cciss: switch to using hlist for command list management
[deliverable/linux.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <linux/blktrace_api.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44
45 #include <linux/dma-mapping.h>
46 #include <linux/blkdev.h>
47 #include <linux/genhd.h>
48 #include <linux/completion.h>
49 #include <scsi/scsi.h>
50 #include <scsi/sg.h>
51 #include <scsi/scsi_ioctl.h>
52 #include <linux/cdrom.h>
53 #include <linux/scatterlist.h>
54
55 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
56 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
57 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
58
59 /* Embedded module documentation macros - see modules.h */
60 MODULE_AUTHOR("Hewlett-Packard Company");
61 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
62 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
63 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
64 " Smart Array G2 Series SAS/SATA Controllers");
65 MODULE_VERSION("3.6.20");
66 MODULE_LICENSE("GPL");
67
68 #include "cciss_cmd.h"
69 #include "cciss.h"
70 #include <linux/cciss_ioctl.h>
71
72 /* define the PCI info for the cards we can control */
73 static const struct pci_device_id cciss_pci_device_id[] = {
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
102 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
103 {0,}
104 };
105
106 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
107
108 /* board_id = Subsystem Device ID & Vendor ID
109 * product = Marketing Name for the board
110 * access = Address of the struct of function pointers
111 */
112 static struct board_type products[] = {
113 {0x40700E11, "Smart Array 5300", &SA5_access},
114 {0x40800E11, "Smart Array 5i", &SA5B_access},
115 {0x40820E11, "Smart Array 532", &SA5B_access},
116 {0x40830E11, "Smart Array 5312", &SA5B_access},
117 {0x409A0E11, "Smart Array 641", &SA5_access},
118 {0x409B0E11, "Smart Array 642", &SA5_access},
119 {0x409C0E11, "Smart Array 6400", &SA5_access},
120 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
121 {0x40910E11, "Smart Array 6i", &SA5_access},
122 {0x3225103C, "Smart Array P600", &SA5_access},
123 {0x3223103C, "Smart Array P800", &SA5_access},
124 {0x3234103C, "Smart Array P400", &SA5_access},
125 {0x3235103C, "Smart Array P400i", &SA5_access},
126 {0x3211103C, "Smart Array E200i", &SA5_access},
127 {0x3212103C, "Smart Array E200", &SA5_access},
128 {0x3213103C, "Smart Array E200i", &SA5_access},
129 {0x3214103C, "Smart Array E200i", &SA5_access},
130 {0x3215103C, "Smart Array E200i", &SA5_access},
131 {0x3237103C, "Smart Array E500", &SA5_access},
132 {0x323D103C, "Smart Array P700m", &SA5_access},
133 {0x3241103C, "Smart Array P212", &SA5_access},
134 {0x3243103C, "Smart Array P410", &SA5_access},
135 {0x3245103C, "Smart Array P410i", &SA5_access},
136 {0x3247103C, "Smart Array P411", &SA5_access},
137 {0x3249103C, "Smart Array P812", &SA5_access},
138 {0x324A103C, "Smart Array P712m", &SA5_access},
139 {0x324B103C, "Smart Array P711m", &SA5_access},
140 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
141 };
142
143 /* How long to wait (in milliseconds) for board to go into simple mode */
144 #define MAX_CONFIG_WAIT 30000
145 #define MAX_IOCTL_CONFIG_WAIT 1000
146
147 /*define how many times we will try a command because of bus resets */
148 #define MAX_CMD_RETRIES 3
149
150 #define MAX_CTLR 32
151
152 /* Originally cciss driver only supports 8 major numbers */
153 #define MAX_CTLR_ORIG 8
154
155 static ctlr_info_t *hba[MAX_CTLR];
156
157 static void do_cciss_request(struct request_queue *q);
158 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
159 static int cciss_open(struct block_device *bdev, fmode_t mode);
160 static int cciss_release(struct gendisk *disk, fmode_t mode);
161 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
162 unsigned int cmd, unsigned long arg);
163 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
164
165 static int cciss_revalidate(struct gendisk *disk);
166 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
167 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
168 int clear_all);
169
170 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
171 sector_t *total_size, unsigned int *block_size);
172 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
173 sector_t *total_size, unsigned int *block_size);
174 static void cciss_geometry_inquiry(int ctlr, int logvol,
175 int withirq, sector_t total_size,
176 unsigned int block_size, InquiryData_struct *inq_buff,
177 drive_info_struct *drv);
178 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
179 __u32);
180 static void start_io(ctlr_info_t *h);
181 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
182 unsigned int use_unit_num, unsigned int log_unit,
183 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
184 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
185 unsigned int use_unit_num, unsigned int log_unit,
186 __u8 page_code, int cmd_type);
187
188 static void fail_all_cmds(unsigned long ctlr);
189
190 #ifdef CONFIG_PROC_FS
191 static void cciss_procinit(int i);
192 #else
193 static void cciss_procinit(int i)
194 {
195 }
196 #endif /* CONFIG_PROC_FS */
197
198 #ifdef CONFIG_COMPAT
199 static int cciss_compat_ioctl(struct block_device *, fmode_t,
200 unsigned, unsigned long);
201 #endif
202
203 static struct block_device_operations cciss_fops = {
204 .owner = THIS_MODULE,
205 .open = cciss_open,
206 .release = cciss_release,
207 .locked_ioctl = cciss_ioctl,
208 .getgeo = cciss_getgeo,
209 #ifdef CONFIG_COMPAT
210 .compat_ioctl = cciss_compat_ioctl,
211 #endif
212 .revalidate_disk = cciss_revalidate,
213 };
214
215 /*
216 * Enqueuing and dequeuing functions for cmdlists.
217 */
218 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
219 {
220 hlist_add_head(&c->list, list);
221 }
222
223 static inline void removeQ(CommandList_struct *c)
224 {
225 if (WARN_ON(hlist_unhashed(&c->list)))
226 return;
227
228 hlist_del_init(&c->list);
229 }
230
231 #include "cciss_scsi.c" /* For SCSI tape support */
232
233 #define RAID_UNKNOWN 6
234
235 #ifdef CONFIG_PROC_FS
236
237 /*
238 * Report information about this controller.
239 */
240 #define ENG_GIG 1000000000
241 #define ENG_GIG_FACTOR (ENG_GIG/512)
242 #define ENGAGE_SCSI "engage scsi"
243 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
244 "UNKNOWN"
245 };
246
247 static struct proc_dir_entry *proc_cciss;
248
249 static void cciss_seq_show_header(struct seq_file *seq)
250 {
251 ctlr_info_t *h = seq->private;
252
253 seq_printf(seq, "%s: HP %s Controller\n"
254 "Board ID: 0x%08lx\n"
255 "Firmware Version: %c%c%c%c\n"
256 "IRQ: %d\n"
257 "Logical drives: %d\n"
258 "Current Q depth: %d\n"
259 "Current # commands on controller: %d\n"
260 "Max Q depth since init: %d\n"
261 "Max # commands on controller since init: %d\n"
262 "Max SG entries since init: %d\n",
263 h->devname,
264 h->product_name,
265 (unsigned long)h->board_id,
266 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
267 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
268 h->num_luns,
269 h->Qdepth, h->commands_outstanding,
270 h->maxQsinceinit, h->max_outstanding, h->maxSG);
271
272 #ifdef CONFIG_CISS_SCSI_TAPE
273 cciss_seq_tape_report(seq, h->ctlr);
274 #endif /* CONFIG_CISS_SCSI_TAPE */
275 }
276
277 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
278 {
279 ctlr_info_t *h = seq->private;
280 unsigned ctlr = h->ctlr;
281 unsigned long flags;
282
283 /* prevent displaying bogus info during configuration
284 * or deconfiguration of a logical volume
285 */
286 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
287 if (h->busy_configuring) {
288 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
289 return ERR_PTR(-EBUSY);
290 }
291 h->busy_configuring = 1;
292 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
293
294 if (*pos == 0)
295 cciss_seq_show_header(seq);
296
297 return pos;
298 }
299
300 static int cciss_seq_show(struct seq_file *seq, void *v)
301 {
302 sector_t vol_sz, vol_sz_frac;
303 ctlr_info_t *h = seq->private;
304 unsigned ctlr = h->ctlr;
305 loff_t *pos = v;
306 drive_info_struct *drv = &h->drv[*pos];
307
308 if (*pos > h->highest_lun)
309 return 0;
310
311 if (drv->heads == 0)
312 return 0;
313
314 vol_sz = drv->nr_blocks;
315 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
316 vol_sz_frac *= 100;
317 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
318
319 if (drv->raid_level > 5)
320 drv->raid_level = RAID_UNKNOWN;
321 seq_printf(seq, "cciss/c%dd%d:"
322 "\t%4u.%02uGB\tRAID %s\n",
323 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
324 raid_label[drv->raid_level]);
325 return 0;
326 }
327
328 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
329 {
330 ctlr_info_t *h = seq->private;
331
332 if (*pos > h->highest_lun)
333 return NULL;
334 *pos += 1;
335
336 return pos;
337 }
338
339 static void cciss_seq_stop(struct seq_file *seq, void *v)
340 {
341 ctlr_info_t *h = seq->private;
342
343 /* Only reset h->busy_configuring if we succeeded in setting
344 * it during cciss_seq_start. */
345 if (v == ERR_PTR(-EBUSY))
346 return;
347
348 h->busy_configuring = 0;
349 }
350
351 static struct seq_operations cciss_seq_ops = {
352 .start = cciss_seq_start,
353 .show = cciss_seq_show,
354 .next = cciss_seq_next,
355 .stop = cciss_seq_stop,
356 };
357
358 static int cciss_seq_open(struct inode *inode, struct file *file)
359 {
360 int ret = seq_open(file, &cciss_seq_ops);
361 struct seq_file *seq = file->private_data;
362
363 if (!ret)
364 seq->private = PDE(inode)->data;
365
366 return ret;
367 }
368
369 static ssize_t
370 cciss_proc_write(struct file *file, const char __user *buf,
371 size_t length, loff_t *ppos)
372 {
373 int err;
374 char *buffer;
375
376 #ifndef CONFIG_CISS_SCSI_TAPE
377 return -EINVAL;
378 #endif
379
380 if (!buf || length > PAGE_SIZE - 1)
381 return -EINVAL;
382
383 buffer = (char *)__get_free_page(GFP_KERNEL);
384 if (!buffer)
385 return -ENOMEM;
386
387 err = -EFAULT;
388 if (copy_from_user(buffer, buf, length))
389 goto out;
390 buffer[length] = '\0';
391
392 #ifdef CONFIG_CISS_SCSI_TAPE
393 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
394 struct seq_file *seq = file->private_data;
395 ctlr_info_t *h = seq->private;
396 int rc;
397
398 rc = cciss_engage_scsi(h->ctlr);
399 if (rc != 0)
400 err = -rc;
401 else
402 err = length;
403 } else
404 #endif /* CONFIG_CISS_SCSI_TAPE */
405 err = -EINVAL;
406 /* might be nice to have "disengage" too, but it's not
407 safely possible. (only 1 module use count, lock issues.) */
408
409 out:
410 free_page((unsigned long)buffer);
411 return err;
412 }
413
414 static struct file_operations cciss_proc_fops = {
415 .owner = THIS_MODULE,
416 .open = cciss_seq_open,
417 .read = seq_read,
418 .llseek = seq_lseek,
419 .release = seq_release,
420 .write = cciss_proc_write,
421 };
422
423 static void __devinit cciss_procinit(int i)
424 {
425 struct proc_dir_entry *pde;
426
427 if (proc_cciss == NULL)
428 proc_cciss = proc_mkdir("driver/cciss", NULL);
429 if (!proc_cciss)
430 return;
431 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
432 S_IROTH, proc_cciss,
433 &cciss_proc_fops, hba[i]);
434 }
435 #endif /* CONFIG_PROC_FS */
436
437 /*
438 * For operations that cannot sleep, a command block is allocated at init,
439 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
440 * which ones are free or in use. For operations that can wait for kmalloc
441 * to possible sleep, this routine can be called with get_from_pool set to 0.
442 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
443 */
444 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
445 {
446 CommandList_struct *c;
447 int i;
448 u64bit temp64;
449 dma_addr_t cmd_dma_handle, err_dma_handle;
450
451 if (!get_from_pool) {
452 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
453 sizeof(CommandList_struct), &cmd_dma_handle);
454 if (c == NULL)
455 return NULL;
456 memset(c, 0, sizeof(CommandList_struct));
457
458 c->cmdindex = -1;
459
460 c->err_info = (ErrorInfo_struct *)
461 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
462 &err_dma_handle);
463
464 if (c->err_info == NULL) {
465 pci_free_consistent(h->pdev,
466 sizeof(CommandList_struct), c, cmd_dma_handle);
467 return NULL;
468 }
469 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
470 } else { /* get it out of the controllers pool */
471
472 do {
473 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
474 if (i == h->nr_cmds)
475 return NULL;
476 } while (test_and_set_bit
477 (i & (BITS_PER_LONG - 1),
478 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
479 #ifdef CCISS_DEBUG
480 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
481 #endif
482 c = h->cmd_pool + i;
483 memset(c, 0, sizeof(CommandList_struct));
484 cmd_dma_handle = h->cmd_pool_dhandle
485 + i * sizeof(CommandList_struct);
486 c->err_info = h->errinfo_pool + i;
487 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
488 err_dma_handle = h->errinfo_pool_dhandle
489 + i * sizeof(ErrorInfo_struct);
490 h->nr_allocs++;
491
492 c->cmdindex = i;
493 }
494
495 INIT_HLIST_NODE(&c->list);
496 c->busaddr = (__u32) cmd_dma_handle;
497 temp64.val = (__u64) err_dma_handle;
498 c->ErrDesc.Addr.lower = temp64.val32.lower;
499 c->ErrDesc.Addr.upper = temp64.val32.upper;
500 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
501
502 c->ctlr = h->ctlr;
503 return c;
504 }
505
506 /*
507 * Frees a command block that was previously allocated with cmd_alloc().
508 */
509 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
510 {
511 int i;
512 u64bit temp64;
513
514 if (!got_from_pool) {
515 temp64.val32.lower = c->ErrDesc.Addr.lower;
516 temp64.val32.upper = c->ErrDesc.Addr.upper;
517 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
518 c->err_info, (dma_addr_t) temp64.val);
519 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
520 c, (dma_addr_t) c->busaddr);
521 } else {
522 i = c - h->cmd_pool;
523 clear_bit(i & (BITS_PER_LONG - 1),
524 h->cmd_pool_bits + (i / BITS_PER_LONG));
525 h->nr_frees++;
526 }
527 }
528
529 static inline ctlr_info_t *get_host(struct gendisk *disk)
530 {
531 return disk->queue->queuedata;
532 }
533
534 static inline drive_info_struct *get_drv(struct gendisk *disk)
535 {
536 return disk->private_data;
537 }
538
539 /*
540 * Open. Make sure the device is really there.
