e15f4acf08a226803f40f42d6190ef1b5f96eb1c
[deliverable/linux.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
70
71 #include "cciss_cmd.h"
72 #include "cciss.h"
73 #include <linux/cciss_ioctl.h>
74
75 /* define the PCI info for the cards we can control */
76 static const struct pci_device_id cciss_pci_device_id[] = {
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
104 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
105 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
106 {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
110
111 /* board_id = Subsystem Device ID & Vendor ID
112 * product = Marketing Name for the board
113 * access = Address of the struct of function pointers
114 */
115 static struct board_type products[] = {
116 {0x40700E11, "Smart Array 5300", &SA5_access},
117 {0x40800E11, "Smart Array 5i", &SA5B_access},
118 {0x40820E11, "Smart Array 532", &SA5B_access},
119 {0x40830E11, "Smart Array 5312", &SA5B_access},
120 {0x409A0E11, "Smart Array 641", &SA5_access},
121 {0x409B0E11, "Smart Array 642", &SA5_access},
122 {0x409C0E11, "Smart Array 6400", &SA5_access},
123 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124 {0x40910E11, "Smart Array 6i", &SA5_access},
125 {0x3225103C, "Smart Array P600", &SA5_access},
126 {0x3223103C, "Smart Array P800", &SA5_access},
127 {0x3234103C, "Smart Array P400", &SA5_access},
128 {0x3235103C, "Smart Array P400i", &SA5_access},
129 {0x3211103C, "Smart Array E200i", &SA5_access},
130 {0x3212103C, "Smart Array E200", &SA5_access},
131 {0x3213103C, "Smart Array E200i", &SA5_access},
132 {0x3214103C, "Smart Array E200i", &SA5_access},
133 {0x3215103C, "Smart Array E200i", &SA5_access},
134 {0x3237103C, "Smart Array E500", &SA5_access},
135 {0x323D103C, "Smart Array P700m", &SA5_access},
136 {0x3241103C, "Smart Array P212", &SA5_access},
137 {0x3243103C, "Smart Array P410", &SA5_access},
138 {0x3245103C, "Smart Array P410i", &SA5_access},
139 {0x3247103C, "Smart Array P411", &SA5_access},
140 {0x3249103C, "Smart Array P812", &SA5_access},
141 {0x324A103C, "Smart Array P712m", &SA5_access},
142 {0x324B103C, "Smart Array P711m", &SA5_access},
143 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
144 };
145
146 /* How long to wait (in milliseconds) for board to go into simple mode */
147 #define MAX_CONFIG_WAIT 30000
148 #define MAX_IOCTL_CONFIG_WAIT 1000
149
150 /*define how many times we will try a command because of bus resets */
151 #define MAX_CMD_RETRIES 3
152
153 #define MAX_CTLR 32
154
155 /* Originally cciss driver only supports 8 major numbers */
156 #define MAX_CTLR_ORIG 8
157
158 static ctlr_info_t *hba[MAX_CTLR];
159
160 static struct task_struct *cciss_scan_thread;
161 static DEFINE_MUTEX(scan_mutex);
162 static LIST_HEAD(scan_q);
163
164 static void do_cciss_request(struct request_queue *q);
165 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
166 static int cciss_open(struct block_device *bdev, fmode_t mode);
167 static int cciss_release(struct gendisk *disk, fmode_t mode);
168 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
169 unsigned int cmd, unsigned long arg);
170 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
171
172 static int cciss_revalidate(struct gendisk *disk);
173 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
174 static int deregister_disk(ctlr_info_t *h, int drv_index,
175 int clear_all);
176
177 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
178 sector_t *total_size, unsigned int *block_size);
179 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
180 sector_t *total_size, unsigned int *block_size);
181 static void cciss_geometry_inquiry(int ctlr, int logvol,
182 int withirq, sector_t total_size,
183 unsigned int block_size, InquiryData_struct *inq_buff,
184 drive_info_struct *drv);
185 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
186 __u32);
187 static void start_io(ctlr_info_t *h);
188 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
189 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
190 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
191 __u8 page_code, unsigned char scsi3addr[],
192 int cmd_type);
193 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
194 int attempt_retry);
195 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
196
197 static void fail_all_cmds(unsigned long ctlr);
198 static int add_to_scan_list(struct ctlr_info *h);
199 static int scan_thread(void *data);
200 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
201
202 #ifdef CONFIG_PROC_FS
203 static void cciss_procinit(int i);
204 #else
205 static void cciss_procinit(int i)
206 {
207 }
208 #endif /* CONFIG_PROC_FS */
209
210 #ifdef CONFIG_COMPAT
211 static int cciss_compat_ioctl(struct block_device *, fmode_t,
212 unsigned, unsigned long);
213 #endif
214
215 static const struct block_device_operations cciss_fops = {
216 .owner = THIS_MODULE,
217 .open = cciss_open,
218 .release = cciss_release,
219 .locked_ioctl = cciss_ioctl,
220 .getgeo = cciss_getgeo,
221 #ifdef CONFIG_COMPAT
222 .compat_ioctl = cciss_compat_ioctl,
223 #endif
224 .revalidate_disk = cciss_revalidate,
225 };
226
227 /*
228 * Enqueuing and dequeuing functions for cmdlists.
229 */
230 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
231 {
232 hlist_add_head(&c->list, list);
233 }
234
235 static inline void removeQ(CommandList_struct *c)
236 {
237 /*
238 * After kexec/dump some commands might still
239 * be in flight, which the firmware will try
240 * to complete. Resetting the firmware doesn't work
241 * with old fw revisions, so we have to mark
242 * them off as 'stale' to prevent the driver from
243 * falling over.
244 */
245 if (WARN_ON(hlist_unhashed(&c->list))) {
246 c->cmd_type = CMD_MSG_STALE;
247 return;
248 }
249
250 hlist_del_init(&c->list);
251 }
252
253 #include "cciss_scsi.c" /* For SCSI tape support */
254
255 #define RAID_UNKNOWN 6
256
257 #ifdef CONFIG_PROC_FS
258
259 /*
260 * Report information about this controller.
261 */
262 #define ENG_GIG 1000000000
263 #define ENG_GIG_FACTOR (ENG_GIG/512)
264 #define ENGAGE_SCSI "engage scsi"
265 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
266 "UNKNOWN"
267 };
268
269 static struct proc_dir_entry *proc_cciss;
270
271 static void cciss_seq_show_header(struct seq_file *seq)
272 {
273 ctlr_info_t *h = seq->private;
274
275 seq_printf(seq, "%s: HP %s Controller\n"
276 "Board ID: 0x%08lx\n"
277 "Firmware Version: %c%c%c%c\n"
278 "IRQ: %d\n"
279 "Logical drives: %d\n"
280 "Current Q depth: %d\n"
281 "Current # commands on controller: %d\n"
282 "Max Q depth since init: %d\n"
283 "Max # commands on controller since init: %d\n"
284 "Max SG entries since init: %d\n",
285 h->devname,
286 h->product_name,
287 (unsigned long)h->board_id,
288 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
289 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
290 h->num_luns,
291 h->Qdepth, h->commands_outstanding,
292 h->maxQsinceinit, h->max_outstanding, h->maxSG);
293
294 #ifdef CONFIG_CISS_SCSI_TAPE
295 cciss_seq_tape_report(seq, h->ctlr);
296 #endif /* CONFIG_CISS_SCSI_TAPE */
297 }
298
299 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
300 {
301 ctlr_info_t *h = seq->private;
302 unsigned ctlr = h->ctlr;
303 unsigned long flags;
304
305 /* prevent displaying bogus info during configuration
306 * or deconfiguration of a logical volume
307 */
308 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
309 if (h->busy_configuring) {
310 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
311 return ERR_PTR(-EBUSY);
312 }
313 h->busy_configuring = 1;
314 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
315
316 if (*pos == 0)
317 cciss_seq_show_header(seq);
318
319 return pos;
320 }
321
322 static int cciss_seq_show(struct seq_file *seq, void *v)
323 {
324 sector_t vol_sz, vol_sz_frac;
325 ctlr_info_t *h = seq->private;
326 unsigned ctlr = h->ctlr;
327 loff_t *pos = v;
328 drive_info_struct *drv = &h->drv[*pos];
329
330 if (*pos > h->highest_lun)
331 return 0;
332
333 if (drv->heads == 0)
334 return 0;
335
336 vol_sz = drv->nr_blocks;
337 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
338 vol_sz_frac *= 100;
339 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
340
341 if (drv->raid_level > 5)
342 drv->raid_level = RAID_UNKNOWN;
343 seq_printf(seq, "cciss/c%dd%d:"
344 "\t%4u.%02uGB\tRAID %s\n",
345 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
346 raid_label[drv->raid_level]);
347 return 0;
348 }
349
350 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
351 {
352 ctlr_info_t *h = seq->private;
353
354 if (*pos > h->highest_lun)
355 return NULL;
356 *pos += 1;
357
358 return pos;
359 }
360
361 static void cciss_seq_stop(struct seq_file *seq, void *v)
362 {
363 ctlr_info_t *h = seq->private;
364
365 /* Only reset h->busy_configuring if we succeeded in setting
366 * it during cciss_seq_start. */
367 if (v == ERR_PTR(-EBUSY))
368 return;
369
370 h->busy_configuring = 0;
371 }
372
373 static const struct seq_operations cciss_seq_ops = {
374 .start = cciss_seq_start,
375 .show = cciss_seq_show,
376 .next = cciss_seq_next,
377 .stop = cciss_seq_stop,
378 };
379
380 static int cciss_seq_open(struct inode *inode, struct file *file)
381 {
382 int ret = seq_open(file, &cciss_seq_ops);
383 struct seq_file *seq = file->private_data;
384
385 if (!ret)
386 seq->private = PDE(inode)->data;
387
388 return ret;
389 }
390
391 static ssize_t
392 cciss_proc_write(struct file *file, const char __user *buf,
393 size_t length, loff_t *ppos)
394 {
395 int err;
396 char *buffer;
397
398 #ifndef CONFIG_CISS_SCSI_TAPE
399 return -EINVAL;
400 #endif
401
402 if (!buf || length > PAGE_SIZE - 1)
403 return -EINVAL;
404
405 buffer = (char *)__get_free_page(GFP_KERNEL);
406 if (!buffer)
407 return -ENOMEM;
408
409 err = -EFAULT;
410 if (copy_from_user(buffer, buf, length))
411 goto out;
412 buffer[length] = '\0';
413
414 #ifdef CONFIG_CISS_SCSI_TAPE
415 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
416 struct seq_file *seq = file->private_data;
417 ctlr_info_t *h = seq->private;
418 int rc;
419
420 rc = cciss_engage_scsi(h->ctlr);
421 if (rc != 0)
422 err = -rc;
423 else
424 err = length;
425 } else
426 #endif /* CONFIG_CISS_SCSI_TAPE */
427 err = -EINVAL;
428 /* might be nice to have "disengage" too, but it's not
429 safely possible. (only 1 module use count, lock issues.) */
430
431 out:
432 free_page((unsigned long)buffer);
433 return err;
434 }
435
436 static struct file_operations cciss_proc_fops = {
437 .owner = THIS_MODULE,
438 .open = cciss_seq_open,
439 .read = seq_read,
440 .llseek = seq_lseek,
441 .release = seq_release,
442 .write = cciss_proc_write,
443 };
444
445 static void __devinit cciss_procinit(int i)
446 {
447 struct proc_dir_entry *pde;
448
449 if (proc_cciss == NULL)
450 proc_cciss = proc_mkdir("driver/cciss", NULL);
451 if (!proc_cciss)
452 return;
453 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
454 S_IROTH, proc_cciss,
455 &cciss_proc_fops, hba[i]);
456 }
457 #endif /* CONFIG_PROC_FS */
458
459 #define MAX_PRODUCT_NAME_LEN 19
460
461 #define to_hba(n) container_of(n, struct ctlr_info, dev)
462 #define to_drv(n) container_of(n, drive_info_struct, dev)
463
464 static ssize_t host_store_rescan(struct device *dev,
465 struct device_attribute *attr,
466 const char *buf, size_t count)
467 {
468 struct ctlr_info *h = to_hba(dev);
469
470 add_to_scan_list(h);
471 wake_up_process(cciss_scan_thread);
472 wait_for_completion_interruptible(&h->scan_wait);
473
474 return count;
475 }
476 DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
477
478 static ssize_t dev_show_unique_id(struct device *dev,
479 struct device_attribute *attr,
480 char *buf)
481 {
482 drive_info_struct *drv = to_drv(dev);
483 struct ctlr_info *h = to_hba(drv->dev.parent);
484 __u8 sn[16];
485 unsigned long flags;
486 int ret = 0;
487
488 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
489 if (h->busy_configuring)
490 ret = -EBUSY;
491 else
492 memcpy(sn, drv->serial_no, sizeof(sn));
493 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
494
495 if (ret)
496 return ret;
497 else
498 return snprintf(buf, 16 * 2 + 2,
499 "%02X%02X%02X%02X%02X%02X%02X%02X"
500 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
501 sn[0], sn[1], sn[2], sn[3],
502 sn[4], sn[5], sn[6], sn[7],
503 sn[8], sn[9], sn[10], sn[11],
504 sn[12], sn[13], sn[14], sn[15]);
505 }
506 DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
507
508 static ssize_t dev_show_vendor(struct device *dev,
509 struct device_attribute *attr,
510 char *buf)
511 {
512 drive_info_struct *drv = to_drv(dev);
513 struct ctlr_info *h = to_hba(drv->dev.parent);
514 char vendor[VENDOR_LEN + 1];
515 unsigned long flags;
516 int ret = 0;
517
518 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
519 if (h->busy_configuring)
520 ret = -EBUSY;
521 else
522 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
523 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
524
525 if (ret)
526 return ret;
527 else
528 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
529 }
530 DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
531
532 static ssize_t dev_show_model(struct device *dev,
533 struct device_attribute *attr,
534 char *buf)
535 {
536 drive_info_struct *drv = to_drv(dev);
537 struct ctlr_info *h = to_hba(drv->dev.parent);
538 char model[MODEL_LEN + 1];
539 unsigned long flags;
540 int ret = 0;
541
542 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
543 if (h->busy_configuring)
544 ret = -EBUSY;
545 else
546 memcpy(model, drv->model, MODEL_LEN + 1);
547 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
548
549 if (ret)
550 return ret;
551 else
552 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
553 }
554 DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
555
556 static ssize_t dev_show_rev(struct device *dev,
557 struct device_attribute *attr,
558 char *buf)
559 {
560 drive_info_struct *drv = to_drv(dev);
561 struct ctlr_info *h = to_hba(drv->dev.parent);
562 char rev[REV_LEN + 1];
563 unsigned long flags;
564 int ret = 0;
565
566 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
567 if (h->busy_configuring)
568 ret = -EBUSY;
569 else
570 memcpy(rev, drv->rev, REV_LEN + 1);
571 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
572
573 if (ret)
574 return ret;
575 else
576 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
577 }
578 DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
579
580 static struct attribute *cciss_host_attrs[] = {
581 &dev_attr_rescan.attr,
582 NULL
583 };
584
585 static struct attribute_group cciss_host_attr_group = {
586 .attrs = cciss_host_attrs,
587 };
588
589 static struct attribute_group *cciss_host_attr_groups[] = {
590 &cciss_host_attr_group,
591 NULL
592 };
593
594 static struct device_type cciss_host_type = {
595 .name = "cciss_host",
596 .groups = cciss_host_attr_groups,
597 };
598
599 static struct attribute *cciss_dev_attrs[] = {
600 &dev_attr_unique_id.attr,
601 &dev_attr_model.attr,
602 &dev_attr_vendor.attr,
603 &dev_attr_rev.attr,
604 NULL
605 };
606
607 static struct attribute_group cciss_dev_attr_group = {
608 .attrs = cciss_dev_attrs,
609 };
610
611 static const struct attribute_group *cciss_dev_attr_groups[] = {
612 &cciss_dev_attr_group,
613 NULL
614 };
615
616 static struct device_type cciss_dev_type = {
617 .name = "cciss_device",
618 .groups = cciss_dev_attr_groups,
619 };
620
621 static struct bus_type cciss_bus_type = {
622 .name = "cciss",
623 };
624
625
626 /*
627 * Initialize sysfs entry for each controller. This sets up and registers
628 * the 'cciss#' directory for each individual controller under
629 * /sys/bus/pci/devices/<dev>/.
630 */
631 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
632 {
633 device_initialize(&h->dev);
634 h->dev.type = &cciss_host_type;
635 h->dev.bus = &cciss_bus_type;
636 dev_set_name(&h->dev, "%s", h->devname);
637 h->dev.parent = &h->pdev->dev;
638
639 return device_add(&h->dev);
640 }
641
642 /*
643 * Remove sysfs entries for an hba.
644 */
645 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
646 {
647 device_del(&h->dev);
648 }
649
650 /*
651 * Initialize sysfs for each logical drive. This sets up and registers
652 * the 'c#d#' directory for each individual logical drive under
653 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
654 * /sys/block/cciss!c#d# to this entry.
