drbd: Refer to resync-rate consistently throughout the code
[deliverable/linux.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
56
57 #include "drbd_vli.h"
58
59 static DEFINE_MUTEX(drbd_main_mutex);
60 int drbdd_init(struct drbd_thread *);
61 int drbd_worker(struct drbd_thread *);
62 int drbd_asender(struct drbd_thread *);
63
64 int drbd_init(void);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static int drbd_release(struct gendisk *gd, fmode_t mode);
67 static int w_md_sync(struct drbd_work *w, int unused);
68 static void md_sync_timer_fn(unsigned long data);
69 static int w_bitmap_io(struct drbd_work *w, int unused);
70 static int w_go_diskless(struct drbd_work *w, int unused);
71
72 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
73 "Lars Ellenberg <lars@linbit.com>");
74 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
75 MODULE_VERSION(REL_VERSION);
76 MODULE_LICENSE("GPL");
77 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
78 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
79 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
80
81 #include <linux/moduleparam.h>
82 /* allow_open_on_secondary */
83 MODULE_PARM_DESC(allow_oos, "DONT USE!");
84 /* thanks to these macros, if compiled into the kernel (not-module),
85 * this becomes the boot parameter drbd.minor_count */
86 module_param(minor_count, uint, 0444);
87 module_param(disable_sendpage, bool, 0644);
88 module_param(allow_oos, bool, 0);
89 module_param(proc_details, int, 0644);
90
91 #ifdef CONFIG_DRBD_FAULT_INJECTION
92 int enable_faults;
93 int fault_rate;
94 static int fault_count;
95 int fault_devs;
96 /* bitmap of enabled faults */
97 module_param(enable_faults, int, 0664);
98 /* fault rate % value - applies to all enabled faults */
99 module_param(fault_rate, int, 0664);
100 /* count of faults inserted */
101 module_param(fault_count, int, 0664);
102 /* bitmap of devices to insert faults on */
103 module_param(fault_devs, int, 0644);
104 #endif
105
106 /* module parameter, defined */
107 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
108 int disable_sendpage;
109 int allow_oos;
110 int proc_details; /* Detail level in proc drbd*/
111
112 /* Module parameter for setting the user mode helper program
113 * to run. Default is /sbin/drbdadm */
114 char usermode_helper[80] = "/sbin/drbdadm";
115
116 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
117
118 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
119 * as member "struct gendisk *vdisk;"
120 */
121 struct idr minors;
122 struct list_head drbd_tconns; /* list of struct drbd_tconn */
123
124 struct kmem_cache *drbd_request_cache;
125 struct kmem_cache *drbd_ee_cache; /* peer requests */
126 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
127 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
128 mempool_t *drbd_request_mempool;
129 mempool_t *drbd_ee_mempool;
130 mempool_t *drbd_md_io_page_pool;
131 struct bio_set *drbd_md_io_bio_set;
132
133 /* I do not use a standard mempool, because:
134 1) I want to hand out the pre-allocated objects first.
135 2) I want to be able to interrupt sleeping allocation with a signal.
136 Note: This is a single linked list, the next pointer is the private
137 member of struct page.
138 */
139 struct page *drbd_pp_pool;
140 spinlock_t drbd_pp_lock;
141 int drbd_pp_vacant;
142 wait_queue_head_t drbd_pp_wait;
143
144 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
145
146 static const struct block_device_operations drbd_ops = {
147 .owner = THIS_MODULE,
148 .open = drbd_open,
149 .release = drbd_release,
150 };
151
152 static void bio_destructor_drbd(struct bio *bio)
153 {
154 bio_free(bio, drbd_md_io_bio_set);
155 }
156
157 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
158 {
159 struct bio *bio;
160
161 if (!drbd_md_io_bio_set)
162 return bio_alloc(gfp_mask, 1);
163
164 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
165 if (!bio)
166 return NULL;
167 bio->bi_destructor = bio_destructor_drbd;
168 return bio;
169 }
170
171 #ifdef __CHECKER__
172 /* When checking with sparse, and this is an inline function, sparse will
173 give tons of false positives. When this is a real functions sparse works.
174 */
175 int _get_ldev_if_state(struct drbd_conf *mdev, enum drbd_disk_state mins)
176 {
177 int io_allowed;
178
179 atomic_inc(&mdev->local_cnt);
180 io_allowed = (mdev->state.disk >= mins);
181 if (!io_allowed) {
182 if (atomic_dec_and_test(&mdev->local_cnt))
183 wake_up(&mdev->misc_wait);
184 }
185 return io_allowed;
186 }
187
188 #endif
189
190 /**
191 * DOC: The transfer log
192 *
193 * The transfer log is a single linked list of &struct drbd_tl_epoch objects.
194 * mdev->tconn->newest_tle points to the head, mdev->tconn->oldest_tle points to the tail
195 * of the list. There is always at least one &struct drbd_tl_epoch object.
196 *
197 * Each &struct drbd_tl_epoch has a circular double linked list of requests
198 * attached.
199 */
200 static int tl_init(struct drbd_tconn *tconn)
201 {
202 struct drbd_tl_epoch *b;
203
204 /* during device minor initialization, we may well use GFP_KERNEL */
205 b = kmalloc(sizeof(struct drbd_tl_epoch), GFP_KERNEL);
206 if (!b)
207 return 0;
208 INIT_LIST_HEAD(&b->requests);
209 INIT_LIST_HEAD(&b->w.list);
210 b->next = NULL;
211 b->br_number = 4711;
212 b->n_writes = 0;
213 b->w.cb = NULL; /* if this is != NULL, we need to dec_ap_pending in tl_clear */
214
215 tconn->oldest_tle = b;
216 tconn->newest_tle = b;
217 INIT_LIST_HEAD(&tconn->out_of_sequence_requests);
218
219 return 1;
220 }
221
222 static void tl_cleanup(struct drbd_tconn *tconn)
223 {
224 if (tconn->oldest_tle != tconn->newest_tle)
225 conn_err(tconn, "ASSERT FAILED: oldest_tle == newest_tle\n");
226 if (!list_empty(&tconn->out_of_sequence_requests))
227 conn_err(tconn, "ASSERT FAILED: list_empty(out_of_sequence_requests)\n");
228 kfree(tconn->oldest_tle);
229 tconn->oldest_tle = NULL;
230 kfree(tconn->unused_spare_tle);
231 tconn->unused_spare_tle = NULL;
232 }
233
234 /**
235 * _tl_add_barrier() - Adds a barrier to the transfer log
236 * @mdev: DRBD device.
237 * @new: Barrier to be added before the current head of the TL.
238 *
239 * The caller must hold the req_lock.
240 */
241 void _tl_add_barrier(struct drbd_tconn *tconn, struct drbd_tl_epoch *new)
242 {
243 struct drbd_tl_epoch *newest_before;
244
245 INIT_LIST_HEAD(&new->requests);
246 INIT_LIST_HEAD(&new->w.list);
247 new->w.cb = NULL; /* if this is != NULL, we need to dec_ap_pending in tl_clear */
248 new->next = NULL;
249 new->n_writes = 0;
250
251 newest_before = tconn->newest_tle;
252 /* never send a barrier number == 0, because that is special-cased
253 * when using TCQ for our write ordering code */
254 new->br_number = (newest_before->br_number+1) ?: 1;
255 if (tconn->newest_tle != new) {
256 tconn->newest_tle->next = new;
257 tconn->newest_tle = new;
258 }
259 }
260
261 /**
262 * tl_release() - Free or recycle the oldest &struct drbd_tl_epoch object of the TL
263 * @mdev: DRBD device.
264 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
265 * @set_size: Expected number of requests before that barrier.
266 *
267 * In case the passed barrier_nr or set_size does not match the oldest
268 * &struct drbd_tl_epoch objects this function will cause a termination
269 * of the connection.
270 */
271 void tl_release(struct drbd_tconn *tconn, unsigned int barrier_nr,
272 unsigned int set_size)
273 {
274 struct drbd_conf *mdev;
275 struct drbd_tl_epoch *b, *nob; /* next old barrier */
276 struct list_head *le, *tle;
277 struct drbd_request *r;
278
279 spin_lock_irq(&tconn->req_lock);
280
281 b = tconn->oldest_tle;
282
283 /* first some paranoia code */
284 if (b == NULL) {
285 conn_err(tconn, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
286 barrier_nr);
287 goto bail;
288 }
289 if (b->br_number != barrier_nr) {
290 conn_err(tconn, "BAD! BarrierAck #%u received, expected #%u!\n",
291 barrier_nr, b->br_number);
292 goto bail;
293 }
294 if (b->n_writes != set_size) {
295 conn_err(tconn, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
296 barrier_nr, set_size, b->n_writes);
297 goto bail;
298 }
299
300 /* Clean up list of requests processed during current epoch */
301 list_for_each_safe(le, tle, &b->requests) {
302 r = list_entry(le, struct drbd_request, tl_requests);
303 _req_mod(r, BARRIER_ACKED);
304 }
305 /* There could be requests on the list waiting for completion
306 of the write to the local disk. To avoid corruptions of
307 slab's data structures we have to remove the lists head.
308
309 Also there could have been a barrier ack out of sequence, overtaking
310 the write acks - which would be a bug and violating write ordering.
311 To not deadlock in case we lose connection while such requests are
312 still pending, we need some way to find them for the
313 _req_mode(CONNECTION_LOST_WHILE_PENDING).
314
315 These have been list_move'd to the out_of_sequence_requests list in
316 _req_mod(, BARRIER_ACKED) above.
317 */
318 list_del_init(&b->requests);
319 mdev = b->w.mdev;
320
321 nob = b->next;
322 if (test_and_clear_bit(CREATE_BARRIER, &mdev->flags)) {
323 _tl_add_barrier(tconn, b);
324 if (nob)
325 tconn->oldest_tle = nob;
326 /* if nob == NULL b was the only barrier, and becomes the new
327 barrier. Therefore tconn->oldest_tle points already to b */
328 } else {
329 D_ASSERT(nob != NULL);
330 tconn->oldest_tle = nob;
331 kfree(b);
332 }
333
334 spin_unlock_irq(&tconn->req_lock);
335 dec_ap_pending(mdev);
336
337 return;
338
339 bail:
340 spin_unlock_irq(&tconn->req_lock);
341 conn_request_state(tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
342 }
343
344
345 /**
346 * _tl_restart() - Walks the transfer log, and applies an action to all requests
347 * @mdev: DRBD device.
348 * @what: The action/event to perform with all request objects
349 *
350 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
351 * RESTART_FROZEN_DISK_IO.
352 */
353 void _tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
354 {
355 struct drbd_tl_epoch *b, *tmp, **pn;
356 struct list_head *le, *tle, carry_reads;
357 struct drbd_request *req;
358 int rv, n_writes, n_reads;
359
360 b = tconn->oldest_tle;
361 pn = &tconn->oldest_tle;
362 while (b) {
363 n_writes = 0;
364 n_reads = 0;
365 INIT_LIST_HEAD(&carry_reads);
366 list_for_each_safe(le, tle, &b->requests) {
367 req = list_entry(le, struct drbd_request, tl_requests);
368 rv = _req_mod(req, what);
369
370 n_writes += (rv & MR_WRITE) >> MR_WRITE_SHIFT;
371 n_reads += (rv & MR_READ) >> MR_READ_SHIFT;
372 }
373 tmp = b->next;
374
375 if (n_writes) {
376 if (what == RESEND) {
377 b->n_writes = n_writes;
378 if (b->w.cb == NULL) {
379 b->w.cb = w_send_barrier;
380 inc_ap_pending(b->w.mdev);
381 set_bit(CREATE_BARRIER, &b->w.mdev->flags);
382 }
383
384 drbd_queue_work(&tconn->data.work, &b->w);
385 }
386 pn = &b->next;
387 } else {
388 if (n_reads)
389 list_add(&carry_reads, &b->requests);
390 /* there could still be requests on that ring list,
391 * in case local io is still pending */
392 list_del(&b->requests);
393
394 /* dec_ap_pending corresponding to queue_barrier.
395 * the newest barrier may not have been queued yet,
396 * in which case w.cb is still NULL. */
397 if (b->w.cb != NULL)
398 dec_ap_pending(b->w.mdev);
399
400 if (b == tconn->newest_tle) {
401 /* recycle, but reinit! */
402 if (tmp != NULL)
403 conn_err(tconn, "ASSERT FAILED tmp == NULL");
404 INIT_LIST_HEAD(&b->requests);
405 list_splice(&carry_reads, &b->requests);
406 INIT_LIST_HEAD(&b->w.list);
407 b->w.cb = NULL;
408 b->br_number = net_random();
409 b->n_writes = 0;
410
411 *pn = b;
412 break;
413 }
414 *pn = tmp;
415 kfree(b);
416 }
417 b = tmp;
418 list_splice(&carry_reads, &b->requests);
419 }
420 }
421
422
423 /**
424 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
425 * @mdev: DRBD device.
426 *
427 * This is called after the connection to the peer was lost. The storage covered
428 * by the requests on the transfer gets marked as our of sync. Called from the
429 * receiver thread and the worker thread.
430 */
431 void tl_clear(struct drbd_tconn *tconn)
432 {
433 struct drbd_conf *mdev;
434 struct list_head *le, *tle;
435 struct drbd_request *r;
436 int vnr;
437
438 spin_lock_irq(&tconn->req_lock);
439
440 _tl_restart(tconn, CONNECTION_LOST_WHILE_PENDING);
441
442 /* we expect this list to be empty. */
443 if (!list_empty(&tconn->out_of_sequence_requests))
444 conn_err(tconn, "ASSERT FAILED list_empty(&out_of_sequence_requests)\n");
445
446 /* but just in case, clean it up anyways! */
447 list_for_each_safe(le, tle, &tconn->out_of_sequence_requests) {
448 r = list_entry(le, struct drbd_request, tl_requests);
449 /* It would be nice to complete outside of spinlock.
450 * But this is easier for now. */
451 _req_mod(r, CONNECTION_LOST_WHILE_PENDING);
452 }
453
454 /* ensure bit indicating barrier is required is clear */
455 rcu_read_lock();
456 idr_for_each_entry(&tconn->volumes, mdev, vnr)
457 clear_bit(CREATE_BARRIER, &mdev->flags);
458 rcu_read_unlock();
459
460 spin_unlock_irq(&tconn->req_lock);
461 }
462
463 void tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
464 {
465 spin_lock_irq(&tconn->req_lock);
466 _tl_restart(tconn, what);
467 spin_unlock_irq(&tconn->req_lock);
468 }
469
470 static int drbd_thread_setup(void *arg)
471 {
472 struct drbd_thread *thi = (struct drbd_thread *) arg;
473 struct drbd_tconn *tconn = thi->tconn;
474 unsigned long flags;
475 int retval;
476
477 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
478 thi->name[0], thi->tconn->name);
479
480 restart:
481 retval = thi->function(thi);
482
483 spin_lock_irqsave(&thi->t_lock, flags);
484
485 /* if the receiver has been "EXITING", the last thing it did
486 * was set the conn state to "StandAlone",
487 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
488 * and receiver thread will be "started".
489 * drbd_thread_start needs to set "RESTARTING" in that case.
490 * t_state check and assignment needs to be within the same spinlock,
491 * so either thread_start sees EXITING, and can remap to RESTARTING,
492 * or thread_start see NONE, and can proceed as normal.