541 */
542 static int cciss_open(struct block_device *bdev, fmode_t mode)
543 {
544 ctlr_info_t *host = get_host(bdev->bd_disk);
545 drive_info_struct *drv = get_drv(bdev->bd_disk);
546
547 #ifdef CCISS_DEBUG
548 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
549 #endif /* CCISS_DEBUG */
550
551 if (host->busy_initializing || drv->busy_configuring)
552 return -EBUSY;
553 /*
554 * Root is allowed to open raw volume zero even if it's not configured
555 * so array config can still work. Root is also allowed to open any
556 * volume that has a LUN ID, so it can issue IOCTL to reread the
557 * disk information. I don't think I really like this
558 * but I'm already using way to many device nodes to claim another one
559 * for "raw controller".
560 */
561 if (drv->heads == 0) {
562 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
563 /* if not node 0 make sure it is a partition = 0 */
564 if (MINOR(bdev->bd_dev) & 0x0f) {
565 return -ENXIO;
566 /* if it is, make sure we have a LUN ID */
567 } else if (drv->LunID == 0) {
568 return -ENXIO;
569 }
570 }
571 if (!capable(CAP_SYS_ADMIN))
572 return -EPERM;
573 }
574 drv->usage_count++;
575 host->usage_count++;
576 return 0;
577 }
578
579 /*
580 * Close. Sync first.
581 */
582 static int cciss_release(struct gendisk *disk, fmode_t mode)
583 {
584 ctlr_info_t *host = get_host(disk);
585 drive_info_struct *drv = get_drv(disk);
586
587 #ifdef CCISS_DEBUG
588 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
589 #endif /* CCISS_DEBUG */
590
591 drv->usage_count--;
592 host->usage_count--;
593 return 0;
594 }
595
596 #ifdef CONFIG_COMPAT
597
598 static int do_ioctl(struct block_device *bdev, fmode_t mode,
599 unsigned cmd, unsigned long arg)
600 {
601 int ret;
602 lock_kernel();
603 ret = cciss_ioctl(bdev, mode, cmd, arg);
604 unlock_kernel();
605 return ret;
606 }
607
608 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
609 unsigned cmd, unsigned long arg);
610 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
611 unsigned cmd, unsigned long arg);
612
613 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
614 unsigned cmd, unsigned long arg)
615 {
616 switch (cmd) {
617 case CCISS_GETPCIINFO:
618 case CCISS_GETINTINFO:
619 case CCISS_SETINTINFO:
620 case CCISS_GETNODENAME:
621 case CCISS_SETNODENAME:
622 case CCISS_GETHEARTBEAT:
623 case CCISS_GETBUSTYPES:
624 case CCISS_GETFIRMVER:
625 case CCISS_GETDRIVVER:
626 case CCISS_REVALIDVOLS:
627 case CCISS_DEREGDISK:
628 case CCISS_REGNEWDISK:
629 case CCISS_REGNEWD:
630 case CCISS_RESCANDISK:
631 case CCISS_GETLUNINFO:
632 return do_ioctl(bdev, mode, cmd, arg);
633
634 case CCISS_PASSTHRU32:
635 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
636 case CCISS_BIG_PASSTHRU32:
637 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
638
639 default:
640 return -ENOIOCTLCMD;
641 }
642 }
643
644 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
645 unsigned cmd, unsigned long arg)
646 {
647 IOCTL32_Command_struct __user *arg32 =
648 (IOCTL32_Command_struct __user *) arg;
649 IOCTL_Command_struct arg64;
650 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
651 int err;
652 u32 cp;
653
654 err = 0;
655 err |=
656 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
657 sizeof(arg64.LUN_info));
658 err |=
659 copy_from_user(&arg64.Request, &arg32->Request,
660 sizeof(arg64.Request));
661 err |=
662 copy_from_user(&arg64.error_info, &arg32->error_info,
663 sizeof(arg64.error_info));
664 err |= get_user(arg64.buf_size, &arg32->buf_size);
665 err |= get_user(cp, &arg32->buf);
666 arg64.buf = compat_ptr(cp);
667 err |= copy_to_user(p, &arg64, sizeof(arg64));
668
669 if (err)
670 return -EFAULT;
671
672 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
673 if (err)
674 return err;
675 err |=
676 copy_in_user(&arg32->error_info, &p->error_info,
677 sizeof(arg32->error_info));
678 if (err)
679 return -EFAULT;
680 return err;
681 }
682
683 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
684 unsigned cmd, unsigned long arg)
685 {
686 BIG_IOCTL32_Command_struct __user *arg32 =
687 (BIG_IOCTL32_Command_struct __user *) arg;
688 BIG_IOCTL_Command_struct arg64;
689 BIG_IOCTL_Command_struct __user *p =
690 compat_alloc_user_space(sizeof(arg64));
691 int err;
692 u32 cp;
693
694 err = 0;
695 err |=
696 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
697 sizeof(arg64.LUN_info));
698 err |=
699 copy_from_user(&arg64.Request, &arg32->Request,
700 sizeof(arg64.Request));
701 err |=
702 copy_from_user(&arg64.error_info, &arg32->error_info,
703 sizeof(arg64.error_info));
704 err |= get_user(arg64.buf_size, &arg32->buf_size);
705 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
706 err |= get_user(cp, &arg32->buf);
707 arg64.buf = compat_ptr(cp);
708 err |= copy_to_user(p, &arg64, sizeof(arg64));
709
710 if (err)
711 return -EFAULT;
712
713 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
714 if (err)
715 return err;
716 err |=
717 copy_in_user(&arg32->error_info, &p->error_info,
718 sizeof(arg32->error_info));
719 if (err)
720 return -EFAULT;
721 return err;
722 }
723 #endif
724
725 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
726 {
727 drive_info_struct *drv = get_drv(bdev->bd_disk);
728
729 if (!drv->cylinders)
730 return -ENXIO;
731
732 geo->heads = drv->heads;
733 geo->sectors = drv->sectors;
734 geo->cylinders = drv->cylinders;
735 return 0;
736 }
737
738 /*
739 * ioctl
740 */
741 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
742 unsigned int cmd, unsigned long arg)
743 {
744 struct gendisk *disk = bdev->bd_disk;
745 ctlr_info_t *host = get_host(disk);
746 drive_info_struct *drv = get_drv(disk);
747 int ctlr = host->ctlr;
748 void __user *argp = (void __user *)arg;
749
750 #ifdef CCISS_DEBUG
751 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
752 #endif /* CCISS_DEBUG */
753
754 switch (cmd) {
755 case CCISS_GETPCIINFO:
756 {
757 cciss_pci_info_struct pciinfo;
758
759 if (!arg)
760 return -EINVAL;
761 pciinfo.domain = pci_domain_nr(host->pdev->bus);
762 pciinfo.bus = host->pdev->bus->number;
763 pciinfo.dev_fn = host->pdev->devfn;
764 pciinfo.board_id = host->board_id;
765 if (copy_to_user
766 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
767 return -EFAULT;
768 return 0;
769 }
770 case CCISS_GETINTINFO:
771 {
772 cciss_coalint_struct intinfo;
773 if (!arg)
774 return -EINVAL;
775 intinfo.delay =
776 readl(&host->cfgtable->HostWrite.CoalIntDelay);
777 intinfo.count =
778 readl(&host->cfgtable->HostWrite.CoalIntCount);
779 if (copy_to_user
780 (argp, &intinfo, sizeof(cciss_coalint_struct)))
781 return -EFAULT;
782 return 0;
783 }
784 case CCISS_SETINTINFO:
785 {
786 cciss_coalint_struct intinfo;
787 unsigned long flags;
788 int i;
789
790 if (!arg)
791 return -EINVAL;
792 if (!capable(CAP_SYS_ADMIN))
793 return -EPERM;
794 if (copy_from_user
795 (&intinfo, argp, sizeof(cciss_coalint_struct)))
796 return -EFAULT;
797 if ((intinfo.delay == 0) && (intinfo.count == 0))
798 {
799 // printk("cciss_ioctl: delay and count cannot be 0\n");
800 return -EINVAL;
801 }
802 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
803 /* Update the field, and then ring the doorbell */
804 writel(intinfo.delay,
805 &(host->cfgtable->HostWrite.CoalIntDelay));
806 writel(intinfo.count,
807 &(host->cfgtable->HostWrite.CoalIntCount));
808 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
809
810 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
811 if (!(readl(host->vaddr + SA5_DOORBELL)
812 & CFGTBL_ChangeReq))
813 break;
814 /* delay and try again */
815 udelay(1000);
816 }
817 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
818 if (i >= MAX_IOCTL_CONFIG_WAIT)
819 return -EAGAIN;
820 return 0;
821 }
822 case CCISS_GETNODENAME:
823 {
824 NodeName_type NodeName;
825 int i;
826
827 if (!arg)
828 return -EINVAL;
829 for (i = 0; i < 16; i++)
830 NodeName[i] =
831 readb(&host->cfgtable->ServerName[i]);
832 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
833 return -EFAULT;
834 return 0;
835 }
836 case CCISS_SETNODENAME:
837 {
838 NodeName_type NodeName;
839 unsigned long flags;
840 int i;
841
842 if (!arg)
843 return -EINVAL;
844 if (!capable(CAP_SYS_ADMIN))
845 return -EPERM;
846
847 if (copy_from_user
848 (NodeName, argp, sizeof(NodeName_type)))
849 return -EFAULT;
850
851 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
852
853 /* Update the field, and then ring the doorbell */
854 for (i = 0; i < 16; i++)
855 writeb(NodeName[i],
856 &host->cfgtable->ServerName[i]);
857
858 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
859
860 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
861 if (!(readl(host->vaddr + SA5_DOORBELL)
862 & CFGTBL_ChangeReq))
863 break;
864 /* delay and try again */
865 udelay(1000);
866 }
867 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
868 if (i >= MAX_IOCTL_CONFIG_WAIT)
869 return -EAGAIN;
870 return 0;
871 }
872
873 case CCISS_GETHEARTBEAT:
874 {
875 Heartbeat_type heartbeat;
876
877 if (!arg)
878 return -EINVAL;
879 heartbeat = readl(&host->cfgtable->HeartBeat);
880 if (copy_to_user
881 (argp, &heartbeat, sizeof(Heartbeat_type)))
882 return -EFAULT;
883 return 0;
884 }
885 case CCISS_GETBUSTYPES:
886 {
887 BusTypes_type BusTypes;
888
889 if (!arg)
890 return -EINVAL;
891 BusTypes = readl(&host->cfgtable->BusTypes);
892 if (copy_to_user
893 (argp, &BusTypes, sizeof(BusTypes_type)))
894 return -EFAULT;
895 return 0;
896 }
897 case CCISS_GETFIRMVER:
898 {
899 FirmwareVer_type firmware;
900
901 if (!arg)
902 return -EINVAL;
903 memcpy(firmware, host->firm_ver, 4);
904
905 if (copy_to_user
906 (argp, firmware, sizeof(FirmwareVer_type)))
907 return -EFAULT;
908 return 0;
909 }
910 case CCISS_GETDRIVVER:
911 {
912 DriverVer_type DriverVer = DRIVER_VERSION;
913
914 if (!arg)
915 return -EINVAL;
916
917 if (copy_to_user
918 (argp, &DriverVer, sizeof(DriverVer_type)))
919 return -EFAULT;
920 return 0;
921 }
922
923 case CCISS_DEREGDISK:
924 case CCISS_REGNEWD:
925 case CCISS_REVALIDVOLS:
926 return rebuild_lun_table(host, 0);
927
928 case CCISS_GETLUNINFO:{
929 LogvolInfo_struct luninfo;
930
931 luninfo.LunID = drv->LunID;
932 luninfo.num_opens = drv->usage_count;
933 luninfo.num_parts = 0;
934 if (copy_to_user(argp, &luninfo,
935 sizeof(LogvolInfo_struct)))
936 return -EFAULT;
937 return 0;
938 }
939 case CCISS_PASSTHRU:
940 {
941 IOCTL_Command_struct iocommand;
942 CommandList_struct *c;
943 char *buff = NULL;
944 u64bit temp64;
945 unsigned long flags;
946 DECLARE_COMPLETION_ONSTACK(wait);
947
948 if (!arg)
949 return -EINVAL;
950
951 if (!capable(CAP_SYS_RAWIO))
952 return -EPERM;
953
954 if (copy_from_user
955 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
956 return -EFAULT;
957 if ((iocommand.buf_size < 1) &&
958 (iocommand.Request.Type.Direction != XFER_NONE)) {
959 return -EINVAL;
960 }
961 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
962 /* Check kmalloc limits */
963 if (iocommand.buf_size > 128000)
964 return -EINVAL;
965 #endif
966 if (iocommand.buf_size > 0) {
967 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
968 if (buff == NULL)
969 return -EFAULT;
970 }
971 if (iocommand.Request.Type.Direction == XFER_WRITE) {
972 /* Copy the data into the buffer we created */
973 if (copy_from_user
974 (buff, iocommand.buf, iocommand.buf_size)) {
975 kfree(buff);
976 return -EFAULT;
977 }
978 } else {
979 memset(buff, 0, iocommand.buf_size);
980 }
981 if ((c = cmd_alloc(host, 0)) == NULL) {
982 kfree(buff);
983 return -ENOMEM;
984 }
985 // Fill in the command type
986 c->cmd_type = CMD_IOCTL_PEND;
987 // Fill in Command Header
988 c->Header.ReplyQueue = 0; // unused in simple mode
989 if (iocommand.buf_size > 0) // buffer to fill
990 {
991 c->Header.SGList = 1;
992 c->Header.SGTotal = 1;
993 } else // no buffers to fill
994 {
995 c->Header.SGList = 0;
996 c->Header.SGTotal = 0;
997 }
998 c->Header.LUN = iocommand.LUN_info;
999 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1000
1001 // Fill in Request block
1002 c->Request = iocommand.Request;
1003
1004 // Fill in the scatter gather information
1005 if (iocommand.buf_size > 0) {
1006 temp64.val = pci_map_single(host->pdev, buff,
1007 iocommand.buf_size,
1008 PCI_DMA_BIDIRECTIONAL);
1009 c->SG[0].Addr.lower = temp64.val32.lower;
1010 c->SG[0].Addr.upper = temp64.val32.upper;
1011 c->SG[0].Len = iocommand.buf_size;
1012 c->SG[0].Ext = 0; // we are not chaining
1013 }
1014 c->waiting = &wait;
1015
1016 /* Put the request on the tail of the request queue */
1017 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1018 addQ(&host->reqQ, c);
1019 host->Qdepth++;
1020 start_io(host);
1021 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1022
1023 wait_for_completion(&wait);
1024
1025 /* unlock the buffers from DMA */
1026 temp64.val32.lower = c->SG[0].Addr.lower;
1027 temp64.val32.upper = c->SG[0].Addr.upper;
1028 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1029 iocommand.buf_size,
1030 PCI_DMA_BIDIRECTIONAL);
1031
1032 /* Copy the error information out */
1033 iocommand.error_info = *(c->err_info);
1034 if (copy_to_user
1035 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1036 kfree(buff);
1037 cmd_free(host, c, 0);
1038 return -EFAULT;
1039 }
1040
1041 if (iocommand.Request.Type.Direction == XFER_READ) {
1042 /* Copy the data out of the buffer we created */
1043 if (copy_to_user
1044 (iocommand.buf, buff, iocommand.buf_size)) {
1045 kfree(buff);
1046 cmd_free(host, c, 0);
1047 return -EFAULT;
1048 }
1049 }
1050 kfree(buff);
1051 cmd_free(host, c, 0);
1052 return 0;
1053 }
