drbd: drbd_send_drequest(): Return 0 upon success and an error code otherwise
[deliverable/linux.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
56
57 #include "drbd_vli.h"
58
59 static DEFINE_MUTEX(drbd_main_mutex);
60 int drbdd_init(struct drbd_thread *);
61 int drbd_worker(struct drbd_thread *);
62 int drbd_asender(struct drbd_thread *);
63
64 int drbd_init(void);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static int drbd_release(struct gendisk *gd, fmode_t mode);
67 static int w_md_sync(struct drbd_work *w, int unused);
68 static void md_sync_timer_fn(unsigned long data);
69 static int w_bitmap_io(struct drbd_work *w, int unused);
70 static int w_go_diskless(struct drbd_work *w, int unused);
71
72 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
73 "Lars Ellenberg <lars@linbit.com>");
74 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
75 MODULE_VERSION(REL_VERSION);
76 MODULE_LICENSE("GPL");
77 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
78 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
79 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
80
81 #include <linux/moduleparam.h>
82 /* allow_open_on_secondary */
83 MODULE_PARM_DESC(allow_oos, "DONT USE!");
84 /* thanks to these macros, if compiled into the kernel (not-module),
85 * this becomes the boot parameter drbd.minor_count */
86 module_param(minor_count, uint, 0444);
87 module_param(disable_sendpage, bool, 0644);
88 module_param(allow_oos, bool, 0);
89 module_param(proc_details, int, 0644);
90
91 #ifdef CONFIG_DRBD_FAULT_INJECTION
92 int enable_faults;
93 int fault_rate;
94 static int fault_count;
95 int fault_devs;
96 /* bitmap of enabled faults */
97 module_param(enable_faults, int, 0664);
98 /* fault rate % value - applies to all enabled faults */
99 module_param(fault_rate, int, 0664);
100 /* count of faults inserted */
101 module_param(fault_count, int, 0664);
102 /* bitmap of devices to insert faults on */
103 module_param(fault_devs, int, 0644);
104 #endif
105
106 /* module parameter, defined */
107 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
108 int disable_sendpage;
109 int allow_oos;
110 int proc_details; /* Detail level in proc drbd*/
111
112 /* Module parameter for setting the user mode helper program
113 * to run. Default is /sbin/drbdadm */
114 char usermode_helper[80] = "/sbin/drbdadm";
115
116 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
117
118 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
119 * as member "struct gendisk *vdisk;"
120 */
121 struct idr minors;
122 struct list_head drbd_tconns; /* list of struct drbd_tconn */
123 DEFINE_MUTEX(drbd_cfg_mutex);
124
125 struct kmem_cache *drbd_request_cache;
126 struct kmem_cache *drbd_ee_cache; /* peer requests */
127 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
128 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
129 mempool_t *drbd_request_mempool;
130 mempool_t *drbd_ee_mempool;
131 mempool_t *drbd_md_io_page_pool;
132 struct bio_set *drbd_md_io_bio_set;
133
134 /* I do not use a standard mempool, because:
135 1) I want to hand out the pre-allocated objects first.
136 2) I want to be able to interrupt sleeping allocation with a signal.
137 Note: This is a single linked list, the next pointer is the private
138 member of struct page.
139 */
140 struct page *drbd_pp_pool;
141 spinlock_t drbd_pp_lock;
142 int drbd_pp_vacant;
143 wait_queue_head_t drbd_pp_wait;
144
145 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
146
147 static const struct block_device_operations drbd_ops = {
148 .owner = THIS_MODULE,
149 .open = drbd_open,
150 .release = drbd_release,
151 };
152
153 static void bio_destructor_drbd(struct bio *bio)
154 {
155 bio_free(bio, drbd_md_io_bio_set);
156 }
157
158 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
159 {
160 struct bio *bio;
161
162 if (!drbd_md_io_bio_set)
163 return bio_alloc(gfp_mask, 1);
164
165 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
166 if (!bio)
167 return NULL;
168 bio->bi_destructor = bio_destructor_drbd;
169 return bio;
170 }
171
172 #ifdef __CHECKER__
173 /* When checking with sparse, and this is an inline function, sparse will
174 give tons of false positives. When this is a real functions sparse works.
175 */
176 int _get_ldev_if_state(struct drbd_conf *mdev, enum drbd_disk_state mins)
177 {
178 int io_allowed;
179
180 atomic_inc(&mdev->local_cnt);
181 io_allowed = (mdev->state.disk >= mins);
182 if (!io_allowed) {
183 if (atomic_dec_and_test(&mdev->local_cnt))
184 wake_up(&mdev->misc_wait);
185 }
186 return io_allowed;
187 }
188
189 #endif
190
191 /**
192 * DOC: The transfer log
193 *
194 * The transfer log is a single linked list of &struct drbd_tl_epoch objects.
195 * mdev->tconn->newest_tle points to the head, mdev->tconn->oldest_tle points to the tail
196 * of the list. There is always at least one &struct drbd_tl_epoch object.
197 *
198 * Each &struct drbd_tl_epoch has a circular double linked list of requests
199 * attached.
200 */
201 static int tl_init(struct drbd_tconn *tconn)
202 {
203 struct drbd_tl_epoch *b;
204
205 /* during device minor initialization, we may well use GFP_KERNEL */
206 b = kmalloc(sizeof(struct drbd_tl_epoch), GFP_KERNEL);
207 if (!b)
208 return 0;
209 INIT_LIST_HEAD(&b->requests);
210 INIT_LIST_HEAD(&b->w.list);
211 b->next = NULL;
212 b->br_number = 4711;
213 b->n_writes = 0;
214 b->w.cb = NULL; /* if this is != NULL, we need to dec_ap_pending in tl_clear */
215
216 tconn->oldest_tle = b;
217 tconn->newest_tle = b;
218 INIT_LIST_HEAD(&tconn->out_of_sequence_requests);
219
220 return 1;
221 }
222
223 static void tl_cleanup(struct drbd_tconn *tconn)
224 {
225 if (tconn->oldest_tle != tconn->newest_tle)
226 conn_err(tconn, "ASSERT FAILED: oldest_tle == newest_tle\n");
227 if (!list_empty(&tconn->out_of_sequence_requests))
228 conn_err(tconn, "ASSERT FAILED: list_empty(out_of_sequence_requests)\n");
229 kfree(tconn->oldest_tle);
230 tconn->oldest_tle = NULL;
231 kfree(tconn->unused_spare_tle);
232 tconn->unused_spare_tle = NULL;
233 }
234
235 /**
236 * _tl_add_barrier() - Adds a barrier to the transfer log
237 * @mdev: DRBD device.
238 * @new: Barrier to be added before the current head of the TL.
239 *
240 * The caller must hold the req_lock.
241 */
242 void _tl_add_barrier(struct drbd_tconn *tconn, struct drbd_tl_epoch *new)
243 {
244 struct drbd_tl_epoch *newest_before;
245
246 INIT_LIST_HEAD(&new->requests);
247 INIT_LIST_HEAD(&new->w.list);
248 new->w.cb = NULL; /* if this is != NULL, we need to dec_ap_pending in tl_clear */
249 new->next = NULL;
250 new->n_writes = 0;
251
252 newest_before = tconn->newest_tle;
253 /* never send a barrier number == 0, because that is special-cased
254 * when using TCQ for our write ordering code */
255 new->br_number = (newest_before->br_number+1) ?: 1;
256 if (tconn->newest_tle != new) {
257 tconn->newest_tle->next = new;
258 tconn->newest_tle = new;
259 }
260 }
261
262 /**
263 * tl_release() - Free or recycle the oldest &struct drbd_tl_epoch object of the TL
264 * @mdev: DRBD device.
265 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
266 * @set_size: Expected number of requests before that barrier.
267 *
268 * In case the passed barrier_nr or set_size does not match the oldest
269 * &struct drbd_tl_epoch objects this function will cause a termination
270 * of the connection.
271 */
272 void tl_release(struct drbd_tconn *tconn, unsigned int barrier_nr,
273 unsigned int set_size)
274 {
275 struct drbd_conf *mdev;
276 struct drbd_tl_epoch *b, *nob; /* next old barrier */
277 struct list_head *le, *tle;
278 struct drbd_request *r;
279
280 spin_lock_irq(&tconn->req_lock);
281
282 b = tconn->oldest_tle;
283
284 /* first some paranoia code */
285 if (b == NULL) {
286 conn_err(tconn, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
287 barrier_nr);
288 goto bail;
289 }
290 if (b->br_number != barrier_nr) {
291 conn_err(tconn, "BAD! BarrierAck #%u received, expected #%u!\n",
292 barrier_nr, b->br_number);
293 goto bail;
294 }
295 if (b->n_writes != set_size) {
296 conn_err(tconn, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
297 barrier_nr, set_size, b->n_writes);
298 goto bail;
299 }
300
301 /* Clean up list of requests processed during current epoch */
302 list_for_each_safe(le, tle, &b->requests) {
303 r = list_entry(le, struct drbd_request, tl_requests);
304 _req_mod(r, BARRIER_ACKED);
305 }
306 /* There could be requests on the list waiting for completion
307 of the write to the local disk. To avoid corruptions of
308 slab's data structures we have to remove the lists head.
309
310 Also there could have been a barrier ack out of sequence, overtaking
311 the write acks - which would be a bug and violating write ordering.
312 To not deadlock in case we lose connection while such requests are
313 still pending, we need some way to find them for the
314 _req_mode(CONNECTION_LOST_WHILE_PENDING).
315
316 These have been list_move'd to the out_of_sequence_requests list in
317 _req_mod(, BARRIER_ACKED) above.
318 */
319 list_del_init(&b->requests);
320 mdev = b->w.mdev;
321
322 nob = b->next;
323 if (test_and_clear_bit(CREATE_BARRIER, &mdev->flags)) {
324 _tl_add_barrier(tconn, b);
325 if (nob)
326 tconn->oldest_tle = nob;
327 /* if nob == NULL b was the only barrier, and becomes the new
328 barrier. Therefore tconn->oldest_tle points already to b */
329 } else {
330 D_ASSERT(nob != NULL);
331 tconn->oldest_tle = nob;
332 kfree(b);
333 }
334
335 spin_unlock_irq(&tconn->req_lock);
336 dec_ap_pending(mdev);
337
338 return;
339
340 bail:
341 spin_unlock_irq(&tconn->req_lock);
342 conn_request_state(tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
343 }
344
345
346 /**
347 * _tl_restart() - Walks the transfer log, and applies an action to all requests
348 * @mdev: DRBD device.
349 * @what: The action/event to perform with all request objects
350 *
351 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
352 * RESTART_FROZEN_DISK_IO.
353 */
354 void _tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
355 {
356 struct drbd_tl_epoch *b, *tmp, **pn;
357 struct list_head *le, *tle, carry_reads;
358 struct drbd_request *req;
359 int rv, n_writes, n_reads;
360
361 b = tconn->oldest_tle;
362 pn = &tconn->oldest_tle;
363 while (b) {
364 n_writes = 0;
365 n_reads = 0;
366 INIT_LIST_HEAD(&carry_reads);
367 list_for_each_safe(le, tle, &b->requests) {
368 req = list_entry(le, struct drbd_request, tl_requests);
369 rv = _req_mod(req, what);
370
371 n_writes += (rv & MR_WRITE) >> MR_WRITE_SHIFT;
372 n_reads += (rv & MR_READ) >> MR_READ_SHIFT;
373 }
374 tmp = b->next;
375
376 if (n_writes) {
377 if (what == RESEND) {
378 b->n_writes = n_writes;
379 if (b->w.cb == NULL) {
380 b->w.cb = w_send_barrier;
381 inc_ap_pending(b->w.mdev);
382 set_bit(CREATE_BARRIER, &b->w.mdev->flags);
383 }
384
385 drbd_queue_work(&tconn->data.work, &b->w);
386 }
387 pn = &b->next;
388 } else {
389 if (n_reads)
390 list_add(&carry_reads, &b->requests);
391 /* there could still be requests on that ring list,
392 * in case local io is still pending */
393 list_del(&b->requests);
394
395 /* dec_ap_pending corresponding to queue_barrier.
396 * the newest barrier may not have been queued yet,
397 * in which case w.cb is still NULL. */
398 if (b->w.cb != NULL)
399 dec_ap_pending(b->w.mdev);
400
401 if (b == tconn->newest_tle) {
402 /* recycle, but reinit! */
403 if (tmp != NULL)
404 conn_err(tconn, "ASSERT FAILED tmp == NULL");
405 INIT_LIST_HEAD(&b->requests);
406 list_splice(&carry_reads, &b->requests);
407 INIT_LIST_HEAD(&b->w.list);
408 b->w.cb = NULL;
409 b->br_number = net_random();
410 b->n_writes = 0;
411
412 *pn = b;
413 break;
414 }
415 *pn = tmp;
416 kfree(b);
417 }
418 b = tmp;
419 list_splice(&carry_reads, &b->requests);
420 }
421 }
422
423
424 /**
425 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
426 * @mdev: DRBD device.
427 *
428 * This is called after the connection to the peer was lost. The storage covered
429 * by the requests on the transfer gets marked as our of sync. Called from the
430 * receiver thread and the worker thread.
431 */
432 void tl_clear(struct drbd_tconn *tconn)
433 {
434 struct drbd_conf *mdev;
435 struct list_head *le, *tle;
436 struct drbd_request *r;
437 int vnr;
438
439 spin_lock_irq(&tconn->req_lock);
440
441 _tl_restart(tconn, CONNECTION_LOST_WHILE_PENDING);
442
443 /* we expect this list to be empty. */
444 if (!list_empty(&tconn->out_of_sequence_requests))
445 conn_err(tconn, "ASSERT FAILED list_empty(&out_of_sequence_requests)\n");
446
447 /* but just in case, clean it up anyways! */
448 list_for_each_safe(le, tle, &tconn->out_of_sequence_requests) {
449 r = list_entry(le, struct drbd_request, tl_requests);
450 /* It would be nice to complete outside of spinlock.
451 * But this is easier for now. */
452 _req_mod(r, CONNECTION_LOST_WHILE_PENDING);
453 }
454
455 /* ensure bit indicating barrier is required is clear */
456 idr_for_each_entry(&tconn->volumes, mdev, vnr)
457 clear_bit(CREATE_BARRIER, &mdev->flags);
458
459 spin_unlock_irq(&tconn->req_lock);
460 }
461
462 void tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
463 {
464 spin_lock_irq(&tconn->req_lock);
465 _tl_restart(tconn, what);
466 spin_unlock_irq(&tconn->req_lock);
467 }
468
469 static int drbd_thread_setup(void *arg)
470 {
471 struct drbd_thread *thi = (struct drbd_thread *) arg;
472 struct drbd_tconn *tconn = thi->tconn;
473 unsigned long flags;
474 int retval;
475
476 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
477 thi->name[0], thi->tconn->name);
478
479 restart:
480 retval = thi->function(thi);
481
482 spin_lock_irqsave(&thi->t_lock, flags);
483
484 /* if the receiver has been "EXITING", the last thing it did
485 * was set the conn state to "StandAlone",
486 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
487 * and receiver thread will be "started".
