fs/romfs: return f_fsid for statfs(2)
[deliverable/linux.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <linux/blktrace_api.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44
45 #include <linux/dma-mapping.h>
46 #include <linux/blkdev.h>
47 #include <linux/genhd.h>
48 #include <linux/completion.h>
49 #include <scsi/scsi.h>
50 #include <scsi/sg.h>
51 #include <scsi/scsi_ioctl.h>
52 #include <linux/cdrom.h>
53 #include <linux/scatterlist.h>
54
55 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
56 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
57 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
58
59 /* Embedded module documentation macros - see modules.h */
60 MODULE_AUTHOR("Hewlett-Packard Company");
61 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
62 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
63 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
64 " Smart Array G2 Series SAS/SATA Controllers");
65 MODULE_VERSION("3.6.20");
66 MODULE_LICENSE("GPL");
67
68 #include "cciss_cmd.h"
69 #include "cciss.h"
70 #include <linux/cciss_ioctl.h>
71
72 /* define the PCI info for the cards we can control */
73 static const struct pci_device_id cciss_pci_device_id[] = {
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
102 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
103 {0,}
104 };
105
106 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
107
108 /* board_id = Subsystem Device ID & Vendor ID
109 * product = Marketing Name for the board
110 * access = Address of the struct of function pointers
111 */
112 static struct board_type products[] = {
113 {0x40700E11, "Smart Array 5300", &SA5_access},
114 {0x40800E11, "Smart Array 5i", &SA5B_access},
115 {0x40820E11, "Smart Array 532", &SA5B_access},
116 {0x40830E11, "Smart Array 5312", &SA5B_access},
117 {0x409A0E11, "Smart Array 641", &SA5_access},
118 {0x409B0E11, "Smart Array 642", &SA5_access},
119 {0x409C0E11, "Smart Array 6400", &SA5_access},
120 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
121 {0x40910E11, "Smart Array 6i", &SA5_access},
122 {0x3225103C, "Smart Array P600", &SA5_access},
123 {0x3223103C, "Smart Array P800", &SA5_access},
124 {0x3234103C, "Smart Array P400", &SA5_access},
125 {0x3235103C, "Smart Array P400i", &SA5_access},
126 {0x3211103C, "Smart Array E200i", &SA5_access},
127 {0x3212103C, "Smart Array E200", &SA5_access},
128 {0x3213103C, "Smart Array E200i", &SA5_access},
129 {0x3214103C, "Smart Array E200i", &SA5_access},
130 {0x3215103C, "Smart Array E200i", &SA5_access},
131 {0x3237103C, "Smart Array E500", &SA5_access},
132 {0x323D103C, "Smart Array P700m", &SA5_access},
133 {0x3241103C, "Smart Array P212", &SA5_access},
134 {0x3243103C, "Smart Array P410", &SA5_access},
135 {0x3245103C, "Smart Array P410i", &SA5_access},
136 {0x3247103C, "Smart Array P411", &SA5_access},
137 {0x3249103C, "Smart Array P812", &SA5_access},
138 {0x324A103C, "Smart Array P712m", &SA5_access},
139 {0x324B103C, "Smart Array P711m", &SA5_access},
140 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
141 };
142
143 /* How long to wait (in milliseconds) for board to go into simple mode */
144 #define MAX_CONFIG_WAIT 30000
145 #define MAX_IOCTL_CONFIG_WAIT 1000
146
147 /*define how many times we will try a command because of bus resets */
148 #define MAX_CMD_RETRIES 3
149
150 #define MAX_CTLR 32
151
152 /* Originally cciss driver only supports 8 major numbers */
153 #define MAX_CTLR_ORIG 8
154
155 static ctlr_info_t *hba[MAX_CTLR];
156
157 static void do_cciss_request(struct request_queue *q);
158 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
159 static int cciss_open(struct block_device *bdev, fmode_t mode);
160 static int cciss_release(struct gendisk *disk, fmode_t mode);
161 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
162 unsigned int cmd, unsigned long arg);
163 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
164
165 static int cciss_revalidate(struct gendisk *disk);
166 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
167 static int deregister_disk(ctlr_info_t *h, int drv_index,
168 int clear_all);
169
170 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
171 sector_t *total_size, unsigned int *block_size);
172 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
173 sector_t *total_size, unsigned int *block_size);
174 static void cciss_geometry_inquiry(int ctlr, int logvol,
175 int withirq, sector_t total_size,
176 unsigned int block_size, InquiryData_struct *inq_buff,
177 drive_info_struct *drv);
178 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
179 __u32);
180 static void start_io(ctlr_info_t *h);
181 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
182 unsigned int use_unit_num, unsigned int log_unit,
183 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
184 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
185 unsigned int use_unit_num, unsigned int log_unit,
186 __u8 page_code, int cmd_type);
187
188 static void fail_all_cmds(unsigned long ctlr);
189
190 #ifdef CONFIG_PROC_FS
191 static void cciss_procinit(int i);
192 #else
193 static void cciss_procinit(int i)
194 {
195 }
196 #endif /* CONFIG_PROC_FS */
197
198 #ifdef CONFIG_COMPAT
199 static int cciss_compat_ioctl(struct block_device *, fmode_t,
200 unsigned, unsigned long);
201 #endif
202
203 static struct block_device_operations cciss_fops = {
204 .owner = THIS_MODULE,
205 .open = cciss_open,
206 .release = cciss_release,
207 .locked_ioctl = cciss_ioctl,
208 .getgeo = cciss_getgeo,
209 #ifdef CONFIG_COMPAT
210 .compat_ioctl = cciss_compat_ioctl,
211 #endif
212 .revalidate_disk = cciss_revalidate,
213 };
214
215 /*
216 * Enqueuing and dequeuing functions for cmdlists.
217 */
218 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
219 {
220 hlist_add_head(&c->list, list);
221 }
222
223 static inline void removeQ(CommandList_struct *c)
224 {
225 if (WARN_ON(hlist_unhashed(&c->list)))
226 return;
227
228 hlist_del_init(&c->list);
229 }
230
231 #include "cciss_scsi.c" /* For SCSI tape support */
232
233 #define RAID_UNKNOWN 6
234
235 #ifdef CONFIG_PROC_FS
236
237 /*
238 * Report information about this controller.
239 */
240 #define ENG_GIG 1000000000
241 #define ENG_GIG_FACTOR (ENG_GIG/512)
242 #define ENGAGE_SCSI "engage scsi"
243 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
244 "UNKNOWN"
245 };
246
247 static struct proc_dir_entry *proc_cciss;
248
249 static void cciss_seq_show_header(struct seq_file *seq)
250 {
251 ctlr_info_t *h = seq->private;
252
253 seq_printf(seq, "%s: HP %s Controller\n"
254 "Board ID: 0x%08lx\n"
255 "Firmware Version: %c%c%c%c\n"
256 "IRQ: %d\n"
257 "Logical drives: %d\n"
258 "Current Q depth: %d\n"
259 "Current # commands on controller: %d\n"
260 "Max Q depth since init: %d\n"
261 "Max # commands on controller since init: %d\n"
262 "Max SG entries since init: %d\n",
263 h->devname,
264 h->product_name,
265 (unsigned long)h->board_id,
266 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
267 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
268 h->num_luns,
269 h->Qdepth, h->commands_outstanding,
270 h->maxQsinceinit, h->max_outstanding, h->maxSG);
271
272 #ifdef CONFIG_CISS_SCSI_TAPE
273 cciss_seq_tape_report(seq, h->ctlr);
274 #endif /* CONFIG_CISS_SCSI_TAPE */
275 }
276
277 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
278 {
279 ctlr_info_t *h = seq->private;
280 unsigned ctlr = h->ctlr;
281 unsigned long flags;
282
283 /* prevent displaying bogus info during configuration
284 * or deconfiguration of a logical volume
285 */
286 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
287 if (h->busy_configuring) {
288 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
289 return ERR_PTR(-EBUSY);
290 }
291 h->busy_configuring = 1;
292 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
293
294 if (*pos == 0)
295 cciss_seq_show_header(seq);
296
297 return pos;
298 }
299
300 static int cciss_seq_show(struct seq_file *seq, void *v)
301 {
302 sector_t vol_sz, vol_sz_frac;
303 ctlr_info_t *h = seq->private;
304 unsigned ctlr = h->ctlr;
305 loff_t *pos = v;
306 drive_info_struct *drv = &h->drv[*pos];
307
308 if (*pos > h->highest_lun)
309 return 0;
310
311 if (drv->heads == 0)
312 return 0;
313
314 vol_sz = drv->nr_blocks;
315 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
316 vol_sz_frac *= 100;
317 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
318
319 if (drv->raid_level > 5)
320 drv->raid_level = RAID_UNKNOWN;
321 seq_printf(seq, "cciss/c%dd%d:"
322 "\t%4u.%02uGB\tRAID %s\n",
323 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
324 raid_label[drv->raid_level]);
325 return 0;
326 }
327
328 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
329 {
330 ctlr_info_t *h = seq->private;
331
332 if (*pos > h->highest_lun)
333 return NULL;
334 *pos += 1;
335
336 return pos;
337 }
338
339 static void cciss_seq_stop(struct seq_file *seq, void *v)
340 {
341 ctlr_info_t *h = seq->private;
342
343 /* Only reset h->busy_configuring if we succeeded in setting
344 * it during cciss_seq_start. */
345 if (v == ERR_PTR(-EBUSY))
346 return;
347
348 h->busy_configuring = 0;
349 }
350
351 static struct seq_operations cciss_seq_ops = {
352 .start = cciss_seq_start,
353 .show = cciss_seq_show,
354 .next = cciss_seq_next,
355 .stop = cciss_seq_stop,
356 };
357
358 static int cciss_seq_open(struct inode *inode, struct file *file)
359 {
360 int ret = seq_open(file, &cciss_seq_ops);
361 struct seq_file *seq = file->private_data;
362
363 if (!ret)
364 seq->private = PDE(inode)->data;
365
366 return ret;
367 }
368
369 static ssize_t
370 cciss_proc_write(struct file *file, const char __user *buf,
371 size_t length, loff_t *ppos)
372 {
373 int err;
374 char *buffer;
375
376 #ifndef CONFIG_CISS_SCSI_TAPE
377 return -EINVAL;
378 #endif
379
380 if (!buf || length > PAGE_SIZE - 1)
381 return -EINVAL;
382
383 buffer = (char *)__get_free_page(GFP_KERNEL);
384 if (!buffer)
385 return -ENOMEM;
386
387 err = -EFAULT;
388 if (copy_from_user(buffer, buf, length))
389 goto out;
390 buffer[length] = '\0';
391
392 #ifdef CONFIG_CISS_SCSI_TAPE
393 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
394 struct seq_file *seq = file->private_data;
395 ctlr_info_t *h = seq->private;
396 int rc;
397
398 rc = cciss_engage_scsi(h->ctlr);
399 if (rc != 0)
400 err = -rc;
401 else
402 err = length;
403 } else
404 #endif /* CONFIG_CISS_SCSI_TAPE */
405 err = -EINVAL;
406 /* might be nice to have "disengage" too, but it's not
407 safely possible. (only 1 module use count, lock issues.) */
408
409 out:
410 free_page((unsigned long)buffer);
411 return err;
412 }
413
414 static struct file_operations cciss_proc_fops = {
415 .owner = THIS_MODULE,
416 .open = cciss_seq_open,
417 .read = seq_read,
418 .llseek = seq_lseek,
419 .release = seq_release,
420 .write = cciss_proc_write,
421 };
422
423 static void __devinit cciss_procinit(int i)
424 {
425 struct proc_dir_entry *pde;
426
427 if (proc_cciss == NULL)
428 proc_cciss = proc_mkdir("driver/cciss", NULL);
429 if (!proc_cciss)
430 return;
431 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
432 S_IROTH, proc_cciss,
433 &cciss_proc_fops, hba[i]);
434 }
435 #endif /* CONFIG_PROC_FS */
436
437 /*
438 * For operations that cannot sleep, a command block is allocated at init,
439 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
440 * which ones are free or in use. For operations that can wait for kmalloc
441 * to possible sleep, this routine can be called with get_from_pool set to 0.
442 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
443 */
444 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
445 {
446 CommandList_struct *c;
447 int i;
448 u64bit temp64;
449 dma_addr_t cmd_dma_handle, err_dma_handle;
450
451 if (!get_from_pool) {
452 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
453 sizeof(CommandList_struct), &cmd_dma_handle);
454 if (c == NULL)
455 return NULL;
456 memset(c, 0, sizeof(CommandList_struct));
457
458 c->cmdindex = -1;
459
460 c->err_info = (ErrorInfo_struct *)
461 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
462 &err_dma_handle);
463
464 if (c->err_info == NULL) {
465 pci_free_consistent(h->pdev,
466 sizeof(CommandList_struct), c, cmd_dma_handle);
467 return NULL;
468 }
469 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
470 } else { /* get it out of the controllers pool */
471
472 do {
473 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
474 if (i == h->nr_cmds)
475 return NULL;
476 } while (test_and_set_bit
477 (i & (BITS_PER_LONG - 1),
478 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
479 #ifdef CCISS_DEBUG
480 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
481 #endif
482 c = h->cmd_pool + i;
483 memset(c, 0, sizeof(CommandList_struct));
484 cmd_dma_handle = h->cmd_pool_dhandle
485 + i * sizeof(CommandList_struct);
486 c->err_info = h->errinfo_pool + i;
487 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
488 err_dma_handle = h->errinfo_pool_dhandle
489 + i * sizeof(ErrorInfo_struct);
490 h->nr_allocs++;
491
492 c->cmdindex = i;
493 }
494
495 INIT_HLIST_NODE(&c->list);
496 c->busaddr = (__u32) cmd_dma_handle;
497 temp64.val = (__u64) err_dma_handle;
498 c->ErrDesc.Addr.lower = temp64.val32.lower;
499 c->ErrDesc.Addr.upper = temp64.val32.upper;
500 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
501
502 c->ctlr = h->ctlr;
503 return c;
504 }
505
506 /*
507 * Frees a command block that was previously allocated with cmd_alloc().
508 */
509 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
510 {
511 int i;
512 u64bit temp64;
513
514 if (!got_from_pool) {
515 temp64.val32.lower = c->ErrDesc.Addr.lower;
516 temp64.val32.upper = c->ErrDesc.Addr.upper;
517 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
518 c->err_info, (dma_addr_t) temp64.val);
519 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
520 c, (dma_addr_t) c->busaddr);
521 } else {
522 i = c - h->cmd_pool;
523 clear_bit(i & (BITS_PER_LONG - 1),
524 h->cmd_pool_bits + (i / BITS_PER_LONG));
525 h->nr_frees++;
526 }
527 }
528
529 static inline ctlr_info_t *get_host(struct gendisk *disk)
530 {
531 return disk->queue->queuedata;
532 }
533
534 static inline drive_info_struct *get_drv(struct gendisk *disk)
535 {
536 return disk->private_data;
537 }
538
539 /*
540 * Open. Make sure the device is really there.
541 */
542 static int cciss_open(struct block_device *bdev, fmode_t mode)
543 {
544 ctlr_info_t *host = get_host(bdev->bd_disk);
545 drive_info_struct *drv = get_drv(bdev->bd_disk);
546
547 #ifdef CCISS_DEBUG
548 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
549 #endif /* CCISS_DEBUG */
550
551 if (host->busy_initializing || drv->busy_configuring)
552 return -EBUSY;
553 /*
554 * Root is allowed to open raw volume zero even if it's not configured
555 * so array config can still work. Root is also allowed to open any
556 * volume that has a LUN ID, so it can issue IOCTL to reread the
557 * disk information. I don't think I really like this
558 * but I'm already using way to many device nodes to claim another one
559 * for "raw controller".