1054 case CCISS_BIG_PASSTHRU:{
1055 BIG_IOCTL_Command_struct *ioc;
1056 CommandList_struct *c;
1057 unsigned char **buff = NULL;
1058 int *buff_size = NULL;
1059 u64bit temp64;
1060 unsigned long flags;
1061 BYTE sg_used = 0;
1062 int status = 0;
1063 int i;
1064 DECLARE_COMPLETION_ONSTACK(wait);
1065 __u32 left;
1066 __u32 sz;
1067 BYTE __user *data_ptr;
1068
1069 if (!arg)
1070 return -EINVAL;
1071 if (!capable(CAP_SYS_RAWIO))
1072 return -EPERM;
1073 ioc = (BIG_IOCTL_Command_struct *)
1074 kmalloc(sizeof(*ioc), GFP_KERNEL);
1075 if (!ioc) {
1076 status = -ENOMEM;
1077 goto cleanup1;
1078 }
1079 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1080 status = -EFAULT;
1081 goto cleanup1;
1082 }
1083 if ((ioc->buf_size < 1) &&
1084 (ioc->Request.Type.Direction != XFER_NONE)) {
1085 status = -EINVAL;
1086 goto cleanup1;
1087 }
1088 /* Check kmalloc limits using all SGs */
1089 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1090 status = -EINVAL;
1091 goto cleanup1;
1092 }
1093 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1094 status = -EINVAL;
1095 goto cleanup1;
1096 }
1097 buff =
1098 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1099 if (!buff) {
1100 status = -ENOMEM;
1101 goto cleanup1;
1102 }
1103 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1104 GFP_KERNEL);
1105 if (!buff_size) {
1106 status = -ENOMEM;
1107 goto cleanup1;
1108 }
1109 left = ioc->buf_size;
1110 data_ptr = ioc->buf;
1111 while (left) {
1112 sz = (left >
1113 ioc->malloc_size) ? ioc->
1114 malloc_size : left;
1115 buff_size[sg_used] = sz;
1116 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1117 if (buff[sg_used] == NULL) {
1118 status = -ENOMEM;
1119 goto cleanup1;
1120 }
1121 if (ioc->Request.Type.Direction == XFER_WRITE) {
1122 if (copy_from_user
1123 (buff[sg_used], data_ptr, sz)) {
1124 status = -EFAULT;
1125 goto cleanup1;
1126 }
1127 } else {
1128 memset(buff[sg_used], 0, sz);
1129 }
1130 left -= sz;
1131 data_ptr += sz;
1132 sg_used++;
1133 }
1134 if ((c = cmd_alloc(host, 0)) == NULL) {
1135 status = -ENOMEM;
1136 goto cleanup1;
1137 }
1138 c->cmd_type = CMD_IOCTL_PEND;
1139 c->Header.ReplyQueue = 0;
1140
1141 if (ioc->buf_size > 0) {
1142 c->Header.SGList = sg_used;
1143 c->Header.SGTotal = sg_used;
1144 } else {
1145 c->Header.SGList = 0;
1146 c->Header.SGTotal = 0;
1147 }
1148 c->Header.LUN = ioc->LUN_info;
1149 c->Header.Tag.lower = c->busaddr;
1150
1151 c->Request = ioc->Request;
1152 if (ioc->buf_size > 0) {
1153 int i;
1154 for (i = 0; i < sg_used; i++) {
1155 temp64.val =
1156 pci_map_single(host->pdev, buff[i],
1157 buff_size[i],
1158 PCI_DMA_BIDIRECTIONAL);
1159 c->SG[i].Addr.lower =
1160 temp64.val32.lower;
1161 c->SG[i].Addr.upper =
1162 temp64.val32.upper;
1163 c->SG[i].Len = buff_size[i];
1164 c->SG[i].Ext = 0; /* we are not chaining */
1165 }
1166 }
1167 c->waiting = &wait;
1168 /* Put the request on the tail of the request queue */
1169 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1170 addQ(&host->reqQ, c);
1171 host->Qdepth++;
1172 start_io(host);
1173 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1174 wait_for_completion(&wait);
1175 /* unlock the buffers from DMA */
1176 for (i = 0; i < sg_used; i++) {
1177 temp64.val32.lower = c->SG[i].Addr.lower;
1178 temp64.val32.upper = c->SG[i].Addr.upper;
1179 pci_unmap_single(host->pdev,
1180 (dma_addr_t) temp64.val, buff_size[i],
1181 PCI_DMA_BIDIRECTIONAL);
1182 }
1183 /* Copy the error information out */
1184 ioc->error_info = *(c->err_info);
1185 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1186 cmd_free(host, c, 0);
1187 status = -EFAULT;
1188 goto cleanup1;
1189 }
1190 if (ioc->Request.Type.Direction == XFER_READ) {
1191 /* Copy the data out of the buffer we created */
1192 BYTE __user *ptr = ioc->buf;
1193 for (i = 0; i < sg_used; i++) {
1194 if (copy_to_user
1195 (ptr, buff[i], buff_size[i])) {
1196 cmd_free(host, c, 0);
1197 status = -EFAULT;
1198 goto cleanup1;
1199 }
1200 ptr += buff_size[i];
1201 }
1202 }
1203 cmd_free(host, c, 0);
1204 status = 0;
1205 cleanup1:
1206 if (buff) {
1207 for (i = 0; i < sg_used; i++)
1208 kfree(buff[i]);
1209 kfree(buff);
1210 }
1211 kfree(buff_size);
1212 kfree(ioc);
1213 return status;
1214 }
1215
1216 /* scsi_cmd_ioctl handles these, below, though some are not */
1217 /* very meaningful for cciss. SG_IO is the main one people want. */
1218
1219 case SG_GET_VERSION_NUM:
1220 case SG_SET_TIMEOUT:
1221 case SG_GET_TIMEOUT:
1222 case SG_GET_RESERVED_SIZE:
1223 case SG_SET_RESERVED_SIZE:
1224 case SG_EMULATED_HOST:
1225 case SG_IO:
1226 case SCSI_IOCTL_SEND_COMMAND:
1227 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1228
1229 /* scsi_cmd_ioctl would normally handle these, below, but */
1230 /* they aren't a good fit for cciss, as CD-ROMs are */
1231 /* not supported, and we don't have any bus/target/lun */
1232 /* which we present to the kernel. */
1233
1234 case CDROM_SEND_PACKET:
1235 case CDROMCLOSETRAY:
1236 case CDROMEJECT:
1237 case SCSI_IOCTL_GET_IDLUN:
1238 case SCSI_IOCTL_GET_BUS_NUMBER:
1239 default:
1240 return -ENOTTY;
1241 }
1242 }
1243
1244 static void cciss_check_queues(ctlr_info_t *h)
1245 {
1246 int start_queue = h->next_to_run;
1247 int i;
1248
1249 /* check to see if we have maxed out the number of commands that can
1250 * be placed on the queue. If so then exit. We do this check here
1251 * in case the interrupt we serviced was from an ioctl and did not
1252 * free any new commands.
1253 */
1254 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1255 return;
1256
1257 /* We have room on the queue for more commands. Now we need to queue
1258 * them up. We will also keep track of the next queue to run so
1259 * that every queue gets a chance to be started first.
1260 */
1261 for (i = 0; i < h->highest_lun + 1; i++) {
1262 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1263 /* make sure the disk has been added and the drive is real
1264 * because this can be called from the middle of init_one.
1265 */
1266 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1267 continue;
1268 blk_start_queue(h->gendisk[curr_queue]->queue);
1269
1270 /* check to see if we have maxed out the number of commands
1271 * that can be placed on the queue.
1272 */
1273 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1274 if (curr_queue == start_queue) {
1275 h->next_to_run =
1276 (start_queue + 1) % (h->highest_lun + 1);
1277 break;
1278 } else {
1279 h->next_to_run = curr_queue;
1280 break;
1281 }
1282 }
1283 }
1284 }
1285
1286 static void cciss_softirq_done(struct request *rq)
1287 {
1288 CommandList_struct *cmd = rq->completion_data;
1289 ctlr_info_t *h = hba[cmd->ctlr];
1290 unsigned long flags;
1291 u64bit temp64;
1292 int i, ddir;
1293
1294 if (cmd->Request.Type.Direction == XFER_READ)
1295 ddir = PCI_DMA_FROMDEVICE;
1296 else
1297 ddir = PCI_DMA_TODEVICE;
1298
1299 /* command did not need to be retried */
1300 /* unmap the DMA mapping for all the scatter gather elements */
1301 for (i = 0; i < cmd->Header.SGList; i++) {
1302 temp64.val32.lower = cmd->SG[i].Addr.lower;
1303 temp64.val32.upper = cmd->SG[i].Addr.upper;
1304 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1305 }
1306
1307 #ifdef CCISS_DEBUG
1308 printk("Done with %p\n", rq);
1309 #endif /* CCISS_DEBUG */
1310
1311 if (blk_end_request(rq, (rq->errors == 0) ? 0 : -EIO, blk_rq_bytes(rq)))
1312 BUG();
1313
1314 spin_lock_irqsave(&h->lock, flags);
1315 cmd_free(h, cmd, 1);
1316 cciss_check_queues(h);
1317 spin_unlock_irqrestore(&h->lock, flags);
1318 }
1319
1320 /* This function gets the serial number of a logical drive via
1321 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1322 * number cannot be had, for whatever reason, 16 bytes of 0xff
1323 * are returned instead.
1324 */
1325 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1326 unsigned char *serial_no, int buflen)
1327 {
1328 #define PAGE_83_INQ_BYTES 64
1329 int rc;
1330 unsigned char *buf;
1331
1332 if (buflen > 16)
1333 buflen = 16;
1334 memset(serial_no, 0xff, buflen);
1335 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1336 if (!buf)
1337 return;
1338 memset(serial_no, 0, buflen);
1339 if (withirq)
1340 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1341 PAGE_83_INQ_BYTES, 1, logvol, 0x83, TYPE_CMD);
1342 else
1343 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1344 PAGE_83_INQ_BYTES, 1, logvol, 0x83, NULL, TYPE_CMD);
1345 if (rc == IO_OK)
1346 memcpy(serial_no, &buf[8], buflen);
1347 kfree(buf);
1348 return;
1349 }
1350
1351 static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1352 int drv_index)
1353 {
1354 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1355 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1356 disk->major = h->major;
1357 disk->first_minor = drv_index << NWD_SHIFT;
1358 disk->fops = &cciss_fops;
1359 disk->private_data = &h->drv[drv_index];
1360 disk->driverfs_dev = &h->pdev->dev;
1361
1362 /* Set up queue information */
1363 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1364
1365 /* This is a hardware imposed limit. */
1366 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1367
1368 /* This is a limit in the driver and could be eliminated. */
1369 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1370
1371 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1372
1373 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1374
1375 disk->queue->queuedata = h;
1376
1377 blk_queue_hardsect_size(disk->queue,
1378 h->drv[drv_index].block_size);
1379
1380 /* Make sure all queue data is written out before */
1381 /* setting h->drv[drv_index].queue, as setting this */
1382 /* allows the interrupt handler to start the queue */
1383 wmb();
1384 h->drv[drv_index].queue = disk->queue;
1385 add_disk(disk);
1386 }
1387
1388 /* This function will check the usage_count of the drive to be updated/added.
1389 * If the usage_count is zero and it is a heretofore unknown drive, or,
1390 * the drive's capacity, geometry, or serial number has changed,
1391 * then the drive information will be updated and the disk will be
1392 * re-registered with the kernel. If these conditions don't hold,
1393 * then it will be left alone for the next reboot. The exception to this
1394 * is disk 0 which will always be left registered with the kernel since it
1395 * is also the controller node. Any changes to disk 0 will show up on
1396 * the next reboot.
1397 */
1398 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1399 {
1400 ctlr_info_t *h = hba[ctlr];
1401 struct gendisk *disk;
1402 InquiryData_struct *inq_buff = NULL;
1403 unsigned int block_size;
1404 sector_t total_size;
1405 unsigned long flags = 0;
1406 int ret = 0;
1407 drive_info_struct *drvinfo;
1408 int was_only_controller_node;
1409
1410 /* Get information about the disk and modify the driver structure */
1411 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1412 drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1413 if (inq_buff == NULL || drvinfo == NULL)
1414 goto mem_msg;
1415
1416 /* See if we're trying to update the "controller node"
1417 * this will happen the when the first logical drive gets
1418 * created by ACU.
1419 */
1420 was_only_controller_node = (drv_index == 0 &&
1421 h->drv[0].raid_level == -1);
1422
1423 /* testing to see if 16-byte CDBs are already being used */
1424 if (h->cciss_read == CCISS_READ_16) {
1425 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1426 &total_size, &block_size);
1427
1428 } else {
1429 cciss_read_capacity(ctlr, drv_index, 1,
1430 &total_size, &block_size);
1431
1432 /* if read_capacity returns all F's this volume is >2TB */
1433 /* in size so we switch to 16-byte CDB's for all */
1434 /* read/write ops */
1435 if (total_size == 0xFFFFFFFFULL) {
1436 cciss_read_capacity_16(ctlr, drv_index, 1,
1437 &total_size, &block_size);
1438 h->cciss_read = CCISS_READ_16;
1439 h->cciss_write = CCISS_WRITE_16;
1440 } else {
1441 h->cciss_read = CCISS_READ_10;
1442 h->cciss_write = CCISS_WRITE_10;
1443 }
1444 }
1445
1446 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1447 inq_buff, drvinfo);
1448 drvinfo->block_size = block_size;
1449 drvinfo->nr_blocks = total_size + 1;
1450
1451 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1452 sizeof(drvinfo->serial_no));
1453
1454 /* Is it the same disk we already know, and nothing's changed? */
1455 if (h->drv[drv_index].raid_level != -1 &&
1456 ((memcmp(drvinfo->serial_no,
1457 h->drv[drv_index].serial_no, 16) == 0) &&
1458 drvinfo->block_size == h->drv[drv_index].block_size &&
1459 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1460 drvinfo->heads == h->drv[drv_index].heads &&
1461 drvinfo->sectors == h->drv[drv_index].sectors &&
1462 drvinfo->cylinders == h->drv[drv_index].cylinders))
1463 /* The disk is unchanged, nothing to update */
1464 goto freeret;
1465
1466 /* If we get here it's not the same disk, or something's changed,
1467 * so we need to * deregister it, and re-register it, if it's not
1468 * in use.
1469 * If the disk already exists then deregister it before proceeding
1470 * (unless it's the first disk (for the controller node).
1471 */
1472 if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1473 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1474 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1475 h->drv[drv_index].busy_configuring = 1;
1476 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1477
1478 /* deregister_disk sets h->drv[drv_index].queue = NULL
1479 * which keeps the interrupt handler from starting
1480 * the queue.