488 * drbd_thread_start needs to set "RESTARTING" in that case.
489 * t_state check and assignment needs to be within the same spinlock,
490 * so either thread_start sees EXITING, and can remap to RESTARTING,
491 * or thread_start see NONE, and can proceed as normal.
492 */
493
494 if (thi->t_state == RESTARTING) {
495 conn_info(tconn, "Restarting %s thread\n", thi->name);
496 thi->t_state = RUNNING;
497 spin_unlock_irqrestore(&thi->t_lock, flags);
498 goto restart;
499 }
500
501 thi->task = NULL;
502 thi->t_state = NONE;
503 smp_mb();
504 complete(&thi->stop);
505 spin_unlock_irqrestore(&thi->t_lock, flags);
506
507 conn_info(tconn, "Terminating %s\n", current->comm);
508
509 /* Release mod reference taken when thread was started */
510 module_put(THIS_MODULE);
511 return retval;
512 }
513
514 static void drbd_thread_init(struct drbd_tconn *tconn, struct drbd_thread *thi,
515 int (*func) (struct drbd_thread *), char *name)
516 {
517 spin_lock_init(&thi->t_lock);
518 thi->task = NULL;
519 thi->t_state = NONE;
520 thi->function = func;
521 thi->tconn = tconn;
522 strncpy(thi->name, name, ARRAY_SIZE(thi->name));
523 }
524
525 int drbd_thread_start(struct drbd_thread *thi)
526 {
527 struct drbd_tconn *tconn = thi->tconn;
528 struct task_struct *nt;
529 unsigned long flags;
530
531 /* is used from state engine doing drbd_thread_stop_nowait,
532 * while holding the req lock irqsave */
533 spin_lock_irqsave(&thi->t_lock, flags);
534
535 switch (thi->t_state) {
536 case NONE:
537 conn_info(tconn, "Starting %s thread (from %s [%d])\n",
538 thi->name, current->comm, current->pid);
539
540 /* Get ref on module for thread - this is released when thread exits */
541 if (!try_module_get(THIS_MODULE)) {
542 conn_err(tconn, "Failed to get module reference in drbd_thread_start\n");
543 spin_unlock_irqrestore(&thi->t_lock, flags);
544 return false;
545 }
546
547 init_completion(&thi->stop);
548 thi->reset_cpu_mask = 1;
549 thi->t_state = RUNNING;
550 spin_unlock_irqrestore(&thi->t_lock, flags);
551 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
552
553 nt = kthread_create(drbd_thread_setup, (void *) thi,
554 "drbd_%c_%s", thi->name[0], thi->tconn->name);
555
556 if (IS_ERR(nt)) {
557 conn_err(tconn, "Couldn't start thread\n");
558
559 module_put(THIS_MODULE);
560 return false;
561 }
562 spin_lock_irqsave(&thi->t_lock, flags);
563 thi->task = nt;
564 thi->t_state = RUNNING;
565 spin_unlock_irqrestore(&thi->t_lock, flags);
566 wake_up_process(nt);
567 break;
568 case EXITING:
569 thi->t_state = RESTARTING;
570 conn_info(tconn, "Restarting %s thread (from %s [%d])\n",
571 thi->name, current->comm, current->pid);
572 /* fall through */
573 case RUNNING:
574 case RESTARTING:
575 default:
576 spin_unlock_irqrestore(&thi->t_lock, flags);
577 break;
578 }
579
580 return true;
581 }
582
583
584 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
585 {
586 unsigned long flags;
587
588 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
589
590 /* may be called from state engine, holding the req lock irqsave */
591 spin_lock_irqsave(&thi->t_lock, flags);
592
593 if (thi->t_state == NONE) {
594 spin_unlock_irqrestore(&thi->t_lock, flags);
595 if (restart)
596 drbd_thread_start(thi);
597 return;
598 }
599
600 if (thi->t_state != ns) {
601 if (thi->task == NULL) {
602 spin_unlock_irqrestore(&thi->t_lock, flags);
603 return;
604 }
605
606 thi->t_state = ns;
607 smp_mb();
608 init_completion(&thi->stop);
609 if (thi->task != current)
610 force_sig(DRBD_SIGKILL, thi->task);
611 }
612
613 spin_unlock_irqrestore(&thi->t_lock, flags);
614
615 if (wait)
616 wait_for_completion(&thi->stop);
617 }
618
619 static struct drbd_thread *drbd_task_to_thread(struct drbd_tconn *tconn, struct task_struct *task)
620 {
621 struct drbd_thread *thi =
622 task == tconn->receiver.task ? &tconn->receiver :
623 task == tconn->asender.task ? &tconn->asender :
624 task == tconn->worker.task ? &tconn->worker : NULL;
625
626 return thi;
627 }
628
629 char *drbd_task_to_thread_name(struct drbd_tconn *tconn, struct task_struct *task)
630 {
631 struct drbd_thread *thi = drbd_task_to_thread(tconn, task);
632 return thi ? thi->name : task->comm;
633 }
634
635 int conn_lowest_minor(struct drbd_tconn *tconn)
636 {
637 int vnr = 0;
638 struct drbd_conf *mdev;
639
640 mdev = idr_get_next(&tconn->volumes, &vnr);
641 if (!mdev)
642 return -1;
643 return mdev_to_minor(mdev);
644 }
645
646 #ifdef CONFIG_SMP
647 /**
648 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
649 * @mdev: DRBD device.
650 *
651 * Forces all threads of a device onto the same CPU. This is beneficial for
652 * DRBD's performance. May be overwritten by user's configuration.
653 */
654 void drbd_calc_cpu_mask(struct drbd_tconn *tconn)
655 {
656 int ord, cpu;
657
658 /* user override. */
659 if (cpumask_weight(tconn->cpu_mask))
660 return;
661
662 ord = conn_lowest_minor(tconn) % cpumask_weight(cpu_online_mask);
663 for_each_online_cpu(cpu) {
664 if (ord-- == 0) {
665 cpumask_set_cpu(cpu, tconn->cpu_mask);
666 return;
667 }
668 }
669 /* should not be reached */
670 cpumask_setall(tconn->cpu_mask);
671 }
672
673 /**
674 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
675 * @mdev: DRBD device.
676 * @thi: drbd_thread object
677 *
678 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
679 * prematurely.
680 */
681 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
682 {
683 struct task_struct *p = current;
684
685 if (!thi->reset_cpu_mask)
686 return;
687 thi->reset_cpu_mask = 0;
688 set_cpus_allowed_ptr(p, thi->tconn->cpu_mask);
689 }
690 #endif
691
692 static void prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
693 {
694 h->magic = cpu_to_be32(DRBD_MAGIC);
695 h->command = cpu_to_be16(cmd);
696 h->length = cpu_to_be16(size);
697 }
698
699 static void prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
700 {
701 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
702 h->command = cpu_to_be16(cmd);
703 h->length = cpu_to_be32(size);
704 }
705
706 static void _prepare_header(struct drbd_tconn *tconn, int vnr, struct p_header *h,
707 enum drbd_packet cmd, int size)
708 {
709 if (tconn->agreed_pro_version >= 100 || size > DRBD_MAX_SIZE_H80_PACKET)
710 prepare_header95(&h->h95, cmd, size);
711 else
712 prepare_header80(&h->h80, cmd, size);
713 }
714
715 static void prepare_header(struct drbd_conf *mdev, struct p_header *h,
716 enum drbd_packet cmd, int size)
717 {
718 _prepare_header(mdev->tconn, mdev->vnr, h, cmd, size);
719 }
720
721 /* the appropriate socket mutex must be held already */
722 int _conn_send_cmd(struct drbd_tconn *tconn, int vnr, struct socket *sock,
723 enum drbd_packet cmd, struct p_header *h, size_t size,
724 unsigned msg_flags)
725 {
726 int err;
727
728 _prepare_header(tconn, vnr, h, cmd, size - sizeof(struct p_header));
729 err = drbd_send_all(tconn, sock, h, size, msg_flags);
730 if (err && !signal_pending(current))
731 conn_warn(tconn, "short send %s size=%d\n",
732 cmdname(cmd), (int)size);
733 return err;
734 }
735
736 /* don't pass the socket. we may only look at it
737 * when we hold the appropriate socket mutex.
738 */
739 int conn_send_cmd(struct drbd_tconn *tconn, int vnr, struct drbd_socket *sock,
740 enum drbd_packet cmd, struct p_header *h, size_t size)
741 {
742 int err = -EIO;
743
744 mutex_lock(&sock->mutex);
745 if (sock->socket)
746 err = _conn_send_cmd(tconn, vnr, sock->socket, cmd, h, size, 0);
747 mutex_unlock(&sock->mutex);
748 return err;
749 }
750
751 int conn_send_cmd2(struct drbd_tconn *tconn, enum drbd_packet cmd, char *data,
752 size_t size)
753 {
754 struct p_header80 h;
755 int err;
756
757 prepare_header80(&h, cmd, size);
758 err = drbd_get_data_sock(tconn);
759 if (!err) {
760 err = drbd_send_all(tconn, tconn->data.socket, &h, sizeof(h), 0);
761 if (!err)
762 err = drbd_send_all(tconn, tconn->data.socket, data, size, 0);
763 drbd_put_data_sock(tconn);
764 }
765 return err;
766 }
767
768 int drbd_send_sync_param(struct drbd_conf *mdev)
769 {
770 struct p_rs_param_95 *p;
771 struct socket *sock;
772 int size, err;
773 const int apv = mdev->tconn->agreed_pro_version;
774
775 size = apv <= 87 ? sizeof(struct p_rs_param)
776 : apv == 88 ? sizeof(struct p_rs_param)
777 + strlen(mdev->tconn->net_conf->verify_alg) + 1
778 : apv <= 94 ? sizeof(struct p_rs_param_89)
779 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
780
781 /* used from admin command context and receiver/worker context.
782 * to avoid kmalloc, grab the socket right here,
783 * then use the pre-allocated sbuf there */
784 mutex_lock(&mdev->tconn->data.mutex);
785 sock = mdev->tconn->data.socket;
786
787 if (likely(sock != NULL)) {
788 enum drbd_packet cmd =
789 apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
790
791 p = &mdev->tconn->data.sbuf.rs_param_95;
792
793 /* initialize verify_alg and csums_alg */
794 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
795
796 if (get_ldev(mdev)) {
797 p->rate = cpu_to_be32(mdev->ldev->dc.resync_rate);
798 p->c_plan_ahead = cpu_to_be32(mdev->ldev->dc.c_plan_ahead);
799 p->c_delay_target = cpu_to_be32(mdev->ldev->dc.c_delay_target);
800 p->c_fill_target = cpu_to_be32(mdev->ldev->dc.c_fill_target);
801 p->c_max_rate = cpu_to_be32(mdev->ldev->dc.c_max_rate);
802 put_ldev(mdev);
803 } else {
804 p->rate = cpu_to_be32(DRBD_RATE_DEF);
805 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
806 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
807 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
808 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
809 }
810
811 if (apv >= 88)
812 strcpy(p->verify_alg, mdev->tconn->net_conf->verify_alg);
813 if (apv >= 89)
814 strcpy(p->csums_alg, mdev->tconn->net_conf->csums_alg);
815
816 err = _drbd_send_cmd(mdev, sock, cmd, &p->head, size, 0);
817 } else
818 err = -EIO;
819
820 mutex_unlock(&mdev->tconn->data.mutex);
821
822 return err;
823 }
824
825 int drbd_send_protocol(struct drbd_tconn *tconn)
826 {
827 struct p_protocol *p;
828 int size, cf, err;
829
830 size = sizeof(struct p_protocol);
831
832 if (tconn->agreed_pro_version >= 87)
833 size += strlen(tconn->net_conf->integrity_alg) + 1;
834
835 /* we must not recurse into our own queue,
836 * as that is blocked during handshake */
837 p = kmalloc(size, GFP_NOIO);
838 if (p == NULL)
839 return -ENOMEM;
840
841 p->protocol = cpu_to_be32(tconn->net_conf->wire_protocol);
842 p->after_sb_0p = cpu_to_be32(tconn->net_conf->after_sb_0p);
843 p->after_sb_1p = cpu_to_be32(tconn->net_conf->after_sb_1p);
844 p->after_sb_2p = cpu_to_be32(tconn->net_conf->after_sb_2p);
845 p->two_primaries = cpu_to_be32(tconn->net_conf->two_primaries);
846
847 cf = 0;
848 if (tconn->net_conf->want_lose)
849 cf |= CF_WANT_LOSE;
850 if (tconn->net_conf->dry_run) {
851 if (tconn->agreed_pro_version >= 92)
852 cf |= CF_DRY_RUN;
853 else {
854 conn_err(tconn, "--dry-run is not supported by peer");
855 kfree(p);
856 return -EOPNOTSUPP;
857 }
858 }
859 p->conn_flags = cpu_to_be32(cf);
860
861 if (tconn->agreed_pro_version >= 87)
862 strcpy(p->integrity_alg, tconn->net_conf->integrity_alg);
863
864 err = conn_send_cmd2(tconn, P_PROTOCOL, p->head.payload, size - sizeof(struct p_header));
865 kfree(p);
866 return err;
867 }
868
869 int _drbd_send_uuids(struct drbd_conf *mdev, u64 uuid_flags)
870 {
871 struct p_uuids p;
872 int i;
873
874 if (!get_ldev_if_state(mdev, D_NEGOTIATING))
875 return 0;
876
877 for (i = UI_CURRENT; i < UI_SIZE; i++)
878 p.uuid[i] = mdev->ldev ? cpu_to_be64(mdev->ldev->md.uuid[i]) : 0;
879
880 mdev->comm_bm_set = drbd_bm_total_weight(mdev);
881 p.uuid[UI_SIZE] = cpu_to_be64(mdev->comm_bm_set);
882 uuid_flags |= mdev->tconn->net_conf->want_lose ? 1 : 0;
883 uuid_flags |= test_bit(CRASHED_PRIMARY, &mdev->flags) ? 2 : 0;
884 uuid_flags |= mdev->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
885 p.uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
886
887 put_ldev(mdev);
888
889 return drbd_send_cmd(mdev, &mdev->tconn->data, P_UUIDS, &p.head, sizeof(p));
890 }
891
892 int drbd_send_uuids(struct drbd_conf *mdev)
893 {
894 return _drbd_send_uuids(mdev, 0);
895 }
896
897 int drbd_send_uuids_skip_initial_sync(struct drbd_conf *mdev)
898 {
899 return _drbd_send_uuids(mdev, 8);
900 }
901
902 void drbd_print_uuids(struct drbd_conf *mdev, const char *text)
903 {
904 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
905 u64 *uuid = mdev->ldev->md.uuid;
906 dev_info(DEV, "%s %016llX:%016llX:%016llX:%016llX\n",
907 text,
908 (unsigned long long)uuid[UI_CURRENT],
909 (unsigned long long)uuid[UI_BITMAP],
910 (unsigned long long)uuid[UI_HISTORY_START],
911 (unsigned long long)uuid[UI_HISTORY_END]);
912 put_ldev(mdev);
913 } else {
914 dev_info(DEV, "%s effective data uuid: %016llX\n",
915 text,
916 (unsigned long long)mdev->ed_uuid);
917 }
918 }
919
920 void drbd_gen_and_send_sync_uuid(struct drbd_conf *mdev)
921 {
922 struct p_rs_uuid p;
923 u64 uuid;
924
925 D_ASSERT(mdev->state.disk == D_UP_TO_DATE);
926
927 uuid = mdev->ldev->md.uuid[UI_BITMAP] + UUID_NEW_BM_OFFSET;
928 drbd_uuid_set(mdev, UI_BITMAP, uuid);
929 drbd_print_uuids(mdev, "updated sync UUID");
930 drbd_md_sync(mdev);
931 p.uuid = cpu_to_be64(uuid);
932
933 drbd_send_cmd(mdev, &mdev->tconn->data, P_SYNC_UUID, &p.head, sizeof(p));
934 }
935
936 int drbd_send_sizes(struct drbd_conf *mdev, int trigger_reply, enum dds_flags flags)
937 {
938 struct p_sizes p;
939 sector_t d_size, u_size;
940 int q_order_type, max_bio_size;
941
942 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
943 D_ASSERT(mdev->ldev->backing_bdev);
944 d_size = drbd_get_max_capacity(mdev->ldev);
945 u_size = mdev->ldev->dc.disk_size;
946 q_order_type = drbd_queue_order_type(mdev);
947 max_bio_size = queue_max_hw_sectors(mdev->ldev->backing_bdev->bd_disk->queue) << 9;
948 max_bio_size = min_t(int, max_bio_size, DRBD_MAX_BIO_SIZE);
949 put_ldev(mdev);
950 } else {
951 d_size = 0;
952 u_size = 0;
953 q_order_type = QUEUE_ORDERED_NONE;
954 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
955 }
956
957 p.d_size = cpu_to_be64(d_size);
958 p.u_size = cpu_to_be64(u_size);
959 p.c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(mdev->this_bdev));
960 p.max_bio_size = cpu_to_be32(max_bio_size);
961 p.queue_order_type = cpu_to_be16(q_order_type);
962 p.dds_flags = cpu_to_be16(flags);
963
964 return drbd_send_cmd(mdev, &mdev->tconn->data, P_SIZES, &p.head, sizeof(p));
965 }
966
967 /**
968 * drbd_send_state() - Sends the drbd state to the peer
969 * @mdev: DRBD device.