560 */
561 if (drv->heads == 0) {
562 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
563 /* if not node 0 make sure it is a partition = 0 */
564 if (MINOR(bdev->bd_dev) & 0x0f) {
565 return -ENXIO;
566 /* if it is, make sure we have a LUN ID */
567 } else if (drv->LunID == 0) {
568 return -ENXIO;
569 }
570 }
571 if (!capable(CAP_SYS_ADMIN))
572 return -EPERM;
573 }
574 drv->usage_count++;
575 host->usage_count++;
576 return 0;
577 }
578
579 /*
580 * Close. Sync first.
581 */
582 static int cciss_release(struct gendisk *disk, fmode_t mode)
583 {
584 ctlr_info_t *host = get_host(disk);
585 drive_info_struct *drv = get_drv(disk);
586
587 #ifdef CCISS_DEBUG
588 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
589 #endif /* CCISS_DEBUG */
590
591 drv->usage_count--;
592 host->usage_count--;
593 return 0;
594 }
595
596 #ifdef CONFIG_COMPAT
597
598 static int do_ioctl(struct block_device *bdev, fmode_t mode,
599 unsigned cmd, unsigned long arg)
600 {
601 int ret;
602 lock_kernel();
603 ret = cciss_ioctl(bdev, mode, cmd, arg);
604 unlock_kernel();
605 return ret;
606 }
607
608 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
609 unsigned cmd, unsigned long arg);
610 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
611 unsigned cmd, unsigned long arg);
612
613 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
614 unsigned cmd, unsigned long arg)
615 {
616 switch (cmd) {
617 case CCISS_GETPCIINFO:
618 case CCISS_GETINTINFO:
619 case CCISS_SETINTINFO:
620 case CCISS_GETNODENAME:
621 case CCISS_SETNODENAME:
622 case CCISS_GETHEARTBEAT:
623 case CCISS_GETBUSTYPES:
624 case CCISS_GETFIRMVER:
625 case CCISS_GETDRIVVER:
626 case CCISS_REVALIDVOLS:
627 case CCISS_DEREGDISK:
628 case CCISS_REGNEWDISK:
629 case CCISS_REGNEWD:
630 case CCISS_RESCANDISK:
631 case CCISS_GETLUNINFO:
632 return do_ioctl(bdev, mode, cmd, arg);
633
634 case CCISS_PASSTHRU32:
635 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
636 case CCISS_BIG_PASSTHRU32:
637 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
638
639 default:
640 return -ENOIOCTLCMD;
641 }
642 }
643
644 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
645 unsigned cmd, unsigned long arg)
646 {
647 IOCTL32_Command_struct __user *arg32 =
648 (IOCTL32_Command_struct __user *) arg;
649 IOCTL_Command_struct arg64;
650 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
651 int err;
652 u32 cp;
653
654 err = 0;
655 err |=
656 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
657 sizeof(arg64.LUN_info));
658 err |=
659 copy_from_user(&arg64.Request, &arg32->Request,
660 sizeof(arg64.Request));
661 err |=
662 copy_from_user(&arg64.error_info, &arg32->error_info,
663 sizeof(arg64.error_info));
664 err |= get_user(arg64.buf_size, &arg32->buf_size);
665 err |= get_user(cp, &arg32->buf);
666 arg64.buf = compat_ptr(cp);
667 err |= copy_to_user(p, &arg64, sizeof(arg64));
668
669 if (err)
670 return -EFAULT;
671
672 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
673 if (err)
674 return err;
675 err |=
676 copy_in_user(&arg32->error_info, &p->error_info,
677 sizeof(arg32->error_info));
678 if (err)
679 return -EFAULT;
680 return err;
681 }
682
683 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
684 unsigned cmd, unsigned long arg)
685 {
686 BIG_IOCTL32_Command_struct __user *arg32 =
687 (BIG_IOCTL32_Command_struct __user *) arg;
688 BIG_IOCTL_Command_struct arg64;
689 BIG_IOCTL_Command_struct __user *p =
690 compat_alloc_user_space(sizeof(arg64));
691 int err;
692 u32 cp;
693
694 err = 0;
695 err |=
696 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
697 sizeof(arg64.LUN_info));
698 err |=
699 copy_from_user(&arg64.Request, &arg32->Request,
700 sizeof(arg64.Request));
701 err |=
702 copy_from_user(&arg64.error_info, &arg32->error_info,
703 sizeof(arg64.error_info));
704 err |= get_user(arg64.buf_size, &arg32->buf_size);
705 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
706 err |= get_user(cp, &arg32->buf);
707 arg64.buf = compat_ptr(cp);
708 err |= copy_to_user(p, &arg64, sizeof(arg64));
709
710 if (err)
711 return -EFAULT;
712
713 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
714 if (err)
715 return err;
716 err |=
717 copy_in_user(&arg32->error_info, &p->error_info,
718 sizeof(arg32->error_info));
719 if (err)
720 return -EFAULT;
721 return err;
722 }
723 #endif
724
725 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
726 {
727 drive_info_struct *drv = get_drv(bdev->bd_disk);
728
729 if (!drv->cylinders)
730 return -ENXIO;
731
732 geo->heads = drv->heads;
733 geo->sectors = drv->sectors;
734 geo->cylinders = drv->cylinders;
735 return 0;
736 }
737
738 /*
739 * ioctl
740 */
741 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
742 unsigned int cmd, unsigned long arg)
743 {
744 struct gendisk *disk = bdev->bd_disk;
745 ctlr_info_t *host = get_host(disk);
746 drive_info_struct *drv = get_drv(disk);
747 int ctlr = host->ctlr;
748 void __user *argp = (void __user *)arg;
749
750 #ifdef CCISS_DEBUG
751 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
752 #endif /* CCISS_DEBUG */
753
754 switch (cmd) {
755 case CCISS_GETPCIINFO:
756 {
757 cciss_pci_info_struct pciinfo;
758
759 if (!arg)
760 return -EINVAL;
761 pciinfo.domain = pci_domain_nr(host->pdev->bus);
762 pciinfo.bus = host->pdev->bus->number;
763 pciinfo.dev_fn = host->pdev->devfn;
764 pciinfo.board_id = host->board_id;
765 if (copy_to_user
766 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
767 return -EFAULT;
768 return 0;
769 }
770 case CCISS_GETINTINFO:
771 {
772 cciss_coalint_struct intinfo;
773 if (!arg)
774 return -EINVAL;
775 intinfo.delay =
776 readl(&host->cfgtable->HostWrite.CoalIntDelay);
777 intinfo.count =
778 readl(&host->cfgtable->HostWrite.CoalIntCount);
779 if (copy_to_user
780 (argp, &intinfo, sizeof(cciss_coalint_struct)))
781 return -EFAULT;
782 return 0;
783 }
784 case CCISS_SETINTINFO:
785 {
786 cciss_coalint_struct intinfo;
787 unsigned long flags;
788 int i;
789
790 if (!arg)
791 return -EINVAL;
792 if (!capable(CAP_SYS_ADMIN))
793 return -EPERM;
794 if (copy_from_user
795 (&intinfo, argp, sizeof(cciss_coalint_struct)))
796 return -EFAULT;
797 if ((intinfo.delay == 0) && (intinfo.count == 0))
798 {
799 // printk("cciss_ioctl: delay and count cannot be 0\n");
800 return -EINVAL;
801 }
802 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
803 /* Update the field, and then ring the doorbell */
804 writel(intinfo.delay,
805 &(host->cfgtable->HostWrite.CoalIntDelay));
806 writel(intinfo.count,
807 &(host->cfgtable->HostWrite.CoalIntCount));
808 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
809
810 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
811 if (!(readl(host->vaddr + SA5_DOORBELL)
812 & CFGTBL_ChangeReq))
813 break;
814 /* delay and try again */
815 udelay(1000);
816 }
817 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
818 if (i >= MAX_IOCTL_CONFIG_WAIT)
819 return -EAGAIN;
820 return 0;
821 }
822 case CCISS_GETNODENAME:
823 {
824 NodeName_type NodeName;
825 int i;
826
827 if (!arg)
828 return -EINVAL;
829 for (i = 0; i < 16; i++)
830 NodeName[i] =
831 readb(&host->cfgtable->ServerName[i]);
832 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
833 return -EFAULT;
834 return 0;
835 }
836 case CCISS_SETNODENAME:
837 {
838 NodeName_type NodeName;
839 unsigned long flags;
840 int i;
841
842 if (!arg)
843 return -EINVAL;
844 if (!capable(CAP_SYS_ADMIN))
845 return -EPERM;
846
847 if (copy_from_user
848 (NodeName, argp, sizeof(NodeName_type)))
849 return -EFAULT;
850
851 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
852
853 /* Update the field, and then ring the doorbell */
854 for (i = 0; i < 16; i++)
855 writeb(NodeName[i],
856 &host->cfgtable->ServerName[i]);
857
858 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
859
860 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
861 if (!(readl(host->vaddr + SA5_DOORBELL)
862 & CFGTBL_ChangeReq))
863 break;
864 /* delay and try again */
865 udelay(1000);
866 }
867 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
868 if (i >= MAX_IOCTL_CONFIG_WAIT)
869 return -EAGAIN;
870 return 0;
871 }
872
873 case CCISS_GETHEARTBEAT:
874 {
875 Heartbeat_type heartbeat;
876
877 if (!arg)
878 return -EINVAL;
879 heartbeat = readl(&host->cfgtable->HeartBeat);
880 if (copy_to_user
881 (argp, &heartbeat, sizeof(Heartbeat_type)))
882 return -EFAULT;
883 return 0;
884 }
885 case CCISS_GETBUSTYPES:
886 {
887 BusTypes_type BusTypes;
888
889 if (!arg)
890 return -EINVAL;
891 BusTypes = readl(&host->cfgtable->BusTypes);
892 if (copy_to_user
893 (argp, &BusTypes, sizeof(BusTypes_type)))
894 return -EFAULT;
895 return 0;
896 }
897 case CCISS_GETFIRMVER:
898 {
899 FirmwareVer_type firmware;
900
901 if (!arg)
902 return -EINVAL;
903 memcpy(firmware, host->firm_ver, 4);
904
905 if (copy_to_user
906 (argp, firmware, sizeof(FirmwareVer_type)))
907 return -EFAULT;
908 return 0;
909 }
910 case CCISS_GETDRIVVER:
911 {
912 DriverVer_type DriverVer = DRIVER_VERSION;
913
914 if (!arg)
915 return -EINVAL;
916
917 if (copy_to_user
918 (argp, &DriverVer, sizeof(DriverVer_type)))
919 return -EFAULT;
920 return 0;
921 }
922
923 case CCISS_DEREGDISK:
924 case CCISS_REGNEWD:
925 case CCISS_REVALIDVOLS:
926 return rebuild_lun_table(host, 0);
927
928 case CCISS_GETLUNINFO:{
929 LogvolInfo_struct luninfo;
930
931 luninfo.LunID = drv->LunID;
932 luninfo.num_opens = drv->usage_count;
933 luninfo.num_parts = 0;
934 if (copy_to_user(argp, &luninfo,
935 sizeof(LogvolInfo_struct)))
936 return -EFAULT;
937 return 0;
938 }
939 case CCISS_PASSTHRU:
940 {
941 IOCTL_Command_struct iocommand;
942 CommandList_struct *c;
943 char *buff = NULL;
944 u64bit temp64;
945 unsigned long flags;
946 DECLARE_COMPLETION_ONSTACK(wait);
947
948 if (!arg)
949 return -EINVAL;
950
951 if (!capable(CAP_SYS_RAWIO))
952 return -EPERM;
953
954 if (copy_from_user
955 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
956 return -EFAULT;
957 if ((iocommand.buf_size < 1) &&
958 (iocommand.Request.Type.Direction != XFER_NONE)) {
959 return -EINVAL;
960 }
961 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
962 /* Check kmalloc limits */
963 if (iocommand.buf_size > 128000)
964 return -EINVAL;
965 #endif
966 if (iocommand.buf_size > 0) {
967 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
968 if (buff == NULL)
969 return -EFAULT;
970 }
971 if (iocommand.Request.Type.Direction == XFER_WRITE) {
972 /* Copy the data into the buffer we created */
973 if (copy_from_user
974 (buff, iocommand.buf, iocommand.buf_size)) {
975 kfree(buff);
976 return -EFAULT;
977 }
978 } else {
979 memset(buff, 0, iocommand.buf_size);
980 }
981 if ((c = cmd_alloc(host, 0)) == NULL) {
982 kfree(buff);
983 return -ENOMEM;
984 }
985 // Fill in the command type
986 c->cmd_type = CMD_IOCTL_PEND;
987 // Fill in Command Header
988 c->Header.ReplyQueue = 0; // unused in simple mode
989 if (iocommand.buf_size > 0) // buffer to fill
990 {
991 c->Header.SGList = 1;
992 c->Header.SGTotal = 1;
993 } else // no buffers to fill
994 {
995 c->Header.SGList = 0;
996 c->Header.SGTotal = 0;
997 }
998 c->Header.LUN = iocommand.LUN_info;
999 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1000
1001 // Fill in Request block
1002 c->Request = iocommand.Request;
1003
1004 // Fill in the scatter gather information
1005 if (iocommand.buf_size > 0) {
1006 temp64.val = pci_map_single(host->pdev, buff,
1007 iocommand.buf_size,
1008 PCI_DMA_BIDIRECTIONAL);
1009 c->SG[0].Addr.lower = temp64.val32.lower;
1010 c->SG[0].Addr.upper = temp64.val32.upper;
1011 c->SG[0].Len = iocommand.buf_size;
1012 c->SG[0].Ext = 0; // we are not chaining
1013 }
1014 c->waiting = &wait;
1015
1016 /* Put the request on the tail of the request queue */
1017 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1018 addQ(&host->reqQ, c);
1019 host->Qdepth++;
1020 start_io(host);
1021 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1022
1023 wait_for_completion(&wait);
1024
1025 /* unlock the buffers from DMA */
1026 temp64.val32.lower = c->SG[0].Addr.lower;
1027 temp64.val32.upper = c->SG[0].Addr.upper;
1028 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1029 iocommand.buf_size,
1030 PCI_DMA_BIDIRECTIONAL);
1031
1032 /* Copy the error information out */
1033 iocommand.error_info = *(c->err_info);
1034 if (copy_to_user
1035 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1036 kfree(buff);
1037 cmd_free(host, c, 0);
1038 return -EFAULT;
1039 }
1040
1041 if (iocommand.Request.Type.Direction == XFER_READ) {
1042 /* Copy the data out of the buffer we created */
1043 if (copy_to_user
1044 (iocommand.buf, buff, iocommand.buf_size)) {
1045 kfree(buff);
1046 cmd_free(host, c, 0);
1047 return -EFAULT;
1048 }
1049 }
1050 kfree(buff);
1051 cmd_free(host, c, 0);
1052 return 0;
1053 }
1054 case CCISS_BIG_PASSTHRU:{
1055 BIG_IOCTL_Command_struct *ioc;
1056 CommandList_struct *c;
1057 unsigned char **buff = NULL;
1058 int *buff_size = NULL;
1059 u64bit temp64;
1060 unsigned long flags;
1061 BYTE sg_used = 0;
1062 int status = 0;
1063 int i;
1064 DECLARE_COMPLETION_ONSTACK(wait);
1065 __u32 left;
1066 __u32 sz;
1067 BYTE __user *data_ptr;
1068
1069 if (!arg)
1070 return -EINVAL;
1071 if (!capable(CAP_SYS_RAWIO))
1072 return -EPERM;
1073 ioc = (BIG_IOCTL_Command_struct *)
1074 kmalloc(sizeof(*ioc), GFP_KERNEL);
1075 if (!ioc) {
1076 status = -ENOMEM;
1077 goto cleanup1;
1078 }
1079 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1080 status = -EFAULT;
1081 goto cleanup1;
1082 }
1083 if ((ioc->buf_size < 1) &&
1084 (ioc->Request.Type.Direction != XFER_NONE)) {
1085 status = -EINVAL;
1086 goto cleanup1;
1087 }
1088 /* Check kmalloc limits using all SGs */
1089 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1090 status = -EINVAL;
1091 goto cleanup1;
1092 }
1093 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1094 status = -EINVAL;
1095 goto cleanup1;
1096 }
1097 buff =
1098 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1099 if (!buff) {
1100 status = -ENOMEM;
1101 goto cleanup1;
1102 }
1103 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1104 GFP_KERNEL);
1105 if (!buff_size) {
1106 status = -ENOMEM;
1107 goto cleanup1;
1108 }
1109 left = ioc->buf_size;
1110 data_ptr = ioc->buf;
1111 while (left) {
1112 sz = (left >
1113 ioc->malloc_size) ? ioc->
1114 malloc_size : left;
1115 buff_size[sg_used] = sz;