1481 */
1482 ret = deregister_disk(h->gendisk[drv_index],
1483 &h->drv[drv_index], 0);
1484 h->drv[drv_index].busy_configuring = 0;
1485 }
1486
1487 /* If the disk is in use return */
1488 if (ret)
1489 goto freeret;
1490
1491 /* Save the new information from cciss_geometry_inquiry
1492 * and serial number inquiry.
1493 */
1494 h->drv[drv_index].block_size = drvinfo->block_size;
1495 h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1496 h->drv[drv_index].heads = drvinfo->heads;
1497 h->drv[drv_index].sectors = drvinfo->sectors;
1498 h->drv[drv_index].cylinders = drvinfo->cylinders;
1499 h->drv[drv_index].raid_level = drvinfo->raid_level;
1500 memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1501
1502 ++h->num_luns;
1503 disk = h->gendisk[drv_index];
1504 set_capacity(disk, h->drv[drv_index].nr_blocks);
1505
1506 /* If it's not disk 0 (drv_index != 0)
1507 * or if it was disk 0, but there was previously
1508 * no actual corresponding configured logical drive
1509 * (raid_leve == -1) then we want to update the
1510 * logical drive's information.
1511 */
1512 if (drv_index || first_time)
1513 cciss_add_disk(h, disk, drv_index);
1514
1515 freeret:
1516 kfree(inq_buff);
1517 kfree(drvinfo);
1518 return;
1519 mem_msg:
1520 printk(KERN_ERR "cciss: out of memory\n");
1521 goto freeret;
1522 }
1523
1524 /* This function will find the first index of the controllers drive array
1525 * that has a -1 for the raid_level and will return that index. This is
1526 * where new drives will be added. If the index to be returned is greater
1527 * than the highest_lun index for the controller then highest_lun is set
1528 * to this new index. If there are no available indexes then -1 is returned.
1529 * "controller_node" is used to know if this is a real logical drive, or just
1530 * the controller node, which determines if this counts towards highest_lun.
1531 */
1532 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1533 {
1534 int i;
1535
1536 for (i = 0; i < CISS_MAX_LUN; i++) {
1537 if (hba[ctlr]->drv[i].raid_level == -1) {
1538 if (i > hba[ctlr]->highest_lun)
1539 if (!controller_node)
1540 hba[ctlr]->highest_lun = i;
1541 return i;
1542 }
1543 }
1544 return -1;
1545 }
1546
1547 /* cciss_add_gendisk finds a free hba[]->drv structure
1548 * and allocates a gendisk if needed, and sets the lunid
1549 * in the drvinfo structure. It returns the index into
1550 * the ->drv[] array, or -1 if none are free.
1551 * is_controller_node indicates whether highest_lun should
1552 * count this disk, or if it's only being added to provide
1553 * a means to talk to the controller in case no logical
1554 * drives have yet been configured.
1555 */
1556 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1557 {
1558 int drv_index;
1559
1560 drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1561 if (drv_index == -1)
1562 return -1;
1563 /*Check if the gendisk needs to be allocated */
1564 if (!h->gendisk[drv_index]) {
1565 h->gendisk[drv_index] =
1566 alloc_disk(1 << NWD_SHIFT);
1567 if (!h->gendisk[drv_index]) {
1568 printk(KERN_ERR "cciss%d: could not "
1569 "allocate a new disk %d\n",
1570 h->ctlr, drv_index);
1571 return -1;
1572 }
1573 }
1574 h->drv[drv_index].LunID = lunid;
1575
1576 /* Don't need to mark this busy because nobody */
1577 /* else knows about this disk yet to contend */
1578 /* for access to it. */
1579 h->drv[drv_index].busy_configuring = 0;
1580 wmb();
1581 return drv_index;
1582 }
1583
1584 /* This is for the special case of a controller which
1585 * has no logical drives. In this case, we still need
1586 * to register a disk so the controller can be accessed
1587 * by the Array Config Utility.
1588 */
1589 static void cciss_add_controller_node(ctlr_info_t *h)
1590 {
1591 struct gendisk *disk;
1592 int drv_index;
1593
1594 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1595 return;
1596
1597 drv_index = cciss_add_gendisk(h, 0, 1);
1598 if (drv_index == -1) {
1599 printk(KERN_WARNING "cciss%d: could not "
1600 "add disk 0.\n", h->ctlr);
1601 return;
1602 }
1603 h->drv[drv_index].block_size = 512;
1604 h->drv[drv_index].nr_blocks = 0;
1605 h->drv[drv_index].heads = 0;
1606 h->drv[drv_index].sectors = 0;
1607 h->drv[drv_index].cylinders = 0;
1608 h->drv[drv_index].raid_level = -1;
1609 memset(h->drv[drv_index].serial_no, 0, 16);
1610 disk = h->gendisk[drv_index];
1611 cciss_add_disk(h, disk, drv_index);
1612 }
1613
1614 /* This function will add and remove logical drives from the Logical
1615 * drive array of the controller and maintain persistency of ordering
1616 * so that mount points are preserved until the next reboot. This allows
1617 * for the removal of logical drives in the middle of the drive array
1618 * without a re-ordering of those drives.
1619 * INPUT
1620 * h = The controller to perform the operations on
1621 */
1622 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1623 {
1624 int ctlr = h->ctlr;
1625 int num_luns;
1626 ReportLunData_struct *ld_buff = NULL;
1627 int return_code;
1628 int listlength = 0;
1629 int i;
1630 int drv_found;
1631 int drv_index = 0;
1632 __u32 lunid = 0;
1633 unsigned long flags;
1634
1635 if (!capable(CAP_SYS_RAWIO))
1636 return -EPERM;
1637
1638 /* Set busy_configuring flag for this operation */
1639 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1640 if (h->busy_configuring) {
1641 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1642 return -EBUSY;
1643 }
1644 h->busy_configuring = 1;
1645 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1646
1647 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1648 if (ld_buff == NULL)
1649 goto mem_msg;
1650
1651 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1652 sizeof(ReportLunData_struct), 0,
1653 0, 0, TYPE_CMD);
1654
1655 if (return_code == IO_OK)
1656 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1657 else { /* reading number of logical volumes failed */
1658 printk(KERN_WARNING "cciss: report logical volume"
1659 " command failed\n");
1660 listlength = 0;
1661 goto freeret;
1662 }
1663
1664 num_luns = listlength / 8; /* 8 bytes per entry */
1665 if (num_luns > CISS_MAX_LUN) {
1666 num_luns = CISS_MAX_LUN;
1667 printk(KERN_WARNING "cciss: more luns configured"
1668 " on controller than can be handled by"
1669 " this driver.\n");
1670 }
1671
1672 if (num_luns == 0)
1673 cciss_add_controller_node(h);
1674
1675 /* Compare controller drive array to driver's drive array
1676 * to see if any drives are missing on the controller due
1677 * to action of Array Config Utility (user deletes drive)
1678 * and deregister logical drives which have disappeared.
1679 */
1680 for (i = 0; i <= h->highest_lun; i++) {
1681 int j;
1682 drv_found = 0;
1683
1684 /* skip holes in the array from already deleted drives */
1685 if (h->drv[i].raid_level == -1)
1686 continue;
1687
1688 for (j = 0; j < num_luns; j++) {
1689 memcpy(&lunid, &ld_buff->LUN[j][0], 4);
1690 lunid = le32_to_cpu(lunid);
1691 if (h->drv[i].LunID == lunid) {
1692 drv_found = 1;
1693 break;
1694 }
1695 }
1696 if (!drv_found) {
1697 /* Deregister it from the OS, it's gone. */
1698 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1699 h->drv[i].busy_configuring = 1;
1700 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1701 return_code = deregister_disk(h->gendisk[i],
1702 &h->drv[i], 1);
1703 h->drv[i].busy_configuring = 0;
1704 }
1705 }
1706
1707 /* Compare controller drive array to driver's drive array.
1708 * Check for updates in the drive information and any new drives
1709 * on the controller due to ACU adding logical drives, or changing
1710 * a logical drive's size, etc. Reregister any new/changed drives
1711 */
1712 for (i = 0; i < num_luns; i++) {
1713 int j;
1714
1715 drv_found = 0;
1716
1717 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
1718 lunid = le32_to_cpu(lunid);
1719
1720 /* Find if the LUN is already in the drive array
1721 * of the driver. If so then update its info
1722 * if not in use. If it does not exist then find
1723 * the first free index and add it.
1724 */
1725 for (j = 0; j <= h->highest_lun; j++) {
1726 if (h->drv[j].raid_level != -1 &&
1727 h->drv[j].LunID == lunid) {
1728 drv_index = j;
1729 drv_found = 1;
1730 break;
1731 }
1732 }
1733
1734 /* check if the drive was found already in the array */
1735 if (!drv_found) {
1736 drv_index = cciss_add_gendisk(h, lunid, 0);
1737 if (drv_index == -1)
1738 goto freeret;
1739 }
1740 cciss_update_drive_info(ctlr, drv_index, first_time);
1741 } /* end for */
1742
1743 freeret:
1744 kfree(ld_buff);
1745 h->busy_configuring = 0;
1746 /* We return -1 here to tell the ACU that we have registered/updated
1747 * all of the drives that we can and to keep it from calling us
1748 * additional times.
1749 */
1750 return -1;
1751 mem_msg:
1752 printk(KERN_ERR "cciss: out of memory\n");
1753 h->busy_configuring = 0;
1754 goto freeret;
1755 }
1756
1757 /* This function will deregister the disk and it's queue from the
1758 * kernel. It must be called with the controller lock held and the
1759 * drv structures busy_configuring flag set. It's parameters are:
1760 *
1761 * disk = This is the disk to be deregistered
1762 * drv = This is the drive_info_struct associated with the disk to be
1763 * deregistered. It contains information about the disk used
1764 * by the driver.
1765 * clear_all = This flag determines whether or not the disk information
1766 * is going to be completely cleared out and the highest_lun
1767 * reset. Sometimes we want to clear out information about
1768 * the disk in preparation for re-adding it. In this case
1769 * the highest_lun should be left unchanged and the LunID
1770 * should not be cleared.
1771 */
1772 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1773 int clear_all)
1774 {
1775 int i;
1776 ctlr_info_t *h = get_host(disk);
1777
1778 if (!capable(CAP_SYS_RAWIO))
1779 return -EPERM;
1780
1781 /* make sure logical volume is NOT is use */
1782 if (clear_all || (h->gendisk[0] == disk)) {
1783 if (drv->usage_count > 1)
1784 return -EBUSY;
1785 } else if (drv->usage_count > 0)
1786 return -EBUSY;
1787
1788 /* invalidate the devices and deregister the disk. If it is disk
1789 * zero do not deregister it but just zero out it's values. This
1790 * allows us to delete disk zero but keep the controller registered.
1791 */
1792 if (h->gendisk[0] != disk) {
1793 struct request_queue *q = disk->queue;
1794 if (disk->flags & GENHD_FL_UP)
1795 del_gendisk(disk);
1796 if (q) {
1797 blk_cleanup_queue(q);
1798 /* Set drv->queue to NULL so that we do not try
1799 * to call blk_start_queue on this queue in the
1800 * interrupt handler
1801 */
1802 drv->queue = NULL;
1803 }
1804 /* If clear_all is set then we are deleting the logical
1805 * drive, not just refreshing its info. For drives
1806 * other than disk 0 we will call put_disk. We do not
1807 * do this for disk 0 as we need it to be able to
1808 * configure the controller.
1809 */
1810 if (clear_all){
1811 /* This isn't pretty, but we need to find the
1812 * disk in our array and NULL our the pointer.
1813 * This is so that we will call alloc_disk if
1814 * this index is used again later.
1815 */
1816 for (i=0; i < CISS_MAX_LUN; i++){
1817 if (h->gendisk[i] == disk) {
1818 h->gendisk[i] = NULL;
1819 break;
1820 }
1821 }
1822 put_disk(disk);
1823 }
1824 } else {
1825 set_capacity(disk, 0);
1826 }
1827
1828 --h->num_luns;
1829 /* zero out the disk size info */
1830 drv->nr_blocks = 0;
1831 drv->block_size = 0;
1832 drv->heads = 0;
1833 drv->sectors = 0;
1834 drv->cylinders = 0;
1835 drv->raid_level = -1; /* This can be used as a flag variable to
1836 * indicate that this element of the drive
1837 * array is free.
1838 */
1839
1840 if (clear_all) {
1841 /* check to see if it was the last disk */
1842 if (drv == h->drv + h->highest_lun) {
1843 /* if so, find the new hightest lun */
1844 int i, newhighest = -1;
1845 for (i = 0; i <= h->highest_lun; i++) {
1846 /* if the disk has size > 0, it is available */
1847 if (h->drv[i].heads)
1848 newhighest = i;
1849 }
1850 h->highest_lun = newhighest;
1851 }
1852
1853 drv->LunID = 0;
1854 }
1855 return 0;
1856 }
1857
1858 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1859 1: address logical volume log_unit,
1860 2: periph device address is scsi3addr */
1861 unsigned int log_unit, __u8 page_code,
1862 unsigned char *scsi3addr, int cmd_type)
1863 {
1864 ctlr_info_t *h = hba[ctlr];
1865 u64bit buff_dma_handle;
1866 int status = IO_OK;
1867
1868 c->cmd_type = CMD_IOCTL_PEND;
1869 c->Header.ReplyQueue = 0;
1870 if (buff != NULL) {
1871 c->Header.SGList = 1;
1872 c->Header.SGTotal = 1;
1873 } else {
1874 c->Header.SGList = 0;
1875 c->Header.SGTotal = 0;
1876 }
1877 c->Header.Tag.lower = c->busaddr;
1878
1879 c->Request.Type.Type = cmd_type;
1880 if (cmd_type == TYPE_CMD) {
1881 switch (cmd) {
1882 case CISS_INQUIRY:
1883 /* If the logical unit number is 0 then, this is going
1884 to controller so It's a physical command
1885 mode = 0 target = 0. So we have nothing to write.
1886 otherwise, if use_unit_num == 1,
1887 mode = 1(volume set addressing) target = LUNID
1888 otherwise, if use_unit_num == 2,
1889 mode = 0(periph dev addr) target = scsi3addr */
1890 if (use_unit_num == 1) {
1891 c->Header.LUN.LogDev.VolId =
1892 h->drv[log_unit].LunID;
1893 c->Header.LUN.LogDev.Mode = 1;
1894 } else if (use_unit_num == 2) {
1895 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1896 8);
1897 c->Header.LUN.LogDev.Mode = 0;
1898 }
1899 /* are we trying to read a vital product page */
1900 if (page_code != 0) {
1901 c->Request.CDB[1] = 0x01;
1902 c->Request.CDB[2] = page_code;
1903 }
1904 c->Request.CDBLen = 6;
1905 c->Request.Type.Attribute = ATTR_SIMPLE;
1906 c->Request.Type.Direction = XFER_READ;
1907 c->Request.Timeout = 0;
1908 c->Request.CDB[0] = CISS_INQUIRY;
1909 c->Request.CDB[4] = size & 0xFF;
1910 break;
1911 case CISS_REPORT_LOG:
1912 case CISS_REPORT_PHYS:
1913 /* Talking to controller so It's a physical command
1914 mode = 00 target = 0. Nothing to write.