970 */
971 int drbd_send_state(struct drbd_conf *mdev)
972 {
973 struct socket *sock;
974 struct p_state p;
975 int err = -EIO;
976
977 mutex_lock(&mdev->tconn->data.mutex);
978
979 p.state = cpu_to_be32(mdev->state.i); /* Within the send mutex */
980 sock = mdev->tconn->data.socket;
981
982 if (likely(sock != NULL))
983 err = _drbd_send_cmd(mdev, sock, P_STATE, &p.head, sizeof(p), 0);
984
985 mutex_unlock(&mdev->tconn->data.mutex);
986
987 return err;
988 }
989
990 int _conn_send_state_req(struct drbd_tconn *tconn, int vnr, enum drbd_packet cmd,
991 union drbd_state mask, union drbd_state val)
992 {
993 struct p_req_state p;
994
995 p.mask = cpu_to_be32(mask.i);
996 p.val = cpu_to_be32(val.i);
997
998 return conn_send_cmd(tconn, vnr, &tconn->data, cmd, &p.head, sizeof(p));
999 }
1000
1001 void drbd_send_sr_reply(struct drbd_conf *mdev, enum drbd_state_rv retcode)
1002 {
1003 struct p_req_state_reply p;
1004
1005 p.retcode = cpu_to_be32(retcode);
1006
1007 drbd_send_cmd(mdev, &mdev->tconn->meta, P_STATE_CHG_REPLY, &p.head, sizeof(p));
1008 }
1009
1010 int conn_send_sr_reply(struct drbd_tconn *tconn, enum drbd_state_rv retcode)
1011 {
1012 struct p_req_state_reply p;
1013 enum drbd_packet cmd = tconn->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1014
1015 p.retcode = cpu_to_be32(retcode);
1016
1017 return !conn_send_cmd(tconn, 0, &tconn->meta, cmd, &p.head, sizeof(p));
1018 }
1019
1020 int fill_bitmap_rle_bits(struct drbd_conf *mdev,
1021 struct p_compressed_bm *p,
1022 struct bm_xfer_ctx *c)
1023 {
1024 struct bitstream bs;
1025 unsigned long plain_bits;
1026 unsigned long tmp;
1027 unsigned long rl;
1028 unsigned len;
1029 unsigned toggle;
1030 int bits;
1031
1032 /* may we use this feature? */
1033 if ((mdev->tconn->net_conf->use_rle == 0) ||
1034 (mdev->tconn->agreed_pro_version < 90))
1035 return 0;
1036
1037 if (c->bit_offset >= c->bm_bits)
1038 return 0; /* nothing to do. */
1039
1040 /* use at most thus many bytes */
1041 bitstream_init(&bs, p->code, BM_PACKET_VLI_BYTES_MAX, 0);
1042 memset(p->code, 0, BM_PACKET_VLI_BYTES_MAX);
1043 /* plain bits covered in this code string */
1044 plain_bits = 0;
1045
1046 /* p->encoding & 0x80 stores whether the first run length is set.
1047 * bit offset is implicit.
1048 * start with toggle == 2 to be able to tell the first iteration */
1049 toggle = 2;
1050
1051 /* see how much plain bits we can stuff into one packet
1052 * using RLE and VLI. */
1053 do {
1054 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(mdev, c->bit_offset)
1055 : _drbd_bm_find_next(mdev, c->bit_offset);
1056 if (tmp == -1UL)
1057 tmp = c->bm_bits;
1058 rl = tmp - c->bit_offset;
1059
1060 if (toggle == 2) { /* first iteration */
1061 if (rl == 0) {
1062 /* the first checked bit was set,
1063 * store start value, */
1064 DCBP_set_start(p, 1);
1065 /* but skip encoding of zero run length */
1066 toggle = !toggle;
1067 continue;
1068 }
1069 DCBP_set_start(p, 0);
1070 }
1071
1072 /* paranoia: catch zero runlength.
1073 * can only happen if bitmap is modified while we scan it. */
1074 if (rl == 0) {
1075 dev_err(DEV, "unexpected zero runlength while encoding bitmap "
1076 "t:%u bo:%lu\n", toggle, c->bit_offset);
1077 return -1;
1078 }
1079
1080 bits = vli_encode_bits(&bs, rl);
1081 if (bits == -ENOBUFS) /* buffer full */
1082 break;
1083 if (bits <= 0) {
1084 dev_err(DEV, "error while encoding bitmap: %d\n", bits);
1085 return 0;
1086 }
1087
1088 toggle = !toggle;
1089 plain_bits += rl;
1090 c->bit_offset = tmp;
1091 } while (c->bit_offset < c->bm_bits);
1092
1093 len = bs.cur.b - p->code + !!bs.cur.bit;
1094
1095 if (plain_bits < (len << 3)) {
1096 /* incompressible with this method.
1097 * we need to rewind both word and bit position. */
1098 c->bit_offset -= plain_bits;
1099 bm_xfer_ctx_bit_to_word_offset(c);
1100 c->bit_offset = c->word_offset * BITS_PER_LONG;
1101 return 0;
1102 }
1103
1104 /* RLE + VLI was able to compress it just fine.
1105 * update c->word_offset. */
1106 bm_xfer_ctx_bit_to_word_offset(c);
1107
1108 /* store pad_bits */
1109 DCBP_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1110
1111 return len;
1112 }
1113
1114 /**
1115 * send_bitmap_rle_or_plain
1116 *
1117 * Return 0 when done, 1 when another iteration is needed, and a negative error
1118 * code upon failure.
1119 */
1120 static int
1121 send_bitmap_rle_or_plain(struct drbd_conf *mdev,
1122 struct p_header *h, struct bm_xfer_ctx *c)
1123 {
1124 struct p_compressed_bm *p = (void*)h;
1125 unsigned long num_words;
1126 int len;
1127 int ok;
1128
1129 len = fill_bitmap_rle_bits(mdev, p, c);
1130
1131 if (len < 0)
1132 return -EIO;
1133
1134 if (len) {
1135 DCBP_set_code(p, RLE_VLI_Bits);
1136 ok = !_drbd_send_cmd(mdev, mdev->tconn->data.socket, P_COMPRESSED_BITMAP, h,
1137 sizeof(*p) + len, 0);
1138
1139 c->packets[0]++;
1140 c->bytes[0] += sizeof(*p) + len;
1141
1142 if (c->bit_offset >= c->bm_bits)
1143 len = 0; /* DONE */
1144 } else {
1145 /* was not compressible.
1146 * send a buffer full of plain text bits instead. */
1147 num_words = min_t(size_t, BM_PACKET_WORDS, c->bm_words - c->word_offset);
1148 len = num_words * sizeof(long);
1149 if (len)
1150 drbd_bm_get_lel(mdev, c->word_offset, num_words, (unsigned long*)h->payload);
1151 ok = !_drbd_send_cmd(mdev, mdev->tconn->data.socket, P_BITMAP,
1152 h, sizeof(struct p_header80) + len, 0);
1153 c->word_offset += num_words;
1154 c->bit_offset = c->word_offset * BITS_PER_LONG;
1155
1156 c->packets[1]++;
1157 c->bytes[1] += sizeof(struct p_header80) + len;
1158
1159 if (c->bit_offset > c->bm_bits)
1160 c->bit_offset = c->bm_bits;
1161 }
1162 if (ok) {
1163 if (len == 0) {
1164 INFO_bm_xfer_stats(mdev, "send", c);
1165 return 0;
1166 } else
1167 return 1;
1168 }
1169 return -EIO;
1170 }
1171
1172 /* See the comment at receive_bitmap() */
1173 int _drbd_send_bitmap(struct drbd_conf *mdev)
1174 {
1175 struct bm_xfer_ctx c;
1176 struct p_header *p;
1177 int err;
1178
1179 if (!expect(mdev->bitmap))
1180 return false;
1181
1182 /* maybe we should use some per thread scratch page,
1183 * and allocate that during initial device creation? */
1184 p = (struct p_header *) __get_free_page(GFP_NOIO);
1185 if (!p) {
1186 dev_err(DEV, "failed to allocate one page buffer in %s\n", __func__);
1187 return false;
1188 }
1189
1190 if (get_ldev(mdev)) {
1191 if (drbd_md_test_flag(mdev->ldev, MDF_FULL_SYNC)) {
1192 dev_info(DEV, "Writing the whole bitmap, MDF_FullSync was set.\n");
1193 drbd_bm_set_all(mdev);
1194 if (drbd_bm_write(mdev)) {
1195 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1196 * but otherwise process as per normal - need to tell other
1197 * side that a full resync is required! */
1198 dev_err(DEV, "Failed to write bitmap to disk!\n");
1199 } else {
1200 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
1201 drbd_md_sync(mdev);
1202 }
1203 }
1204 put_ldev(mdev);
1205 }
1206
1207 c = (struct bm_xfer_ctx) {
1208 .bm_bits = drbd_bm_bits(mdev),
1209 .bm_words = drbd_bm_words(mdev),
1210 };
1211
1212 do {
1213 err = send_bitmap_rle_or_plain(mdev, p, &c);
1214 } while (err > 0);
1215
1216 free_page((unsigned long) p);
1217 return err == 0;
1218 }
1219
1220 int drbd_send_bitmap(struct drbd_conf *mdev)
1221 {
1222 int err;
1223
1224 if (drbd_get_data_sock(mdev->tconn))
1225 return -1;
1226 err = !_drbd_send_bitmap(mdev);
1227 drbd_put_data_sock(mdev->tconn);
1228 return err;
1229 }
1230 void drbd_send_b_ack(struct drbd_conf *mdev, u32 barrier_nr, u32 set_size)
1231 {
1232 struct p_barrier_ack p;
1233
1234 p.barrier = barrier_nr;
1235 p.set_size = cpu_to_be32(set_size);
1236
1237 if (mdev->state.conn >= C_CONNECTED)
1238 drbd_send_cmd(mdev, &mdev->tconn->meta, P_BARRIER_ACK, &p.head, sizeof(p));
1239 }
1240
1241 /**
1242 * _drbd_send_ack() - Sends an ack packet
1243 * @mdev: DRBD device.
1244 * @cmd: Packet command code.
1245 * @sector: sector, needs to be in big endian byte order
1246 * @blksize: size in byte, needs to be in big endian byte order
1247 * @block_id: Id, big endian byte order
1248 */
1249 static int _drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1250 u64 sector, u32 blksize, u64 block_id)
1251 {
1252 struct p_block_ack p;
1253
1254 p.sector = sector;
1255 p.block_id = block_id;
1256 p.blksize = blksize;
1257 p.seq_num = cpu_to_be32(atomic_inc_return(&mdev->packet_seq));
1258
1259 if (!mdev->tconn->meta.socket || mdev->state.conn < C_CONNECTED)
1260 return -EIO;
1261 return drbd_send_cmd(mdev, &mdev->tconn->meta, cmd, &p.head, sizeof(p));
1262 }
1263
1264 /* dp->sector and dp->block_id already/still in network byte order,
1265 * data_size is payload size according to dp->head,
1266 * and may need to be corrected for digest size. */
1267 void drbd_send_ack_dp(struct drbd_conf *mdev, enum drbd_packet cmd,
1268 struct p_data *dp, int data_size)
1269 {
1270 data_size -= (mdev->tconn->agreed_pro_version >= 87 && mdev->tconn->integrity_r_tfm) ?