1116 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1117 if (buff[sg_used] == NULL) {
1118 status = -ENOMEM;
1119 goto cleanup1;
1120 }
1121 if (ioc->Request.Type.Direction == XFER_WRITE) {
1122 if (copy_from_user
1123 (buff[sg_used], data_ptr, sz)) {
1124 status = -EFAULT;
1125 goto cleanup1;
1126 }
1127 } else {
1128 memset(buff[sg_used], 0, sz);
1129 }
1130 left -= sz;
1131 data_ptr += sz;
1132 sg_used++;
1133 }
1134 if ((c = cmd_alloc(host, 0)) == NULL) {
1135 status = -ENOMEM;
1136 goto cleanup1;
1137 }
1138 c->cmd_type = CMD_IOCTL_PEND;
1139 c->Header.ReplyQueue = 0;
1140
1141 if (ioc->buf_size > 0) {
1142 c->Header.SGList = sg_used;
1143 c->Header.SGTotal = sg_used;
1144 } else {
1145 c->Header.SGList = 0;
1146 c->Header.SGTotal = 0;
1147 }
1148 c->Header.LUN = ioc->LUN_info;
1149 c->Header.Tag.lower = c->busaddr;
1150
1151 c->Request = ioc->Request;
1152 if (ioc->buf_size > 0) {
1153 int i;
1154 for (i = 0; i < sg_used; i++) {
1155 temp64.val =
1156 pci_map_single(host->pdev, buff[i],
1157 buff_size[i],
1158 PCI_DMA_BIDIRECTIONAL);
1159 c->SG[i].Addr.lower =
1160 temp64.val32.lower;
1161 c->SG[i].Addr.upper =
1162 temp64.val32.upper;
1163 c->SG[i].Len = buff_size[i];
1164 c->SG[i].Ext = 0; /* we are not chaining */
1165 }
1166 }
1167 c->waiting = &wait;
1168 /* Put the request on the tail of the request queue */
1169 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1170 addQ(&host->reqQ, c);
1171 host->Qdepth++;
1172 start_io(host);
1173 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1174 wait_for_completion(&wait);
1175 /* unlock the buffers from DMA */
1176 for (i = 0; i < sg_used; i++) {
1177 temp64.val32.lower = c->SG[i].Addr.lower;
1178 temp64.val32.upper = c->SG[i].Addr.upper;
1179 pci_unmap_single(host->pdev,
1180 (dma_addr_t) temp64.val, buff_size[i],
1181 PCI_DMA_BIDIRECTIONAL);
1182 }
1183 /* Copy the error information out */
1184 ioc->error_info = *(c->err_info);
1185 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1186 cmd_free(host, c, 0);
1187 status = -EFAULT;
1188 goto cleanup1;
1189 }
1190 if (ioc->Request.Type.Direction == XFER_READ) {
1191 /* Copy the data out of the buffer we created */
1192 BYTE __user *ptr = ioc->buf;
1193 for (i = 0; i < sg_used; i++) {
1194 if (copy_to_user
1195 (ptr, buff[i], buff_size[i])) {
1196 cmd_free(host, c, 0);
1197 status = -EFAULT;
1198 goto cleanup1;
1199 }
1200 ptr += buff_size[i];
1201 }
1202 }
1203 cmd_free(host, c, 0);
1204 status = 0;
1205 cleanup1:
1206 if (buff) {
1207 for (i = 0; i < sg_used; i++)
1208 kfree(buff[i]);
1209 kfree(buff);
1210 }
1211 kfree(buff_size);
1212 kfree(ioc);
1213 return status;
1214 }
1215
1216 /* scsi_cmd_ioctl handles these, below, though some are not */
1217 /* very meaningful for cciss. SG_IO is the main one people want. */
1218
1219 case SG_GET_VERSION_NUM:
1220 case SG_SET_TIMEOUT:
1221 case SG_GET_TIMEOUT:
1222 case SG_GET_RESERVED_SIZE:
1223 case SG_SET_RESERVED_SIZE:
1224 case SG_EMULATED_HOST:
1225 case SG_IO:
1226 case SCSI_IOCTL_SEND_COMMAND:
1227 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1228
1229 /* scsi_cmd_ioctl would normally handle these, below, but */
1230 /* they aren't a good fit for cciss, as CD-ROMs are */
1231 /* not supported, and we don't have any bus/target/lun */
1232 /* which we present to the kernel. */
1233
1234 case CDROM_SEND_PACKET:
1235 case CDROMCLOSETRAY:
1236 case CDROMEJECT:
1237 case SCSI_IOCTL_GET_IDLUN:
1238 case SCSI_IOCTL_GET_BUS_NUMBER:
1239 default:
1240 return -ENOTTY;
1241 }
1242 }
1243
1244 static void cciss_check_queues(ctlr_info_t *h)
1245 {
1246 int start_queue = h->next_to_run;
1247 int i;
1248
1249 /* check to see if we have maxed out the number of commands that can
1250 * be placed on the queue. If so then exit. We do this check here
1251 * in case the interrupt we serviced was from an ioctl and did not
1252 * free any new commands.
1253 */
1254 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1255 return;
1256
1257 /* We have room on the queue for more commands. Now we need to queue
1258 * them up. We will also keep track of the next queue to run so
1259 * that every queue gets a chance to be started first.
1260 */
1261 for (i = 0; i < h->highest_lun + 1; i++) {
1262 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1263 /* make sure the disk has been added and the drive is real
1264 * because this can be called from the middle of init_one.
1265 */
1266 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1267 continue;
1268 blk_start_queue(h->gendisk[curr_queue]->queue);
1269
1270 /* check to see if we have maxed out the number of commands
1271 * that can be placed on the queue.
1272 */
1273 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1274 if (curr_queue == start_queue) {
1275 h->next_to_run =
1276 (start_queue + 1) % (h->highest_lun + 1);
1277 break;
1278 } else {
1279 h->next_to_run = curr_queue;
1280 break;
1281 }
1282 }
1283 }
1284 }
1285
1286 static void cciss_softirq_done(struct request *rq)
1287 {
1288 CommandList_struct *cmd = rq->completion_data;
1289 ctlr_info_t *h = hba[cmd->ctlr];
1290 unsigned long flags;
1291 u64bit temp64;
1292 int i, ddir;
1293
1294 if (cmd->Request.Type.Direction == XFER_READ)
1295 ddir = PCI_DMA_FROMDEVICE;
1296 else
1297 ddir = PCI_DMA_TODEVICE;
1298
1299 /* command did not need to be retried */
1300 /* unmap the DMA mapping for all the scatter gather elements */
1301 for (i = 0; i < cmd->Header.SGList; i++) {
1302 temp64.val32.lower = cmd->SG[i].Addr.lower;
1303 temp64.val32.upper = cmd->SG[i].Addr.upper;
1304 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1305 }
1306
1307 #ifdef CCISS_DEBUG
1308 printk("Done with %p\n", rq);
1309 #endif /* CCISS_DEBUG */
1310
1311 if (blk_end_request(rq, (rq->errors == 0) ? 0 : -EIO, blk_rq_bytes(rq)))
1312 BUG();
1313
1314 spin_lock_irqsave(&h->lock, flags);
1315 cmd_free(h, cmd, 1);
1316 cciss_check_queues(h);
1317 spin_unlock_irqrestore(&h->lock, flags);
1318 }
1319
1320 /* This function gets the serial number of a logical drive via
1321 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1322 * number cannot be had, for whatever reason, 16 bytes of 0xff
1323 * are returned instead.
1324 */
1325 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1326 unsigned char *serial_no, int buflen)
1327 {
1328 #define PAGE_83_INQ_BYTES 64
1329 int rc;
1330 unsigned char *buf;
1331
1332 if (buflen > 16)
1333 buflen = 16;
1334 memset(serial_no, 0xff, buflen);
1335 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1336 if (!buf)
1337 return;
1338 memset(serial_no, 0, buflen);
1339 if (withirq)
1340 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1341 PAGE_83_INQ_BYTES, 1, logvol, 0x83, TYPE_CMD);
1342 else
1343 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1344 PAGE_83_INQ_BYTES, 1, logvol, 0x83, NULL, TYPE_CMD);
1345 if (rc == IO_OK)
1346 memcpy(serial_no, &buf[8], buflen);
1347 kfree(buf);
1348 return;
1349 }
1350
1351 static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1352 int drv_index)
1353 {
1354 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1355 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1356 disk->major = h->major;
1357 disk->first_minor = drv_index << NWD_SHIFT;
1358 disk->fops = &cciss_fops;
1359 disk->private_data = &h->drv[drv_index];
1360 disk->driverfs_dev = &h->pdev->dev;
1361
1362 /* Set up queue information */
1363 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1364
1365 /* This is a hardware imposed limit. */
1366 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1367
1368 /* This is a limit in the driver and could be eliminated. */
1369 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1370
1371 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1372
1373 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1374
1375 disk->queue->queuedata = h;
1376
1377 blk_queue_hardsect_size(disk->queue,
1378 h->drv[drv_index].block_size);
1379
1380 /* Make sure all queue data is written out before */
1381 /* setting h->drv[drv_index].queue, as setting this */
1382 /* allows the interrupt handler to start the queue */
1383 wmb();
1384 h->drv[drv_index].queue = disk->queue;
1385 add_disk(disk);
1386 }
1387
1388 /* This function will check the usage_count of the drive to be updated/added.
1389 * If the usage_count is zero and it is a heretofore unknown drive, or,
1390 * the drive's capacity, geometry, or serial number has changed,
1391 * then the drive information will be updated and the disk will be
1392 * re-registered with the kernel. If these conditions don't hold,
1393 * then it will be left alone for the next reboot. The exception to this
1394 * is disk 0 which will always be left registered with the kernel since it
1395 * is also the controller node. Any changes to disk 0 will show up on
1396 * the next reboot.
1397 */
1398 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1399 {
1400 ctlr_info_t *h = hba[ctlr];
1401 struct gendisk *disk;
1402 InquiryData_struct *inq_buff = NULL;
1403 unsigned int block_size;
1404 sector_t total_size;
1405 unsigned long flags = 0;
1406 int ret = 0;
1407 drive_info_struct *drvinfo;
1408 int was_only_controller_node;
1409
1410 /* Get information about the disk and modify the driver structure */
1411 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1412 drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1413 if (inq_buff == NULL || drvinfo == NULL)
1414 goto mem_msg;
1415
1416 /* See if we're trying to update the "controller node"
1417 * this will happen the when the first logical drive gets
1418 * created by ACU.
1419 */
1420 was_only_controller_node = (drv_index == 0 &&
1421 h->drv[0].raid_level == -1);
1422
1423 /* testing to see if 16-byte CDBs are already being used */
1424 if (h->cciss_read == CCISS_READ_16) {
1425 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1426 &total_size, &block_size);
1427
1428 } else {
1429 cciss_read_capacity(ctlr, drv_index, 1,
1430 &total_size, &block_size);
1431
1432 /* if read_capacity returns all F's this volume is >2TB */
1433 /* in size so we switch to 16-byte CDB's for all */
1434 /* read/write ops */
1435 if (total_size == 0xFFFFFFFFULL) {
1436 cciss_read_capacity_16(ctlr, drv_index, 1,
1437 &total_size, &block_size);
1438 h->cciss_read = CCISS_READ_16;
1439 h->cciss_write = CCISS_WRITE_16;
1440 } else {
1441 h->cciss_read = CCISS_READ_10;
1442 h->cciss_write = CCISS_WRITE_10;
1443 }
1444 }
1445
1446 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1447 inq_buff, drvinfo);
1448 drvinfo->block_size = block_size;
1449 drvinfo->nr_blocks = total_size + 1;
1450
1451 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1452 sizeof(drvinfo->serial_no));
1453
1454 /* Is it the same disk we already know, and nothing's changed? */
1455 if (h->drv[drv_index].raid_level != -1 &&
1456 ((memcmp(drvinfo->serial_no,
1457 h->drv[drv_index].serial_no, 16) == 0) &&
1458 drvinfo->block_size == h->drv[drv_index].block_size &&
1459 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1460 drvinfo->heads == h->drv[drv_index].heads &&
1461 drvinfo->sectors == h->drv[drv_index].sectors &&
1462 drvinfo->cylinders == h->drv[drv_index].cylinders))
1463 /* The disk is unchanged, nothing to update */
1464 goto freeret;
1465
1466 /* If we get here it's not the same disk, or something's changed,
1467 * so we need to * deregister it, and re-register it, if it's not
1468 * in use.
1469 * If the disk already exists then deregister it before proceeding
1470 * (unless it's the first disk (for the controller node).
1471 */
1472 if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1473 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1474 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1475 h->drv[drv_index].busy_configuring = 1;
1476 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1477
1478 /* deregister_disk sets h->drv[drv_index].queue = NULL
1479 * which keeps the interrupt handler from starting
1480 * the queue.
1481 */
1482 ret = deregister_disk(h, drv_index, 0);
1483 h->drv[drv_index].busy_configuring = 0;
1484 }
1485
1486 /* If the disk is in use return */
1487 if (ret)
1488 goto freeret;
1489
1490 /* Save the new information from cciss_geometry_inquiry
1491 * and serial number inquiry.
1492 */
1493 h->drv[drv_index].block_size = drvinfo->block_size;
1494 h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1495 h->drv[drv_index].heads = drvinfo->heads;
1496 h->drv[drv_index].sectors = drvinfo->sectors;
1497 h->drv[drv_index].cylinders = drvinfo->cylinders;
1498 h->drv[drv_index].raid_level = drvinfo->raid_level;
1499 memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1500
1501 ++h->num_luns;
1502 disk = h->gendisk[drv_index];
1503 set_capacity(disk, h->drv[drv_index].nr_blocks);
1504
1505 /* If it's not disk 0 (drv_index != 0)
1506 * or if it was disk 0, but there was previously
1507 * no actual corresponding configured logical drive
1508 * (raid_leve == -1) then we want to update the
1509 * logical drive's information.
1510 */
1511 if (drv_index || first_time)
1512 cciss_add_disk(h, disk, drv_index);
1513
1514 freeret:
1515 kfree(inq_buff);
1516 kfree(drvinfo);
1517 return;
1518 mem_msg:
1519 printk(KERN_ERR "cciss: out of memory\n");
1520 goto freeret;
1521 }
1522
1523 /* This function will find the first index of the controllers drive array
1524 * that has a -1 for the raid_level and will return that index. This is
1525 * where new drives will be added. If the index to be returned is greater
1526 * than the highest_lun index for the controller then highest_lun is set
1527 * to this new index. If there are no available indexes then -1 is returned.
1528 * "controller_node" is used to know if this is a real logical drive, or just
1529 * the controller node, which determines if this counts towards highest_lun.
1530 */
1531 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1532 {
1533 int i;
1534
1535 for (i = 0; i < CISS_MAX_LUN; i++) {
1536 if (hba[ctlr]->drv[i].raid_level == -1) {
1537 if (i > hba[ctlr]->highest_lun)
1538 if (!controller_node)
1539 hba[ctlr]->highest_lun = i;
1540 return i;
1541 }
1542 }
1543 return -1;
1544 }
1545
1546 /* cciss_add_gendisk finds a free hba[]->drv structure
1547 * and allocates a gendisk if needed, and sets the lunid
1548 * in the drvinfo structure. It returns the index into
1549 * the ->drv[] array, or -1 if none are free.
