drbd: Pass a peer device to a number of fuctions
[deliverable/linux.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48 #include <linux/workqueue.h>
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_protocol.h"
56 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
57
58 #include "drbd_vli.h"
59
60 static DEFINE_MUTEX(drbd_main_mutex);
61 static int drbd_open(struct block_device *bdev, fmode_t mode);
62 static void drbd_release(struct gendisk *gd, fmode_t mode);
63 static int w_md_sync(struct drbd_work *w, int unused);
64 static void md_sync_timer_fn(unsigned long data);
65 static int w_bitmap_io(struct drbd_work *w, int unused);
66 static int w_go_diskless(struct drbd_work *w, int unused);
67
68 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
69 "Lars Ellenberg <lars@linbit.com>");
70 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
71 MODULE_VERSION(REL_VERSION);
72 MODULE_LICENSE("GPL");
73 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
74 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
75 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
76
77 #include <linux/moduleparam.h>
78 /* allow_open_on_secondary */
79 MODULE_PARM_DESC(allow_oos, "DONT USE!");
80 /* thanks to these macros, if compiled into the kernel (not-module),
81 * this becomes the boot parameter drbd.minor_count */
82 module_param(minor_count, uint, 0444);
83 module_param(disable_sendpage, bool, 0644);
84 module_param(allow_oos, bool, 0);
85 module_param(proc_details, int, 0644);
86
87 #ifdef CONFIG_DRBD_FAULT_INJECTION
88 int enable_faults;
89 int fault_rate;
90 static int fault_count;
91 int fault_devs;
92 /* bitmap of enabled faults */
93 module_param(enable_faults, int, 0664);
94 /* fault rate % value - applies to all enabled faults */
95 module_param(fault_rate, int, 0664);
96 /* count of faults inserted */
97 module_param(fault_count, int, 0664);
98 /* bitmap of devices to insert faults on */
99 module_param(fault_devs, int, 0644);
100 #endif
101
102 /* module parameter, defined */
103 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
104 bool disable_sendpage;
105 bool allow_oos;
106 int proc_details; /* Detail level in proc drbd*/
107
108 /* Module parameter for setting the user mode helper program
109 * to run. Default is /sbin/drbdadm */
110 char usermode_helper[80] = "/sbin/drbdadm";
111
112 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
113
114 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
115 * as member "struct gendisk *vdisk;"
116 */
117 struct idr drbd_devices;
118 struct list_head drbd_resources;
119
120 struct kmem_cache *drbd_request_cache;
121 struct kmem_cache *drbd_ee_cache; /* peer requests */
122 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
123 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
124 mempool_t *drbd_request_mempool;
125 mempool_t *drbd_ee_mempool;
126 mempool_t *drbd_md_io_page_pool;
127 struct bio_set *drbd_md_io_bio_set;
128
129 /* I do not use a standard mempool, because:
130 1) I want to hand out the pre-allocated objects first.
131 2) I want to be able to interrupt sleeping allocation with a signal.
132 Note: This is a single linked list, the next pointer is the private
133 member of struct page.
134 */
135 struct page *drbd_pp_pool;
136 spinlock_t drbd_pp_lock;
137 int drbd_pp_vacant;
138 wait_queue_head_t drbd_pp_wait;
139
140 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
141
142 static const struct block_device_operations drbd_ops = {
143 .owner = THIS_MODULE,
144 .open = drbd_open,
145 .release = drbd_release,
146 };
147
148 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
149 {
150 struct bio *bio;
151
152 if (!drbd_md_io_bio_set)
153 return bio_alloc(gfp_mask, 1);
154
155 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
156 if (!bio)
157 return NULL;
158 return bio;
159 }
160
161 #ifdef __CHECKER__
162 /* When checking with sparse, and this is an inline function, sparse will
163 give tons of false positives. When this is a real functions sparse works.
164 */
165 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
166 {
167 int io_allowed;
168
169 atomic_inc(&device->local_cnt);
170 io_allowed = (device->state.disk >= mins);
171 if (!io_allowed) {
172 if (atomic_dec_and_test(&device->local_cnt))
173 wake_up(&device->misc_wait);
174 }
175 return io_allowed;
176 }
177
178 #endif
179
180 /**
181 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
182 * @connection: DRBD connection.
183 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
184 * @set_size: Expected number of requests before that barrier.
185 *
186 * In case the passed barrier_nr or set_size does not match the oldest
187 * epoch of not yet barrier-acked requests, this function will cause a
188 * termination of the connection.
189 */
190 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
191 unsigned int set_size)
192 {
193 struct drbd_request *r;
194 struct drbd_request *req = NULL;
195 int expect_epoch = 0;
196 int expect_size = 0;
197
198 spin_lock_irq(&connection->resource->req_lock);
199
200 /* find oldest not yet barrier-acked write request,
201 * count writes in its epoch. */
202 list_for_each_entry(r, &connection->transfer_log, tl_requests) {
203 const unsigned s = r->rq_state;
204 if (!req) {
205 if (!(s & RQ_WRITE))
206 continue;
207 if (!(s & RQ_NET_MASK))
208 continue;
209 if (s & RQ_NET_DONE)
210 continue;
211 req = r;
212 expect_epoch = req->epoch;
213 expect_size ++;
214 } else {
215 if (r->epoch != expect_epoch)
216 break;
217 if (!(s & RQ_WRITE))
218 continue;
219 /* if (s & RQ_DONE): not expected */
220 /* if (!(s & RQ_NET_MASK)): not expected */
221 expect_size++;
222 }
223 }
224
225 /* first some paranoia code */
226 if (req == NULL) {
227 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
228 barrier_nr);
229 goto bail;
230 }
231 if (expect_epoch != barrier_nr) {
232 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
233 barrier_nr, expect_epoch);
234 goto bail;
235 }
236
237 if (expect_size != set_size) {
238 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
239 barrier_nr, set_size, expect_size);
240 goto bail;
241 }
242
243 /* Clean up list of requests processed during current epoch. */
244 /* this extra list walk restart is paranoia,
245 * to catch requests being barrier-acked "unexpectedly".
246 * It usually should find the same req again, or some READ preceding it. */
247 list_for_each_entry(req, &connection->transfer_log, tl_requests)
248 if (req->epoch == expect_epoch)
249 break;
250 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
251 if (req->epoch != expect_epoch)
252 break;
253 _req_mod(req, BARRIER_ACKED);
254 }
255 spin_unlock_irq(&connection->resource->req_lock);
256
257 return;
258
259 bail:
260 spin_unlock_irq(&connection->resource->req_lock);
261 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
262 }
263
264
265 /**
266 * _tl_restart() - Walks the transfer log, and applies an action to all requests
267 * @device: DRBD device.
268 * @what: The action/event to perform with all request objects
269 *
270 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
271 * RESTART_FROZEN_DISK_IO.
272 */
273 /* must hold resource->req_lock */
274 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
275 {
276 struct drbd_request *req, *r;
277
278 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
279 _req_mod(req, what);
280 }
281
282 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
283 {
284 spin_lock_irq(&connection->resource->req_lock);
285 _tl_restart(connection, what);
286 spin_unlock_irq(&connection->resource->req_lock);
287 }
288
289 /**
290 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
291 * @device: DRBD device.
292 *
293 * This is called after the connection to the peer was lost. The storage covered
294 * by the requests on the transfer gets marked as our of sync. Called from the
295 * receiver thread and the worker thread.
296 */
297 void tl_clear(struct drbd_connection *connection)
298 {
299 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
300 }
301
302 /**
303 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
304 * @device: DRBD device.
305 */
306 void tl_abort_disk_io(struct drbd_device *device)
307 {
308 struct drbd_connection *connection = first_peer_device(device)->connection;
309 struct drbd_request *req, *r;
310
311 spin_lock_irq(&connection->resource->req_lock);
312 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
313 if (!(req->rq_state & RQ_LOCAL_PENDING))
314 continue;
315 if (req->w.device != device)
316 continue;
317 _req_mod(req, ABORT_DISK_IO);
318 }
319 spin_unlock_irq(&connection->resource->req_lock);
320 }
321
322 static int drbd_thread_setup(void *arg)
323 {
324 struct drbd_thread *thi = (struct drbd_thread *) arg;
325 struct drbd_connection *connection = thi->connection;
326 unsigned long flags;
327 int retval;
328
329 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
330 thi->name[0],
331 thi->connection->resource->name);
332
333 restart:
334 retval = thi->function(thi);
335
336 spin_lock_irqsave(&thi->t_lock, flags);
337
338 /* if the receiver has been "EXITING", the last thing it did
339 * was set the conn state to "StandAlone",
340 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
341 * and receiver thread will be "started".
342 * drbd_thread_start needs to set "RESTARTING" in that case.
343 * t_state check and assignment needs to be within the same spinlock,
344 * so either thread_start sees EXITING, and can remap to RESTARTING,
345 * or thread_start see NONE, and can proceed as normal.
346 */
347
348 if (thi->t_state == RESTARTING) {
349 drbd_info(connection, "Restarting %s thread\n", thi->name);
350 thi->t_state = RUNNING;
351 spin_unlock_irqrestore(&thi->t_lock, flags);
352 goto restart;
353 }
354
355 thi->task = NULL;
356 thi->t_state = NONE;
357 smp_mb();
358 complete_all(&thi->stop);
359 spin_unlock_irqrestore(&thi->t_lock, flags);
360
361 drbd_info(connection, "Terminating %s\n", current->comm);
362
363 /* Release mod reference taken when thread was started */
364
365 kref_put(&connection->kref, drbd_destroy_connection);
366 module_put(THIS_MODULE);
367 return retval;
368 }
369
370 static void drbd_thread_init(struct drbd_connection *connection, struct drbd_thread *thi,
371 int (*func) (struct drbd_thread *), char *name)
372 {
373 spin_lock_init(&thi->t_lock);
374 thi->task = NULL;
375 thi->t_state = NONE;
376 thi->function = func;
377 thi->connection = connection;
378 strncpy(thi->name, name, ARRAY_SIZE(thi->name));
379 }
380
381 int drbd_thread_start(struct drbd_thread *thi)
382 {
383 struct drbd_connection *connection = thi->connection;
384 struct task_struct *nt;
385 unsigned long flags;
386
387 /* is used from state engine doing drbd_thread_stop_nowait,
388 * while holding the req lock irqsave */
389 spin_lock_irqsave(&thi->t_lock, flags);
390
391 switch (thi->t_state) {
392 case NONE:
393 drbd_info(connection, "Starting %s thread (from %s [%d])\n",
394 thi->name, current->comm, current->pid);
395
396 /* Get ref on module for thread - this is released when thread exits */
397 if (!try_module_get(THIS_MODULE)) {
398 drbd_err(connection, "Failed to get module reference in drbd_thread_start\n");
399 spin_unlock_irqrestore(&thi->t_lock, flags);
400 return false;
401 }
402
403 kref_get(&thi->connection->kref);
404
405 init_completion(&thi->stop);
406 thi->reset_cpu_mask = 1;
407 thi->t_state = RUNNING;
408 spin_unlock_irqrestore(&thi->t_lock, flags);
409 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
410
411 nt = kthread_create(drbd_thread_setup, (void *) thi,
412 "drbd_%c_%s", thi->name[0], thi->connection->resource->name);
413
414 if (IS_ERR(nt)) {
415 drbd_err(connection, "Couldn't start thread\n");
416
417 kref_put(&connection->kref, drbd_destroy_connection);
418 module_put(THIS_MODULE);
419 return false;
420 }
421 spin_lock_irqsave(&thi->t_lock, flags);
422 thi->task = nt;
423 thi->t_state = RUNNING;
424 spin_unlock_irqrestore(&thi->t_lock, flags);
425 wake_up_process(nt);
426 break;
427 case EXITING:
428 thi->t_state = RESTARTING;
429 drbd_info(connection, "Restarting %s thread (from %s [%d])\n",
430 thi->name, current->comm, current->pid);
431 /* fall through */
432 case RUNNING:
433 case RESTARTING:
434 default:
435 spin_unlock_irqrestore(&thi->t_lock, flags);
436 break;
437 }
438
439 return true;
440 }
441
442
443 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
444 {
445 unsigned long flags;
446
447 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
448
449 /* may be called from state engine, holding the req lock irqsave */
450 spin_lock_irqsave(&thi->t_lock, flags);
451
452 if (thi->t_state == NONE) {
453 spin_unlock_irqrestore(&thi->t_lock, flags);
454 if (restart)
455 drbd_thread_start(thi);
456 return;
457 }
458
459 if (thi->t_state != ns) {
460 if (thi->task == NULL) {
461 spin_unlock_irqrestore(&thi->t_lock, flags);
462 return;
463 }
464
465 thi->t_state = ns;
466 smp_mb();
467 init_completion(&thi->stop);
468 if (thi->task != current)
469 force_sig(DRBD_SIGKILL, thi->task);
470 }
471
472 spin_unlock_irqrestore(&thi->t_lock, flags);
473
474 if (wait)
475 wait_for_completion(&thi->stop);
476 }
477
478 static struct drbd_thread *drbd_task_to_thread(struct drbd_connection *connection, struct task_struct *task)
479 {
480 struct drbd_thread *thi =
481 task == connection->receiver.task ? &connection->receiver :
482 task == connection->asender.task ? &connection->asender :
483 task == connection->worker.task ? &connection->worker : NULL;
484
485 return thi;
486 }
487
488 char *drbd_task_to_thread_name(struct drbd_connection *connection, struct task_struct *task)
489 {
490 struct drbd_thread *thi = drbd_task_to_thread(connection, task);
491 return thi ? thi->name : task->comm;
492 }
493
494 int conn_lowest_minor(struct drbd_connection *connection)
495 {
496 struct drbd_peer_device *peer_device;
497 int vnr = 0, minor = -1;
498
499 rcu_read_lock();
500 peer_device = idr_get_next(&connection->peer_devices, &vnr);
501 if (peer_device)
502 minor = device_to_minor(peer_device->device);
503 rcu_read_unlock();
504
505 return minor;
506 }
507
508 #ifdef CONFIG_SMP
509 /**
510 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
511 *
512 * Forces all threads of a resource onto the same CPU. This is beneficial for
513 * DRBD's performance. May be overwritten by user's configuration.
514 */
515 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
516 {
517 unsigned int *resources_per_cpu, min_index = ~0;
518
519 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
520 if (resources_per_cpu) {
521 struct drbd_resource *resource;
522 unsigned int cpu, min = ~0;
523
524 rcu_read_lock();
525 for_each_resource_rcu(resource, &drbd_resources) {
526 for_each_cpu(cpu, resource->cpu_mask)
527 resources_per_cpu[cpu]++;
528 }
529 rcu_read_unlock();
530 for_each_online_cpu(cpu) {
531 if (resources_per_cpu[cpu] < min) {
532 min = resources_per_cpu[cpu];
533 min_index = cpu;
534 }
535 }
536 kfree(resources_per_cpu);
537 }
538 if (min_index == ~0) {
539 cpumask_setall(*cpu_mask);
540 return;
541 }
542 cpumask_set_cpu(min_index, *cpu_mask);
543 }
544
545 /**
546 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
547 * @device: DRBD device.