493 */
494
495 if (thi->t_state == RESTARTING) {
496 conn_info(tconn, "Restarting %s thread\n", thi->name);
497 thi->t_state = RUNNING;
498 spin_unlock_irqrestore(&thi->t_lock, flags);
499 goto restart;
500 }
501
502 thi->task = NULL;
503 thi->t_state = NONE;
504 smp_mb();
505 complete_all(&thi->stop);
506 spin_unlock_irqrestore(&thi->t_lock, flags);
507
508 conn_info(tconn, "Terminating %s\n", current->comm);
509
510 /* Release mod reference taken when thread was started */
511
512 kref_put(&tconn->kref, &conn_destroy);
513 module_put(THIS_MODULE);
514 return retval;
515 }
516
517 static void drbd_thread_init(struct drbd_tconn *tconn, struct drbd_thread *thi,
518 int (*func) (struct drbd_thread *), char *name)
519 {
520 spin_lock_init(&thi->t_lock);
521 thi->task = NULL;
522 thi->t_state = NONE;
523 thi->function = func;
524 thi->tconn = tconn;
525 strncpy(thi->name, name, ARRAY_SIZE(thi->name));
526 }
527
528 int drbd_thread_start(struct drbd_thread *thi)
529 {
530 struct drbd_tconn *tconn = thi->tconn;
531 struct task_struct *nt;
532 unsigned long flags;
533
534 /* is used from state engine doing drbd_thread_stop_nowait,
535 * while holding the req lock irqsave */
536 spin_lock_irqsave(&thi->t_lock, flags);
537
538 switch (thi->t_state) {
539 case NONE:
540 conn_info(tconn, "Starting %s thread (from %s [%d])\n",
541 thi->name, current->comm, current->pid);
542
543 /* Get ref on module for thread - this is released when thread exits */
544 if (!try_module_get(THIS_MODULE)) {
545 conn_err(tconn, "Failed to get module reference in drbd_thread_start\n");
546 spin_unlock_irqrestore(&thi->t_lock, flags);
547 return false;
548 }
549
550 kref_get(&thi->tconn->kref);
551
552 init_completion(&thi->stop);
553 thi->reset_cpu_mask = 1;
554 thi->t_state = RUNNING;
555 spin_unlock_irqrestore(&thi->t_lock, flags);
556 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
557
558 nt = kthread_create(drbd_thread_setup, (void *) thi,
559 "drbd_%c_%s", thi->name[0], thi->tconn->name);
560
561 if (IS_ERR(nt)) {
562 conn_err(tconn, "Couldn't start thread\n");
563
564 kref_put(&tconn->kref, &conn_destroy);
565 module_put(THIS_MODULE);
566 return false;
567 }
568 spin_lock_irqsave(&thi->t_lock, flags);
569 thi->task = nt;
570 thi->t_state = RUNNING;
571 spin_unlock_irqrestore(&thi->t_lock, flags);
572 wake_up_process(nt);
573 break;
574 case EXITING:
575 thi->t_state = RESTARTING;
576 conn_info(tconn, "Restarting %s thread (from %s [%d])\n",
577 thi->name, current->comm, current->pid);
578 /* fall through */
579 case RUNNING:
580 case RESTARTING:
581 default:
582 spin_unlock_irqrestore(&thi->t_lock, flags);
583 break;
584 }
585
586 return true;
587 }
588
589
590 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
591 {
592 unsigned long flags;
593
594 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
595
596 /* may be called from state engine, holding the req lock irqsave */
597 spin_lock_irqsave(&thi->t_lock, flags);
598
599 if (thi->t_state == NONE) {
600 spin_unlock_irqrestore(&thi->t_lock, flags);
601 if (restart)
602 drbd_thread_start(thi);
603 return;
604 }
605
606 if (thi->t_state != ns) {
607 if (thi->task == NULL) {
608 spin_unlock_irqrestore(&thi->t_lock, flags);
609 return;
610 }
611
612 thi->t_state = ns;
613 smp_mb();
614 init_completion(&thi->stop);
615 if (thi->task != current)
616 force_sig(DRBD_SIGKILL, thi->task);
617 }
618
619 spin_unlock_irqrestore(&thi->t_lock, flags);
620
621 if (wait)
622 wait_for_completion(&thi->stop);
623 }
624
625 static struct drbd_thread *drbd_task_to_thread(struct drbd_tconn *tconn, struct task_struct *task)
626 {
627 struct drbd_thread *thi =
628 task == tconn->receiver.task ? &tconn->receiver :
629 task == tconn->asender.task ? &tconn->asender :
630 task == tconn->worker.task ? &tconn->worker : NULL;
631
632 return thi;
633 }
634
635 char *drbd_task_to_thread_name(struct drbd_tconn *tconn, struct task_struct *task)
636 {
637 struct drbd_thread *thi = drbd_task_to_thread(tconn, task);
638 return thi ? thi->name : task->comm;
639 }
640
641 int conn_lowest_minor(struct drbd_tconn *tconn)
642 {
643 struct drbd_conf *mdev;
644 int vnr = 0, m;
645
646 rcu_read_lock();
647 mdev = idr_get_next(&tconn->volumes, &vnr);
648 m = mdev ? mdev_to_minor(mdev) : -1;
649 rcu_read_unlock();
650
651 return m;
652 }
653
654 #ifdef CONFIG_SMP
655 /**
656 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
657 * @mdev: DRBD device.
658 *
659 * Forces all threads of a device onto the same CPU. This is beneficial for
660 * DRBD's performance. May be overwritten by user's configuration.
661 */
662 void drbd_calc_cpu_mask(struct drbd_tconn *tconn)
663 {
664 int ord, cpu;
665
666 /* user override. */
667 if (cpumask_weight(tconn->cpu_mask))
668 return;
669
670 ord = conn_lowest_minor(tconn) % cpumask_weight(cpu_online_mask);
671 for_each_online_cpu(cpu) {
672 if (ord-- == 0) {
673 cpumask_set_cpu(cpu, tconn->cpu_mask);
674 return;
675 }
676 }
677 /* should not be reached */
678 cpumask_setall(tconn->cpu_mask);
679 }
680
681 /**
682 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
683 * @mdev: DRBD device.
684 * @thi: drbd_thread object
685 *
686 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
687 * prematurely.
688 */
689 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
690 {
691 struct task_struct *p = current;
692
693 if (!thi->reset_cpu_mask)
694 return;
695 thi->reset_cpu_mask = 0;
696 set_cpus_allowed_ptr(p, thi->tconn->cpu_mask);
697 }
698 #endif
699
700 /**
701 * drbd_header_size - size of a packet header
702 *
703 * The header size is a multiple of 8, so any payload following the header is
704 * word aligned on 64-bit architectures. (The bitmap send and receive code
705 * relies on this.)
706 */
707 unsigned int drbd_header_size(struct drbd_tconn *tconn)
708 {
709 if (tconn->agreed_pro_version >= 100) {
710 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
711 return sizeof(struct p_header100);
712 } else {
713 BUILD_BUG_ON(sizeof(struct p_header80) !=
714 sizeof(struct p_header95));
715 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
716 return sizeof(struct p_header80);
717 }
718 }
719
720 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
721 {
722 h->magic = cpu_to_be32(DRBD_MAGIC);
723 h->command = cpu_to_be16(cmd);
724 h->length = cpu_to_be16(size);
725 return sizeof(struct p_header80);
726 }
727
728 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
729 {
730 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
731 h->command = cpu_to_be16(cmd);
732 h->length = cpu_to_be32(size);
733 return sizeof(struct p_header95);
734 }
735
736 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
737 int size, int vnr)
738 {
739 h->magic = cpu_to_be32(DRBD_MAGIC_100);
740 h->volume = cpu_to_be16(vnr);
741 h->command = cpu_to_be16(cmd);
742 h->length = cpu_to_be32(size);
743 h->pad = 0;
744 return sizeof(struct p_header100);
745 }
746
747 static unsigned int prepare_header(struct drbd_tconn *tconn, int vnr,
748 void *buffer, enum drbd_packet cmd, int size)
749 {
750 if (tconn->agreed_pro_version >= 100)
751 return prepare_header100(buffer, cmd, size, vnr);
752 else if (tconn->agreed_pro_version >= 95 &&
753 size > DRBD_MAX_SIZE_H80_PACKET)
754 return prepare_header95(buffer, cmd, size);
755 else
756 return prepare_header80(buffer, cmd, size);
757 }
758
759 static void *__conn_prepare_command(struct drbd_tconn *tconn,
760 struct drbd_socket *sock)
761 {
762 if (!sock->socket)
763 return NULL;
764 return sock->sbuf + drbd_header_size(tconn);
765 }
766
767 void *conn_prepare_command(struct drbd_tconn *tconn, struct drbd_socket *sock)
768 {
769 void *p;
770
771 mutex_lock(&sock->mutex);
772 p = __conn_prepare_command(tconn, sock);
773 if (!p)
774 mutex_unlock(&sock->mutex);
775
776 return p;
777 }
778
779 void *drbd_prepare_command(struct drbd_conf *mdev, struct drbd_socket *sock)
780 {
781 return conn_prepare_command(mdev->tconn, sock);
782 }
783
784 static int __send_command(struct drbd_tconn *tconn, int vnr,
785 struct drbd_socket *sock, enum drbd_packet cmd,
786 unsigned int header_size, void *data,
787 unsigned int size)
788 {
789 int msg_flags;
790 int err;
791
792 /*
793 * Called with @data == NULL and the size of the data blocks in @size
794 * for commands that send data blocks. For those commands, omit the
795 * MSG_MORE flag: this will increase the likelihood that data blocks
796 * which are page aligned on the sender will end up page aligned on the
797 * receiver.
798 */
799 msg_flags = data ? MSG_MORE : 0;
800
801 header_size += prepare_header(tconn, vnr, sock->sbuf, cmd,
802 header_size + size);
803 err = drbd_send_all(tconn, sock->socket, sock->sbuf, header_size,
804 msg_flags);
805 if (data && !err)
806 err = drbd_send_all(tconn, sock->socket, data, size, 0);
807 return err;
808 }
809
810 static int __conn_send_command(struct drbd_tconn *tconn, struct drbd_socket *sock,
811 enum drbd_packet cmd, unsigned int header_size,
812 void *data, unsigned int size)
813 {
814 return __send_command(tconn, 0, sock, cmd, header_size, data, size);
815 }
816
817 int conn_send_command(struct drbd_tconn *tconn, struct drbd_socket *sock,
818 enum drbd_packet cmd, unsigned int header_size,
819 void *data, unsigned int size)
820 {
821 int err;
822
823 err = __conn_send_command(tconn, sock, cmd, header_size, data, size);
824 mutex_unlock(&sock->mutex);
825 return err;
826 }
827
828 int drbd_send_command(struct drbd_conf *mdev, struct drbd_socket *sock,
829 enum drbd_packet cmd, unsigned int header_size,
830 void *data, unsigned int size)
831 {
832 int err;
833
834 err = __send_command(mdev->tconn, mdev->vnr, sock, cmd, header_size,
835 data, size);
836 mutex_unlock(&sock->mutex);
837 return err;
838 }
839
840 int drbd_send_ping(struct drbd_tconn *tconn)
841 {
842 struct drbd_socket *sock;
843
844 sock = &tconn->meta;
845 if (!conn_prepare_command(tconn, sock))
846 return -EIO;
847 return conn_send_command(tconn, sock, P_PING, 0, NULL, 0);
848 }
849
850 int drbd_send_ping_ack(struct drbd_tconn *tconn)
851 {
852 struct drbd_socket *sock;
853
854 sock = &tconn->meta;
855 if (!conn_prepare_command(tconn, sock))
856 return -EIO;
857 return conn_send_command(tconn, sock, P_PING_ACK, 0, NULL, 0);
858 }
859
860 int drbd_send_sync_param(struct drbd_conf *mdev)
861 {
862 struct drbd_socket *sock;
863 struct p_rs_param_95 *p;
864 int size;
865 const int apv = mdev->tconn->agreed_pro_version;
866 enum drbd_packet cmd;
867 struct net_conf *nc;
868 struct disk_conf *dc;
869
870 sock = &mdev->tconn->data;
871 p = drbd_prepare_command(mdev, sock);
872 if (!p)
873 return -EIO;
874
875 rcu_read_lock();
876 nc = rcu_dereference(mdev->tconn->net_conf);
877
878 size = apv <= 87 ? sizeof(struct p_rs_param)
879 : apv == 88 ? sizeof(struct p_rs_param)
880 + strlen(nc->verify_alg) + 1
881 : apv <= 94 ? sizeof(struct p_rs_param_89)
882 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
883
884 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
885
886 /* initialize verify_alg and csums_alg */
887 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
888
889 if (get_ldev(mdev)) {
890 dc = rcu_dereference(mdev->ldev->disk_conf);
891 p->resync_rate = cpu_to_be32(dc->resync_rate);
892 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
893 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
894 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
895 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
896 put_ldev(mdev);
897 } else {
898 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
899 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
900 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
901 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
902 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
903 }
904
905 if (apv >= 88)
906 strcpy(p->verify_alg, nc->verify_alg);
907 if (apv >= 89)
908 strcpy(p->csums_alg, nc->csums_alg);
909 rcu_read_unlock();
910
911 return drbd_send_command(mdev, sock, cmd, size, NULL, 0);
912 }
913
914 int __drbd_send_protocol(struct drbd_tconn *tconn)
915 {
916 struct drbd_socket *sock;
917 struct p_protocol *p;
918 struct net_conf *nc;
919 int size, cf;
920
921 sock = &tconn->data;
922 p = __conn_prepare_command(tconn, sock);
923 if (!p)
924 return -EIO;
925
926 rcu_read_lock();
927 nc = rcu_dereference(tconn->net_conf);
928
929 if (nc->dry_run && tconn->agreed_pro_version < 92) {
930 rcu_read_unlock();
931 mutex_unlock(&sock->mutex);
932 conn_err(tconn, "--dry-run is not supported by peer");
933 return -EOPNOTSUPP;
934 }
935
936 size = sizeof(*p);
937 if (tconn->agreed_pro_version >= 87)
938 size += strlen(nc->integrity_alg) + 1;
939
940 p->protocol = cpu_to_be32(nc->wire_protocol);
941 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
942 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
943 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
944 p->two_primaries = cpu_to_be32(nc->two_primaries);
945 cf = 0;
946 if (nc->discard_my_data)
947 cf |= CF_DISCARD_MY_DATA;
948 if (nc->dry_run)
949 cf |= CF_DRY_RUN;
950 p->conn_flags = cpu_to_be32(cf);
951
952 if (tconn->agreed_pro_version >= 87)
953 strcpy(p->integrity_alg, nc->integrity_alg);
954 rcu_read_unlock();
955
956 return __conn_send_command(tconn, sock, P_PROTOCOL, size, NULL, 0);
957 }
958