655 */
656 static int cciss_create_ld_sysfs_entry(struct ctlr_info *h,
657 drive_info_struct *drv,
658 int drv_index)
659 {
660 device_initialize(&drv->dev);
661 drv->dev.type = &cciss_dev_type;
662 drv->dev.bus = &cciss_bus_type;
663 dev_set_name(&drv->dev, "c%dd%d", h->ctlr, drv_index);
664 drv->dev.parent = &h->dev;
665 return device_add(&drv->dev);
666 }
667
668 /*
669 * Remove sysfs entries for a logical drive.
670 */
671 static void cciss_destroy_ld_sysfs_entry(drive_info_struct *drv)
672 {
673 device_del(&drv->dev);
674 }
675
676 /*
677 * For operations that cannot sleep, a command block is allocated at init,
678 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
679 * which ones are free or in use. For operations that can wait for kmalloc
680 * to possible sleep, this routine can be called with get_from_pool set to 0.
681 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
682 */
683 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
684 {
685 CommandList_struct *c;
686 int i;
687 u64bit temp64;
688 dma_addr_t cmd_dma_handle, err_dma_handle;
689
690 if (!get_from_pool) {
691 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
692 sizeof(CommandList_struct), &cmd_dma_handle);
693 if (c == NULL)
694 return NULL;
695 memset(c, 0, sizeof(CommandList_struct));
696
697 c->cmdindex = -1;
698
699 c->err_info = (ErrorInfo_struct *)
700 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
701 &err_dma_handle);
702
703 if (c->err_info == NULL) {
704 pci_free_consistent(h->pdev,
705 sizeof(CommandList_struct), c, cmd_dma_handle);
706 return NULL;
707 }
708 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
709 } else { /* get it out of the controllers pool */
710
711 do {
712 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
713 if (i == h->nr_cmds)
714 return NULL;
715 } while (test_and_set_bit
716 (i & (BITS_PER_LONG - 1),
717 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
718 #ifdef CCISS_DEBUG
719 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
720 #endif
721 c = h->cmd_pool + i;
722 memset(c, 0, sizeof(CommandList_struct));
723 cmd_dma_handle = h->cmd_pool_dhandle
724 + i * sizeof(CommandList_struct);
725 c->err_info = h->errinfo_pool + i;
726 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
727 err_dma_handle = h->errinfo_pool_dhandle
728 + i * sizeof(ErrorInfo_struct);
729 h->nr_allocs++;
730
731 c->cmdindex = i;
732 }
733
734 INIT_HLIST_NODE(&c->list);
735 c->busaddr = (__u32) cmd_dma_handle;
736 temp64.val = (__u64) err_dma_handle;
737 c->ErrDesc.Addr.lower = temp64.val32.lower;
738 c->ErrDesc.Addr.upper = temp64.val32.upper;
739 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
740
741 c->ctlr = h->ctlr;
742 return c;
743 }
744
745 /*
746 * Frees a command block that was previously allocated with cmd_alloc().
747 */
748 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
749 {
750 int i;
751 u64bit temp64;
752
753 if (!got_from_pool) {
754 temp64.val32.lower = c->ErrDesc.Addr.lower;
755 temp64.val32.upper = c->ErrDesc.Addr.upper;
756 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
757 c->err_info, (dma_addr_t) temp64.val);
758 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
759 c, (dma_addr_t) c->busaddr);
760 } else {
761 i = c - h->cmd_pool;
762 clear_bit(i & (BITS_PER_LONG - 1),
763 h->cmd_pool_bits + (i / BITS_PER_LONG));
764 h->nr_frees++;
765 }
766 }
767
768 static inline ctlr_info_t *get_host(struct gendisk *disk)
769 {
770 return disk->queue->queuedata;
771 }
772
773 static inline drive_info_struct *get_drv(struct gendisk *disk)
774 {
775 return disk->private_data;
776 }
777
778 /*
779 * Open. Make sure the device is really there.
780 */
781 static int cciss_open(struct block_device *bdev, fmode_t mode)
782 {
783 ctlr_info_t *host = get_host(bdev->bd_disk);
784 drive_info_struct *drv = get_drv(bdev->bd_disk);
785
786 #ifdef CCISS_DEBUG
787 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
788 #endif /* CCISS_DEBUG */
789
790 if (host->busy_initializing || drv->busy_configuring)
791 return -EBUSY;
792 /*
793 * Root is allowed to open raw volume zero even if it's not configured
794 * so array config can still work. Root is also allowed to open any
795 * volume that has a LUN ID, so it can issue IOCTL to reread the
796 * disk information. I don't think I really like this
797 * but I'm already using way to many device nodes to claim another one
798 * for "raw controller".
799 */
800 if (drv->heads == 0) {
801 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
802 /* if not node 0 make sure it is a partition = 0 */
803 if (MINOR(bdev->bd_dev) & 0x0f) {
804 return -ENXIO;
805 /* if it is, make sure we have a LUN ID */
806 } else if (drv->LunID == 0) {
807 return -ENXIO;
808 }
809 }
810 if (!capable(CAP_SYS_ADMIN))
811 return -EPERM;
812 }
813 drv->usage_count++;
814 host->usage_count++;
815 return 0;
816 }
817
818 /*
819 * Close. Sync first.
820 */
821 static int cciss_release(struct gendisk *disk, fmode_t mode)
822 {
823 ctlr_info_t *host = get_host(disk);
824 drive_info_struct *drv = get_drv(disk);
825
826 #ifdef CCISS_DEBUG
827 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
828 #endif /* CCISS_DEBUG */
829
830 drv->usage_count--;
831 host->usage_count--;
832 return 0;
833 }
834
835 #ifdef CONFIG_COMPAT
836
837 static int do_ioctl(struct block_device *bdev, fmode_t mode,
838 unsigned cmd, unsigned long arg)
839 {
840 int ret;
841 lock_kernel();
842 ret = cciss_ioctl(bdev, mode, cmd, arg);
843 unlock_kernel();
844 return ret;
845 }
846
847 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
848 unsigned cmd, unsigned long arg);
849 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
850 unsigned cmd, unsigned long arg);
851
852 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
853 unsigned cmd, unsigned long arg)
854 {
855 switch (cmd) {
856 case CCISS_GETPCIINFO:
857 case CCISS_GETINTINFO:
858 case CCISS_SETINTINFO:
859 case CCISS_GETNODENAME:
860 case CCISS_SETNODENAME:
861 case CCISS_GETHEARTBEAT:
862 case CCISS_GETBUSTYPES:
863 case CCISS_GETFIRMVER:
864 case CCISS_GETDRIVVER:
865 case CCISS_REVALIDVOLS:
866 case CCISS_DEREGDISK:
867 case CCISS_REGNEWDISK:
868 case CCISS_REGNEWD:
869 case CCISS_RESCANDISK:
870 case CCISS_GETLUNINFO:
871 return do_ioctl(bdev, mode, cmd, arg);
872
873 case CCISS_PASSTHRU32:
874 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
875 case CCISS_BIG_PASSTHRU32:
876 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
877
878 default:
879 return -ENOIOCTLCMD;
880 }
881 }
882
883 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
884 unsigned cmd, unsigned long arg)
885 {
886 IOCTL32_Command_struct __user *arg32 =
887 (IOCTL32_Command_struct __user *) arg;
888 IOCTL_Command_struct arg64;
889 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
890 int err;
891 u32 cp;
892
893 err = 0;
894 err |=
895 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
896 sizeof(arg64.LUN_info));
897 err |=
898 copy_from_user(&arg64.Request, &arg32->Request,
899 sizeof(arg64.Request));
900 err |=
901 copy_from_user(&arg64.error_info, &arg32->error_info,
902 sizeof(arg64.error_info));
903 err |= get_user(arg64.buf_size, &arg32->buf_size);
904 err |= get_user(cp, &arg32->buf);
905 arg64.buf = compat_ptr(cp);
906 err |= copy_to_user(p, &arg64, sizeof(arg64));
907
908 if (err)
909 return -EFAULT;
910
911 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
912 if (err)
913 return err;
914 err |=
915 copy_in_user(&arg32->error_info, &p->error_info,
916 sizeof(arg32->error_info));
917 if (err)
918 return -EFAULT;
919 return err;
920 }
921
922 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
923 unsigned cmd, unsigned long arg)
924 {
925 BIG_IOCTL32_Command_struct __user *arg32 =
926 (BIG_IOCTL32_Command_struct __user *) arg;
927 BIG_IOCTL_Command_struct arg64;
928 BIG_IOCTL_Command_struct __user *p =
929 compat_alloc_user_space(sizeof(arg64));
930 int err;
931 u32 cp;
932
933 err = 0;
934 err |=
935 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
936 sizeof(arg64.LUN_info));
937 err |=
938 copy_from_user(&arg64.Request, &arg32->Request,
939 sizeof(arg64.Request));
940 err |=
941 copy_from_user(&arg64.error_info, &arg32->error_info,
942 sizeof(arg64.error_info));
943 err |= get_user(arg64.buf_size, &arg32->buf_size);
944 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
945 err |= get_user(cp, &arg32->buf);
946 arg64.buf = compat_ptr(cp);
947 err |= copy_to_user(p, &arg64, sizeof(arg64));
948
949 if (err)
950 return -EFAULT;
951
952 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
953 if (err)
954 return err;
955 err |=
956 copy_in_user(&arg32->error_info, &p->error_info,
957 sizeof(arg32->error_info));
958 if (err)
959 return -EFAULT;
960 return err;
961 }
962 #endif
963
964 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
965 {
966 drive_info_struct *drv = get_drv(bdev->bd_disk);
967
968 if (!drv->cylinders)
969 return -ENXIO;
970
971 geo->heads = drv->heads;
972 geo->sectors = drv->sectors;
973 geo->cylinders = drv->cylinders;
974 return 0;
975 }
976
977 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
978 {
979 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
980 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
981 (void)check_for_unit_attention(host, c);
982 }
983 /*
984 * ioctl
985 */
986 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
987 unsigned int cmd, unsigned long arg)
988 {
989 struct gendisk *disk = bdev->bd_disk;
990 ctlr_info_t *host = get_host(disk);
991 drive_info_struct *drv = get_drv(disk);
992 int ctlr = host->ctlr;
993 void __user *argp = (void __user *)arg;
994
995 #ifdef CCISS_DEBUG
996 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
997 #endif /* CCISS_DEBUG */
998
999 switch (cmd) {
1000 case CCISS_GETPCIINFO:
1001 {
1002 cciss_pci_info_struct pciinfo;
1003
1004 if (!arg)
1005 return -EINVAL;
1006 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1007 pciinfo.bus = host->pdev->bus->number;
1008 pciinfo.dev_fn = host->pdev->devfn;
1009 pciinfo.board_id = host->board_id;
1010 if (copy_to_user
1011 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1012 return -EFAULT;
1013 return 0;
1014 }
1015 case CCISS_GETINTINFO:
1016 {
1017 cciss_coalint_struct intinfo;
1018 if (!arg)
1019 return -EINVAL;
1020 intinfo.delay =
1021 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1022 intinfo.count =
1023 readl(&host->cfgtable->HostWrite.CoalIntCount);
1024 if (copy_to_user
1025 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1026 return -EFAULT;
1027 return 0;
1028 }
1029 case CCISS_SETINTINFO:
1030 {
1031 cciss_coalint_struct intinfo;
1032 unsigned long flags;
1033 int i;
1034
1035 if (!arg)
1036 return -EINVAL;
1037 if (!capable(CAP_SYS_ADMIN))
1038 return -EPERM;
1039 if (copy_from_user
1040 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1041 return -EFAULT;
1042 if ((intinfo.delay == 0) && (intinfo.count == 0))
1043 {
1044 // printk("cciss_ioctl: delay and count cannot be 0\n");
1045 return -EINVAL;
1046 }
1047 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1048 /* Update the field, and then ring the doorbell */
1049 writel(intinfo.delay,
1050 &(host->cfgtable->HostWrite.CoalIntDelay));
1051 writel(intinfo.count,
1052 &(host->cfgtable->HostWrite.CoalIntCount));
1053 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1054
1055 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1056 if (!(readl(host->vaddr + SA5_DOORBELL)
1057 & CFGTBL_ChangeReq))
1058 break;
1059 /* delay and try again */
1060 udelay(1000);
1061 }
1062 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1063 if (i >= MAX_IOCTL_CONFIG_WAIT)
1064 return -EAGAIN;
1065 return 0;
1066 }
1067 case CCISS_GETNODENAME:
1068 {
1069 NodeName_type NodeName;
1070 int i;
1071
1072 if (!arg)
1073 return -EINVAL;
1074 for (i = 0; i < 16; i++)
1075 NodeName[i] =
1076 readb(&host->cfgtable->ServerName[i]);
1077 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1078 return -EFAULT;
1079 return 0;
1080 }
1081 case CCISS_SETNODENAME:
1082 {
1083 NodeName_type NodeName;
1084 unsigned long flags;
1085 int i;
1086
1087 if (!arg)
1088 return -EINVAL;
1089 if (!capable(CAP_SYS_ADMIN))
1090 return -EPERM;
1091
1092 if (copy_from_user
1093 (NodeName, argp, sizeof(NodeName_type)))
1094 return -EFAULT;
1095
1096 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1097
1098 /* Update the field, and then ring the doorbell */
1099 for (i = 0; i < 16; i++)
1100 writeb(NodeName[i],
1101 &host->cfgtable->ServerName[i]);
1102
1103 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1104
1105 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1106 if (!(readl(host->vaddr + SA5_DOORBELL)
1107 & CFGTBL_ChangeReq))
1108 break;
1109 /* delay and try again */
1110 udelay(1000);
1111 }
1112 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1113 if (i >= MAX_IOCTL_CONFIG_WAIT)
1114 return -EAGAIN;
1115 return 0;
1116 }
1117
1118 case CCISS_GETHEARTBEAT:
1119 {
1120 Heartbeat_type heartbeat;
1121
1122 if (!arg)
1123 return -EINVAL;
1124 heartbeat = readl(&host->cfgtable->HeartBeat);
1125 if (copy_to_user
1126 (argp, &heartbeat, sizeof(Heartbeat_type)))
1127 return -EFAULT;
1128 return 0;
1129 }
1130 case CCISS_GETBUSTYPES:
1131 {
1132 BusTypes_type BusTypes;
1133
1134 if (!arg)
1135 return -EINVAL;
1136 BusTypes = readl(&host->cfgtable->BusTypes);
1137 if (copy_to_user
1138 (argp, &BusTypes, sizeof(BusTypes_type)))
1139 return -EFAULT;
1140 return 0;
1141 }
1142 case CCISS_GETFIRMVER:
1143 {
1144 FirmwareVer_type firmware;
1145
1146 if (!arg)
1147 return -EINVAL;
1148 memcpy(firmware, host->firm_ver, 4);
1149
1150 if (copy_to_user
1151 (argp, firmware, sizeof(FirmwareVer_type)))
1152 return -EFAULT;
1153 return 0;
1154 }
1155 case CCISS_GETDRIVVER:
1156 {
1157 DriverVer_type DriverVer = DRIVER_VERSION;
1158
1159 if (!arg)
1160 return -EINVAL;
1161
1162 if (copy_to_user
1163 (argp, &DriverVer, sizeof(DriverVer_type)))
1164 return -EFAULT;
1165 return 0;
1166 }
1167
1168 case CCISS_DEREGDISK:
1169 case CCISS_REGNEWD:
1170 case CCISS_REVALIDVOLS:
1171 return rebuild_lun_table(host, 0);
1172
1173 case CCISS_GETLUNINFO:{
1174 LogvolInfo_struct luninfo;
1175
1176 luninfo.LunID = drv->LunID;
1177 luninfo.num_opens = drv->usage_count;
1178 luninfo.num_parts = 0;
1179 if (copy_to_user(argp, &luninfo,
1180 sizeof(LogvolInfo_struct)))
1181 return -EFAULT;
1182 return 0;
1183 }
1184 case CCISS_PASSTHRU:
1185 {
1186 IOCTL_Command_struct iocommand;
1187 CommandList_struct *c;
1188 char *buff = NULL;
1189 u64bit temp64;
1190 unsigned long flags;
1191 DECLARE_COMPLETION_ONSTACK(wait);
1192
1193 if (!arg)
1194 return -EINVAL;
1195
1196 if (!capable(CAP_SYS_RAWIO))
1197 return -EPERM;
1198
1199 if (copy_from_user
1200 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1201 return -EFAULT;
1202 if ((iocommand.buf_size < 1) &&
1203 (iocommand.Request.Type.Direction != XFER_NONE)) {
1204 return -EINVAL;
1205 }
1206 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1207 /* Check kmalloc limits */
1208 if (iocommand.buf_size > 128000)
1209 return -EINVAL;
1210 #endif
1211 if (iocommand.buf_size > 0) {
1212 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1213 if (buff == NULL)
1214 return -EFAULT;
1215 }
1216 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1217 /* Copy the data into the buffer we created */
1218 if (copy_from_user
1219 (buff, iocommand.buf, iocommand.buf_size)) {
1220 kfree(buff);
1221 return -EFAULT;
1222 }
1223 } else {
1224 memset(buff, 0, iocommand.buf_size);
1225 }
1226 if ((c = cmd_alloc(host, 0)) == NULL) {
1227 kfree(buff);
1228 return -ENOMEM;
1229 }
1230 // Fill in the command type
1231 c->cmd_type = CMD_IOCTL_PEND;
1232 // Fill in Command Header
1233 c->Header.ReplyQueue = 0; // unused in simple mode
1234 if (iocommand.buf_size > 0) // buffer to fill
1235 {
1236 c->Header.SGList = 1;
1237 c->Header.SGTotal = 1;
1238 } else // no buffers to fill
1239 {
1240 c->Header.SGList = 0;
1241 c->Header.SGTotal = 0;
1242 }
1243 c->Header.LUN = iocommand.LUN_info;
1244 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1245
1246 // Fill in Request block