548 * @thi: drbd_thread object
549 *
550 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
551 * prematurely.
552 */
553 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
554 {
555 struct task_struct *p = current;
556
557 if (!thi->reset_cpu_mask)
558 return;
559 thi->reset_cpu_mask = 0;
560 set_cpus_allowed_ptr(p, thi->connection->resource->cpu_mask);
561 }
562 #else
563 #define drbd_calc_cpu_mask(A) ({})
564 #endif
565
566 /**
567 * drbd_header_size - size of a packet header
568 *
569 * The header size is a multiple of 8, so any payload following the header is
570 * word aligned on 64-bit architectures. (The bitmap send and receive code
571 * relies on this.)
572 */
573 unsigned int drbd_header_size(struct drbd_connection *connection)
574 {
575 if (connection->agreed_pro_version >= 100) {
576 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
577 return sizeof(struct p_header100);
578 } else {
579 BUILD_BUG_ON(sizeof(struct p_header80) !=
580 sizeof(struct p_header95));
581 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
582 return sizeof(struct p_header80);
583 }
584 }
585
586 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
587 {
588 h->magic = cpu_to_be32(DRBD_MAGIC);
589 h->command = cpu_to_be16(cmd);
590 h->length = cpu_to_be16(size);
591 return sizeof(struct p_header80);
592 }
593
594 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
595 {
596 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
597 h->command = cpu_to_be16(cmd);
598 h->length = cpu_to_be32(size);
599 return sizeof(struct p_header95);
600 }
601
602 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
603 int size, int vnr)
604 {
605 h->magic = cpu_to_be32(DRBD_MAGIC_100);
606 h->volume = cpu_to_be16(vnr);
607 h->command = cpu_to_be16(cmd);
608 h->length = cpu_to_be32(size);
609 h->pad = 0;
610 return sizeof(struct p_header100);
611 }
612
613 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
614 void *buffer, enum drbd_packet cmd, int size)
615 {
616 if (connection->agreed_pro_version >= 100)
617 return prepare_header100(buffer, cmd, size, vnr);
618 else if (connection->agreed_pro_version >= 95 &&
619 size > DRBD_MAX_SIZE_H80_PACKET)
620 return prepare_header95(buffer, cmd, size);
621 else
622 return prepare_header80(buffer, cmd, size);
623 }
624
625 static void *__conn_prepare_command(struct drbd_connection *connection,
626 struct drbd_socket *sock)
627 {
628 if (!sock->socket)
629 return NULL;
630 return sock->sbuf + drbd_header_size(connection);
631 }
632
633 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
634 {
635 void *p;
636
637 mutex_lock(&sock->mutex);
638 p = __conn_prepare_command(connection, sock);
639 if (!p)
640 mutex_unlock(&sock->mutex);
641
642 return p;
643 }
644
645 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
646 {
647 return conn_prepare_command(peer_device->connection, sock);
648 }
649
650 static int __send_command(struct drbd_connection *connection, int vnr,
651 struct drbd_socket *sock, enum drbd_packet cmd,
652 unsigned int header_size, void *data,
653 unsigned int size)
654 {
655 int msg_flags;
656 int err;
657
658 /*
659 * Called with @data == NULL and the size of the data blocks in @size
660 * for commands that send data blocks. For those commands, omit the
661 * MSG_MORE flag: this will increase the likelihood that data blocks
662 * which are page aligned on the sender will end up page aligned on the
663 * receiver.
664 */
665 msg_flags = data ? MSG_MORE : 0;
666
667 header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
668 header_size + size);
669 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
670 msg_flags);
671 if (data && !err)
672 err = drbd_send_all(connection, sock->socket, data, size, 0);
673 return err;
674 }
675
676 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677 enum drbd_packet cmd, unsigned int header_size,
678 void *data, unsigned int size)
679 {
680 return __send_command(connection, 0, sock, cmd, header_size, data, size);
681 }
682
683 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
684 enum drbd_packet cmd, unsigned int header_size,
685 void *data, unsigned int size)
686 {
687 int err;
688
689 err = __conn_send_command(connection, sock, cmd, header_size, data, size);
690 mutex_unlock(&sock->mutex);
691 return err;
692 }
693
694 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
695 enum drbd_packet cmd, unsigned int header_size,
696 void *data, unsigned int size)
697 {
698 int err;
699
700 err = __send_command(peer_device->connection, peer_device->device->vnr,
701 sock, cmd, header_size, data, size);
702 mutex_unlock(&sock->mutex);
703 return err;
704 }
705
706 int drbd_send_ping(struct drbd_connection *connection)
707 {
708 struct drbd_socket *sock;
709
710 sock = &connection->meta;
711 if (!conn_prepare_command(connection, sock))
712 return -EIO;
713 return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
714 }
715
716 int drbd_send_ping_ack(struct drbd_connection *connection)
717 {
718 struct drbd_socket *sock;
719
720 sock = &connection->meta;
721 if (!conn_prepare_command(connection, sock))
722 return -EIO;
723 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
724 }
725
726 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
727 {
728 struct drbd_socket *sock;
729 struct p_rs_param_95 *p;
730 int size;
731 const int apv = peer_device->connection->agreed_pro_version;
732 enum drbd_packet cmd;
733 struct net_conf *nc;
734 struct disk_conf *dc;
735
736 sock = &peer_device->connection->data;
737 p = drbd_prepare_command(peer_device, sock);
738 if (!p)
739 return -EIO;
740
741 rcu_read_lock();
742 nc = rcu_dereference(peer_device->connection->net_conf);
743
744 size = apv <= 87 ? sizeof(struct p_rs_param)
745 : apv == 88 ? sizeof(struct p_rs_param)
746 + strlen(nc->verify_alg) + 1
747 : apv <= 94 ? sizeof(struct p_rs_param_89)
748 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
749
750 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
751
752 /* initialize verify_alg and csums_alg */
753 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
754
755 if (get_ldev(peer_device->device)) {
756 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
757 p->resync_rate = cpu_to_be32(dc->resync_rate);
758 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
759 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
760 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
761 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
762 put_ldev(peer_device->device);
763 } else {
764 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
765 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
766 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
767 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
768 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
769 }
770
771 if (apv >= 88)
772 strcpy(p->verify_alg, nc->verify_alg);
773 if (apv >= 89)
774 strcpy(p->csums_alg, nc->csums_alg);
775 rcu_read_unlock();
776
777 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
778 }
779
780 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
781 {
782 struct drbd_socket *sock;
783 struct p_protocol *p;
784 struct net_conf *nc;
785 int size, cf;
786
787 sock = &connection->data;
788 p = __conn_prepare_command(connection, sock);
789 if (!p)
790 return -EIO;
791
792 rcu_read_lock();
793 nc = rcu_dereference(connection->net_conf);
794
795 if (nc->tentative && connection->agreed_pro_version < 92) {
796 rcu_read_unlock();
797 mutex_unlock(&sock->mutex);
798 drbd_err(connection, "--dry-run is not supported by peer");
799 return -EOPNOTSUPP;
800 }
801
802 size = sizeof(*p);
803 if (connection->agreed_pro_version >= 87)
804 size += strlen(nc->integrity_alg) + 1;
805
806 p->protocol = cpu_to_be32(nc->wire_protocol);
807 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
808 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
809 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
810 p->two_primaries = cpu_to_be32(nc->two_primaries);
811 cf = 0;
812 if (nc->discard_my_data)
813 cf |= CF_DISCARD_MY_DATA;
814 if (nc->tentative)
815 cf |= CF_DRY_RUN;
816 p->conn_flags = cpu_to_be32(cf);
817
818 if (connection->agreed_pro_version >= 87)
819 strcpy(p->integrity_alg, nc->integrity_alg);
820 rcu_read_unlock();
821
822 return __conn_send_command(connection, sock, cmd, size, NULL, 0);
823 }
824
825 int drbd_send_protocol(struct drbd_connection *connection)
826 {
827 int err;
828
829 mutex_lock(&connection->data.mutex);
830 err = __drbd_send_protocol(connection, P_PROTOCOL);
831 mutex_unlock(&connection->data.mutex);
832
833 return err;
834 }
835
836 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
837 {
838 struct drbd_device *device = peer_device->device;
839 struct drbd_socket *sock;
840 struct p_uuids *p;
841 int i;
842
843 if (!get_ldev_if_state(device, D_NEGOTIATING))
844 return 0;
845
846 sock = &peer_device->connection->data;
847 p = drbd_prepare_command(peer_device, sock);
848 if (!p) {
849 put_ldev(device);
850 return -EIO;
851 }
852 spin_lock_irq(&device->ldev->md.uuid_lock);
853 for (i = UI_CURRENT; i < UI_SIZE; i++)
854 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
855 spin_unlock_irq(&device->ldev->md.uuid_lock);
856
857 device->comm_bm_set = drbd_bm_total_weight(device);
858 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
859 rcu_read_lock();
860 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
861 rcu_read_unlock();
862 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
863 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
864 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
865
866 put_ldev(device);
867 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
868 }
869
870 int drbd_send_uuids(struct drbd_peer_device *peer_device)
871 {
872 return _drbd_send_uuids(peer_device, 0);
873 }
874
875 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
876 {
877 return _drbd_send_uuids(peer_device, 8);
878 }
879
880 void drbd_print_uuids(struct drbd_device *device, const char *text)
881 {
882 if (get_ldev_if_state(device, D_NEGOTIATING)) {
883 u64 *uuid = device->ldev->md.uuid;
884 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
885 text,
886 (unsigned long long)uuid[UI_CURRENT],
887 (unsigned long long)uuid[UI_BITMAP],
888 (unsigned long long)uuid[UI_HISTORY_START],
889 (unsigned long long)uuid[UI_HISTORY_END]);
890 put_ldev(device);
891 } else {
892 drbd_info(device, "%s effective data uuid: %016llX\n",
893 text,
894 (unsigned long long)device->ed_uuid);
895 }
896 }
897
898 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
899 {
900 struct drbd_device *device = peer_device->device;
901 struct drbd_socket *sock;
902 struct p_rs_uuid *p;
903 u64 uuid;
904
905 D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
906
907 uuid = device->ldev->md.uuid[UI_BITMAP];
908 if (uuid && uuid != UUID_JUST_CREATED)
909 uuid = uuid + UUID_NEW_BM_OFFSET;
910 else
911 get_random_bytes(&uuid, sizeof(u64));
912 drbd_uuid_set(device, UI_BITMAP, uuid);
913 drbd_print_uuids(device, "updated sync UUID");
914 drbd_md_sync(device);
915
916 sock = &peer_device->connection->data;
917 p = drbd_prepare_command(peer_device, sock);
918 if (p) {
919 p->uuid = cpu_to_be64(uuid);
920 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
921 }
922 }
923
924 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
925 {
926 struct drbd_device *device = peer_device->device;
927 struct drbd_socket *sock;
928 struct p_sizes *p;
929 sector_t d_size, u_size;
930 int q_order_type;
931 unsigned int max_bio_size;
932
933 if (get_ldev_if_state(device, D_NEGOTIATING)) {
934 D_ASSERT(device, device->ldev->backing_bdev);
935 d_size = drbd_get_max_capacity(device->ldev);
936 rcu_read_lock();
937 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
938 rcu_read_unlock();
939 q_order_type = drbd_queue_order_type(device);
940 max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
941 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
942 put_ldev(device);
943 } else {
944 d_size = 0;
945 u_size = 0;
946 q_order_type = QUEUE_ORDERED_NONE;
947 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
948 }
949
950 sock = &peer_device->connection->data;
951 p = drbd_prepare_command(peer_device, sock);
952 if (!p)
953 return -EIO;
954
955 if (peer_device->connection->agreed_pro_version <= 94)
956 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
957 else if (peer_device->connection->agreed_pro_version < 100)
958 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
959
960 p->d_size = cpu_to_be64(d_size);
961 p->u_size = cpu_to_be64(u_size);
962 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
963 p->max_bio_size = cpu_to_be32(max_bio_size);
964 p->queue_order_type = cpu_to_be16(q_order_type);
965 p->dds_flags = cpu_to_be16(flags);
966 return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0);
967 }
968
969 /**
970 * drbd_send_current_state() - Sends the drbd state to the peer
971 * @peer_device: DRBD peer device.
972 */
973 int drbd_send_current_state(struct drbd_peer_device *peer_device)
974 {
975 struct drbd_socket *sock;
976 struct p_state *p;
977
978 sock = &peer_device->connection->data;
979 p = drbd_prepare_command(peer_device, sock);
980 if (!p)
981 return -EIO;
982 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
983 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
984 }
985
986 /**
987 * drbd_send_state() - After a state change, sends the new state to the peer
988 * @peer_device: DRBD peer device.
989 * @state: the state to send, not necessarily the current state.
990 *
991 * Each state change queues an "after_state_ch" work, which will eventually
992 * send the resulting new state to the peer. If more state changes happen
993 * between queuing and processing of the after_state_ch work, we still
994 * want to send each intermediary state in the order it occurred.
995 */
996 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
997 {
998 struct drbd_socket *sock;
999 struct p_state *p;
1000
1001 sock = &peer_device->connection->data;
1002 p = drbd_prepare_command(peer_device, sock);
1003 if (!p)
1004 return -EIO;
1005 p->state = cpu_to_be32(state.i); /* Within the send mutex */
1006 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1007 }
1008
1009 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1010 {
1011 struct drbd_socket *sock;
1012 struct p_req_state *p;
1013
1014 sock = &peer_device->connection->data;
1015 p = drbd_prepare_command(peer_device, sock);
1016 if (!p)
1017 return -EIO;
1018 p->mask = cpu_to_be32(mask.i);
1019 p->val = cpu_to_be32(val.i);
1020 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1021 }
1022
1023 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1024 {
1025 enum drbd_packet cmd;
1026 struct drbd_socket *sock;
1027 struct p_req_state *p;
1028
1029 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1030 sock = &connection->data;
1031 p = conn_prepare_command(connection, sock);
1032 if (!p)
1033 return -EIO;
1034 p->mask = cpu_to_be32(mask.i);
1035 p->val = cpu_to_be32(val.i);
1036 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1037 }
1038
1039 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1040 {
1041 struct drbd_socket *sock;
1042 struct p_req_state_reply *p;
1043
1044 sock = &peer_device->connection->meta;
1045 p = drbd_prepare_command(peer_device, sock);
1046 if (p) {
1047 p->retcode = cpu_to_be32(retcode);
1048 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1049 }
1050 }
1051
1052 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1053 {
1054 struct drbd_socket *sock;
1055 struct p_req_state_reply *p;
1056 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1057
1058 sock = &connection->meta;
1059 p = conn_prepare_command(connection, sock);
1060 if (p) {
1061 p->retcode = cpu_to_be32(retcode);
1062 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1063 }
1064 }
1065
1066 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1067 {
1068 BUG_ON(code & ~0xf);
1069 p->encoding = (p->encoding & ~0xf) | code;
1070 }
1071
1072 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1073 {
1074 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1075 }
1076
1077 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1078 {
1079 BUG_ON(n & ~0x7);
1080 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1081 }
1082
1083 static int fill_bitmap_rle_bits(struct drbd_device *device,
1084 struct p_compressed_bm *p,
1085 unsigned int size,
1086 struct bm_xfer_ctx *c)
1087 {
1088 struct bitstream bs;
1089 unsigned long plain_bits;
1090 unsigned long tmp;
1091 unsigned long rl;
1092 unsigned len;
1093 unsigned toggle;
1094 int bits, use_rle;
1095
1096 /* may we use this feature? */
1097 rcu_read_lock();
1098 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1099 rcu_read_unlock();
1100 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1101 return 0;
1102
1103 if (c->bit_offset >= c->bm_bits)
1104 return 0; /* nothing to do. */
1105
1106 /* use at most thus many bytes */
1107 bitstream_init(&bs, p->code, size, 0);
1108 memset(p->code, 0, size);
1109 /* plain bits covered in this code string */
1110 plain_bits = 0;
1111
1112 /* p->encoding & 0x80 stores whether the first run length is set.