959 int drbd_send_protocol(struct drbd_tconn *tconn)
960 {
961 int err;
962
963 mutex_lock(&tconn->data.mutex);
964 err = __drbd_send_protocol(tconn);
965 mutex_unlock(&tconn->data.mutex);
966
967 return err;
968 }
969
970 int _drbd_send_uuids(struct drbd_conf *mdev, u64 uuid_flags)
971 {
972 struct drbd_socket *sock;
973 struct p_uuids *p;
974 int i;
975
976 if (!get_ldev_if_state(mdev, D_NEGOTIATING))
977 return 0;
978
979 sock = &mdev->tconn->data;
980 p = drbd_prepare_command(mdev, sock);
981 if (!p) {
982 put_ldev(mdev);
983 return -EIO;
984 }
985 for (i = UI_CURRENT; i < UI_SIZE; i++)
986 p->uuid[i] = mdev->ldev ? cpu_to_be64(mdev->ldev->md.uuid[i]) : 0;
987
988 mdev->comm_bm_set = drbd_bm_total_weight(mdev);
989 p->uuid[UI_SIZE] = cpu_to_be64(mdev->comm_bm_set);
990 rcu_read_lock();
991 uuid_flags |= rcu_dereference(mdev->tconn->net_conf)->discard_my_data ? 1 : 0;
992 rcu_read_unlock();
993 uuid_flags |= test_bit(CRASHED_PRIMARY, &mdev->flags) ? 2 : 0;
994 uuid_flags |= mdev->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
995 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
996
997 put_ldev(mdev);
998 return drbd_send_command(mdev, sock, P_UUIDS, sizeof(*p), NULL, 0);
999 }
1000
1001 int drbd_send_uuids(struct drbd_conf *mdev)
1002 {
1003 return _drbd_send_uuids(mdev, 0);
1004 }
1005
1006 int drbd_send_uuids_skip_initial_sync(struct drbd_conf *mdev)
1007 {
1008 return _drbd_send_uuids(mdev, 8);
1009 }
1010
1011 void drbd_print_uuids(struct drbd_conf *mdev, const char *text)
1012 {
1013 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
1014 u64 *uuid = mdev->ldev->md.uuid;
1015 dev_info(DEV, "%s %016llX:%016llX:%016llX:%016llX\n",
1016 text,
1017 (unsigned long long)uuid[UI_CURRENT],
1018 (unsigned long long)uuid[UI_BITMAP],
1019 (unsigned long long)uuid[UI_HISTORY_START],
1020 (unsigned long long)uuid[UI_HISTORY_END]);
1021 put_ldev(mdev);
1022 } else {
1023 dev_info(DEV, "%s effective data uuid: %016llX\n",
1024 text,
1025 (unsigned long long)mdev->ed_uuid);
1026 }
1027 }
1028
1029 void drbd_gen_and_send_sync_uuid(struct drbd_conf *mdev)
1030 {
1031 struct drbd_socket *sock;
1032 struct p_rs_uuid *p;
1033 u64 uuid;
1034
1035 D_ASSERT(mdev->state.disk == D_UP_TO_DATE);
1036
1037 uuid = mdev->ldev->md.uuid[UI_BITMAP] + UUID_NEW_BM_OFFSET;
1038 drbd_uuid_set(mdev, UI_BITMAP, uuid);
1039 drbd_print_uuids(mdev, "updated sync UUID");
1040 drbd_md_sync(mdev);
1041
1042 sock = &mdev->tconn->data;
1043 p = drbd_prepare_command(mdev, sock);
1044 if (p) {
1045 p->uuid = cpu_to_be64(uuid);
1046 drbd_send_command(mdev, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
1047 }
1048 }
1049
1050 int drbd_send_sizes(struct drbd_conf *mdev, int trigger_reply, enum dds_flags flags)
1051 {
1052 struct drbd_socket *sock;
1053 struct p_sizes *p;
1054 sector_t d_size, u_size;
1055 int q_order_type, max_bio_size;
1056
1057 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
1058 D_ASSERT(mdev->ldev->backing_bdev);
1059 d_size = drbd_get_max_capacity(mdev->ldev);
1060 rcu_read_lock();
1061 u_size = rcu_dereference(mdev->ldev->disk_conf)->disk_size;
1062 rcu_read_unlock();
1063 q_order_type = drbd_queue_order_type(mdev);
1064 max_bio_size = queue_max_hw_sectors(mdev->ldev->backing_bdev->bd_disk->queue) << 9;
1065 max_bio_size = min_t(int, max_bio_size, DRBD_MAX_BIO_SIZE);
1066 put_ldev(mdev);
1067 } else {
1068 d_size = 0;
1069 u_size = 0;
1070 q_order_type = QUEUE_ORDERED_NONE;
1071 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
1072 }
1073
1074 sock = &mdev->tconn->data;
1075 p = drbd_prepare_command(mdev, sock);
1076 if (!p)
1077 return -EIO;
1078 p->d_size = cpu_to_be64(d_size);
1079 p->u_size = cpu_to_be64(u_size);
1080 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(mdev->this_bdev));
1081 p->max_bio_size = cpu_to_be32(max_bio_size);
1082 p->queue_order_type = cpu_to_be16(q_order_type);
1083 p->dds_flags = cpu_to_be16(flags);
1084 return drbd_send_command(mdev, sock, P_SIZES, sizeof(*p), NULL, 0);
1085 }
1086
1087 /**
1088 * drbd_send_state() - Sends the drbd state to the peer
1089 * @mdev: DRBD device.
1090 */
1091 int drbd_send_state(struct drbd_conf *mdev)
1092 {
1093 struct drbd_socket *sock;
1094 struct p_state *p;
1095
1096 sock = &mdev->tconn->data;
1097 p = drbd_prepare_command(mdev, sock);
1098 if (!p)
1099 return -EIO;
1100 p->state = cpu_to_be32(mdev->state.i); /* Within the send mutex */
1101 return drbd_send_command(mdev, sock, P_STATE, sizeof(*p), NULL, 0);
1102 }
1103
1104 int drbd_send_state_req(struct drbd_conf *mdev, union drbd_state mask, union drbd_state val)
1105 {
1106 struct drbd_socket *sock;
1107 struct p_req_state *p;
1108
1109 sock = &mdev->tconn->data;
1110 p = drbd_prepare_command(mdev, sock);
1111 if (!p)
1112 return -EIO;
1113 p->mask = cpu_to_be32(mask.i);
1114 p->val = cpu_to_be32(val.i);
1115 return drbd_send_command(mdev, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1116
1117 }
1118
1119 int conn_send_state_req(struct drbd_tconn *tconn, union drbd_state mask, union drbd_state val)
1120 {
1121 enum drbd_packet cmd;
1122 struct drbd_socket *sock;
1123 struct p_req_state *p;
1124
1125 cmd = tconn->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1126 sock = &tconn->data;
1127 p = conn_prepare_command(tconn, sock);
1128 if (!p)
1129 return -EIO;
1130 p->mask = cpu_to_be32(mask.i);
1131 p->val = cpu_to_be32(val.i);
1132 return conn_send_command(tconn, sock, cmd, sizeof(*p), NULL, 0);
1133 }
1134
1135 void drbd_send_sr_reply(struct drbd_conf *mdev, enum drbd_state_rv retcode)
1136 {
1137 struct drbd_socket *sock;
1138 struct p_req_state_reply *p;
1139
1140 sock = &mdev->tconn->meta;
1141 p = drbd_prepare_command(mdev, sock);
1142 if (p) {
1143 p->retcode = cpu_to_be32(retcode);
1144 drbd_send_command(mdev, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1145 }
1146 }
1147
1148 void conn_send_sr_reply(struct drbd_tconn *tconn, enum drbd_state_rv retcode)
1149 {
1150 struct drbd_socket *sock;
1151 struct p_req_state_reply *p;
1152 enum drbd_packet cmd = tconn->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1153
1154 sock = &tconn->meta;
1155 p = conn_prepare_command(tconn, sock);
1156 if (p) {
1157 p->retcode = cpu_to_be32(retcode);
1158 conn_send_command(tconn, sock, cmd, sizeof(*p), NULL, 0);
1159 }
1160 }
1161
1162 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1163 {
1164 BUG_ON(code & ~0xf);
1165 p->encoding = (p->encoding & ~0xf) | code;
1166 }
1167
1168 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1169 {
1170 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1171 }
1172
1173 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1174 {
1175 BUG_ON(n & ~0x7);
1176 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1177 }
1178
1179 int fill_bitmap_rle_bits(struct drbd_conf *mdev,
1180 struct p_compressed_bm *p,
1181 unsigned int size,
1182 struct bm_xfer_ctx *c)
1183 {
1184 struct bitstream bs;
1185 unsigned long plain_bits;
1186 unsigned long tmp;
1187 unsigned long rl;
1188 unsigned len;
1189 unsigned toggle;
1190 int bits, use_rle;
1191
1192 /* may we use this feature? */
1193 rcu_read_lock();
1194 use_rle = rcu_dereference(mdev->tconn->net_conf)->use_rle;
1195 rcu_read_unlock();
1196 if (!use_rle || mdev->tconn->agreed_pro_version < 90)
1197 return 0;
1198
1199 if (c->bit_offset >= c->bm_bits)
1200 return 0; /* nothing to do. */
1201
1202 /* use at most thus many bytes */
1203 bitstream_init(&bs, p->code, size, 0);
1204 memset(p->code, 0, size);
1205 /* plain bits covered in this code string */
1206 plain_bits = 0;
1207
1208 /* p->encoding & 0x80 stores whether the first run length is set.
1209 * bit offset is implicit.
1210 * start with toggle == 2 to be able to tell the first iteration */
1211 toggle = 2;
1212
1213 /* see how much plain bits we can stuff into one packet
1214 * using RLE and VLI. */
1215 do {
1216 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(mdev, c->bit_offset)
1217 : _drbd_bm_find_next(mdev, c->bit_offset);
1218 if (tmp == -1UL)
1219 tmp = c->bm_bits;
1220 rl = tmp - c->bit_offset;
1221
1222 if (toggle == 2) { /* first iteration */
1223 if (rl == 0) {
1224 /* the first checked bit was set,
1225 * store start value, */
1226 dcbp_set_start(p, 1);
1227 /* but skip encoding of zero run length */
1228 toggle = !toggle;
1229 continue;
1230 }
1231 dcbp_set_start(p, 0);
1232 }
1233
1234 /* paranoia: catch zero runlength.
1235 * can only happen if bitmap is modified while we scan it. */
1236 if (rl == 0) {
1237 dev_err(DEV, "unexpected zero runlength while encoding bitmap "
1238 "t:%u bo:%lu\n", toggle, c->bit_offset);
1239 return -1;
1240 }
1241
1242 bits = vli_encode_bits(&bs, rl);
1243 if (bits == -ENOBUFS) /* buffer full */
1244 break;
1245 if (bits <= 0) {
1246 dev_err(DEV, "error while encoding bitmap: %d\n", bits);
1247 return 0;
1248 }
1249
1250 toggle = !toggle;
1251 plain_bits += rl;
1252 c->bit_offset = tmp;
1253 } while (c->bit_offset < c->bm_bits);
1254
1255 len = bs.cur.b - p->code + !!bs.cur.bit;
1256
1257 if (plain_bits < (len << 3)) {
1258 /* incompressible with this method.
1259 * we need to rewind both word and bit position. */
1260 c->bit_offset -= plain_bits;
1261 bm_xfer_ctx_bit_to_word_offset(c);
1262 c->bit_offset = c->word_offset * BITS_PER_LONG;
1263 return 0;
1264 }
1265
1266 /* RLE + VLI was able to compress it just fine.
1267 * update c->word_offset. */
1268 bm_xfer_ctx_bit_to_word_offset(c);
1269
1270 /* store pad_bits */
1271 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1272
1273 return len;
1274 }
1275
1276 /**
1277 * send_bitmap_rle_or_plain
1278 *
1279 * Return 0 when done, 1 when another iteration is needed, and a negative error
1280 * code upon failure.
1281 */
1282 static int
1283 send_bitmap_rle_or_plain(struct drbd_conf *mdev, struct bm_xfer_ctx *c)
1284 {
1285 struct drbd_socket *sock = &mdev->tconn->data;
1286 unsigned int header_size = drbd_header_size(mdev->tconn);
1287 struct p_compressed_bm *p = sock->sbuf + header_size;
1288 int len, err;
1289
1290 len = fill_bitmap_rle_bits(mdev, p,
1291 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1292 if (len < 0)
1293 return -EIO;
1294
1295 if (len) {
1296 dcbp_set_code(p, RLE_VLI_Bits);
1297 err = __send_command(mdev->tconn, mdev->vnr, sock,
1298 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1299 NULL, 0);
1300 c->packets[0]++;
1301 c->bytes[0] += header_size + sizeof(*p) + len;
1302
1303 if (c->bit_offset >= c->bm_bits)
1304 len = 0; /* DONE */
1305 } else {
1306 /* was not compressible.
1307 * send a buffer full of plain text bits instead. */
1308 unsigned int data_size;
1309 unsigned long num_words;
1310 unsigned long *p = sock->sbuf + header_size;
1311
1312 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1313 num_words = min_t(size_t, data_size / sizeof(*p),
1314 c->bm_words - c->word_offset);
1315 len = num_words * sizeof(*p);
1316 if (len)
1317 drbd_bm_get_lel(mdev, c->word_offset, num_words, p);
1318 err = __send_command(mdev->tconn, mdev->vnr, sock, P_BITMAP, len, NULL, 0);
1319 c->word_offset += num_words;
1320 c->bit_offset = c->word_offset * BITS_PER_LONG;
1321
1322 c->packets[1]++;
1323 c->bytes[1] += header_size + len;
1324
1325 if (c->bit_offset > c->bm_bits)
1326 c->bit_offset = c->bm_bits;
1327 }
1328 if (!err) {
1329 if (len == 0) {
1330 INFO_bm_xfer_stats(mdev, "send", c);
1331 return 0;
1332 } else
1333 return 1;
1334 }
1335 return -EIO;
1336 }
1337
1338 /* See the comment at receive_bitmap() */
1339 static int _drbd_send_bitmap(struct drbd_conf *mdev)
1340 {
1341 struct bm_xfer_ctx c;
1342 int err;
1343
1344 if (!expect(mdev->bitmap))
1345 return false;
1346
1347 if (get_ldev(mdev)) {
1348 if (drbd_md_test_flag(mdev->ldev, MDF_FULL_SYNC)) {
1349 dev_info(DEV, "Writing the whole bitmap, MDF_FullSync was set.\n");
1350 drbd_bm_set_all(mdev);
1351 if (drbd_bm_write(mdev)) {
1352 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1353 * but otherwise process as per normal - need to tell other
1354 * side that a full resync is required! */
1355 dev_err(DEV, "Failed to write bitmap to disk!\n");
1356 } else {
1357 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
1358 drbd_md_sync(mdev);
1359 }
1360 }
1361 put_ldev(mdev);
1362 }
1363
1364 c = (struct bm_xfer_ctx) {
1365 .bm_bits = drbd_bm_bits(mdev),
1366 .bm_words = drbd_bm_words(mdev),
1367 };
1368
1369 do {
1370 err = send_bitmap_rle_or_plain(mdev, &c);
1371 } while (err > 0);
1372
1373 return err == 0;
1374 }
1375
1376 int drbd_send_bitmap(struct drbd_conf *mdev)
1377 {
1378 struct drbd_socket *sock = &mdev->tconn->data;
1379 int err = -1;
1380
1381 mutex_lock(&sock->mutex);
1382 if (sock->socket)
1383 err = !_drbd_send_bitmap(mdev);
1384 mutex_unlock(&sock->mutex);
1385 return err;
1386 }
1387
1388 void drbd_send_b_ack(struct drbd_conf *mdev, u32 barrier_nr, u32 set_size)
1389 {
1390 struct drbd_socket *sock;
1391 struct p_barrier_ack *p;
1392
1393 if (mdev->state.conn < C_CONNECTED)
1394 return;
1395
1396 sock = &mdev->tconn->meta;
1397 p = drbd_prepare_command(mdev, sock);
1398 if (!p)
1399 return;
1400 p->barrier = barrier_nr;
1401 p->set_size = cpu_to_be32(set_size);
1402 drbd_send_command(mdev, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1403 }
1404
1405 /**
1406 * _drbd_send_ack() - Sends an ack packet
1407 * @mdev: DRBD device.