1247 c->Request = iocommand.Request;
1248
1249 // Fill in the scatter gather information
1250 if (iocommand.buf_size > 0) {
1251 temp64.val = pci_map_single(host->pdev, buff,
1252 iocommand.buf_size,
1253 PCI_DMA_BIDIRECTIONAL);
1254 c->SG[0].Addr.lower = temp64.val32.lower;
1255 c->SG[0].Addr.upper = temp64.val32.upper;
1256 c->SG[0].Len = iocommand.buf_size;
1257 c->SG[0].Ext = 0; // we are not chaining
1258 }
1259 c->waiting = &wait;
1260
1261 /* Put the request on the tail of the request queue */
1262 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1263 addQ(&host->reqQ, c);
1264 host->Qdepth++;
1265 start_io(host);
1266 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1267
1268 wait_for_completion(&wait);
1269
1270 /* unlock the buffers from DMA */
1271 temp64.val32.lower = c->SG[0].Addr.lower;
1272 temp64.val32.upper = c->SG[0].Addr.upper;
1273 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1274 iocommand.buf_size,
1275 PCI_DMA_BIDIRECTIONAL);
1276
1277 check_ioctl_unit_attention(host, c);
1278
1279 /* Copy the error information out */
1280 iocommand.error_info = *(c->err_info);
1281 if (copy_to_user
1282 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1283 kfree(buff);
1284 cmd_free(host, c, 0);
1285 return -EFAULT;
1286 }
1287
1288 if (iocommand.Request.Type.Direction == XFER_READ) {
1289 /* Copy the data out of the buffer we created */
1290 if (copy_to_user
1291 (iocommand.buf, buff, iocommand.buf_size)) {
1292 kfree(buff);
1293 cmd_free(host, c, 0);
1294 return -EFAULT;
1295 }
1296 }
1297 kfree(buff);
1298 cmd_free(host, c, 0);
1299 return 0;
1300 }
1301 case CCISS_BIG_PASSTHRU:{
1302 BIG_IOCTL_Command_struct *ioc;
1303 CommandList_struct *c;
1304 unsigned char **buff = NULL;
1305 int *buff_size = NULL;
1306 u64bit temp64;
1307 unsigned long flags;
1308 BYTE sg_used = 0;
1309 int status = 0;
1310 int i;
1311 DECLARE_COMPLETION_ONSTACK(wait);
1312 __u32 left;
1313 __u32 sz;
1314 BYTE __user *data_ptr;
1315
1316 if (!arg)
1317 return -EINVAL;
1318 if (!capable(CAP_SYS_RAWIO))
1319 return -EPERM;
1320 ioc = (BIG_IOCTL_Command_struct *)
1321 kmalloc(sizeof(*ioc), GFP_KERNEL);
1322 if (!ioc) {
1323 status = -ENOMEM;
1324 goto cleanup1;
1325 }
1326 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1327 status = -EFAULT;
1328 goto cleanup1;
1329 }
1330 if ((ioc->buf_size < 1) &&
1331 (ioc->Request.Type.Direction != XFER_NONE)) {
1332 status = -EINVAL;
1333 goto cleanup1;
1334 }
1335 /* Check kmalloc limits using all SGs */
1336 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1337 status = -EINVAL;
1338 goto cleanup1;
1339 }
1340 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1341 status = -EINVAL;
1342 goto cleanup1;
1343 }
1344 buff =
1345 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1346 if (!buff) {
1347 status = -ENOMEM;
1348 goto cleanup1;
1349 }
1350 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1351 GFP_KERNEL);
1352 if (!buff_size) {
1353 status = -ENOMEM;
1354 goto cleanup1;
1355 }
1356 left = ioc->buf_size;
1357 data_ptr = ioc->buf;
1358 while (left) {
1359 sz = (left >
1360 ioc->malloc_size) ? ioc->
1361 malloc_size : left;
1362 buff_size[sg_used] = sz;
1363 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1364 if (buff[sg_used] == NULL) {
1365 status = -ENOMEM;
1366 goto cleanup1;
1367 }
1368 if (ioc->Request.Type.Direction == XFER_WRITE) {
1369 if (copy_from_user
1370 (buff[sg_used], data_ptr, sz)) {
1371 status = -EFAULT;
1372 goto cleanup1;
1373 }
1374 } else {
1375 memset(buff[sg_used], 0, sz);
1376 }
1377 left -= sz;
1378 data_ptr += sz;
1379 sg_used++;
1380 }
1381 if ((c = cmd_alloc(host, 0)) == NULL) {
1382 status = -ENOMEM;
1383 goto cleanup1;
1384 }
1385 c->cmd_type = CMD_IOCTL_PEND;
1386 c->Header.ReplyQueue = 0;
1387
1388 if (ioc->buf_size > 0) {
1389 c->Header.SGList = sg_used;
1390 c->Header.SGTotal = sg_used;
1391 } else {
1392 c->Header.SGList = 0;
1393 c->Header.SGTotal = 0;
1394 }
1395 c->Header.LUN = ioc->LUN_info;
1396 c->Header.Tag.lower = c->busaddr;
1397
1398 c->Request = ioc->Request;
1399 if (ioc->buf_size > 0) {
1400 int i;
1401 for (i = 0; i < sg_used; i++) {
1402 temp64.val =
1403 pci_map_single(host->pdev, buff[i],
1404 buff_size[i],
1405 PCI_DMA_BIDIRECTIONAL);
1406 c->SG[i].Addr.lower =
1407 temp64.val32.lower;
1408 c->SG[i].Addr.upper =
1409 temp64.val32.upper;
1410 c->SG[i].Len = buff_size[i];
1411 c->SG[i].Ext = 0; /* we are not chaining */
1412 }
1413 }
1414 c->waiting = &wait;
1415 /* Put the request on the tail of the request queue */
1416 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1417 addQ(&host->reqQ, c);
1418 host->Qdepth++;
1419 start_io(host);
1420 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1421 wait_for_completion(&wait);
1422 /* unlock the buffers from DMA */
1423 for (i = 0; i < sg_used; i++) {
1424 temp64.val32.lower = c->SG[i].Addr.lower;
1425 temp64.val32.upper = c->SG[i].Addr.upper;
1426 pci_unmap_single(host->pdev,
1427 (dma_addr_t) temp64.val, buff_size[i],
1428 PCI_DMA_BIDIRECTIONAL);
1429 }
1430 check_ioctl_unit_attention(host, c);
1431 /* Copy the error information out */
1432 ioc->error_info = *(c->err_info);
1433 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1434 cmd_free(host, c, 0);
1435 status = -EFAULT;
1436 goto cleanup1;
1437 }
1438 if (ioc->Request.Type.Direction == XFER_READ) {
1439 /* Copy the data out of the buffer we created */
1440 BYTE __user *ptr = ioc->buf;
1441 for (i = 0; i < sg_used; i++) {
1442 if (copy_to_user
1443 (ptr, buff[i], buff_size[i])) {
1444 cmd_free(host, c, 0);
1445 status = -EFAULT;
1446 goto cleanup1;
1447 }
1448 ptr += buff_size[i];
1449 }
1450 }
1451 cmd_free(host, c, 0);
1452 status = 0;
1453 cleanup1:
1454 if (buff) {
1455 for (i = 0; i < sg_used; i++)
1456 kfree(buff[i]);
1457 kfree(buff);
1458 }
1459 kfree(buff_size);
1460 kfree(ioc);
1461 return status;
1462 }
1463
1464 /* scsi_cmd_ioctl handles these, below, though some are not */
1465 /* very meaningful for cciss. SG_IO is the main one people want. */
1466
1467 case SG_GET_VERSION_NUM:
1468 case SG_SET_TIMEOUT:
1469 case SG_GET_TIMEOUT:
1470 case SG_GET_RESERVED_SIZE:
1471 case SG_SET_RESERVED_SIZE:
1472 case SG_EMULATED_HOST:
1473 case SG_IO:
1474 case SCSI_IOCTL_SEND_COMMAND:
1475 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1476
1477 /* scsi_cmd_ioctl would normally handle these, below, but */
1478 /* they aren't a good fit for cciss, as CD-ROMs are */
1479 /* not supported, and we don't have any bus/target/lun */
1480 /* which we present to the kernel. */
1481
1482 case CDROM_SEND_PACKET:
1483 case CDROMCLOSETRAY:
1484 case CDROMEJECT:
1485 case SCSI_IOCTL_GET_IDLUN:
1486 case SCSI_IOCTL_GET_BUS_NUMBER:
1487 default:
1488 return -ENOTTY;
1489 }
1490 }
1491
1492 static void cciss_check_queues(ctlr_info_t *h)
1493 {
1494 int start_queue = h->next_to_run;
1495 int i;
1496
1497 /* check to see if we have maxed out the number of commands that can
1498 * be placed on the queue. If so then exit. We do this check here
1499 * in case the interrupt we serviced was from an ioctl and did not
1500 * free any new commands.
1501 */
1502 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1503 return;
1504
1505 /* We have room on the queue for more commands. Now we need to queue
1506 * them up. We will also keep track of the next queue to run so
1507 * that every queue gets a chance to be started first.
1508 */
1509 for (i = 0; i < h->highest_lun + 1; i++) {
1510 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1511 /* make sure the disk has been added and the drive is real
1512 * because this can be called from the middle of init_one.
1513 */
1514 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1515 continue;
1516 blk_start_queue(h->gendisk[curr_queue]->queue);
1517
1518 /* check to see if we have maxed out the number of commands
1519 * that can be placed on the queue.
1520 */
1521 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1522 if (curr_queue == start_queue) {
1523 h->next_to_run =
1524 (start_queue + 1) % (h->highest_lun + 1);
1525 break;
1526 } else {
1527 h->next_to_run = curr_queue;
1528 break;
1529 }
1530 }
1531 }
1532 }
1533
1534 static void cciss_softirq_done(struct request *rq)
1535 {
1536 CommandList_struct *cmd = rq->completion_data;
1537 ctlr_info_t *h = hba[cmd->ctlr];
1538 unsigned long flags;
1539 u64bit temp64;
1540 int i, ddir;
1541
1542 if (cmd->Request.Type.Direction == XFER_READ)
1543 ddir = PCI_DMA_FROMDEVICE;
1544 else
1545 ddir = PCI_DMA_TODEVICE;
1546
1547 /* command did not need to be retried */
1548 /* unmap the DMA mapping for all the scatter gather elements */
1549 for (i = 0; i < cmd->Header.SGList; i++) {
1550 temp64.val32.lower = cmd->SG[i].Addr.lower;
1551 temp64.val32.upper = cmd->SG[i].Addr.upper;
1552 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1553 }
1554
1555 #ifdef CCISS_DEBUG
1556 printk("Done with %p\n", rq);
1557 #endif /* CCISS_DEBUG */
1558
1559 /* set the residual count for pc requests */
1560 if (blk_pc_request(rq))
1561 rq->resid_len = cmd->err_info->ResidualCnt;
1562
1563 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1564
1565 spin_lock_irqsave(&h->lock, flags);
1566 cmd_free(h, cmd, 1);
1567 cciss_check_queues(h);
1568 spin_unlock_irqrestore(&h->lock, flags);
1569 }
1570
1571 static void log_unit_to_scsi3addr(ctlr_info_t *h, unsigned char scsi3addr[],
1572 uint32_t log_unit)
1573 {
1574 log_unit = h->drv[log_unit].LunID & 0x03fff;
1575 memset(&scsi3addr[4], 0, 4);
1576 memcpy(&scsi3addr[0], &log_unit, 4);
1577 scsi3addr[3] |= 0x40;
1578 }
1579
1580 /* This function gets the SCSI vendor, model, and revision of a logical drive
1581 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1582 * they cannot be read.
1583 */
1584 static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1585 char *vendor, char *model, char *rev)
1586 {
1587 int rc;
1588 InquiryData_struct *inq_buf;
1589 unsigned char scsi3addr[8];
1590
1591 *vendor = '\0';
1592 *model = '\0';
1593 *rev = '\0';
1594
1595 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1596 if (!inq_buf)
1597 return;
1598
1599 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1600 if (withirq)
1601 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1602 sizeof(InquiryData_struct), 0,
1603 scsi3addr, TYPE_CMD);
1604 else
1605 rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1606 sizeof(InquiryData_struct), 0,
1607 scsi3addr, TYPE_CMD);
1608 if (rc == IO_OK) {
1609 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1610 vendor[VENDOR_LEN] = '\0';
1611 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1612 model[MODEL_LEN] = '\0';
1613 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1614 rev[REV_LEN] = '\0';
1615 }
1616
1617 kfree(inq_buf);
1618 return;
1619 }
1620
1621 /* This function gets the serial number of a logical drive via
1622 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1623 * number cannot be had, for whatever reason, 16 bytes of 0xff
1624 * are returned instead.
1625 */
1626 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1627 unsigned char *serial_no, int buflen)
1628 {
1629 #define PAGE_83_INQ_BYTES 64
1630 int rc;
1631 unsigned char *buf;
1632 unsigned char scsi3addr[8];
1633
1634 if (buflen > 16)
1635 buflen = 16;
1636 memset(serial_no, 0xff, buflen);
1637 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1638 if (!buf)
1639 return;
1640 memset(serial_no, 0, buflen);
1641 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1642 if (withirq)
1643 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1644 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1645 else
1646 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1647 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1648 if (rc == IO_OK)
1649 memcpy(serial_no, &buf[8], buflen);
1650 kfree(buf);
1651 return;
1652 }
1653
1654 static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1655 int drv_index)
1656 {
1657 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1658 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1659 disk->major = h->major;
1660 disk->first_minor = drv_index << NWD_SHIFT;
1661 disk->fops = &cciss_fops;
1662 disk->private_data = &h->drv[drv_index];
1663 disk->driverfs_dev = &h->drv[drv_index].dev;
1664
1665 /* Set up queue information */
1666 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1667
1668 /* This is a hardware imposed limit. */
1669 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1670
1671 /* This is a limit in the driver and could be eliminated. */
1672 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1673
1674 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1675
1676 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1677
1678 disk->queue->queuedata = h;
1679
1680 blk_queue_logical_block_size(disk->queue,
1681 h->drv[drv_index].block_size);
1682
1683 /* Make sure all queue data is written out before */
1684 /* setting h->drv[drv_index].queue, as setting this */
1685 /* allows the interrupt handler to start the queue */
1686 wmb();
1687 h->drv[drv_index].queue = disk->queue;
1688 add_disk(disk);
1689 }
1690
1691 /* This function will check the usage_count of the drive to be updated/added.
1692 * If the usage_count is zero and it is a heretofore unknown drive, or,
1693 * the drive's capacity, geometry, or serial number has changed,
1694 * then the drive information will be updated and the disk will be
1695 * re-registered with the kernel. If these conditions don't hold,
1696 * then it will be left alone for the next reboot. The exception to this
1697 * is disk 0 which will always be left registered with the kernel since it
1698 * is also the controller node. Any changes to disk 0 will show up on
1699 * the next reboot.
1700 */
1701 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1702 {
1703 ctlr_info_t *h = hba[ctlr];
1704 struct gendisk *disk;
1705 InquiryData_struct *inq_buff = NULL;
1706 unsigned int block_size;
1707 sector_t total_size;
1708 unsigned long flags = 0;
1709 int ret = 0;
1710 drive_info_struct *drvinfo;
1711
1712 /* Get information about the disk and modify the driver structure */
1713 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1714 drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1715 if (inq_buff == NULL || drvinfo == NULL)
1716 goto mem_msg;
1717
1718 /* testing to see if 16-byte CDBs are already being used */
1719 if (h->cciss_read == CCISS_READ_16) {
1720 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1721 &total_size, &block_size);
1722
1723 } else {
1724 cciss_read_capacity(ctlr, drv_index, 1,
1725 &total_size, &block_size);
1726
1727 /* if read_capacity returns all F's this volume is >2TB */
1728 /* in size so we switch to 16-byte CDB's for all */
1729 /* read/write ops */
1730 if (total_size == 0xFFFFFFFFULL) {
1731 cciss_read_capacity_16(ctlr, drv_index, 1,
1732 &total_size, &block_size);
1733 h->cciss_read = CCISS_READ_16;
1734 h->cciss_write = CCISS_WRITE_16;
1735 } else {
1736 h->cciss_read = CCISS_READ_10;
1737 h->cciss_write = CCISS_WRITE_10;
1738 }
1739 }
1740
1741 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1742 inq_buff, drvinfo);
1743 drvinfo->block_size = block_size;
1744 drvinfo->nr_blocks = total_size + 1;
1745
1746 cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1747 drvinfo->model, drvinfo->rev);
1748 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1749 sizeof(drvinfo->serial_no));
1750
1751 /* Is it the same disk we already know, and nothing's changed? */
1752 if (h->drv[drv_index].raid_level != -1 &&
1753 ((memcmp(drvinfo->serial_no,
1754 h->drv[drv_index].serial_no, 16) == 0) &&
1755 drvinfo->block_size == h->drv[drv_index].block_size &&
1756 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1757 drvinfo->heads == h->drv[drv_index].heads &&
1758 drvinfo->sectors == h->drv[drv_index].sectors &&
1759 drvinfo->cylinders == h->drv[drv_index].cylinders))
1760 /* The disk is unchanged, nothing to update */
1761 goto freeret;
1762
1763 /* If we get here it's not the same disk, or something's changed,
1764 * so we need to * deregister it, and re-register it, if it's not
1765 * in use.