1113 * bit offset is implicit.
1114 * start with toggle == 2 to be able to tell the first iteration */
1115 toggle = 2;
1116
1117 /* see how much plain bits we can stuff into one packet
1118 * using RLE and VLI. */
1119 do {
1120 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1121 : _drbd_bm_find_next(device, c->bit_offset);
1122 if (tmp == -1UL)
1123 tmp = c->bm_bits;
1124 rl = tmp - c->bit_offset;
1125
1126 if (toggle == 2) { /* first iteration */
1127 if (rl == 0) {
1128 /* the first checked bit was set,
1129 * store start value, */
1130 dcbp_set_start(p, 1);
1131 /* but skip encoding of zero run length */
1132 toggle = !toggle;
1133 continue;
1134 }
1135 dcbp_set_start(p, 0);
1136 }
1137
1138 /* paranoia: catch zero runlength.
1139 * can only happen if bitmap is modified while we scan it. */
1140 if (rl == 0) {
1141 drbd_err(device, "unexpected zero runlength while encoding bitmap "
1142 "t:%u bo:%lu\n", toggle, c->bit_offset);
1143 return -1;
1144 }
1145
1146 bits = vli_encode_bits(&bs, rl);
1147 if (bits == -ENOBUFS) /* buffer full */
1148 break;
1149 if (bits <= 0) {
1150 drbd_err(device, "error while encoding bitmap: %d\n", bits);
1151 return 0;
1152 }
1153
1154 toggle = !toggle;
1155 plain_bits += rl;
1156 c->bit_offset = tmp;
1157 } while (c->bit_offset < c->bm_bits);
1158
1159 len = bs.cur.b - p->code + !!bs.cur.bit;
1160
1161 if (plain_bits < (len << 3)) {
1162 /* incompressible with this method.
1163 * we need to rewind both word and bit position. */
1164 c->bit_offset -= plain_bits;
1165 bm_xfer_ctx_bit_to_word_offset(c);
1166 c->bit_offset = c->word_offset * BITS_PER_LONG;
1167 return 0;
1168 }
1169
1170 /* RLE + VLI was able to compress it just fine.
1171 * update c->word_offset. */
1172 bm_xfer_ctx_bit_to_word_offset(c);
1173
1174 /* store pad_bits */
1175 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1176
1177 return len;
1178 }
1179
1180 /**
1181 * send_bitmap_rle_or_plain
1182 *
1183 * Return 0 when done, 1 when another iteration is needed, and a negative error
1184 * code upon failure.
1185 */
1186 static int
1187 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1188 {
1189 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1190 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1191 struct p_compressed_bm *p = sock->sbuf + header_size;
1192 int len, err;
1193
1194 len = fill_bitmap_rle_bits(device, p,
1195 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1196 if (len < 0)
1197 return -EIO;
1198
1199 if (len) {
1200 dcbp_set_code(p, RLE_VLI_Bits);
1201 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1202 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1203 NULL, 0);
1204 c->packets[0]++;
1205 c->bytes[0] += header_size + sizeof(*p) + len;
1206
1207 if (c->bit_offset >= c->bm_bits)
1208 len = 0; /* DONE */
1209 } else {
1210 /* was not compressible.
1211 * send a buffer full of plain text bits instead. */
1212 unsigned int data_size;
1213 unsigned long num_words;
1214 unsigned long *p = sock->sbuf + header_size;
1215
1216 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1217 num_words = min_t(size_t, data_size / sizeof(*p),
1218 c->bm_words - c->word_offset);
1219 len = num_words * sizeof(*p);
1220 if (len)
1221 drbd_bm_get_lel(device, c->word_offset, num_words, p);
1222 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1223 c->word_offset += num_words;
1224 c->bit_offset = c->word_offset * BITS_PER_LONG;
1225
1226 c->packets[1]++;
1227 c->bytes[1] += header_size + len;
1228
1229 if (c->bit_offset > c->bm_bits)
1230 c->bit_offset = c->bm_bits;
1231 }
1232 if (!err) {
1233 if (len == 0) {
1234 INFO_bm_xfer_stats(device, "send", c);
1235 return 0;
1236 } else
1237 return 1;
1238 }
1239 return -EIO;
1240 }
1241
1242 /* See the comment at receive_bitmap() */
1243 static int _drbd_send_bitmap(struct drbd_device *device)
1244 {
1245 struct bm_xfer_ctx c;
1246 int err;
1247
1248 if (!expect(device->bitmap))
1249 return false;
1250
1251 if (get_ldev(device)) {
1252 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1253 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1254 drbd_bm_set_all(device);
1255 if (drbd_bm_write(device)) {
1256 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1257 * but otherwise process as per normal - need to tell other
1258 * side that a full resync is required! */
1259 drbd_err(device, "Failed to write bitmap to disk!\n");
1260 } else {
1261 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1262 drbd_md_sync(device);
1263 }
1264 }
1265 put_ldev(device);
1266 }
1267
1268 c = (struct bm_xfer_ctx) {
1269 .bm_bits = drbd_bm_bits(device),
1270 .bm_words = drbd_bm_words(device),
1271 };
1272
1273 do {
1274 err = send_bitmap_rle_or_plain(device, &c);
1275 } while (err > 0);
1276
1277 return err == 0;
1278 }
1279
1280 int drbd_send_bitmap(struct drbd_device *device)
1281 {
1282 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1283 int err = -1;
1284
1285 mutex_lock(&sock->mutex);
1286 if (sock->socket)
1287 err = !_drbd_send_bitmap(device);
1288 mutex_unlock(&sock->mutex);
1289 return err;
1290 }
1291
1292 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1293 {
1294 struct drbd_socket *sock;
1295 struct p_barrier_ack *p;
1296
1297 if (connection->cstate < C_WF_REPORT_PARAMS)
1298 return;
1299
1300 sock = &connection->meta;
1301 p = conn_prepare_command(connection, sock);
1302 if (!p)
1303 return;
1304 p->barrier = barrier_nr;
1305 p->set_size = cpu_to_be32(set_size);
1306 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1307 }
1308
1309 /**
1310 * _drbd_send_ack() - Sends an ack packet
1311 * @device: DRBD device.
1312 * @cmd: Packet command code.
1313 * @sector: sector, needs to be in big endian byte order
1314 * @blksize: size in byte, needs to be in big endian byte order
1315 * @block_id: Id, big endian byte order
1316 */
1317 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1318 u64 sector, u32 blksize, u64 block_id)
1319 {
1320 struct drbd_socket *sock;
1321 struct p_block_ack *p;
1322
1323 if (peer_device->device->state.conn < C_CONNECTED)
1324 return -EIO;
1325
1326 sock = &peer_device->connection->meta;
1327 p = drbd_prepare_command(peer_device, sock);
1328 if (!p)
1329 return -EIO;
1330 p->sector = sector;
1331 p->block_id = block_id;
1332 p->blksize = blksize;
1333 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1334 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1335 }
1336
1337 /* dp->sector and dp->block_id already/still in network byte order,
1338 * data_size is payload size according to dp->head,
1339 * and may need to be corrected for digest size. */
1340 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1341 struct p_data *dp, int data_size)
1342 {
1343 if (peer_device->connection->peer_integrity_tfm)
1344 data_size -= crypto_hash_digestsize(peer_device->connection->peer_integrity_tfm);
1345 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1346 dp->block_id);
1347 }
1348
1349 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1350 struct p_block_req *rp)
1351 {
1352 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1353 }
1354
1355 /**
1356 * drbd_send_ack() - Sends an ack packet
1357 * @device: DRBD device
1358 * @cmd: packet command code
1359 * @peer_req: peer request
1360 */
1361 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1362 struct drbd_peer_request *peer_req)
1363 {
1364 return _drbd_send_ack(peer_device, cmd,
1365 cpu_to_be64(peer_req->i.sector),
1366 cpu_to_be32(peer_req->i.size),
1367 peer_req->block_id);
1368 }
1369
1370 /* This function misuses the block_id field to signal if the blocks
1371 * are is sync or not. */
1372 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1373 sector_t sector, int blksize, u64 block_id)
1374 {
1375 return _drbd_send_ack(peer_device, cmd,
1376 cpu_to_be64(sector),
1377 cpu_to_be32(blksize),
1378 cpu_to_be64(block_id));
1379 }
1380
1381 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1382 sector_t sector, int size, u64 block_id)
1383 {
1384 struct drbd_socket *sock;
1385 struct p_block_req *p;
1386
1387 sock = &peer_device->connection->data;
1388 p = drbd_prepare_command(peer_device, sock);
1389 if (!p)
1390 return -EIO;
1391 p->sector = cpu_to_be64(sector);
1392 p->block_id = block_id;
1393 p->blksize = cpu_to_be32(size);
1394 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1395 }
1396
1397 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1398 void *digest, int digest_size, enum drbd_packet cmd)
1399 {
1400 struct drbd_socket *sock;
1401 struct p_block_req *p;
1402
1403 /* FIXME: Put the digest into the preallocated socket buffer. */
1404
1405 sock = &peer_device->connection->data;
1406 p = drbd_prepare_command(peer_device, sock);
1407 if (!p)
1408 return -EIO;
1409 p->sector = cpu_to_be64(sector);
1410 p->block_id = ID_SYNCER /* unused */;
1411 p->blksize = cpu_to_be32(size);
1412 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1413 }
1414
1415 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1416 {
1417 struct drbd_socket *sock;
1418 struct p_block_req *p;
1419
1420 sock = &peer_device->connection->data;
1421 p = drbd_prepare_command(peer_device, sock);
1422 if (!p)
1423 return -EIO;
1424 p->sector = cpu_to_be64(sector);
1425 p->block_id = ID_SYNCER /* unused */;
1426 p->blksize = cpu_to_be32(size);
1427 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1428 }
1429
1430 /* called on sndtimeo
1431 * returns false if we should retry,
1432 * true if we think connection is dead
1433 */
1434 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1435 {
1436 int drop_it;
1437 /* long elapsed = (long)(jiffies - device->last_received); */
1438
1439 drop_it = connection->meta.socket == sock
1440 || !connection->asender.task
1441 || get_t_state(&connection->asender) != RUNNING
1442 || connection->cstate < C_WF_REPORT_PARAMS;
1443
1444 if (drop_it)
1445 return true;
1446
1447 drop_it = !--connection->ko_count;
1448 if (!drop_it) {
1449 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1450 current->comm, current->pid, connection->ko_count);
1451 request_ping(connection);
1452 }
1453
1454 return drop_it; /* && (device->state == R_PRIMARY) */;
1455 }
1456
1457 static void drbd_update_congested(struct drbd_connection *connection)
1458 {
1459 struct sock *sk = connection->data.socket->sk;
1460 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1461 set_bit(NET_CONGESTED, &connection->flags);
1462 }
1463
1464 /* The idea of sendpage seems to be to put some kind of reference
1465 * to the page into the skb, and to hand it over to the NIC. In
1466 * this process get_page() gets called.
1467 *
1468 * As soon as the page was really sent over the network put_page()
1469 * gets called by some part of the network layer. [ NIC driver? ]
1470 *
1471 * [ get_page() / put_page() increment/decrement the count. If count
1472 * reaches 0 the page will be freed. ]
1473 *
1474 * This works nicely with pages from FSs.
1475 * But this means that in protocol A we might signal IO completion too early!
1476 *
1477 * In order not to corrupt data during a resync we must make sure
1478 * that we do not reuse our own buffer pages (EEs) to early, therefore
1479 * we have the net_ee list.
1480 *
1481 * XFS seems to have problems, still, it submits pages with page_count == 0!
1482 * As a workaround, we disable sendpage on pages
1483 * with page_count == 0 or PageSlab.
1484 */
1485 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1486 int offset, size_t size, unsigned msg_flags)
1487 {
1488 struct socket *socket;
1489 void *addr;
1490 int err;
1491
1492 socket = peer_device->connection->data.socket;
1493 addr = kmap(page) + offset;
1494 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1495 kunmap(page);
1496 if (!err)
1497 peer_device->device->send_cnt += size >> 9;
1498 return err;
1499 }
1500
1501 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1502 int offset, size_t size, unsigned msg_flags)
1503 {
1504 struct socket *socket = peer_device->connection->data.socket;
1505 mm_segment_t oldfs = get_fs();
1506 int len = size;
1507 int err = -EIO;
1508
1509 /* e.g. XFS meta- & log-data is in slab pages, which have a
1510 * page_count of 0 and/or have PageSlab() set.