1408 * @cmd: Packet command code.
1409 * @sector: sector, needs to be in big endian byte order
1410 * @blksize: size in byte, needs to be in big endian byte order
1411 * @block_id: Id, big endian byte order
1412 */
1413 static int _drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1414 u64 sector, u32 blksize, u64 block_id)
1415 {
1416 struct drbd_socket *sock;
1417 struct p_block_ack *p;
1418
1419 if (mdev->state.conn < C_CONNECTED)
1420 return -EIO;
1421
1422 sock = &mdev->tconn->meta;
1423 p = drbd_prepare_command(mdev, sock);
1424 if (!p)
1425 return -EIO;
1426 p->sector = sector;
1427 p->block_id = block_id;
1428 p->blksize = blksize;
1429 p->seq_num = cpu_to_be32(atomic_inc_return(&mdev->packet_seq));
1430 return drbd_send_command(mdev, sock, cmd, sizeof(*p), NULL, 0);
1431 }
1432
1433 /* dp->sector and dp->block_id already/still in network byte order,
1434 * data_size is payload size according to dp->head,
1435 * and may need to be corrected for digest size. */
1436 void drbd_send_ack_dp(struct drbd_conf *mdev, enum drbd_packet cmd,
1437 struct p_data *dp, int data_size)
1438 {
1439 if (mdev->tconn->peer_integrity_tfm)
1440 data_size -= crypto_hash_digestsize(mdev->tconn->peer_integrity_tfm);
1441 _drbd_send_ack(mdev, cmd, dp->sector, cpu_to_be32(data_size),
1442 dp->block_id);
1443 }
1444
1445 void drbd_send_ack_rp(struct drbd_conf *mdev, enum drbd_packet cmd,
1446 struct p_block_req *rp)
1447 {
1448 _drbd_send_ack(mdev, cmd, rp->sector, rp->blksize, rp->block_id);
1449 }
1450
1451 /**
1452 * drbd_send_ack() - Sends an ack packet
1453 * @mdev: DRBD device
1454 * @cmd: packet command code
1455 * @peer_req: peer request
1456 */
1457 int drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1458 struct drbd_peer_request *peer_req)
1459 {
1460 return _drbd_send_ack(mdev, cmd,
1461 cpu_to_be64(peer_req->i.sector),
1462 cpu_to_be32(peer_req->i.size),
1463 peer_req->block_id);
1464 }
1465
1466 /* This function misuses the block_id field to signal if the blocks
1467 * are is sync or not. */
1468 int drbd_send_ack_ex(struct drbd_conf *mdev, enum drbd_packet cmd,
1469 sector_t sector, int blksize, u64 block_id)
1470 {
1471 return _drbd_send_ack(mdev, cmd,
1472 cpu_to_be64(sector),
1473 cpu_to_be32(blksize),
1474 cpu_to_be64(block_id));
1475 }
1476
1477 int drbd_send_drequest(struct drbd_conf *mdev, int cmd,
1478 sector_t sector, int size, u64 block_id)
1479 {
1480 struct drbd_socket *sock;
1481 struct p_block_req *p;
1482
1483 sock = &mdev->tconn->data;
1484 p = drbd_prepare_command(mdev, sock);
1485 if (!p)
1486 return -EIO;
1487 p->sector = cpu_to_be64(sector);
1488 p->block_id = block_id;
1489 p->blksize = cpu_to_be32(size);
1490 return drbd_send_command(mdev, sock, cmd, sizeof(*p), NULL, 0);
1491 }
1492
1493 int drbd_send_drequest_csum(struct drbd_conf *mdev, sector_t sector, int size,
1494 void *digest, int digest_size, enum drbd_packet cmd)
1495 {
1496 struct drbd_socket *sock;
1497 struct p_block_req *p;
1498
1499 /* FIXME: Put the digest into the preallocated socket buffer. */
1500
1501 sock = &mdev->tconn->data;
1502 p = drbd_prepare_command(mdev, sock);
1503 if (!p)
1504 return -EIO;
1505 p->sector = cpu_to_be64(sector);
1506 p->block_id = ID_SYNCER /* unused */;
1507 p->blksize = cpu_to_be32(size);
1508 return drbd_send_command(mdev, sock, cmd, sizeof(*p),
1509 digest, digest_size);
1510 }
1511
1512 int drbd_send_ov_request(struct drbd_conf *mdev, sector_t sector, int size)
1513 {
1514 struct drbd_socket *sock;
1515 struct p_block_req *p;
1516
1517 sock = &mdev->tconn->data;
1518 p = drbd_prepare_command(mdev, sock);
1519 if (!p)
1520 return -EIO;
1521 p->sector = cpu_to_be64(sector);
1522 p->block_id = ID_SYNCER /* unused */;
1523 p->blksize = cpu_to_be32(size);
1524 return drbd_send_command(mdev, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1525 }
1526
1527 /* called on sndtimeo
1528 * returns false if we should retry,
1529 * true if we think connection is dead
1530 */
1531 static int we_should_drop_the_connection(struct drbd_tconn *tconn, struct socket *sock)
1532 {
1533 int drop_it;
1534 /* long elapsed = (long)(jiffies - mdev->last_received); */
1535
1536 drop_it = tconn->meta.socket == sock
1537 || !tconn->asender.task
1538 || get_t_state(&tconn->asender) != RUNNING
1539 || tconn->cstate < C_WF_REPORT_PARAMS;
1540
1541 if (drop_it)
1542 return true;
1543
1544 drop_it = !--tconn->ko_count;
1545 if (!drop_it) {
1546 conn_err(tconn, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1547 current->comm, current->pid, tconn->ko_count);
1548 request_ping(tconn);
1549 }
1550
1551 return drop_it; /* && (mdev->state == R_PRIMARY) */;
1552 }
1553
1554 static void drbd_update_congested(struct drbd_tconn *tconn)
1555 {
1556 struct sock *sk = tconn->data.socket->sk;
1557 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1558 set_bit(NET_CONGESTED, &tconn->flags);
1559 }
1560
1561 /* The idea of sendpage seems to be to put some kind of reference
1562 * to the page into the skb, and to hand it over to the NIC. In
1563 * this process get_page() gets called.
1564 *
1565 * As soon as the page was really sent over the network put_page()
1566 * gets called by some part of the network layer. [ NIC driver? ]
1567 *
1568 * [ get_page() / put_page() increment/decrement the count. If count
1569 * reaches 0 the page will be freed. ]
1570 *
1571 * This works nicely with pages from FSs.
1572 * But this means that in protocol A we might signal IO completion too early!
1573 *
1574 * In order not to corrupt data during a resync we must make sure
1575 * that we do not reuse our own buffer pages (EEs) to early, therefore
1576 * we have the net_ee list.
1577 *
1578 * XFS seems to have problems, still, it submits pages with page_count == 0!
1579 * As a workaround, we disable sendpage on pages
1580 * with page_count == 0 or PageSlab.
1581 */
1582 static int _drbd_no_send_page(struct drbd_conf *mdev, struct page *page,
1583 int offset, size_t size, unsigned msg_flags)
1584 {
1585 struct socket *socket;
1586 void *addr;
1587 int err;
1588
1589 socket = mdev->tconn->data.socket;
1590 addr = kmap(page) + offset;
1591 err = drbd_send_all(mdev->tconn, socket, addr, size, msg_flags);
1592 kunmap(page);
1593 if (!err)
1594 mdev->send_cnt += size >> 9;
1595 return err;
1596 }
1597
1598 static int _drbd_send_page(struct drbd_conf *mdev, struct page *page,
1599 int offset, size_t size, unsigned msg_flags)
1600 {
1601 struct socket *socket = mdev->tconn->data.socket;
1602 mm_segment_t oldfs = get_fs();
1603 int len = size;
1604 int err = -EIO;
1605
1606 /* e.g. XFS meta- & log-data is in slab pages, which have a
1607 * page_count of 0 and/or have PageSlab() set.
1608 * we cannot use send_page for those, as that does get_page();
1609 * put_page(); and would cause either a VM_BUG directly, or
1610 * __page_cache_release a page that would actually still be referenced
1611 * by someone, leading to some obscure delayed Oops somewhere else. */
1612 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1613 return _drbd_no_send_page(mdev, page, offset, size, msg_flags);
1614
1615 msg_flags |= MSG_NOSIGNAL;
1616 drbd_update_congested(mdev->tconn);
1617 set_fs(KERNEL_DS);
1618 do {
1619 int sent;
1620
1621 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1622 if (sent <= 0) {
1623 if (sent == -EAGAIN) {
1624 if (we_should_drop_the_connection(mdev->tconn, socket))
1625 break;
1626 continue;
1627 }
1628 dev_warn(DEV, "%s: size=%d len=%d sent=%d\n",
1629 __func__, (int)size, len, sent);
1630 if (sent < 0)
1631 err = sent;
1632 break;
1633 }
1634 len -= sent;
1635 offset += sent;
1636 } while (len > 0 /* THINK && mdev->cstate >= C_CONNECTED*/);
1637 set_fs(oldfs);
1638 clear_bit(NET_CONGESTED, &mdev->tconn->flags);
1639
1640 if (len == 0) {
1641 err = 0;
1642 mdev->send_cnt += size >> 9;
1643 }
1644 return err;
1645 }
1646
1647 static int _drbd_send_bio(struct drbd_conf *mdev, struct bio *bio)
1648 {
1649 struct bio_vec *bvec;
1650 int i;
1651 /* hint all but last page with MSG_MORE */
1652 __bio_for_each_segment(bvec, bio, i, 0) {
1653 int err;
1654
1655 err = _drbd_no_send_page(mdev, bvec->bv_page,
1656 bvec->bv_offset, bvec->bv_len,
1657 i == bio->bi_vcnt - 1 ? 0 : MSG_MORE);
1658 if (err)
1659 return err;
1660 }
1661 return 0;
1662 }
1663
1664 static int _drbd_send_zc_bio(struct drbd_conf *mdev, struct bio *bio)
1665 {
1666 struct bio_vec *bvec;
1667 int i;
1668 /* hint all but last page with MSG_MORE */
1669 __bio_for_each_segment(bvec, bio, i, 0) {
1670 int err;
1671
1672 err = _drbd_send_page(mdev, bvec->bv_page,
1673 bvec->bv_offset, bvec->bv_len,
1674 i == bio->bi_vcnt - 1 ? 0 : MSG_MORE);
1675 if (err)
1676 return err;
1677 }
1678 return 0;
1679 }
1680
1681 static int _drbd_send_zc_ee(struct drbd_conf *mdev,
1682 struct drbd_peer_request *peer_req)
1683 {
1684 struct page *page = peer_req->pages;
1685 unsigned len = peer_req->i.size;
1686 int err;
1687
1688 /* hint all but last page with MSG_MORE */
1689 page_chain_for_each(page) {
1690 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1691
1692 err = _drbd_send_page(mdev, page, 0, l,
1693 page_chain_next(page) ? MSG_MORE : 0);
1694 if (err)
1695 return err;
1696 len -= l;
1697 }
1698 return 0;
1699 }
1700
1701 static u32 bio_flags_to_wire(struct drbd_conf *mdev, unsigned long bi_rw)
1702 {
1703 if (mdev->tconn->agreed_pro_version >= 95)
1704 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1705 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1706 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1707 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1708 else
1709 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1710 }
1711
1712 /* Used to send write requests
1713 * R_PRIMARY -> Peer (P_DATA)
1714 */
1715 int drbd_send_dblock(struct drbd_conf *mdev, struct drbd_request *req)
1716 {
1717 struct drbd_socket *sock;
1718 struct p_data *p;
1719 unsigned int dp_flags = 0;
1720 int dgs;
1721 int err;
1722
1723 dgs = (mdev->tconn->agreed_pro_version >= 87 && mdev->tconn->integrity_tfm) ?
1724 crypto_hash_digestsize(mdev->tconn->integrity_tfm) : 0;
1725
1726 sock = &mdev->tconn->data;
1727 p = drbd_prepare_command(mdev, sock);
1728 if (!p)
1729 return -EIO;
1730 p->sector = cpu_to_be64(req->i.sector);
1731 p->block_id = (unsigned long)req;
1732 p->seq_num = cpu_to_be32(req->seq_num = atomic_inc_return(&mdev->packet_seq));
1733 dp_flags = bio_flags_to_wire(mdev, req->master_bio->bi_rw);
1734 if (mdev->state.conn >= C_SYNC_SOURCE &&
1735 mdev->state.conn <= C_PAUSED_SYNC_T)
1736 dp_flags |= DP_MAY_SET_IN_SYNC;
1737 if (mdev->tconn->agreed_pro_version >= 100) {
1738 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1739 dp_flags |= DP_SEND_RECEIVE_ACK;
1740 if (req->rq_state & RQ_EXP_WRITE_ACK)
1741 dp_flags |= DP_SEND_WRITE_ACK;
1742 }
1743 p->dp_flags = cpu_to_be32(dp_flags);
1744 if (dgs)
1745 drbd_csum_bio(mdev, mdev->tconn->integrity_tfm, req->master_bio, p + 1);
1746 err = __send_command(mdev->tconn, mdev->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1747 if (!err) {
1748 /* For protocol A, we have to memcpy the payload into
1749 * socket buffers, as we may complete right away
1750 * as soon as we handed it over to tcp, at which point the data
1751 * pages may become invalid.
1752 *
1753 * For data-integrity enabled, we copy it as well, so we can be
1754 * sure that even if the bio pages may still be modified, it
1755 * won't change the data on the wire, thus if the digest checks
1756 * out ok after sending on this side, but does not fit on the
1757 * receiving side, we sure have detected corruption elsewhere.
1758 */
1759 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1760 err = _drbd_send_bio(mdev, req->master_bio);
1761 else
1762 err = _drbd_send_zc_bio(mdev, req->master_bio);
1763
1764 /* double check digest, sometimes buffers have been modified in flight. */
1765 if (dgs > 0 && dgs <= 64) {
1766 /* 64 byte, 512 bit, is the largest digest size
1767 * currently supported in kernel crypto. */
1768 unsigned char digest[64];
1769 drbd_csum_bio(mdev, mdev->tconn->integrity_tfm, req->master_bio, digest);
1770 if (memcmp(p + 1, digest, dgs)) {
1771 dev_warn(DEV,
1772 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1773 (unsigned long long)req->i.sector, req->i.size);
1774 }
1775 } /* else if (dgs > 64) {
1776 ... Be noisy about digest too large ...
1777 } */
1778 }
1779 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1780
1781 return err;
1782 }
1783
1784 /* answer packet, used to send data back for read requests:
1785 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1786 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1787 */
1788 int drbd_send_block(struct drbd_conf *mdev, enum drbd_packet cmd,
1789 struct drbd_peer_request *peer_req)
1790 {
1791 struct drbd_socket *sock;
1792 struct p_data *p;
1793 int err;
1794 int dgs;
1795
1796 dgs = (mdev->tconn->agreed_pro_version >= 87 && mdev->tconn->integrity_tfm) ?