1915 */
1916 c->Request.CDBLen = 12;
1917 c->Request.Type.Attribute = ATTR_SIMPLE;
1918 c->Request.Type.Direction = XFER_READ;
1919 c->Request.Timeout = 0;
1920 c->Request.CDB[0] = cmd;
1921 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1922 c->Request.CDB[7] = (size >> 16) & 0xFF;
1923 c->Request.CDB[8] = (size >> 8) & 0xFF;
1924 c->Request.CDB[9] = size & 0xFF;
1925 break;
1926
1927 case CCISS_READ_CAPACITY:
1928 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1929 c->Header.LUN.LogDev.Mode = 1;
1930 c->Request.CDBLen = 10;
1931 c->Request.Type.Attribute = ATTR_SIMPLE;
1932 c->Request.Type.Direction = XFER_READ;
1933 c->Request.Timeout = 0;
1934 c->Request.CDB[0] = cmd;
1935 break;
1936 case CCISS_READ_CAPACITY_16:
1937 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1938 c->Header.LUN.LogDev.Mode = 1;
1939 c->Request.CDBLen = 16;
1940 c->Request.Type.Attribute = ATTR_SIMPLE;
1941 c->Request.Type.Direction = XFER_READ;
1942 c->Request.Timeout = 0;
1943 c->Request.CDB[0] = cmd;
1944 c->Request.CDB[1] = 0x10;
1945 c->Request.CDB[10] = (size >> 24) & 0xFF;
1946 c->Request.CDB[11] = (size >> 16) & 0xFF;
1947 c->Request.CDB[12] = (size >> 8) & 0xFF;
1948 c->Request.CDB[13] = size & 0xFF;
1949 c->Request.Timeout = 0;
1950 c->Request.CDB[0] = cmd;
1951 break;
1952 case CCISS_CACHE_FLUSH:
1953 c->Request.CDBLen = 12;
1954 c->Request.Type.Attribute = ATTR_SIMPLE;
1955 c->Request.Type.Direction = XFER_WRITE;
1956 c->Request.Timeout = 0;
1957 c->Request.CDB[0] = BMIC_WRITE;
1958 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1959 break;
1960 default:
1961 printk(KERN_WARNING
1962 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1963 return IO_ERROR;
1964 }
1965 } else if (cmd_type == TYPE_MSG) {
1966 switch (cmd) {
1967 case 0: /* ABORT message */
1968 c->Request.CDBLen = 12;
1969 c->Request.Type.Attribute = ATTR_SIMPLE;
1970 c->Request.Type.Direction = XFER_WRITE;
1971 c->Request.Timeout = 0;
1972 c->Request.CDB[0] = cmd; /* abort */
1973 c->Request.CDB[1] = 0; /* abort a command */
1974 /* buff contains the tag of the command to abort */
1975 memcpy(&c->Request.CDB[4], buff, 8);
1976 break;
1977 case 1: /* RESET message */
1978 c->Request.CDBLen = 12;
1979 c->Request.Type.Attribute = ATTR_SIMPLE;
1980 c->Request.Type.Direction = XFER_WRITE;
1981 c->Request.Timeout = 0;
1982 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1983 c->Request.CDB[0] = cmd; /* reset */
1984 c->Request.CDB[1] = 0x04; /* reset a LUN */
1985 break;
1986 case 3: /* No-Op message */
1987 c->Request.CDBLen = 1;
1988 c->Request.Type.Attribute = ATTR_SIMPLE;
1989 c->Request.Type.Direction = XFER_WRITE;
1990 c->Request.Timeout = 0;
1991 c->Request.CDB[0] = cmd;
1992 break;
1993 default:
1994 printk(KERN_WARNING
1995 "cciss%d: unknown message type %d\n", ctlr, cmd);
1996 return IO_ERROR;
1997 }
1998 } else {
1999 printk(KERN_WARNING
2000 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2001 return IO_ERROR;
2002 }
2003 /* Fill in the scatter gather information */
2004 if (size > 0) {
2005 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2006 buff, size,
2007 PCI_DMA_BIDIRECTIONAL);
2008 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2009 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2010 c->SG[0].Len = size;
2011 c->SG[0].Ext = 0; /* we are not chaining */
2012 }
2013 return status;
2014 }
2015
2016 static int sendcmd_withirq(__u8 cmd,
2017 int ctlr,
2018 void *buff,
2019 size_t size,
2020 unsigned int use_unit_num,
2021 unsigned int log_unit, __u8 page_code, int cmd_type)
2022 {
2023 ctlr_info_t *h = hba[ctlr];
2024 CommandList_struct *c;
2025 u64bit buff_dma_handle;
2026 unsigned long flags;
2027 int return_status;
2028 DECLARE_COMPLETION_ONSTACK(wait);
2029
2030 if ((c = cmd_alloc(h, 0)) == NULL)
2031 return -ENOMEM;
2032 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2033 log_unit, page_code, NULL, cmd_type);
2034 if (return_status != IO_OK) {
2035 cmd_free(h, c, 0);
2036 return return_status;
2037 }
2038 resend_cmd2:
2039 c->waiting = &wait;
2040
2041 /* Put the request on the tail of the queue and send it */
2042 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
2043 addQ(&h->reqQ, c);
2044 h->Qdepth++;
2045 start_io(h);
2046 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
2047
2048 wait_for_completion(&wait);
2049
2050 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
2051 switch (c->err_info->CommandStatus) {
2052 case CMD_TARGET_STATUS:
2053 printk(KERN_WARNING "cciss: cmd %p has "
2054 " completed with errors\n", c);
2055 if (c->err_info->ScsiStatus) {
2056 printk(KERN_WARNING "cciss: cmd %p "
2057 "has SCSI Status = %x\n",
2058 c, c->err_info->ScsiStatus);
2059 }
2060
2061 break;
2062 case CMD_DATA_UNDERRUN:
2063 case CMD_DATA_OVERRUN:
2064 /* expected for inquire and report lun commands */
2065 break;
2066 case CMD_INVALID:
2067 printk(KERN_WARNING "cciss: Cmd %p is "
2068 "reported invalid\n", c);
2069 return_status = IO_ERROR;
2070 break;
2071 case CMD_PROTOCOL_ERR:
2072 printk(KERN_WARNING "cciss: cmd %p has "
2073 "protocol error \n", c);
2074 return_status = IO_ERROR;
2075 break;
2076 case CMD_HARDWARE_ERR:
2077 printk(KERN_WARNING "cciss: cmd %p had "
2078 " hardware error\n", c);
2079 return_status = IO_ERROR;
2080 break;
2081 case CMD_CONNECTION_LOST:
2082 printk(KERN_WARNING "cciss: cmd %p had "
2083 "connection lost\n", c);
2084 return_status = IO_ERROR;
2085 break;
2086 case CMD_ABORTED:
2087 printk(KERN_WARNING "cciss: cmd %p was "
2088 "aborted\n", c);
2089 return_status = IO_ERROR;
2090 break;
2091 case CMD_ABORT_FAILED:
2092 printk(KERN_WARNING "cciss: cmd %p reports "
2093 "abort failed\n", c);
2094 return_status = IO_ERROR;
2095 break;
2096 case CMD_UNSOLICITED_ABORT:
2097 printk(KERN_WARNING
2098 "cciss%d: unsolicited abort %p\n", ctlr, c);
2099 if (c->retry_count < MAX_CMD_RETRIES) {
2100 printk(KERN_WARNING
2101 "cciss%d: retrying %p\n", ctlr, c);
2102 c->retry_count++;
2103 /* erase the old error information */
2104 memset(c->err_info, 0,
2105 sizeof(ErrorInfo_struct));
2106 return_status = IO_OK;
2107 INIT_COMPLETION(wait);
2108 goto resend_cmd2;
2109 }
2110 return_status = IO_ERROR;
2111 break;
2112 default:
2113 printk(KERN_WARNING "cciss: cmd %p returned "
2114 "unknown status %x\n", c,
2115 c->err_info->CommandStatus);
2116 return_status = IO_ERROR;
2117 }
2118 }
2119 /* unlock the buffers from DMA */
2120 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2121 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2122 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2123 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2124 cmd_free(h, c, 0);
2125 return return_status;
2126 }
2127
2128 static void cciss_geometry_inquiry(int ctlr, int logvol,
2129 int withirq, sector_t total_size,
2130 unsigned int block_size,
2131 InquiryData_struct *inq_buff,
2132 drive_info_struct *drv)
2133 {
2134 int return_code;
2135 unsigned long t;
2136
2137 memset(inq_buff, 0, sizeof(InquiryData_struct));
2138 if (withirq)
2139 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2140 inq_buff, sizeof(*inq_buff), 1,
2141 logvol, 0xC1, TYPE_CMD);
2142 else
2143 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2144 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
2145 TYPE_CMD);
2146 if (return_code == IO_OK) {
2147 if (inq_buff->data_byte[8] == 0xFF) {
2148 printk(KERN_WARNING
2149 "cciss: reading geometry failed, volume "
2150 "does not support reading geometry\n");
2151 drv->heads = 255;
2152 drv->sectors = 32; // Sectors per track
2153 drv->cylinders = total_size + 1;
2154 drv->raid_level = RAID_UNKNOWN;
2155 } else {
2156 drv->heads = inq_buff->data_byte[6];
2157 drv->sectors = inq_buff->data_byte[7];
2158 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2159 drv->cylinders += inq_buff->data_byte[5];
2160 drv->raid_level = inq_buff->data_byte[8];
2161 }
2162 drv->block_size = block_size;
2163 drv->nr_blocks = total_size + 1;
2164 t = drv->heads * drv->sectors;
2165 if (t > 1) {
2166 sector_t real_size = total_size + 1;
2167 unsigned long rem = sector_div(real_size, t);
2168 if (rem)
2169 real_size++;
2170 drv->cylinders = real_size;
2171 }
2172 } else { /* Get geometry failed */
2173 printk(KERN_WARNING "cciss: reading geometry failed\n");
2174 }
2175 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2176 drv->heads, drv->sectors, drv->cylinders);
2177 }
2178
2179 static void
2180 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2181 unsigned int *block_size)
2182 {
2183 ReadCapdata_struct *buf;
2184 int return_code;
2185
2186 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2187 if (!buf) {
2188 printk(KERN_WARNING "cciss: out of memory\n");
2189 return;
2190 }
2191
2192 if (withirq)
2193 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2194 ctlr, buf, sizeof(ReadCapdata_struct),
2195 1, logvol, 0, TYPE_CMD);
2196 else
2197 return_code = sendcmd(CCISS_READ_CAPACITY,
2198 ctlr, buf, sizeof(ReadCapdata_struct),
2199 1, logvol, 0, NULL, TYPE_CMD);
2200 if (return_code == IO_OK) {
2201 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2202 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2203 } else { /* read capacity command failed */
2204 printk(KERN_WARNING "cciss: read capacity failed\n");
2205 *total_size = 0;
2206 *block_size = BLOCK_SIZE;
2207 }
2208 if (*total_size != 0)
2209 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2210 (unsigned long long)*total_size+1, *block_size);
2211 kfree(buf);
2212 }
2213
2214 static void
2215 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2216 {
2217 ReadCapdata_struct_16 *buf;
2218 int return_code;
2219
2220 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2221 if (!buf) {
2222 printk(KERN_WARNING "cciss: out of memory\n");
2223 return;
2224 }
2225
2226 if (withirq) {
2227 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2228 ctlr, buf, sizeof(ReadCapdata_struct_16),
2229 1, logvol, 0, TYPE_CMD);
2230 }
2231 else {
2232 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2233 ctlr, buf, sizeof(ReadCapdata_struct_16),
2234 1, logvol, 0, NULL, TYPE_CMD);
2235 }
2236 if (return_code == IO_OK) {
2237 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2238 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2239 } else { /* read capacity command failed */
2240 printk(KERN_WARNING "cciss: read capacity failed\n");
2241 *total_size = 0;
2242 *block_size = BLOCK_SIZE;
2243 }
2244 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2245 (unsigned long long)*total_size+1, *block_size);
2246 kfree(buf);
2247 }
2248
2249 static int cciss_revalidate(struct gendisk *disk)
2250 {
2251 ctlr_info_t *h = get_host(disk);
2252 drive_info_struct *drv = get_drv(disk);
2253 int logvol;
2254 int FOUND = 0;
2255 unsigned int block_size;
2256 sector_t total_size;
2257 InquiryData_struct *inq_buff = NULL;
2258
2259 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2260 if (h->drv[logvol].LunID == drv->LunID) {
2261 FOUND = 1;
2262 break;
2263 }
2264 }
2265
2266 if (!FOUND)
2267 return 1;
2268
2269 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2270 if (inq_buff == NULL) {
2271 printk(KERN_WARNING "cciss: out of memory\n");
2272 return 1;
2273 }
2274 if (h->cciss_read == CCISS_READ_10) {
2275 cciss_read_capacity(h->ctlr, logvol, 1,
2276 &total_size, &block_size);
2277 } else {
2278 cciss_read_capacity_16(h->ctlr, logvol, 1,
2279 &total_size, &block_size);
2280 }
2281 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2282 inq_buff, drv);
2283
2284 blk_queue_hardsect_size(drv->queue, drv->block_size);
2285 set_capacity(disk, drv->nr_blocks);
2286
2287 kfree(inq_buff);
2288 return 0;
2289 }
2290
2291 /*
2292 * Wait polling for a command to complete.
2293 * The memory mapped FIFO is polled for the completion.
2294 * Used only at init time, interrupts from the HBA are disabled.
2295 */
2296 static unsigned long pollcomplete(int ctlr)
2297 {
2298 unsigned long done;
2299 int i;
2300
2301 /* Wait (up to 20 seconds) for a command to complete */
2302
2303 for (i = 20 * HZ; i > 0; i--) {
2304 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2305 if (done == FIFO_EMPTY)
2306 schedule_timeout_uninterruptible(1);
2307 else
2308 return done;
2309 }
2310 /* Invalid address to tell caller we ran out of time */
2311 return 1;
2312 }
2313
2314 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2315 {
2316 /* We get in here if sendcmd() is polling for completions
2317 and gets some command back that it wasn't expecting --
2318 something other than that which it just sent down.
2319 Ordinarily, that shouldn't happen, but it can happen when
2320 the scsi tape stuff gets into error handling mode, and
2321 starts using sendcmd() to try to abort commands and
2322 reset tape drives. In that case, sendcmd may pick up
2323 completions of commands that were sent to logical drives
2324 through the block i/o system, or cciss ioctls completing, etc.
2325 In that case, we need to save those completions for later
2326 processing by the interrupt handler.