1511 * we cannot use send_page for those, as that does get_page();
1512 * put_page(); and would cause either a VM_BUG directly, or
1513 * __page_cache_release a page that would actually still be referenced
1514 * by someone, leading to some obscure delayed Oops somewhere else. */
1515 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1516 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1517
1518 msg_flags |= MSG_NOSIGNAL;
1519 drbd_update_congested(peer_device->connection);
1520 set_fs(KERNEL_DS);
1521 do {
1522 int sent;
1523
1524 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1525 if (sent <= 0) {
1526 if (sent == -EAGAIN) {
1527 if (we_should_drop_the_connection(peer_device->connection, socket))
1528 break;
1529 continue;
1530 }
1531 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1532 __func__, (int)size, len, sent);
1533 if (sent < 0)
1534 err = sent;
1535 break;
1536 }
1537 len -= sent;
1538 offset += sent;
1539 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1540 set_fs(oldfs);
1541 clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1542
1543 if (len == 0) {
1544 err = 0;
1545 peer_device->device->send_cnt += size >> 9;
1546 }
1547 return err;
1548 }
1549
1550 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1551 {
1552 struct bio_vec bvec;
1553 struct bvec_iter iter;
1554
1555 /* hint all but last page with MSG_MORE */
1556 bio_for_each_segment(bvec, bio, iter) {
1557 int err;
1558
1559 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1560 bvec.bv_offset, bvec.bv_len,
1561 bio_iter_last(bvec, iter)
1562 ? 0 : MSG_MORE);
1563 if (err)
1564 return err;
1565 }
1566 return 0;
1567 }
1568
1569 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1570 {
1571 struct bio_vec bvec;
1572 struct bvec_iter iter;
1573
1574 /* hint all but last page with MSG_MORE */
1575 bio_for_each_segment(bvec, bio, iter) {
1576 int err;
1577
1578 err = _drbd_send_page(peer_device, bvec.bv_page,
1579 bvec.bv_offset, bvec.bv_len,
1580 bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1581 if (err)
1582 return err;
1583 }
1584 return 0;
1585 }
1586
1587 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1588 struct drbd_peer_request *peer_req)
1589 {
1590 struct page *page = peer_req->pages;
1591 unsigned len = peer_req->i.size;
1592 int err;
1593
1594 /* hint all but last page with MSG_MORE */
1595 page_chain_for_each(page) {
1596 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1597
1598 err = _drbd_send_page(peer_device, page, 0, l,
1599 page_chain_next(page) ? MSG_MORE : 0);
1600 if (err)
1601 return err;
1602 len -= l;
1603 }
1604 return 0;
1605 }
1606
1607 static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw)
1608 {
1609 if (connection->agreed_pro_version >= 95)
1610 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1611 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1612 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1613 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1614 else
1615 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1616 }
1617
1618 /* Used to send write requests
1619 * R_PRIMARY -> Peer (P_DATA)
1620 */
1621 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1622 {
1623 struct drbd_device *device = peer_device->device;
1624 struct drbd_socket *sock;
1625 struct p_data *p;
1626 unsigned int dp_flags = 0;
1627 int dgs;
1628 int err;
1629
1630 sock = &peer_device->connection->data;
1631 p = drbd_prepare_command(peer_device, sock);
1632 dgs = peer_device->connection->integrity_tfm ?
1633 crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1634
1635 if (!p)
1636 return -EIO;
1637 p->sector = cpu_to_be64(req->i.sector);
1638 p->block_id = (unsigned long)req;
1639 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1640 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw);
1641 if (device->state.conn >= C_SYNC_SOURCE &&
1642 device->state.conn <= C_PAUSED_SYNC_T)
1643 dp_flags |= DP_MAY_SET_IN_SYNC;
1644 if (peer_device->connection->agreed_pro_version >= 100) {
1645 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1646 dp_flags |= DP_SEND_RECEIVE_ACK;
1647 if (req->rq_state & RQ_EXP_WRITE_ACK)
1648 dp_flags |= DP_SEND_WRITE_ACK;
1649 }
1650 p->dp_flags = cpu_to_be32(dp_flags);
1651 if (dgs)
1652 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1);
1653 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1654 if (!err) {
1655 /* For protocol A, we have to memcpy the payload into
1656 * socket buffers, as we may complete right away
1657 * as soon as we handed it over to tcp, at which point the data
1658 * pages may become invalid.
1659 *
1660 * For data-integrity enabled, we copy it as well, so we can be
1661 * sure that even if the bio pages may still be modified, it
1662 * won't change the data on the wire, thus if the digest checks
1663 * out ok after sending on this side, but does not fit on the
1664 * receiving side, we sure have detected corruption elsewhere.
1665 */
1666 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1667 err = _drbd_send_bio(peer_device, req->master_bio);
1668 else
1669 err = _drbd_send_zc_bio(peer_device, req->master_bio);
1670
1671 /* double check digest, sometimes buffers have been modified in flight. */
1672 if (dgs > 0 && dgs <= 64) {
1673 /* 64 byte, 512 bit, is the largest digest size
1674 * currently supported in kernel crypto. */
1675 unsigned char digest[64];
1676 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1677 if (memcmp(p + 1, digest, dgs)) {
1678 drbd_warn(device,
1679 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1680 (unsigned long long)req->i.sector, req->i.size);
1681 }
1682 } /* else if (dgs > 64) {
1683 ... Be noisy about digest too large ...
1684 } */
1685 }
1686 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1687
1688 return err;
1689 }
1690
1691 /* answer packet, used to send data back for read requests:
1692 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1693 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1694 */
1695 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1696 struct drbd_peer_request *peer_req)
1697 {
1698 struct drbd_device *device = peer_device->device;
1699 struct drbd_socket *sock;
1700 struct p_data *p;
1701 int err;
1702 int dgs;
1703
1704 sock = &peer_device->connection->data;
1705 p = drbd_prepare_command(peer_device, sock);
1706
1707 dgs = peer_device->connection->integrity_tfm ?
1708 crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1709
1710 if (!p)
1711 return -EIO;
1712 p->sector = cpu_to_be64(peer_req->i.sector);
1713 p->block_id = peer_req->block_id;
1714 p->seq_num = 0; /* unused */
1715 p->dp_flags = 0;
1716 if (dgs)
1717 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1718 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1719 if (!err)
1720 err = _drbd_send_zc_ee(peer_device, peer_req);
1721 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1722
1723 return err;
1724 }
1725
1726 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1727 {
1728 struct drbd_socket *sock;
1729 struct p_block_desc *p;
1730
1731 sock = &peer_device->connection->data;
1732 p = drbd_prepare_command(peer_device, sock);
1733 if (!p)
1734 return -EIO;
1735 p->sector = cpu_to_be64(req->i.sector);
1736 p->blksize = cpu_to_be32(req->i.size);
1737 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1738 }
1739
1740 /*
1741 drbd_send distinguishes two cases:
1742
1743 Packets sent via the data socket "sock"
1744 and packets sent via the meta data socket "msock"
1745
1746 sock msock
1747 -----------------+-------------------------+------------------------------
1748 timeout conf.timeout / 2 conf.timeout / 2
1749 timeout action send a ping via msock Abort communication
1750 and close all sockets
1751 */
1752
1753 /*
1754 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1755 */
1756 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1757 void *buf, size_t size, unsigned msg_flags)
1758 {
1759 struct kvec iov;
1760 struct msghdr msg;
1761 int rv, sent = 0;
1762
1763 if (!sock)
1764 return -EBADR;
1765
1766 /* THINK if (signal_pending) return ... ? */
1767
1768 iov.iov_base = buf;
1769 iov.iov_len = size;
1770
1771 msg.msg_name = NULL;
1772 msg.msg_namelen = 0;
1773 msg.msg_control = NULL;
1774 msg.msg_controllen = 0;
1775 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1776
1777 if (sock == connection->data.socket) {
1778 rcu_read_lock();
1779 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1780 rcu_read_unlock();
1781 drbd_update_congested(connection);
1782 }
1783 do {
1784 /* STRANGE
1785 * tcp_sendmsg does _not_ use its size parameter at all ?
1786 *
1787 * -EAGAIN on timeout, -EINTR on signal.
1788 */
1789 /* THINK
1790 * do we need to block DRBD_SIG if sock == &meta.socket ??
1791 * otherwise wake_asender() might interrupt some send_*Ack !
1792 */
1793 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1794 if (rv == -EAGAIN) {
1795 if (we_should_drop_the_connection(connection, sock))
1796 break;
1797 else
1798 continue;
1799 }
1800 if (rv == -EINTR) {
1801 flush_signals(current);
1802 rv = 0;
1803 }
1804 if (rv < 0)
1805 break;
1806 sent += rv;
1807 iov.iov_base += rv;
1808 iov.iov_len -= rv;
1809 } while (sent < size);
1810
1811 if (sock == connection->data.socket)
1812 clear_bit(NET_CONGESTED, &connection->flags);
1813
1814 if (rv <= 0) {
1815 if (rv != -EAGAIN) {
1816 drbd_err(connection, "%s_sendmsg returned %d\n",
1817 sock == connection->meta.socket ? "msock" : "sock",
1818 rv);
1819 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1820 } else
1821 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1822 }
1823
1824 return sent;
1825 }
1826
1827 /**
1828 * drbd_send_all - Send an entire buffer
1829 *
1830 * Returns 0 upon success and a negative error value otherwise.
1831 */
1832 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1833 size_t size, unsigned msg_flags)
1834 {
1835 int err;
1836
1837 err = drbd_send(connection, sock, buffer, size, msg_flags);
1838 if (err < 0)
1839 return err;
1840 if (err != size)
1841 return -EIO;
1842 return 0;
1843 }
1844
1845 static int drbd_open(struct block_device *bdev, fmode_t mode)
1846 {
1847 struct drbd_device *device = bdev->bd_disk->private_data;
1848 unsigned long flags;
1849 int rv = 0;
1850
1851 mutex_lock(&drbd_main_mutex);
1852 spin_lock_irqsave(&device->resource->req_lock, flags);
1853 /* to have a stable device->state.role
1854 * and no race with updating open_cnt */
1855
1856 if (device->state.role != R_PRIMARY) {
1857 if (mode & FMODE_WRITE)
1858 rv = -EROFS;
1859 else if (!allow_oos)
1860 rv = -EMEDIUMTYPE;
1861 }
1862
1863 if (!rv)
1864 device->open_cnt++;
1865 spin_unlock_irqrestore(&device->resource->req_lock, flags);
1866 mutex_unlock(&drbd_main_mutex);
1867
1868 return rv;
1869 }
1870
1871 static void drbd_release(struct gendisk *gd, fmode_t mode)
1872 {
1873 struct drbd_device *device = gd->private_data;
1874 mutex_lock(&drbd_main_mutex);
1875 device->open_cnt--;
1876 mutex_unlock(&drbd_main_mutex);
1877 }
1878
1879 static void drbd_set_defaults(struct drbd_device *device)
1880 {
1881 /* Beware! The actual layout differs
1882 * between big endian and little endian */
1883 device->state = (union drbd_dev_state) {
1884 { .role = R_SECONDARY,
1885 .peer = R_UNKNOWN,
1886 .conn = C_STANDALONE,
1887 .disk = D_DISKLESS,
1888 .pdsk = D_UNKNOWN,
1889 } };
1890 }
1891
1892 void drbd_init_set_defaults(struct drbd_device *device)
1893 {
1894 /* the memset(,0,) did most of this.