1271 crypto_hash_digestsize(mdev->tconn->integrity_r_tfm) : 0;
1272 _drbd_send_ack(mdev, cmd, dp->sector, cpu_to_be32(data_size),
1273 dp->block_id);
1274 }
1275
1276 void drbd_send_ack_rp(struct drbd_conf *mdev, enum drbd_packet cmd,
1277 struct p_block_req *rp)
1278 {
1279 _drbd_send_ack(mdev, cmd, rp->sector, rp->blksize, rp->block_id);
1280 }
1281
1282 /**
1283 * drbd_send_ack() - Sends an ack packet
1284 * @mdev: DRBD device
1285 * @cmd: packet command code
1286 * @peer_req: peer request
1287 */
1288 int drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1289 struct drbd_peer_request *peer_req)
1290 {
1291 return _drbd_send_ack(mdev, cmd,
1292 cpu_to_be64(peer_req->i.sector),
1293 cpu_to_be32(peer_req->i.size),
1294 peer_req->block_id);
1295 }
1296
1297 /* This function misuses the block_id field to signal if the blocks
1298 * are is sync or not. */
1299 int drbd_send_ack_ex(struct drbd_conf *mdev, enum drbd_packet cmd,
1300 sector_t sector, int blksize, u64 block_id)
1301 {
1302 return _drbd_send_ack(mdev, cmd,
1303 cpu_to_be64(sector),
1304 cpu_to_be32(blksize),
1305 cpu_to_be64(block_id));
1306 }
1307
1308 int drbd_send_drequest(struct drbd_conf *mdev, int cmd,
1309 sector_t sector, int size, u64 block_id)
1310 {
1311 struct p_block_req p;
1312
1313 p.sector = cpu_to_be64(sector);
1314 p.block_id = block_id;
1315 p.blksize = cpu_to_be32(size);
1316
1317 return drbd_send_cmd(mdev, &mdev->tconn->data, cmd, &p.head, sizeof(p));
1318 }
1319
1320 int drbd_send_drequest_csum(struct drbd_conf *mdev, sector_t sector, int size,
1321 void *digest, int digest_size, enum drbd_packet cmd)
1322 {
1323 int ok;
1324 struct p_block_req p;
1325
1326 prepare_header(mdev, &p.head, cmd, sizeof(p) - sizeof(struct p_header) + digest_size);
1327 p.sector = cpu_to_be64(sector);
1328 p.block_id = ID_SYNCER /* unused */;
1329 p.blksize = cpu_to_be32(size);
1330
1331 mutex_lock(&mdev->tconn->data.mutex);
1332
1333 ok = (sizeof(p) == drbd_send(mdev->tconn, mdev->tconn->data.socket, &p, sizeof(p), 0));
1334 ok = ok && (digest_size == drbd_send(mdev->tconn, mdev->tconn->data.socket, digest, digest_size, 0));
1335
1336 mutex_unlock(&mdev->tconn->data.mutex);
1337
1338 return ok;
1339 }
1340
1341 int drbd_send_ov_request(struct drbd_conf *mdev, sector_t sector, int size)
1342 {
1343 struct p_block_req p;
1344
1345 p.sector = cpu_to_be64(sector);
1346 p.block_id = ID_SYNCER /* unused */;
1347 p.blksize = cpu_to_be32(size);
1348
1349 return drbd_send_cmd(mdev, &mdev->tconn->data, P_OV_REQUEST, &p.head, sizeof(p));
1350 }
1351
1352 /* called on sndtimeo
1353 * returns false if we should retry,
1354 * true if we think connection is dead
1355 */
1356 static int we_should_drop_the_connection(struct drbd_tconn *tconn, struct socket *sock)
1357 {
1358 int drop_it;
1359 /* long elapsed = (long)(jiffies - mdev->last_received); */
1360
1361 drop_it = tconn->meta.socket == sock
1362 || !tconn->asender.task
1363 || get_t_state(&tconn->asender) != RUNNING
1364 || tconn->cstate < C_WF_REPORT_PARAMS;
1365
1366 if (drop_it)
1367 return true;
1368
1369 drop_it = !--tconn->ko_count;
1370 if (!drop_it) {
1371 conn_err(tconn, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1372 current->comm, current->pid, tconn->ko_count);
1373 request_ping(tconn);
1374 }
1375
1376 return drop_it; /* && (mdev->state == R_PRIMARY) */;
1377 }
1378
1379 static void drbd_update_congested(struct drbd_tconn *tconn)
1380 {
1381 struct sock *sk = tconn->data.socket->sk;
1382 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1383 set_bit(NET_CONGESTED, &tconn->flags);
1384 }
1385
1386 /* The idea of sendpage seems to be to put some kind of reference
1387 * to the page into the skb, and to hand it over to the NIC. In
1388 * this process get_page() gets called.
1389 *
1390 * As soon as the page was really sent over the network put_page()
1391 * gets called by some part of the network layer. [ NIC driver? ]
1392 *
1393 * [ get_page() / put_page() increment/decrement the count. If count
1394 * reaches 0 the page will be freed. ]
1395 *
1396 * This works nicely with pages from FSs.
1397 * But this means that in protocol A we might signal IO completion too early!
1398 *
1399 * In order not to corrupt data during a resync we must make sure
1400 * that we do not reuse our own buffer pages (EEs) to early, therefore
1401 * we have the net_ee list.
1402 *
1403 * XFS seems to have problems, still, it submits pages with page_count == 0!
1404 * As a workaround, we disable sendpage on pages
1405 * with page_count == 0 or PageSlab.
1406 */
1407 static int _drbd_no_send_page(struct drbd_conf *mdev, struct page *page,
1408 int offset, size_t size, unsigned msg_flags)
1409 {
1410 int sent = drbd_send(mdev->tconn, mdev->tconn->data.socket, kmap(page) + offset, size, msg_flags);
1411 kunmap(page);
1412 if (sent == size)
1413 mdev->send_cnt += size>>9;
1414 return sent == size;
1415 }
1416
1417 static int _drbd_send_page(struct drbd_conf *mdev, struct page *page,
1418 int offset, size_t size, unsigned msg_flags)
1419 {
1420 mm_segment_t oldfs = get_fs();
1421 int sent, ok;
1422 int len = size;
1423
1424 /* e.g. XFS meta- & log-data is in slab pages, which have a
1425 * page_count of 0 and/or have PageSlab() set.
1426 * we cannot use send_page for those, as that does get_page();
1427 * put_page(); and would cause either a VM_BUG directly, or
1428 * __page_cache_release a page that would actually still be referenced
1429 * by someone, leading to some obscure delayed Oops somewhere else. */
1430 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1431 return _drbd_no_send_page(mdev, page, offset, size, msg_flags);
1432
1433 msg_flags |= MSG_NOSIGNAL;
1434 drbd_update_congested(mdev->tconn);
1435 set_fs(KERNEL_DS);
1436 do {
1437 sent = mdev->tconn->data.socket->ops->sendpage(mdev->tconn->data.socket, page,
1438 offset, len,
1439 msg_flags);
1440 if (sent == -EAGAIN) {
1441 if (we_should_drop_the_connection(mdev->tconn,
1442 mdev->tconn->data.socket))
1443 break;
1444 else
1445 continue;
1446 }
1447 if (sent <= 0) {
1448 dev_warn(DEV, "%s: size=%d len=%d sent=%d\n",
1449 __func__, (int)size, len, sent);
1450 break;
1451 }
1452 len -= sent;
1453 offset += sent;
1454 } while (len > 0 /* THINK && mdev->cstate >= C_CONNECTED*/);
1455 set_fs(oldfs);
1456 clear_bit(NET_CONGESTED, &mdev->tconn->flags);
1457
1458 ok = (len == 0);
1459 if (likely(ok))
1460 mdev->send_cnt += size>>9;
1461 return ok;
1462 }
1463
1464 static int _drbd_send_bio(struct drbd_conf *mdev, struct bio *bio)
1465 {
1466 struct bio_vec *bvec;
1467 int i;
1468 /* hint all but last page with MSG_MORE */
1469 __bio_for_each_segment(bvec, bio, i, 0) {
1470 if (!_drbd_no_send_page(mdev, bvec->bv_page,
1471 bvec->bv_offset, bvec->bv_len,
1472 i == bio->bi_vcnt -1 ? 0 : MSG_MORE))
1473 return 0;
1474 }
1475 return 1;
1476 }
1477
1478 static int _drbd_send_zc_bio(struct drbd_conf *mdev, struct bio *bio)
1479 {
1480 struct bio_vec *bvec;
1481 int i;
1482 /* hint all but last page with MSG_MORE */
1483 __bio_for_each_segment(bvec, bio, i, 0) {
1484 if (!_drbd_send_page(mdev, bvec->bv_page,
1485 bvec->bv_offset, bvec->bv_len,
1486 i == bio->bi_vcnt -1 ? 0 : MSG_MORE))
1487 return 0;
1488 }
1489 return 1;
1490 }
1491
1492 static int _drbd_send_zc_ee(struct drbd_conf *mdev,
1493 struct drbd_peer_request *peer_req)
1494 {
1495 struct page *page = peer_req->pages;
1496 unsigned len = peer_req->i.size;
1497
1498 /* hint all but last page with MSG_MORE */
1499 page_chain_for_each(page) {
1500 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1501 if (!_drbd_send_page(mdev, page, 0, l,
1502 page_chain_next(page) ? MSG_MORE : 0))
1503 return 0;
1504 len -= l;
1505 }
1506 return 1;
1507 }
1508
1509 static u32 bio_flags_to_wire(struct drbd_conf *mdev, unsigned long bi_rw)
1510 {
1511 if (mdev->tconn->agreed_pro_version >= 95)
1512 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1513 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1514 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1515 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1516 else
1517 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1518 }
1519
1520 /* Used to send write requests
1521 * R_PRIMARY -> Peer (P_DATA)
1522 */
1523 int drbd_send_dblock(struct drbd_conf *mdev, struct drbd_request *req)
1524 {
1525 int ok = 1;
1526 struct p_data p;
1527 unsigned int dp_flags = 0;
1528 void *dgb;
1529 int dgs;
1530
1531 if (drbd_get_data_sock(mdev->tconn))
1532 return 0;
1533
1534 dgs = (mdev->tconn->agreed_pro_version >= 87 && mdev->tconn->integrity_w_tfm) ?
1535 crypto_hash_digestsize(mdev->tconn->integrity_w_tfm) : 0;
1536
1537 prepare_header(mdev, &p.head, P_DATA, sizeof(p) - sizeof(struct p_header) + dgs + req->i.size);
1538 p.sector = cpu_to_be64(req->i.sector);
1539 p.block_id = (unsigned long)req;
1540 p.seq_num = cpu_to_be32(req->seq_num = atomic_inc_return(&mdev->packet_seq));
1541
1542 dp_flags = bio_flags_to_wire(mdev, req->master_bio->bi_rw);
1543
1544 if (mdev->state.conn >= C_SYNC_SOURCE &&
1545 mdev->state.conn <= C_PAUSED_SYNC_T)
1546 dp_flags |= DP_MAY_SET_IN_SYNC;
1547
1548 p.dp_flags = cpu_to_be32(dp_flags);
1549 set_bit(UNPLUG_REMOTE, &mdev->flags);
1550 ok = (sizeof(p) ==
1551 drbd_send(mdev->tconn, mdev->tconn->data.socket, &p, sizeof(p), dgs ? MSG_MORE : 0));
1552 if (ok && dgs) {
1553 dgb = mdev->tconn->int_dig_out;
1554 drbd_csum_bio(mdev, mdev->tconn->integrity_w_tfm, req->master_bio, dgb);
1555 ok = dgs == drbd_send(mdev->tconn, mdev->tconn->data.socket, dgb, dgs, 0);
1556 }
1557 if (ok) {
1558 /* For protocol A, we have to memcpy the payload into
1559 * socket buffers, as we may complete right away
1560 * as soon as we handed it over to tcp, at which point the data
1561 * pages may become invalid.
1562 *
1563 * For data-integrity enabled, we copy it as well, so we can be
1564 * sure that even if the bio pages may still be modified, it
1565 * won't change the data on the wire, thus if the digest checks
1566 * out ok after sending on this side, but does not fit on the
1567 * receiving side, we sure have detected corruption elsewhere.
1568 */
1569 if (mdev->tconn->net_conf->wire_protocol == DRBD_PROT_A || dgs)
1570 ok = _drbd_send_bio(mdev, req->master_bio);
1571 else
1572 ok = _drbd_send_zc_bio(mdev, req->master_bio);
1573
1574 /* double check digest, sometimes buffers have been modified in flight. */
1575 if (dgs > 0 && dgs <= 64) {
1576 /* 64 byte, 512 bit, is the largest digest size
1577 * currently supported in kernel crypto. */
1578 unsigned char digest[64];
1579 drbd_csum_bio(mdev, mdev->tconn->integrity_w_tfm, req->master_bio, digest);
1580 if (memcmp(mdev->tconn->int_dig_out, digest, dgs)) {
1581 dev_warn(DEV,
1582 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1583 (unsigned long long)req->i.sector, req->i.size);
1584 }
1585 } /* else if (dgs > 64) {
1586 ... Be noisy about digest too large ...
1587 } */
1588 }
1589
1590 drbd_put_data_sock(mdev->tconn);
1591
1592 return ok;
1593 }
1594
1595 /* answer packet, used to send data back for read requests:
1596 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1597 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1598 */
1599 int drbd_send_block(struct drbd_conf *mdev, enum drbd_packet cmd,
1600 struct drbd_peer_request *peer_req)
1601 {
1602 int ok;
1603 struct p_data p;
1604 void *dgb;
1605 int dgs;
1606
1607 dgs = (mdev->tconn->agreed_pro_version >= 87 && mdev->tconn->integrity_w_tfm) ?
1608 crypto_hash_digestsize(mdev->tconn->integrity_w_tfm) : 0;
1609
1610 prepare_header(mdev, &p.head, cmd, sizeof(p) -
1611 sizeof(struct p_header80) +
1612 dgs + peer_req->i.size);
1613 p.sector = cpu_to_be64(peer_req->i.sector);
1614 p.block_id = peer_req->block_id;
1615 p.seq_num = 0; /* unused */
1616
1617 /* Only called by our kernel thread.
1618 * This one may be interrupted by DRBD_SIG and/or DRBD_SIGKILL
1619 * in response to admin command or module unload.