1797 crypto_hash_digestsize(mdev->tconn->integrity_tfm) : 0;
1798
1799 sock = &mdev->tconn->data;
1800 p = drbd_prepare_command(mdev, sock);
1801 if (!p)
1802 return -EIO;
1803 p->sector = cpu_to_be64(peer_req->i.sector);
1804 p->block_id = peer_req->block_id;
1805 p->seq_num = 0; /* unused */
1806 if (dgs)
1807 drbd_csum_ee(mdev, mdev->tconn->integrity_tfm, peer_req, p + 1);
1808 err = __send_command(mdev->tconn, mdev->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1809 if (!err)
1810 err = _drbd_send_zc_ee(mdev, peer_req);
1811 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1812
1813 return err;
1814 }
1815
1816 int drbd_send_out_of_sync(struct drbd_conf *mdev, struct drbd_request *req)
1817 {
1818 struct drbd_socket *sock;
1819 struct p_block_desc *p;
1820
1821 sock = &mdev->tconn->data;
1822 p = drbd_prepare_command(mdev, sock);
1823 if (!p)
1824 return -EIO;
1825 p->sector = cpu_to_be64(req->i.sector);
1826 p->blksize = cpu_to_be32(req->i.size);
1827 return drbd_send_command(mdev, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1828 }
1829
1830 /*
1831 drbd_send distinguishes two cases:
1832
1833 Packets sent via the data socket "sock"
1834 and packets sent via the meta data socket "msock"
1835
1836 sock msock
1837 -----------------+-------------------------+------------------------------
1838 timeout conf.timeout / 2 conf.timeout / 2
1839 timeout action send a ping via msock Abort communication
1840 and close all sockets
1841 */
1842
1843 /*
1844 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1845 */
1846 int drbd_send(struct drbd_tconn *tconn, struct socket *sock,
1847 void *buf, size_t size, unsigned msg_flags)
1848 {
1849 struct kvec iov;
1850 struct msghdr msg;
1851 int rv, sent = 0;
1852
1853 if (!sock)
1854 return -EBADR;
1855
1856 /* THINK if (signal_pending) return ... ? */
1857
1858 iov.iov_base = buf;
1859 iov.iov_len = size;
1860
1861 msg.msg_name = NULL;
1862 msg.msg_namelen = 0;
1863 msg.msg_control = NULL;
1864 msg.msg_controllen = 0;
1865 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1866
1867 if (sock == tconn->data.socket) {
1868 rcu_read_lock();
1869 tconn->ko_count = rcu_dereference(tconn->net_conf)->ko_count;
1870 rcu_read_unlock();
1871 drbd_update_congested(tconn);
1872 }
1873 do {
1874 /* STRANGE
1875 * tcp_sendmsg does _not_ use its size parameter at all ?
1876 *
1877 * -EAGAIN on timeout, -EINTR on signal.
1878 */
1879 /* THINK
1880 * do we need to block DRBD_SIG if sock == &meta.socket ??
1881 * otherwise wake_asender() might interrupt some send_*Ack !
1882 */
1883 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1884 if (rv == -EAGAIN) {
1885 if (we_should_drop_the_connection(tconn, sock))
1886 break;
1887 else
1888 continue;
1889 }
1890 if (rv == -EINTR) {
1891 flush_signals(current);
1892 rv = 0;
1893 }
1894 if (rv < 0)
1895 break;
1896 sent += rv;
1897 iov.iov_base += rv;
1898 iov.iov_len -= rv;
1899 } while (sent < size);
1900
1901 if (sock == tconn->data.socket)
1902 clear_bit(NET_CONGESTED, &tconn->flags);
1903
1904 if (rv <= 0) {
1905 if (rv != -EAGAIN) {
1906 conn_err(tconn, "%s_sendmsg returned %d\n",
1907 sock == tconn->meta.socket ? "msock" : "sock",
1908 rv);
1909 conn_request_state(tconn, NS(conn, C_BROKEN_PIPE), CS_HARD);
1910 } else
1911 conn_request_state(tconn, NS(conn, C_TIMEOUT), CS_HARD);
1912 }
1913
1914 return sent;
1915 }
1916
1917 /**
1918 * drbd_send_all - Send an entire buffer
1919 *
1920 * Returns 0 upon success and a negative error value otherwise.
1921 */
1922 int drbd_send_all(struct drbd_tconn *tconn, struct socket *sock, void *buffer,
1923 size_t size, unsigned msg_flags)
1924 {
1925 int err;
1926
1927 err = drbd_send(tconn, sock, buffer, size, msg_flags);
1928 if (err < 0)
1929 return err;
1930 if (err != size)
1931 return -EIO;
1932 return 0;
1933 }
1934
1935 static int drbd_open(struct block_device *bdev, fmode_t mode)
1936 {
1937 struct drbd_conf *mdev = bdev->bd_disk->private_data;
1938 unsigned long flags;
1939 int rv = 0;
1940
1941 mutex_lock(&drbd_main_mutex);
1942 spin_lock_irqsave(&mdev->tconn->req_lock, flags);
1943 /* to have a stable mdev->state.role
1944 * and no race with updating open_cnt */
1945
1946 if (mdev->state.role != R_PRIMARY) {
1947 if (mode & FMODE_WRITE)
1948 rv = -EROFS;
1949 else if (!allow_oos)
1950 rv = -EMEDIUMTYPE;
1951 }
1952
1953 if (!rv)
1954 mdev->open_cnt++;
1955 spin_unlock_irqrestore(&mdev->tconn->req_lock, flags);
1956 mutex_unlock(&drbd_main_mutex);
1957
1958 return rv;
1959 }
1960
1961 static int drbd_release(struct gendisk *gd, fmode_t mode)
1962 {
1963 struct drbd_conf *mdev = gd->private_data;
1964 mutex_lock(&drbd_main_mutex);
1965 mdev->open_cnt--;
1966 mutex_unlock(&drbd_main_mutex);
1967 return 0;
1968 }
1969
1970 static void drbd_set_defaults(struct drbd_conf *mdev)
1971 {
1972 /* Beware! The actual layout differs
1973 * between big endian and little endian */
1974 mdev->state = (union drbd_dev_state) {
1975 { .role = R_SECONDARY,
1976 .peer = R_UNKNOWN,
1977 .conn = C_STANDALONE,
1978 .disk = D_DISKLESS,
1979 .pdsk = D_UNKNOWN,
1980 } };
1981 }
1982
1983 void drbd_init_set_defaults(struct drbd_conf *mdev)
1984 {
1985 /* the memset(,0,) did most of this.
1986 * note: only assignments, no allocation in here */
1987
1988 drbd_set_defaults(mdev);
1989
1990 atomic_set(&mdev->ap_bio_cnt, 0);
1991 atomic_set(&mdev->ap_pending_cnt, 0);
1992 atomic_set(&mdev->rs_pending_cnt, 0);
1993 atomic_set(&mdev->unacked_cnt, 0);
1994 atomic_set(&mdev->local_cnt, 0);
1995 atomic_set(&mdev->pp_in_use_by_net, 0);
1996 atomic_set(&mdev->rs_sect_in, 0);
1997 atomic_set(&mdev->rs_sect_ev, 0);
1998 atomic_set(&mdev->ap_in_flight, 0);
1999
2000 mutex_init(&mdev->md_io_mutex);
2001 mutex_init(&mdev->own_state_mutex);
2002 mdev->state_mutex = &mdev->own_state_mutex;
2003
2004 spin_lock_init(&mdev->al_lock);
2005 spin_lock_init(&mdev->peer_seq_lock);
2006 spin_lock_init(&mdev->epoch_lock);
2007
2008 INIT_LIST_HEAD(&mdev->active_ee);
2009 INIT_LIST_HEAD(&mdev->sync_ee);
2010 INIT_LIST_HEAD(&mdev->done_ee);
2011 INIT_LIST_HEAD(&mdev->read_ee);
2012 INIT_LIST_HEAD(&mdev->net_ee);
2013 INIT_LIST_HEAD(&mdev->resync_reads);
2014 INIT_LIST_HEAD(&mdev->resync_work.list);
2015 INIT_LIST_HEAD(&mdev->unplug_work.list);
2016 INIT_LIST_HEAD(&mdev->go_diskless.list);
2017 INIT_LIST_HEAD(&mdev->md_sync_work.list);
2018 INIT_LIST_HEAD(&mdev->start_resync_work.list);
2019 INIT_LIST_HEAD(&mdev->bm_io_work.w.list);
2020
2021 mdev->resync_work.cb = w_resync_timer;
2022 mdev->unplug_work.cb = w_send_write_hint;
2023 mdev->go_diskless.cb = w_go_diskless;
2024 mdev->md_sync_work.cb = w_md_sync;
2025 mdev->bm_io_work.w.cb = w_bitmap_io;
2026 mdev->start_resync_work.cb = w_start_resync;
2027
2028 mdev->resync_work.mdev = mdev;
2029 mdev->unplug_work.mdev = mdev;
2030 mdev->go_diskless.mdev = mdev;
2031 mdev->md_sync_work.mdev = mdev;
2032 mdev->bm_io_work.w.mdev = mdev;
2033 mdev->start_resync_work.mdev = mdev;
2034
2035 init_timer(&mdev->resync_timer);
2036 init_timer(&mdev->md_sync_timer);
2037 init_timer(&mdev->start_resync_timer);
2038 init_timer(&mdev->request_timer);
2039 mdev->resync_timer.function = resync_timer_fn;
2040 mdev->resync_timer.data = (unsigned long) mdev;
2041 mdev->md_sync_timer.function = md_sync_timer_fn;
2042 mdev->md_sync_timer.data = (unsigned long) mdev;
2043 mdev->start_resync_timer.function = start_resync_timer_fn;
2044 mdev->start_resync_timer.data = (unsigned long) mdev;
2045 mdev->request_timer.function = request_timer_fn;
2046 mdev->request_timer.data = (unsigned long) mdev;
2047
2048 init_waitqueue_head(&mdev->misc_wait);
2049 init_waitqueue_head(&mdev->state_wait);
2050 init_waitqueue_head(&mdev->ee_wait);
2051 init_waitqueue_head(&mdev->al_wait);
2052 init_waitqueue_head(&mdev->seq_wait);
2053
2054 mdev->write_ordering = WO_bdev_flush;
2055 mdev->resync_wenr = LC_FREE;
2056 mdev->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2057 mdev->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2058 }
2059
2060 void drbd_mdev_cleanup(struct drbd_conf *mdev)
2061 {
2062 int i;
2063 if (mdev->tconn->receiver.t_state != NONE)
2064 dev_err(DEV, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2065 mdev->tconn->receiver.t_state);
2066
2067 /* no need to lock it, I'm the only thread alive */
2068 if (atomic_read(&mdev->current_epoch->epoch_size) != 0)
2069 dev_err(DEV, "epoch_size:%d\n", atomic_read(&mdev->current_epoch->epoch_size));
2070 mdev->al_writ_cnt =
2071 mdev->bm_writ_cnt =
2072 mdev->read_cnt =
2073 mdev->recv_cnt =
2074 mdev->send_cnt =
2075 mdev->writ_cnt =
2076 mdev->p_size =
2077 mdev->rs_start =
2078 mdev->rs_total =
2079 mdev->rs_failed = 0;
2080 mdev->rs_last_events = 0;
2081 mdev->rs_last_sect_ev = 0;
2082 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2083 mdev->rs_mark_left[i] = 0;
2084 mdev->rs_mark_time[i] = 0;
2085 }
2086 D_ASSERT(mdev->tconn->net_conf == NULL);
2087
2088 drbd_set_my_capacity(mdev, 0);
2089 if (mdev->bitmap) {
2090 /* maybe never allocated. */
2091 drbd_bm_resize(mdev, 0, 1);
2092 drbd_bm_cleanup(mdev);
2093 }
2094
2095 drbd_free_bc(mdev->ldev);
2096 mdev->ldev = NULL;
2097
2098 clear_bit(AL_SUSPENDED, &mdev->flags);
2099
2100 D_ASSERT(list_empty(&mdev->active_ee));
2101 D_ASSERT(list_empty(&mdev->sync_ee));
2102 D_ASSERT(list_empty(&mdev->done_ee));
2103 D_ASSERT(list_empty(&mdev->read_ee));
2104 D_ASSERT(list_empty(&mdev->net_ee));
2105 D_ASSERT(list_empty(&mdev->resync_reads));
2106 D_ASSERT(list_empty(&mdev->tconn->data.work.q));
2107 D_ASSERT(list_empty(&mdev->tconn->meta.work.q));
2108 D_ASSERT(list_empty(&mdev->resync_work.list));
2109 D_ASSERT(list_empty(&mdev->unplug_work.list));
2110 D_ASSERT(list_empty(&mdev->go_diskless.list));
2111
2112 drbd_set_defaults(mdev);
2113 }
2114
2115
2116 static void drbd_destroy_mempools(void)
2117 {
2118 struct page *page;
2119
2120 while (drbd_pp_pool) {
2121 page = drbd_pp_pool;
2122 drbd_pp_pool = (struct page *)page_private(page);
2123 __free_page(page);
2124 drbd_pp_vacant--;
2125 }
2126
2127 /* D_ASSERT(atomic_read(&drbd_pp_vacant)==0); */
2128
2129 if (drbd_md_io_bio_set)
2130 bioset_free(drbd_md_io_bio_set);
2131 if (drbd_md_io_page_pool)
2132 mempool_destroy(drbd_md_io_page_pool);
2133 if (drbd_ee_mempool)
2134 mempool_destroy(drbd_ee_mempool);
2135 if (drbd_request_mempool)
2136 mempool_destroy(drbd_request_mempool);
2137 if (drbd_ee_cache)
2138 kmem_cache_destroy(drbd_ee_cache);
2139 if (drbd_request_cache)
2140 kmem_cache_destroy(drbd_request_cache);
2141 if (drbd_bm_ext_cache)
2142 kmem_cache_destroy(drbd_bm_ext_cache);
2143 if (drbd_al_ext_cache)
2144 kmem_cache_destroy(drbd_al_ext_cache);
2145
2146 drbd_md_io_bio_set = NULL;
2147 drbd_md_io_page_pool = NULL;
2148 drbd_ee_mempool = NULL;
2149 drbd_request_mempool = NULL;
2150 drbd_ee_cache = NULL;
2151 drbd_request_cache = NULL;
2152 drbd_bm_ext_cache = NULL;
2153 drbd_al_ext_cache = NULL;
2154
2155 return;
2156 }
2157
2158 static int drbd_create_mempools(void)
2159 {
2160 struct page *page;
2161 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2162 int i;
2163
2164 /* prepare our caches and mempools */
2165 drbd_request_mempool = NULL;
2166 drbd_ee_cache = NULL;
2167 drbd_request_cache = NULL;
2168 drbd_bm_ext_cache = NULL;
2169 drbd_al_ext_cache = NULL;
2170 drbd_pp_pool = NULL;
2171 drbd_md_io_page_pool = NULL;
2172 drbd_md_io_bio_set = NULL;
2173
2174 /* caches */
2175 drbd_request_cache = kmem_cache_create(
2176 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2177 if (drbd_request_cache == NULL)
2178 goto Enomem;
2179
2180 drbd_ee_cache = kmem_cache_create(
2181 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2182 if (drbd_ee_cache == NULL)
2183 goto Enomem;
2184
2185 drbd_bm_ext_cache = kmem_cache_create(
2186 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2187 if (drbd_bm_ext_cache == NULL)
2188 goto Enomem;
2189
2190 drbd_al_ext_cache = kmem_cache_create(
2191 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2192 if (drbd_al_ext_cache == NULL)
2193 goto Enomem;
2194
2195 /* mempools */
2196 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2197 if (drbd_md_io_bio_set == NULL)
2198 goto Enomem;
2199
2200 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2201 if (drbd_md_io_page_pool == NULL)
2202 goto Enomem;
2203
2204 drbd_request_mempool = mempool_create(number,
2205 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2206 if (drbd_request_mempool == NULL)
2207 goto Enomem;
2208
2209 drbd_ee_mempool = mempool_create(number,
2210 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2211 if (drbd_ee_mempool == NULL)
2212 goto Enomem;
2213
2214 /* drbd's page pool */
2215 spin_lock_init(&drbd_pp_lock);
2216
2217 for (i = 0; i < number; i++) {
2218 page = alloc_page(GFP_HIGHUSER);
2219 if (!page)
2220 goto Enomem;
2221 set_page_private(page, (unsigned long)drbd_pp_pool);
2222 drbd_pp_pool = page;
2223 }
2224 drbd_pp_vacant = number;
2225
2226 return 0;
2227
2228 Enomem:
2229 drbd_destroy_mempools(); /* in case we allocated some */
2230 return -ENOMEM;
2231 }
2232
2233 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2234 void *unused)
2235 {
2236 /* just so we have it. you never know what interesting things we
2237 * might want to do here some day...