1895 * note: only assignments, no allocation in here */
1896
1897 drbd_set_defaults(device);
1898
1899 atomic_set(&device->ap_bio_cnt, 0);
1900 atomic_set(&device->ap_pending_cnt, 0);
1901 atomic_set(&device->rs_pending_cnt, 0);
1902 atomic_set(&device->unacked_cnt, 0);
1903 atomic_set(&device->local_cnt, 0);
1904 atomic_set(&device->pp_in_use_by_net, 0);
1905 atomic_set(&device->rs_sect_in, 0);
1906 atomic_set(&device->rs_sect_ev, 0);
1907 atomic_set(&device->ap_in_flight, 0);
1908 atomic_set(&device->md_io_in_use, 0);
1909
1910 mutex_init(&device->own_state_mutex);
1911 device->state_mutex = &device->own_state_mutex;
1912
1913 spin_lock_init(&device->al_lock);
1914 spin_lock_init(&device->peer_seq_lock);
1915
1916 INIT_LIST_HEAD(&device->active_ee);
1917 INIT_LIST_HEAD(&device->sync_ee);
1918 INIT_LIST_HEAD(&device->done_ee);
1919 INIT_LIST_HEAD(&device->read_ee);
1920 INIT_LIST_HEAD(&device->net_ee);
1921 INIT_LIST_HEAD(&device->resync_reads);
1922 INIT_LIST_HEAD(&device->resync_work.list);
1923 INIT_LIST_HEAD(&device->unplug_work.list);
1924 INIT_LIST_HEAD(&device->go_diskless.list);
1925 INIT_LIST_HEAD(&device->md_sync_work.list);
1926 INIT_LIST_HEAD(&device->start_resync_work.list);
1927 INIT_LIST_HEAD(&device->bm_io_work.w.list);
1928
1929 device->resync_work.cb = w_resync_timer;
1930 device->unplug_work.cb = w_send_write_hint;
1931 device->go_diskless.cb = w_go_diskless;
1932 device->md_sync_work.cb = w_md_sync;
1933 device->bm_io_work.w.cb = w_bitmap_io;
1934 device->start_resync_work.cb = w_start_resync;
1935
1936 device->resync_work.device = device;
1937 device->unplug_work.device = device;
1938 device->go_diskless.device = device;
1939 device->md_sync_work.device = device;
1940 device->bm_io_work.w.device = device;
1941 device->start_resync_work.device = device;
1942
1943 init_timer(&device->resync_timer);
1944 init_timer(&device->md_sync_timer);
1945 init_timer(&device->start_resync_timer);
1946 init_timer(&device->request_timer);
1947 device->resync_timer.function = resync_timer_fn;
1948 device->resync_timer.data = (unsigned long) device;
1949 device->md_sync_timer.function = md_sync_timer_fn;
1950 device->md_sync_timer.data = (unsigned long) device;
1951 device->start_resync_timer.function = start_resync_timer_fn;
1952 device->start_resync_timer.data = (unsigned long) device;
1953 device->request_timer.function = request_timer_fn;
1954 device->request_timer.data = (unsigned long) device;
1955
1956 init_waitqueue_head(&device->misc_wait);
1957 init_waitqueue_head(&device->state_wait);
1958 init_waitqueue_head(&device->ee_wait);
1959 init_waitqueue_head(&device->al_wait);
1960 init_waitqueue_head(&device->seq_wait);
1961
1962 device->resync_wenr = LC_FREE;
1963 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1964 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1965 }
1966
1967 void drbd_device_cleanup(struct drbd_device *device)
1968 {
1969 int i;
1970 if (first_peer_device(device)->connection->receiver.t_state != NONE)
1971 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1972 first_peer_device(device)->connection->receiver.t_state);
1973
1974 device->al_writ_cnt =
1975 device->bm_writ_cnt =
1976 device->read_cnt =
1977 device->recv_cnt =
1978 device->send_cnt =
1979 device->writ_cnt =
1980 device->p_size =
1981 device->rs_start =
1982 device->rs_total =
1983 device->rs_failed = 0;
1984 device->rs_last_events = 0;
1985 device->rs_last_sect_ev = 0;
1986 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1987 device->rs_mark_left[i] = 0;
1988 device->rs_mark_time[i] = 0;
1989 }
1990 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
1991
1992 drbd_set_my_capacity(device, 0);
1993 if (device->bitmap) {
1994 /* maybe never allocated. */
1995 drbd_bm_resize(device, 0, 1);
1996 drbd_bm_cleanup(device);
1997 }
1998
1999 drbd_free_bc(device->ldev);
2000 device->ldev = NULL;
2001
2002 clear_bit(AL_SUSPENDED, &device->flags);
2003
2004 D_ASSERT(device, list_empty(&device->active_ee));
2005 D_ASSERT(device, list_empty(&device->sync_ee));
2006 D_ASSERT(device, list_empty(&device->done_ee));
2007 D_ASSERT(device, list_empty(&device->read_ee));
2008 D_ASSERT(device, list_empty(&device->net_ee));
2009 D_ASSERT(device, list_empty(&device->resync_reads));
2010 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2011 D_ASSERT(device, list_empty(&device->resync_work.list));
2012 D_ASSERT(device, list_empty(&device->unplug_work.list));
2013 D_ASSERT(device, list_empty(&device->go_diskless.list));
2014
2015 drbd_set_defaults(device);
2016 }
2017
2018
2019 static void drbd_destroy_mempools(void)
2020 {
2021 struct page *page;
2022
2023 while (drbd_pp_pool) {
2024 page = drbd_pp_pool;
2025 drbd_pp_pool = (struct page *)page_private(page);
2026 __free_page(page);
2027 drbd_pp_vacant--;
2028 }
2029
2030 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2031
2032 if (drbd_md_io_bio_set)
2033 bioset_free(drbd_md_io_bio_set);
2034 if (drbd_md_io_page_pool)
2035 mempool_destroy(drbd_md_io_page_pool);
2036 if (drbd_ee_mempool)
2037 mempool_destroy(drbd_ee_mempool);
2038 if (drbd_request_mempool)
2039 mempool_destroy(drbd_request_mempool);
2040 if (drbd_ee_cache)
2041 kmem_cache_destroy(drbd_ee_cache);
2042 if (drbd_request_cache)
2043 kmem_cache_destroy(drbd_request_cache);
2044 if (drbd_bm_ext_cache)
2045 kmem_cache_destroy(drbd_bm_ext_cache);
2046 if (drbd_al_ext_cache)
2047 kmem_cache_destroy(drbd_al_ext_cache);
2048
2049 drbd_md_io_bio_set = NULL;
2050 drbd_md_io_page_pool = NULL;
2051 drbd_ee_mempool = NULL;
2052 drbd_request_mempool = NULL;
2053 drbd_ee_cache = NULL;
2054 drbd_request_cache = NULL;
2055 drbd_bm_ext_cache = NULL;
2056 drbd_al_ext_cache = NULL;
2057
2058 return;
2059 }
2060
2061 static int drbd_create_mempools(void)
2062 {
2063 struct page *page;
2064 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2065 int i;
2066
2067 /* prepare our caches and mempools */
2068 drbd_request_mempool = NULL;
2069 drbd_ee_cache = NULL;
2070 drbd_request_cache = NULL;
2071 drbd_bm_ext_cache = NULL;
2072 drbd_al_ext_cache = NULL;
2073 drbd_pp_pool = NULL;
2074 drbd_md_io_page_pool = NULL;
2075 drbd_md_io_bio_set = NULL;
2076
2077 /* caches */
2078 drbd_request_cache = kmem_cache_create(
2079 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2080 if (drbd_request_cache == NULL)
2081 goto Enomem;
2082
2083 drbd_ee_cache = kmem_cache_create(
2084 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2085 if (drbd_ee_cache == NULL)
2086 goto Enomem;
2087
2088 drbd_bm_ext_cache = kmem_cache_create(
2089 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2090 if (drbd_bm_ext_cache == NULL)
2091 goto Enomem;
2092
2093 drbd_al_ext_cache = kmem_cache_create(
2094 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2095 if (drbd_al_ext_cache == NULL)
2096 goto Enomem;
2097
2098 /* mempools */
2099 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2100 if (drbd_md_io_bio_set == NULL)
2101 goto Enomem;
2102
2103 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2104 if (drbd_md_io_page_pool == NULL)
2105 goto Enomem;
2106
2107 drbd_request_mempool = mempool_create(number,
2108 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2109 if (drbd_request_mempool == NULL)
2110 goto Enomem;
2111
2112 drbd_ee_mempool = mempool_create(number,
2113 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2114 if (drbd_ee_mempool == NULL)
2115 goto Enomem;
2116
2117 /* drbd's page pool */
2118 spin_lock_init(&drbd_pp_lock);
2119
2120 for (i = 0; i < number; i++) {
2121 page = alloc_page(GFP_HIGHUSER);
2122 if (!page)
2123 goto Enomem;
2124 set_page_private(page, (unsigned long)drbd_pp_pool);
2125 drbd_pp_pool = page;
2126 }
2127 drbd_pp_vacant = number;
2128
2129 return 0;
2130
2131 Enomem:
2132 drbd_destroy_mempools(); /* in case we allocated some */
2133 return -ENOMEM;
2134 }
2135
2136 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2137 void *unused)
2138 {
2139 /* just so we have it. you never know what interesting things we
2140 * might want to do here some day...
2141 */
2142
2143 return NOTIFY_DONE;
2144 }
2145
2146 static struct notifier_block drbd_notifier = {
2147 .notifier_call = drbd_notify_sys,
2148 };
2149
2150 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2151 {
2152 int rr;
2153
2154 rr = drbd_free_peer_reqs(device, &device->active_ee);
2155 if (rr)
2156 drbd_err(device, "%d EEs in active list found!\n", rr);
2157
2158 rr = drbd_free_peer_reqs(device, &device->sync_ee);
2159 if (rr)
2160 drbd_err(device, "%d EEs in sync list found!\n", rr);
2161
2162 rr = drbd_free_peer_reqs(device, &device->read_ee);
2163 if (rr)
2164 drbd_err(device, "%d EEs in read list found!\n", rr);
2165
2166 rr = drbd_free_peer_reqs(device, &device->done_ee);
2167 if (rr)
2168 drbd_err(device, "%d EEs in done list found!\n", rr);
2169
2170 rr = drbd_free_peer_reqs(device, &device->net_ee);
2171 if (rr)
2172 drbd_err(device, "%d EEs in net list found!\n", rr);
2173 }
2174
2175 /* caution. no locking. */
2176 void drbd_destroy_device(struct kref *kref)
2177 {
2178 struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2179 struct drbd_resource *resource = device->resource;
2180 struct drbd_connection *connection;
2181
2182 del_timer_sync(&device->request_timer);
2183
2184 /* paranoia asserts */
2185 D_ASSERT(device, device->open_cnt == 0);
2186 /* end paranoia asserts */
2187
2188 /* cleanup stuff that may have been allocated during
2189 * device (re-)configuration or state changes */
2190
2191 if (device->this_bdev)
2192 bdput(device->this_bdev);
2193
2194 drbd_free_bc(device->ldev);
2195 device->ldev = NULL;
2196
2197 drbd_release_all_peer_reqs(device);
2198
2199 lc_destroy(device->act_log);
2200 lc_destroy(device->resync);
2201
2202 kfree(device->p_uuid);
2203 /* device->p_uuid = NULL; */
2204
2205 if (device->bitmap) /* should no longer be there. */
2206 drbd_bm_cleanup(device);
2207 __free_page(device->md_io_page);
2208 put_disk(device->vdisk);
2209 blk_cleanup_queue(device->rq_queue);
2210 kfree(device->rs_plan_s);
2211 kfree(first_peer_device(device));
2212 kfree(device);
2213
2214 for_each_connection(connection, resource)
2215 kref_put(&connection->kref, drbd_destroy_connection);
2216 kref_put(&resource->kref, drbd_destroy_resource);
2217 }
2218
2219 /* One global retry thread, if we need to push back some bio and have it
2220 * reinserted through our make request function.
2221 */
2222 static struct retry_worker {
2223 struct workqueue_struct *wq;
2224 struct work_struct worker;
2225
2226 spinlock_t lock;
2227 struct list_head writes;
2228 } retry;
2229
2230 static void do_retry(struct work_struct *ws)
2231 {
2232 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2233 LIST_HEAD(writes);
2234 struct drbd_request *req, *tmp;
2235
2236 spin_lock_irq(&retry->lock);
2237 list_splice_init(&retry->writes, &writes);
2238 spin_unlock_irq(&retry->lock);
2239
2240 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2241 struct drbd_device *device = req->w.device;
2242 struct bio *bio = req->master_bio;
2243 unsigned long start_time = req->start_time;
2244 bool expected;
2245
2246 expected =
2247 expect(atomic_read(&req->completion_ref) == 0) &&
2248 expect(req->rq_state & RQ_POSTPONED) &&
2249 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2250 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2251
2252 if (!expected)
2253 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2254 req, atomic_read(&req->completion_ref),
2255 req->rq_state);
2256
2257 /* We still need to put one kref associated with the
2258 * "completion_ref" going zero in the code path that queued it
2259 * here. The request object may still be referenced by a
2260 * frozen local req->private_bio, in case we force-detached.
2261 */
2262 kref_put(&req->kref, drbd_req_destroy);
2263
2264 /* A single suspended or otherwise blocking device may stall
2265 * all others as well. Fortunately, this code path is to
2266 * recover from a situation that "should not happen":
2267 * concurrent writes in multi-primary setup.
2268 * In a "normal" lifecycle, this workqueue is supposed to be
2269 * destroyed without ever doing anything.
2270 * If it turns out to be an issue anyways, we can do per
2271 * resource (replication group) or per device (minor) retry
2272 * workqueues instead.
2273 */
2274
2275 /* We are not just doing generic_make_request(),
2276 * as we want to keep the start_time information. */
2277 inc_ap_bio(device);
2278 __drbd_make_request(device, bio, start_time);
2279 }
2280 }
2281
2282 void drbd_restart_request(struct drbd_request *req)
2283 {
2284 unsigned long flags;
2285 spin_lock_irqsave(&retry.lock, flags);
2286 list_move_tail(&req->tl_requests, &retry.writes);
2287 spin_unlock_irqrestore(&retry.lock, flags);
2288
2289 /* Drop the extra reference that would otherwise
2290 * have been dropped by complete_master_bio.
2291 * do_retry() needs to grab a new one. */
2292 dec_ap_bio(req->w.device);
2293
2294 queue_work(retry.wq, &retry.worker);
2295 }
2296
2297 void drbd_destroy_resource(struct kref *kref)
2298 {
2299 struct drbd_resource *resource =
2300 container_of(kref, struct drbd_resource, kref);
2301
2302 idr_destroy(&resource->devices);
2303 free_cpumask_var(resource->cpu_mask);
2304 kfree(resource->name);
2305 kfree(resource);
2306 }
2307
2308 void drbd_free_resource(struct drbd_resource *resource)
2309 {
2310 struct drbd_connection *connection, *tmp;
2311
2312 for_each_connection_safe(connection, tmp, resource) {
2313 list_del(&connection->connections);
2314 kref_put(&connection->kref, drbd_destroy_connection);
2315 }
2316 kref_put(&resource->kref, drbd_destroy_resource);
2317 }
2318
2319 static void drbd_cleanup(void)
2320 {
2321 unsigned int i;
2322 struct drbd_device *device;
2323 struct drbd_resource *resource, *tmp;
2324
2325 unregister_reboot_notifier(&drbd_notifier);
2326
2327 /* first remove proc,
2328 * drbdsetup uses it's presence to detect
2329 * whether DRBD is loaded.
2330 * If we would get stuck in proc removal,
2331 * but have netlink already deregistered,
2332 * some drbdsetup commands may wait forever
2333 * for an answer.
2334 */
2335 if (drbd_proc)
2336 remove_proc_entry("drbd", NULL);
2337
2338 if (retry.wq)
2339 destroy_workqueue(retry.wq);
2340
2341 drbd_genl_unregister();
2342
2343 idr_for_each_entry(&drbd_devices, device, i)
2344 drbd_delete_device(device);
2345
2346 /* not _rcu since, no other updater anymore. Genl already unregistered */
2347 for_each_resource_safe(resource, tmp, &drbd_resources) {
2348 list_del(&resource->resources);
2349 drbd_free_resource(resource);
2350 }
2351
2352 drbd_destroy_mempools();
2353 unregister_blkdev(DRBD_MAJOR, "drbd");
2354
2355 idr_destroy(&drbd_devices);
2356
2357 printk(KERN_INFO "drbd: module cleanup done.\n");
2358 }
2359
2360 /**
2361 * drbd_congested() - Callback for the flusher thread
2362 * @congested_data: User data
2363 * @bdi_bits: Bits the BDI flusher thread is currently interested in
2364 *
2365 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2366 */
2367 static int drbd_congested(void *congested_data, int bdi_bits)
2368 {
2369 struct drbd_device *device = congested_data;
2370 struct request_queue *q;
2371 char reason = '-';
2372 int r = 0;
2373
2374 if (!may_inc_ap_bio(device)) {
2375 /* DRBD has frozen IO */
2376 r = bdi_bits;
2377 reason = 'd';
2378 goto out;
2379 }
2380
2381 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2382 r |= (1 << BDI_async_congested);
2383 /* Without good local data, we would need to read from remote,
2384 * and that would need the worker thread as well, which is
2385 * currently blocked waiting for that usermode helper to
2386 * finish.