1620 */
1621 if (drbd_get_data_sock(mdev->tconn))
1622 return 0;
1623
1624 ok = sizeof(p) == drbd_send(mdev->tconn, mdev->tconn->data.socket, &p, sizeof(p), dgs ? MSG_MORE : 0);
1625 if (ok && dgs) {
1626 dgb = mdev->tconn->int_dig_out;
1627 drbd_csum_ee(mdev, mdev->tconn->integrity_w_tfm, peer_req, dgb);
1628 ok = dgs == drbd_send(mdev->tconn, mdev->tconn->data.socket, dgb, dgs, 0);
1629 }
1630 if (ok)
1631 ok = _drbd_send_zc_ee(mdev, peer_req);
1632
1633 drbd_put_data_sock(mdev->tconn);
1634
1635 return ok;
1636 }
1637
1638 int drbd_send_oos(struct drbd_conf *mdev, struct drbd_request *req)
1639 {
1640 struct p_block_desc p;
1641
1642 p.sector = cpu_to_be64(req->i.sector);
1643 p.blksize = cpu_to_be32(req->i.size);
1644
1645 return !drbd_send_cmd(mdev, &mdev->tconn->data, P_OUT_OF_SYNC, &p.head, sizeof(p));
1646 }
1647
1648 /*
1649 drbd_send distinguishes two cases:
1650
1651 Packets sent via the data socket "sock"
1652 and packets sent via the meta data socket "msock"
1653
1654 sock msock
1655 -----------------+-------------------------+------------------------------
1656 timeout conf.timeout / 2 conf.timeout / 2
1657 timeout action send a ping via msock Abort communication
1658 and close all sockets
1659 */
1660
1661 /*
1662 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1663 */
1664 int drbd_send(struct drbd_tconn *tconn, struct socket *sock,
1665 void *buf, size_t size, unsigned msg_flags)
1666 {
1667 struct kvec iov;
1668 struct msghdr msg;
1669 int rv, sent = 0;
1670
1671 if (!sock)
1672 return -EBADR;
1673
1674 /* THINK if (signal_pending) return ... ? */
1675
1676 iov.iov_base = buf;
1677 iov.iov_len = size;
1678
1679 msg.msg_name = NULL;
1680 msg.msg_namelen = 0;
1681 msg.msg_control = NULL;
1682 msg.msg_controllen = 0;
1683 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1684
1685 if (sock == tconn->data.socket) {
1686 tconn->ko_count = tconn->net_conf->ko_count;
1687 drbd_update_congested(tconn);
1688 }
1689 do {
1690 /* STRANGE
1691 * tcp_sendmsg does _not_ use its size parameter at all ?
1692 *
1693 * -EAGAIN on timeout, -EINTR on signal.
1694 */
1695 /* THINK
1696 * do we need to block DRBD_SIG if sock == &meta.socket ??
1697 * otherwise wake_asender() might interrupt some send_*Ack !
1698 */
1699 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1700 if (rv == -EAGAIN) {
1701 if (we_should_drop_the_connection(tconn, sock))
1702 break;
1703 else
1704 continue;
1705 }
1706 if (rv == -EINTR) {
1707 flush_signals(current);
1708 rv = 0;
1709 }
1710 if (rv < 0)
1711 break;
1712 sent += rv;
1713 iov.iov_base += rv;
1714 iov.iov_len -= rv;
1715 } while (sent < size);
1716
1717 if (sock == tconn->data.socket)
1718 clear_bit(NET_CONGESTED, &tconn->flags);
1719
1720 if (rv <= 0) {
1721 if (rv != -EAGAIN) {
1722 conn_err(tconn, "%s_sendmsg returned %d\n",
1723 sock == tconn->meta.socket ? "msock" : "sock",
1724 rv);
1725 conn_request_state(tconn, NS(conn, C_BROKEN_PIPE), CS_HARD);
1726 } else
1727 conn_request_state(tconn, NS(conn, C_TIMEOUT), CS_HARD);
1728 }
1729
1730 return sent;
1731 }
1732
1733 /**
1734 * drbd_send_all - Send an entire buffer
1735 *
1736 * Returns 0 upon success and a negative error value otherwise.
1737 */
1738 int drbd_send_all(struct drbd_tconn *tconn, struct socket *sock, void *buffer,
1739 size_t size, unsigned msg_flags)
1740 {
1741 int err;
1742
1743 err = drbd_send(tconn, sock, buffer, size, msg_flags);
1744 if (err < 0)
1745 return err;
1746 if (err != size)
1747 return -EIO;
1748 return 0;
1749 }
1750
1751 static int drbd_open(struct block_device *bdev, fmode_t mode)
1752 {
1753 struct drbd_conf *mdev = bdev->bd_disk->private_data;
1754 unsigned long flags;
1755 int rv = 0;
1756
1757 mutex_lock(&drbd_main_mutex);
1758 spin_lock_irqsave(&mdev->tconn->req_lock, flags);
1759 /* to have a stable mdev->state.role
1760 * and no race with updating open_cnt */
1761
1762 if (mdev->state.role != R_PRIMARY) {
1763 if (mode & FMODE_WRITE)
1764 rv = -EROFS;
1765 else if (!allow_oos)
1766 rv = -EMEDIUMTYPE;
1767 }
1768
1769 if (!rv)
1770 mdev->open_cnt++;
1771 spin_unlock_irqrestore(&mdev->tconn->req_lock, flags);
1772 mutex_unlock(&drbd_main_mutex);
1773
1774 return rv;
1775 }
1776
1777 static int drbd_release(struct gendisk *gd, fmode_t mode)
1778 {
1779 struct drbd_conf *mdev = gd->private_data;
1780 mutex_lock(&drbd_main_mutex);
1781 mdev->open_cnt--;
1782 mutex_unlock(&drbd_main_mutex);
1783 return 0;
1784 }
1785
1786 static void drbd_set_defaults(struct drbd_conf *mdev)
1787 {
1788 /* Beware! The actual layout differs
1789 * between big endian and little endian */
1790 mdev->state = (union drbd_state) {
1791 { .role = R_SECONDARY,
1792 .peer = R_UNKNOWN,
1793 .conn = C_STANDALONE,
1794 .disk = D_DISKLESS,
1795 .pdsk = D_UNKNOWN,
1796 .susp = 0,
1797 .susp_nod = 0,
1798 .susp_fen = 0
1799 } };
1800 }
1801
1802 void drbd_init_set_defaults(struct drbd_conf *mdev)
1803 {
1804 /* the memset(,0,) did most of this.
1805 * note: only assignments, no allocation in here */
1806
1807 drbd_set_defaults(mdev);
1808
1809 atomic_set(&mdev->ap_bio_cnt, 0);
1810 atomic_set(&mdev->ap_pending_cnt, 0);
1811 atomic_set(&mdev->rs_pending_cnt, 0);
1812 atomic_set(&mdev->unacked_cnt, 0);
1813 atomic_set(&mdev->local_cnt, 0);
1814 atomic_set(&mdev->pp_in_use, 0);
1815 atomic_set(&mdev->pp_in_use_by_net, 0);
1816 atomic_set(&mdev->rs_sect_in, 0);
1817 atomic_set(&mdev->rs_sect_ev, 0);
1818 atomic_set(&mdev->ap_in_flight, 0);
1819
1820 mutex_init(&mdev->md_io_mutex);
1821 mutex_init(&mdev->own_state_mutex);
1822 mdev->state_mutex = &mdev->own_state_mutex;
1823
1824 spin_lock_init(&mdev->al_lock);
1825 spin_lock_init(&mdev->peer_seq_lock);
1826 spin_lock_init(&mdev->epoch_lock);
1827
1828 INIT_LIST_HEAD(&mdev->active_ee);
1829 INIT_LIST_HEAD(&mdev->sync_ee);
1830 INIT_LIST_HEAD(&mdev->done_ee);
1831 INIT_LIST_HEAD(&mdev->read_ee);
1832 INIT_LIST_HEAD(&mdev->net_ee);
1833 INIT_LIST_HEAD(&mdev->resync_reads);
1834 INIT_LIST_HEAD(&mdev->resync_work.list);
1835 INIT_LIST_HEAD(&mdev->unplug_work.list);
1836 INIT_LIST_HEAD(&mdev->go_diskless.list);
1837 INIT_LIST_HEAD(&mdev->md_sync_work.list);
1838 INIT_LIST_HEAD(&mdev->start_resync_work.list);
1839 INIT_LIST_HEAD(&mdev->bm_io_work.w.list);
1840
1841 mdev->resync_work.cb = w_resync_timer;
1842 mdev->unplug_work.cb = w_send_write_hint;
1843 mdev->go_diskless.cb = w_go_diskless;
1844 mdev->md_sync_work.cb = w_md_sync;
1845 mdev->bm_io_work.w.cb = w_bitmap_io;
1846 mdev->start_resync_work.cb = w_start_resync;
1847
1848 mdev->resync_work.mdev = mdev;
1849 mdev->unplug_work.mdev = mdev;
1850 mdev->go_diskless.mdev = mdev;
1851 mdev->md_sync_work.mdev = mdev;
1852 mdev->bm_io_work.w.mdev = mdev;
1853 mdev->start_resync_work.mdev = mdev;
1854
1855 init_timer(&mdev->resync_timer);
1856 init_timer(&mdev->md_sync_timer);
1857 init_timer(&mdev->start_resync_timer);
1858 init_timer(&mdev->request_timer);
1859 mdev->resync_timer.function = resync_timer_fn;
1860 mdev->resync_timer.data = (unsigned long) mdev;
1861 mdev->md_sync_timer.function = md_sync_timer_fn;
1862 mdev->md_sync_timer.data = (unsigned long) mdev;
1863 mdev->start_resync_timer.function = start_resync_timer_fn;
1864 mdev->start_resync_timer.data = (unsigned long) mdev;
1865 mdev->request_timer.function = request_timer_fn;
1866 mdev->request_timer.data = (unsigned long) mdev;
1867
1868 init_waitqueue_head(&mdev->misc_wait);
1869 init_waitqueue_head(&mdev->state_wait);
1870 init_waitqueue_head(&mdev->ee_wait);
1871 init_waitqueue_head(&mdev->al_wait);
1872 init_waitqueue_head(&mdev->seq_wait);
1873
1874 /* mdev->tconn->agreed_pro_version gets initialized in drbd_connect() */
1875 mdev->write_ordering = WO_bdev_flush;
1876 mdev->resync_wenr = LC_FREE;
1877 mdev->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1878 mdev->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1879 }
1880
1881 void drbd_mdev_cleanup(struct drbd_conf *mdev)
1882 {
1883 int i;
1884 if (mdev->tconn->receiver.t_state != NONE)
1885 dev_err(DEV, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1886 mdev->tconn->receiver.t_state);
1887
1888 /* no need to lock it, I'm the only thread alive */
1889 if (atomic_read(&mdev->current_epoch->epoch_size) != 0)
1890 dev_err(DEV, "epoch_size:%d\n", atomic_read(&mdev->current_epoch->epoch_size));
1891 mdev->al_writ_cnt =
1892 mdev->bm_writ_cnt =
1893 mdev->read_cnt =
1894 mdev->recv_cnt =
1895 mdev->send_cnt =
1896 mdev->writ_cnt =
1897 mdev->p_size =
1898 mdev->rs_start =
1899 mdev->rs_total =
1900 mdev->rs_failed = 0;
1901 mdev->rs_last_events = 0;
1902 mdev->rs_last_sect_ev = 0;
1903 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1904 mdev->rs_mark_left[i] = 0;
1905 mdev->rs_mark_time[i] = 0;
1906 }
1907 D_ASSERT(mdev->tconn->net_conf == NULL);
1908
1909 drbd_set_my_capacity(mdev, 0);
1910 if (mdev->bitmap) {
1911 /* maybe never allocated. */
1912 drbd_bm_resize(mdev, 0, 1);
1913 drbd_bm_cleanup(mdev);
1914 }
1915
1916 drbd_free_resources(mdev);
1917 clear_bit(AL_SUSPENDED, &mdev->flags);
1918
1919 /*
1920 * currently we drbd_init_ee only on module load, so
1921 * we may do drbd_release_ee only on module unload!
1922 */
1923 D_ASSERT(list_empty(&mdev->active_ee));
1924 D_ASSERT(list_empty(&mdev->sync_ee));
1925 D_ASSERT(list_empty(&mdev->done_ee));
1926 D_ASSERT(list_empty(&mdev->read_ee));
1927 D_ASSERT(list_empty(&mdev->net_ee));
1928 D_ASSERT(list_empty(&mdev->resync_reads));
1929 D_ASSERT(list_empty(&mdev->tconn->data.work.q));
1930 D_ASSERT(list_empty(&mdev->tconn->meta.work.q));
1931 D_ASSERT(list_empty(&mdev->resync_work.list));
1932 D_ASSERT(list_empty(&mdev->unplug_work.list));
1933 D_ASSERT(list_empty(&mdev->go_diskless.list));
1934
1935 drbd_set_defaults(mdev);
1936 }
1937
1938
1939 static void drbd_destroy_mempools(void)
1940 {
1941 struct page *page;
1942
1943 while (drbd_pp_pool) {
1944 page = drbd_pp_pool;
1945 drbd_pp_pool = (struct page *)page_private(page);
1946 __free_page(page);
1947 drbd_pp_vacant--;
1948 }
1949
1950 /* D_ASSERT(atomic_read(&drbd_pp_vacant)==0); */
1951
1952 if (drbd_md_io_bio_set)
1953 bioset_free(drbd_md_io_bio_set);
1954 if (drbd_md_io_page_pool)
1955 mempool_destroy(drbd_md_io_page_pool);
1956 if (drbd_ee_mempool)
1957 mempool_destroy(drbd_ee_mempool);
1958 if (drbd_request_mempool)
1959 mempool_destroy(drbd_request_mempool);
1960 if (drbd_ee_cache)
1961 kmem_cache_destroy(drbd_ee_cache);
1962 if (drbd_request_cache)
1963 kmem_cache_destroy(drbd_request_cache);
1964 if (drbd_bm_ext_cache)
1965 kmem_cache_destroy(drbd_bm_ext_cache);
1966 if (drbd_al_ext_cache)
1967 kmem_cache_destroy(drbd_al_ext_cache);
1968
1969 drbd_md_io_bio_set = NULL;
1970 drbd_md_io_page_pool = NULL;
1971 drbd_ee_mempool = NULL;
1972 drbd_request_mempool = NULL;
1973 drbd_ee_cache = NULL;
1974 drbd_request_cache = NULL;
1975 drbd_bm_ext_cache = NULL;
1976 drbd_al_ext_cache = NULL;
1977
1978 return;
1979 }
1980
1981 static int drbd_create_mempools(void)
1982 {
1983 struct page *page;
1984 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
1985 int i;
1986
1987 /* prepare our caches and mempools */
1988 drbd_request_mempool = NULL;
1989 drbd_ee_cache = NULL;
1990 drbd_request_cache = NULL;
1991 drbd_bm_ext_cache = NULL;
1992 drbd_al_ext_cache = NULL;
1993 drbd_pp_pool = NULL;
1994 drbd_md_io_page_pool = NULL;
1995 drbd_md_io_bio_set = NULL;
1996
1997 /* caches */
1998 drbd_request_cache = kmem_cache_create(
1999 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2000 if (drbd_request_cache == NULL)
2001 goto Enomem;
2002
2003 drbd_ee_cache = kmem_cache_create(
2004 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2005 if (drbd_ee_cache == NULL)
2006 goto Enomem;
2007
2008 drbd_bm_ext_cache = kmem_cache_create(
2009 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2010 if (drbd_bm_ext_cache == NULL)
2011 goto Enomem;
2012
2013 drbd_al_ext_cache = kmem_cache_create(
2014 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2015 if (drbd_al_ext_cache == NULL)
2016 goto Enomem;
2017
2018 /* mempools */
2019 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2020 if (drbd_md_io_bio_set == NULL)
2021 goto Enomem;
2022
2023 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2024 if (drbd_md_io_page_pool == NULL)
2025 goto Enomem;
2026
2027 drbd_request_mempool = mempool_create(number,
2028 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2029 if (drbd_request_mempool == NULL)
2030 goto Enomem;
2031
2032 drbd_ee_mempool = mempool_create(number,
2033 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2034 if (drbd_ee_mempool == NULL)
2035 goto Enomem;
2036
2037 /* drbd's page pool */
2038 spin_lock_init(&drbd_pp_lock);
2039
2040 for (i = 0; i < number; i++) {
2041 page = alloc_page(GFP_HIGHUSER);
2042 if (!page)
2043 goto Enomem;
2044 set_page_private(page, (unsigned long)drbd_pp_pool);
2045 drbd_pp_pool = page;
2046 }
2047 drbd_pp_vacant = number;
2048
2049 return 0;
2050
2051 Enomem:
2052 drbd_destroy_mempools(); /* in case we allocated some */
2053 return -ENOMEM;
2054 }
2055
2056 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2057 void *unused)
2058 {
2059 /* just so we have it. you never know what interesting things we
2060 * might want to do here some day...