1550 * is_controller_node indicates whether highest_lun should
1551 * count this disk, or if it's only being added to provide
1552 * a means to talk to the controller in case no logical
1553 * drives have yet been configured.
1554 */
1555 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1556 {
1557 int drv_index;
1558
1559 drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1560 if (drv_index == -1)
1561 return -1;
1562 /*Check if the gendisk needs to be allocated */
1563 if (!h->gendisk[drv_index]) {
1564 h->gendisk[drv_index] =
1565 alloc_disk(1 << NWD_SHIFT);
1566 if (!h->gendisk[drv_index]) {
1567 printk(KERN_ERR "cciss%d: could not "
1568 "allocate a new disk %d\n",
1569 h->ctlr, drv_index);
1570 return -1;
1571 }
1572 }
1573 h->drv[drv_index].LunID = lunid;
1574
1575 /* Don't need to mark this busy because nobody */
1576 /* else knows about this disk yet to contend */
1577 /* for access to it. */
1578 h->drv[drv_index].busy_configuring = 0;
1579 wmb();
1580 return drv_index;
1581 }
1582
1583 /* This is for the special case of a controller which
1584 * has no logical drives. In this case, we still need
1585 * to register a disk so the controller can be accessed
1586 * by the Array Config Utility.
1587 */
1588 static void cciss_add_controller_node(ctlr_info_t *h)
1589 {
1590 struct gendisk *disk;
1591 int drv_index;
1592
1593 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1594 return;
1595
1596 drv_index = cciss_add_gendisk(h, 0, 1);
1597 if (drv_index == -1) {
1598 printk(KERN_WARNING "cciss%d: could not "
1599 "add disk 0.\n", h->ctlr);
1600 return;
1601 }
1602 h->drv[drv_index].block_size = 512;
1603 h->drv[drv_index].nr_blocks = 0;
1604 h->drv[drv_index].heads = 0;
1605 h->drv[drv_index].sectors = 0;
1606 h->drv[drv_index].cylinders = 0;
1607 h->drv[drv_index].raid_level = -1;
1608 memset(h->drv[drv_index].serial_no, 0, 16);
1609 disk = h->gendisk[drv_index];
1610 cciss_add_disk(h, disk, drv_index);
1611 }
1612
1613 /* This function will add and remove logical drives from the Logical
1614 * drive array of the controller and maintain persistency of ordering
1615 * so that mount points are preserved until the next reboot. This allows
1616 * for the removal of logical drives in the middle of the drive array
1617 * without a re-ordering of those drives.
1618 * INPUT
1619 * h = The controller to perform the operations on
1620 */
1621 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1622 {
1623 int ctlr = h->ctlr;
1624 int num_luns;
1625 ReportLunData_struct *ld_buff = NULL;
1626 int return_code;
1627 int listlength = 0;
1628 int i;
1629 int drv_found;
1630 int drv_index = 0;
1631 __u32 lunid = 0;
1632 unsigned long flags;
1633
1634 if (!capable(CAP_SYS_RAWIO))
1635 return -EPERM;
1636
1637 /* Set busy_configuring flag for this operation */
1638 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1639 if (h->busy_configuring) {
1640 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1641 return -EBUSY;
1642 }
1643 h->busy_configuring = 1;
1644 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1645
1646 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1647 if (ld_buff == NULL)
1648 goto mem_msg;
1649
1650 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1651 sizeof(ReportLunData_struct), 0,
1652 0, 0, TYPE_CMD);
1653
1654 if (return_code == IO_OK)
1655 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1656 else { /* reading number of logical volumes failed */
1657 printk(KERN_WARNING "cciss: report logical volume"
1658 " command failed\n");
1659 listlength = 0;
1660 goto freeret;
1661 }
1662
1663 num_luns = listlength / 8; /* 8 bytes per entry */
1664 if (num_luns > CISS_MAX_LUN) {
1665 num_luns = CISS_MAX_LUN;
1666 printk(KERN_WARNING "cciss: more luns configured"
1667 " on controller than can be handled by"
1668 " this driver.\n");
1669 }
1670
1671 if (num_luns == 0)
1672 cciss_add_controller_node(h);
1673
1674 /* Compare controller drive array to driver's drive array
1675 * to see if any drives are missing on the controller due
1676 * to action of Array Config Utility (user deletes drive)
1677 * and deregister logical drives which have disappeared.
1678 */
1679 for (i = 0; i <= h->highest_lun; i++) {
1680 int j;
1681 drv_found = 0;
1682
1683 /* skip holes in the array from already deleted drives */
1684 if (h->drv[i].raid_level == -1)
1685 continue;
1686
1687 for (j = 0; j < num_luns; j++) {
1688 memcpy(&lunid, &ld_buff->LUN[j][0], 4);
1689 lunid = le32_to_cpu(lunid);
1690 if (h->drv[i].LunID == lunid) {
1691 drv_found = 1;
1692 break;
1693 }
1694 }
1695 if (!drv_found) {
1696 /* Deregister it from the OS, it's gone. */
1697 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1698 h->drv[i].busy_configuring = 1;
1699 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1700 return_code = deregister_disk(h, i, 1);
1701 h->drv[i].busy_configuring = 0;
1702 }
1703 }
1704
1705 /* Compare controller drive array to driver's drive array.
1706 * Check for updates in the drive information and any new drives
1707 * on the controller due to ACU adding logical drives, or changing
1708 * a logical drive's size, etc. Reregister any new/changed drives
1709 */
1710 for (i = 0; i < num_luns; i++) {
1711 int j;
1712
1713 drv_found = 0;
1714
1715 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
1716 lunid = le32_to_cpu(lunid);
1717
1718 /* Find if the LUN is already in the drive array
1719 * of the driver. If so then update its info
1720 * if not in use. If it does not exist then find
1721 * the first free index and add it.
1722 */
1723 for (j = 0; j <= h->highest_lun; j++) {
1724 if (h->drv[j].raid_level != -1 &&
1725 h->drv[j].LunID == lunid) {
1726 drv_index = j;
1727 drv_found = 1;
1728 break;
1729 }
1730 }
1731
1732 /* check if the drive was found already in the array */
1733 if (!drv_found) {
1734 drv_index = cciss_add_gendisk(h, lunid, 0);
1735 if (drv_index == -1)
1736 goto freeret;
1737 }
1738 cciss_update_drive_info(ctlr, drv_index, first_time);
1739 } /* end for */
1740
1741 freeret:
1742 kfree(ld_buff);
1743 h->busy_configuring = 0;
1744 /* We return -1 here to tell the ACU that we have registered/updated
1745 * all of the drives that we can and to keep it from calling us
1746 * additional times.
1747 */
1748 return -1;
1749 mem_msg:
1750 printk(KERN_ERR "cciss: out of memory\n");
1751 h->busy_configuring = 0;
1752 goto freeret;
1753 }
1754
1755 /* This function will deregister the disk and it's queue from the
1756 * kernel. It must be called with the controller lock held and the
1757 * drv structures busy_configuring flag set. It's parameters are:
1758 *
1759 * disk = This is the disk to be deregistered
1760 * drv = This is the drive_info_struct associated with the disk to be
1761 * deregistered. It contains information about the disk used
1762 * by the driver.
1763 * clear_all = This flag determines whether or not the disk information
1764 * is going to be completely cleared out and the highest_lun
1765 * reset. Sometimes we want to clear out information about
1766 * the disk in preparation for re-adding it. In this case
1767 * the highest_lun should be left unchanged and the LunID
1768 * should not be cleared.
1769 */
1770 static int deregister_disk(ctlr_info_t *h, int drv_index,
1771 int clear_all)
1772 {
1773 int i;
1774 struct gendisk *disk;
1775 drive_info_struct *drv;
1776
1777 if (!capable(CAP_SYS_RAWIO))
1778 return -EPERM;
1779
1780 drv = &h->drv[drv_index];
1781 disk = h->gendisk[drv_index];
1782
1783 /* make sure logical volume is NOT is use */
1784 if (clear_all || (h->gendisk[0] == disk)) {
1785 if (drv->usage_count > 1)
1786 return -EBUSY;
1787 } else if (drv->usage_count > 0)
1788 return -EBUSY;
1789
1790 /* invalidate the devices and deregister the disk. If it is disk
1791 * zero do not deregister it but just zero out it's values. This
1792 * allows us to delete disk zero but keep the controller registered.
1793 */
1794 if (h->gendisk[0] != disk) {
1795 struct request_queue *q = disk->queue;
1796 if (disk->flags & GENHD_FL_UP)
1797 del_gendisk(disk);
1798 if (q) {
1799 blk_cleanup_queue(q);
1800 /* Set drv->queue to NULL so that we do not try
1801 * to call blk_start_queue on this queue in the
1802 * interrupt handler
1803 */
1804 drv->queue = NULL;
1805 }
1806 /* If clear_all is set then we are deleting the logical
1807 * drive, not just refreshing its info. For drives
1808 * other than disk 0 we will call put_disk. We do not
1809 * do this for disk 0 as we need it to be able to
1810 * configure the controller.
1811 */
1812 if (clear_all){
1813 /* This isn't pretty, but we need to find the
1814 * disk in our array and NULL our the pointer.
1815 * This is so that we will call alloc_disk if
1816 * this index is used again later.
1817 */
1818 for (i=0; i < CISS_MAX_LUN; i++){
1819 if (h->gendisk[i] == disk) {
1820 h->gendisk[i] = NULL;
1821 break;
1822 }
1823 }
1824 put_disk(disk);
1825 }
1826 } else {
1827 set_capacity(disk, 0);
1828 }
1829
1830 --h->num_luns;
1831 /* zero out the disk size info */
1832 drv->nr_blocks = 0;
1833 drv->block_size = 0;
1834 drv->heads = 0;
1835 drv->sectors = 0;
1836 drv->cylinders = 0;
1837 drv->raid_level = -1; /* This can be used as a flag variable to
1838 * indicate that this element of the drive
1839 * array is free.
1840 */
1841
1842 if (clear_all) {
1843 /* check to see if it was the last disk */
1844 if (drv == h->drv + h->highest_lun) {
1845 /* if so, find the new hightest lun */
1846 int i, newhighest = -1;
1847 for (i = 0; i <= h->highest_lun; i++) {
1848 /* if the disk has size > 0, it is available */
1849 if (h->drv[i].heads)
1850 newhighest = i;
1851 }
1852 h->highest_lun = newhighest;
1853 }
1854
1855 drv->LunID = 0;
1856 }
1857 return 0;
1858 }
1859
1860 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1861 1: address logical volume log_unit,
1862 2: periph device address is scsi3addr */
1863 unsigned int log_unit, __u8 page_code,
1864 unsigned char *scsi3addr, int cmd_type)
1865 {
1866 ctlr_info_t *h = hba[ctlr];
1867 u64bit buff_dma_handle;
1868 int status = IO_OK;
1869
1870 c->cmd_type = CMD_IOCTL_PEND;
1871 c->Header.ReplyQueue = 0;
1872 if (buff != NULL) {
1873 c->Header.SGList = 1;
1874 c->Header.SGTotal = 1;
1875 } else {
1876 c->Header.SGList = 0;
1877 c->Header.SGTotal = 0;
1878 }
1879 c->Header.Tag.lower = c->busaddr;
1880
1881 c->Request.Type.Type = cmd_type;
1882 if (cmd_type == TYPE_CMD) {
1883 switch (cmd) {
1884 case CISS_INQUIRY:
1885 /* If the logical unit number is 0 then, this is going
1886 to controller so It's a physical command
1887 mode = 0 target = 0. So we have nothing to write.
1888 otherwise, if use_unit_num == 1,
1889 mode = 1(volume set addressing) target = LUNID
1890 otherwise, if use_unit_num == 2,
1891 mode = 0(periph dev addr) target = scsi3addr */
1892 if (use_unit_num == 1) {
1893 c->Header.LUN.LogDev.VolId =
1894 h->drv[log_unit].LunID;
1895 c->Header.LUN.LogDev.Mode = 1;
1896 } else if (use_unit_num == 2) {
1897 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1898 8);
1899 c->Header.LUN.LogDev.Mode = 0;
1900 }
1901 /* are we trying to read a vital product page */
1902 if (page_code != 0) {
1903 c->Request.CDB[1] = 0x01;
1904 c->Request.CDB[2] = page_code;
1905 }
1906 c->Request.CDBLen = 6;
1907 c->Request.Type.Attribute = ATTR_SIMPLE;
1908 c->Request.Type.Direction = XFER_READ;
1909 c->Request.Timeout = 0;
1910 c->Request.CDB[0] = CISS_INQUIRY;
1911 c->Request.CDB[4] = size & 0xFF;
1912 break;
1913 case CISS_REPORT_LOG:
1914 case CISS_REPORT_PHYS:
1915 /* Talking to controller so It's a physical command
1916 mode = 00 target = 0. Nothing to write.