2387 */
2388 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2389 r |= (1 << BDI_sync_congested);
2390 else
2391 put_ldev(device);
2392 r &= bdi_bits;
2393 reason = 'c';
2394 goto out;
2395 }
2396
2397 if (get_ldev(device)) {
2398 q = bdev_get_queue(device->ldev->backing_bdev);
2399 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2400 put_ldev(device);
2401 if (r)
2402 reason = 'b';
2403 }
2404
2405 if (bdi_bits & (1 << BDI_async_congested) &&
2406 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2407 r |= (1 << BDI_async_congested);
2408 reason = reason == 'b' ? 'a' : 'n';
2409 }
2410
2411 out:
2412 device->congestion_reason = reason;
2413 return r;
2414 }
2415
2416 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2417 {
2418 spin_lock_init(&wq->q_lock);
2419 INIT_LIST_HEAD(&wq->q);
2420 init_waitqueue_head(&wq->q_wait);
2421 }
2422
2423 struct drbd_resource *drbd_find_resource(const char *name)
2424 {
2425 struct drbd_resource *resource;
2426
2427 if (!name || !name[0])
2428 return NULL;
2429
2430 rcu_read_lock();
2431 for_each_resource_rcu(resource, &drbd_resources) {
2432 if (!strcmp(resource->name, name)) {
2433 kref_get(&resource->kref);
2434 goto found;
2435 }
2436 }
2437 resource = NULL;
2438 found:
2439 rcu_read_unlock();
2440 return resource;
2441 }
2442
2443 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2444 void *peer_addr, int peer_addr_len)
2445 {
2446 struct drbd_resource *resource;
2447 struct drbd_connection *connection;
2448
2449 rcu_read_lock();
2450 for_each_resource_rcu(resource, &drbd_resources) {
2451 for_each_connection_rcu(connection, resource) {
2452 if (connection->my_addr_len == my_addr_len &&
2453 connection->peer_addr_len == peer_addr_len &&
2454 !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2455 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2456 kref_get(&connection->kref);
2457 goto found;
2458 }
2459 }
2460 }
2461 connection = NULL;
2462 found:
2463 rcu_read_unlock();
2464 return connection;
2465 }
2466
2467 static int drbd_alloc_socket(struct drbd_socket *socket)
2468 {
2469 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2470 if (!socket->rbuf)
2471 return -ENOMEM;
2472 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2473 if (!socket->sbuf)
2474 return -ENOMEM;
2475 return 0;
2476 }
2477
2478 static void drbd_free_socket(struct drbd_socket *socket)
2479 {
2480 free_page((unsigned long) socket->sbuf);
2481 free_page((unsigned long) socket->rbuf);
2482 }
2483
2484 void conn_free_crypto(struct drbd_connection *connection)
2485 {
2486 drbd_free_sock(connection);
2487
2488 crypto_free_hash(connection->csums_tfm);
2489 crypto_free_hash(connection->verify_tfm);
2490 crypto_free_hash(connection->cram_hmac_tfm);
2491 crypto_free_hash(connection->integrity_tfm);
2492 crypto_free_hash(connection->peer_integrity_tfm);
2493 kfree(connection->int_dig_in);
2494 kfree(connection->int_dig_vv);
2495
2496 connection->csums_tfm = NULL;
2497 connection->verify_tfm = NULL;
2498 connection->cram_hmac_tfm = NULL;
2499 connection->integrity_tfm = NULL;
2500 connection->peer_integrity_tfm = NULL;
2501 connection->int_dig_in = NULL;
2502 connection->int_dig_vv = NULL;
2503 }
2504
2505 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2506 {
2507 struct drbd_connection *connection;
2508 cpumask_var_t new_cpu_mask;
2509 int err;
2510
2511 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2512 return -ENOMEM;
2513 /*
2514 retcode = ERR_NOMEM;
2515 drbd_msg_put_info("unable to allocate cpumask");
2516 */
2517
2518 /* silently ignore cpu mask on UP kernel */
2519 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2520 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2521 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2522 if (err) {
2523 drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2524 /* retcode = ERR_CPU_MASK_PARSE; */
2525 goto fail;
2526 }
2527 }
2528 resource->res_opts = *res_opts;
2529 if (cpumask_empty(new_cpu_mask))
2530 drbd_calc_cpu_mask(&new_cpu_mask);
2531 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2532 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2533 for_each_connection_rcu(connection, resource) {
2534 connection->receiver.reset_cpu_mask = 1;
2535 connection->asender.reset_cpu_mask = 1;
2536 connection->worker.reset_cpu_mask = 1;
2537 }
2538 }
2539 err = 0;
2540
2541 fail:
2542 free_cpumask_var(new_cpu_mask);
2543 return err;
2544
2545 }
2546
2547 struct drbd_resource *drbd_create_resource(const char *name)
2548 {
2549 struct drbd_resource *resource;
2550
2551 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2552 if (!resource)
2553 goto fail;
2554 resource->name = kstrdup(name, GFP_KERNEL);
2555 if (!resource->name)
2556 goto fail_free_resource;
2557 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2558 goto fail_free_name;
2559 kref_init(&resource->kref);
2560 idr_init(&resource->devices);
2561 INIT_LIST_HEAD(&resource->connections);
2562 list_add_tail_rcu(&resource->resources, &drbd_resources);
2563 mutex_init(&resource->conf_update);
2564 spin_lock_init(&resource->req_lock);
2565 return resource;
2566
2567 fail_free_name:
2568 kfree(resource->name);
2569 fail_free_resource:
2570 kfree(resource);
2571 fail:
2572 return NULL;
2573 }
2574
2575 /* caller must be under genl_lock() */
2576 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2577 {
2578 struct drbd_resource *resource;
2579 struct drbd_connection *connection;
2580
2581 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2582 if (!connection)
2583 return NULL;
2584
2585 if (drbd_alloc_socket(&connection->data))
2586 goto fail;
2587 if (drbd_alloc_socket(&connection->meta))
2588 goto fail;
2589
2590 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2591 if (!connection->current_epoch)
2592 goto fail;
2593
2594 INIT_LIST_HEAD(&connection->transfer_log);
2595
2596 INIT_LIST_HEAD(&connection->current_epoch->list);
2597 connection->epochs = 1;
2598 spin_lock_init(&connection->epoch_lock);
2599 connection->write_ordering = WO_bdev_flush;
2600
2601 connection->send.seen_any_write_yet = false;
2602 connection->send.current_epoch_nr = 0;
2603 connection->send.current_epoch_writes = 0;
2604
2605 resource = drbd_create_resource(name);
2606 if (!resource)
2607 goto fail;
2608
2609 connection->cstate = C_STANDALONE;
2610 mutex_init(&connection->cstate_mutex);
2611 init_waitqueue_head(&connection->ping_wait);
2612 idr_init(&connection->peer_devices);
2613
2614 drbd_init_workqueue(&connection->sender_work);
2615 mutex_init(&connection->data.mutex);
2616 mutex_init(&connection->meta.mutex);
2617
2618 drbd_thread_init(connection, &connection->receiver, drbd_receiver, "receiver");
2619 drbd_thread_init(connection, &connection->worker, drbd_worker, "worker");
2620 drbd_thread_init(connection, &connection->asender, drbd_asender, "asender");
2621
2622 kref_init(&connection->kref);
2623
2624 connection->resource = resource;
2625
2626 if (set_resource_options(resource, res_opts))
2627 goto fail_resource;
2628
2629 kref_get(&resource->kref);
2630 list_add_tail_rcu(&connection->connections, &resource->connections);
2631 return connection;
2632
2633 fail_resource:
2634 list_del(&resource->resources);
2635 drbd_free_resource(resource);
2636 fail:
2637 kfree(connection->current_epoch);
2638 drbd_free_socket(&connection->meta);
2639 drbd_free_socket(&connection->data);
2640 kfree(connection);
2641 return NULL;
2642 }
2643
2644 void drbd_destroy_connection(struct kref *kref)
2645 {
2646 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2647 struct drbd_resource *resource = connection->resource;
2648
2649 if (atomic_read(&connection->current_epoch->epoch_size) != 0)
2650 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2651 kfree(connection->current_epoch);
2652
2653 idr_destroy(&connection->peer_devices);
2654
2655 drbd_free_socket(&connection->meta);
2656 drbd_free_socket(&connection->data);
2657 kfree(connection->int_dig_in);
2658 kfree(connection->int_dig_vv);
2659 kfree(connection);
2660 kref_put(&resource->kref, drbd_destroy_resource);
2661 }
2662
2663 static int init_submitter(struct drbd_device *device)
2664 {
2665 /* opencoded create_singlethread_workqueue(),
2666 * to be able to say "drbd%d", ..., minor */
2667 device->submit.wq = alloc_workqueue("drbd%u_submit",
2668 WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor);
2669 if (!device->submit.wq)
2670 return -ENOMEM;
2671
2672 INIT_WORK(&device->submit.worker, do_submit);
2673 spin_lock_init(&device->submit.lock);
2674 INIT_LIST_HEAD(&device->submit.writes);
2675 return 0;
2676 }
2677
2678 enum drbd_ret_code drbd_create_device(struct drbd_resource *resource, unsigned int minor, int vnr)
2679 {
2680 struct drbd_connection *connection;
2681 struct drbd_device *device;
2682 struct drbd_peer_device *peer_device, *tmp_peer_device;
2683 struct gendisk *disk;
2684 struct request_queue *q;
2685 int id;
2686 enum drbd_ret_code err = ERR_NOMEM;
2687
2688 device = minor_to_device(minor);
2689 if (device)
2690 return ERR_MINOR_EXISTS;
2691
2692 /* GFP_KERNEL, we are outside of all write-out paths */
2693 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2694 if (!device)
2695 return ERR_NOMEM;
2696 kref_init(&device->kref);
2697
2698 kref_get(&resource->kref);
2699 device->resource = resource;
2700 device->minor = minor;
2701 device->vnr = vnr;
2702
2703 drbd_init_set_defaults(device);
2704
2705 q = blk_alloc_queue(GFP_KERNEL);
2706 if (!q)
2707 goto out_no_q;
2708 device->rq_queue = q;
2709 q->queuedata = device;
2710
2711 disk = alloc_disk(1);
2712 if (!disk)
2713 goto out_no_disk;
2714 device->vdisk = disk;
2715
2716 set_disk_ro(disk, true);
2717
2718 disk->queue = q;
2719 disk->major = DRBD_MAJOR;
2720 disk->first_minor = minor;
2721 disk->fops = &drbd_ops;
2722 sprintf(disk->disk_name, "drbd%d", minor);
2723 disk->private_data = device;
2724
2725 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2726 /* we have no partitions. we contain only ourselves. */
2727 device->this_bdev->bd_contains = device->this_bdev;
2728
2729 q->backing_dev_info.congested_fn = drbd_congested;
2730 q->backing_dev_info.congested_data = device;
2731
2732 blk_queue_make_request(q, drbd_make_request);
2733 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2734 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2735 This triggers a max_bio_size message upon first attach or connect */
2736 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2737 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2738 blk_queue_merge_bvec(q, drbd_merge_bvec);
2739 q->queue_lock = &resource->req_lock;
2740
2741 device->md_io_page = alloc_page(GFP_KERNEL);
2742 if (!device->md_io_page)
2743 goto out_no_io_page;
2744
2745 if (drbd_bm_init(device))
2746 goto out_no_bitmap;
2747 device->read_requests = RB_ROOT;
2748 device->write_requests = RB_ROOT;
2749
2750 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2751 if (id < 0) {
2752 if (id == -ENOSPC) {
2753 err = ERR_MINOR_EXISTS;
2754 drbd_msg_put_info("requested minor exists already");
2755 }
2756 goto out_no_minor_idr;
2757 }
2758 kref_get(&device->kref);
2759
2760 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2761 if (id < 0) {
2762 if (id == -ENOSPC) {
2763 err = ERR_MINOR_EXISTS;
2764 drbd_msg_put_info("requested minor exists already");
2765 }
2766 goto out_idr_remove_minor;
2767 }
2768 kref_get(&device->kref);
2769
2770 INIT_LIST_HEAD(&device->peer_devices);
2771 for_each_connection(connection, resource) {
2772 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2773 if (!peer_device)
2774 goto out_idr_remove_from_resource;
2775 peer_device->connection = connection;
2776 peer_device->device = device;
2777
2778 list_add(&peer_device->peer_devices, &device->peer_devices);
2779 kref_get(&device->kref);
2780
2781 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2782 if (id < 0) {
2783 if (id == -ENOSPC) {
2784 err = ERR_INVALID_REQUEST;
2785 drbd_msg_put_info("requested volume exists already");
2786 }
2787 goto out_idr_remove_from_resource;
2788 }
2789 kref_get(&connection->kref);
2790 }
2791
2792 if (init_submitter(device)) {
2793 err = ERR_NOMEM;
2794 drbd_msg_put_info("unable to create submit workqueue");
2795 goto out_idr_remove_vol;
2796 }
2797
2798 add_disk(disk);
2799
2800 /* inherit the connection state */
2801 device->state.conn = first_connection(resource)->cstate;
2802 if (device->state.conn == C_WF_REPORT_PARAMS) {
2803 for_each_peer_device(peer_device, device)
2804 drbd_connected(peer_device);
2805 }
2806
2807 return NO_ERROR;
2808
2809 out_idr_remove_vol:
2810 idr_remove(&connection->peer_devices, vnr);
2811 out_idr_remove_from_resource:
2812 for_each_connection(connection, resource) {
2813 peer_device = idr_find(&connection->peer_devices, vnr);
2814 if (peer_device) {
2815 idr_remove(&connection->peer_devices, vnr);
2816 kref_put(&connection->kref, drbd_destroy_connection);
2817 }
2818 }
2819 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2820 list_del(&peer_device->peer_devices);
2821 kfree(peer_device);
2822 }
2823 idr_remove(&resource->devices, vnr);
2824 out_idr_remove_minor:
2825 idr_remove(&drbd_devices, minor);
2826 synchronize_rcu();
2827 out_no_minor_idr:
2828 drbd_bm_cleanup(device);
2829 out_no_bitmap:
2830 __free_page(device->md_io_page);
2831 out_no_io_page:
2832 put_disk(disk);
2833 out_no_disk:
2834 blk_cleanup_queue(q);
2835 out_no_q:
2836 kref_put(&resource->kref, drbd_destroy_resource);
2837 kfree(device);
2838 return err;
2839 }
2840
2841 void drbd_delete_device(struct drbd_device *device)
2842 {
2843 struct drbd_resource *resource = device->resource;
2844 struct drbd_connection *connection;
2845 int refs = 3;
2846
2847 for_each_connection(connection, resource) {
2848 idr_remove(&connection->peer_devices, device->vnr);
2849 refs++;
2850 }
2851 idr_remove(&resource->devices, device->vnr);
2852 idr_remove(&drbd_devices, device_to_minor(device));
2853 del_gendisk(device->vdisk);
2854 synchronize_rcu();
2855 kref_sub(&device->kref, refs, drbd_destroy_device);
2856 }
2857
2858 int __init drbd_init(void)
2859 {
2860 int err;
2861
2862 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2863 printk(KERN_ERR
2864 "drbd: invalid minor_count (%d)\n", minor_count);
2865 #ifdef MODULE
2866 return -EINVAL;
2867 #else
2868 minor_count = DRBD_MINOR_COUNT_DEF;
2869 #endif
2870 }
2871
2872 err = register_blkdev(DRBD_MAJOR, "drbd");
2873 if (err) {
2874 printk(KERN_ERR
2875 "drbd: unable to register block device major %d\n",
2876 DRBD_MAJOR);
2877 return err;
2878 }
2879
2880 register_reboot_notifier(&drbd_notifier);
2881
2882 /*
2883 * allocate all necessary structs
2884 */
2885 init_waitqueue_head(&drbd_pp_wait);
2886
2887 drbd_proc = NULL; /* play safe for drbd_cleanup */
2888 idr_init(&drbd_devices);
2889
2890 rwlock_init(&global_state_lock);
2891 INIT_LIST_HEAD(&drbd_resources);
2892
2893 err = drbd_genl_register();
2894 if (err) {
2895 printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2896 goto fail;
2897 }
2898
2899 err = drbd_create_mempools();
2900 if (err)
2901 goto fail;
2902
2903 err = -ENOMEM;
2904 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2905 if (!drbd_proc) {
2906 printk(KERN_ERR "drbd: unable to register proc file\n");
2907 goto fail;
2908 }
2909
2910 retry.wq = create_singlethread_workqueue("drbd-reissue");
2911 if (!retry.wq) {
2912 printk(KERN_ERR "drbd: unable to create retry workqueue\n");
2913 goto fail;
2914 }
2915 INIT_WORK(&retry.worker, do_retry);
2916 spin_lock_init(&retry.lock);
2917 INIT_LIST_HEAD(&retry.writes);
2918
2919 printk(KERN_INFO "drbd: initialized. "
2920 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2921 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2922 printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2923 printk(KERN_INFO "drbd: registered as block device major %d\n",
2924 DRBD_MAJOR);
2925
2926 return 0; /* Success! */
2927
2928 fail:
2929 drbd_cleanup();
2930 if (err == -ENOMEM)
2931 printk(KERN_ERR "drbd: ran out of memory\n");
2932 else
2933 printk(KERN_ERR "drbd: initialization failure\n");
2934 return err;
2935 }
2936
2937 void drbd_free_bc(struct drbd_backing_dev *ldev)
2938 {
2939 if (ldev == NULL)
2940 return;
2941
2942 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2943 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2944
2945 kfree(ldev->disk_conf);
2946 kfree(ldev);
2947 }
2948
2949 void drbd_free_sock(struct drbd_connection *connection)
2950 {
2951 if (connection->data.socket) {
2952 mutex_lock(&connection->data.mutex);
2953 kernel_sock_shutdown(connection->data.socket, SHUT_RDWR);
2954 sock_release(connection->data.socket);
2955 connection->data.socket = NULL;
2956 mutex_unlock(&connection->data.mutex);
2957 }
2958 if (connection->meta.socket) {
2959 mutex_lock(&connection->meta.mutex);
2960 kernel_sock_shutdown(connection->meta.socket, SHUT_RDWR);
2961 sock_release(connection->meta.socket);
2962 connection->meta.socket = NULL;
2963 mutex_unlock(&connection->meta.mutex);
2964 }
2965 }
2966
2967 /* meta data management */
2968
2969 void conn_md_sync(struct drbd_connection *connection)
2970 {
2971 struct drbd_peer_device *peer_device;
2972 int vnr;
2973
2974 rcu_read_lock();
2975 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2976 struct drbd_device *device = peer_device->device;
2977
2978 kref_get(&device->kref);
2979 rcu_read_unlock();
2980 drbd_md_sync(device);
2981 kref_put(&device->kref, drbd_destroy_device);
2982 rcu_read_lock();
2983 }
2984 rcu_read_unlock();
2985 }
2986
2987 /* aligned 4kByte */
2988 struct meta_data_on_disk {
2989 u64 la_size_sect; /* last agreed size. */
2990 u64 uuid[UI_SIZE]; /* UUIDs. */
2991 u64 device_uuid;
2992 u64 reserved_u64_1;
2993 u32 flags; /* MDF */
2994 u32 magic;
2995 u32 md_size_sect;
2996 u32 al_offset; /* offset to this block */
2997 u32 al_nr_extents; /* important for restoring the AL (userspace) */
2998 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2999 u32 bm_offset; /* offset to the bitmap, from here */
3000 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
3001 u32 la_peer_max_bio_size; /* last peer max_bio_size */
3002
3003 /* see al_tr_number_to_on_disk_sector() */
3004 u32 al_stripes;
3005 u32 al_stripe_size_4k;
3006
3007 u8 reserved_u8[4096 - (7*8 + 10*4)];
3008 } __packed;
3009
3010
3011
3012 void drbd_md_write(struct drbd_device *device, void *b)
3013 {
3014 struct meta_data_on_disk *buffer = b;
3015 sector_t sector;
3016 int i;
3017
3018 memset(buffer, 0, sizeof(*buffer));
3019
3020 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3021 for (i = UI_CURRENT; i < UI_SIZE; i++)
3022 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3023 buffer->flags = cpu_to_be32(device->ldev->md.flags);
3024 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3025
3026 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
3027 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
3028 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3029 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3030 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3031
3032 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3033 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3034
3035 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3036 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3037
3038 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3039 sector = device->ldev->md.md_offset;
3040
3041 if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
3042 /* this was a try anyways ... */
3043 drbd_err(device, "meta data update failed!\n");
3044 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3045 }
3046 }
3047
3048 /**
3049 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3050 * @device: DRBD device.