2061 */
2062
2063 return NOTIFY_DONE;
2064 }
2065
2066 static struct notifier_block drbd_notifier = {
2067 .notifier_call = drbd_notify_sys,
2068 };
2069
2070 static void drbd_release_ee_lists(struct drbd_conf *mdev)
2071 {
2072 int rr;
2073
2074 rr = drbd_release_ee(mdev, &mdev->active_ee);
2075 if (rr)
2076 dev_err(DEV, "%d EEs in active list found!\n", rr);
2077
2078 rr = drbd_release_ee(mdev, &mdev->sync_ee);
2079 if (rr)
2080 dev_err(DEV, "%d EEs in sync list found!\n", rr);
2081
2082 rr = drbd_release_ee(mdev, &mdev->read_ee);
2083 if (rr)
2084 dev_err(DEV, "%d EEs in read list found!\n", rr);
2085
2086 rr = drbd_release_ee(mdev, &mdev->done_ee);
2087 if (rr)
2088 dev_err(DEV, "%d EEs in done list found!\n", rr);
2089
2090 rr = drbd_release_ee(mdev, &mdev->net_ee);
2091 if (rr)
2092 dev_err(DEV, "%d EEs in net list found!\n", rr);
2093 }
2094
2095 /* caution. no locking. */
2096 void drbd_delete_device(unsigned int minor)
2097 {
2098 struct drbd_conf *mdev = minor_to_mdev(minor);
2099
2100 if (!mdev)
2101 return;
2102
2103 idr_remove(&mdev->tconn->volumes, mdev->vnr);
2104 idr_remove(&minors, minor);
2105 synchronize_rcu();
2106
2107 /* paranoia asserts */
2108 D_ASSERT(mdev->open_cnt == 0);
2109 D_ASSERT(list_empty(&mdev->tconn->data.work.q));
2110 /* end paranoia asserts */
2111
2112 del_gendisk(mdev->vdisk);
2113
2114 /* cleanup stuff that may have been allocated during
2115 * device (re-)configuration or state changes */
2116
2117 if (mdev->this_bdev)
2118 bdput(mdev->this_bdev);
2119
2120 drbd_free_resources(mdev);
2121
2122 drbd_release_ee_lists(mdev);
2123
2124 lc_destroy(mdev->act_log);
2125 lc_destroy(mdev->resync);
2126
2127 kfree(mdev->p_uuid);
2128 /* mdev->p_uuid = NULL; */
2129
2130 /* cleanup the rest that has been
2131 * allocated from drbd_new_device
2132 * and actually free the mdev itself */
2133 drbd_free_mdev(mdev);
2134 }
2135
2136 static void drbd_cleanup(void)
2137 {
2138 unsigned int i;
2139 struct drbd_conf *mdev;
2140
2141 unregister_reboot_notifier(&drbd_notifier);
2142
2143 /* first remove proc,
2144 * drbdsetup uses it's presence to detect
2145 * whether DRBD is loaded.
2146 * If we would get stuck in proc removal,
2147 * but have netlink already deregistered,
2148 * some drbdsetup commands may wait forever
2149 * for an answer.
2150 */
2151 if (drbd_proc)
2152 remove_proc_entry("drbd", NULL);
2153
2154 drbd_genl_unregister();
2155
2156 idr_for_each_entry(&minors, mdev, i)
2157 drbd_delete_device(i);
2158 drbd_destroy_mempools();
2159 unregister_blkdev(DRBD_MAJOR, "drbd");
2160
2161 idr_destroy(&minors);
2162
2163 printk(KERN_INFO "drbd: module cleanup done.\n");
2164 }
2165
2166 /**
2167 * drbd_congested() - Callback for pdflush
2168 * @congested_data: User data
2169 * @bdi_bits: Bits pdflush is currently interested in
2170 *
2171 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2172 */
2173 static int drbd_congested(void *congested_data, int bdi_bits)
2174 {
2175 struct drbd_conf *mdev = congested_data;
2176 struct request_queue *q;
2177 char reason = '-';
2178 int r = 0;
2179
2180 if (!may_inc_ap_bio(mdev)) {
2181 /* DRBD has frozen IO */
2182 r = bdi_bits;
2183 reason = 'd';
2184 goto out;
2185 }
2186
2187 if (get_ldev(mdev)) {
2188 q = bdev_get_queue(mdev->ldev->backing_bdev);
2189 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2190 put_ldev(mdev);
2191 if (r)
2192 reason = 'b';
2193 }
2194
2195 if (bdi_bits & (1 << BDI_async_congested) && test_bit(NET_CONGESTED, &mdev->tconn->flags)) {
2196 r |= (1 << BDI_async_congested);
2197 reason = reason == 'b' ? 'a' : 'n';
2198 }
2199
2200 out:
2201 mdev->congestion_reason = reason;
2202 return r;
2203 }
2204
2205 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2206 {
2207 sema_init(&wq->s, 0);
2208 spin_lock_init(&wq->q_lock);
2209 INIT_LIST_HEAD(&wq->q);
2210 }
2211
2212 struct drbd_tconn *conn_by_name(const char *name)
2213 {
2214 struct drbd_tconn *tconn;
2215
2216 if (!name || !name[0])
2217 return NULL;
2218
2219 mutex_lock(&drbd_cfg_mutex);
2220 list_for_each_entry(tconn, &drbd_tconns, all_tconn) {
2221 if (!strcmp(tconn->name, name))
2222 goto found;
2223 }
2224 tconn = NULL;
2225 found:
2226 mutex_unlock(&drbd_cfg_mutex);
2227 return tconn;
2228 }
2229
2230 struct drbd_tconn *drbd_new_tconn(const char *name)
2231 {
2232 struct drbd_tconn *tconn;
2233
2234 tconn = kzalloc(sizeof(struct drbd_tconn), GFP_KERNEL);
2235 if (!tconn)
2236 return NULL;
2237
2238 tconn->name = kstrdup(name, GFP_KERNEL);
2239 if (!tconn->name)
2240 goto fail;
2241
2242 if (!zalloc_cpumask_var(&tconn->cpu_mask, GFP_KERNEL))
2243 goto fail;
2244
2245 if (!tl_init(tconn))
2246 goto fail;
2247
2248 tconn->cstate = C_STANDALONE;
2249 mutex_init(&tconn->cstate_mutex);
2250 spin_lock_init(&tconn->req_lock);
2251 atomic_set(&tconn->net_cnt, 0);
2252 init_waitqueue_head(&tconn->net_cnt_wait);
2253 init_waitqueue_head(&tconn->ping_wait);
2254 idr_init(&tconn->volumes);
2255
2256 drbd_init_workqueue(&tconn->data.work);
2257 mutex_init(&tconn->data.mutex);
2258
2259 drbd_init_workqueue(&tconn->meta.work);
2260 mutex_init(&tconn->meta.mutex);
2261
2262 drbd_thread_init(tconn, &tconn->receiver, drbdd_init, "receiver");
2263 drbd_thread_init(tconn, &tconn->worker, drbd_worker, "worker");
2264 drbd_thread_init(tconn, &tconn->asender, drbd_asender, "asender");
2265
2266 tconn->res_opts = (struct res_opts) {
2267 {}, 0, /* cpu_mask */
2268 DRBD_ON_NO_DATA_DEF, /* on_no_data */
2269 };
2270
2271 mutex_lock(&drbd_cfg_mutex);
2272 list_add_tail(&tconn->all_tconn, &drbd_tconns);
2273 mutex_unlock(&drbd_cfg_mutex);
2274
2275 return tconn;
2276
2277 fail:
2278 tl_cleanup(tconn);
2279 free_cpumask_var(tconn->cpu_mask);
2280 kfree(tconn->name);
2281 kfree(tconn);
2282
2283 return NULL;
2284 }
2285
2286 void drbd_free_tconn(struct drbd_tconn *tconn)
2287 {
2288 list_del(&tconn->all_tconn);
2289 idr_destroy(&tconn->volumes);
2290
2291 free_cpumask_var(tconn->cpu_mask);
2292 kfree(tconn->name);
2293 kfree(tconn->int_dig_out);
2294 kfree(tconn->int_dig_in);
2295 kfree(tconn->int_dig_vv);
2296 kfree(tconn);
2297 }
2298
2299 enum drbd_ret_code conn_new_minor(struct drbd_tconn *tconn, unsigned int minor, int vnr)
2300 {
2301 struct drbd_conf *mdev;
2302 struct gendisk *disk;
2303 struct request_queue *q;
2304 int vnr_got = vnr;
2305 int minor_got = minor;
2306 enum drbd_ret_code err = ERR_NOMEM;
2307
2308 mdev = minor_to_mdev(minor);
2309 if (mdev)
2310 return ERR_MINOR_EXISTS;
2311
2312 /* GFP_KERNEL, we are outside of all write-out paths */
2313 mdev = kzalloc(sizeof(struct drbd_conf), GFP_KERNEL);
2314 if (!mdev)
2315 return ERR_NOMEM;
2316
2317 mdev->tconn = tconn;
2318 mdev->minor = minor;
2319 mdev->vnr = vnr;
2320
2321 drbd_init_set_defaults(mdev);
2322
2323 q = blk_alloc_queue(GFP_KERNEL);
2324 if (!q)
2325 goto out_no_q;
2326 mdev->rq_queue = q;
2327 q->queuedata = mdev;
2328
2329 disk = alloc_disk(1);
2330 if (!disk)
2331 goto out_no_disk;
2332 mdev->vdisk = disk;
2333
2334 set_disk_ro(disk, true);
2335
2336 disk->queue = q;
2337 disk->major = DRBD_MAJOR;
2338 disk->first_minor = minor;
2339 disk->fops = &drbd_ops;
2340 sprintf(disk->disk_name, "drbd%d", minor);
2341 disk->private_data = mdev;
2342
2343 mdev->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2344 /* we have no partitions. we contain only ourselves. */
2345 mdev->this_bdev->bd_contains = mdev->this_bdev;
2346
2347 q->backing_dev_info.congested_fn = drbd_congested;
2348 q->backing_dev_info.congested_data = mdev;
2349
2350 blk_queue_make_request(q, drbd_make_request);
2351 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2352 This triggers a max_bio_size message upon first attach or connect */
2353 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2354 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2355 blk_queue_merge_bvec(q, drbd_merge_bvec);
2356 q->queue_lock = &mdev->tconn->req_lock; /* needed since we use */
2357
2358 mdev->md_io_page = alloc_page(GFP_KERNEL);
2359 if (!mdev->md_io_page)
2360 goto out_no_io_page;
2361
2362 if (drbd_bm_init(mdev))
2363 goto out_no_bitmap;
2364 mdev->read_requests = RB_ROOT;
2365 mdev->write_requests = RB_ROOT;
2366
2367 mdev->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2368 if (!mdev->current_epoch)
2369 goto out_no_epoch;
2370
2371 INIT_LIST_HEAD(&mdev->current_epoch->list);
2372 mdev->epochs = 1;
2373
2374 if (!idr_pre_get(&minors, GFP_KERNEL))
2375 goto out_no_minor_idr;
2376 if (idr_get_new_above(&minors, mdev, minor, &minor_got))
2377 goto out_no_minor_idr;
2378 if (minor_got != minor) {
2379 err = ERR_MINOR_EXISTS;
2380 drbd_msg_put_info("requested minor exists already");
2381 goto out_idr_remove_minor;
2382 }
2383
2384 if (!idr_pre_get(&tconn->volumes, GFP_KERNEL))
2385 goto out_idr_remove_minor;
2386 if (idr_get_new_above(&tconn->volumes, mdev, vnr, &vnr_got))
2387 goto out_idr_remove_minor;
2388 if (vnr_got != vnr) {
2389 err = ERR_INVALID_REQUEST;
2390 drbd_msg_put_info("requested volume exists already");
2391 goto out_idr_remove_vol;
2392 }
2393 add_disk(disk);
2394
2395 /* inherit the connection state */
2396 mdev->state.conn = tconn->cstate;
2397 if (mdev->state.conn == C_WF_REPORT_PARAMS)
2398 drbd_connected(vnr, mdev, tconn);
2399
2400 return NO_ERROR;
2401
2402 out_idr_remove_vol:
2403 idr_remove(&tconn->volumes, vnr_got);
2404 out_idr_remove_minor:
2405 idr_remove(&minors, minor_got);
2406 synchronize_rcu();
2407 out_no_minor_idr:
2408 kfree(mdev->current_epoch);
2409 out_no_epoch:
2410 drbd_bm_cleanup(mdev);
2411 out_no_bitmap:
2412 __free_page(mdev->md_io_page);
2413 out_no_io_page:
2414 put_disk(disk);
2415 out_no_disk:
2416 blk_cleanup_queue(q);
2417 out_no_q:
2418 kfree(mdev);
2419 return err;
2420 }
2421
2422 /* counterpart of drbd_new_device.