1766 * If the disk already exists then deregister it before proceeding
1767 * (unless it's the first disk (for the controller node).
1768 */
1769 if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1770 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1771 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1772 h->drv[drv_index].busy_configuring = 1;
1773 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1774
1775 /* deregister_disk sets h->drv[drv_index].queue = NULL
1776 * which keeps the interrupt handler from starting
1777 * the queue.
1778 */
1779 ret = deregister_disk(h, drv_index, 0);
1780 h->drv[drv_index].busy_configuring = 0;
1781 }
1782
1783 /* If the disk is in use return */
1784 if (ret)
1785 goto freeret;
1786
1787 /* Save the new information from cciss_geometry_inquiry
1788 * and serial number inquiry.
1789 */
1790 h->drv[drv_index].block_size = drvinfo->block_size;
1791 h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1792 h->drv[drv_index].heads = drvinfo->heads;
1793 h->drv[drv_index].sectors = drvinfo->sectors;
1794 h->drv[drv_index].cylinders = drvinfo->cylinders;
1795 h->drv[drv_index].raid_level = drvinfo->raid_level;
1796 memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1797 memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
1798 memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
1799 memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);
1800
1801 ++h->num_luns;
1802 disk = h->gendisk[drv_index];
1803 set_capacity(disk, h->drv[drv_index].nr_blocks);
1804
1805 /* If it's not disk 0 (drv_index != 0)
1806 * or if it was disk 0, but there was previously
1807 * no actual corresponding configured logical drive
1808 * (raid_leve == -1) then we want to update the
1809 * logical drive's information.
1810 */
1811 if (drv_index || first_time)
1812 cciss_add_disk(h, disk, drv_index);
1813
1814 freeret:
1815 kfree(inq_buff);
1816 kfree(drvinfo);
1817 return;
1818 mem_msg:
1819 printk(KERN_ERR "cciss: out of memory\n");
1820 goto freeret;
1821 }
1822
1823 /* This function will find the first index of the controllers drive array
1824 * that has a -1 for the raid_level and will return that index. This is
1825 * where new drives will be added. If the index to be returned is greater
1826 * than the highest_lun index for the controller then highest_lun is set
1827 * to this new index. If there are no available indexes then -1 is returned.
1828 * "controller_node" is used to know if this is a real logical drive, or just
1829 * the controller node, which determines if this counts towards highest_lun.
1830 */
1831 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1832 {
1833 int i;
1834
1835 for (i = 0; i < CISS_MAX_LUN; i++) {
1836 if (hba[ctlr]->drv[i].raid_level == -1) {
1837 if (i > hba[ctlr]->highest_lun)
1838 if (!controller_node)
1839 hba[ctlr]->highest_lun = i;
1840 return i;
1841 }
1842 }
1843 return -1;
1844 }
1845
1846 /* cciss_add_gendisk finds a free hba[]->drv structure
1847 * and allocates a gendisk if needed, and sets the lunid
1848 * in the drvinfo structure. It returns the index into
1849 * the ->drv[] array, or -1 if none are free.
1850 * is_controller_node indicates whether highest_lun should
1851 * count this disk, or if it's only being added to provide
1852 * a means to talk to the controller in case no logical
1853 * drives have yet been configured.
1854 */
1855 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1856 {
1857 int drv_index;
1858
1859 drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1860 if (drv_index == -1)
1861 return -1;
1862 /*Check if the gendisk needs to be allocated */
1863 if (!h->gendisk[drv_index]) {
1864 h->gendisk[drv_index] =
1865 alloc_disk(1 << NWD_SHIFT);
1866 if (!h->gendisk[drv_index]) {
1867 printk(KERN_ERR "cciss%d: could not "
1868 "allocate a new disk %d\n",
1869 h->ctlr, drv_index);
1870 return -1;
1871 }
1872 }
1873 h->drv[drv_index].LunID = lunid;
1874 if (cciss_create_ld_sysfs_entry(h, &h->drv[drv_index], drv_index))
1875 goto err_free_disk;
1876
1877 /* Don't need to mark this busy because nobody */
1878 /* else knows about this disk yet to contend */
1879 /* for access to it. */
1880 h->drv[drv_index].busy_configuring = 0;
1881 wmb();
1882 return drv_index;
1883
1884 err_free_disk:
1885 put_disk(h->gendisk[drv_index]);
1886 h->gendisk[drv_index] = NULL;
1887 return -1;
1888 }
1889
1890 /* This is for the special case of a controller which
1891 * has no logical drives. In this case, we still need
1892 * to register a disk so the controller can be accessed
1893 * by the Array Config Utility.
1894 */
1895 static void cciss_add_controller_node(ctlr_info_t *h)
1896 {
1897 struct gendisk *disk;
1898 int drv_index;
1899
1900 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1901 return;
1902
1903 drv_index = cciss_add_gendisk(h, 0, 1);
1904 if (drv_index == -1) {
1905 printk(KERN_WARNING "cciss%d: could not "
1906 "add disk 0.\n", h->ctlr);
1907 return;
1908 }
1909 h->drv[drv_index].block_size = 512;
1910 h->drv[drv_index].nr_blocks = 0;
1911 h->drv[drv_index].heads = 0;
1912 h->drv[drv_index].sectors = 0;
1913 h->drv[drv_index].cylinders = 0;
1914 h->drv[drv_index].raid_level = -1;
1915 memset(h->drv[drv_index].serial_no, 0, 16);
1916 disk = h->gendisk[drv_index];
1917 cciss_add_disk(h, disk, drv_index);
1918 }
1919
1920 /* This function will add and remove logical drives from the Logical
1921 * drive array of the controller and maintain persistency of ordering
1922 * so that mount points are preserved until the next reboot. This allows
1923 * for the removal of logical drives in the middle of the drive array
1924 * without a re-ordering of those drives.
1925 * INPUT
1926 * h = The controller to perform the operations on
1927 */
1928 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1929 {
1930 int ctlr = h->ctlr;
1931 int num_luns;
1932 ReportLunData_struct *ld_buff = NULL;
1933 int return_code;
1934 int listlength = 0;
1935 int i;
1936 int drv_found;
1937 int drv_index = 0;
1938 __u32 lunid = 0;
1939 unsigned long flags;
1940
1941 if (!capable(CAP_SYS_RAWIO))
1942 return -EPERM;
1943
1944 /* Set busy_configuring flag for this operation */
1945 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1946 if (h->busy_configuring) {
1947 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1948 return -EBUSY;
1949 }
1950 h->busy_configuring = 1;
1951 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1952
1953 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1954 if (ld_buff == NULL)
1955 goto mem_msg;
1956
1957 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1958 sizeof(ReportLunData_struct),
1959 0, CTLR_LUNID, TYPE_CMD);
1960
1961 if (return_code == IO_OK)
1962 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1963 else { /* reading number of logical volumes failed */
1964 printk(KERN_WARNING "cciss: report logical volume"
1965 " command failed\n");
1966 listlength = 0;
1967 goto freeret;
1968 }
1969
1970 num_luns = listlength / 8; /* 8 bytes per entry */
1971 if (num_luns > CISS_MAX_LUN) {
1972 num_luns = CISS_MAX_LUN;
1973 printk(KERN_WARNING "cciss: more luns configured"
1974 " on controller than can be handled by"
1975 " this driver.\n");
1976 }
1977
1978 if (num_luns == 0)
1979 cciss_add_controller_node(h);
1980
1981 /* Compare controller drive array to driver's drive array
1982 * to see if any drives are missing on the controller due
1983 * to action of Array Config Utility (user deletes drive)
1984 * and deregister logical drives which have disappeared.
1985 */
1986 for (i = 0; i <= h->highest_lun; i++) {
1987 int j;
1988 drv_found = 0;
1989
1990 /* skip holes in the array from already deleted drives */
1991 if (h->drv[i].raid_level == -1)
1992 continue;
1993
1994 for (j = 0; j < num_luns; j++) {
1995 memcpy(&lunid, &ld_buff->LUN[j][0], 4);
1996 lunid = le32_to_cpu(lunid);
1997 if (h->drv[i].LunID == lunid) {
1998 drv_found = 1;
1999 break;
2000 }
2001 }
2002 if (!drv_found) {
2003 /* Deregister it from the OS, it's gone. */
2004 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2005 h->drv[i].busy_configuring = 1;
2006 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2007 return_code = deregister_disk(h, i, 1);
2008 h->drv[i].busy_configuring = 0;
2009 }
2010 }
2011
2012 /* Compare controller drive array to driver's drive array.
2013 * Check for updates in the drive information and any new drives
2014 * on the controller due to ACU adding logical drives, or changing
2015 * a logical drive's size, etc. Reregister any new/changed drives
2016 */
2017 for (i = 0; i < num_luns; i++) {
2018 int j;
2019
2020 drv_found = 0;
2021
2022 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
2023 lunid = le32_to_cpu(lunid);
2024
2025 /* Find if the LUN is already in the drive array
2026 * of the driver. If so then update its info
2027 * if not in use. If it does not exist then find
2028 * the first free index and add it.
2029 */
2030 for (j = 0; j <= h->highest_lun; j++) {
2031 if (h->drv[j].raid_level != -1 &&
2032 h->drv[j].LunID == lunid) {
2033 drv_index = j;
2034 drv_found = 1;
2035 break;
2036 }
2037 }
2038
2039 /* check if the drive was found already in the array */
2040 if (!drv_found) {
2041 drv_index = cciss_add_gendisk(h, lunid, 0);
2042 if (drv_index == -1)
2043 goto freeret;
2044 }
2045 cciss_update_drive_info(ctlr, drv_index, first_time);
2046 } /* end for */
2047
2048 freeret:
2049 kfree(ld_buff);
2050 h->busy_configuring = 0;
2051 /* We return -1 here to tell the ACU that we have registered/updated
2052 * all of the drives that we can and to keep it from calling us
2053 * additional times.
2054 */
2055 return -1;
2056 mem_msg:
2057 printk(KERN_ERR "cciss: out of memory\n");
2058 h->busy_configuring = 0;
2059 goto freeret;
2060 }
2061
2062 /* This function will deregister the disk and it's queue from the
2063 * kernel. It must be called with the controller lock held and the
2064 * drv structures busy_configuring flag set. It's parameters are:
2065 *
2066 * disk = This is the disk to be deregistered
2067 * drv = This is the drive_info_struct associated with the disk to be
2068 * deregistered. It contains information about the disk used
2069 * by the driver.
2070 * clear_all = This flag determines whether or not the disk information
2071 * is going to be completely cleared out and the highest_lun
2072 * reset. Sometimes we want to clear out information about
2073 * the disk in preparation for re-adding it. In this case
2074 * the highest_lun should be left unchanged and the LunID
2075 * should not be cleared.
2076 */
2077 static int deregister_disk(ctlr_info_t *h, int drv_index,
2078 int clear_all)
2079 {
2080 int i;
2081 struct gendisk *disk;
2082 drive_info_struct *drv;
2083
2084 if (!capable(CAP_SYS_RAWIO))
2085 return -EPERM;
2086
2087 drv = &h->drv[drv_index];
2088 disk = h->gendisk[drv_index];
2089
2090 /* make sure logical volume is NOT is use */
2091 if (clear_all || (h->gendisk[0] == disk)) {
2092 if (drv->usage_count > 1)
2093 return -EBUSY;
2094 } else if (drv->usage_count > 0)
2095 return -EBUSY;
2096
2097 /* invalidate the devices and deregister the disk. If it is disk
2098 * zero do not deregister it but just zero out it's values. This
2099 * allows us to delete disk zero but keep the controller registered.
2100 */
2101 if (h->gendisk[0] != disk) {
2102 struct request_queue *q = disk->queue;
2103 if (disk->flags & GENHD_FL_UP)
2104 del_gendisk(disk);
2105 if (q) {
2106 blk_cleanup_queue(q);
2107 /* Set drv->queue to NULL so that we do not try
2108 * to call blk_start_queue on this queue in the
2109 * interrupt handler
2110 */
2111 drv->queue = NULL;
2112 }
2113 /* If clear_all is set then we are deleting the logical
2114 * drive, not just refreshing its info. For drives
2115 * other than disk 0 we will call put_disk. We do not
2116 * do this for disk 0 as we need it to be able to
2117 * configure the controller.
2118 */
2119 if (clear_all){
2120 /* This isn't pretty, but we need to find the
2121 * disk in our array and NULL our the pointer.
2122 * This is so that we will call alloc_disk if
2123 * this index is used again later.
2124 */
2125 for (i=0; i < CISS_MAX_LUN; i++){
2126 if (h->gendisk[i] == disk) {
2127 h->gendisk[i] = NULL;
2128 break;
2129 }
2130 }
2131 put_disk(disk);
2132 }
2133 } else {
2134 set_capacity(disk, 0);
2135 }
2136
2137 --h->num_luns;
2138 /* zero out the disk size info */
2139 drv->nr_blocks = 0;
2140 drv->block_size = 0;
2141 drv->heads = 0;
2142 drv->sectors = 0;
2143 drv->cylinders = 0;
2144 drv->raid_level = -1; /* This can be used as a flag variable to
2145 * indicate that this element of the drive
2146 * array is free.
2147 */
2148 cciss_destroy_ld_sysfs_entry(drv);
2149
2150 if (clear_all) {
2151 /* check to see if it was the last disk */
2152 if (drv == h->drv + h->highest_lun) {
2153 /* if so, find the new hightest lun */
2154 int i, newhighest = -1;
2155 for (i = 0; i <= h->highest_lun; i++) {
2156 /* if the disk has size > 0, it is available */
2157 if (h->drv[i].heads)
2158 newhighest = i;
2159 }
2160 h->highest_lun = newhighest;
2161 }
2162
2163 drv->LunID = 0;
2164 }
2165 return 0;
2166 }
2167
2168 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2169 size_t size, __u8 page_code, unsigned char *scsi3addr,
2170 int cmd_type)
2171 {
2172 ctlr_info_t *h = hba[ctlr];
2173 u64bit buff_dma_handle;
2174 int status = IO_OK;
2175
2176 c->cmd_type = CMD_IOCTL_PEND;
2177 c->Header.ReplyQueue = 0;
2178 if (buff != NULL) {
2179 c->Header.SGList = 1;
2180 c->Header.SGTotal = 1;
2181 } else {
2182 c->Header.SGList = 0;
2183 c->Header.SGTotal = 0;
2184 }
2185 c->Header.Tag.lower = c->busaddr;
2186 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2187
2188 c->Request.Type.Type = cmd_type;
2189 if (cmd_type == TYPE_CMD) {
2190 switch (cmd) {
2191 case CISS_INQUIRY:
2192 /* are we trying to read a vital product page */
2193 if (page_code != 0) {
2194 c->Request.CDB[1] = 0x01;
2195 c->Request.CDB[2] = page_code;
2196 }
2197 c->Request.CDBLen = 6;
2198 c->Request.Type.Attribute = ATTR_SIMPLE;
2199 c->Request.Type.Direction = XFER_READ;
2200 c->Request.Timeout = 0;
2201 c->Request.CDB[0] = CISS_INQUIRY;
2202 c->Request.CDB[4] = size & 0xFF;
2203 break;
2204 case CISS_REPORT_LOG:
2205 case CISS_REPORT_PHYS:
2206 /* Talking to controller so It's a physical command
2207 mode = 00 target = 0. Nothing to write.