3051 */
3052 void drbd_md_sync(struct drbd_device *device)
3053 {
3054 struct meta_data_on_disk *buffer;
3055
3056 /* Don't accidentally change the DRBD meta data layout. */
3057 BUILD_BUG_ON(UI_SIZE != 4);
3058 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3059
3060 del_timer(&device->md_sync_timer);
3061 /* timer may be rearmed by drbd_md_mark_dirty() now. */
3062 if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3063 return;
3064
3065 /* We use here D_FAILED and not D_ATTACHING because we try to write
3066 * metadata even if we detach due to a disk failure! */
3067 if (!get_ldev_if_state(device, D_FAILED))
3068 return;
3069
3070 buffer = drbd_md_get_buffer(device);
3071 if (!buffer)
3072 goto out;
3073
3074 drbd_md_write(device, buffer);
3075
3076 /* Update device->ldev->md.la_size_sect,
3077 * since we updated it on metadata. */
3078 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3079
3080 drbd_md_put_buffer(device);
3081 out:
3082 put_ldev(device);
3083 }
3084
3085 static int check_activity_log_stripe_size(struct drbd_device *device,
3086 struct meta_data_on_disk *on_disk,
3087 struct drbd_md *in_core)
3088 {
3089 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3090 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3091 u64 al_size_4k;
3092
3093 /* both not set: default to old fixed size activity log */
3094 if (al_stripes == 0 && al_stripe_size_4k == 0) {
3095 al_stripes = 1;
3096 al_stripe_size_4k = MD_32kB_SECT/8;
3097 }
3098
3099 /* some paranoia plausibility checks */
3100
3101 /* we need both values to be set */
3102 if (al_stripes == 0 || al_stripe_size_4k == 0)
3103 goto err;
3104
3105 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3106
3107 /* Upper limit of activity log area, to avoid potential overflow
3108 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3109 * than 72 * 4k blocks total only increases the amount of history,
3110 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3111 if (al_size_4k > (16 * 1024 * 1024/4))
3112 goto err;
3113
3114 /* Lower limit: we need at least 8 transaction slots (32kB)
3115 * to not break existing setups */
3116 if (al_size_4k < MD_32kB_SECT/8)
3117 goto err;
3118
3119 in_core->al_stripe_size_4k = al_stripe_size_4k;
3120 in_core->al_stripes = al_stripes;
3121 in_core->al_size_4k = al_size_4k;
3122
3123 return 0;
3124 err:
3125 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3126 al_stripes, al_stripe_size_4k);
3127 return -EINVAL;
3128 }
3129
3130 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3131 {
3132 sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3133 struct drbd_md *in_core = &bdev->md;
3134 s32 on_disk_al_sect;
3135 s32 on_disk_bm_sect;
3136
3137 /* The on-disk size of the activity log, calculated from offsets, and
3138 * the size of the activity log calculated from the stripe settings,
3139 * should match.
3140 * Though we could relax this a bit: it is ok, if the striped activity log
3141 * fits in the available on-disk activity log size.
3142 * Right now, that would break how resize is implemented.
3143 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3144 * of possible unused padding space in the on disk layout. */
3145 if (in_core->al_offset < 0) {
3146 if (in_core->bm_offset > in_core->al_offset)
3147 goto err;
3148 on_disk_al_sect = -in_core->al_offset;
3149 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3150 } else {
3151 if (in_core->al_offset != MD_4kB_SECT)
3152 goto err;
3153 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3154 goto err;
3155
3156 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3157 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3158 }
3159
3160 /* old fixed size meta data is exactly that: fixed. */
3161 if (in_core->meta_dev_idx >= 0) {
3162 if (in_core->md_size_sect != MD_128MB_SECT
3163 || in_core->al_offset != MD_4kB_SECT
3164 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3165 || in_core->al_stripes != 1
3166 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3167 goto err;
3168 }
3169
3170 if (capacity < in_core->md_size_sect)
3171 goto err;
3172 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3173 goto err;
3174
3175 /* should be aligned, and at least 32k */
3176 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3177 goto err;
3178
3179 /* should fit (for now: exactly) into the available on-disk space;
3180 * overflow prevention is in check_activity_log_stripe_size() above. */
3181 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3182 goto err;
3183
3184 /* again, should be aligned */
3185 if (in_core->bm_offset & 7)
3186 goto err;
3187
3188 /* FIXME check for device grow with flex external meta data? */
3189
3190 /* can the available bitmap space cover the last agreed device size? */
3191 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3192 goto err;
3193
3194 return 0;
3195
3196 err:
3197 drbd_err(device, "meta data offsets don't make sense: idx=%d "
3198 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3199 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3200 in_core->meta_dev_idx,
3201 in_core->al_stripes, in_core->al_stripe_size_4k,
3202 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3203 (unsigned long long)in_core->la_size_sect,
3204 (unsigned long long)capacity);
3205
3206 return -EINVAL;
3207 }
3208
3209
3210 /**
3211 * drbd_md_read() - Reads in the meta data super block
3212 * @device: DRBD device.
3213 * @bdev: Device from which the meta data should be read in.
3214 *
3215 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3216 * something goes wrong.
3217 *
3218 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3219 * even before @bdev is assigned to @device->ldev.
3220 */
3221 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3222 {
3223 struct meta_data_on_disk *buffer;
3224 u32 magic, flags;
3225 int i, rv = NO_ERROR;
3226
3227 if (device->state.disk != D_DISKLESS)
3228 return ERR_DISK_CONFIGURED;
3229
3230 buffer = drbd_md_get_buffer(device);
3231 if (!buffer)
3232 return ERR_NOMEM;
3233
3234 /* First, figure out where our meta data superblock is located,
3235 * and read it. */
3236 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3237 bdev->md.md_offset = drbd_md_ss(bdev);
3238
3239 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3240 /* NOTE: can't do normal error processing here as this is
3241 called BEFORE disk is attached */
3242 drbd_err(device, "Error while reading metadata.\n");
3243 rv = ERR_IO_MD_DISK;
3244 goto err;
3245 }
3246
3247 magic = be32_to_cpu(buffer->magic);
3248 flags = be32_to_cpu(buffer->flags);
3249 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3250 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3251 /* btw: that's Activity Log clean, not "all" clean. */
3252 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3253 rv = ERR_MD_UNCLEAN;
3254 goto err;
3255 }
3256
3257 rv = ERR_MD_INVALID;
3258 if (magic != DRBD_MD_MAGIC_08) {
3259 if (magic == DRBD_MD_MAGIC_07)
3260 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3261 else
3262 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3263 goto err;
3264 }
3265
3266 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3267 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3268 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3269 goto err;
3270 }
3271
3272
3273 /* convert to in_core endian */
3274 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3275 for (i = UI_CURRENT; i < UI_SIZE; i++)
3276 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3277 bdev->md.flags = be32_to_cpu(buffer->flags);
3278 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3279
3280 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3281 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3282 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3283
3284 if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3285 goto err;
3286 if (check_offsets_and_sizes(device, bdev))
3287 goto err;
3288
3289 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3290 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3291 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3292 goto err;
3293 }
3294 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3295 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3296 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3297 goto err;
3298 }
3299
3300 rv = NO_ERROR;
3301
3302 spin_lock_irq(&device->resource->req_lock);
3303 if (device->state.conn < C_CONNECTED) {
3304 unsigned int peer;
3305 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3306 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3307 device->peer_max_bio_size = peer;
3308 }
3309 spin_unlock_irq(&device->resource->req_lock);
3310
3311 err:
3312 drbd_md_put_buffer(device);
3313
3314 return rv;
3315 }
3316
3317 /**
3318 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3319 * @device: DRBD device.
3320 *
3321 * Call this function if you change anything that should be written to
3322 * the meta-data super block. This function sets MD_DIRTY, and starts a
3323 * timer that ensures that within five seconds you have to call drbd_md_sync().
3324 */
3325 #ifdef DEBUG
3326 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3327 {
3328 if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3329 mod_timer(&device->md_sync_timer, jiffies + HZ);
3330 device->last_md_mark_dirty.line = line;
3331 device->last_md_mark_dirty.func = func;
3332 }
3333 }
3334 #else
3335 void drbd_md_mark_dirty(struct drbd_device *device)
3336 {
3337 if (!test_and_set_bit(MD_DIRTY, &device->flags))
3338 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3339 }
3340 #endif
3341
3342 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3343 {
3344 int i;
3345
3346 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3347 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3348 }
3349
3350 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3351 {
3352 if (idx == UI_CURRENT) {
3353 if (device->state.role == R_PRIMARY)
3354 val |= 1;
3355 else
3356 val &= ~((u64)1);
3357
3358 drbd_set_ed_uuid(device, val);
3359 }
3360
3361 device->ldev->md.uuid[idx] = val;
3362 drbd_md_mark_dirty(device);
3363 }
3364
3365 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3366 {
3367 unsigned long flags;
3368 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3369 __drbd_uuid_set(device, idx, val);
3370 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3371 }
3372
3373 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3374 {
3375 unsigned long flags;
3376 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3377 if (device->ldev->md.uuid[idx]) {
3378 drbd_uuid_move_history(device);
3379 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3380 }
3381 __drbd_uuid_set(device, idx, val);
3382 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3383 }
3384
3385 /**
3386 * drbd_uuid_new_current() - Creates a new current UUID
3387 * @device: DRBD device.
3388 *
3389 * Creates a new current UUID, and rotates the old current UUID into
3390 * the bitmap slot. Causes an incremental resync upon next connect.
3391 */
3392 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3393 {
3394 u64 val;
3395 unsigned long long bm_uuid;
3396
3397 get_random_bytes(&val, sizeof(u64));
3398
3399 spin_lock_irq(&device->ldev->md.uuid_lock);
3400 bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3401
3402 if (bm_uuid)
3403 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3404
3405 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3406 __drbd_uuid_set(device, UI_CURRENT, val);
3407 spin_unlock_irq(&device->ldev->md.uuid_lock);
3408
3409 drbd_print_uuids(device, "new current UUID");
3410 /* get it to stable storage _now_ */
3411 drbd_md_sync(device);
3412 }
3413
3414 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3415 {
3416 unsigned long flags;
3417 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3418 return;
3419
3420 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3421 if (val == 0) {
3422 drbd_uuid_move_history(device);
3423 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3424 device->ldev->md.uuid[UI_BITMAP] = 0;
3425 } else {
3426 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3427 if (bm_uuid)
3428 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3429
3430 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3431 }
3432 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3433
3434 drbd_md_mark_dirty(device);
3435 }
3436
3437 /**
3438 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3439 * @device: DRBD device.