2423 * last part of drbd_delete_device. */
2424 void drbd_free_mdev(struct drbd_conf *mdev)
2425 {
2426 kfree(mdev->current_epoch);
2427 if (mdev->bitmap) /* should no longer be there. */
2428 drbd_bm_cleanup(mdev);
2429 __free_page(mdev->md_io_page);
2430 put_disk(mdev->vdisk);
2431 blk_cleanup_queue(mdev->rq_queue);
2432 kfree(mdev);
2433 }
2434
2435
2436 int __init drbd_init(void)
2437 {
2438 int err;
2439
2440 BUILD_BUG_ON(sizeof(struct p_header80) != sizeof(struct p_header95));
2441 BUILD_BUG_ON(sizeof(struct p_handshake) != 80);
2442
2443 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2444 printk(KERN_ERR
2445 "drbd: invalid minor_count (%d)\n", minor_count);
2446 #ifdef MODULE
2447 return -EINVAL;
2448 #else
2449 minor_count = 8;
2450 #endif
2451 }
2452
2453 err = register_blkdev(DRBD_MAJOR, "drbd");
2454 if (err) {
2455 printk(KERN_ERR
2456 "drbd: unable to register block device major %d\n",
2457 DRBD_MAJOR);
2458 return err;
2459 }
2460
2461 err = drbd_genl_register();
2462 if (err) {
2463 printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2464 goto fail;
2465 }
2466
2467
2468 register_reboot_notifier(&drbd_notifier);
2469
2470 /*
2471 * allocate all necessary structs
2472 */
2473 err = -ENOMEM;
2474
2475 init_waitqueue_head(&drbd_pp_wait);
2476
2477 drbd_proc = NULL; /* play safe for drbd_cleanup */
2478 idr_init(&minors);
2479
2480 err = drbd_create_mempools();
2481 if (err)
2482 goto fail;
2483
2484 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2485 if (!drbd_proc) {
2486 printk(KERN_ERR "drbd: unable to register proc file\n");
2487 goto fail;
2488 }
2489
2490 rwlock_init(&global_state_lock);
2491 INIT_LIST_HEAD(&drbd_tconns);
2492
2493 printk(KERN_INFO "drbd: initialized. "
2494 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2495 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2496 printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2497 printk(KERN_INFO "drbd: registered as block device major %d\n",
2498 DRBD_MAJOR);
2499
2500 return 0; /* Success! */
2501
2502 fail:
2503 drbd_cleanup();
2504 if (err == -ENOMEM)
2505 /* currently always the case */
2506 printk(KERN_ERR "drbd: ran out of memory\n");
2507 else
2508 printk(KERN_ERR "drbd: initialization failure\n");
2509 return err;
2510 }
2511
2512 void drbd_free_bc(struct drbd_backing_dev *ldev)
2513 {
2514 if (ldev == NULL)
2515 return;
2516
2517 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2518 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2519
2520 kfree(ldev);
2521 }
2522
2523 void drbd_free_sock(struct drbd_tconn *tconn)
2524 {
2525 if (tconn->data.socket) {
2526 mutex_lock(&tconn->data.mutex);
2527 kernel_sock_shutdown(tconn->data.socket, SHUT_RDWR);
2528 sock_release(tconn->data.socket);
2529 tconn->data.socket = NULL;
2530 mutex_unlock(&tconn->data.mutex);
2531 }
2532 if (tconn->meta.socket) {
2533 mutex_lock(&tconn->meta.mutex);
2534 kernel_sock_shutdown(tconn->meta.socket, SHUT_RDWR);
2535 sock_release(tconn->meta.socket);
2536 tconn->meta.socket = NULL;
2537 mutex_unlock(&tconn->meta.mutex);
2538 }
2539 }
2540
2541
2542 void drbd_free_resources(struct drbd_conf *mdev)
2543 {
2544 crypto_free_hash(mdev->tconn->csums_tfm);
2545 mdev->tconn->csums_tfm = NULL;
2546 crypto_free_hash(mdev->tconn->verify_tfm);
2547 mdev->tconn->verify_tfm = NULL;
2548 crypto_free_hash(mdev->tconn->cram_hmac_tfm);
2549 mdev->tconn->cram_hmac_tfm = NULL;
2550 crypto_free_hash(mdev->tconn->integrity_w_tfm);
2551 mdev->tconn->integrity_w_tfm = NULL;
2552 crypto_free_hash(mdev->tconn->integrity_r_tfm);
2553 mdev->tconn->integrity_r_tfm = NULL;
2554
2555 drbd_free_sock(mdev->tconn);
2556
2557 __no_warn(local,
2558 drbd_free_bc(mdev->ldev);
2559 mdev->ldev = NULL;);
2560 }
2561
2562 /* meta data management */
2563
2564 struct meta_data_on_disk {
2565 u64 la_size; /* last agreed size. */
2566 u64 uuid[UI_SIZE]; /* UUIDs. */
2567 u64 device_uuid;
2568 u64 reserved_u64_1;
2569 u32 flags; /* MDF */
2570 u32 magic;
2571 u32 md_size_sect;
2572 u32 al_offset; /* offset to this block */
2573 u32 al_nr_extents; /* important for restoring the AL */
2574 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2575 u32 bm_offset; /* offset to the bitmap, from here */
2576 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2577 u32 la_peer_max_bio_size; /* last peer max_bio_size */
2578 u32 reserved_u32[3];
2579
2580 } __packed;
2581
2582 /**
2583 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
2584 * @mdev: DRBD device.
2585 */
2586 void drbd_md_sync(struct drbd_conf *mdev)
2587 {
2588 struct meta_data_on_disk *buffer;
2589 sector_t sector;
2590 int i;
2591
2592 del_timer(&mdev->md_sync_timer);
2593 /* timer may be rearmed by drbd_md_mark_dirty() now. */
2594 if (!test_and_clear_bit(MD_DIRTY, &mdev->flags))
2595 return;
2596
2597 /* We use here D_FAILED and not D_ATTACHING because we try to write
2598 * metadata even if we detach due to a disk failure! */
2599 if (!get_ldev_if_state(mdev, D_FAILED))
2600 return;
2601
2602 mutex_lock(&mdev->md_io_mutex);
2603 buffer = (struct meta_data_on_disk *)page_address(mdev->md_io_page);
2604 memset(buffer, 0, 512);
2605
2606 buffer->la_size = cpu_to_be64(drbd_get_capacity(mdev->this_bdev));
2607 for (i = UI_CURRENT; i < UI_SIZE; i++)
2608 buffer->uuid[i] = cpu_to_be64(mdev->ldev->md.uuid[i]);
2609 buffer->flags = cpu_to_be32(mdev->ldev->md.flags);
2610 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC);
2611
2612 buffer->md_size_sect = cpu_to_be32(mdev->ldev->md.md_size_sect);
2613 buffer->al_offset = cpu_to_be32(mdev->ldev->md.al_offset);
2614 buffer->al_nr_extents = cpu_to_be32(mdev->act_log->nr_elements);
2615 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
2616 buffer->device_uuid = cpu_to_be64(mdev->ldev->md.device_uuid);
2617
2618 buffer->bm_offset = cpu_to_be32(mdev->ldev->md.bm_offset);
2619 buffer->la_peer_max_bio_size = cpu_to_be32(mdev->peer_max_bio_size);
2620
2621 D_ASSERT(drbd_md_ss__(mdev, mdev->ldev) == mdev->ldev->md.md_offset);
2622 sector = mdev->ldev->md.md_offset;
2623
2624 if (!drbd_md_sync_page_io(mdev, mdev->ldev, sector, WRITE)) {
2625 /* this was a try anyways ... */
2626 dev_err(DEV, "meta data update failed!\n");
2627 drbd_chk_io_error(mdev, 1, true);
2628 }
2629
2630 /* Update mdev->ldev->md.la_size_sect,
2631 * since we updated it on metadata. */
2632 mdev->ldev->md.la_size_sect = drbd_get_capacity(mdev->this_bdev);
2633
2634 mutex_unlock(&mdev->md_io_mutex);
2635 put_ldev(mdev);
2636 }
2637
2638 /**
2639 * drbd_md_read() - Reads in the meta data super block
2640 * @mdev: DRBD device.
2641 * @bdev: Device from which the meta data should be read in.
2642 *
2643 * Return 0 (NO_ERROR) on success, and an enum drbd_ret_code in case
2644 * something goes wrong. Currently only: ERR_IO_MD_DISK, ERR_MD_INVALID.
2645 */
2646 int drbd_md_read(struct drbd_conf *mdev, struct drbd_backing_dev *bdev)
2647 {
2648 struct meta_data_on_disk *buffer;
2649 int i, rv = NO_ERROR;
2650
2651 if (!get_ldev_if_state(mdev, D_ATTACHING))
2652 return ERR_IO_MD_DISK;
2653
2654 mutex_lock(&mdev->md_io_mutex);
2655 buffer = (struct meta_data_on_disk *)page_address(mdev->md_io_page);
2656
2657 if (!drbd_md_sync_page_io(mdev, bdev, bdev->md.md_offset, READ)) {
2658 /* NOTE: can't do normal error processing here as this is
2659 called BEFORE disk is attached */
2660 dev_err(DEV, "Error while reading metadata.\n");
2661 rv = ERR_IO_MD_DISK;
2662 goto err;
2663 }
2664
2665 if (buffer->magic != cpu_to_be32(DRBD_MD_MAGIC)) {
2666 dev_err(DEV, "Error while reading metadata, magic not found.\n");
2667 rv = ERR_MD_INVALID;
2668 goto err;
2669 }
2670 if (be32_to_cpu(buffer->al_offset) != bdev->md.al_offset) {
2671 dev_err(DEV, "unexpected al_offset: %d (expected %d)\n",
2672 be32_to_cpu(buffer->al_offset), bdev->md.al_offset);
2673 rv = ERR_MD_INVALID;
2674 goto err;
2675 }
2676 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
2677 dev_err(DEV, "unexpected bm_offset: %d (expected %d)\n",
2678 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
2679 rv = ERR_MD_INVALID;
2680 goto err;
2681 }
2682 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
2683 dev_err(DEV, "unexpected md_size: %u (expected %u)\n",
2684 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
2685 rv = ERR_MD_INVALID;
2686 goto err;
2687 }
2688
2689 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
2690 dev_err(DEV, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
2691 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
2692 rv = ERR_MD_INVALID;
2693 goto err;
2694 }
2695
2696 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size);
2697 for (i = UI_CURRENT; i < UI_SIZE; i++)
2698 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
2699 bdev->md.flags = be32_to_cpu(buffer->flags);
2700 bdev->dc.al_extents = be32_to_cpu(buffer->al_nr_extents);
2701 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
2702
2703 spin_lock_irq(&mdev->tconn->req_lock);
2704 if (mdev->state.conn < C_CONNECTED) {
2705 int peer;
2706 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
2707 peer = max_t(int, peer, DRBD_MAX_BIO_SIZE_SAFE);
2708 mdev->peer_max_bio_size = peer;
2709 }
2710 spin_unlock_irq(&mdev->tconn->req_lock);
2711
2712 if (bdev->dc.al_extents < 7)
2713 bdev->dc.al_extents = 127;
2714
2715 err:
2716 mutex_unlock(&mdev->md_io_mutex);
2717 put_ldev(mdev);
2718
2719 return rv;
2720 }
2721
2722 /**
2723 * drbd_md_mark_dirty() - Mark meta data super block as dirty
2724 * @mdev: DRBD device.
2725 *
2726 * Call this function if you change anything that should be written to
2727 * the meta-data super block. This function sets MD_DIRTY, and starts a
2728 * timer that ensures that within five seconds you have to call drbd_md_sync().
2729 */
2730 #ifdef DEBUG
2731 void drbd_md_mark_dirty_(struct drbd_conf *mdev, unsigned int line, const char *func)
2732 {
2733 if (!test_and_set_bit(MD_DIRTY, &mdev->flags)) {
2734 mod_timer(&mdev->md_sync_timer, jiffies + HZ);
2735 mdev->last_md_mark_dirty.line = line;
2736 mdev->last_md_mark_dirty.func = func;
2737 }
2738 }
2739 #else
2740 void drbd_md_mark_dirty(struct drbd_conf *mdev)
2741 {
2742 if (!test_and_set_bit(MD_DIRTY, &mdev->flags))
2743 mod_timer(&mdev->md_sync_timer, jiffies + 5*HZ);
2744 }
2745 #endif
2746
2747 static void drbd_uuid_move_history(struct drbd_conf *mdev) __must_hold(local)
2748 {
2749 int i;
2750
2751 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
2752 mdev->ldev->md.uuid[i+1] = mdev->ldev->md.uuid[i];
2753 }
2754
2755 void _drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
2756 {
2757 if (idx == UI_CURRENT) {
2758 if (mdev->state.role == R_PRIMARY)
2759 val |= 1;
2760 else
2761 val &= ~((u64)1);
2762
2763 drbd_set_ed_uuid(mdev, val);
2764 }
2765
2766 mdev->ldev->md.uuid[idx] = val;
2767 drbd_md_mark_dirty(mdev);
2768 }
2769
2770
2771 void drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
2772 {
2773 if (mdev->ldev->md.uuid[idx]) {
2774 drbd_uuid_move_history(mdev);
2775 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[idx];
2776 }
2777 _drbd_uuid_set(mdev, idx, val);
2778 }
2779
2780 /**
2781 * drbd_uuid_new_current() - Creates a new current UUID
2782 * @mdev: DRBD device.
2783 *
2784 * Creates a new current UUID, and rotates the old current UUID into
2785 * the bitmap slot. Causes an incremental resync upon next connect.
2786 */
2787 void drbd_uuid_new_current(struct drbd_conf *mdev) __must_hold(local)
2788 {
2789 u64 val;
2790 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
2791
2792 if (bm_uuid)
2793 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
2794
2795 mdev->ldev->md.uuid[UI_BITMAP] = mdev->ldev->md.uuid[UI_CURRENT];
2796
2797 get_random_bytes(&val, sizeof(u64));
2798 _drbd_uuid_set(mdev, UI_CURRENT, val);
2799 drbd_print_uuids(mdev, "new current UUID");
2800 /* get it to stable storage _now_ */
2801 drbd_md_sync(mdev);
2802 }
2803
2804 void drbd_uuid_set_bm(struct drbd_conf *mdev, u64 val) __must_hold(local)
2805 {
2806 if (mdev->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
2807 return;
2808
2809 if (val == 0) {
2810 drbd_uuid_move_history(mdev);
2811 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[UI_BITMAP];
2812 mdev->ldev->md.uuid[UI_BITMAP] = 0;
2813 } else {
2814 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
2815 if (bm_uuid)
2816 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
2817
2818 mdev->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
2819 }
2820 drbd_md_mark_dirty(mdev);
2821 }
2822
2823 /**
2824 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
2825 * @mdev: DRBD device.
2826 *
2827 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
2828 */
2829 int drbd_bmio_set_n_write(struct drbd_conf *mdev)
2830 {
2831 int rv = -EIO;
2832
2833 if (get_ldev_if_state(mdev, D_ATTACHING)) {
2834 drbd_md_set_flag(mdev, MDF_FULL_SYNC);
2835 drbd_md_sync(mdev);
2836 drbd_bm_set_all(mdev);
2837
2838 rv = drbd_bm_write(mdev);
2839
2840 if (!rv) {
2841 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
2842 drbd_md_sync(mdev);
2843 }
2844
2845 put_ldev(mdev);
2846 }
2847
2848 return rv;
2849 }
2850
2851 /**
2852 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
2853 * @mdev: DRBD device.
