273 if (return_code == IO_OK) {
4274 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4275 } else {
4276 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4277 }
4278 free_irq(hba[i]->intr[2], hba[i]);
4279 }
4280
4281 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4282 {
4283 ctlr_info_t *tmp_ptr;
4284 int i, j;
4285
4286 if (pci_get_drvdata(pdev) == NULL) {
4287 printk(KERN_ERR "cciss: Unable to remove device \n");
4288 return;
4289 }
4290
4291 tmp_ptr = pci_get_drvdata(pdev);
4292 i = tmp_ptr->ctlr;
4293 if (hba[i] == NULL) {
4294 printk(KERN_ERR "cciss: device appears to "
4295 "already be removed \n");
4296 return;
4297 }
4298
4299 mutex_lock(&hba[i]->busy_shutting_down);
4300
4301 remove_from_scan_list(hba[i]);
4302 remove_proc_entry(hba[i]->devname, proc_cciss);
4303 unregister_blkdev(hba[i]->major, hba[i]->devname);
4304
4305 /* remove it from the disk list */
4306 for (j = 0; j < CISS_MAX_LUN; j++) {
4307 struct gendisk *disk = hba[i]->gendisk[j];
4308 if (disk) {
4309 struct request_queue *q = disk->queue;
4310
4311 if (disk->flags & GENHD_FL_UP)
4312 del_gendisk(disk);
4313 if (q)
4314 blk_cleanup_queue(q);
4315 }
4316 if (hba[i]->drv[j].dev != NULL &&
4317 (j == 0 || hba[i]->drv[j].raid_level != -1))
4318 cciss_destroy_ld_sysfs_entry(hba[i], j);
4319
4320 }
4321
4322 #ifdef CONFIG_CISS_SCSI_TAPE
4323 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4324 #endif
4325
4326 cciss_shutdown(pdev);
4327
4328 #ifdef CONFIG_PCI_MSI
4329 if (hba[i]->msix_vector)
4330 pci_disable_msix(hba[i]->pdev);
4331 else if (hba[i]->msi_vector)
4332 pci_disable_msi(hba[i]->pdev);
4333 #endif /* CONFIG_PCI_MSI */
4334
4335 iounmap(hba[i]->vaddr);
4336
4337 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4338 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4339 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4340 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4341 kfree(hba[i]->cmd_pool_bits);
4342 /*
4343 * Deliberately omit pci_disable_device(): it does something nasty to
4344 * Smart Array controllers that pci_enable_device does not undo
4345 */
4346 pci_release_regions(pdev);
4347 pci_set_drvdata(pdev, NULL);
4348 cciss_destroy_hba_sysfs_entry(hba[i]);
4349 mutex_unlock(&hba[i]->busy_shutting_down);
4350 free_hba(i);
4351 }
4352
4353 static struct pci_driver cciss_pci_driver = {
4354 .name = "cciss",
4355 .probe = cciss_init_one,
4356 .remove = __devexit_p(cciss_remove_one),
4357 .id_table = cciss_pci_device_id, /* id_table */
4358 .shutdown = cciss_shutdown,
4359 };
4360
4361 /*
4362 * This is it. Register the PCI driver information for the cards we control
4363 * the OS will call our registered routines when it finds one of our cards.
4364 */
4365 static int __init cciss_init(void)
4366 {
4367 int err;
4368
4369 /*
4370 * The hardware requires that commands are aligned on a 64-bit
4371 * boundary. Given that we use pci_alloc_consistent() to allocate an
4372 * array of them, the size must be a multiple of 8 bytes.
4373 */
4374 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4375
4376 printk(KERN_INFO DRIVER_NAME "\n");
4377
4378 err = bus_register(&cciss_bus_type);
4379 if (err)
4380 return err;
4381
4382 /* Start the scan thread */
4383 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4384 if (IS_ERR(cciss_scan_thread)) {
4385 err = PTR_ERR(cciss_scan_thread);
4386 goto err_bus_unregister;
4387 }
4388
4389 /* Register for our PCI devices */
4390 err = pci_register_driver(&cciss_pci_driver);
4391 if (err)
4392 goto err_thread_stop;
4393
4394 return err;
4395
4396 err_thread_stop:
4397 kthread_stop(cciss_scan_thread);
4398 err_bus_unregister:
4399 bus_unregister(&cciss_bus_type);
4400
4401 return err;
4402 }
4403
4404 static void __exit cciss_cleanup(void)
4405 {
4406 int i;
4407
4408 pci_unregister_driver(&cciss_pci_driver);
4409 /* double check that all controller entrys have been removed */
4410 for (i = 0; i < MAX_CTLR; i++) {
4411 if (hba[i] != NULL) {
4412 printk(KERN_WARNING "cciss: had to remove"
4413 " controller %d\n", i);
4414 cciss_remove_one(hba[i]->pdev);
4415 }
4416 }
4417 kthread_stop(cciss_scan_thread);
4418 remove_proc_entry("driver/cciss", NULL);
4419 bus_unregister(&cciss_bus_type);
4420 }
4421
4422 static void fail_all_cmds(unsigned long ctlr)
4423 {
4424 /* If we get here, the board is apparently dead. */
4425 ctlr_info_t *h = hba[ctlr];
4426 CommandList_struct *c;
4427 unsigned long flags;
4428
4429 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4430 h->alive = 0; /* the controller apparently died... */
4431
4432 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4433
4434 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4435
4436 /* move everything off the request queue onto the completed queue */
4437 while (!hlist_empty(&h->reqQ)) {
4438 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4439 removeQ(c);
4440 h->Qdepth--;
4441 addQ(&h->cmpQ, c);
4442 }
4443
4444 /* Now, fail everything on the completed queue with a HW error */
4445 while (!hlist_empty(&h->cmpQ)) {
4446 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4447 removeQ(c);
4448 if (c->cmd_type != CMD_MSG_STALE)
4449 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4450 if (c->cmd_type == CMD_RWREQ) {
4451 complete_command(h, c, 0);
4452 } else if (c->cmd_type == CMD_IOCTL_PEND)
4453 complete(c->waiting);
4454 #ifdef CONFIG_CISS_SCSI_TAPE
4455 else if (c->cmd_type == CMD_SCSI)
4456 complete_scsi_command(c, 0, 0);
4457 #endif
4458 }
4459 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4460 return;
4461 }
4462
4463 module_init(cciss_init);
4464 module_exit(cciss_cleanup);
This page took 0.14302 seconds and 5 git commands to generate.