3440 *
3441 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3442 */
3443 int drbd_bmio_set_n_write(struct drbd_device *device)
3444 {
3445 int rv = -EIO;
3446
3447 if (get_ldev_if_state(device, D_ATTACHING)) {
3448 drbd_md_set_flag(device, MDF_FULL_SYNC);
3449 drbd_md_sync(device);
3450 drbd_bm_set_all(device);
3451
3452 rv = drbd_bm_write(device);
3453
3454 if (!rv) {
3455 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3456 drbd_md_sync(device);
3457 }
3458
3459 put_ldev(device);
3460 }
3461
3462 return rv;
3463 }
3464
3465 /**
3466 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3467 * @device: DRBD device.
3468 *
3469 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3470 */
3471 int drbd_bmio_clear_n_write(struct drbd_device *device)
3472 {
3473 int rv = -EIO;
3474
3475 drbd_resume_al(device);
3476 if (get_ldev_if_state(device, D_ATTACHING)) {
3477 drbd_bm_clear_all(device);
3478 rv = drbd_bm_write(device);
3479 put_ldev(device);
3480 }
3481
3482 return rv;
3483 }
3484
3485 static int w_bitmap_io(struct drbd_work *w, int unused)
3486 {
3487 struct bm_io_work *work = container_of(w, struct bm_io_work, w);
3488 struct drbd_device *device = w->device;
3489 int rv = -EIO;
3490
3491 D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0);
3492
3493 if (get_ldev(device)) {
3494 drbd_bm_lock(device, work->why, work->flags);
3495 rv = work->io_fn(device);
3496 drbd_bm_unlock(device);
3497 put_ldev(device);
3498 }
3499
3500 clear_bit_unlock(BITMAP_IO, &device->flags);
3501 wake_up(&device->misc_wait);
3502
3503 if (work->done)
3504 work->done(device, rv);
3505
3506 clear_bit(BITMAP_IO_QUEUED, &device->flags);
3507 work->why = NULL;
3508 work->flags = 0;
3509
3510 return 0;
3511 }
3512
3513 void drbd_ldev_destroy(struct drbd_device *device)
3514 {
3515 lc_destroy(device->resync);
3516 device->resync = NULL;
3517 lc_destroy(device->act_log);
3518 device->act_log = NULL;
3519 __no_warn(local,
3520 drbd_free_bc(device->ldev);
3521 device->ldev = NULL;);
3522
3523 clear_bit(GO_DISKLESS, &device->flags);
3524 }
3525
3526 static int w_go_diskless(struct drbd_work *w, int unused)
3527 {
3528 struct drbd_device *device = w->device;
3529
3530 D_ASSERT(device, device->state.disk == D_FAILED);
3531 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
3532 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
3533 * the protected members anymore, though, so once put_ldev reaches zero
3534 * again, it will be safe to free them. */
3535
3536 /* Try to write changed bitmap pages, read errors may have just
3537 * set some bits outside the area covered by the activity log.
3538 *
3539 * If we have an IO error during the bitmap writeout,
3540 * we will want a full sync next time, just in case.
3541 * (Do we want a specific meta data flag for this?)
3542 *
3543 * If that does not make it to stable storage either,
3544 * we cannot do anything about that anymore.
3545 *
3546 * We still need to check if both bitmap and ldev are present, we may
3547 * end up here after a failed attach, before ldev was even assigned.
3548 */
3549 if (device->bitmap && device->ldev) {
3550 /* An interrupted resync or similar is allowed to recounts bits
3551 * while we detach.
3552 * Any modifications would not be expected anymore, though.
3553 */
3554 if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
3555 "detach", BM_LOCKED_TEST_ALLOWED)) {
3556 if (test_bit(WAS_READ_ERROR, &device->flags)) {
3557 drbd_md_set_flag(device, MDF_FULL_SYNC);
3558 drbd_md_sync(device);
3559 }
3560 }
3561 }
3562
3563 drbd_force_state(device, NS(disk, D_DISKLESS));
3564 return 0;
3565 }
3566
3567 /**
3568 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3569 * @device: DRBD device.
3570 * @io_fn: IO callback to be called when bitmap IO is possible
3571 * @done: callback to be called after the bitmap IO was performed
3572 * @why: Descriptive text of the reason for doing the IO
3573 *
3574 * While IO on the bitmap happens we freeze application IO thus we ensure
3575 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3576 * called from worker context. It MUST NOT be used while a previous such
3577 * work is still pending!
3578 */
3579 void drbd_queue_bitmap_io(struct drbd_device *device,
3580 int (*io_fn)(struct drbd_device *),
3581 void (*done)(struct drbd_device *, int),
3582 char *why, enum bm_flag flags)
3583 {
3584 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3585
3586 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3587 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3588 D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3589 if (device->bm_io_work.why)
3590 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3591 why, device->bm_io_work.why);
3592
3593 device->bm_io_work.io_fn = io_fn;
3594 device->bm_io_work.done = done;
3595 device->bm_io_work.why = why;
3596 device->bm_io_work.flags = flags;
3597
3598 spin_lock_irq(&device->resource->req_lock);
3599 set_bit(BITMAP_IO, &device->flags);
3600 if (atomic_read(&device->ap_bio_cnt) == 0) {
3601 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3602 drbd_queue_work(&first_peer_device(device)->connection->sender_work, &device->bm_io_work.w);
3603 }
3604 spin_unlock_irq(&device->resource->req_lock);
3605 }
3606
3607 /**
3608 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3609 * @device: DRBD device.
3610 * @io_fn: IO callback to be called when bitmap IO is possible
3611 * @why: Descriptive text of the reason for doing the IO
3612 *
3613 * freezes application IO while that the actual IO operations runs. This
3614 * functions MAY NOT be called from worker context.
3615 */
3616 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3617 char *why, enum bm_flag flags)
3618 {
3619 int rv;
3620
3621 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3622
3623 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3624 drbd_suspend_io(device);
3625
3626 drbd_bm_lock(device, why, flags);
3627 rv = io_fn(device);
3628 drbd_bm_unlock(device);
3629
3630 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3631 drbd_resume_io(device);
3632
3633 return rv;
3634 }
3635
3636 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3637 {
3638 if ((device->ldev->md.flags & flag) != flag) {
3639 drbd_md_mark_dirty(device);
3640 device->ldev->md.flags |= flag;
3641 }
3642 }
3643
3644 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3645 {
3646 if ((device->ldev->md.flags & flag) != 0) {
3647 drbd_md_mark_dirty(device);
3648 device->ldev->md.flags &= ~flag;
3649 }
3650 }
3651 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3652 {
3653 return (bdev->md.flags & flag) != 0;
3654 }
3655
3656 static void md_sync_timer_fn(unsigned long data)
3657 {
3658 struct drbd_device *device = (struct drbd_device *) data;
3659
3660 /* must not double-queue! */
3661 if (list_empty(&device->md_sync_work.list))
3662 drbd_queue_work_front(&first_peer_device(device)->connection->sender_work, &device->md_sync_work);
3663 }
3664
3665 static int w_md_sync(struct drbd_work *w, int unused)
3666 {
3667 struct drbd_device *device = w->device;
3668
3669 drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3670 #ifdef DEBUG
3671 drbd_warn(device, "last md_mark_dirty: %s:%u\n",
3672 device->last_md_mark_dirty.func, device->last_md_mark_dirty.line);
3673 #endif
3674 drbd_md_sync(device);
3675 return 0;
3676 }
3677
3678 const char *cmdname(enum drbd_packet cmd)
3679 {
3680 /* THINK may need to become several global tables
3681 * when we want to support more than
3682 * one PRO_VERSION */
3683 static const char *cmdnames[] = {
3684 [P_DATA] = "Data",
3685 [P_DATA_REPLY] = "DataReply",
3686 [P_RS_DATA_REPLY] = "RSDataReply",
3687 [P_BARRIER] = "Barrier",
3688 [P_BITMAP] = "ReportBitMap",
3689 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3690 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3691 [P_UNPLUG_REMOTE] = "UnplugRemote",
3692 [P_DATA_REQUEST] = "DataRequest",
3693 [P_RS_DATA_REQUEST] = "RSDataRequest",
3694 [P_SYNC_PARAM] = "SyncParam",
3695 [P_SYNC_PARAM89] = "SyncParam89",
3696 [P_PROTOCOL] = "ReportProtocol",
3697 [P_UUIDS] = "ReportUUIDs",
3698 [P_SIZES] = "ReportSizes",
3699 [P_STATE] = "ReportState",
3700 [P_SYNC_UUID] = "ReportSyncUUID",
3701 [P_AUTH_CHALLENGE] = "AuthChallenge",
3702 [P_AUTH_RESPONSE] = "AuthResponse",
3703 [P_PING] = "Ping",
3704 [P_PING_ACK] = "PingAck",
3705 [P_RECV_ACK] = "RecvAck",
3706 [P_WRITE_ACK] = "WriteAck",
3707 [P_RS_WRITE_ACK] = "RSWriteAck",
3708 [P_SUPERSEDED] = "Superseded",
3709 [P_NEG_ACK] = "NegAck",
3710 [P_NEG_DREPLY] = "NegDReply",
3711 [P_NEG_RS_DREPLY] = "NegRSDReply",
3712 [P_BARRIER_ACK] = "BarrierAck",
3713 [P_STATE_CHG_REQ] = "StateChgRequest",
3714 [P_STATE_CHG_REPLY] = "StateChgReply",
3715 [P_OV_REQUEST] = "OVRequest",
3716 [P_OV_REPLY] = "OVReply",
3717 [P_OV_RESULT] = "OVResult",
3718 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3719 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3720 [P_COMPRESSED_BITMAP] = "CBitmap",
3721 [P_DELAY_PROBE] = "DelayProbe",
3722 [P_OUT_OF_SYNC] = "OutOfSync",
3723 [P_RETRY_WRITE] = "RetryWrite",
3724 [P_RS_CANCEL] = "RSCancel",
3725 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3726 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3727 [P_RETRY_WRITE] = "retry_write",
3728 [P_PROTOCOL_UPDATE] = "protocol_update",
3729
3730 /* enum drbd_packet, but not commands - obsoleted flags:
3731 * P_MAY_IGNORE
3732 * P_MAX_OPT_CMD
3733 */
3734 };
3735
3736 /* too big for the array: 0xfffX */
3737 if (cmd == P_INITIAL_META)
3738 return "InitialMeta";
3739 if (cmd == P_INITIAL_DATA)
3740 return "InitialData";
3741 if (cmd == P_CONNECTION_FEATURES)
3742 return "ConnectionFeatures";
3743 if (cmd >= ARRAY_SIZE(cmdnames))
3744 return "Unknown";
3745 return cmdnames[cmd];
3746 }
3747
3748 /**
3749 * drbd_wait_misc - wait for a request to make progress
3750 * @device: device associated with the request
3751 * @i: the struct drbd_interval embedded in struct drbd_request or
3752 * struct drbd_peer_request
3753 */
3754 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3755 {
3756 struct net_conf *nc;
3757 DEFINE_WAIT(wait);
3758 long timeout;
3759
3760 rcu_read_lock();
3761 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3762 if (!nc) {
3763 rcu_read_unlock();
3764 return -ETIMEDOUT;
3765 }
3766 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3767 rcu_read_unlock();
3768
3769 /* Indicate to wake up device->misc_wait on progress. */
3770 i->waiting = true;
3771 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3772 spin_unlock_irq(&device->resource->req_lock);
3773 timeout = schedule_timeout(timeout);
3774 finish_wait(&device->misc_wait, &wait);
3775 spin_lock_irq(&device->resource->req_lock);
3776 if (!timeout || device->state.conn < C_CONNECTED)
3777 return -ETIMEDOUT;
3778 if (signal_pending(current))
3779 return -ERESTARTSYS;
3780 return 0;
3781 }
3782
3783 #ifdef CONFIG_DRBD_FAULT_INJECTION
3784 /* Fault insertion support including random number generator shamelessly
3785 * stolen from kernel/rcutorture.c */
3786 struct fault_random_state {
3787 unsigned long state;
3788 unsigned long count;
3789 };
3790
3791 #define FAULT_RANDOM_MULT 39916801 /* prime */
3792 #define FAULT_RANDOM_ADD 479001701 /* prime */
3793 #define FAULT_RANDOM_REFRESH 10000
3794
3795 /*
3796 * Crude but fast random-number generator. Uses a linear congruential
3797 * generator, with occasional help from get_random_bytes().
3798 */
3799 static unsigned long
3800 _drbd_fault_random(struct fault_random_state *rsp)
3801 {
3802 long refresh;
3803
3804 if (!rsp->count--) {
3805 get_random_bytes(&refresh, sizeof(refresh));
3806 rsp->state += refresh;
3807 rsp->count = FAULT_RANDOM_REFRESH;
3808 }
3809 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3810 return swahw32(rsp->state);
3811 }
3812
3813 static char *
3814 _drbd_fault_str(unsigned int type) {
3815 static char *_faults[] = {
3816 [DRBD_FAULT_MD_WR] = "Meta-data write",
3817 [DRBD_FAULT_MD_RD] = "Meta-data read",
3818 [DRBD_FAULT_RS_WR] = "Resync write",
3819 [DRBD_FAULT_RS_RD] = "Resync read",
3820 [DRBD_FAULT_DT_WR] = "Data write",
3821 [DRBD_FAULT_DT_RD] = "Data read",
3822 [DRBD_FAULT_DT_RA] = "Data read ahead",
3823 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3824 [DRBD_FAULT_AL_EE] = "EE allocation",
3825 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3826 };
3827
3828 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3829 }
3830
3831 unsigned int
3832 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3833 {
3834 static struct fault_random_state rrs = {0, 0};
3835
3836 unsigned int ret = (
3837 (fault_devs == 0 ||
3838 ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3839 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3840
3841 if (ret) {
3842 fault_count++;
3843
3844 if (__ratelimit(&drbd_ratelimit_state))
3845 drbd_warn(device, "***Simulating %s failure\n",
3846 _drbd_fault_str(type));
3847 }
3848
3849 return ret;
3850 }
3851 #endif
3852
3853 const char *drbd_buildtag(void)
3854 {
3855 /* DRBD built from external sources has here a reference to the
3856 git hash of the source code. */
3857
3858 static char buildtag[38] = "\0uilt-in";
3859
3860 if (buildtag[0] == 0) {
3861 #ifdef MODULE
3862 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3863 #else
3864 buildtag[0] = 'b';
3865 #endif
3866 }
3867
3868 return buildtag;
3869 }
3870
3871 module_init(drbd_init)
3872 module_exit(drbd_cleanup)
3873
3874 EXPORT_SYMBOL(drbd_conn_str);
3875 EXPORT_SYMBOL(drbd_role_str);
3876 EXPORT_SYMBOL(drbd_disk_str);
3877 EXPORT_SYMBOL(drbd_set_st_err_str);
This page took 0.10967 seconds and 5 git commands to generate.