2208 */
2209 c->Request.CDBLen = 12;
2210 c->Request.Type.Attribute = ATTR_SIMPLE;
2211 c->Request.Type.Direction = XFER_READ;
2212 c->Request.Timeout = 0;
2213 c->Request.CDB[0] = cmd;
2214 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
2215 c->Request.CDB[7] = (size >> 16) & 0xFF;
2216 c->Request.CDB[8] = (size >> 8) & 0xFF;
2217 c->Request.CDB[9] = size & 0xFF;
2218 break;
2219
2220 case CCISS_READ_CAPACITY:
2221 c->Request.CDBLen = 10;
2222 c->Request.Type.Attribute = ATTR_SIMPLE;
2223 c->Request.Type.Direction = XFER_READ;
2224 c->Request.Timeout = 0;
2225 c->Request.CDB[0] = cmd;
2226 break;
2227 case CCISS_READ_CAPACITY_16:
2228 c->Request.CDBLen = 16;
2229 c->Request.Type.Attribute = ATTR_SIMPLE;
2230 c->Request.Type.Direction = XFER_READ;
2231 c->Request.Timeout = 0;
2232 c->Request.CDB[0] = cmd;
2233 c->Request.CDB[1] = 0x10;
2234 c->Request.CDB[10] = (size >> 24) & 0xFF;
2235 c->Request.CDB[11] = (size >> 16) & 0xFF;
2236 c->Request.CDB[12] = (size >> 8) & 0xFF;
2237 c->Request.CDB[13] = size & 0xFF;
2238 c->Request.Timeout = 0;
2239 c->Request.CDB[0] = cmd;
2240 break;
2241 case CCISS_CACHE_FLUSH:
2242 c->Request.CDBLen = 12;
2243 c->Request.Type.Attribute = ATTR_SIMPLE;
2244 c->Request.Type.Direction = XFER_WRITE;
2245 c->Request.Timeout = 0;
2246 c->Request.CDB[0] = BMIC_WRITE;
2247 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2248 break;
2249 case TEST_UNIT_READY:
2250 c->Request.CDBLen = 6;
2251 c->Request.Type.Attribute = ATTR_SIMPLE;
2252 c->Request.Type.Direction = XFER_NONE;
2253 c->Request.Timeout = 0;
2254 break;
2255 default:
2256 printk(KERN_WARNING
2257 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2258 return IO_ERROR;
2259 }
2260 } else if (cmd_type == TYPE_MSG) {
2261 switch (cmd) {
2262 case 0: /* ABORT message */
2263 c->Request.CDBLen = 12;
2264 c->Request.Type.Attribute = ATTR_SIMPLE;
2265 c->Request.Type.Direction = XFER_WRITE;
2266 c->Request.Timeout = 0;
2267 c->Request.CDB[0] = cmd; /* abort */
2268 c->Request.CDB[1] = 0; /* abort a command */
2269 /* buff contains the tag of the command to abort */
2270 memcpy(&c->Request.CDB[4], buff, 8);
2271 break;
2272 case 1: /* RESET message */
2273 c->Request.CDBLen = 16;
2274 c->Request.Type.Attribute = ATTR_SIMPLE;
2275 c->Request.Type.Direction = XFER_NONE;
2276 c->Request.Timeout = 0;
2277 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2278 c->Request.CDB[0] = cmd; /* reset */
2279 c->Request.CDB[1] = 0x03; /* reset a target */
2280 break;
2281 case 3: /* No-Op message */
2282 c->Request.CDBLen = 1;
2283 c->Request.Type.Attribute = ATTR_SIMPLE;
2284 c->Request.Type.Direction = XFER_WRITE;
2285 c->Request.Timeout = 0;
2286 c->Request.CDB[0] = cmd;
2287 break;
2288 default:
2289 printk(KERN_WARNING
2290 "cciss%d: unknown message type %d\n", ctlr, cmd);
2291 return IO_ERROR;
2292 }
2293 } else {
2294 printk(KERN_WARNING
2295 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2296 return IO_ERROR;
2297 }
2298 /* Fill in the scatter gather information */
2299 if (size > 0) {
2300 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2301 buff, size,
2302 PCI_DMA_BIDIRECTIONAL);
2303 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2304 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2305 c->SG[0].Len = size;
2306 c->SG[0].Ext = 0; /* we are not chaining */
2307 }
2308 return status;
2309 }
2310
2311 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2312 {
2313 switch (c->err_info->ScsiStatus) {
2314 case SAM_STAT_GOOD:
2315 return IO_OK;
2316 case SAM_STAT_CHECK_CONDITION:
2317 switch (0xf & c->err_info->SenseInfo[2]) {
2318 case 0: return IO_OK; /* no sense */
2319 case 1: return IO_OK; /* recovered error */
2320 default:
2321 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2322 "check condition, sense key = 0x%02x\n",
2323 h->ctlr, c->Request.CDB[0],
2324 c->err_info->SenseInfo[2]);
2325 }
2326 break;
2327 default:
2328 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2329 "scsi status = 0x%02x\n", h->ctlr,
2330 c->Request.CDB[0], c->err_info->ScsiStatus);
2331 break;
2332 }
2333 return IO_ERROR;
2334 }
2335
2336 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2337 {
2338 int return_status = IO_OK;
2339
2340 if (c->err_info->CommandStatus == CMD_SUCCESS)
2341 return IO_OK;
2342
2343 switch (c->err_info->CommandStatus) {
2344 case CMD_TARGET_STATUS:
2345 return_status = check_target_status(h, c);
2346 break;
2347 case CMD_DATA_UNDERRUN:
2348 case CMD_DATA_OVERRUN:
2349 /* expected for inquiry and report lun commands */
2350 break;
2351 case CMD_INVALID:
2352 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2353 "reported invalid\n", c->Request.CDB[0]);
2354 return_status = IO_ERROR;
2355 break;
2356 case CMD_PROTOCOL_ERR:
2357 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2358 "protocol error \n", c->Request.CDB[0]);
2359 return_status = IO_ERROR;
2360 break;
2361 case CMD_HARDWARE_ERR:
2362 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2363 " hardware error\n", c->Request.CDB[0]);
2364 return_status = IO_ERROR;
2365 break;
2366 case CMD_CONNECTION_LOST:
2367 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2368 "connection lost\n", c->Request.CDB[0]);
2369 return_status = IO_ERROR;
2370 break;
2371 case CMD_ABORTED:
2372 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2373 "aborted\n", c->Request.CDB[0]);
2374 return_status = IO_ERROR;
2375 break;
2376 case CMD_ABORT_FAILED:
2377 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2378 "abort failed\n", c->Request.CDB[0]);
2379 return_status = IO_ERROR;
2380 break;
2381 case CMD_UNSOLICITED_ABORT:
2382 printk(KERN_WARNING
2383 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2384 c->Request.CDB[0]);
2385 return_status = IO_NEEDS_RETRY;
2386 break;
2387 default:
2388 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2389 "unknown status %x\n", c->Request.CDB[0],
2390 c->err_info->CommandStatus);
2391 return_status = IO_ERROR;
2392 }
2393 return return_status;
2394 }
2395
2396 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2397 int attempt_retry)
2398 {
2399 DECLARE_COMPLETION_ONSTACK(wait);
2400 u64bit buff_dma_handle;
2401 unsigned long flags;
2402 int return_status = IO_OK;
2403
2404 resend_cmd2:
2405 c->waiting = &wait;
2406 /* Put the request on the tail of the queue and send it */
2407 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2408 addQ(&h->reqQ, c);
2409 h->Qdepth++;
2410 start_io(h);
2411 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2412
2413 wait_for_completion(&wait);
2414
2415 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2416 goto command_done;
2417
2418 return_status = process_sendcmd_error(h, c);
2419
2420 if (return_status == IO_NEEDS_RETRY &&
2421 c->retry_count < MAX_CMD_RETRIES) {
2422 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2423 c->Request.CDB[0]);
2424 c->retry_count++;
2425 /* erase the old error information */
2426 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2427 return_status = IO_OK;
2428 INIT_COMPLETION(wait);
2429 goto resend_cmd2;
2430 }
2431
2432 command_done:
2433 /* unlock the buffers from DMA */
2434 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2435 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2436 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2437 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2438 return return_status;
2439 }
2440
2441 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2442 __u8 page_code, unsigned char scsi3addr[],
2443 int cmd_type)
2444 {
2445 ctlr_info_t *h = hba[ctlr];
2446 CommandList_struct *c;
2447 int return_status;
2448
2449 c = cmd_alloc(h, 0);
2450 if (!c)
2451 return -ENOMEM;
2452 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2453 scsi3addr, cmd_type);
2454 if (return_status == IO_OK)
2455 return_status = sendcmd_withirq_core(h, c, 1);
2456
2457 cmd_free(h, c, 0);
2458 return return_status;
2459 }
2460
2461 static void cciss_geometry_inquiry(int ctlr, int logvol,
2462 int withirq, sector_t total_size,
2463 unsigned int block_size,
2464 InquiryData_struct *inq_buff,
2465 drive_info_struct *drv)
2466 {
2467 int return_code;
2468 unsigned long t;
2469 unsigned char scsi3addr[8];
2470
2471 memset(inq_buff, 0, sizeof(InquiryData_struct));
2472 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2473 if (withirq)
2474 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2475 inq_buff, sizeof(*inq_buff),
2476 0xC1, scsi3addr, TYPE_CMD);
2477 else
2478 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2479 sizeof(*inq_buff), 0xC1, scsi3addr,
2480 TYPE_CMD);
2481 if (return_code == IO_OK) {
2482 if (inq_buff->data_byte[8] == 0xFF) {
2483 printk(KERN_WARNING
2484 "cciss: reading geometry failed, volume "
2485 "does not support reading geometry\n");
2486 drv->heads = 255;
2487 drv->sectors = 32; // Sectors per track
2488 drv->cylinders = total_size + 1;
2489 drv->raid_level = RAID_UNKNOWN;
2490 } else {
2491 drv->heads = inq_buff->data_byte[6];
2492 drv->sectors = inq_buff->data_byte[7];
2493 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2494 drv->cylinders += inq_buff->data_byte[5];
2495 drv->raid_level = inq_buff->data_byte[8];
2496 }
2497 drv->block_size = block_size;
2498 drv->nr_blocks = total_size + 1;
2499 t = drv->heads * drv->sectors;
2500 if (t > 1) {
2501 sector_t real_size = total_size + 1;
2502 unsigned long rem = sector_div(real_size, t);
2503 if (rem)
2504 real_size++;
2505 drv->cylinders = real_size;
2506 }
2507 } else { /* Get geometry failed */
2508 printk(KERN_WARNING "cciss: reading geometry failed\n");
2509 }
2510 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2511 drv->heads, drv->sectors, drv->cylinders);
2512 }
2513
2514 static void
2515 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2516 unsigned int *block_size)
2517 {
2518 ReadCapdata_struct *buf;
2519 int return_code;
2520 unsigned char scsi3addr[8];
2521
2522 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2523 if (!buf) {
2524 printk(KERN_WARNING "cciss: out of memory\n");
2525 return;
2526 }
2527
2528 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2529 if (withirq)
2530 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2531 ctlr, buf, sizeof(ReadCapdata_struct),
2532 0, scsi3addr, TYPE_CMD);
2533 else
2534 return_code = sendcmd(CCISS_READ_CAPACITY,
2535 ctlr, buf, sizeof(ReadCapdata_struct),
2536 0, scsi3addr, TYPE_CMD);
2537 if (return_code == IO_OK) {
2538 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2539 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2540 } else { /* read capacity command failed */
2541 printk(KERN_WARNING "cciss: read capacity failed\n");
2542 *total_size = 0;
2543 *block_size = BLOCK_SIZE;
2544 }
2545 if (*total_size != 0)
2546 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2547 (unsigned long long)*total_size+1, *block_size);
2548 kfree(buf);
2549 }
2550
2551 static void
2552 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2553 {
2554 ReadCapdata_struct_16 *buf;
2555 int return_code;
2556 unsigned char scsi3addr[8];
2557
2558 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2559 if (!buf) {
2560 printk(KERN_WARNING "cciss: out of memory\n");
2561 return;
2562 }
2563
2564 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2565 if (withirq) {
2566 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2567 ctlr, buf, sizeof(ReadCapdata_struct_16),
2568 0, scsi3addr, TYPE_CMD);
2569 }
2570 else {
2571 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2572 ctlr, buf, sizeof(ReadCapdata_struct_16),
2573 0, scsi3addr, TYPE_CMD);
2574 }
2575 if (return_code == IO_OK) {
2576 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2577 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2578 } else { /* read capacity command failed */
2579 printk(KERN_WARNING "cciss: read capacity failed\n");
2580 *total_size = 0;
2581 *block_size = BLOCK_SIZE;
2582 }
2583 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2584 (unsigned long long)*total_size+1, *block_size);
2585 kfree(buf);
2586 }
2587
2588 static int cciss_revalidate(struct gendisk *disk)
2589 {
2590 ctlr_info_t *h = get_host(disk);
2591 drive_info_struct *drv = get_drv(disk);
2592 int logvol;
2593 int FOUND = 0;
2594 unsigned int block_size;
2595 sector_t total_size;
2596 InquiryData_struct *inq_buff = NULL;
2597
2598 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2599 if (h->drv[logvol].LunID == drv->LunID) {
2600 FOUND = 1;
2601 break;
2602 }
2603 }
2604
2605 if (!FOUND)
2606 return 1;
2607
2608 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2609 if (inq_buff == NULL) {
2610 printk(KERN_WARNING "cciss: out of memory\n");
2611 return 1;
2612 }
2613 if (h->cciss_read == CCISS_READ_10) {
2614 cciss_read_capacity(h->ctlr, logvol, 1,
2615 &total_size, &block_size);
2616 } else {
2617 cciss_read_capacity_16(h->ctlr, logvol, 1,
2618 &total_size, &block_size);
2619 }
2620 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2621 inq_buff, drv);
2622
2623 blk_queue_logical_block_size(drv->queue, drv->block_size);
2624 set_capacity(disk, drv->nr_blocks);
2625
2626 kfree(inq_buff);
2627 return 0;
2628 }
2629
2630 /*
2631 * Wait polling for a command to complete.
2632 * The memory mapped FIFO is polled for the completion.
2633 * Used only at init time, interrupts from the HBA are disabled.
2634 */
2635 static unsigned long pollcomplete(int ctlr)
2636 {
2637 unsigned long done;
2638 int i;
2639
2640 /* Wait (up to 20 seconds) for a command to complete */
2641
2642 for (i = 20 * HZ; i > 0; i--) {
2643 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2644 if (done == FIFO_EMPTY)
2645 schedule_timeout_uninterruptible(1);
2646 else
2647 return done;
2648 }
2649 /* Invalid address to tell caller we ran out of time */
2650 return 1;
2651 }
2652
2653 /* Send command c to controller h and poll for it to complete.
2654 * Turns interrupts off on the board. Used at driver init time
2655 * and during SCSI error recovery.
2656 */
2657 static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2658 {
2659 int i;
2660 unsigned long complete;
2661 int status = IO_ERROR;
2662 u64bit buff_dma_handle;
2663
2664 resend_cmd1:
2665
2666 /* Disable interrupt on the board. */
2667 h->access.set_intr_mask(h, CCISS_INTR_OFF);
2668
2669 /* Make sure there is room in the command FIFO */
2670 /* Actually it should be completely empty at this time */
2671 /* unless we are in here doing error handling for the scsi */
2672 /* tape side of the driver. */
2673 for (i = 200000; i > 0; i--) {
2674 /* if fifo isn't full go */
2675 if (!(h->access.fifo_full(h)))
2676 break;
2677 udelay(10);
2678 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2679 " waiting!\n", h->ctlr);
2680 }
2681 h->access.submit_command(h, c); /* Send the cmd */
2682 do {
2683 complete = pollcomplete(h->ctlr);
2684
2685 #ifdef CCISS_DEBUG
2686 printk(KERN_DEBUG "cciss: command completed\n");
2687 #endif /* CCISS_DEBUG */
2688
2689 if (complete == 1) {
2690 printk(KERN_WARNING
2691 "cciss cciss%d: SendCmd Timeout out, "
2692 "No command list address returned!\n", h->ctlr);
2693 status = IO_ERROR;
2694 break;
2695 }
2696
2697 /* Make sure it's the command we're expecting. */
2698 if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2699 printk(KERN_WARNING "cciss%d: Unexpected command "
2700 "completion.\n", h->ctlr);
2701 continue;
2702 }
2703
2704 /* It is our command. If no error, we're done. */
2705 if (!(complete & CISS_ERROR_BIT)) {
2706 status = IO_OK;
2707 break;
2708 }
2709
2710 /* There is an error... */
2711
2712 /* if data overrun or underun on Report command ignore it */
2713 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2714 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2715 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2716 ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2717 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2718 complete = c->busaddr;
2719 status = IO_OK;
2720 break;
2721 }
2722
2723 if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2724 printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2725 h->ctlr, c);
2726 if (c->retry_count < MAX_CMD_RETRIES) {
2727 printk(KERN_WARNING "cciss%d: retrying %p\n",
2728 h->ctlr, c);
2729 c->retry_count++;
2730 /* erase the old error information */
2731 memset(c->err_info, 0, sizeof(c->err_info));
2732 goto resend_cmd1;
2733 }
2734 printk(KERN_WARNING "cciss%d: retried %p too many "
2735 "times\n", h->ctlr, c);
2736 status = IO_ERROR;
2737 break;
2738 }
2739
2740 if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2741 printk(KERN_WARNING "cciss%d: command could not be "
2742 "aborted.\n", h->ctlr);
2743 status = IO_ERROR;
2744 break;
2745 }
2746
2747 if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2748 status = check_target_status(h, c);
2749 break;
2750 }
2751
2752 printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2753 printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2754 c->Request.CDB[0], c->err_info->CommandStatus);
2755 status = IO_ERROR;
2756 break;
2757
2758 } while (1);
2759
2760 /* unlock the data buffer from DMA */
2761 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2762 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2763 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2764 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2765 return status;
2766 }
2767
2768 /*
2769 * Send a command to the controller, and wait for it to complete.