1917 */
1918 c->Request.CDBLen = 12;
1919 c->Request.Type.Attribute = ATTR_SIMPLE;
1920 c->Request.Type.Direction = XFER_READ;
1921 c->Request.Timeout = 0;
1922 c->Request.CDB[0] = cmd;
1923 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1924 c->Request.CDB[7] = (size >> 16) & 0xFF;
1925 c->Request.CDB[8] = (size >> 8) & 0xFF;
1926 c->Request.CDB[9] = size & 0xFF;
1927 break;
1928
1929 case CCISS_READ_CAPACITY:
1930 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1931 c->Header.LUN.LogDev.Mode = 1;
1932 c->Request.CDBLen = 10;
1933 c->Request.Type.Attribute = ATTR_SIMPLE;
1934 c->Request.Type.Direction = XFER_READ;
1935 c->Request.Timeout = 0;
1936 c->Request.CDB[0] = cmd;
1937 break;
1938 case CCISS_READ_CAPACITY_16:
1939 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1940 c->Header.LUN.LogDev.Mode = 1;
1941 c->Request.CDBLen = 16;
1942 c->Request.Type.Attribute = ATTR_SIMPLE;
1943 c->Request.Type.Direction = XFER_READ;
1944 c->Request.Timeout = 0;
1945 c->Request.CDB[0] = cmd;
1946 c->Request.CDB[1] = 0x10;
1947 c->Request.CDB[10] = (size >> 24) & 0xFF;
1948 c->Request.CDB[11] = (size >> 16) & 0xFF;
1949 c->Request.CDB[12] = (size >> 8) & 0xFF;
1950 c->Request.CDB[13] = size & 0xFF;
1951 c->Request.Timeout = 0;
1952 c->Request.CDB[0] = cmd;
1953 break;
1954 case CCISS_CACHE_FLUSH:
1955 c->Request.CDBLen = 12;
1956 c->Request.Type.Attribute = ATTR_SIMPLE;
1957 c->Request.Type.Direction = XFER_WRITE;
1958 c->Request.Timeout = 0;
1959 c->Request.CDB[0] = BMIC_WRITE;
1960 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1961 break;
1962 default:
1963 printk(KERN_WARNING
1964 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1965 return IO_ERROR;
1966 }
1967 } else if (cmd_type == TYPE_MSG) {
1968 switch (cmd) {
1969 case 0: /* ABORT message */
1970 c->Request.CDBLen = 12;
1971 c->Request.Type.Attribute = ATTR_SIMPLE;
1972 c->Request.Type.Direction = XFER_WRITE;
1973 c->Request.Timeout = 0;
1974 c->Request.CDB[0] = cmd; /* abort */
1975 c->Request.CDB[1] = 0; /* abort a command */
1976 /* buff contains the tag of the command to abort */
1977 memcpy(&c->Request.CDB[4], buff, 8);
1978 break;
1979 case 1: /* RESET message */
1980 c->Request.CDBLen = 12;
1981 c->Request.Type.Attribute = ATTR_SIMPLE;
1982 c->Request.Type.Direction = XFER_WRITE;
1983 c->Request.Timeout = 0;
1984 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1985 c->Request.CDB[0] = cmd; /* reset */
1986 c->Request.CDB[1] = 0x04; /* reset a LUN */
1987 break;
1988 case 3: /* No-Op message */
1989 c->Request.CDBLen = 1;
1990 c->Request.Type.Attribute = ATTR_SIMPLE;
1991 c->Request.Type.Direction = XFER_WRITE;
1992 c->Request.Timeout = 0;
1993 c->Request.CDB[0] = cmd;
1994 break;
1995 default:
1996 printk(KERN_WARNING
1997 "cciss%d: unknown message type %d\n", ctlr, cmd);
1998 return IO_ERROR;
1999 }
2000 } else {
2001 printk(KERN_WARNING
2002 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2003 return IO_ERROR;
2004 }
2005 /* Fill in the scatter gather information */
2006 if (size > 0) {
2007 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2008 buff, size,
2009 PCI_DMA_BIDIRECTIONAL);
2010 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2011 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2012 c->SG[0].Len = size;
2013 c->SG[0].Ext = 0; /* we are not chaining */
2014 }
2015 return status;
2016 }
2017
2018 static int sendcmd_withirq(__u8 cmd,
2019 int ctlr,
2020 void *buff,
2021 size_t size,
2022 unsigned int use_unit_num,
2023 unsigned int log_unit, __u8 page_code, int cmd_type)
2024 {
2025 ctlr_info_t *h = hba[ctlr];
2026 CommandList_struct *c;
2027 u64bit buff_dma_handle;
2028 unsigned long flags;
2029 int return_status;
2030 DECLARE_COMPLETION_ONSTACK(wait);
2031
2032 if ((c = cmd_alloc(h, 0)) == NULL)
2033 return -ENOMEM;
2034 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2035 log_unit, page_code, NULL, cmd_type);
2036 if (return_status != IO_OK) {
2037 cmd_free(h, c, 0);
2038 return return_status;
2039 }
2040 resend_cmd2:
2041 c->waiting = &wait;
2042
2043 /* Put the request on the tail of the queue and send it */
2044 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
2045 addQ(&h->reqQ, c);
2046 h->Qdepth++;
2047 start_io(h);
2048 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
2049
2050 wait_for_completion(&wait);
2051
2052 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
2053 switch (c->err_info->CommandStatus) {
2054 case CMD_TARGET_STATUS:
2055 printk(KERN_WARNING "cciss: cmd %p has "
2056 " completed with errors\n", c);
2057 if (c->err_info->ScsiStatus) {
2058 printk(KERN_WARNING "cciss: cmd %p "
2059 "has SCSI Status = %x\n",
2060 c, c->err_info->ScsiStatus);
2061 }
2062
2063 break;
2064 case CMD_DATA_UNDERRUN:
2065 case CMD_DATA_OVERRUN:
2066 /* expected for inquire and report lun commands */
2067 break;
2068 case CMD_INVALID:
2069 printk(KERN_WARNING "cciss: Cmd %p is "
2070 "reported invalid\n", c);
2071 return_status = IO_ERROR;
2072 break;
2073 case CMD_PROTOCOL_ERR:
2074 printk(KERN_WARNING "cciss: cmd %p has "
2075 "protocol error \n", c);
2076 return_status = IO_ERROR;
2077 break;
2078 case CMD_HARDWARE_ERR:
2079 printk(KERN_WARNING "cciss: cmd %p had "
2080 " hardware error\n", c);
2081 return_status = IO_ERROR;
2082 break;
2083 case CMD_CONNECTION_LOST:
2084 printk(KERN_WARNING "cciss: cmd %p had "
2085 "connection lost\n", c);
2086 return_status = IO_ERROR;
2087 break;
2088 case CMD_ABORTED:
2089 printk(KERN_WARNING "cciss: cmd %p was "
2090 "aborted\n", c);
2091 return_status = IO_ERROR;
2092 break;
2093 case CMD_ABORT_FAILED:
2094 printk(KERN_WARNING "cciss: cmd %p reports "
2095 "abort failed\n", c);
2096 return_status = IO_ERROR;
2097 break;
2098 case CMD_UNSOLICITED_ABORT:
2099 printk(KERN_WARNING
2100 "cciss%d: unsolicited abort %p\n", ctlr, c);
2101 if (c->retry_count < MAX_CMD_RETRIES) {
2102 printk(KERN_WARNING
2103 "cciss%d: retrying %p\n", ctlr, c);
2104 c->retry_count++;
2105 /* erase the old error information */
2106 memset(c->err_info, 0,
2107 sizeof(ErrorInfo_struct));
2108 return_status = IO_OK;
2109 INIT_COMPLETION(wait);
2110 goto resend_cmd2;
2111 }
2112 return_status = IO_ERROR;
2113 break;
2114 default:
2115 printk(KERN_WARNING "cciss: cmd %p returned "
2116 "unknown status %x\n", c,
2117 c->err_info->CommandStatus);
2118 return_status = IO_ERROR;
2119 }
2120 }
2121 /* unlock the buffers from DMA */
2122 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2123 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2124 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2125 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2126 cmd_free(h, c, 0);
2127 return return_status;
2128 }
2129
2130 static void cciss_geometry_inquiry(int ctlr, int logvol,
2131 int withirq, sector_t total_size,
2132 unsigned int block_size,
2133 InquiryData_struct *inq_buff,
2134 drive_info_struct *drv)
2135 {
2136 int return_code;
2137 unsigned long t;
2138
2139 memset(inq_buff, 0, sizeof(InquiryData_struct));
2140 if (withirq)
2141 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2142 inq_buff, sizeof(*inq_buff), 1,
2143 logvol, 0xC1, TYPE_CMD);
2144 else
2145 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2146 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
2147 TYPE_CMD);
2148 if (return_code == IO_OK) {
2149 if (inq_buff->data_byte[8] == 0xFF) {
2150 printk(KERN_WARNING
2151 "cciss: reading geometry failed, volume "
2152 "does not support reading geometry\n");
2153 drv->heads = 255;
2154 drv->sectors = 32; // Sectors per track
2155 drv->cylinders = total_size + 1;
2156 drv->raid_level = RAID_UNKNOWN;
2157 } else {
2158 drv->heads = inq_buff->data_byte[6];
2159 drv->sectors = inq_buff->data_byte[7];
2160 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2161 drv->cylinders += inq_buff->data_byte[5];
2162 drv->raid_level = inq_buff->data_byte[8];
2163 }
2164 drv->block_size = block_size;
2165 drv->nr_blocks = total_size + 1;
2166 t = drv->heads * drv->sectors;
2167 if (t > 1) {
2168 sector_t real_size = total_size + 1;
2169 unsigned long rem = sector_div(real_size, t);
2170 if (rem)
2171 real_size++;
2172 drv->cylinders = real_size;
2173 }
2174 } else { /* Get geometry failed */
2175 printk(KERN_WARNING "cciss: reading geometry failed\n");
2176 }
2177 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2178 drv->heads, drv->sectors, drv->cylinders);
2179 }
2180
2181 static void
2182 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2183 unsigned int *block_size)
2184 {
2185 ReadCapdata_struct *buf;
2186 int return_code;
2187
2188 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2189 if (!buf) {
2190 printk(KERN_WARNING "cciss: out of memory\n");
2191 return;
2192 }
2193
2194 if (withirq)
2195 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2196 ctlr, buf, sizeof(ReadCapdata_struct),
2197 1, logvol, 0, TYPE_CMD);
2198 else
2199 return_code = sendcmd(CCISS_READ_CAPACITY,
2200 ctlr, buf, sizeof(ReadCapdata_struct),
2201 1, logvol, 0, NULL, TYPE_CMD);
2202 if (return_code == IO_OK) {
2203 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2204 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2205 } else { /* read capacity command failed */
2206 printk(KERN_WARNING "cciss: read capacity failed\n");
2207 *total_size = 0;
2208 *block_size = BLOCK_SIZE;
2209 }
2210 if (*total_size != 0)
2211 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2212 (unsigned long long)*total_size+1, *block_size);
2213 kfree(buf);
2214 }
2215
2216 static void
2217 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2218 {
2219 ReadCapdata_struct_16 *buf;
2220 int return_code;
2221
2222 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2223 if (!buf) {
2224 printk(KERN_WARNING "cciss: out of memory\n");
2225 return;
2226 }
2227
2228 if (withirq) {
2229 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2230 ctlr, buf, sizeof(ReadCapdata_struct_16),
2231 1, logvol, 0, TYPE_CMD);
2232 }
2233 else {
2234 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2235 ctlr, buf, sizeof(ReadCapdata_struct_16),
2236 1, logvol, 0, NULL, TYPE_CMD);
2237 }
2238 if (return_code == IO_OK) {
2239 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2240 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2241 } else { /* read capacity command failed */
2242 printk(KERN_WARNING "cciss: read capacity failed\n");
2243 *total_size = 0;
2244 *block_size = BLOCK_SIZE;
2245 }
2246 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2247 (unsigned long long)*total_size+1, *block_size);
2248 kfree(buf);
2249 }
2250
2251 static int cciss_revalidate(struct gendisk *disk)
2252 {
2253 ctlr_info_t *h = get_host(disk);
2254 drive_info_struct *drv = get_drv(disk);
2255 int logvol;
2256 int FOUND = 0;
2257 unsigned int block_size;
2258 sector_t total_size;
2259 InquiryData_struct *inq_buff = NULL;
2260
2261 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2262 if (h->drv[logvol].LunID == drv->LunID) {
2263 FOUND = 1;
2264 break;
2265 }
2266 }
2267
2268 if (!FOUND)
2269 return 1;
2270
2271 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2272 if (inq_buff == NULL) {
2273 printk(KERN_WARNING "cciss: out of memory\n");
2274 return 1;
2275 }
2276 if (h->cciss_read == CCISS_READ_10) {
2277 cciss_read_capacity(h->ctlr, logvol, 1,
2278 &total_size, &block_size);
2279 } else {
2280 cciss_read_capacity_16(h->ctlr, logvol, 1,
2281 &total_size, &block_size);
2282 }
2283 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2284 inq_buff, drv);
2285
2286 blk_queue_hardsect_size(drv->queue, drv->block_size);
2287 set_capacity(disk, drv->nr_blocks);
2288
2289 kfree(inq_buff);
2290 return 0;
2291 }
2292
2293 /*
2294 * Wait polling for a command to complete.
2295 * The memory mapped FIFO is polled for the completion.
2296 * Used only at init time, interrupts from the HBA are disabled.
2297 */
2298 static unsigned long pollcomplete(int ctlr)
2299 {
2300 unsigned long done;
2301 int i;
2302
2303 /* Wait (up to 20 seconds) for a command to complete */
2304
2305 for (i = 20 * HZ; i > 0; i--) {
2306 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2307 if (done == FIFO_EMPTY)
2308 schedule_timeout_uninterruptible(1);
2309 else
2310 return done;
2311 }
2312 /* Invalid address to tell caller we ran out of time */
2313 return 1;
2314 }
2315
2316 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2317 {
2318 /* We get in here if sendcmd() is polling for completions
2319 and gets some command back that it wasn't expecting --
2320 something other than that which it just sent down.
2321 Ordinarily, that shouldn't happen, but it can happen when
2322 the scsi tape stuff gets into error handling mode, and
2323 starts using sendcmd() to try to abort commands and
2324 reset tape drives. In that case, sendcmd may pick up
2325 completions of commands that were sent to logical drives
2326 through the block i/o system, or cciss ioctls completing, etc.
2327 In that case, we need to save those completions for later
2328 processing by the interrupt handler.
2329 */
2330
2331 #ifdef CONFIG_CISS_SCSI_TAPE
2332 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2333
2334 /* If it's not the scsi tape stuff doing error handling, (abort */
2335 /* or reset) then we don't expect anything weird. */
2336 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2337 #endif
2338 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2339 "Invalid command list address returned! (%lx)\n",
2340 ctlr, complete);
2341 /* not much we can do. */
2342 #ifdef CONFIG_CISS_SCSI_TAPE
2343 return 1;
2344 }
2345
2346 /* We've sent down an abort or reset, but something else
2347 has completed */
2348 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2349 /* Uh oh. No room to save it for later... */
2350 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2351 "reject list overflow, command lost!\n", ctlr);
2352 return 1;
2353 }
2354 /* Save it for later */
2355 srl->complete[srl->ncompletions] = complete;
2356 srl->ncompletions++;
2357 #endif
2358 return 0;
2359 }
2360
2361 /*
2362 * Send a command to the controller, and wait for it to complete.
2363 * Only used at init time.
2364 */
2365 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2366 1: address logical volume log_unit,
2367 2: periph device address is scsi3addr */
2368 unsigned int log_unit,
2369 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2370 {
2371 CommandList_struct *c;
2372 int i;
2373 unsigned long complete;
2374 ctlr_info_t *info_p = hba[ctlr];
2375 u64bit buff_dma_handle;
2376 int status, done = 0;
2377
2378 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2379 printk(KERN_WARNING "cciss: unable to get memory");
2380 return IO_ERROR;
2381 }
2382 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2383 log_unit, page_code, scsi3addr, cmd_type);
2384 if (status != IO_OK) {
2385 cmd_free(info_p, c, 1);
2386 return status;
2387 }
2388 resend_cmd1:
2389 /*
2390 * Disable interrupt
2391 */
2392 #ifdef CCISS_DEBUG
2393 printk(KERN_DEBUG "cciss: turning intr off\n");
2394 #endif /* CCISS_DEBUG */
2395 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2396
2397 /* Make sure there is room in the command FIFO */
2398 /* Actually it should be completely empty at this time */
2399 /* unless we are in here doing error handling for the scsi */
2400 /* tape side of the driver. */
2401 for (i = 200000; i > 0; i--) {
2402 /* if fifo isn't full go */
2403 if (!(info_p->access.fifo_full(info_p))) {
2404
2405 break;
2406 }
2407 udelay(10);
2408 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2409 " waiting!\n", ctlr);
2410 }
2411 /*
2412 * Send the cmd
2413 */
2414 info_p->access.submit_command(info_p, c);
2415 done = 0;
2416 do {
2417 complete = pollcomplete(ctlr);
2418
2419 #ifdef CCISS_DEBUG
2420 printk(KERN_DEBUG "cciss: command completed\n");
2421 #endif /* CCISS_DEBUG */
2422
2423 if (complete == 1) {
2424 printk(KERN_WARNING
2425 "cciss cciss%d: SendCmd Timeout out, "
2426 "No command list address returned!\n", ctlr);
2427 status = IO_ERROR;
2428 done = 1;
2429 break;
2430 }
2431
2432 /* This will need to change for direct lookup completions */
2433 if ((complete & CISS_ERROR_BIT)
2434 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2435 /* if data overrun or underun on Report command
2436 ignore it
2437 */
2438 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2439 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2440 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2441 ((c->err_info->CommandStatus ==
2442 CMD_DATA_OVERRUN) ||
2443 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2444 )) {
2445 complete = c->busaddr;
2446 } else {
2447 if (c->err_info->CommandStatus ==
2448 CMD_UNSOLICITED_ABORT) {
2449 printk(KERN_WARNING "cciss%d: "
2450 "unsolicited abort %p\n",
2451 ctlr, c);
2452 if (c->retry_count < MAX_CMD_RETRIES) {
2453 printk(KERN_WARNING
2454 "cciss%d: retrying %p\n",
2455 ctlr, c);
2456 c->retry_count++;
2457 /* erase the old error */
2458 /* information */
2459 memset(c->err_info, 0,
2460 sizeof
2461 (ErrorInfo_struct));
2462 goto resend_cmd1;
2463 } else {
2464 printk(KERN_WARNING
2465 "cciss%d: retried %p too "
2466 "many times\n", ctlr, c);
2467 status = IO_ERROR;
2468 goto cleanup1;
2469 }
2470 } else if (c->err_info->CommandStatus ==
2471 CMD_UNABORTABLE) {
2472 printk(KERN_WARNING
2473 "cciss%d: command could not be aborted.\n",
2474 ctlr);
2475 status = IO_ERROR;
2476 goto cleanup1;
2477 }
2478 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2479 " Error %x \n", ctlr,
2480 c->err_info->CommandStatus);
2481 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2482 " offensive info\n"
2483 " size %x\n num %x value %x\n",
2484 ctlr,
2485 c->err_info->MoreErrInfo.Invalid_Cmd.