2327 */
2328
2329 #ifdef CONFIG_CISS_SCSI_TAPE
2330 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2331
2332 /* If it's not the scsi tape stuff doing error handling, (abort */
2333 /* or reset) then we don't expect anything weird. */
2334 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2335 #endif
2336 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2337 "Invalid command list address returned! (%lx)\n",
2338 ctlr, complete);
2339 /* not much we can do. */
2340 #ifdef CONFIG_CISS_SCSI_TAPE
2341 return 1;
2342 }
2343
2344 /* We've sent down an abort or reset, but something else
2345 has completed */
2346 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2347 /* Uh oh. No room to save it for later... */
2348 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2349 "reject list overflow, command lost!\n", ctlr);
2350 return 1;
2351 }
2352 /* Save it for later */
2353 srl->complete[srl->ncompletions] = complete;
2354 srl->ncompletions++;
2355 #endif
2356 return 0;
2357 }
2358
2359 /*
2360 * Send a command to the controller, and wait for it to complete.
2361 * Only used at init time.
2362 */
2363 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2364 1: address logical volume log_unit,
2365 2: periph device address is scsi3addr */
2366 unsigned int log_unit,
2367 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2368 {
2369 CommandList_struct *c;
2370 int i;
2371 unsigned long complete;
2372 ctlr_info_t *info_p = hba[ctlr];
2373 u64bit buff_dma_handle;
2374 int status, done = 0;
2375
2376 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2377 printk(KERN_WARNING "cciss: unable to get memory");
2378 return IO_ERROR;
2379 }
2380 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2381 log_unit, page_code, scsi3addr, cmd_type);
2382 if (status != IO_OK) {
2383 cmd_free(info_p, c, 1);
2384 return status;
2385 }
2386 resend_cmd1:
2387 /*
2388 * Disable interrupt
2389 */
2390 #ifdef CCISS_DEBUG
2391 printk(KERN_DEBUG "cciss: turning intr off\n");
2392 #endif /* CCISS_DEBUG */
2393 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2394
2395 /* Make sure there is room in the command FIFO */
2396 /* Actually it should be completely empty at this time */
2397 /* unless we are in here doing error handling for the scsi */
2398 /* tape side of the driver. */
2399 for (i = 200000; i > 0; i--) {
2400 /* if fifo isn't full go */
2401 if (!(info_p->access.fifo_full(info_p))) {
2402
2403 break;
2404 }
2405 udelay(10);
2406 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2407 " waiting!\n", ctlr);
2408 }
2409 /*
2410 * Send the cmd
2411 */
2412 info_p->access.submit_command(info_p, c);
2413 done = 0;
2414 do {
2415 complete = pollcomplete(ctlr);
2416
2417 #ifdef CCISS_DEBUG
2418 printk(KERN_DEBUG "cciss: command completed\n");
2419 #endif /* CCISS_DEBUG */
2420
2421 if (complete == 1) {
2422 printk(KERN_WARNING
2423 "cciss cciss%d: SendCmd Timeout out, "
2424 "No command list address returned!\n", ctlr);
2425 status = IO_ERROR;
2426 done = 1;
2427 break;
2428 }
2429
2430 /* This will need to change for direct lookup completions */
2431 if ((complete & CISS_ERROR_BIT)
2432 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2433 /* if data overrun or underun on Report command
2434 ignore it
2435 */
2436 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2437 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2438 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2439 ((c->err_info->CommandStatus ==
2440 CMD_DATA_OVERRUN) ||
2441 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2442 )) {
2443 complete = c->busaddr;
2444 } else {
2445 if (c->err_info->CommandStatus ==
2446 CMD_UNSOLICITED_ABORT) {
2447 printk(KERN_WARNING "cciss%d: "
2448 "unsolicited abort %p\n",
2449 ctlr, c);
2450 if (c->retry_count < MAX_CMD_RETRIES) {
2451 printk(KERN_WARNING
2452 "cciss%d: retrying %p\n",
2453 ctlr, c);
2454 c->retry_count++;
2455 /* erase the old error */
2456 /* information */
2457 memset(c->err_info, 0,
2458 sizeof
2459 (ErrorInfo_struct));
2460 goto resend_cmd1;
2461 } else {
2462 printk(KERN_WARNING
2463 "cciss%d: retried %p too "
2464 "many times\n", ctlr, c);
2465 status = IO_ERROR;
2466 goto cleanup1;
2467 }
2468 } else if (c->err_info->CommandStatus ==
2469 CMD_UNABORTABLE) {
2470 printk(KERN_WARNING
2471 "cciss%d: command could not be aborted.\n",
2472 ctlr);
2473 status = IO_ERROR;
2474 goto cleanup1;
2475 }
2476 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2477 " Error %x \n", ctlr,
2478 c->err_info->CommandStatus);
2479 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2480 " offensive info\n"
2481 " size %x\n num %x value %x\n",
2482 ctlr,
2483 c->err_info->MoreErrInfo.Invalid_Cmd.
2484 offense_size,
2485 c->err_info->MoreErrInfo.Invalid_Cmd.
2486 offense_num,
2487 c->err_info->MoreErrInfo.Invalid_Cmd.
2488 offense_value);
2489 status = IO_ERROR;
2490 goto cleanup1;
2491 }
2492 }
2493 /* This will need changing for direct lookup completions */
2494 if (complete != c->busaddr) {
2495 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2496 BUG(); /* we are pretty much hosed if we get here. */
2497 }
2498 continue;
2499 } else
2500 done = 1;
2501 } while (!done);
2502
2503 cleanup1:
2504 /* unlock the data buffer from DMA */
2505 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2506 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2507 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2508 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2509 #ifdef CONFIG_CISS_SCSI_TAPE
2510 /* if we saved some commands for later, process them now. */
2511 if (info_p->scsi_rejects.ncompletions > 0)
2512 do_cciss_intr(0, info_p);
2513 #endif
2514 cmd_free(info_p, c, 1);
2515 return status;
2516 }
2517
2518 /*
2519 * Map (physical) PCI mem into (virtual) kernel space
2520 */
2521 static void __iomem *remap_pci_mem(ulong base, ulong size)
2522 {
2523 ulong page_base = ((ulong) base) & PAGE_MASK;
2524 ulong page_offs = ((ulong) base) - page_base;
2525 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2526
2527 return page_remapped ? (page_remapped + page_offs) : NULL;
2528 }
2529
2530 /*
2531 * Takes jobs of the Q and sends them to the hardware, then puts it on
2532 * the Q to wait for completion.
2533 */
2534 static void start_io(ctlr_info_t *h)
2535 {
2536 CommandList_struct *c;
2537
2538 while (!hlist_empty(&h->reqQ)) {
2539 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2540 /* can't do anything if fifo is full */
2541 if ((h->access.fifo_full(h))) {
2542 printk(KERN_WARNING "cciss: fifo full\n");
2543 break;
2544 }
2545
2546 /* Get the first entry from the Request Q */
2547 removeQ(c);
2548 h->Qdepth--;
2549
2550 /* Tell the controller execute command */
2551 h->access.submit_command(h, c);
2552
2553 /* Put job onto the completed Q */
2554 addQ(&h->cmpQ, c);
2555 }
2556 }
2557
2558 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2559 /* Zeros out the error record and then resends the command back */
2560 /* to the controller */
2561 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2562 {
2563 /* erase the old error information */
2564 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2565
2566 /* add it to software queue and then send it to the controller */
2567 addQ(&h->reqQ, c);
2568 h->Qdepth++;
2569 if (h->Qdepth > h->maxQsinceinit)
2570 h->maxQsinceinit = h->Qdepth;
2571
2572 start_io(h);
2573 }
2574
2575 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2576 unsigned int msg_byte, unsigned int host_byte,
2577 unsigned int driver_byte)
2578 {
2579 /* inverse of macros in scsi.h */
2580 return (scsi_status_byte & 0xff) |
2581 ((msg_byte & 0xff) << 8) |
2582 ((host_byte & 0xff) << 16) |
2583 ((driver_byte & 0xff) << 24);
2584 }
2585
2586 static inline int evaluate_target_status(CommandList_struct *cmd)
2587 {
2588 unsigned char sense_key;
2589 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2590 int error_value;
2591
2592 /* If we get in here, it means we got "target status", that is, scsi status */
2593 status_byte = cmd->err_info->ScsiStatus;
2594 driver_byte = DRIVER_OK;
2595 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2596
2597 if (blk_pc_request(cmd->rq))
2598 host_byte = DID_PASSTHROUGH;
2599 else
2600 host_byte = DID_OK;
2601
2602 error_value = make_status_bytes(status_byte, msg_byte,
2603 host_byte, driver_byte);
2604
2605 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2606 if (!blk_pc_request(cmd->rq))
2607 printk(KERN_WARNING "cciss: cmd %p "
2608 "has SCSI Status 0x%x\n",
2609 cmd, cmd->err_info->ScsiStatus);
2610 return error_value;
2611 }
2612
2613 /* check the sense key */
2614 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2615 /* no status or recovered error */
2616 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2617 error_value = 0;
2618
2619 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2620 if (error_value != 0)
2621 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2622 " sense key = 0x%x\n", cmd, sense_key);
2623 return error_value;
2624 }
2625
2626 /* SG_IO or similar, copy sense data back */
2627 if (cmd->rq->sense) {
2628 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2629 cmd->rq->sense_len = cmd->err_info->SenseLen;
2630 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2631 cmd->rq->sense_len);
2632 } else
2633 cmd->rq->sense_len = 0;
2634
2635 return error_value;
2636 }
2637
2638 /* checks the status of the job and calls complete buffers to mark all
2639 * buffers for the completed job. Note that this function does not need
2640 * to hold the hba/queue lock.
2641 */
2642 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2643 int timeout)
2644 {
2645 int retry_cmd = 0;
2646 struct request *rq = cmd->rq;
2647
2648 rq->errors = 0;
2649
2650 if (timeout)
2651 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2652
2653 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2654 goto after_error_processing;
2655
2656 switch (cmd->err_info->CommandStatus) {
2657 case CMD_TARGET_STATUS:
2658 rq->errors = evaluate_target_status(cmd);
2659 break;
2660 case CMD_DATA_UNDERRUN:
2661 if (blk_fs_request(cmd->rq)) {
2662 printk(KERN_WARNING "cciss: cmd %p has"
2663 " completed with data underrun "
2664 "reported\n", cmd);
2665 cmd->rq->data_len = cmd->err_info->ResidualCnt;
2666 }
2667 break;
2668 case CMD_DATA_OVERRUN:
2669 if (blk_fs_request(cmd->rq))
2670 printk(KERN_WARNING "cciss: cmd %p has"
2671 " completed with data overrun "
2672 "reported\n", cmd);
2673 break;
2674 case CMD_INVALID:
2675 printk(KERN_WARNING "cciss: cmd %p is "
2676 "reported invalid\n", cmd);
2677 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2678 cmd->err_info->CommandStatus, DRIVER_OK,
2679 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2680 break;
2681 case CMD_PROTOCOL_ERR:
2682 printk(KERN_WARNING "cciss: cmd %p has "
2683 "protocol error \n", cmd);
2684 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2685 cmd->err_info->CommandStatus, DRIVER_OK,
2686 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2687 break;
2688 case CMD_HARDWARE_ERR:
2689 printk(KERN_WARNING "cciss: cmd %p had "
2690 " hardware error\n", cmd);
2691 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2692 cmd->err_info->CommandStatus, DRIVER_OK,
2693 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2694 break;
2695 case CMD_CONNECTION_LOST:
2696 printk(KERN_WARNING "cciss: cmd %p had "
2697 "connection lost\n", cmd);
2698 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2699 cmd->err_info->CommandStatus, DRIVER_OK,
2700 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2701 break;
2702 case CMD_ABORTED:
2703 printk(KERN_WARNING "cciss: cmd %p was "
2704 "aborted\n", cmd);
2705 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2706 cmd->err_info->CommandStatus, DRIVER_OK,
2707 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2708 break;
2709 case CMD_ABORT_FAILED:
2710 printk(KERN_WARNING "cciss: cmd %p reports "
2711 "abort failed\n", cmd);
2712 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2713 cmd->err_info->CommandStatus, DRIVER_OK,
2714 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2715 break;
2716 case CMD_UNSOLICITED_ABORT:
2717 printk(KERN_WARNING "cciss%d: unsolicited "
2718 "abort %p\n", h->ctlr, cmd);
2719 if (cmd->retry_count < MAX_CMD_RETRIES) {
2720 retry_cmd = 1;
2721 printk(KERN_WARNING
2722 "cciss%d: retrying %p\n", h->ctlr, cmd);
2723 cmd->retry_count++;
2724 } else
2725 printk(KERN_WARNING
2726 "cciss%d: %p retried too "
2727 "many times\n", h->ctlr, cmd);
2728 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2729 cmd->err_info->CommandStatus, DRIVER_OK,
2730 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2731 break;
2732 case CMD_TIMEOUT:
2733 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2734 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2735 cmd->err_info->CommandStatus, DRIVER_OK,
2736 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2737 break;
2738 default:
2739 printk(KERN_WARNING "cciss: cmd %p returned "
2740 "unknown status %x\n", cmd,
2741 cmd->err_info->CommandStatus);
2742 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2743 cmd->err_info->CommandStatus, DRIVER_OK,
2744 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2745 }
2746
2747 after_error_processing:
2748
2749 /* We need to return this command */
2750 if (retry_cmd) {
2751 resend_cciss_cmd(h, cmd);
2752 return;
2753 }
2754 cmd->rq->completion_data = cmd;
2755 blk_complete_request(cmd->rq);
2756 }
2757
2758 /*
2759 * Get a request and submit it to the controller.
2760 */
2761 static void do_cciss_request(struct request_queue *q)
2762 {
2763 ctlr_info_t *h = q->queuedata;
2764 CommandList_struct *c;
2765 sector_t start_blk;
2766 int seg;
2767 struct request *creq;
2768 u64bit temp64;
2769 struct scatterlist tmp_sg[MAXSGENTRIES];
2770 drive_info_struct *drv;
2771 int i, dir;
2772
2773 /* We call start_io here in case there is a command waiting on the
2774 * queue that has not been sent.
2775 */
2776 if (blk_queue_plugged(q))
2777 goto startio;
2778
2779 queue:
2780 creq = elv_next_request(q);
2781 if (!creq)
2782 goto startio;
2783
2784 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2785
2786 if ((c = cmd_alloc(h, 1)) == NULL)
2787 goto full;
2788
2789 blkdev_dequeue_request(creq);
2790
2791 spin_unlock_irq(q->queue_lock);
2792
2793 c->cmd_type = CMD_RWREQ;
2794 c->rq = creq;
2795
2796 /* fill in the request */
2797 drv = creq->rq_disk->private_data;
2798 c->Header.ReplyQueue = 0; // unused in simple mode
2799 /* got command from pool, so use the command block index instead */
2800 /* for direct lookups. */
2801 /* The first 2 bits are reserved for controller error reporting. */
2802 c->Header.Tag.lower = (c->cmdindex << 3);
2803 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2804 c->Header.LUN.LogDev.VolId = drv->LunID;
2805 c->Header.LUN.LogDev.Mode = 1;
2806 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2807 c->Request.Type.Type = TYPE_CMD; // It is a command.