2770 * Used at init time, and during SCSI error recovery.
2771 */
2772 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2773 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2774 {
2775 CommandList_struct *c;
2776 int status;
2777
2778 c = cmd_alloc(hba[ctlr], 1);
2779 if (!c) {
2780 printk(KERN_WARNING "cciss: unable to get memory");
2781 return IO_ERROR;
2782 }
2783 status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2784 scsi3addr, cmd_type);
2785 if (status == IO_OK)
2786 status = sendcmd_core(hba[ctlr], c);
2787 cmd_free(hba[ctlr], c, 1);
2788 return status;
2789 }
2790
2791 /*
2792 * Map (physical) PCI mem into (virtual) kernel space
2793 */
2794 static void __iomem *remap_pci_mem(ulong base, ulong size)
2795 {
2796 ulong page_base = ((ulong) base) & PAGE_MASK;
2797 ulong page_offs = ((ulong) base) - page_base;
2798 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2799
2800 return page_remapped ? (page_remapped + page_offs) : NULL;
2801 }
2802
2803 /*
2804 * Takes jobs of the Q and sends them to the hardware, then puts it on
2805 * the Q to wait for completion.
2806 */
2807 static void start_io(ctlr_info_t *h)
2808 {
2809 CommandList_struct *c;
2810
2811 while (!hlist_empty(&h->reqQ)) {
2812 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2813 /* can't do anything if fifo is full */
2814 if ((h->access.fifo_full(h))) {
2815 printk(KERN_WARNING "cciss: fifo full\n");
2816 break;
2817 }
2818
2819 /* Get the first entry from the Request Q */
2820 removeQ(c);
2821 h->Qdepth--;
2822
2823 /* Tell the controller execute command */
2824 h->access.submit_command(h, c);
2825
2826 /* Put job onto the completed Q */
2827 addQ(&h->cmpQ, c);
2828 }
2829 }
2830
2831 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2832 /* Zeros out the error record and then resends the command back */
2833 /* to the controller */
2834 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2835 {
2836 /* erase the old error information */
2837 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2838
2839 /* add it to software queue and then send it to the controller */
2840 addQ(&h->reqQ, c);
2841 h->Qdepth++;
2842 if (h->Qdepth > h->maxQsinceinit)
2843 h->maxQsinceinit = h->Qdepth;
2844
2845 start_io(h);
2846 }
2847
2848 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2849 unsigned int msg_byte, unsigned int host_byte,
2850 unsigned int driver_byte)
2851 {
2852 /* inverse of macros in scsi.h */
2853 return (scsi_status_byte & 0xff) |
2854 ((msg_byte & 0xff) << 8) |
2855 ((host_byte & 0xff) << 16) |
2856 ((driver_byte & 0xff) << 24);
2857 }
2858
2859 static inline int evaluate_target_status(ctlr_info_t *h,
2860 CommandList_struct *cmd, int *retry_cmd)
2861 {
2862 unsigned char sense_key;
2863 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2864 int error_value;
2865
2866 *retry_cmd = 0;
2867 /* If we get in here, it means we got "target status", that is, scsi status */
2868 status_byte = cmd->err_info->ScsiStatus;
2869 driver_byte = DRIVER_OK;
2870 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2871
2872 if (blk_pc_request(cmd->rq))
2873 host_byte = DID_PASSTHROUGH;
2874 else
2875 host_byte = DID_OK;
2876
2877 error_value = make_status_bytes(status_byte, msg_byte,
2878 host_byte, driver_byte);
2879
2880 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2881 if (!blk_pc_request(cmd->rq))
2882 printk(KERN_WARNING "cciss: cmd %p "
2883 "has SCSI Status 0x%x\n",
2884 cmd, cmd->err_info->ScsiStatus);
2885 return error_value;
2886 }
2887
2888 /* check the sense key */
2889 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2890 /* no status or recovered error */
2891 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2892 error_value = 0;
2893
2894 if (check_for_unit_attention(h, cmd)) {
2895 *retry_cmd = !blk_pc_request(cmd->rq);
2896 return 0;
2897 }
2898
2899 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2900 if (error_value != 0)
2901 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2902 " sense key = 0x%x\n", cmd, sense_key);
2903 return error_value;
2904 }
2905
2906 /* SG_IO or similar, copy sense data back */
2907 if (cmd->rq->sense) {
2908 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2909 cmd->rq->sense_len = cmd->err_info->SenseLen;
2910 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2911 cmd->rq->sense_len);
2912 } else
2913 cmd->rq->sense_len = 0;
2914
2915 return error_value;
2916 }
2917
2918 /* checks the status of the job and calls complete buffers to mark all
2919 * buffers for the completed job. Note that this function does not need
2920 * to hold the hba/queue lock.
2921 */
2922 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2923 int timeout)
2924 {
2925 int retry_cmd = 0;
2926 struct request *rq = cmd->rq;
2927
2928 rq->errors = 0;
2929
2930 if (timeout)
2931 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2932
2933 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2934 goto after_error_processing;
2935
2936 switch (cmd->err_info->CommandStatus) {
2937 case CMD_TARGET_STATUS:
2938 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
2939 break;
2940 case CMD_DATA_UNDERRUN:
2941 if (blk_fs_request(cmd->rq)) {
2942 printk(KERN_WARNING "cciss: cmd %p has"
2943 " completed with data underrun "
2944 "reported\n", cmd);
2945 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
2946 }
2947 break;
2948 case CMD_DATA_OVERRUN:
2949 if (blk_fs_request(cmd->rq))
2950 printk(KERN_WARNING "cciss: cmd %p has"
2951 " completed with data overrun "
2952 "reported\n", cmd);
2953 break;
2954 case CMD_INVALID:
2955 printk(KERN_WARNING "cciss: cmd %p is "
2956 "reported invalid\n", cmd);
2957 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2958 cmd->err_info->CommandStatus, DRIVER_OK,
2959 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2960 break;
2961 case CMD_PROTOCOL_ERR:
2962 printk(KERN_WARNING "cciss: cmd %p has "
2963 "protocol error \n", cmd);
2964 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2965 cmd->err_info->CommandStatus, DRIVER_OK,
2966 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2967 break;
2968 case CMD_HARDWARE_ERR:
2969 printk(KERN_WARNING "cciss: cmd %p had "
2970 " hardware error\n", cmd);
2971 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2972 cmd->err_info->CommandStatus, DRIVER_OK,
2973 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2974 break;
2975 case CMD_CONNECTION_LOST:
2976 printk(KERN_WARNING "cciss: cmd %p had "
2977 "connection lost\n", cmd);
2978 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2979 cmd->err_info->CommandStatus, DRIVER_OK,
2980 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2981 break;
2982 case CMD_ABORTED:
2983 printk(KERN_WARNING "cciss: cmd %p was "
2984 "aborted\n", cmd);
2985 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2986 cmd->err_info->CommandStatus, DRIVER_OK,
2987 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2988 break;
2989 case CMD_ABORT_FAILED:
2990 printk(KERN_WARNING "cciss: cmd %p reports "
2991 "abort failed\n", cmd);
2992 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2993 cmd->err_info->CommandStatus, DRIVER_OK,
2994 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2995 break;
2996 case CMD_UNSOLICITED_ABORT:
2997 printk(KERN_WARNING "cciss%d: unsolicited "
2998 "abort %p\n", h->ctlr, cmd);
2999 if (cmd->retry_count < MAX_CMD_RETRIES) {
3000 retry_cmd = 1;
3001 printk(KERN_WARNING
3002 "cciss%d: retrying %p\n", h->ctlr, cmd);
3003 cmd->retry_count++;
3004 } else
3005 printk(KERN_WARNING
3006 "cciss%d: %p retried too "
3007 "many times\n", h->ctlr, cmd);
3008 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3009 cmd->err_info->CommandStatus, DRIVER_OK,
3010 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3011 break;
3012 case CMD_TIMEOUT:
3013 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3014 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3015 cmd->err_info->CommandStatus, DRIVER_OK,
3016 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3017 break;
3018 default:
3019 printk(KERN_WARNING "cciss: cmd %p returned "
3020 "unknown status %x\n", cmd,
3021 cmd->err_info->CommandStatus);
3022 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3023 cmd->err_info->CommandStatus, DRIVER_OK,
3024 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3025 }
3026
3027 after_error_processing:
3028
3029 /* We need to return this command */
3030 if (retry_cmd) {
3031 resend_cciss_cmd(h, cmd);
3032 return;
3033 }
3034 cmd->rq->completion_data = cmd;
3035 blk_complete_request(cmd->rq);
3036 }
3037
3038 /*
3039 * Get a request and submit it to the controller.
3040 */
3041 static void do_cciss_request(struct request_queue *q)
3042 {
3043 ctlr_info_t *h = q->queuedata;
3044 CommandList_struct *c;
3045 sector_t start_blk;
3046 int seg;
3047 struct request *creq;
3048 u64bit temp64;
3049 struct scatterlist tmp_sg[MAXSGENTRIES];
3050 drive_info_struct *drv;
3051 int i, dir;
3052
3053 /* We call start_io here in case there is a command waiting on the
3054 * queue that has not been sent.
3055 */
3056 if (blk_queue_plugged(q))
3057 goto startio;
3058
3059 queue:
3060 creq = blk_peek_request(q);
3061 if (!creq)
3062 goto startio;
3063
3064 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3065
3066 if ((c = cmd_alloc(h, 1)) == NULL)
3067 goto full;
3068
3069 blk_start_request(creq);
3070
3071 spin_unlock_irq(q->queue_lock);
3072
3073 c->cmd_type = CMD_RWREQ;
3074 c->rq = creq;
3075
3076 /* fill in the request */
3077 drv = creq->rq_disk->private_data;
3078 c->Header.ReplyQueue = 0; // unused in simple mode
3079 /* got command from pool, so use the command block index instead */
3080 /* for direct lookups. */
3081 /* The first 2 bits are reserved for controller error reporting. */
3082 c->Header.Tag.lower = (c->cmdindex << 3);
3083 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3084 c->Header.LUN.LogDev.VolId = drv->LunID;
3085 c->Header.LUN.LogDev.Mode = 1;
3086 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3087 c->Request.Type.Type = TYPE_CMD; // It is a command.
3088 c->Request.Type.Attribute = ATTR_SIMPLE;
3089 c->Request.Type.Direction =
3090 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3091 c->Request.Timeout = 0; // Don't time out
3092 c->Request.CDB[0] =
3093 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3094 start_blk = blk_rq_pos(creq);
3095 #ifdef CCISS_DEBUG
3096 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3097 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3098 #endif /* CCISS_DEBUG */
3099
3100 sg_init_table(tmp_sg, MAXSGENTRIES);
3101 seg = blk_rq_map_sg(q, creq, tmp_sg);
3102
3103 /* get the DMA records for the setup */
3104 if (c->Request.Type.Direction == XFER_READ)
3105 dir = PCI_DMA_FROMDEVICE;
3106 else
3107 dir = PCI_DMA_TODEVICE;
3108
3109 for (i = 0; i < seg; i++) {
3110 c->SG[i].Len = tmp_sg[i].length;
3111 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3112 tmp_sg[i].offset,
3113 tmp_sg[i].length, dir);
3114 c->SG[i].Addr.lower = temp64.val32.lower;
3115 c->SG[i].Addr.upper = temp64.val32.upper;
3116 c->SG[i].Ext = 0; // we are not chaining
3117 }
3118 /* track how many SG entries we are using */
3119 if (seg > h->maxSG)
3120 h->maxSG = seg;
3121
3122 #ifdef CCISS_DEBUG
3123 printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3124 blk_rq_sectors(creq), seg);
3125 #endif /* CCISS_DEBUG */
3126
3127 c->Header.SGList = c->Header.SGTotal = seg;
3128 if (likely(blk_fs_request(creq))) {
3129 if(h->cciss_read == CCISS_READ_10) {
3130 c->Request.CDB[1] = 0;
3131 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
3132 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3133 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3134 c->Request.CDB[5] = start_blk & 0xff;
3135 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
3136 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3137 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3138 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3139 } else {
3140 u32 upper32 = upper_32_bits(start_blk);
3141
3142 c->Request.CDBLen = 16;
3143 c->Request.CDB[1]= 0;
3144 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
3145 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3146 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3147 c->Request.CDB[5]= upper32 & 0xff;
3148 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3149 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3150 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3151 c->Request.CDB[9]= start_blk & 0xff;
3152 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3153 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3154 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3155 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3156 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3157 }
3158 } else if (blk_pc_request(creq)) {
3159 c->Request.CDBLen = creq->cmd_len;
3160 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3161 } else {
3162 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3163 BUG();
3164 }
3165
3166 spin_lock_irq(q->queue_lock);
3167
3168 addQ(&h->reqQ, c);
3169 h->Qdepth++;
3170 if (h->Qdepth > h->maxQsinceinit)
3171 h->maxQsinceinit = h->Qdepth;
3172
3173 goto queue;
3174 full:
3175 blk_stop_queue(q);
3176 startio:
3177 /* We will already have the driver lock here so not need
3178 * to lock it.
3179 */
3180 start_io(h);
3181 }
3182
3183 static inline unsigned long get_next_completion(ctlr_info_t *h)
3184 {
3185 return h->access.command_completed(h);
3186 }
3187
3188 static inline int interrupt_pending(ctlr_info_t *h)
3189 {
3190 return h->access.intr_pending(h);
3191 }
3192
3193 static inline long interrupt_not_for_us(ctlr_info_t *h)
3194 {
3195 return (((h->access.intr_pending(h) == 0) ||
3196 (h->interrupts_enabled == 0)));
3197 }
3198
3199 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3200 {
3201 ctlr_info_t *h = dev_id;
3202 CommandList_struct *c;
3203 unsigned long flags;
3204 __u32 a, a1, a2;
3205
3206 if (interrupt_not_for_us(h))
3207 return IRQ_NONE;
3208 /*
3209 * If there are completed commands in the completion queue,
3210 * we had better do something about it.
3211 */
3212 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3213 while (interrupt_pending(h)) {
3214 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3215 a1 = a;
3216 if ((a & 0x04)) {
3217 a2 = (a >> 3);
3218 if (a2 >= h->nr_cmds) {
3219 printk(KERN_WARNING
3220 "cciss: controller cciss%d failed, stopping.\n",
3221 h->ctlr);
3222 fail_all_cmds(h->ctlr);
3223 return IRQ_HANDLED;
3224 }
3225
3226 c = h->cmd_pool + a2;
3227 a = c->busaddr;
3228
3229 } else {
3230 struct hlist_node *tmp;
3231
3232 a &= ~3;
3233 c = NULL;
3234 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3235 if (c->busaddr == a)
3236 break;
3237 }
3238 }
3239 /*
3240 * If we've found the command, take it off the
3241 * completion Q and free it
3242 */
3243 if (c && c->busaddr == a) {
3244 removeQ(c);
3245 if (c->cmd_type == CMD_RWREQ) {
3246 complete_command(h, c, 0);
3247 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3248 complete(c->waiting);
3249 }
3250 # ifdef CONFIG_CISS_SCSI_TAPE
3251 else if (c->cmd_type == CMD_SCSI)
3252 complete_scsi_command(c, 0, a1);
3253 # endif
3254 continue;
3255 }
3256 }
3257 }
3258
3259 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3260 return IRQ_HANDLED;
3261 }
3262
3263 /**
3264 * add_to_scan_list() - add controller to rescan queue
3265 * @h: Pointer to the controller.
3266 *
3267 * Adds the controller to the rescan queue if not already on the queue.
3268 *
3269 * returns 1 if added to the queue, 0 if skipped (could be on the
3270 * queue already, or the controller could be initializing or shutting
3271 * down).
3272 **/
3273 static int add_to_scan_list(struct ctlr_info *h)
3274 {
3275 struct ctlr_info *test_h;
3276 int found = 0;
3277 int ret = 0;
3278
3279 if (h->busy_initializing)
3280 return 0;
3281
3282 if (!mutex_trylock(&h->busy_shutting_down))
3283 return 0;
3284
3285 mutex_lock(&scan_mutex);
3286 list_for_each_entry(test_h, &scan_q, scan_list) {
3287 if (test_h == h) {
3288 found = 1;
3289 break;
3290 }
3291 }
3292 if (!found && !h->busy_scanning) {
3293 INIT_COMPLETION(h->scan_wait);
3294 list_add_tail(&h->scan_list, &scan_q);
3295 ret = 1;
3296 }
3297 mutex_unlock(&scan_mutex);
3298 mutex_unlock(&h->busy_shutting_down);
3299
3300 return ret;
3301 }
3302
3303 /**
3304 * remove_from_scan_list() - remove controller from rescan queue
3305 * @h: Pointer to the controller.
3306 *
3307 * Removes the controller from the rescan queue if present. Blocks if
3308 * the controller is currently conducting a rescan.
3309 **/
3310 static void remove_from_scan_list(struct ctlr_info *h)
3311 {
3312 struct ctlr_info *test_h, *tmp_h;
3313 int scanning = 0;
3314
3315 mutex_lock(&scan_mutex);
3316 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3317 if (test_h == h) {
3318 list_del(&h->scan_list);
3319 complete_all(&h->scan_wait);
3320 mutex_unlock(&scan_mutex);
3321 return;
3322 }
3323 }
3324 if (&h->busy_scanning)
3325 scanning = 0;
3326 mutex_unlock(&scan_mutex);
3327
3328 if (scanning)
3329 wait_for_completion(&h->scan_wait);
3330 }
3331
3332 /**
3333 * scan_thread() - kernel thread used to rescan controllers
3334 * @data: Ignored.