2238 */
2239
2240 return NOTIFY_DONE;
2241 }
2242
2243 static struct notifier_block drbd_notifier = {
2244 .notifier_call = drbd_notify_sys,
2245 };
2246
2247 static void drbd_release_all_peer_reqs(struct drbd_conf *mdev)
2248 {
2249 int rr;
2250
2251 rr = drbd_free_peer_reqs(mdev, &mdev->active_ee);
2252 if (rr)
2253 dev_err(DEV, "%d EEs in active list found!\n", rr);
2254
2255 rr = drbd_free_peer_reqs(mdev, &mdev->sync_ee);
2256 if (rr)
2257 dev_err(DEV, "%d EEs in sync list found!\n", rr);
2258
2259 rr = drbd_free_peer_reqs(mdev, &mdev->read_ee);
2260 if (rr)
2261 dev_err(DEV, "%d EEs in read list found!\n", rr);
2262
2263 rr = drbd_free_peer_reqs(mdev, &mdev->done_ee);
2264 if (rr)
2265 dev_err(DEV, "%d EEs in done list found!\n", rr);
2266
2267 rr = drbd_free_peer_reqs(mdev, &mdev->net_ee);
2268 if (rr)
2269 dev_err(DEV, "%d EEs in net list found!\n", rr);
2270 }
2271
2272 /* caution. no locking. */
2273 void drbd_minor_destroy(struct kref *kref)
2274 {
2275 struct drbd_conf *mdev = container_of(kref, struct drbd_conf, kref);
2276 struct drbd_tconn *tconn = mdev->tconn;
2277
2278 /* paranoia asserts */
2279 D_ASSERT(mdev->open_cnt == 0);
2280 D_ASSERT(list_empty(&mdev->tconn->data.work.q));
2281 /* end paranoia asserts */
2282
2283 /* cleanup stuff that may have been allocated during
2284 * device (re-)configuration or state changes */
2285
2286 if (mdev->this_bdev)
2287 bdput(mdev->this_bdev);
2288
2289 drbd_free_bc(mdev->ldev);
2290 mdev->ldev = NULL;
2291
2292 drbd_release_all_peer_reqs(mdev);
2293
2294 lc_destroy(mdev->act_log);
2295 lc_destroy(mdev->resync);
2296
2297 kfree(mdev->p_uuid);
2298 /* mdev->p_uuid = NULL; */
2299
2300 kfree(mdev->current_epoch);
2301 if (mdev->bitmap) /* should no longer be there. */
2302 drbd_bm_cleanup(mdev);
2303 __free_page(mdev->md_io_page);
2304 put_disk(mdev->vdisk);
2305 blk_cleanup_queue(mdev->rq_queue);
2306 kfree(mdev->rs_plan_s);
2307 kfree(mdev);
2308
2309 kref_put(&tconn->kref, &conn_destroy);
2310 }
2311
2312 static void drbd_cleanup(void)
2313 {
2314 unsigned int i;
2315 struct drbd_conf *mdev;
2316 struct drbd_tconn *tconn, *tmp;
2317
2318 unregister_reboot_notifier(&drbd_notifier);
2319
2320 /* first remove proc,
2321 * drbdsetup uses it's presence to detect
2322 * whether DRBD is loaded.
2323 * If we would get stuck in proc removal,
2324 * but have netlink already deregistered,
2325 * some drbdsetup commands may wait forever
2326 * for an answer.
2327 */
2328 if (drbd_proc)
2329 remove_proc_entry("drbd", NULL);
2330
2331 drbd_genl_unregister();
2332
2333 idr_for_each_entry(&minors, mdev, i) {
2334 idr_remove(&minors, mdev_to_minor(mdev));
2335 idr_remove(&mdev->tconn->volumes, mdev->vnr);
2336 del_gendisk(mdev->vdisk);
2337 /* synchronize_rcu(); No other threads running at this point */
2338 kref_put(&mdev->kref, &drbd_minor_destroy);
2339 }
2340
2341 /* not _rcu since, no other updater anymore. Genl already unregistered */
2342 list_for_each_entry_safe(tconn, tmp, &drbd_tconns, all_tconn) {
2343 list_del(&tconn->all_tconn); /* not _rcu no proc, not other threads */
2344 /* synchronize_rcu(); */
2345 kref_put(&tconn->kref, &conn_destroy);
2346 }
2347
2348 drbd_destroy_mempools();
2349 unregister_blkdev(DRBD_MAJOR, "drbd");
2350
2351 idr_destroy(&minors);
2352
2353 printk(KERN_INFO "drbd: module cleanup done.\n");
2354 }
2355
2356 /**
2357 * drbd_congested() - Callback for pdflush
2358 * @congested_data: User data
2359 * @bdi_bits: Bits pdflush is currently interested in
2360 *
2361 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2362 */
2363 static int drbd_congested(void *congested_data, int bdi_bits)
2364 {
2365 struct drbd_conf *mdev = congested_data;
2366 struct request_queue *q;
2367 char reason = '-';
2368 int r = 0;
2369
2370 if (!may_inc_ap_bio(mdev)) {
2371 /* DRBD has frozen IO */
2372 r = bdi_bits;
2373 reason = 'd';
2374 goto out;
2375 }
2376
2377 if (get_ldev(mdev)) {
2378 q = bdev_get_queue(mdev->ldev->backing_bdev);
2379 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2380 put_ldev(mdev);
2381 if (r)
2382 reason = 'b';
2383 }
2384
2385 if (bdi_bits & (1 << BDI_async_congested) && test_bit(NET_CONGESTED, &mdev->tconn->flags)) {
2386 r |= (1 << BDI_async_congested);
2387 reason = reason == 'b' ? 'a' : 'n';
2388 }
2389
2390 out:
2391 mdev->congestion_reason = reason;
2392 return r;
2393 }
2394
2395 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2396 {
2397 sema_init(&wq->s, 0);
2398 spin_lock_init(&wq->q_lock);
2399 INIT_LIST_HEAD(&wq->q);
2400 }
2401
2402 struct drbd_tconn *conn_get_by_name(const char *name)
2403 {
2404 struct drbd_tconn *tconn;
2405
2406 if (!name || !name[0])
2407 return NULL;
2408
2409 rcu_read_lock();
2410 list_for_each_entry_rcu(tconn, &drbd_tconns, all_tconn) {
2411 if (!strcmp(tconn->name, name)) {
2412 kref_get(&tconn->kref);
2413 goto found;
2414 }
2415 }
2416 tconn = NULL;
2417 found:
2418 rcu_read_unlock();
2419 return tconn;
2420 }
2421
2422 static int drbd_alloc_socket(struct drbd_socket *socket)
2423 {
2424 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2425 if (!socket->rbuf)
2426 return -ENOMEM;
2427 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2428 if (!socket->sbuf)
2429 return -ENOMEM;
2430 return 0;
2431 }
2432
2433 static void drbd_free_socket(struct drbd_socket *socket)
2434 {
2435 free_page((unsigned long) socket->sbuf);
2436 free_page((unsigned long) socket->rbuf);
2437 }
2438
2439 void conn_free_crypto(struct drbd_tconn *tconn)
2440 {
2441 drbd_free_sock(tconn);
2442
2443 crypto_free_hash(tconn->csums_tfm);
2444 crypto_free_hash(tconn->verify_tfm);
2445 crypto_free_hash(tconn->cram_hmac_tfm);
2446 crypto_free_hash(tconn->integrity_tfm);
2447 crypto_free_hash(tconn->peer_integrity_tfm);
2448 kfree(tconn->int_dig_in);
2449 kfree(tconn->int_dig_vv);
2450
2451 tconn->csums_tfm = NULL;
2452 tconn->verify_tfm = NULL;
2453 tconn->cram_hmac_tfm = NULL;
2454 tconn->integrity_tfm = NULL;
2455 tconn->peer_integrity_tfm = NULL;
2456 tconn->int_dig_in = NULL;
2457 tconn->int_dig_vv = NULL;
2458 }
2459
2460 /* caller must be under genl_lock() */
2461 struct drbd_tconn *conn_create(const char *name)
2462 {
2463 struct drbd_tconn *tconn;
2464
2465 tconn = kzalloc(sizeof(struct drbd_tconn), GFP_KERNEL);
2466 if (!tconn)
2467 return NULL;
2468
2469 tconn->name = kstrdup(name, GFP_KERNEL);
2470 if (!tconn->name)
2471 goto fail;
2472
2473 if (drbd_alloc_socket(&tconn->data))
2474 goto fail;
2475 if (drbd_alloc_socket(&tconn->meta))
2476 goto fail;
2477
2478 if (!zalloc_cpumask_var(&tconn->cpu_mask, GFP_KERNEL))
2479 goto fail;
2480
2481 if (!tl_init(tconn))
2482 goto fail;
2483
2484 tconn->cstate = C_STANDALONE;
2485 mutex_init(&tconn->cstate_mutex);
2486 spin_lock_init(&tconn->req_lock);
2487 mutex_init(&tconn->conf_update);
2488 init_waitqueue_head(&tconn->ping_wait);
2489 idr_init(&tconn->volumes);
2490
2491 drbd_init_workqueue(&tconn->data.work);
2492 mutex_init(&tconn->data.mutex);
2493
2494 drbd_init_workqueue(&tconn->meta.work);
2495 mutex_init(&tconn->meta.mutex);
2496
2497 drbd_thread_init(tconn, &tconn->receiver, drbdd_init, "receiver");
2498 drbd_thread_init(tconn, &tconn->worker, drbd_worker, "worker");
2499 drbd_thread_init(tconn, &tconn->asender, drbd_asender, "asender");
2500
2501 drbd_set_res_opts_defaults(&tconn->res_opts);
2502
2503 kref_init(&tconn->kref);
2504 list_add_tail_rcu(&tconn->all_tconn, &drbd_tconns);
2505
2506 return tconn;
2507
2508 fail:
2509 tl_cleanup(tconn);
2510 free_cpumask_var(tconn->cpu_mask);
2511 drbd_free_socket(&tconn->meta);
2512 drbd_free_socket(&tconn->data);
2513 kfree(tconn->name);
2514 kfree(tconn);
2515
2516 return NULL;
2517 }
2518
2519 void conn_destroy(struct kref *kref)
2520 {
2521 struct drbd_tconn *tconn = container_of(kref, struct drbd_tconn, kref);
2522
2523 idr_destroy(&tconn->volumes);
2524
2525 free_cpumask_var(tconn->cpu_mask);
2526 drbd_free_socket(&tconn->meta);
2527 drbd_free_socket(&tconn->data);
2528 kfree(tconn->name);
2529 kfree(tconn->int_dig_in);
2530 kfree(tconn->int_dig_vv);
2531 kfree(tconn);
2532 }
2533
2534 enum drbd_ret_code conn_new_minor(struct drbd_tconn *tconn, unsigned int minor, int vnr)
2535 {
2536 struct drbd_conf *mdev;
2537 struct gendisk *disk;
2538 struct request_queue *q;
2539 int vnr_got = vnr;
2540 int minor_got = minor;
2541 enum drbd_ret_code err = ERR_NOMEM;
2542
2543 mdev = minor_to_mdev(minor);
2544 if (mdev)
2545 return ERR_MINOR_EXISTS;
2546
2547 /* GFP_KERNEL, we are outside of all write-out paths */
2548 mdev = kzalloc(sizeof(struct drbd_conf), GFP_KERNEL);
2549 if (!mdev)
2550 return ERR_NOMEM;
2551
2552 kref_get(&tconn->kref);
2553 mdev->tconn = tconn;
2554
2555 mdev->minor = minor;
2556 mdev->vnr = vnr;
2557
2558 drbd_init_set_defaults(mdev);
2559
2560 q = blk_alloc_queue(GFP_KERNEL);
2561 if (!q)
2562 goto out_no_q;
2563 mdev->rq_queue = q;
2564 q->queuedata = mdev;
2565
2566 disk = alloc_disk(1);
2567 if (!disk)
2568 goto out_no_disk;
2569 mdev->vdisk = disk;
2570
2571 set_disk_ro(disk, true);
2572
2573 disk->queue = q;
2574 disk->major = DRBD_MAJOR;
2575 disk->first_minor = minor;
2576 disk->fops = &drbd_ops;
2577 sprintf(disk->disk_name, "drbd%d", minor);
2578 disk->private_data = mdev;
2579
2580 mdev->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2581 /* we have no partitions. we contain only ourselves. */
2582 mdev->this_bdev->bd_contains = mdev->this_bdev;
2583
2584 q->backing_dev_info.congested_fn = drbd_congested;
2585 q->backing_dev_info.congested_data = mdev;
2586
2587 blk_queue_make_request(q, drbd_make_request);
2588 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2589 This triggers a max_bio_size message upon first attach or connect */
2590 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2591 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2592 blk_queue_merge_bvec(q, drbd_merge_bvec);
2593 q->queue_lock = &mdev->tconn->req_lock; /* needed since we use */
2594
2595 mdev->md_io_page = alloc_page(GFP_KERNEL);
2596 if (!mdev->md_io_page)
2597 goto out_no_io_page;
2598
2599 if (drbd_bm_init(mdev))
2600 goto out_no_bitmap;
2601 mdev->read_requests = RB_ROOT;
2602 mdev->write_requests = RB_ROOT;
2603
2604 mdev->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2605 if (!mdev->current_epoch)
2606 goto out_no_epoch;
2607
2608 INIT_LIST_HEAD(&mdev->current_epoch->list);
2609 mdev->epochs = 1;
2610
2611 if (!idr_pre_get(&minors, GFP_KERNEL))
2612 goto out_no_minor_idr;
2613 if (idr_get_new_above(&minors, mdev, minor, &minor_got))
2614 goto out_no_minor_idr;
2615 if (minor_got != minor) {
2616 err = ERR_MINOR_EXISTS;
2617 drbd_msg_put_info("requested minor exists already");
2618 goto out_idr_remove_minor;
2619 }
2620
2621 if (!idr_pre_get(&tconn->volumes, GFP_KERNEL))
2622 goto out_idr_remove_minor;
2623 if (idr_get_new_above(&tconn->volumes, mdev, vnr, &vnr_got))
2624 goto out_idr_remove_minor;
2625 if (vnr_got != vnr) {
2626 err = ERR_INVALID_REQUEST;
2627 drbd_msg_put_info("requested volume exists already");
2628 goto out_idr_remove_vol;
2629 }
2630 add_disk(disk);
2631 kref_init(&mdev->kref); /* one ref for both idrs and the the add_disk */
2632
2633 /* inherit the connection state */
2634 mdev->state.conn = tconn->cstate;
2635 if (mdev->state.conn == C_WF_REPORT_PARAMS)
2636 drbd_connected(mdev);
2637
2638 return NO_ERROR;
2639
2640 out_idr_remove_vol:
2641 idr_remove(&tconn->volumes, vnr_got);
2642 out_idr_remove_minor:
2643 idr_remove(&minors, minor_got);
2644 synchronize_rcu();
2645 out_no_minor_idr:
2646 kfree(mdev->current_epoch);
2647 out_no_epoch:
2648 drbd_bm_cleanup(mdev);
2649 out_no_bitmap:
2650 __free_page(mdev->md_io_page);
2651 out_no_io_page:
2652 put_disk(disk);
2653 out_no_disk:
2654 blk_cleanup_queue(q);
2655 out_no_q:
2656 kfree(mdev);
2657 kref_put(&tconn->kref, &conn_destroy);
2658 return err;
2659 }
2660
2661 int __init drbd_init(void)
2662 {
2663 int err;
2664
2665 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2666 printk(KERN_ERR
2667 "drbd: invalid minor_count (%d)\n", minor_count);
2668 #ifdef MODULE
2669 return -EINVAL;
2670 #else
2671 minor_count = 8;
2672 #endif
2673 }
2674
2675 err = register_blkdev(DRBD_MAJOR, "drbd");
2676 if (err) {
2677 printk(KERN_ERR
2678 "drbd: unable to register block device major %d\n",
2679 DRBD_MAJOR);
2680 return err;
2681 }
2682
2683 err = drbd_genl_register();
2684 if (err) {
2685 printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2686 goto fail;
2687 }
2688
2689
2690 register_reboot_notifier(&drbd_notifier);
2691
2692 /*
2693 * allocate all necessary structs
2694 */
2695 err = -ENOMEM;
2696
2697 init_waitqueue_head(&drbd_pp_wait);
2698
2699 drbd_proc = NULL; /* play safe for drbd_cleanup */
2700 idr_init(&minors);
2701
2702 err = drbd_create_mempools();
2703 if (err)
2704 goto fail;
2705
2706 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2707 if (!drbd_proc) {
2708 printk(KERN_ERR "drbd: unable to register proc file\n");
2709 goto fail;
2710 }
2711
2712 rwlock_init(&global_state_lock);
2713 INIT_LIST_HEAD(&drbd_tconns);
2714
2715 printk(KERN_INFO "drbd: initialized. "
2716 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2717 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2718 printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2719 printk(KERN_INFO "drbd: registered as block device major %d\n",
2720 DRBD_MAJOR);
2721
2722 return 0; /* Success! */
2723
2724 fail:
2725 drbd_cleanup();
2726 if (err == -ENOMEM)
2727 /* currently always the case */
2728 printk(KERN_ERR "drbd: ran out of memory\n");
2729 else
2730 printk(KERN_ERR "drbd: initialization failure\n");
2731 return err;
2732 }
2733
2734 void drbd_free_bc(struct drbd_backing_dev *ldev)
2735 {
2736 if (ldev == NULL)
2737 return;
2738
2739 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2740 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2741
2742 kfree(ldev);
2743 }
2744
2745 void drbd_free_sock(struct drbd_tconn *tconn)
2746 {
2747 if (tconn->data.socket) {
2748 mutex_lock(&tconn->data.mutex);
2749 kernel_sock_shutdown(tconn->data.socket, SHUT_RDWR);
2750 sock_release(tconn->data.socket);
2751 tconn->data.socket = NULL;
2752 mutex_unlock(&tconn->data.mutex);
2753 }
2754 if (tconn->meta.socket) {
2755 mutex_lock(&tconn->meta.mutex);
2756 kernel_sock_shutdown(tconn->meta.socket, SHUT_RDWR);
2757 sock_release(tconn->meta.socket);
2758 tconn->meta.socket = NULL;
2759 mutex_unlock(&tconn->meta.mutex);
2760 }
2761 }
2762
2763 /* meta data management */
2764
2765 struct meta_data_on_disk {
2766 u64 la_size; /* last agreed size. */
2767 u64 uuid[UI_SIZE]; /* UUIDs. */
2768 u64 device_uuid;
2769 u64 reserved_u64_1;
2770 u32 flags; /* MDF */
2771 u32 magic;
2772 u32 md_size_sect;
2773 u32 al_offset; /* offset to this block */
2774 u32 al_nr_extents; /* important for restoring the AL */
2775 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2776 u32 bm_offset; /* offset to the bitmap, from here */
2777 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2778 u32 la_peer_max_bio_size; /* last peer max_bio_size */
2779 u32 reserved_u32[3];
2780
2781 } __packed;
2782
2783 /**
2784 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
2785 * @mdev: DRBD device.
2786 */
2787 void drbd_md_sync(struct drbd_conf *mdev)
2788 {
2789 struct meta_data_on_disk *buffer;
2790 sector_t sector;
2791 int i;
2792
2793 del_timer(&mdev->md_sync_timer);
2794 /* timer may be rearmed by drbd_md_mark_dirty() now. */
2795 if (!test_and_clear_bit(MD_DIRTY, &mdev->flags))
2796 return;
2797
2798 /* We use here D_FAILED and not D_ATTACHING because we try to write
2799 * metadata even if we detach due to a disk failure! */
2800 if (!get_ldev_if_state(mdev, D_FAILED))
2801 return;
2802
2803 mutex_lock(&mdev->md_io_mutex);
2804 buffer = (struct meta_data_on_disk *)page_address(mdev->md_io_page);
2805 memset(buffer, 0, 512);
2806
2807 buffer->la_size = cpu_to_be64(drbd_get_capacity(mdev->this_bdev));
2808 for (i = UI_CURRENT; i < UI_SIZE; i++)
2809 buffer->uuid[i] = cpu_to_be64(mdev->ldev->md.uuid[i]);
2810 buffer->flags = cpu_to_be32(mdev->ldev->md.flags);
2811 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC);
2812
2813 buffer->md_size_sect = cpu_to_be32(mdev->ldev->md.md_size_sect);
2814 buffer->al_offset = cpu_to_be32(mdev->ldev->md.al_offset);
2815 buffer->al_nr_extents = cpu_to_be32(mdev->act_log->nr_elements);
2816 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
2817 buffer->device_uuid = cpu_to_be64(mdev->ldev->md.device_uuid);
2818
2819 buffer->bm_offset = cpu_to_be32(mdev->ldev->md.bm_offset);
2820 buffer->la_peer_max_bio_size = cpu_to_be32(mdev->peer_max_bio_size);
2821
2822 D_ASSERT(drbd_md_ss__(mdev, mdev->ldev) == mdev->ldev->md.md_offset);
2823 sector = mdev->ldev->md.md_offset;
2824
2825 if (drbd_md_sync_page_io(mdev, mdev->ldev, sector, WRITE)) {
2826 /* this was a try anyways ... */
2827 dev_err(DEV, "meta data update failed!\n");
2828 drbd_chk_io_error(mdev, 1, true);
2829 }
2830
2831 /* Update mdev->ldev->md.la_size_sect,
2832 * since we updated it on metadata. */
2833 mdev->ldev->md.la_size_sect = drbd_get_capacity(mdev->this_bdev);
2834
2835 mutex_unlock(&mdev->md_io_mutex);
2836 put_ldev(mdev);
2837 }
2838
2839 /**
2840 * drbd_md_read() - Reads in the meta data super block
2841 * @mdev: DRBD device.
2842 * @bdev: Device from which the meta data should be read in.
2843 *
2844 * Return 0 (NO_ERROR) on success, and an enum drbd_ret_code in case
2845 * something goes wrong. Currently only: ERR_IO_MD_DISK, ERR_MD_INVALID.
2846 */
2847 int drbd_md_read(struct drbd_conf *mdev, struct drbd_backing_dev *bdev)
2848 {
2849 struct meta_data_on_disk *buffer;
2850 int i, rv = NO_ERROR;
2851
2852 if (!get_ldev_if_state(mdev, D_ATTACHING))
2853 return ERR_IO_MD_DISK;
2854
2855 mutex_lock(&mdev->md_io_mutex);
2856 buffer = (struct meta_data_on_disk *)page_address(mdev->md_io_page);
2857
2858 if (drbd_md_sync_page_io(mdev, bdev, bdev->md.md_offset, READ)) {
2859 /* NOTE: can't do normal error processing here as this is
2860 called BEFORE disk is attached */
2861 dev_err(DEV, "Error while reading metadata.\n");
2862 rv = ERR_IO_MD_DISK;
2863 goto err;
2864 }
2865
2866 if (buffer->magic != cpu_to_be32(DRBD_MD_MAGIC)) {
2867 dev_err(DEV, "Error while reading metadata, magic not found.\n");
2868 rv = ERR_MD_INVALID;
2869 goto err;
2870 }
2871 if (be32_to_cpu(buffer->al_offset) != bdev->md.al_offset) {
2872 dev_err(DEV, "unexpected al_offset: %d (expected %d)\n",
2873 be32_to_cpu(buffer->al_offset), bdev->md.al_offset);
2874 rv = ERR_MD_INVALID;
2875 goto err;
2876 }
2877 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
2878 dev_err(DEV, "unexpected bm_offset: %d (expected %d)\n",
2879 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
2880 rv = ERR_MD_INVALID;
2881 goto err;
2882 }
2883 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
2884 dev_err(DEV, "unexpected md_size: %u (expected %u)\n",
2885 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
2886 rv = ERR_MD_INVALID;
2887 goto err;
2888 }
2889
2890 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
2891 dev_err(DEV, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
2892 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
2893 rv = ERR_MD_INVALID;
2894 goto err;
2895 }
2896
2897 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size);
2898 for (i = UI_CURRENT; i < UI_SIZE; i++)
2899 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
2900 bdev->md.flags = be32_to_cpu(buffer->flags);
2901 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
2902
2903 spin_lock_irq(&mdev->tconn->req_lock);
2904 if (mdev->state.conn < C_CONNECTED) {
2905 int peer;
2906 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
2907 peer = max_t(int, peer, DRBD_MAX_BIO_SIZE_SAFE);
2908 mdev->peer_max_bio_size = peer;
2909 }
2910 spin_unlock_irq(&mdev->tconn->req_lock);
2911
2912 /* This blocks wants to be get removed... */
2913 bdev->disk_conf->al_extents = be32_to_cpu(buffer->al_nr_extents);
2914 if (bdev->disk_conf->al_extents < DRBD_AL_EXTENTS_MIN)
2915 bdev->disk_conf->al_extents = DRBD_AL_EXTENTS_DEF;
2916
2917 err:
2918 mutex_unlock(&mdev->md_io_mutex);
2919 put_ldev(mdev);
2920
2921 return rv;
2922 }
2923
2924 /**
2925 * drbd_md_mark_dirty() - Mark meta data super block as dirty
2926 * @mdev: DRBD device.
2927 *
2928 * Call this function if you change anything that should be written to
2929 * the meta-data super block. This function sets MD_DIRTY, and starts a
2930 * timer that ensures that within five seconds you have to call drbd_md_sync().
2931 */
2932 #ifdef DEBUG
2933 void drbd_md_mark_dirty_(struct drbd_conf *mdev, unsigned int line, const char *func)
2934 {
2935 if (!test_and_set_bit(MD_DIRTY, &mdev->flags)) {
2936 mod_timer(&mdev->md_sync_timer, jiffies + HZ);
2937 mdev->last_md_mark_dirty.line = line;
2938 mdev->last_md_mark_dirty.func = func;
2939 }
2940 }
2941 #else
2942 void drbd_md_mark_dirty(struct drbd_conf *mdev)
2943 {
2944 if (!test_and_set_bit(MD_DIRTY, &mdev->flags))
2945 mod_timer(&mdev->md_sync_timer, jiffies + 5*HZ);
2946 }
2947 #endif
2948
2949 static void drbd_uuid_move_history(struct drbd_conf *mdev) __must_hold(local)
2950 {
2951 int i;
2952
2953 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
2954 mdev->ldev->md.uuid[i+1] = mdev->ldev->md.uuid[i];
2955 }
2956
2957 void _drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
2958 {
2959 if (idx == UI_CURRENT) {
2960 if (mdev->state.role == R_PRIMARY)
2961 val |= 1;
2962 else
2963 val &= ~((u64)1);
2964
2965 drbd_set_ed_uuid(mdev, val);
2966 }
2967
2968 mdev->ldev->md.uuid[idx] = val;
2969 drbd_md_mark_dirty(mdev);
2970 }
2971
2972
2973 void drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
2974 {
2975 if (mdev->ldev->md.uuid[idx]) {
2976 drbd_uuid_move_history(mdev);
2977 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[idx];
2978 }
2979 _drbd_uuid_set(mdev, idx, val);
2980 }
2981
2982 /**
2983 * drbd_uuid_new_current() - Creates a new current UUID
2984 * @mdev: DRBD device.
2985 *
2986 * Creates a new current UUID, and rotates the old current UUID into
2987 * the bitmap slot. Causes an incremental resync upon next connect.
2988 */
2989 void drbd_uuid_new_current(struct drbd_conf *mdev) __must_hold(local)
2990 {
2991 u64 val;
2992 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
2993
2994 if (bm_uuid)
2995 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
2996
2997 mdev->ldev->md.uuid[UI_BITMAP] = mdev->ldev->md.uuid[UI_CURRENT];
2998
2999 get_random_bytes(&val, sizeof(u64));
3000 _drbd_uuid_set(mdev, UI_CURRENT, val);
3001 drbd_print_uuids(mdev, "new current UUID");
3002 /* get it to stable storage _now_ */
3003 drbd_md_sync(mdev);
3004 }
3005
3006 void drbd_uuid_set_bm(struct drbd_conf *mdev, u64 val) __must_hold(local)
3007 {
3008 if (mdev->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3009 return;
3010
3011 if (val == 0) {
3012 drbd_uuid_move_history(mdev);
3013 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[UI_BITMAP];
3014 mdev->ldev->md.uuid[UI_BITMAP] = 0;
3015 } else {
3016 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
3017 if (bm_uuid)
3018 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
3019
3020 mdev->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3021 }
3022 drbd_md_mark_dirty(mdev);
3023 }
3024
3025 /**
3026 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3027 * @mdev: DRBD device.