2808 c->Request.Type.Attribute = ATTR_SIMPLE;
2809 c->Request.Type.Direction =
2810 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2811 c->Request.Timeout = 0; // Don't time out
2812 c->Request.CDB[0] =
2813 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2814 start_blk = creq->sector;
2815 #ifdef CCISS_DEBUG
2816 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2817 (int)creq->nr_sectors);
2818 #endif /* CCISS_DEBUG */
2819
2820 sg_init_table(tmp_sg, MAXSGENTRIES);
2821 seg = blk_rq_map_sg(q, creq, tmp_sg);
2822
2823 /* get the DMA records for the setup */
2824 if (c->Request.Type.Direction == XFER_READ)
2825 dir = PCI_DMA_FROMDEVICE;
2826 else
2827 dir = PCI_DMA_TODEVICE;
2828
2829 for (i = 0; i < seg; i++) {
2830 c->SG[i].Len = tmp_sg[i].length;
2831 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
2832 tmp_sg[i].offset,
2833 tmp_sg[i].length, dir);
2834 c->SG[i].Addr.lower = temp64.val32.lower;
2835 c->SG[i].Addr.upper = temp64.val32.upper;
2836 c->SG[i].Ext = 0; // we are not chaining
2837 }
2838 /* track how many SG entries we are using */
2839 if (seg > h->maxSG)
2840 h->maxSG = seg;
2841
2842 #ifdef CCISS_DEBUG
2843 printk(KERN_DEBUG "cciss: Submitting %lu sectors in %d segments\n",
2844 creq->nr_sectors, seg);
2845 #endif /* CCISS_DEBUG */
2846
2847 c->Header.SGList = c->Header.SGTotal = seg;
2848 if (likely(blk_fs_request(creq))) {
2849 if(h->cciss_read == CCISS_READ_10) {
2850 c->Request.CDB[1] = 0;
2851 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2852 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2853 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2854 c->Request.CDB[5] = start_blk & 0xff;
2855 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2856 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2857 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2858 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2859 } else {
2860 u32 upper32 = upper_32_bits(start_blk);
2861
2862 c->Request.CDBLen = 16;
2863 c->Request.CDB[1]= 0;
2864 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
2865 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
2866 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
2867 c->Request.CDB[5]= upper32 & 0xff;
2868 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2869 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2870 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2871 c->Request.CDB[9]= start_blk & 0xff;
2872 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2873 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2874 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2875 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2876 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2877 }
2878 } else if (blk_pc_request(creq)) {
2879 c->Request.CDBLen = creq->cmd_len;
2880 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
2881 } else {
2882 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
2883 BUG();
2884 }
2885
2886 spin_lock_irq(q->queue_lock);
2887
2888 addQ(&h->reqQ, c);
2889 h->Qdepth++;
2890 if (h->Qdepth > h->maxQsinceinit)
2891 h->maxQsinceinit = h->Qdepth;
2892
2893 goto queue;
2894 full:
2895 blk_stop_queue(q);
2896 startio:
2897 /* We will already have the driver lock here so not need
2898 * to lock it.
2899 */
2900 start_io(h);
2901 }
2902
2903 static inline unsigned long get_next_completion(ctlr_info_t *h)
2904 {
2905 #ifdef CONFIG_CISS_SCSI_TAPE
2906 /* Any rejects from sendcmd() lying around? Process them first */
2907 if (h->scsi_rejects.ncompletions == 0)
2908 return h->access.command_completed(h);
2909 else {
2910 struct sendcmd_reject_list *srl;
2911 int n;
2912 srl = &h->scsi_rejects;
2913 n = --srl->ncompletions;
2914 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2915 printk("p");
2916 return srl->complete[n];
2917 }
2918 #else
2919 return h->access.command_completed(h);
2920 #endif
2921 }
2922
2923 static inline int interrupt_pending(ctlr_info_t *h)
2924 {
2925 #ifdef CONFIG_CISS_SCSI_TAPE
2926 return (h->access.intr_pending(h)
2927 || (h->scsi_rejects.ncompletions > 0));
2928 #else
2929 return h->access.intr_pending(h);
2930 #endif
2931 }
2932
2933 static inline long interrupt_not_for_us(ctlr_info_t *h)
2934 {
2935 #ifdef CONFIG_CISS_SCSI_TAPE
2936 return (((h->access.intr_pending(h) == 0) ||
2937 (h->interrupts_enabled == 0))
2938 && (h->scsi_rejects.ncompletions == 0));
2939 #else
2940 return (((h->access.intr_pending(h) == 0) ||
2941 (h->interrupts_enabled == 0)));
2942 #endif
2943 }
2944
2945 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2946 {
2947 ctlr_info_t *h = dev_id;
2948 CommandList_struct *c;
2949 unsigned long flags;
2950 __u32 a, a1, a2;
2951
2952 if (interrupt_not_for_us(h))
2953 return IRQ_NONE;
2954 /*
2955 * If there are completed commands in the completion queue,
2956 * we had better do something about it.
2957 */
2958 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2959 while (interrupt_pending(h)) {
2960 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2961 a1 = a;
2962 if ((a & 0x04)) {
2963 a2 = (a >> 3);
2964 if (a2 >= h->nr_cmds) {
2965 printk(KERN_WARNING
2966 "cciss: controller cciss%d failed, stopping.\n",
2967 h->ctlr);
2968 fail_all_cmds(h->ctlr);
2969 return IRQ_HANDLED;
2970 }
2971
2972 c = h->cmd_pool + a2;
2973 a = c->busaddr;
2974
2975 } else {
2976 struct hlist_node *tmp;
2977
2978 a &= ~3;
2979 c = NULL;
2980 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2981 if (c->busaddr == a)
2982 break;
2983 }
2984 }
2985 /*
2986 * If we've found the command, take it off the
2987 * completion Q and free it
2988 */
2989 if (c && c->busaddr == a) {
2990 removeQ(c);
2991 if (c->cmd_type == CMD_RWREQ) {
2992 complete_command(h, c, 0);
2993 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2994 complete(c->waiting);
2995 }
2996 # ifdef CONFIG_CISS_SCSI_TAPE
2997 else if (c->cmd_type == CMD_SCSI)
2998 complete_scsi_command(c, 0, a1);
2999 # endif
3000 continue;
3001 }
3002 }
3003 }
3004
3005 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3006 return IRQ_HANDLED;
3007 }
3008
3009 /*
3010 * We cannot read the structure directly, for portability we must use
3011 * the io functions.
3012 * This is for debug only.
3013 */
3014 #ifdef CCISS_DEBUG
3015 static void print_cfg_table(CfgTable_struct *tb)
3016 {
3017 int i;
3018 char temp_name[17];
3019
3020 printk("Controller Configuration information\n");
3021 printk("------------------------------------\n");
3022 for (i = 0; i < 4; i++)
3023 temp_name[i] = readb(&(tb->Signature[i]));
3024 temp_name[4] = '\0';
3025 printk(" Signature = %s\n", temp_name);
3026 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3027 printk(" Transport methods supported = 0x%x\n",
3028 readl(&(tb->TransportSupport)));
3029 printk(" Transport methods active = 0x%x\n",
3030 readl(&(tb->TransportActive)));
3031 printk(" Requested transport Method = 0x%x\n",
3032 readl(&(tb->HostWrite.TransportRequest)));
3033 printk(" Coalesce Interrupt Delay = 0x%x\n",
3034 readl(&(tb->HostWrite.CoalIntDelay)));
3035 printk(" Coalesce Interrupt Count = 0x%x\n",
3036 readl(&(tb->HostWrite.CoalIntCount)));
3037 printk(" Max outstanding commands = 0x%d\n",
3038 readl(&(tb->CmdsOutMax)));
3039 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3040 for (i = 0; i < 16; i++)
3041 temp_name[i] = readb(&(tb->ServerName[i]));
3042 temp_name[16] = '\0';
3043 printk(" Server Name = %s\n", temp_name);
3044 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3045 }
3046 #endif /* CCISS_DEBUG */
3047
3048 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3049 {
3050 int i, offset, mem_type, bar_type;
3051 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3052 return 0;
3053 offset = 0;
3054 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3055 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3056 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3057 offset += 4;
3058 else {
3059 mem_type = pci_resource_flags(pdev, i) &
3060 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3061 switch (mem_type) {
3062 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3063 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3064 offset += 4; /* 32 bit */
3065 break;
3066 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3067 offset += 8;
3068 break;
3069 default: /* reserved in PCI 2.2 */
3070 printk(KERN_WARNING
3071 "Base address is invalid\n");
3072 return -1;
3073 break;
3074 }
3075 }
3076 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3077 return i + 1;
3078 }
3079 return -1;
3080 }
3081
3082 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3083 * controllers that are capable. If not, we use IO-APIC mode.
3084 */
3085
3086 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3087 struct pci_dev *pdev, __u32 board_id)
3088 {
3089 #ifdef CONFIG_PCI_MSI
3090 int err;
3091 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3092 {0, 2}, {0, 3}
3093 };
3094
3095 /* Some boards advertise MSI but don't really support it */
3096 if ((board_id == 0x40700E11) ||
3097 (board_id == 0x40800E11) ||
3098 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3099 goto default_int_mode;
3100
3101 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3102 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3103 if (!err) {
3104 c->intr[0] = cciss_msix_entries[0].vector;
3105 c->intr[1] = cciss_msix_entries[1].vector;
3106 c->intr[2] = cciss_msix_entries[2].vector;
3107 c->intr[3] = cciss_msix_entries[3].vector;
3108 c->msix_vector = 1;
3109 return;
3110 }
3111 if (err > 0) {
3112 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3113 "available\n", err);
3114 goto default_int_mode;
3115 } else {
3116 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3117 err);
3118 goto default_int_mode;
3119 }
3120 }
3121 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3122 if (!pci_enable_msi(pdev)) {
3123 c->msi_vector = 1;
3124 } else {
3125 printk(KERN_WARNING "cciss: MSI init failed\n");
3126 }
3127 }
3128 default_int_mode:
3129 #endif /* CONFIG_PCI_MSI */
3130 /* if we get here we're going to use the default interrupt mode */
3131 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3132 return;
3133 }
3134
3135 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3136 {
3137 ushort subsystem_vendor_id, subsystem_device_id, command;
3138 __u32 board_id, scratchpad = 0;
3139 __u64 cfg_offset;
3140 __u32 cfg_base_addr;
3141 __u64 cfg_base_addr_index;
3142 int i, err;
3143
3144 /* check to see if controller has been disabled */
3145 /* BEFORE trying to enable it */
3146 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3147 if (!(command & 0x02)) {
3148 printk(KERN_WARNING
3149 "cciss: controller appears to be disabled\n");
3150 return -ENODEV;
3151 }
3152
3153 err = pci_enable_device(pdev);
3154 if (err) {
3155 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3156 return err;
3157 }
3158
3159 err = pci_request_regions(pdev, "cciss");
3160 if (err) {
3161 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3162 "aborting\n");
3163 return err;
3164 }
3165
3166 subsystem_vendor_id = pdev->subsystem_vendor;
3167 subsystem_device_id = pdev->subsystem_device;
3168 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3169 subsystem_vendor_id);
3170
3171 #ifdef CCISS_DEBUG
3172 printk("command = %x\n", command);
3173 printk("irq = %x\n", pdev->irq);
3174 printk("board_id = %x\n", board_id);
3175 #endif /* CCISS_DEBUG */
3176
3177 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3178 * else we use the IO-APIC interrupt assigned to us by system ROM.
3179 */
3180 cciss_interrupt_mode(c, pdev, board_id);
3181
3182 /*
3183 * Memory base addr is first addr , the second points to the config
3184 * table
3185 */
3186
3187 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
3188 #ifdef CCISS_DEBUG
3189 printk("address 0 = %lx\n", c->paddr);
3190 #endif /* CCISS_DEBUG */
3191 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3192
3193 /* Wait for the board to become ready. (PCI hotplug needs this.)
3194 * We poll for up to 120 secs, once per 100ms. */
3195 for (i = 0; i < 1200; i++) {
3196 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3197 if (scratchpad == CCISS_FIRMWARE_READY)
3198 break;
3199 set_current_state(TASK_INTERRUPTIBLE);
3200 schedule_timeout(HZ / 10); /* wait 100ms */
3201 }
3202 if (scratchpad != CCISS_FIRMWARE_READY) {
3203 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3204 err = -ENODEV;
3205 goto err_out_free_res;
3206 }
3207
3208 /* get the address index number */
3209 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3210 cfg_base_addr &= (__u32) 0x0000ffff;
3211 #ifdef CCISS_DEBUG
3212 printk("cfg base address = %x\n", cfg_base_addr);
3213 #endif /* CCISS_DEBUG */
3214 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3215 #ifdef CCISS_DEBUG
3216 printk("cfg base address index = %llx\n",
3217 (unsigned long long)cfg_base_addr_index);
3218 #endif /* CCISS_DEBUG */
3219 if (cfg_base_addr_index == -1) {
3220 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3221 err = -ENODEV;
3222 goto err_out_free_res;
3223 }
3224
3225 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3226 #ifdef CCISS_DEBUG
3227 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3228 #endif /* CCISS_DEBUG */
3229 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3230 cfg_base_addr_index) +
3231 cfg_offset, sizeof(CfgTable_struct));
3232 c->board_id = board_id;
3233
3234 #ifdef CCISS_DEBUG
3235 print_cfg_table(c->cfgtable);
3236 #endif /* CCISS_DEBUG */
3237
3238 /* Some controllers support Zero Memory Raid (ZMR).
3239 * When configured in ZMR mode the number of supported
3240 * commands drops to 64. So instead of just setting an
3241 * arbitrary value we make the driver a little smarter.
3242 * We read the config table to tell us how many commands
3243 * are supported on the controller then subtract 4 to
3244 * leave a little room for ioctl calls.
3245 */
3246 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3247 for (i = 0; i < ARRAY_SIZE(products); i++) {
3248 if (board_id == products[i].board_id) {
3249 c->product_name = products[i].product_name;
3250 c->access = *(products[i].access);
3251 c->nr_cmds = c->max_commands - 4;
3252 break;
3253 }
3254 }
3255 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3256 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3257 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3258 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3259 printk("Does not appear to be a valid CISS config table\n");
3260 err = -ENODEV;
3261 goto err_out_free_res;
3262 }
3263 /* We didn't find the controller in our list. We know the
3264 * signature is valid. If it's an HP device let's try to
3265 * bind to the device and fire it up. Otherwise we bail.
3266 */
3267 if (i == ARRAY_SIZE(products)) {
3268 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3269 c->product_name = products[i-1].product_name;
3270 c->access = *(products[i-1].access);
3271 c->nr_cmds = c->max_commands - 4;
3272 printk(KERN_WARNING "cciss: This is an unknown "
3273 "Smart Array controller.\n"
3274 "cciss: Please update to the latest driver "
3275 "available from www.hp.com.\n");
3276 } else {
3277 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3278 " to access the Smart Array controller %08lx\n"
3279 , (unsigned long)board_id);
3280 err = -ENODEV;
3281 goto err_out_free_res;
3282 }
3283 }
3284 #ifdef CONFIG_X86
3285 {
3286 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3287 __u32 prefetch;
3288 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3289 prefetch |= 0x100;
3290 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3291 }
3292 #endif
3293
3294 /* Disabling DMA prefetch and refetch for the P600.