2854 *
2855 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
2856 */
2857 int drbd_bmio_clear_n_write(struct drbd_conf *mdev)
2858 {
2859 int rv = -EIO;
2860
2861 drbd_resume_al(mdev);
2862 if (get_ldev_if_state(mdev, D_ATTACHING)) {
2863 drbd_bm_clear_all(mdev);
2864 rv = drbd_bm_write(mdev);
2865 put_ldev(mdev);
2866 }
2867
2868 return rv;
2869 }
2870
2871 static int w_bitmap_io(struct drbd_work *w, int unused)
2872 {
2873 struct bm_io_work *work = container_of(w, struct bm_io_work, w);
2874 struct drbd_conf *mdev = w->mdev;
2875 int rv = -EIO;
2876
2877 D_ASSERT(atomic_read(&mdev->ap_bio_cnt) == 0);
2878
2879 if (get_ldev(mdev)) {
2880 drbd_bm_lock(mdev, work->why, work->flags);
2881 rv = work->io_fn(mdev);
2882 drbd_bm_unlock(mdev);
2883 put_ldev(mdev);
2884 }
2885
2886 clear_bit_unlock(BITMAP_IO, &mdev->flags);
2887 wake_up(&mdev->misc_wait);
2888
2889 if (work->done)
2890 work->done(mdev, rv);
2891
2892 clear_bit(BITMAP_IO_QUEUED, &mdev->flags);
2893 work->why = NULL;
2894 work->flags = 0;
2895
2896 return 1;
2897 }
2898
2899 void drbd_ldev_destroy(struct drbd_conf *mdev)
2900 {
2901 lc_destroy(mdev->resync);
2902 mdev->resync = NULL;
2903 lc_destroy(mdev->act_log);
2904 mdev->act_log = NULL;
2905 __no_warn(local,
2906 drbd_free_bc(mdev->ldev);
2907 mdev->ldev = NULL;);
2908
2909 clear_bit(GO_DISKLESS, &mdev->flags);
2910 }
2911
2912 static int w_go_diskless(struct drbd_work *w, int unused)
2913 {
2914 struct drbd_conf *mdev = w->mdev;
2915
2916 D_ASSERT(mdev->state.disk == D_FAILED);
2917 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
2918 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
2919 * the protected members anymore, though, so once put_ldev reaches zero
2920 * again, it will be safe to free them. */
2921 drbd_force_state(mdev, NS(disk, D_DISKLESS));
2922 return 1;
2923 }
2924
2925 void drbd_go_diskless(struct drbd_conf *mdev)
2926 {
2927 D_ASSERT(mdev->state.disk == D_FAILED);
2928 if (!test_and_set_bit(GO_DISKLESS, &mdev->flags))
2929 drbd_queue_work(&mdev->tconn->data.work, &mdev->go_diskless);
2930 }
2931
2932 /**
2933 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
2934 * @mdev: DRBD device.
2935 * @io_fn: IO callback to be called when bitmap IO is possible
2936 * @done: callback to be called after the bitmap IO was performed
2937 * @why: Descriptive text of the reason for doing the IO
2938 *
2939 * While IO on the bitmap happens we freeze application IO thus we ensure
2940 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
2941 * called from worker context. It MUST NOT be used while a previous such
2942 * work is still pending!
2943 */
2944 void drbd_queue_bitmap_io(struct drbd_conf *mdev,
2945 int (*io_fn)(struct drbd_conf *),
2946 void (*done)(struct drbd_conf *, int),
2947 char *why, enum bm_flag flags)
2948 {
2949 D_ASSERT(current == mdev->tconn->worker.task);
2950
2951 D_ASSERT(!test_bit(BITMAP_IO_QUEUED, &mdev->flags));
2952 D_ASSERT(!test_bit(BITMAP_IO, &mdev->flags));
2953 D_ASSERT(list_empty(&mdev->bm_io_work.w.list));
2954 if (mdev->bm_io_work.why)
2955 dev_err(DEV, "FIXME going to queue '%s' but '%s' still pending?\n",
2956 why, mdev->bm_io_work.why);
2957
2958 mdev->bm_io_work.io_fn = io_fn;
2959 mdev->bm_io_work.done = done;
2960 mdev->bm_io_work.why = why;
2961 mdev->bm_io_work.flags = flags;
2962
2963 spin_lock_irq(&mdev->tconn->req_lock);
2964 set_bit(BITMAP_IO, &mdev->flags);
2965 if (atomic_read(&mdev->ap_bio_cnt) == 0) {
2966 if (!test_and_set_bit(BITMAP_IO_QUEUED, &mdev->flags))
2967 drbd_queue_work(&mdev->tconn->data.work, &mdev->bm_io_work.w);
2968 }
2969 spin_unlock_irq(&mdev->tconn->req_lock);
2970 }
2971
2972 /**
2973 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
2974 * @mdev: DRBD device.
2975 * @io_fn: IO callback to be called when bitmap IO is possible
2976 * @why: Descriptive text of the reason for doing the IO
2977 *
2978 * freezes application IO while that the actual IO operations runs. This
2979 * functions MAY NOT be called from worker context.
2980 */
2981 int drbd_bitmap_io(struct drbd_conf *mdev, int (*io_fn)(struct drbd_conf *),
2982 char *why, enum bm_flag flags)
2983 {
2984 int rv;
2985
2986 D_ASSERT(current != mdev->tconn->worker.task);
2987
2988 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
2989 drbd_suspend_io(mdev);
2990
2991 drbd_bm_lock(mdev, why, flags);
2992 rv = io_fn(mdev);
2993 drbd_bm_unlock(mdev);
2994
2995 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
2996 drbd_resume_io(mdev);
2997
2998 return rv;
2999 }
3000
3001 void drbd_md_set_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3002 {
3003 if ((mdev->ldev->md.flags & flag) != flag) {
3004 drbd_md_mark_dirty(mdev);
3005 mdev->ldev->md.flags |= flag;
3006 }
3007 }
3008
3009 void drbd_md_clear_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3010 {
3011 if ((mdev->ldev->md.flags & flag) != 0) {
3012 drbd_md_mark_dirty(mdev);
3013 mdev->ldev->md.flags &= ~flag;
3014 }
3015 }
3016 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3017 {
3018 return (bdev->md.flags & flag) != 0;
3019 }
3020
3021 static void md_sync_timer_fn(unsigned long data)
3022 {
3023 struct drbd_conf *mdev = (struct drbd_conf *) data;
3024
3025 drbd_queue_work_front(&mdev->tconn->data.work, &mdev->md_sync_work);
3026 }
3027
3028 static int w_md_sync(struct drbd_work *w, int unused)
3029 {
3030 struct drbd_conf *mdev = w->mdev;
3031
3032 dev_warn(DEV, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3033 #ifdef DEBUG
3034 dev_warn(DEV, "last md_mark_dirty: %s:%u\n",
3035 mdev->last_md_mark_dirty.func, mdev->last_md_mark_dirty.line);
3036 #endif
3037 drbd_md_sync(mdev);
3038 return 1;
3039 }
3040
3041 const char *cmdname(enum drbd_packet cmd)
3042 {
3043 /* THINK may need to become several global tables
3044 * when we want to support more than
3045 * one PRO_VERSION */
3046 static const char *cmdnames[] = {
3047 [P_DATA] = "Data",
3048 [P_DATA_REPLY] = "DataReply",
3049 [P_RS_DATA_REPLY] = "RSDataReply",
3050 [P_BARRIER] = "Barrier",
3051 [P_BITMAP] = "ReportBitMap",
3052 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3053 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3054 [P_UNPLUG_REMOTE] = "UnplugRemote",
3055 [P_DATA_REQUEST] = "DataRequest",
3056 [P_RS_DATA_REQUEST] = "RSDataRequest",
3057 [P_SYNC_PARAM] = "SyncParam",
3058 [P_SYNC_PARAM89] = "SyncParam89",
3059 [P_PROTOCOL] = "ReportProtocol",
3060 [P_UUIDS] = "ReportUUIDs",
3061 [P_SIZES] = "ReportSizes",
3062 [P_STATE] = "ReportState",
3063 [P_SYNC_UUID] = "ReportSyncUUID",
3064 [P_AUTH_CHALLENGE] = "AuthChallenge",
3065 [P_AUTH_RESPONSE] = "AuthResponse",
3066 [P_PING] = "Ping",
3067 [P_PING_ACK] = "PingAck",
3068 [P_RECV_ACK] = "RecvAck",
3069 [P_WRITE_ACK] = "WriteAck",
3070 [P_RS_WRITE_ACK] = "RSWriteAck",
3071 [P_DISCARD_WRITE] = "DiscardWrite",
3072 [P_NEG_ACK] = "NegAck",
3073 [P_NEG_DREPLY] = "NegDReply",
3074 [P_NEG_RS_DREPLY] = "NegRSDReply",
3075 [P_BARRIER_ACK] = "BarrierAck",
3076 [P_STATE_CHG_REQ] = "StateChgRequest",
3077 [P_STATE_CHG_REPLY] = "StateChgReply",
3078 [P_OV_REQUEST] = "OVRequest",
3079 [P_OV_REPLY] = "OVReply",
3080 [P_OV_RESULT] = "OVResult",
3081 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3082 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3083 [P_COMPRESSED_BITMAP] = "CBitmap",
3084 [P_DELAY_PROBE] = "DelayProbe",
3085 [P_OUT_OF_SYNC] = "OutOfSync",
3086 [P_RETRY_WRITE] = "RetryWrite",
3087 };
3088
3089 if (cmd == P_HAND_SHAKE_M)
3090 return "HandShakeM";
3091 if (cmd == P_HAND_SHAKE_S)
3092 return "HandShakeS";
3093 if (cmd == P_HAND_SHAKE)
3094 return "HandShake";
3095 if (cmd >= ARRAY_SIZE(cmdnames))
3096 return "Unknown";
3097 return cmdnames[cmd];
3098 }
3099
3100 /**
3101 * drbd_wait_misc - wait for a request to make progress
3102 * @mdev: device associated with the request
3103 * @i: the struct drbd_interval embedded in struct drbd_request or
3104 * struct drbd_peer_request
3105 */
3106 int drbd_wait_misc(struct drbd_conf *mdev, struct drbd_interval *i)
3107 {
3108 struct net_conf *net_conf = mdev->tconn->net_conf;
3109 DEFINE_WAIT(wait);
3110 long timeout;
3111
3112 if (!net_conf)
3113 return -ETIMEDOUT;
3114 timeout = MAX_SCHEDULE_TIMEOUT;
3115 if (net_conf->ko_count)
3116 timeout = net_conf->timeout * HZ / 10 * net_conf->ko_count;
3117
3118 /* Indicate to wake up mdev->misc_wait on progress. */
3119 i->waiting = true;
3120 prepare_to_wait(&mdev->misc_wait, &wait, TASK_INTERRUPTIBLE);
3121 spin_unlock_irq(&mdev->tconn->req_lock);
3122 timeout = schedule_timeout(timeout);
3123 finish_wait(&mdev->misc_wait, &wait);
3124 spin_lock_irq(&mdev->tconn->req_lock);
3125 if (!timeout || mdev->state.conn < C_CONNECTED)
3126 return -ETIMEDOUT;
3127 if (signal_pending(current))
3128 return -ERESTARTSYS;
3129 return 0;
3130 }
3131
3132 #ifdef CONFIG_DRBD_FAULT_INJECTION
3133 /* Fault insertion support including random number generator shamelessly
3134 * stolen from kernel/rcutorture.c */
3135 struct fault_random_state {
3136 unsigned long state;
3137 unsigned long count;
3138 };
3139
3140 #define FAULT_RANDOM_MULT 39916801 /* prime */
3141 #define FAULT_RANDOM_ADD 479001701 /* prime */
3142 #define FAULT_RANDOM_REFRESH 10000
3143
3144 /*
3145 * Crude but fast random-number generator. Uses a linear congruential
3146 * generator, with occasional help from get_random_bytes().
3147 */
3148 static unsigned long
3149 _drbd_fault_random(struct fault_random_state *rsp)
3150 {
3151 long refresh;
3152
3153 if (!rsp->count--) {
3154 get_random_bytes(&refresh, sizeof(refresh));
3155 rsp->state += refresh;
3156 rsp->count = FAULT_RANDOM_REFRESH;
3157 }
3158 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3159 return swahw32(rsp->state);
3160 }
3161
3162 static char *
3163 _drbd_fault_str(unsigned int type) {
3164 static char *_faults[] = {
3165 [DRBD_FAULT_MD_WR] = "Meta-data write",
3166 [DRBD_FAULT_MD_RD] = "Meta-data read",
3167 [DRBD_FAULT_RS_WR] = "Resync write",
3168 [DRBD_FAULT_RS_RD] = "Resync read",
3169 [DRBD_FAULT_DT_WR] = "Data write",
3170 [DRBD_FAULT_DT_RD] = "Data read",
3171 [DRBD_FAULT_DT_RA] = "Data read ahead",
3172 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3173 [DRBD_FAULT_AL_EE] = "EE allocation",
3174 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3175 };
3176
3177 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3178 }
3179
3180 unsigned int
3181 _drbd_insert_fault(struct drbd_conf *mdev, unsigned int type)
3182 {
3183 static struct fault_random_state rrs = {0, 0};
3184
3185 unsigned int ret = (
3186 (fault_devs == 0 ||
3187 ((1 << mdev_to_minor(mdev)) & fault_devs) != 0) &&
3188 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3189
3190 if (ret) {
3191 fault_count++;
3192
3193 if (__ratelimit(&drbd_ratelimit_state))
3194 dev_warn(DEV, "***Simulating %s failure\n",
3195 _drbd_fault_str(type));
3196 }
3197
3198 return ret;
3199 }
3200 #endif
3201
3202 const char *drbd_buildtag(void)
3203 {
3204 /* DRBD built from external sources has here a reference to the
3205 git hash of the source code. */
3206
3207 static char buildtag[38] = "\0uilt-in";
3208
3209 if (buildtag[0] == 0) {
3210 #ifdef CONFIG_MODULES
3211 if (THIS_MODULE != NULL)
3212 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3213 else
3214 #endif
3215 buildtag[0] = 'b';
3216 }
3217
3218 return buildtag;
3219 }
3220
3221 module_init(drbd_init)
3222 module_exit(drbd_cleanup)
3223
3224 EXPORT_SYMBOL(drbd_conn_str);
3225 EXPORT_SYMBOL(drbd_role_str);
3226 EXPORT_SYMBOL(drbd_disk_str);
3227 EXPORT_SYMBOL(drbd_set_st_err_str);
This page took 0.146826 seconds and 5 git commands to generate.