3335 *
3336 * A kernel thread used scan for drive topology changes on
3337 * controllers. The thread processes only one controller at a time
3338 * using a queue. Controllers are added to the queue using
3339 * add_to_scan_list() and removed from the queue either after done
3340 * processing or using remove_from_scan_list().
3341 *
3342 * returns 0.
3343 **/
3344 static int scan_thread(void *data)
3345 {
3346 struct ctlr_info *h;
3347
3348 while (1) {
3349 set_current_state(TASK_INTERRUPTIBLE);
3350 schedule();
3351 if (kthread_should_stop())
3352 break;
3353
3354 while (1) {
3355 mutex_lock(&scan_mutex);
3356 if (list_empty(&scan_q)) {
3357 mutex_unlock(&scan_mutex);
3358 break;
3359 }
3360
3361 h = list_entry(scan_q.next,
3362 struct ctlr_info,
3363 scan_list);
3364 list_del(&h->scan_list);
3365 h->busy_scanning = 1;
3366 mutex_unlock(&scan_mutex);
3367
3368 if (h) {
3369 rebuild_lun_table(h, 0);
3370 complete_all(&h->scan_wait);
3371 mutex_lock(&scan_mutex);
3372 h->busy_scanning = 0;
3373 mutex_unlock(&scan_mutex);
3374 }
3375 }
3376 }
3377
3378 return 0;
3379 }
3380
3381 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3382 {
3383 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3384 return 0;
3385
3386 switch (c->err_info->SenseInfo[12]) {
3387 case STATE_CHANGED:
3388 printk(KERN_WARNING "cciss%d: a state change "
3389 "detected, command retried\n", h->ctlr);
3390 return 1;
3391 break;
3392 case LUN_FAILED:
3393 printk(KERN_WARNING "cciss%d: LUN failure "
3394 "detected, action required\n", h->ctlr);
3395 return 1;
3396 break;
3397 case REPORT_LUNS_CHANGED:
3398 printk(KERN_WARNING "cciss%d: report LUN data "
3399 "changed\n", h->ctlr);
3400 add_to_scan_list(h);
3401 wake_up_process(cciss_scan_thread);
3402 return 1;
3403 break;
3404 case POWER_OR_RESET:
3405 printk(KERN_WARNING "cciss%d: a power on "
3406 "or device reset detected\n", h->ctlr);
3407 return 1;
3408 break;
3409 case UNIT_ATTENTION_CLEARED:
3410 printk(KERN_WARNING "cciss%d: unit attention "
3411 "cleared by another initiator\n", h->ctlr);
3412 return 1;
3413 break;
3414 default:
3415 printk(KERN_WARNING "cciss%d: unknown "
3416 "unit attention detected\n", h->ctlr);
3417 return 1;
3418 }
3419 }
3420
3421 /*
3422 * We cannot read the structure directly, for portability we must use
3423 * the io functions.
3424 * This is for debug only.
3425 */
3426 #ifdef CCISS_DEBUG
3427 static void print_cfg_table(CfgTable_struct *tb)
3428 {
3429 int i;
3430 char temp_name[17];
3431
3432 printk("Controller Configuration information\n");
3433 printk("------------------------------------\n");
3434 for (i = 0; i < 4; i++)
3435 temp_name[i] = readb(&(tb->Signature[i]));
3436 temp_name[4] = '\0';
3437 printk(" Signature = %s\n", temp_name);
3438 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3439 printk(" Transport methods supported = 0x%x\n",
3440 readl(&(tb->TransportSupport)));
3441 printk(" Transport methods active = 0x%x\n",
3442 readl(&(tb->TransportActive)));
3443 printk(" Requested transport Method = 0x%x\n",
3444 readl(&(tb->HostWrite.TransportRequest)));
3445 printk(" Coalesce Interrupt Delay = 0x%x\n",
3446 readl(&(tb->HostWrite.CoalIntDelay)));
3447 printk(" Coalesce Interrupt Count = 0x%x\n",
3448 readl(&(tb->HostWrite.CoalIntCount)));
3449 printk(" Max outstanding commands = 0x%d\n",
3450 readl(&(tb->CmdsOutMax)));
3451 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3452 for (i = 0; i < 16; i++)
3453 temp_name[i] = readb(&(tb->ServerName[i]));
3454 temp_name[16] = '\0';
3455 printk(" Server Name = %s\n", temp_name);
3456 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3457 }
3458 #endif /* CCISS_DEBUG */
3459
3460 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3461 {
3462 int i, offset, mem_type, bar_type;
3463 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3464 return 0;
3465 offset = 0;
3466 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3467 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3468 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3469 offset += 4;
3470 else {
3471 mem_type = pci_resource_flags(pdev, i) &
3472 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3473 switch (mem_type) {
3474 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3475 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3476 offset += 4; /* 32 bit */
3477 break;
3478 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3479 offset += 8;
3480 break;
3481 default: /* reserved in PCI 2.2 */
3482 printk(KERN_WARNING
3483 "Base address is invalid\n");
3484 return -1;
3485 break;
3486 }
3487 }
3488 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3489 return i + 1;
3490 }
3491 return -1;
3492 }
3493
3494 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3495 * controllers that are capable. If not, we use IO-APIC mode.
3496 */
3497
3498 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3499 struct pci_dev *pdev, __u32 board_id)
3500 {
3501 #ifdef CONFIG_PCI_MSI
3502 int err;
3503 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3504 {0, 2}, {0, 3}
3505 };
3506
3507 /* Some boards advertise MSI but don't really support it */
3508 if ((board_id == 0x40700E11) ||
3509 (board_id == 0x40800E11) ||
3510 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3511 goto default_int_mode;
3512
3513 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3514 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3515 if (!err) {
3516 c->intr[0] = cciss_msix_entries[0].vector;
3517 c->intr[1] = cciss_msix_entries[1].vector;
3518 c->intr[2] = cciss_msix_entries[2].vector;
3519 c->intr[3] = cciss_msix_entries[3].vector;
3520 c->msix_vector = 1;
3521 return;
3522 }
3523 if (err > 0) {
3524 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3525 "available\n", err);
3526 goto default_int_mode;
3527 } else {
3528 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3529 err);
3530 goto default_int_mode;
3531 }
3532 }
3533 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3534 if (!pci_enable_msi(pdev)) {
3535 c->msi_vector = 1;
3536 } else {
3537 printk(KERN_WARNING "cciss: MSI init failed\n");
3538 }
3539 }
3540 default_int_mode:
3541 #endif /* CONFIG_PCI_MSI */
3542 /* if we get here we're going to use the default interrupt mode */
3543 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3544 return;
3545 }
3546
3547 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3548 {
3549 ushort subsystem_vendor_id, subsystem_device_id, command;
3550 __u32 board_id, scratchpad = 0;
3551 __u64 cfg_offset;
3552 __u32 cfg_base_addr;
3553 __u64 cfg_base_addr_index;
3554 int i, err;
3555
3556 /* check to see if controller has been disabled */
3557 /* BEFORE trying to enable it */
3558 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3559 if (!(command & 0x02)) {
3560 printk(KERN_WARNING
3561 "cciss: controller appears to be disabled\n");
3562 return -ENODEV;
3563 }
3564
3565 err = pci_enable_device(pdev);
3566 if (err) {
3567 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3568 return err;
3569 }
3570
3571 err = pci_request_regions(pdev, "cciss");
3572 if (err) {
3573 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3574 "aborting\n");
3575 return err;
3576 }
3577
3578 subsystem_vendor_id = pdev->subsystem_vendor;
3579 subsystem_device_id = pdev->subsystem_device;
3580 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3581 subsystem_vendor_id);
3582
3583 #ifdef CCISS_DEBUG
3584 printk("command = %x\n", command);
3585 printk("irq = %x\n", pdev->irq);
3586 printk("board_id = %x\n", board_id);
3587 #endif /* CCISS_DEBUG */
3588
3589 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3590 * else we use the IO-APIC interrupt assigned to us by system ROM.
3591 */
3592 cciss_interrupt_mode(c, pdev, board_id);
3593
3594 /* find the memory BAR */
3595 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3596 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3597 break;
3598 }
3599 if (i == DEVICE_COUNT_RESOURCE) {
3600 printk(KERN_WARNING "cciss: No memory BAR found\n");
3601 err = -ENODEV;
3602 goto err_out_free_res;
3603 }
3604
3605 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3606 * already removed
3607 */
3608
3609 #ifdef CCISS_DEBUG
3610 printk("address 0 = %lx\n", c->paddr);
3611 #endif /* CCISS_DEBUG */
3612 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3613
3614 /* Wait for the board to become ready. (PCI hotplug needs this.)
3615 * We poll for up to 120 secs, once per 100ms. */
3616 for (i = 0; i < 1200; i++) {
3617 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3618 if (scratchpad == CCISS_FIRMWARE_READY)
3619 break;
3620 set_current_state(TASK_INTERRUPTIBLE);
3621 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3622 }
3623 if (scratchpad != CCISS_FIRMWARE_READY) {
3624 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3625 err = -ENODEV;
3626 goto err_out_free_res;
3627 }
3628
3629 /* get the address index number */
3630 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3631 cfg_base_addr &= (__u32) 0x0000ffff;
3632 #ifdef CCISS_DEBUG
3633 printk("cfg base address = %x\n", cfg_base_addr);
3634 #endif /* CCISS_DEBUG */
3635 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3636 #ifdef CCISS_DEBUG
3637 printk("cfg base address index = %llx\n",
3638 (unsigned long long)cfg_base_addr_index);
3639 #endif /* CCISS_DEBUG */
3640 if (cfg_base_addr_index == -1) {
3641 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3642 err = -ENODEV;
3643 goto err_out_free_res;
3644 }
3645
3646 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3647 #ifdef CCISS_DEBUG
3648 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3649 #endif /* CCISS_DEBUG */
3650 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3651 cfg_base_addr_index) +
3652 cfg_offset, sizeof(CfgTable_struct));
3653 c->board_id = board_id;
3654
3655 #ifdef CCISS_DEBUG
3656 print_cfg_table(c->cfgtable);
3657 #endif /* CCISS_DEBUG */
3658
3659 /* Some controllers support Zero Memory Raid (ZMR).
3660 * When configured in ZMR mode the number of supported
3661 * commands drops to 64. So instead of just setting an
3662 * arbitrary value we make the driver a little smarter.
3663 * We read the config table to tell us how many commands
3664 * are supported on the controller then subtract 4 to
3665 * leave a little room for ioctl calls.
3666 */
3667 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3668 for (i = 0; i < ARRAY_SIZE(products); i++) {
3669 if (board_id == products[i].board_id) {
3670 c->product_name = products[i].product_name;
3671 c->access = *(products[i].access);
3672 c->nr_cmds = c->max_commands - 4;
3673 break;
3674 }
3675 }
3676 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3677 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3678 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3679 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3680 printk("Does not appear to be a valid CISS config table\n");
3681 err = -ENODEV;
3682 goto err_out_free_res;
3683 }
3684 /* We didn't find the controller in our list. We know the
3685 * signature is valid. If it's an HP device let's try to
3686 * bind to the device and fire it up. Otherwise we bail.
3687 */
3688 if (i == ARRAY_SIZE(products)) {
3689 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3690 c->product_name = products[i-1].product_name;
3691 c->access = *(products[i-1].access);
3692 c->nr_cmds = c->max_commands - 4;
3693 printk(KERN_WARNING "cciss: This is an unknown "
3694 "Smart Array controller.\n"
3695 "cciss: Please update to the latest driver "
3696 "available from www.hp.com.\n");
3697 } else {
3698 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3699 " to access the Smart Array controller %08lx\n"
3700 , (unsigned long)board_id);
3701 err = -ENODEV;
3702 goto err_out_free_res;
3703 }
3704 }
3705 #ifdef CONFIG_X86
3706 {
3707 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3708 __u32 prefetch;
3709 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3710 prefetch |= 0x100;
3711 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3712 }
3713 #endif
3714
3715 /* Disabling DMA prefetch and refetch for the P600.
3716 * An ASIC bug may result in accesses to invalid memory addresses.
3717 * We've disabled prefetch for some time now. Testing with XEN
3718 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3719 */
3720 if(board_id == 0x3225103C) {
3721 __u32 dma_prefetch;
3722 __u32 dma_refetch;
3723 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3724 dma_prefetch |= 0x8000;
3725 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3726 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3727 dma_refetch |= 0x1;
3728 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3729 }
3730
3731 #ifdef CCISS_DEBUG
3732 printk("Trying to put board into Simple mode\n");
3733 #endif /* CCISS_DEBUG */
3734 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3735 /* Update the field, and then ring the doorbell */
3736 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3737 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3738
3739 /* under certain very rare conditions, this can take awhile.
3740 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3741 * as we enter this code.) */
3742 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3743 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3744 break;
3745 /* delay and try again */
3746 set_current_state(TASK_INTERRUPTIBLE);
3747 schedule_timeout(msecs_to_jiffies(1));
3748 }
3749
3750 #ifdef CCISS_DEBUG
3751 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3752 readl(c->vaddr + SA5_DOORBELL));
3753 #endif /* CCISS_DEBUG */
3754 #ifdef CCISS_DEBUG
3755 print_cfg_table(c->cfgtable);
3756 #endif /* CCISS_DEBUG */
3757
3758 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3759 printk(KERN_WARNING "cciss: unable to get board into"
3760 " simple mode\n");
3761 err = -ENODEV;
3762 goto err_out_free_res;
3763 }
3764 return 0;
3765
3766 err_out_free_res:
3767 /*
3768 * Deliberately omit pci_disable_device(): it does something nasty to
3769 * Smart Array controllers that pci_enable_device does not undo
3770 */
3771 pci_release_regions(pdev);
3772 return err;
3773 }
3774
3775 /* Function to find the first free pointer into our hba[] array
3776 * Returns -1 if no free entries are left.