3295 * An ASIC bug may result in accesses to invalid memory addresses.
3296 * We've disabled prefetch for some time now. Testing with XEN
3297 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3298 */
3299 if(board_id == 0x3225103C) {
3300 __u32 dma_prefetch;
3301 __u32 dma_refetch;
3302 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3303 dma_prefetch |= 0x8000;
3304 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3305 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3306 dma_refetch |= 0x1;
3307 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3308 }
3309
3310 #ifdef CCISS_DEBUG
3311 printk("Trying to put board into Simple mode\n");
3312 #endif /* CCISS_DEBUG */
3313 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3314 /* Update the field, and then ring the doorbell */
3315 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3316 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3317
3318 /* under certain very rare conditions, this can take awhile.
3319 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3320 * as we enter this code.) */
3321 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3322 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3323 break;
3324 /* delay and try again */
3325 set_current_state(TASK_INTERRUPTIBLE);
3326 schedule_timeout(10);
3327 }
3328
3329 #ifdef CCISS_DEBUG
3330 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3331 readl(c->vaddr + SA5_DOORBELL));
3332 #endif /* CCISS_DEBUG */
3333 #ifdef CCISS_DEBUG
3334 print_cfg_table(c->cfgtable);
3335 #endif /* CCISS_DEBUG */
3336
3337 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3338 printk(KERN_WARNING "cciss: unable to get board into"
3339 " simple mode\n");
3340 err = -ENODEV;
3341 goto err_out_free_res;
3342 }
3343 return 0;
3344
3345 err_out_free_res:
3346 /*
3347 * Deliberately omit pci_disable_device(): it does something nasty to
3348 * Smart Array controllers that pci_enable_device does not undo
3349 */
3350 pci_release_regions(pdev);
3351 return err;
3352 }
3353
3354 /* Function to find the first free pointer into our hba[] array
3355 * Returns -1 if no free entries are left.
3356 */
3357 static int alloc_cciss_hba(void)
3358 {
3359 int i;
3360
3361 for (i = 0; i < MAX_CTLR; i++) {
3362 if (!hba[i]) {
3363 ctlr_info_t *p;
3364
3365 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3366 if (!p)
3367 goto Enomem;
3368 hba[i] = p;
3369 return i;
3370 }
3371 }
3372 printk(KERN_WARNING "cciss: This driver supports a maximum"
3373 " of %d controllers.\n", MAX_CTLR);
3374 return -1;
3375 Enomem:
3376 printk(KERN_ERR "cciss: out of memory.\n");
3377 return -1;
3378 }
3379
3380 static void free_hba(int i)
3381 {
3382 ctlr_info_t *p = hba[i];
3383 int n;
3384
3385 hba[i] = NULL;
3386 for (n = 0; n < CISS_MAX_LUN; n++)
3387 put_disk(p->gendisk[n]);
3388 kfree(p);
3389 }
3390
3391 /*
3392 * This is it. Find all the controllers and register them. I really hate
3393 * stealing all these major device numbers.
3394 * returns the number of block devices registered.
3395 */
3396 static int __devinit cciss_init_one(struct pci_dev *pdev,
3397 const struct pci_device_id *ent)
3398 {
3399 int i;
3400 int j = 0;
3401 int rc;
3402 int dac, return_code;
3403 InquiryData_struct *inq_buff = NULL;
3404
3405 i = alloc_cciss_hba();
3406 if (i < 0)
3407 return -1;
3408
3409 hba[i]->busy_initializing = 1;
3410 INIT_HLIST_HEAD(&hba[i]->cmpQ);
3411 INIT_HLIST_HEAD(&hba[i]->reqQ);
3412
3413 if (cciss_pci_init(hba[i], pdev) != 0)
3414 goto clean1;
3415
3416 sprintf(hba[i]->devname, "cciss%d", i);
3417 hba[i]->ctlr = i;
3418 hba[i]->pdev = pdev;
3419
3420 /* configure PCI DMA stuff */
3421 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3422 dac = 1;
3423 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3424 dac = 0;
3425 else {
3426 printk(KERN_ERR "cciss: no suitable DMA available\n");
3427 goto clean1;
3428 }
3429
3430 /*
3431 * register with the major number, or get a dynamic major number
3432 * by passing 0 as argument. This is done for greater than
3433 * 8 controller support.
3434 */
3435 if (i < MAX_CTLR_ORIG)
3436 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3437 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3438 if (rc == -EBUSY || rc == -EINVAL) {
3439 printk(KERN_ERR
3440 "cciss: Unable to get major number %d for %s "
3441 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3442 goto clean1;
3443 } else {
3444 if (i >= MAX_CTLR_ORIG)
3445 hba[i]->major = rc;
3446 }
3447
3448 /* make sure the board interrupts are off */
3449 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3450 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3451 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3452 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3453 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3454 goto clean2;
3455 }
3456
3457 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3458 hba[i]->devname, pdev->device, pci_name(pdev),
3459 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3460
3461 hba[i]->cmd_pool_bits =
3462 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3463 * sizeof(unsigned long), GFP_KERNEL);
3464 hba[i]->cmd_pool = (CommandList_struct *)
3465 pci_alloc_consistent(hba[i]->pdev,
3466 hba[i]->nr_cmds * sizeof(CommandList_struct),
3467 &(hba[i]->cmd_pool_dhandle));
3468 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3469 pci_alloc_consistent(hba[i]->pdev,
3470 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3471 &(hba[i]->errinfo_pool_dhandle));
3472 if ((hba[i]->cmd_pool_bits == NULL)
3473 || (hba[i]->cmd_pool == NULL)
3474 || (hba[i]->errinfo_pool == NULL)) {
3475 printk(KERN_ERR "cciss: out of memory");
3476 goto clean4;
3477 }
3478 #ifdef CONFIG_CISS_SCSI_TAPE
3479 hba[i]->scsi_rejects.complete =
3480 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3481 (hba[i]->nr_cmds + 5), GFP_KERNEL);
3482 if (hba[i]->scsi_rejects.complete == NULL) {
3483 printk(KERN_ERR "cciss: out of memory");
3484 goto clean4;
3485 }
3486 #endif
3487 spin_lock_init(&hba[i]->lock);
3488
3489 /* Initialize the pdev driver private data.
3490 have it point to hba[i]. */
3491 pci_set_drvdata(pdev, hba[i]);
3492 /* command and error info recs zeroed out before
3493 they are used */
3494 memset(hba[i]->cmd_pool_bits, 0,
3495 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3496 * sizeof(unsigned long));
3497
3498 hba[i]->num_luns = 0;
3499 hba[i]->highest_lun = -1;
3500 for (j = 0; j < CISS_MAX_LUN; j++) {
3501 hba[i]->drv[j].raid_level = -1;
3502 hba[i]->drv[j].queue = NULL;
3503 hba[i]->gendisk[j] = NULL;
3504 }
3505
3506 cciss_scsi_setup(i);
3507
3508 /* Turn the interrupts on so we can service requests */
3509 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3510
3511 /* Get the firmware version */
3512 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3513 if (inq_buff == NULL) {
3514 printk(KERN_ERR "cciss: out of memory\n");
3515 goto clean4;
3516 }
3517
3518 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
3519 sizeof(InquiryData_struct), 0, 0 , 0, TYPE_CMD);
3520 if (return_code == IO_OK) {
3521 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
3522 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
3523 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
3524 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
3525 } else { /* send command failed */
3526 printk(KERN_WARNING "cciss: unable to determine firmware"
3527 " version of controller\n");
3528 }
3529
3530 cciss_procinit(i);
3531
3532 hba[i]->cciss_max_sectors = 2048;
3533
3534 hba[i]->busy_initializing = 0;
3535
3536 rebuild_lun_table(hba[i], 1);
3537 return 1;
3538
3539 clean4:
3540 kfree(inq_buff);
3541 #ifdef CONFIG_CISS_SCSI_TAPE
3542 kfree(hba[i]->scsi_rejects.complete);
3543 #endif
3544 kfree(hba[i]->cmd_pool_bits);
3545 if (hba[i]->cmd_pool)
3546 pci_free_consistent(hba[i]->pdev,
3547 hba[i]->nr_cmds * sizeof(CommandList_struct),
3548 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3549 if (hba[i]->errinfo_pool)
3550 pci_free_consistent(hba[i]->pdev,
3551 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3552 hba[i]->errinfo_pool,
3553 hba[i]->errinfo_pool_dhandle);
3554 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3555 clean2:
3556 unregister_blkdev(hba[i]->major, hba[i]->devname);
3557 clean1:
3558 hba[i]->busy_initializing = 0;
3559 /* cleanup any queues that may have been initialized */
3560 for (j=0; j <= hba[i]->highest_lun; j++){
3561 drive_info_struct *drv = &(hba[i]->drv[j]);
3562 if (drv->queue)
3563 blk_cleanup_queue(drv->queue);
3564 }
3565 /*
3566 * Deliberately omit pci_disable_device(): it does something nasty to
3567 * Smart Array controllers that pci_enable_device does not undo
3568 */
3569 pci_release_regions(pdev);
3570 pci_set_drvdata(pdev, NULL);
3571 free_hba(i);
3572 return -1;
3573 }
3574
3575 static void cciss_shutdown(struct pci_dev *pdev)
3576 {
3577 ctlr_info_t *tmp_ptr;
3578 int i;
3579 char flush_buf[4];
3580 int return_code;
3581
3582 tmp_ptr = pci_get_drvdata(pdev);
3583 if (tmp_ptr == NULL)
3584 return;
3585 i = tmp_ptr->ctlr;
3586 if (hba[i] == NULL)
3587 return;
3588
3589 /* Turn board interrupts off and send the flush cache command */
3590 /* sendcmd will turn off interrupt, and send the flush...
3591 * To write all data in the battery backed cache to disks */
3592 memset(flush_buf, 0, 4);
3593 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3594 TYPE_CMD);
3595 if (return_code == IO_OK) {
3596 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
3597 } else {
3598 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
3599 }
3600 free_irq(hba[i]->intr[2], hba[i]);
3601 }
3602
3603 static void __devexit cciss_remove_one(struct pci_dev *pdev)
3604 {
3605 ctlr_info_t *tmp_ptr;
3606 int i, j;
3607
3608 if (pci_get_drvdata(pdev) == NULL) {
3609 printk(KERN_ERR "cciss: Unable to remove device \n");
3610 return;
3611 }
3612 tmp_ptr = pci_get_drvdata(pdev);
3613 i = tmp_ptr->ctlr;
3614 if (hba[i] == NULL) {
3615 printk(KERN_ERR "cciss: device appears to "
3616 "already be removed \n");
3617 return;
3618 }
3619
3620 remove_proc_entry(hba[i]->devname, proc_cciss);
3621 unregister_blkdev(hba[i]->major, hba[i]->devname);
3622
3623 /* remove it from the disk list */
3624 for (j = 0; j < CISS_MAX_LUN; j++) {
3625 struct gendisk *disk = hba[i]->gendisk[j];
3626 if (disk) {
3627 struct request_queue *q = disk->queue;
3628
3629 if (disk->flags & GENHD_FL_UP)
3630 del_gendisk(disk);
3631 if (q)
3632 blk_cleanup_queue(q);
3633 }
3634 }
3635
3636 #ifdef CONFIG_CISS_SCSI_TAPE
3637 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3638 #endif
3639
3640 cciss_shutdown(pdev);
3641
3642 #ifdef CONFIG_PCI_MSI
3643 if (hba[i]->msix_vector)
3644 pci_disable_msix(hba[i]->pdev);
3645 else if (hba[i]->msi_vector)
3646 pci_disable_msi(hba[i]->pdev);
3647 #endif /* CONFIG_PCI_MSI */
3648
3649 iounmap(hba[i]->vaddr);
3650
3651 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3652 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3653 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3654 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3655 kfree(hba[i]->cmd_pool_bits);
3656 #ifdef CONFIG_CISS_SCSI_TAPE
3657 kfree(hba[i]->scsi_rejects.complete);
3658 #endif
3659 /*
3660 * Deliberately omit pci_disable_device(): it does something nasty to
3661 * Smart Array controllers that pci_enable_device does not undo
3662 */
3663 pci_release_regions(pdev);
3664 pci_set_drvdata(pdev, NULL);
3665 free_hba(i);
3666 }
3667
3668 static struct pci_driver cciss_pci_driver = {
3669 .name = "cciss",
3670 .probe = cciss_init_one,
3671 .remove = __devexit_p(cciss_remove_one),
3672 .id_table = cciss_pci_device_id, /* id_table */
3673 .shutdown = cciss_shutdown,
3674 };
3675
3676 /*
3677 * This is it. Register the PCI driver information for the cards we control
3678 * the OS will call our registered routines when it finds one of our cards.
3679 */
3680 static int __init cciss_init(void)
3681 {
3682 printk(KERN_INFO DRIVER_NAME "\n");
3683
3684 /* Register for our PCI devices */
3685 return pci_register_driver(&cciss_pci_driver);
3686 }
3687
3688 static void __exit cciss_cleanup(void)
3689 {
3690 int i;
3691
3692 pci_unregister_driver(&cciss_pci_driver);
3693 /* double check that all controller entrys have been removed */
3694 for (i = 0; i < MAX_CTLR; i++) {
3695 if (hba[i] != NULL) {
3696 printk(KERN_WARNING "cciss: had to remove"
3697 " controller %d\n", i);
3698 cciss_remove_one(hba[i]->pdev);
3699 }
3700 }
3701 remove_proc_entry("driver/cciss", NULL);
3702 }
3703
3704 static void fail_all_cmds(unsigned long ctlr)
3705 {
3706 /* If we get here, the board is apparently dead. */
3707 ctlr_info_t *h = hba[ctlr];
3708 CommandList_struct *c;
3709 unsigned long flags;
3710
3711 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3712 h->alive = 0; /* the controller apparently died... */
3713
3714 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3715
3716 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3717
3718 /* move everything off the request queue onto the completed queue */
3719 while (!hlist_empty(&h->reqQ)) {
3720 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
3721 removeQ(c);
3722 h->Qdepth--;
3723 addQ(&h->cmpQ, c);
3724 }
3725
3726 /* Now, fail everything on the completed queue with a HW error */
3727 while (!hlist_empty(&h->cmpQ)) {
3728 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
3729 removeQ(c);
3730 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3731 if (c->cmd_type == CMD_RWREQ) {
3732 complete_command(h, c, 0);
3733 } else if (c->cmd_type == CMD_IOCTL_PEND)
3734 complete(c->waiting);
3735 #ifdef CONFIG_CISS_SCSI_TAPE
3736 else if (c->cmd_type == CMD_SCSI)
3737 complete_scsi_command(c, 0, 0);
3738 #endif
3739 }
3740 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3741 return;
3742 }
3743
3744 module_init(cciss_init);
3745 module_exit(cciss_cleanup);
This page took 0.10914 seconds and 6 git commands to generate.