2486 offense_size,
2487 c->err_info->MoreErrInfo.Invalid_Cmd.
2488 offense_num,
2489 c->err_info->MoreErrInfo.Invalid_Cmd.
2490 offense_value);
2491 status = IO_ERROR;
2492 goto cleanup1;
2493 }
2494 }
2495 /* This will need changing for direct lookup completions */
2496 if (complete != c->busaddr) {
2497 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2498 BUG(); /* we are pretty much hosed if we get here. */
2499 }
2500 continue;
2501 } else
2502 done = 1;
2503 } while (!done);
2504
2505 cleanup1:
2506 /* unlock the data buffer from DMA */
2507 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2508 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2509 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2510 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2511 #ifdef CONFIG_CISS_SCSI_TAPE
2512 /* if we saved some commands for later, process them now. */
2513 if (info_p->scsi_rejects.ncompletions > 0)
2514 do_cciss_intr(0, info_p);
2515 #endif
2516 cmd_free(info_p, c, 1);
2517 return status;
2518 }
2519
2520 /*
2521 * Map (physical) PCI mem into (virtual) kernel space
2522 */
2523 static void __iomem *remap_pci_mem(ulong base, ulong size)
2524 {
2525 ulong page_base = ((ulong) base) & PAGE_MASK;
2526 ulong page_offs = ((ulong) base) - page_base;
2527 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2528
2529 return page_remapped ? (page_remapped + page_offs) : NULL;
2530 }
2531
2532 /*
2533 * Takes jobs of the Q and sends them to the hardware, then puts it on
2534 * the Q to wait for completion.
2535 */
2536 static void start_io(ctlr_info_t *h)
2537 {
2538 CommandList_struct *c;
2539
2540 while (!hlist_empty(&h->reqQ)) {
2541 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2542 /* can't do anything if fifo is full */
2543 if ((h->access.fifo_full(h))) {
2544 printk(KERN_WARNING "cciss: fifo full\n");
2545 break;
2546 }
2547
2548 /* Get the first entry from the Request Q */
2549 removeQ(c);
2550 h->Qdepth--;
2551
2552 /* Tell the controller execute command */
2553 h->access.submit_command(h, c);
2554
2555 /* Put job onto the completed Q */
2556 addQ(&h->cmpQ, c);
2557 }
2558 }
2559
2560 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2561 /* Zeros out the error record and then resends the command back */
2562 /* to the controller */
2563 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2564 {
2565 /* erase the old error information */
2566 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2567
2568 /* add it to software queue and then send it to the controller */
2569 addQ(&h->reqQ, c);
2570 h->Qdepth++;
2571 if (h->Qdepth > h->maxQsinceinit)
2572 h->maxQsinceinit = h->Qdepth;
2573
2574 start_io(h);
2575 }
2576
2577 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2578 unsigned int msg_byte, unsigned int host_byte,
2579 unsigned int driver_byte)
2580 {
2581 /* inverse of macros in scsi.h */
2582 return (scsi_status_byte & 0xff) |
2583 ((msg_byte & 0xff) << 8) |
2584 ((host_byte & 0xff) << 16) |
2585 ((driver_byte & 0xff) << 24);
2586 }
2587
2588 static inline int evaluate_target_status(CommandList_struct *cmd)
2589 {
2590 unsigned char sense_key;
2591 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2592 int error_value;
2593
2594 /* If we get in here, it means we got "target status", that is, scsi status */
2595 status_byte = cmd->err_info->ScsiStatus;
2596 driver_byte = DRIVER_OK;
2597 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2598
2599 if (blk_pc_request(cmd->rq))
2600 host_byte = DID_PASSTHROUGH;
2601 else
2602 host_byte = DID_OK;
2603
2604 error_value = make_status_bytes(status_byte, msg_byte,
2605 host_byte, driver_byte);
2606
2607 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2608 if (!blk_pc_request(cmd->rq))
2609 printk(KERN_WARNING "cciss: cmd %p "
2610 "has SCSI Status 0x%x\n",
2611 cmd, cmd->err_info->ScsiStatus);
2612 return error_value;
2613 }
2614
2615 /* check the sense key */
2616 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2617 /* no status or recovered error */
2618 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2619 error_value = 0;
2620
2621 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2622 if (error_value != 0)
2623 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2624 " sense key = 0x%x\n", cmd, sense_key);
2625 return error_value;
2626 }
2627
2628 /* SG_IO or similar, copy sense data back */
2629 if (cmd->rq->sense) {
2630 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2631 cmd->rq->sense_len = cmd->err_info->SenseLen;
2632 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2633 cmd->rq->sense_len);
2634 } else
2635 cmd->rq->sense_len = 0;
2636
2637 return error_value;
2638 }
2639
2640 /* checks the status of the job and calls complete buffers to mark all
2641 * buffers for the completed job. Note that this function does not need
2642 * to hold the hba/queue lock.
2643 */
2644 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2645 int timeout)
2646 {
2647 int retry_cmd = 0;
2648 struct request *rq = cmd->rq;
2649
2650 rq->errors = 0;
2651
2652 if (timeout)
2653 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2654
2655 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2656 goto after_error_processing;
2657
2658 switch (cmd->err_info->CommandStatus) {
2659 case CMD_TARGET_STATUS:
2660 rq->errors = evaluate_target_status(cmd);
2661 break;
2662 case CMD_DATA_UNDERRUN:
2663 if (blk_fs_request(cmd->rq)) {
2664 printk(KERN_WARNING "cciss: cmd %p has"
2665 " completed with data underrun "
2666 "reported\n", cmd);
2667 cmd->rq->data_len = cmd->err_info->ResidualCnt;
2668 }
2669 break;
2670 case CMD_DATA_OVERRUN:
2671 if (blk_fs_request(cmd->rq))
2672 printk(KERN_WARNING "cciss: cmd %p has"
2673 " completed with data overrun "
2674 "reported\n", cmd);
2675 break;
2676 case CMD_INVALID:
2677 printk(KERN_WARNING "cciss: cmd %p is "
2678 "reported invalid\n", cmd);
2679 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2680 cmd->err_info->CommandStatus, DRIVER_OK,
2681 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2682 break;
2683 case CMD_PROTOCOL_ERR:
2684 printk(KERN_WARNING "cciss: cmd %p has "
2685 "protocol error \n", cmd);
2686 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2687 cmd->err_info->CommandStatus, DRIVER_OK,
2688 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2689 break;
2690 case CMD_HARDWARE_ERR:
2691 printk(KERN_WARNING "cciss: cmd %p had "
2692 " hardware error\n", cmd);
2693 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2694 cmd->err_info->CommandStatus, DRIVER_OK,
2695 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2696 break;
2697 case CMD_CONNECTION_LOST:
2698 printk(KERN_WARNING "cciss: cmd %p had "
2699 "connection lost\n", cmd);
2700 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2701 cmd->err_info->CommandStatus, DRIVER_OK,
2702 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2703 break;
2704 case CMD_ABORTED:
2705 printk(KERN_WARNING "cciss: cmd %p was "
2706 "aborted\n", cmd);
2707 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2708 cmd->err_info->CommandStatus, DRIVER_OK,
2709 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2710 break;
2711 case CMD_ABORT_FAILED:
2712 printk(KERN_WARNING "cciss: cmd %p reports "
2713 "abort failed\n", cmd);
2714 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2715 cmd->err_info->CommandStatus, DRIVER_OK,
2716 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2717 break;
2718 case CMD_UNSOLICITED_ABORT:
2719 printk(KERN_WARNING "cciss%d: unsolicited "
2720 "abort %p\n", h->ctlr, cmd);
2721 if (cmd->retry_count < MAX_CMD_RETRIES) {
2722 retry_cmd = 1;
2723 printk(KERN_WARNING
2724 "cciss%d: retrying %p\n", h->ctlr, cmd);
2725 cmd->retry_count++;
2726 } else
2727 printk(KERN_WARNING
2728 "cciss%d: %p retried too "
2729 "many times\n", h->ctlr, cmd);
2730 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2731 cmd->err_info->CommandStatus, DRIVER_OK,
2732 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2733 break;
2734 case CMD_TIMEOUT:
2735 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2736 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2737 cmd->err_info->CommandStatus, DRIVER_OK,
2738 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2739 break;
2740 default:
2741 printk(KERN_WARNING "cciss: cmd %p returned "
2742 "unknown status %x\n", cmd,
2743 cmd->err_info->CommandStatus);
2744 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2745 cmd->err_info->CommandStatus, DRIVER_OK,
2746 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2747 }
2748
2749 after_error_processing:
2750
2751 /* We need to return this command */
2752 if (retry_cmd) {
2753 resend_cciss_cmd(h, cmd);
2754 return;
2755 }
2756 cmd->rq->completion_data = cmd;
2757 blk_complete_request(cmd->rq);
2758 }
2759
2760 /*
2761 * Get a request and submit it to the controller.
2762 */
2763 static void do_cciss_request(struct request_queue *q)
2764 {
2765 ctlr_info_t *h = q->queuedata;
2766 CommandList_struct *c;
2767 sector_t start_blk;
2768 int seg;
2769 struct request *creq;
2770 u64bit temp64;
2771 struct scatterlist tmp_sg[MAXSGENTRIES];
2772 drive_info_struct *drv;
2773 int i, dir;
2774
2775 /* We call start_io here in case there is a command waiting on the
2776 * queue that has not been sent.
2777 */
2778 if (blk_queue_plugged(q))
2779 goto startio;
2780
2781 queue:
2782 creq = elv_next_request(q);
2783 if (!creq)
2784 goto startio;
2785
2786 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2787
2788 if ((c = cmd_alloc(h, 1)) == NULL)
2789 goto full;
2790
2791 blkdev_dequeue_request(creq);
2792
2793 spin_unlock_irq(q->queue_lock);
2794
2795 c->cmd_type = CMD_RWREQ;
2796 c->rq = creq;
2797
2798 /* fill in the request */
2799 drv = creq->rq_disk->private_data;
2800 c->Header.ReplyQueue = 0; // unused in simple mode
2801 /* got command from pool, so use the command block index instead */
2802 /* for direct lookups. */
2803 /* The first 2 bits are reserved for controller error reporting. */
2804 c->Header.Tag.lower = (c->cmdindex << 3);
2805 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2806 c->Header.LUN.LogDev.VolId = drv->LunID;
2807 c->Header.LUN.LogDev.Mode = 1;
2808 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2809 c->Request.Type.Type = TYPE_CMD; // It is a command.
2810 c->Request.Type.Attribute = ATTR_SIMPLE;
2811 c->Request.Type.Direction =
2812 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2813 c->Request.Timeout = 0; // Don't time out
2814 c->Request.CDB[0] =
2815 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2816 start_blk = creq->sector;
2817 #ifdef CCISS_DEBUG
2818 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2819 (int)creq->nr_sectors);
2820 #endif /* CCISS_DEBUG */
2821
2822 sg_init_table(tmp_sg, MAXSGENTRIES);
2823 seg = blk_rq_map_sg(q, creq, tmp_sg);
2824
2825 /* get the DMA records for the setup */
2826 if (c->Request.Type.Direction == XFER_READ)
2827 dir = PCI_DMA_FROMDEVICE;
2828 else
2829 dir = PCI_DMA_TODEVICE;
2830
2831 for (i = 0; i < seg; i++) {
2832 c->SG[i].Len = tmp_sg[i].length;
2833 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
2834 tmp_sg[i].offset,
2835 tmp_sg[i].length, dir);
2836 c->SG[i].Addr.lower = temp64.val32.lower;
2837 c->SG[i].Addr.upper = temp64.val32.upper;
2838 c->SG[i].Ext = 0; // we are not chaining
2839 }
2840 /* track how many SG entries we are using */
2841 if (seg > h->maxSG)
2842 h->maxSG = seg;
2843
2844 #ifdef CCISS_DEBUG
2845 printk(KERN_DEBUG "cciss: Submitting %lu sectors in %d segments\n",
2846 creq->nr_sectors, seg);
2847 #endif /* CCISS_DEBUG */
2848
2849 c->Header.SGList = c->Header.SGTotal = seg;
2850 if (likely(blk_fs_request(creq))) {
2851 if(h->cciss_read == CCISS_READ_10) {
2852 c->Request.CDB[1] = 0;
2853 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2854 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2855 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2856 c->Request.CDB[5] = start_blk & 0xff;
2857 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2858 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2859 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2860 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2861 } else {
2862 u32 upper32 = upper_32_bits(start_blk);
2863
2864 c->Request.CDBLen = 16;
2865 c->Request.CDB[1]= 0;
2866 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
2867 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
2868 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
2869 c->Request.CDB[5]= upper32 & 0xff;
2870 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2871 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2872 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2873 c->Request.CDB[9]= start_blk & 0xff;
2874 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2875 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2876 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2877 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2878 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2879 }
2880 } else if (blk_pc_request(creq)) {
2881 c->Request.CDBLen = creq->cmd_len;
2882 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
2883 } else {
2884 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
2885 BUG();
2886 }
2887
2888 spin_lock_irq(q->queue_lock);
2889
2890 addQ(&h->reqQ, c);
2891 h->Qdepth++;
2892 if (h->Qdepth > h->maxQsinceinit)
2893 h->maxQsinceinit = h->Qdepth;
2894
2895 goto queue;
2896 full:
2897 blk_stop_queue(q);
2898 startio:
2899 /* We will already have the driver lock here so not need
2900 * to lock it.
2901 */
2902 start_io(h);
2903 }
2904
2905 static inline unsigned long get_next_completion(ctlr_info_t *h)
2906 {
2907 #ifdef CONFIG_CISS_SCSI_TAPE
2908 /* Any rejects from sendcmd() lying around? Process them first */
2909 if (h->scsi_rejects.ncompletions == 0)
2910 return h->access.command_completed(h);
2911 else {
2912 struct sendcmd_reject_list *srl;
2913 int n;
2914 srl = &h->scsi_rejects;
2915 n = --srl->ncompletions;
2916 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2917 printk("p");
2918 return srl->complete[n];
2919 }
2920 #else
2921 return h->access.command_completed(h);
2922 #endif
2923 }
2924
2925 static inline int interrupt_pending(ctlr_info_t *h)
2926 {
2927 #ifdef CONFIG_CISS_SCSI_TAPE
2928 return (h->access.intr_pending(h)
2929 || (h->scsi_rejects.ncompletions > 0));
2930 #else
2931 return h->access.intr_pending(h);
2932 #endif
2933 }
2934
2935 static inline long interrupt_not_for_us(ctlr_info_t *h)
2936 {
2937 #ifdef CONFIG_CISS_SCSI_TAPE
2938 return (((h->access.intr_pending(h) == 0) ||
2939 (h->interrupts_enabled == 0))
2940 && (h->scsi_rejects.ncompletions == 0));
2941 #else
2942 return (((h->access.intr_pending(h) == 0) ||
2943 (h->interrupts_enabled == 0)));
2944 #endif
2945 }
2946
2947 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2948 {
2949 ctlr_info_t *h = dev_id;
2950 CommandList_struct *c;
2951 unsigned long flags;
2952 __u32 a, a1, a2;
2953
2954 if (interrupt_not_for_us(h))
2955 return IRQ_NONE;
2956 /*
2957 * If there are completed commands in the completion queue,
2958 * we had better do something about it.