3028 *
3029 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3030 */
3031 int drbd_bmio_set_n_write(struct drbd_conf *mdev)
3032 {
3033 int rv = -EIO;
3034
3035 if (get_ldev_if_state(mdev, D_ATTACHING)) {
3036 drbd_md_set_flag(mdev, MDF_FULL_SYNC);
3037 drbd_md_sync(mdev);
3038 drbd_bm_set_all(mdev);
3039
3040 rv = drbd_bm_write(mdev);
3041
3042 if (!rv) {
3043 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
3044 drbd_md_sync(mdev);
3045 }
3046
3047 put_ldev(mdev);
3048 }
3049
3050 return rv;
3051 }
3052
3053 /**
3054 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3055 * @mdev: DRBD device.
3056 *
3057 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3058 */
3059 int drbd_bmio_clear_n_write(struct drbd_conf *mdev)
3060 {
3061 int rv = -EIO;
3062
3063 drbd_resume_al(mdev);
3064 if (get_ldev_if_state(mdev, D_ATTACHING)) {
3065 drbd_bm_clear_all(mdev);
3066 rv = drbd_bm_write(mdev);
3067 put_ldev(mdev);
3068 }
3069
3070 return rv;
3071 }
3072
3073 static int w_bitmap_io(struct drbd_work *w, int unused)
3074 {
3075 struct bm_io_work *work = container_of(w, struct bm_io_work, w);
3076 struct drbd_conf *mdev = w->mdev;
3077 int rv = -EIO;
3078
3079 D_ASSERT(atomic_read(&mdev->ap_bio_cnt) == 0);
3080
3081 if (get_ldev(mdev)) {
3082 drbd_bm_lock(mdev, work->why, work->flags);
3083 rv = work->io_fn(mdev);
3084 drbd_bm_unlock(mdev);
3085 put_ldev(mdev);
3086 }
3087
3088 clear_bit_unlock(BITMAP_IO, &mdev->flags);
3089 wake_up(&mdev->misc_wait);
3090
3091 if (work->done)
3092 work->done(mdev, rv);
3093
3094 clear_bit(BITMAP_IO_QUEUED, &mdev->flags);
3095 work->why = NULL;
3096 work->flags = 0;
3097
3098 return 0;
3099 }
3100
3101 void drbd_ldev_destroy(struct drbd_conf *mdev)
3102 {
3103 lc_destroy(mdev->resync);
3104 mdev->resync = NULL;
3105 lc_destroy(mdev->act_log);
3106 mdev->act_log = NULL;
3107 __no_warn(local,
3108 drbd_free_bc(mdev->ldev);
3109 mdev->ldev = NULL;);
3110
3111 clear_bit(GO_DISKLESS, &mdev->flags);
3112 }
3113
3114 static int w_go_diskless(struct drbd_work *w, int unused)
3115 {
3116 struct drbd_conf *mdev = w->mdev;
3117
3118 D_ASSERT(mdev->state.disk == D_FAILED);
3119 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
3120 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
3121 * the protected members anymore, though, so once put_ldev reaches zero
3122 * again, it will be safe to free them. */
3123 drbd_force_state(mdev, NS(disk, D_DISKLESS));
3124 return 0;
3125 }
3126
3127 void drbd_go_diskless(struct drbd_conf *mdev)
3128 {
3129 D_ASSERT(mdev->state.disk == D_FAILED);
3130 if (!test_and_set_bit(GO_DISKLESS, &mdev->flags))
3131 drbd_queue_work(&mdev->tconn->data.work, &mdev->go_diskless);
3132 }
3133
3134 /**
3135 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3136 * @mdev: DRBD device.
3137 * @io_fn: IO callback to be called when bitmap IO is possible
3138 * @done: callback to be called after the bitmap IO was performed
3139 * @why: Descriptive text of the reason for doing the IO
3140 *
3141 * While IO on the bitmap happens we freeze application IO thus we ensure
3142 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3143 * called from worker context. It MUST NOT be used while a previous such
3144 * work is still pending!
3145 */
3146 void drbd_queue_bitmap_io(struct drbd_conf *mdev,
3147 int (*io_fn)(struct drbd_conf *),
3148 void (*done)(struct drbd_conf *, int),
3149 char *why, enum bm_flag flags)
3150 {
3151 D_ASSERT(current == mdev->tconn->worker.task);
3152
3153 D_ASSERT(!test_bit(BITMAP_IO_QUEUED, &mdev->flags));
3154 D_ASSERT(!test_bit(BITMAP_IO, &mdev->flags));
3155 D_ASSERT(list_empty(&mdev->bm_io_work.w.list));
3156 if (mdev->bm_io_work.why)
3157 dev_err(DEV, "FIXME going to queue '%s' but '%s' still pending?\n",
3158 why, mdev->bm_io_work.why);
3159
3160 mdev->bm_io_work.io_fn = io_fn;
3161 mdev->bm_io_work.done = done;
3162 mdev->bm_io_work.why = why;
3163 mdev->bm_io_work.flags = flags;
3164
3165 spin_lock_irq(&mdev->tconn->req_lock);
3166 set_bit(BITMAP_IO, &mdev->flags);
3167 if (atomic_read(&mdev->ap_bio_cnt) == 0) {
3168 if (!test_and_set_bit(BITMAP_IO_QUEUED, &mdev->flags))
3169 drbd_queue_work(&mdev->tconn->data.work, &mdev->bm_io_work.w);
3170 }
3171 spin_unlock_irq(&mdev->tconn->req_lock);
3172 }
3173
3174 /**
3175 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3176 * @mdev: DRBD device.
3177 * @io_fn: IO callback to be called when bitmap IO is possible
3178 * @why: Descriptive text of the reason for doing the IO
3179 *
3180 * freezes application IO while that the actual IO operations runs. This
3181 * functions MAY NOT be called from worker context.
3182 */
3183 int drbd_bitmap_io(struct drbd_conf *mdev, int (*io_fn)(struct drbd_conf *),
3184 char *why, enum bm_flag flags)
3185 {
3186 int rv;
3187
3188 D_ASSERT(current != mdev->tconn->worker.task);
3189
3190 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3191 drbd_suspend_io(mdev);
3192
3193 drbd_bm_lock(mdev, why, flags);
3194 rv = io_fn(mdev);
3195 drbd_bm_unlock(mdev);
3196
3197 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3198 drbd_resume_io(mdev);
3199
3200 return rv;
3201 }
3202
3203 void drbd_md_set_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3204 {
3205 if ((mdev->ldev->md.flags & flag) != flag) {
3206 drbd_md_mark_dirty(mdev);
3207 mdev->ldev->md.flags |= flag;
3208 }
3209 }
3210
3211 void drbd_md_clear_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3212 {
3213 if ((mdev->ldev->md.flags & flag) != 0) {
3214 drbd_md_mark_dirty(mdev);
3215 mdev->ldev->md.flags &= ~flag;
3216 }
3217 }
3218 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3219 {
3220 return (bdev->md.flags & flag) != 0;
3221 }
3222
3223 static void md_sync_timer_fn(unsigned long data)
3224 {
3225 struct drbd_conf *mdev = (struct drbd_conf *) data;
3226
3227 drbd_queue_work_front(&mdev->tconn->data.work, &mdev->md_sync_work);
3228 }
3229
3230 static int w_md_sync(struct drbd_work *w, int unused)
3231 {
3232 struct drbd_conf *mdev = w->mdev;
3233
3234 dev_warn(DEV, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3235 #ifdef DEBUG
3236 dev_warn(DEV, "last md_mark_dirty: %s:%u\n",
3237 mdev->last_md_mark_dirty.func, mdev->last_md_mark_dirty.line);
3238 #endif
3239 drbd_md_sync(mdev);
3240 return 0;
3241 }
3242
3243 const char *cmdname(enum drbd_packet cmd)
3244 {
3245 /* THINK may need to become several global tables
3246 * when we want to support more than
3247 * one PRO_VERSION */
3248 static const char *cmdnames[] = {
3249 [P_DATA] = "Data",
3250 [P_DATA_REPLY] = "DataReply",
3251 [P_RS_DATA_REPLY] = "RSDataReply",
3252 [P_BARRIER] = "Barrier",
3253 [P_BITMAP] = "ReportBitMap",
3254 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3255 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3256 [P_UNPLUG_REMOTE] = "UnplugRemote",
3257 [P_DATA_REQUEST] = "DataRequest",
3258 [P_RS_DATA_REQUEST] = "RSDataRequest",
3259 [P_SYNC_PARAM] = "SyncParam",
3260 [P_SYNC_PARAM89] = "SyncParam89",
3261 [P_PROTOCOL] = "ReportProtocol",
3262 [P_UUIDS] = "ReportUUIDs",
3263 [P_SIZES] = "ReportSizes",
3264 [P_STATE] = "ReportState",
3265 [P_SYNC_UUID] = "ReportSyncUUID",
3266 [P_AUTH_CHALLENGE] = "AuthChallenge",
3267 [P_AUTH_RESPONSE] = "AuthResponse",
3268 [P_PING] = "Ping",
3269 [P_PING_ACK] = "PingAck",
3270 [P_RECV_ACK] = "RecvAck",
3271 [P_WRITE_ACK] = "WriteAck",
3272 [P_RS_WRITE_ACK] = "RSWriteAck",
3273 [P_DISCARD_WRITE] = "DiscardWrite",
3274 [P_NEG_ACK] = "NegAck",
3275 [P_NEG_DREPLY] = "NegDReply",
3276 [P_NEG_RS_DREPLY] = "NegRSDReply",
3277 [P_BARRIER_ACK] = "BarrierAck",
3278 [P_STATE_CHG_REQ] = "StateChgRequest",
3279 [P_STATE_CHG_REPLY] = "StateChgReply",
3280 [P_OV_REQUEST] = "OVRequest",
3281 [P_OV_REPLY] = "OVReply",
3282 [P_OV_RESULT] = "OVResult",
3283 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3284 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3285 [P_COMPRESSED_BITMAP] = "CBitmap",
3286 [P_DELAY_PROBE] = "DelayProbe",
3287 [P_OUT_OF_SYNC] = "OutOfSync",
3288 [P_RETRY_WRITE] = "RetryWrite",
3289 [P_RS_CANCEL] = "RSCancel",
3290 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3291 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3292
3293 /* enum drbd_packet, but not commands - obsoleted flags:
3294 * P_MAY_IGNORE
3295 * P_MAX_OPT_CMD
3296 */
3297 };
3298
3299 /* too big for the array: 0xfffX */
3300 if (cmd == P_INITIAL_META)
3301 return "InitialMeta";
3302 if (cmd == P_INITIAL_DATA)
3303 return "InitialData";
3304 if (cmd == P_CONNECTION_FEATURES)
3305 return "ConnectionFeatures";
3306 if (cmd >= ARRAY_SIZE(cmdnames))
3307 return "Unknown";
3308 return cmdnames[cmd];
3309 }
3310
3311 /**
3312 * drbd_wait_misc - wait for a request to make progress
3313 * @mdev: device associated with the request
3314 * @i: the struct drbd_interval embedded in struct drbd_request or
3315 * struct drbd_peer_request
3316 */
3317 int drbd_wait_misc(struct drbd_conf *mdev, struct drbd_interval *i)
3318 {
3319 struct net_conf *nc;
3320 DEFINE_WAIT(wait);
3321 long timeout;
3322
3323 rcu_read_lock();
3324 nc = rcu_dereference(mdev->tconn->net_conf);
3325 if (!nc) {
3326 rcu_read_unlock();
3327 return -ETIMEDOUT;
3328 }
3329 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3330 rcu_read_unlock();
3331
3332 /* Indicate to wake up mdev->misc_wait on progress. */
3333 i->waiting = true;
3334 prepare_to_wait(&mdev->misc_wait, &wait, TASK_INTERRUPTIBLE);
3335 spin_unlock_irq(&mdev->tconn->req_lock);
3336 timeout = schedule_timeout(timeout);
3337 finish_wait(&mdev->misc_wait, &wait);
3338 spin_lock_irq(&mdev->tconn->req_lock);
3339 if (!timeout || mdev->state.conn < C_CONNECTED)
3340 return -ETIMEDOUT;
3341 if (signal_pending(current))
3342 return -ERESTARTSYS;
3343 return 0;
3344 }
3345
3346 #ifdef CONFIG_DRBD_FAULT_INJECTION
3347 /* Fault insertion support including random number generator shamelessly
3348 * stolen from kernel/rcutorture.c */
3349 struct fault_random_state {
3350 unsigned long state;
3351 unsigned long count;
3352 };
3353
3354 #define FAULT_RANDOM_MULT 39916801 /* prime */
3355 #define FAULT_RANDOM_ADD 479001701 /* prime */
3356 #define FAULT_RANDOM_REFRESH 10000
3357
3358 /*
3359 * Crude but fast random-number generator. Uses a linear congruential
3360 * generator, with occasional help from get_random_bytes().
3361 */
3362 static unsigned long
3363 _drbd_fault_random(struct fault_random_state *rsp)
3364 {
3365 long refresh;
3366
3367 if (!rsp->count--) {
3368 get_random_bytes(&refresh, sizeof(refresh));
3369 rsp->state += refresh;
3370 rsp->count = FAULT_RANDOM_REFRESH;
3371 }
3372 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3373 return swahw32(rsp->state);
3374 }
3375
3376 static char *
3377 _drbd_fault_str(unsigned int type) {
3378 static char *_faults[] = {
3379 [DRBD_FAULT_MD_WR] = "Meta-data write",
3380 [DRBD_FAULT_MD_RD] = "Meta-data read",
3381 [DRBD_FAULT_RS_WR] = "Resync write",
3382 [DRBD_FAULT_RS_RD] = "Resync read",
3383 [DRBD_FAULT_DT_WR] = "Data write",
3384 [DRBD_FAULT_DT_RD] = "Data read",
3385 [DRBD_FAULT_DT_RA] = "Data read ahead",
3386 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3387 [DRBD_FAULT_AL_EE] = "EE allocation",
3388 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3389 };
3390
3391 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3392 }
3393
3394 unsigned int
3395 _drbd_insert_fault(struct drbd_conf *mdev, unsigned int type)
3396 {
3397 static struct fault_random_state rrs = {0, 0};
3398
3399 unsigned int ret = (
3400 (fault_devs == 0 ||
3401 ((1 << mdev_to_minor(mdev)) & fault_devs) != 0) &&
3402 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3403
3404 if (ret) {
3405 fault_count++;
3406
3407 if (__ratelimit(&drbd_ratelimit_state))
3408 dev_warn(DEV, "***Simulating %s failure\n",
3409 _drbd_fault_str(type));
3410 }
3411
3412 return ret;
3413 }
3414 #endif
3415
3416 const char *drbd_buildtag(void)
3417 {
3418 /* DRBD built from external sources has here a reference to the
3419 git hash of the source code. */
3420
3421 static char buildtag[38] = "\0uilt-in";
3422
3423 if (buildtag[0] == 0) {
3424 #ifdef CONFIG_MODULES
3425 if (THIS_MODULE != NULL)
3426 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3427 else
3428 #endif
3429 buildtag[0] = 'b';
3430 }
3431
3432 return buildtag;
3433 }
3434
3435 module_init(drbd_init)
3436 module_exit(drbd_cleanup)
3437
3438 EXPORT_SYMBOL(drbd_conn_str);
3439 EXPORT_SYMBOL(drbd_role_str);
3440 EXPORT_SYMBOL(drbd_disk_str);
3441 EXPORT_SYMBOL(drbd_set_st_err_str);
This page took 0.204327 seconds and 5 git commands to generate.