3777 */
3778 static int alloc_cciss_hba(void)
3779 {
3780 int i;
3781
3782 for (i = 0; i < MAX_CTLR; i++) {
3783 if (!hba[i]) {
3784 ctlr_info_t *p;
3785
3786 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3787 if (!p)
3788 goto Enomem;
3789 hba[i] = p;
3790 return i;
3791 }
3792 }
3793 printk(KERN_WARNING "cciss: This driver supports a maximum"
3794 " of %d controllers.\n", MAX_CTLR);
3795 return -1;
3796 Enomem:
3797 printk(KERN_ERR "cciss: out of memory.\n");
3798 return -1;
3799 }
3800
3801 static void free_hba(int i)
3802 {
3803 ctlr_info_t *p = hba[i];
3804 int n;
3805
3806 hba[i] = NULL;
3807 for (n = 0; n < CISS_MAX_LUN; n++)
3808 put_disk(p->gendisk[n]);
3809 kfree(p);
3810 }
3811
3812 /* Send a message CDB to the firmware. */
3813 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3814 {
3815 typedef struct {
3816 CommandListHeader_struct CommandHeader;
3817 RequestBlock_struct Request;
3818 ErrDescriptor_struct ErrorDescriptor;
3819 } Command;
3820 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3821 Command *cmd;
3822 dma_addr_t paddr64;
3823 uint32_t paddr32, tag;
3824 void __iomem *vaddr;
3825 int i, err;
3826
3827 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3828 if (vaddr == NULL)
3829 return -ENOMEM;
3830
3831 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3832 CCISS commands, so they must be allocated from the lower 4GiB of
3833 memory. */
3834 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3835 if (err) {
3836 iounmap(vaddr);
3837 return -ENOMEM;
3838 }
3839
3840 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3841 if (cmd == NULL) {
3842 iounmap(vaddr);
3843 return -ENOMEM;
3844 }
3845
3846 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3847 although there's no guarantee, we assume that the address is at
3848 least 4-byte aligned (most likely, it's page-aligned). */
3849 paddr32 = paddr64;
3850
3851 cmd->CommandHeader.ReplyQueue = 0;
3852 cmd->CommandHeader.SGList = 0;
3853 cmd->CommandHeader.SGTotal = 0;
3854 cmd->CommandHeader.Tag.lower = paddr32;
3855 cmd->CommandHeader.Tag.upper = 0;
3856 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3857
3858 cmd->Request.CDBLen = 16;
3859 cmd->Request.Type.Type = TYPE_MSG;
3860 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3861 cmd->Request.Type.Direction = XFER_NONE;
3862 cmd->Request.Timeout = 0; /* Don't time out */
3863 cmd->Request.CDB[0] = opcode;
3864 cmd->Request.CDB[1] = type;
3865 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
3866
3867 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
3868 cmd->ErrorDescriptor.Addr.upper = 0;
3869 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
3870
3871 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3872
3873 for (i = 0; i < 10; i++) {
3874 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3875 if ((tag & ~3) == paddr32)
3876 break;
3877 schedule_timeout_uninterruptible(HZ);
3878 }
3879
3880 iounmap(vaddr);
3881
3882 /* we leak the DMA buffer here ... no choice since the controller could
3883 still complete the command. */
3884 if (i == 10) {
3885 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
3886 opcode, type);
3887 return -ETIMEDOUT;
3888 }
3889
3890 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3891
3892 if (tag & 2) {
3893 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
3894 opcode, type);
3895 return -EIO;
3896 }
3897
3898 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
3899 opcode, type);
3900 return 0;
3901 }
3902
3903 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
3904 #define cciss_noop(p) cciss_message(p, 3, 0)
3905
3906 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
3907 {
3908 /* the #defines are stolen from drivers/pci/msi.h. */
3909 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
3910 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
3911
3912 int pos;
3913 u16 control = 0;
3914
3915 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3916 if (pos) {
3917 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3918 if (control & PCI_MSI_FLAGS_ENABLE) {
3919 printk(KERN_INFO "cciss: resetting MSI\n");
3920 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
3921 }
3922 }
3923
3924 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3925 if (pos) {
3926 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3927 if (control & PCI_MSIX_FLAGS_ENABLE) {
3928 printk(KERN_INFO "cciss: resetting MSI-X\n");
3929 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
3930 }
3931 }
3932
3933 return 0;
3934 }
3935
3936 /* This does a hard reset of the controller using PCI power management
3937 * states. */
3938 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
3939 {
3940 u16 pmcsr, saved_config_space[32];
3941 int i, pos;
3942
3943 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
3944
3945 /* This is very nearly the same thing as
3946
3947 pci_save_state(pci_dev);
3948 pci_set_power_state(pci_dev, PCI_D3hot);
3949 pci_set_power_state(pci_dev, PCI_D0);
3950 pci_restore_state(pci_dev);
3951
3952 but we can't use these nice canned kernel routines on
3953 kexec, because they also check the MSI/MSI-X state in PCI
3954 configuration space and do the wrong thing when it is
3955 set/cleared. Also, the pci_save/restore_state functions
3956 violate the ordering requirements for restoring the
3957 configuration space from the CCISS document (see the
3958 comment below). So we roll our own .... */
3959
3960 for (i = 0; i < 32; i++)
3961 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3962
3963 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3964 if (pos == 0) {
3965 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
3966 return -ENODEV;
3967 }
3968
3969 /* Quoting from the Open CISS Specification: "The Power
3970 * Management Control/Status Register (CSR) controls the power
3971 * state of the device. The normal operating state is D0,
3972 * CSR=00h. The software off state is D3, CSR=03h. To reset
3973 * the controller, place the interface device in D3 then to
3974 * D0, this causes a secondary PCI reset which will reset the
3975 * controller." */
3976
3977 /* enter the D3hot power management state */
3978 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3979 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3980 pmcsr |= PCI_D3hot;
3981 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3982
3983 schedule_timeout_uninterruptible(HZ >> 1);
3984
3985 /* enter the D0 power management state */
3986 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3987 pmcsr |= PCI_D0;
3988 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3989
3990 schedule_timeout_uninterruptible(HZ >> 1);
3991
3992 /* Restore the PCI configuration space. The Open CISS
3993 * Specification says, "Restore the PCI Configuration
3994 * Registers, offsets 00h through 60h. It is important to
3995 * restore the command register, 16-bits at offset 04h,
3996 * last. Do not restore the configuration status register,
3997 * 16-bits at offset 06h." Note that the offset is 2*i. */
3998 for (i = 0; i < 32; i++) {
3999 if (i == 2 || i == 3)
4000 continue;
4001 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4002 }
4003 wmb();
4004 pci_write_config_word(pdev, 4, saved_config_space[2]);
4005
4006 return 0;
4007 }
4008
4009 /*
4010 * This is it. Find all the controllers and register them. I really hate
4011 * stealing all these major device numbers.
4012 * returns the number of block devices registered.
4013 */
4014 static int __devinit cciss_init_one(struct pci_dev *pdev,
4015 const struct pci_device_id *ent)
4016 {
4017 int i;
4018 int j = 0;
4019 int rc;
4020 int dac, return_code;
4021 InquiryData_struct *inq_buff;
4022
4023 if (reset_devices) {
4024 /* Reset the controller with a PCI power-cycle */
4025 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4026 return -ENODEV;
4027
4028 /* Now try to get the controller to respond to a no-op. Some
4029 devices (notably the HP Smart Array 5i Controller) need
4030 up to 30 seconds to respond. */
4031 for (i=0; i<30; i++) {
4032 if (cciss_noop(pdev) == 0)
4033 break;
4034
4035 schedule_timeout_uninterruptible(HZ);
4036 }
4037 if (i == 30) {
4038 printk(KERN_ERR "cciss: controller seems dead\n");
4039 return -EBUSY;
4040 }
4041 }
4042
4043 i = alloc_cciss_hba();
4044 if (i < 0)
4045 return -1;
4046
4047 hba[i]->busy_initializing = 1;
4048 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4049 INIT_HLIST_HEAD(&hba[i]->reqQ);
4050 mutex_init(&hba[i]->busy_shutting_down);
4051
4052 if (cciss_pci_init(hba[i], pdev) != 0)
4053 goto clean0;
4054
4055 sprintf(hba[i]->devname, "cciss%d", i);
4056 hba[i]->ctlr = i;
4057 hba[i]->pdev = pdev;
4058
4059 init_completion(&hba[i]->scan_wait);
4060
4061 if (cciss_create_hba_sysfs_entry(hba[i]))
4062 goto clean0;
4063
4064 /* configure PCI DMA stuff */
4065 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4066 dac = 1;
4067 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4068 dac = 0;
4069 else {
4070 printk(KERN_ERR "cciss: no suitable DMA available\n");
4071 goto clean1;
4072 }
4073
4074 /*
4075 * register with the major number, or get a dynamic major number
4076 * by passing 0 as argument. This is done for greater than
4077 * 8 controller support.
4078 */
4079 if (i < MAX_CTLR_ORIG)
4080 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4081 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4082 if (rc == -EBUSY || rc == -EINVAL) {
4083 printk(KERN_ERR
4084 "cciss: Unable to get major number %d for %s "
4085 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4086 goto clean1;
4087 } else {
4088 if (i >= MAX_CTLR_ORIG)
4089 hba[i]->major = rc;
4090 }
4091
4092 /* make sure the board interrupts are off */
4093 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4094 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4095 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4096 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4097 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4098 goto clean2;
4099 }
4100
4101 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4102 hba[i]->devname, pdev->device, pci_name(pdev),
4103 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4104
4105 hba[i]->cmd_pool_bits =
4106 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4107 * sizeof(unsigned long), GFP_KERNEL);
4108 hba[i]->cmd_pool = (CommandList_struct *)
4109 pci_alloc_consistent(hba[i]->pdev,
4110 hba[i]->nr_cmds * sizeof(CommandList_struct),
4111 &(hba[i]->cmd_pool_dhandle));
4112 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4113 pci_alloc_consistent(hba[i]->pdev,
4114 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4115 &(hba[i]->errinfo_pool_dhandle));
4116 if ((hba[i]->cmd_pool_bits == NULL)
4117 || (hba[i]->cmd_pool == NULL)
4118 || (hba[i]->errinfo_pool == NULL)) {
4119 printk(KERN_ERR "cciss: out of memory");
4120 goto clean4;
4121 }
4122 spin_lock_init(&hba[i]->lock);
4123
4124 /* Initialize the pdev driver private data.
4125 have it point to hba[i]. */
4126 pci_set_drvdata(pdev, hba[i]);
4127 /* command and error info recs zeroed out before
4128 they are used */
4129 memset(hba[i]->cmd_pool_bits, 0,
4130 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4131 * sizeof(unsigned long));
4132
4133 hba[i]->num_luns = 0;
4134 hba[i]->highest_lun = -1;
4135 for (j = 0; j < CISS_MAX_LUN; j++) {
4136 hba[i]->drv[j].raid_level = -1;
4137 hba[i]->drv[j].queue = NULL;
4138 hba[i]->gendisk[j] = NULL;
4139 }
4140
4141 cciss_scsi_setup(i);
4142
4143 /* Turn the interrupts on so we can service requests */
4144 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4145
4146 /* Get the firmware version */
4147 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4148 if (inq_buff == NULL) {
4149 printk(KERN_ERR "cciss: out of memory\n");
4150 goto clean4;
4151 }
4152
4153 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4154 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4155 if (return_code == IO_OK) {
4156 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4157 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4158 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4159 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4160 } else { /* send command failed */
4161 printk(KERN_WARNING "cciss: unable to determine firmware"
4162 " version of controller\n");
4163 }
4164 kfree(inq_buff);
4165
4166 cciss_procinit(i);
4167
4168 hba[i]->cciss_max_sectors = 2048;
4169
4170 rebuild_lun_table(hba[i], 1);
4171 hba[i]->busy_initializing = 0;
4172 return 1;
4173
4174 clean4:
4175 kfree(hba[i]->cmd_pool_bits);
4176 if (hba[i]->cmd_pool)
4177 pci_free_consistent(hba[i]->pdev,
4178 hba[i]->nr_cmds * sizeof(CommandList_struct),
4179 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4180 if (hba[i]->errinfo_pool)
4181 pci_free_consistent(hba[i]->pdev,
4182 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4183 hba[i]->errinfo_pool,
4184 hba[i]->errinfo_pool_dhandle);
4185 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4186 clean2:
4187 unregister_blkdev(hba[i]->major, hba[i]->devname);
4188 clean1:
4189 cciss_destroy_hba_sysfs_entry(hba[i]);
4190 clean0:
4191 hba[i]->busy_initializing = 0;
4192 /* cleanup any queues that may have been initialized */
4193 for (j=0; j <= hba[i]->highest_lun; j++){
4194 drive_info_struct *drv = &(hba[i]->drv[j]);
4195 if (drv->queue)
4196 blk_cleanup_queue(drv->queue);
4197 }
4198 /*
4199 * Deliberately omit pci_disable_device(): it does something nasty to
4200 * Smart Array controllers that pci_enable_device does not undo
4201 */
4202 pci_release_regions(pdev);
4203 pci_set_drvdata(pdev, NULL);
4204 free_hba(i);
4205 return -1;
4206 }
4207
4208 static void cciss_shutdown(struct pci_dev *pdev)
4209 {
4210 ctlr_info_t *tmp_ptr;
4211 int i;
4212 char flush_buf[4];
4213 int return_code;
4214
4215 tmp_ptr = pci_get_drvdata(pdev);
4216 if (tmp_ptr == NULL)
4217 return;
4218 i = tmp_ptr->ctlr;
4219 if (hba[i] == NULL)
4220 return;
4221
4222 /* Turn board interrupts off and send the flush cache command */
4223 /* sendcmd will turn off interrupt, and send the flush...
4224 * To write all data in the battery backed cache to disks */
4225 memset(flush_buf, 0, 4);
4226 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4227 CTLR_LUNID, TYPE_CMD);
4228 if (return_code == IO_OK) {
4229 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4230 } else {
4231 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4232 }
4233 free_irq(hba[i]->intr[2], hba[i]);
4234 }
4235
4236 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4237 {
4238 ctlr_info_t *tmp_ptr;
4239 int i, j;
4240
4241 if (pci_get_drvdata(pdev) == NULL) {
4242 printk(KERN_ERR "cciss: Unable to remove device \n");
4243 return;
4244 }
4245
4246 tmp_ptr = pci_get_drvdata(pdev);
4247 i = tmp_ptr->ctlr;
4248 if (hba[i] == NULL) {
4249 printk(KERN_ERR "cciss: device appears to "
4250 "already be removed \n");
4251 return;
4252 }
4253
4254 mutex_lock(&hba[i]->busy_shutting_down);
4255
4256 remove_from_scan_list(hba[i]);
4257 remove_proc_entry(hba[i]->devname, proc_cciss);
4258 unregister_blkdev(hba[i]->major, hba[i]->devname);
4259
4260 /* remove it from the disk list */
4261 for (j = 0; j < CISS_MAX_LUN; j++) {
4262 struct gendisk *disk = hba[i]->gendisk[j];
4263 if (disk) {
4264 struct request_queue *q = disk->queue;
4265
4266 if (disk->flags & GENHD_FL_UP)
4267 del_gendisk(disk);
4268 if (q)
4269 blk_cleanup_queue(q);
4270 }
4271 if (hba[i]->drv[j].raid_level != -1)
4272 cciss_destroy_ld_sysfs_entry(&hba[i]->drv[j]);
4273
4274 }
4275
4276 #ifdef CONFIG_CISS_SCSI_TAPE
4277 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4278 #endif
4279
4280 cciss_shutdown(pdev);
4281
4282 #ifdef CONFIG_PCI_MSI
4283 if (hba[i]->msix_vector)
4284 pci_disable_msix(hba[i]->pdev);
4285 else if (hba[i]->msi_vector)
4286 pci_disable_msi(hba[i]->pdev);
4287 #endif /* CONFIG_PCI_MSI */
4288
4289 iounmap(hba[i]->vaddr);
4290
4291 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4292 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4293 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4294 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4295 kfree(hba[i]->cmd_pool_bits);
4296 /*
4297 * Deliberately omit pci_disable_device(): it does something nasty to
4298 * Smart Array controllers that pci_enable_device does not undo
4299 */
4300 pci_release_regions(pdev);
4301 pci_set_drvdata(pdev, NULL);
4302 cciss_destroy_hba_sysfs_entry(hba[i]);
4303 mutex_unlock(&hba[i]->busy_shutting_down);
4304 free_hba(i);
4305 }
4306
4307 static struct pci_driver cciss_pci_driver = {
4308 .name = "cciss",
4309 .probe = cciss_init_one,
4310 .remove = __devexit_p(cciss_remove_one),
4311 .id_table = cciss_pci_device_id, /* id_table */
4312 .shutdown = cciss_shutdown,
4313 };
4314
4315 /*
4316 * This is it. Register the PCI driver information for the cards we control
4317 * the OS will call our registered routines when it finds one of our cards.
4318 */
4319 static int __init cciss_init(void)
4320 {
4321 int err;
4322
4323 /*
4324 * The hardware requires that commands are aligned on a 64-bit
4325 * boundary. Given that we use pci_alloc_consistent() to allocate an
4326 * array of them, the size must be a multiple of 8 bytes.
4327 */
4328 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4329
4330 printk(KERN_INFO DRIVER_NAME "\n");
4331
4332 err = bus_register(&cciss_bus_type);
4333 if (err)
4334 return err;
4335
4336 /* Start the scan thread */
4337 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4338 if (IS_ERR(cciss_scan_thread)) {
4339 err = PTR_ERR(cciss_scan_thread);
4340 goto err_bus_unregister;
4341 }
4342
4343 /* Register for our PCI devices */
4344 err = pci_register_driver(&cciss_pci_driver);
4345 if (err)
4346 goto err_thread_stop;
4347
4348 return 0;
4349
4350 err_thread_stop:
4351 kthread_stop(cciss_scan_thread);
4352 err_bus_unregister:
4353 bus_unregister(&cciss_bus_type);
4354
4355 return err;
4356 }
4357
4358 static void __exit cciss_cleanup(void)
4359 {
4360 int i;
4361
4362 pci_unregister_driver(&cciss_pci_driver);
4363 /* double check that all controller entrys have been removed */
4364 for (i = 0; i < MAX_CTLR; i++) {
4365 if (hba[i] != NULL) {
4366 printk(KERN_WARNING "cciss: had to remove"
4367 " controller %d\n", i);
4368 cciss_remove_one(hba[i]->pdev);
4369 }
4370 }
4371 kthread_stop(cciss_scan_thread);
4372 remove_proc_entry("driver/cciss", NULL);
4373 bus_unregister(&cciss_bus_type);
4374 }
4375
4376 static void fail_all_cmds(unsigned long ctlr)
4377 {
4378 /* If we get here, the board is apparently dead. */
4379 ctlr_info_t *h = hba[ctlr];
4380 CommandList_struct *c;
4381 unsigned long flags;
4382
4383 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4384 h->alive = 0; /* the controller apparently died... */
4385
4386 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4387
4388 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4389
4390 /* move everything off the request queue onto the completed queue */
4391 while (!hlist_empty(&h->reqQ)) {
4392 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4393 removeQ(c);
4394 h->Qdepth--;
4395 addQ(&h->cmpQ, c);
4396 }
4397
4398 /* Now, fail everything on the completed queue with a HW error */
4399 while (!hlist_empty(&h->cmpQ)) {
4400 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4401 removeQ(c);
4402 if (c->cmd_type != CMD_MSG_STALE)
4403 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4404 if (c->cmd_type == CMD_RWREQ) {
4405 complete_command(h, c, 0);
4406 } else if (c->cmd_type == CMD_IOCTL_PEND)
4407 complete(c->waiting);
4408 #ifdef CONFIG_CISS_SCSI_TAPE
4409 else if (c->cmd_type == CMD_SCSI)
4410 complete_scsi_command(c, 0, 0);
4411 #endif
4412 }
4413 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4414 return;
4415 }
4416
4417 module_init(cciss_init);
4418 module_exit(cciss_cleanup);
This page took 0.158675 seconds and 4 git commands to generate.