2959 */
2960 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2961 while (interrupt_pending(h)) {
2962 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2963 a1 = a;
2964 if ((a & 0x04)) {
2965 a2 = (a >> 3);
2966 if (a2 >= h->nr_cmds) {
2967 printk(KERN_WARNING
2968 "cciss: controller cciss%d failed, stopping.\n",
2969 h->ctlr);
2970 fail_all_cmds(h->ctlr);
2971 return IRQ_HANDLED;
2972 }
2973
2974 c = h->cmd_pool + a2;
2975 a = c->busaddr;
2976
2977 } else {
2978 struct hlist_node *tmp;
2979
2980 a &= ~3;
2981 c = NULL;
2982 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2983 if (c->busaddr == a)
2984 break;
2985 }
2986 }
2987 /*
2988 * If we've found the command, take it off the
2989 * completion Q and free it
2990 */
2991 if (c && c->busaddr == a) {
2992 removeQ(c);
2993 if (c->cmd_type == CMD_RWREQ) {
2994 complete_command(h, c, 0);
2995 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2996 complete(c->waiting);
2997 }
2998 # ifdef CONFIG_CISS_SCSI_TAPE
2999 else if (c->cmd_type == CMD_SCSI)
3000 complete_scsi_command(c, 0, a1);
3001 # endif
3002 continue;
3003 }
3004 }
3005 }
3006
3007 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3008 return IRQ_HANDLED;
3009 }
3010
3011 /*
3012 * We cannot read the structure directly, for portability we must use
3013 * the io functions.
3014 * This is for debug only.
3015 */
3016 #ifdef CCISS_DEBUG
3017 static void print_cfg_table(CfgTable_struct *tb)
3018 {
3019 int i;
3020 char temp_name[17];
3021
3022 printk("Controller Configuration information\n");
3023 printk("------------------------------------\n");
3024 for (i = 0; i < 4; i++)
3025 temp_name[i] = readb(&(tb->Signature[i]));
3026 temp_name[4] = '\0';
3027 printk(" Signature = %s\n", temp_name);
3028 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3029 printk(" Transport methods supported = 0x%x\n",
3030 readl(&(tb->TransportSupport)));
3031 printk(" Transport methods active = 0x%x\n",
3032 readl(&(tb->TransportActive)));
3033 printk(" Requested transport Method = 0x%x\n",
3034 readl(&(tb->HostWrite.TransportRequest)));
3035 printk(" Coalesce Interrupt Delay = 0x%x\n",
3036 readl(&(tb->HostWrite.CoalIntDelay)));
3037 printk(" Coalesce Interrupt Count = 0x%x\n",
3038 readl(&(tb->HostWrite.CoalIntCount)));
3039 printk(" Max outstanding commands = 0x%d\n",
3040 readl(&(tb->CmdsOutMax)));
3041 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3042 for (i = 0; i < 16; i++)
3043 temp_name[i] = readb(&(tb->ServerName[i]));
3044 temp_name[16] = '\0';
3045 printk(" Server Name = %s\n", temp_name);
3046 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3047 }
3048 #endif /* CCISS_DEBUG */
3049
3050 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3051 {
3052 int i, offset, mem_type, bar_type;
3053 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3054 return 0;
3055 offset = 0;
3056 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3057 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3058 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3059 offset += 4;
3060 else {
3061 mem_type = pci_resource_flags(pdev, i) &
3062 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3063 switch (mem_type) {
3064 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3065 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3066 offset += 4; /* 32 bit */
3067 break;
3068 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3069 offset += 8;
3070 break;
3071 default: /* reserved in PCI 2.2 */
3072 printk(KERN_WARNING
3073 "Base address is invalid\n");
3074 return -1;
3075 break;
3076 }
3077 }
3078 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3079 return i + 1;
3080 }
3081 return -1;
3082 }
3083
3084 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3085 * controllers that are capable. If not, we use IO-APIC mode.
3086 */
3087
3088 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3089 struct pci_dev *pdev, __u32 board_id)
3090 {
3091 #ifdef CONFIG_PCI_MSI
3092 int err;
3093 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3094 {0, 2}, {0, 3}
3095 };
3096
3097 /* Some boards advertise MSI but don't really support it */
3098 if ((board_id == 0x40700E11) ||
3099 (board_id == 0x40800E11) ||
3100 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3101 goto default_int_mode;
3102
3103 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3104 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3105 if (!err) {
3106 c->intr[0] = cciss_msix_entries[0].vector;
3107 c->intr[1] = cciss_msix_entries[1].vector;
3108 c->intr[2] = cciss_msix_entries[2].vector;
3109 c->intr[3] = cciss_msix_entries[3].vector;
3110 c->msix_vector = 1;
3111 return;
3112 }
3113 if (err > 0) {
3114 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3115 "available\n", err);
3116 goto default_int_mode;
3117 } else {
3118 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3119 err);
3120 goto default_int_mode;
3121 }
3122 }
3123 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3124 if (!pci_enable_msi(pdev)) {
3125 c->msi_vector = 1;
3126 } else {
3127 printk(KERN_WARNING "cciss: MSI init failed\n");
3128 }
3129 }
3130 default_int_mode:
3131 #endif /* CONFIG_PCI_MSI */
3132 /* if we get here we're going to use the default interrupt mode */
3133 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3134 return;
3135 }
3136
3137 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3138 {
3139 ushort subsystem_vendor_id, subsystem_device_id, command;
3140 __u32 board_id, scratchpad = 0;
3141 __u64 cfg_offset;
3142 __u32 cfg_base_addr;
3143 __u64 cfg_base_addr_index;
3144 int i, err;
3145
3146 /* check to see if controller has been disabled */
3147 /* BEFORE trying to enable it */
3148 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3149 if (!(command & 0x02)) {
3150 printk(KERN_WARNING
3151 "cciss: controller appears to be disabled\n");
3152 return -ENODEV;
3153 }
3154
3155 err = pci_enable_device(pdev);
3156 if (err) {
3157 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3158 return err;
3159 }
3160
3161 err = pci_request_regions(pdev, "cciss");
3162 if (err) {
3163 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3164 "aborting\n");
3165 return err;
3166 }
3167
3168 subsystem_vendor_id = pdev->subsystem_vendor;
3169 subsystem_device_id = pdev->subsystem_device;
3170 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3171 subsystem_vendor_id);
3172
3173 #ifdef CCISS_DEBUG
3174 printk("command = %x\n", command);
3175 printk("irq = %x\n", pdev->irq);
3176 printk("board_id = %x\n", board_id);
3177 #endif /* CCISS_DEBUG */
3178
3179 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3180 * else we use the IO-APIC interrupt assigned to us by system ROM.
3181 */
3182 cciss_interrupt_mode(c, pdev, board_id);
3183
3184 /*
3185 * Memory base addr is first addr , the second points to the config
3186 * table
3187 */
3188
3189 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
3190 #ifdef CCISS_DEBUG
3191 printk("address 0 = %lx\n", c->paddr);
3192 #endif /* CCISS_DEBUG */
3193 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3194
3195 /* Wait for the board to become ready. (PCI hotplug needs this.)
3196 * We poll for up to 120 secs, once per 100ms. */
3197 for (i = 0; i < 1200; i++) {
3198 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3199 if (scratchpad == CCISS_FIRMWARE_READY)
3200 break;
3201 set_current_state(TASK_INTERRUPTIBLE);
3202 schedule_timeout(HZ / 10); /* wait 100ms */
3203 }
3204 if (scratchpad != CCISS_FIRMWARE_READY) {
3205 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3206 err = -ENODEV;
3207 goto err_out_free_res;
3208 }
3209
3210 /* get the address index number */
3211 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3212 cfg_base_addr &= (__u32) 0x0000ffff;
3213 #ifdef CCISS_DEBUG
3214 printk("cfg base address = %x\n", cfg_base_addr);
3215 #endif /* CCISS_DEBUG */
3216 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3217 #ifdef CCISS_DEBUG
3218 printk("cfg base address index = %llx\n",
3219 (unsigned long long)cfg_base_addr_index);
3220 #endif /* CCISS_DEBUG */
3221 if (cfg_base_addr_index == -1) {
3222 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3223 err = -ENODEV;
3224 goto err_out_free_res;
3225 }
3226
3227 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3228 #ifdef CCISS_DEBUG
3229 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3230 #endif /* CCISS_DEBUG */
3231 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3232 cfg_base_addr_index) +
3233 cfg_offset, sizeof(CfgTable_struct));
3234 c->board_id = board_id;
3235
3236 #ifdef CCISS_DEBUG
3237 print_cfg_table(c->cfgtable);
3238 #endif /* CCISS_DEBUG */
3239
3240 /* Some controllers support Zero Memory Raid (ZMR).
3241 * When configured in ZMR mode the number of supported
3242 * commands drops to 64. So instead of just setting an
3243 * arbitrary value we make the driver a little smarter.
3244 * We read the config table to tell us how many commands
3245 * are supported on the controller then subtract 4 to
3246 * leave a little room for ioctl calls.
3247 */
3248 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3249 for (i = 0; i < ARRAY_SIZE(products); i++) {
3250 if (board_id == products[i].board_id) {
3251 c->product_name = products[i].product_name;
3252 c->access = *(products[i].access);
3253 c->nr_cmds = c->max_commands - 4;
3254 break;
3255 }
3256 }
3257 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3258 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3259 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3260 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3261 printk("Does not appear to be a valid CISS config table\n");
3262 err = -ENODEV;
3263 goto err_out_free_res;
3264 }
3265 /* We didn't find the controller in our list. We know the
3266 * signature is valid. If it's an HP device let's try to
3267 * bind to the device and fire it up. Otherwise we bail.
3268 */
3269 if (i == ARRAY_SIZE(products)) {
3270 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3271 c->product_name = products[i-1].product_name;
3272 c->access = *(products[i-1].access);
3273 c->nr_cmds = c->max_commands - 4;
3274 printk(KERN_WARNING "cciss: This is an unknown "
3275 "Smart Array controller.\n"
3276 "cciss: Please update to the latest driver "
3277 "available from www.hp.com.\n");
3278 } else {
3279 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3280 " to access the Smart Array controller %08lx\n"
3281 , (unsigned long)board_id);
3282 err = -ENODEV;
3283 goto err_out_free_res;
3284 }
3285 }
3286 #ifdef CONFIG_X86
3287 {
3288 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3289 __u32 prefetch;
3290 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3291 prefetch |= 0x100;
3292 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3293 }
3294 #endif
3295
3296 /* Disabling DMA prefetch and refetch for the P600.
3297 * An ASIC bug may result in accesses to invalid memory addresses.
3298 * We've disabled prefetch for some time now. Testing with XEN
3299 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3300 */
3301 if(board_id == 0x3225103C) {
3302 __u32 dma_prefetch;
3303 __u32 dma_refetch;
3304 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3305 dma_prefetch |= 0x8000;
3306 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3307 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3308 dma_refetch |= 0x1;
3309 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3310 }
3311
3312 #ifdef CCISS_DEBUG
3313 printk("Trying to put board into Simple mode\n");
3314 #endif /* CCISS_DEBUG */
3315 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3316 /* Update the field, and then ring the doorbell */
3317 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3318 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3319
3320 /* under certain very rare conditions, this can take awhile.
3321 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3322 * as we enter this code.) */
3323 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3324 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3325 break;
3326 /* delay and try again */
3327 set_current_state(TASK_INTERRUPTIBLE);
3328 schedule_timeout(10);
3329 }
3330
3331 #ifdef CCISS_DEBUG
3332 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3333 readl(c->vaddr + SA5_DOORBELL));
3334 #endif /* CCISS_DEBUG */
3335 #ifdef CCISS_DEBUG
3336 print_cfg_table(c->cfgtable);
3337 #endif /* CCISS_DEBUG */
3338
3339 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3340 printk(KERN_WARNING "cciss: unable to get board into"
3341 " simple mode\n");
3342 err = -ENODEV;
3343 goto err_out_free_res;
3344 }
3345 return 0;
3346
3347 err_out_free_res:
3348 /*
3349 * Deliberately omit pci_disable_device(): it does something nasty to
3350 * Smart Array controllers that pci_enable_device does not undo
3351 */
3352 pci_release_regions(pdev);
3353 return err;
3354 }
3355
3356 /* Function to find the first free pointer into our hba[] array
3357 * Returns -1 if no free entries are left.
3358 */
3359 static int alloc_cciss_hba(void)
3360 {
3361 int i;
3362
3363 for (i = 0; i < MAX_CTLR; i++) {
3364 if (!hba[i]) {
3365 ctlr_info_t *p;
3366
3367 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3368 if (!p)
3369 goto Enomem;
3370 hba[i] = p;
3371 return i;
3372 }
3373 }
3374 printk(KERN_WARNING "cciss: This driver supports a maximum"
3375 " of %d controllers.\n", MAX_CTLR);
3376 return -1;
3377 Enomem:
3378 printk(KERN_ERR "cciss: out of memory.\n");
3379 return -1;
3380 }
3381
3382 static void free_hba(int i)
3383 {
3384 ctlr_info_t *p = hba[i];
3385 int n;
3386
3387 hba[i] = NULL;
3388 for (n = 0; n < CISS_MAX_LUN; n++)
3389 put_disk(p->gendisk[n]);
3390 kfree(p);
3391 }
3392
3393 /* Send a message CDB to the firmware. */
3394 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3395 {
3396 typedef struct {
3397 CommandListHeader_struct CommandHeader;
3398 RequestBlock_struct Request;
3399 ErrDescriptor_struct ErrorDescriptor;
3400 } Command;
3401 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3402 Command *cmd;
3403 dma_addr_t paddr64;
3404 uint32_t paddr32, tag;
3405 void __iomem *vaddr;
3406 int i, err;
3407
3408 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3409 if (vaddr == NULL)
3410 return -ENOMEM;
3411
3412 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3413 CCISS commands, so they must be allocated from the lower 4GiB of
3414 memory. */
3415 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3416 if (err) {
3417 iounmap(vaddr);
3418 return -ENOMEM;
3419 }
3420
3421 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3422 if (cmd == NULL) {
3423 iounmap(vaddr);
3424 return -ENOMEM;
3425 }
3426
3427 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3428 although there's no guarantee, we assume that the address is at
3429 least 4-byte aligned (most likely, it's page-aligned). */
3430 paddr32 = paddr64;
3431
3432 cmd->CommandHeader.ReplyQueue = 0;
3433 cmd->CommandHeader.SGList = 0;
3434 cmd->CommandHeader.SGTotal = 0;
3435 cmd->CommandHeader.Tag.lower = paddr32;
3436 cmd->CommandHeader.Tag.upper = 0;
3437 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3438
3439 cmd->Request.CDBLen = 16;
3440 cmd->Request.Type.Type = TYPE_MSG;
3441 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3442 cmd->Request.Type.Direction = XFER_NONE;
3443 cmd->Request.Timeout = 0; /* Don't time out */
3444 cmd->Request.CDB[0] = opcode;
3445 cmd->Request.CDB[1] = type;
3446 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
3447
3448 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
3449 cmd->ErrorDescriptor.Addr.upper = 0;
3450 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
3451
3452 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3453
3454 for (i = 0; i < 10; i++) {
3455 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3456 if ((tag & ~3) == paddr32)
3457 break;
3458 schedule_timeout_uninterruptible(HZ);
3459 }
3460
3461 iounmap(vaddr);
3462
3463 /* we leak the DMA buffer here ... no choice since the controller could
3464 still complete the command. */
3465 if (i == 10) {
3466 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
3467 opcode, type);
3468 return -ETIMEDOUT;
3469 }
3470
3471 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3472
3473 if (tag & 2) {
3474 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
3475 opcode, type);
3476 return -EIO;
3477 }
3478
3479 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
3480 opcode, type);
3481 return 0;
3482 }
3483
3484 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
3485 #define cciss_noop(p) cciss_message(p, 3, 0)
3486
3487 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
3488 {
3489 /* the #defines are stolen from drivers/pci/msi.h. */
3490 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
3491 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
3492
3493 int pos;
3494 u16 control = 0;
3495
3496 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3497 if (pos) {
3498 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3499 if (control & PCI_MSI_FLAGS_ENABLE) {
3500 printk(KERN_INFO "cciss: resetting MSI\n");
3501 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
3502 }
3503 }
3504
3505 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3506 if (pos) {
3507 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3508 if (control & PCI_MSIX_FLAGS_ENABLE) {
3509 printk(KERN_INFO "cciss: resetting MSI-X\n");
3510 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
3511 }
3512 }
3513
3514 return 0;
3515 }
3516
3517 /* This does a hard reset of the controller using PCI power management
3518 * states. */
3519 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
3520 {
3521 u16 pmcsr, saved_config_space[32];
3522 int i, pos;
3523
3524 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
3525
3526 /* This is very nearly the same thing as
3527
3528 pci_save_state(pci_dev);
3529 pci_set_power_state(pci_dev, PCI_D3hot);
3530 pci_set_power_state(pci_dev, PCI_D0);
3531 pci_restore_state(pci_dev);
3532
3533 but we can't use these nice canned kernel routines on
3534 kexec, because they also check the MSI/MSI-X state in PCI
3535 configuration space and do the wrong thing when it is
3536 set/cleared. Also, the pci_save/restore_state functions
3537 violate the ordering requirements for restoring the
3538 configuration space from the CCISS document (see the
3539 comment below). So we roll our own .... */
3540
3541 for (i = 0; i < 32; i++)
3542 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3543
3544 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3545 if (pos == 0) {
3546 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
3547 return -ENODEV;
3548 }
3549
3550 /* Quoting from the Open CISS Specification: "The Power
3551 * Management Control/Status Register (CSR) controls the power
3552 * state of the device. The normal operating state is D0,
3553 * CSR=00h. The software off state is D3, CSR=03h. To reset
3554 * the controller, place the interface device in D3 then to
3555 * D0, this causes a secondary PCI reset which will reset the
3556 * controller." */
3557
3558 /* enter the D3hot power management state */
3559 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3560 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3561 pmcsr |= PCI_D3hot;
3562 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3563
3564 schedule_timeout_uninterruptible(HZ >> 1);
3565
3566 /* enter the D0 power management state */
3567 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3568 pmcsr |= PCI_D0;
3569 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3570
3571 schedule_timeout_uninterruptible(HZ >> 1);
3572
3573 /* Restore the PCI configuration space. The Open CISS
3574 * Specification says, "Restore the PCI Configuration
3575 * Registers, offsets 00h through 60h. It is important to
3576 * restore the command register, 16-bits at offset 04h,
3577 * last. Do not restore the configuration status register,
3578 * 16-bits at offset 06h." Note that the offset is 2*i. */
3579 for (i = 0; i < 32; i++) {
3580 if (i == 2 || i == 3)
3581 continue;
3582 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3583 }
3584 wmb();
3585 pci_write_config_word(pdev, 4, saved_config_space[2]);
3586
3587 return 0;
3588 }
3589
3590 /*
3591 * This is it. Find all the controllers and register them. I really hate
3592 * stealing all these major device numbers.
3593 * returns the number of block devices registered.
3594 */
3595 static int __devinit cciss_init_one(struct pci_dev *pdev,
3596 const struct pci_device_id *ent)
3597 {
3598 int i;
3599 int j = 0;
3600 int rc;
3601 int dac, return_code;
3602 InquiryData_struct *inq_buff = NULL;
3603
3604 if (reset_devices) {
3605 /* Reset the controller with a PCI power-cycle */
3606 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
3607 return -ENODEV;
3608
3609 /* Now try to get the controller to respond to a no-op. Some
3610 devices (notably the HP Smart Array 5i Controller) need
3611 up to 30 seconds to respond. */
3612 for (i=0; i<30; i++) {
3613 if (cciss_noop(pdev) == 0)
3614 break;
3615
3616 schedule_timeout_uninterruptible(HZ);
3617 }
3618 if (i == 30) {
3619 printk(KERN_ERR "cciss: controller seems dead\n");
3620 return -EBUSY;
3621 }
3622 }
3623
3624 i = alloc_cciss_hba();
3625 if (i < 0)
3626 return -1;
3627
3628 hba[i]->busy_initializing = 1;
3629 INIT_HLIST_HEAD(&hba[i]->cmpQ);
3630 INIT_HLIST_HEAD(&hba[i]->reqQ);
3631
3632 if (cciss_pci_init(hba[i], pdev) != 0)
3633 goto clean1;
3634
3635 sprintf(hba[i]->devname, "cciss%d", i);
3636 hba[i]->ctlr = i;
3637 hba[i]->pdev = pdev;
3638
3639 /* configure PCI DMA stuff */
3640 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3641 dac = 1;
3642 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3643 dac = 0;
3644 else {
3645 printk(KERN_ERR "cciss: no suitable DMA available\n");
3646 goto clean1;
3647 }
3648
3649 /*
3650 * register with the major number, or get a dynamic major number
3651 * by passing 0 as argument. This is done for greater than
3652 * 8 controller support.
3653 */
3654 if (i < MAX_CTLR_ORIG)
3655 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3656 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3657 if (rc == -EBUSY || rc == -EINVAL) {
3658 printk(KERN_ERR
3659 "cciss: Unable to get major number %d for %s "
3660 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3661 goto clean1;
3662 } else {
3663 if (i >= MAX_CTLR_ORIG)
3664 hba[i]->major = rc;
3665 }
3666
3667 /* make sure the board interrupts are off */
3668 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3669 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3670 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3671 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3672 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3673 goto clean2;
3674 }
3675
3676 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3677 hba[i]->devname, pdev->device, pci_name(pdev),
3678 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3679
3680 hba[i]->cmd_pool_bits =
3681 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3682 * sizeof(unsigned long), GFP_KERNEL);
3683 hba[i]->cmd_pool = (CommandList_struct *)
3684 pci_alloc_consistent(hba[i]->pdev,
3685 hba[i]->nr_cmds * sizeof(CommandList_struct),
3686 &(hba[i]->cmd_pool_dhandle));
3687 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3688 pci_alloc_consistent(hba[i]->pdev,
3689 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3690 &(hba[i]->errinfo_pool_dhandle));
3691 if ((hba[i]->cmd_pool_bits == NULL)
3692 || (hba[i]->cmd_pool == NULL)
3693 || (hba[i]->errinfo_pool == NULL)) {
3694 printk(KERN_ERR "cciss: out of memory");
3695 goto clean4;
3696 }
3697 #ifdef CONFIG_CISS_SCSI_TAPE
3698 hba[i]->scsi_rejects.complete =
3699 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3700 (hba[i]->nr_cmds + 5), GFP_KERNEL);
3701 if (hba[i]->scsi_rejects.complete == NULL) {
3702 printk(KERN_ERR "cciss: out of memory");
3703 goto clean4;
3704 }
3705 #endif
3706 spin_lock_init(&hba[i]->lock);
3707
3708 /* Initialize the pdev driver private data.
3709 have it point to hba[i]. */
3710 pci_set_drvdata(pdev, hba[i]);
3711 /* command and error info recs zeroed out before
3712 they are used */
3713 memset(hba[i]->cmd_pool_bits, 0,
3714 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3715 * sizeof(unsigned long));
3716
3717 hba[i]->num_luns = 0;
3718 hba[i]->highest_lun = -1;
3719 for (j = 0; j < CISS_MAX_LUN; j++) {
3720 hba[i]->drv[j].raid_level = -1;
3721 hba[i]->drv[j].queue = NULL;
3722 hba[i]->gendisk[j] = NULL;
3723 }
3724
3725 cciss_scsi_setup(i);
3726
3727 /* Turn the interrupts on so we can service requests */
3728 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3729
3730 /* Get the firmware version */
3731 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3732 if (inq_buff == NULL) {
3733 printk(KERN_ERR "cciss: out of memory\n");
3734 goto clean4;
3735 }
3736
3737 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
3738 sizeof(InquiryData_struct), 0, 0 , 0, TYPE_CMD);
3739 if (return_code == IO_OK) {
3740 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
3741 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
3742 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
3743 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
3744 } else { /* send command failed */
3745 printk(KERN_WARNING "cciss: unable to determine firmware"
3746 " version of controller\n");
3747 }
3748
3749 cciss_procinit(i);
3750
3751 hba[i]->cciss_max_sectors = 2048;
3752
3753 hba[i]->busy_initializing = 0;
3754
3755 rebuild_lun_table(hba[i], 1);
3756 return 1;
3757
3758 clean4:
3759 kfree(inq_buff);
3760 #ifdef CONFIG_CISS_SCSI_TAPE
3761 kfree(hba[i]->scsi_rejects.complete);
3762 #endif
3763 kfree(hba[i]->cmd_pool_bits);
3764 if (hba[i]->cmd_pool)
3765 pci_free_consistent(hba[i]->pdev,
3766 hba[i]->nr_cmds * sizeof(CommandList_struct),
3767 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3768 if (hba[i]->errinfo_pool)
3769 pci_free_consistent(hba[i]->pdev,
3770 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3771 hba[i]->errinfo_pool,
3772 hba[i]->errinfo_pool_dhandle);
3773 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3774 clean2:
3775 unregister_blkdev(hba[i]->major, hba[i]->devname);
3776 clean1:
3777 hba[i]->busy_initializing = 0;
3778 /* cleanup any queues that may have been initialized */
3779 for (j=0; j <= hba[i]->highest_lun; j++){
3780 drive_info_struct *drv = &(hba[i]->drv[j]);
3781 if (drv->queue)
3782 blk_cleanup_queue(drv->queue);
3783 }
3784 /*
3785 * Deliberately omit pci_disable_device(): it does something nasty to
3786 * Smart Array controllers that pci_enable_device does not undo
3787 */
3788 pci_release_regions(pdev);
3789 pci_set_drvdata(pdev, NULL);
3790 free_hba(i);
3791 return -1;
3792 }
3793
3794 static void cciss_shutdown(struct pci_dev *pdev)
3795 {
3796 ctlr_info_t *tmp_ptr;
3797 int i;
3798 char flush_buf[4];
3799 int return_code;
3800
3801 tmp_ptr = pci_get_drvdata(pdev);
3802 if (tmp_ptr == NULL)
3803 return;
3804 i = tmp_ptr->ctlr;
3805 if (hba[i] == NULL)
3806 return;
3807
3808 /* Turn board interrupts off and send the flush cache command */
3809 /* sendcmd will turn off interrupt, and send the flush...
3810 * To write all data in the battery backed cache to disks */
3811 memset(flush_buf, 0, 4);
3812 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3813 TYPE_CMD);
3814 if (return_code == IO_OK) {
3815 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
3816 } else {
3817 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
3818 }
3819 free_irq(hba[i]->intr[2], hba[i]);
3820 }
3821
3822 static void __devexit cciss_remove_one(struct pci_dev *pdev)
3823 {
3824 ctlr_info_t *tmp_ptr;
3825 int i, j;
3826
3827 if (pci_get_drvdata(pdev) == NULL) {
3828 printk(KERN_ERR "cciss: Unable to remove device \n");
3829 return;
3830 }
3831 tmp_ptr = pci_get_drvdata(pdev);
3832 i = tmp_ptr->ctlr;
3833 if (hba[i] == NULL) {
3834 printk(KERN_ERR "cciss: device appears to "
3835 "already be removed \n");
3836 return;
3837 }
3838
3839 remove_proc_entry(hba[i]->devname, proc_cciss);
3840 unregister_blkdev(hba[i]->major, hba[i]->devname);
3841
3842 /* remove it from the disk list */
3843 for (j = 0; j < CISS_MAX_LUN; j++) {
3844 struct gendisk *disk = hba[i]->gendisk[j];
3845 if (disk) {
3846 struct request_queue *q = disk->queue;
3847
3848 if (disk->flags & GENHD_FL_UP)
3849 del_gendisk(disk);
3850 if (q)
3851 blk_cleanup_queue(q);
3852 }
3853 }
3854
3855 #ifdef CONFIG_CISS_SCSI_TAPE
3856 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3857 #endif
3858
3859 cciss_shutdown(pdev);
3860
3861 #ifdef CONFIG_PCI_MSI
3862 if (hba[i]->msix_vector)
3863 pci_disable_msix(hba[i]->pdev);
3864 else if (hba[i]->msi_vector)
3865 pci_disable_msi(hba[i]->pdev);
3866 #endif /* CONFIG_PCI_MSI */
3867
3868 iounmap(hba[i]->vaddr);
3869
3870 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3871 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3872 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3873 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3874 kfree(hba[i]->cmd_pool_bits);
3875 #ifdef CONFIG_CISS_SCSI_TAPE
3876 kfree(hba[i]->scsi_rejects.complete);
3877 #endif
3878 /*
3879 * Deliberately omit pci_disable_device(): it does something nasty to
3880 * Smart Array controllers that pci_enable_device does not undo
3881 */
3882 pci_release_regions(pdev);
3883 pci_set_drvdata(pdev, NULL);
3884 free_hba(i);
3885 }
3886
3887 static struct pci_driver cciss_pci_driver = {
3888 .name = "cciss",
3889 .probe = cciss_init_one,
3890 .remove = __devexit_p(cciss_remove_one),
3891 .id_table = cciss_pci_device_id, /* id_table */
3892 .shutdown = cciss_shutdown,
3893 };
3894
3895 /*
3896 * This is it. Register the PCI driver information for the cards we control
3897 * the OS will call our registered routines when it finds one of our cards.
3898 */
3899 static int __init cciss_init(void)
3900 {
3901 /*
3902 * The hardware requires that commands are aligned on a 64-bit
3903 * boundary. Given that we use pci_alloc_consistent() to allocate an
3904 * array of them, the size must be a multiple of 8 bytes.
3905 */
3906 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
3907
3908 printk(KERN_INFO DRIVER_NAME "\n");
3909
3910 /* Register for our PCI devices */
3911 return pci_register_driver(&cciss_pci_driver);
3912 }
3913
3914 static void __exit cciss_cleanup(void)
3915 {
3916 int i;
3917
3918 pci_unregister_driver(&cciss_pci_driver);
3919 /* double check that all controller entrys have been removed */
3920 for (i = 0; i < MAX_CTLR; i++) {
3921 if (hba[i] != NULL) {
3922 printk(KERN_WARNING "cciss: had to remove"
3923 " controller %d\n", i);
3924 cciss_remove_one(hba[i]->pdev);
3925 }
3926 }
3927 remove_proc_entry("driver/cciss", NULL);
3928 }
3929
3930 static void fail_all_cmds(unsigned long ctlr)
3931 {
3932 /* If we get here, the board is apparently dead. */
3933 ctlr_info_t *h = hba[ctlr];
3934 CommandList_struct *c;
3935 unsigned long flags;
3936
3937 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3938 h->alive = 0; /* the controller apparently died... */
3939
3940 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3941
3942 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3943
3944 /* move everything off the request queue onto the completed queue */
3945 while (!hlist_empty(&h->reqQ)) {
3946 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
3947 removeQ(c);
3948 h->Qdepth--;
3949 addQ(&h->cmpQ, c);
3950 }
3951
3952 /* Now, fail everything on the completed queue with a HW error */
3953 while (!hlist_empty(&h->cmpQ)) {
3954 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
3955 removeQ(c);
3956 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3957 if (c->cmd_type == CMD_RWREQ) {
3958 complete_command(h, c, 0);
3959 } else if (c->cmd_type == CMD_IOCTL_PEND)
3960 complete(c->waiting);
3961 #ifdef CONFIG_CISS_SCSI_TAPE
3962 else if (c->cmd_type == CMD_SCSI)
3963 complete_scsi_command(c, 0, 0);
3964 #endif
3965 }
3966 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3967 return;
3968 }
3969
3970 module_init(cciss_init);
3971 module_exit(cciss_cleanup);
This page took 0.130821 seconds and 5 git commands to generate.