f66294db3b0806f1c2f358fad17ee2c096a3bbc8
[deliverable/linux.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/jiffies.h>
33 #include <linux/drbd.h>
34 #include <asm/uaccess.h>
35 #include <asm/types.h>
36 #include <net/sock.h>
37 #include <linux/ctype.h>
38 #include <linux/mutex.h>
39 #include <linux/fs.h>
40 #include <linux/file.h>
41 #include <linux/proc_fs.h>
42 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/memcontrol.h>
45 #include <linux/mm_inline.h>
46 #include <linux/slab.h>
47 #include <linux/random.h>
48 #include <linux/reboot.h>
49 #include <linux/notifier.h>
50 #include <linux/kthread.h>
51 #include <linux/workqueue.h>
52 #define __KERNEL_SYSCALLS__
53 #include <linux/unistd.h>
54 #include <linux/vmalloc.h>
55
56 #include <linux/drbd_limits.h>
57 #include "drbd_int.h"
58 #include "drbd_protocol.h"
59 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
60 #include "drbd_vli.h"
61 #include "drbd_debugfs.h"
62
63 static DEFINE_MUTEX(drbd_main_mutex);
64 static int drbd_open(struct block_device *bdev, fmode_t mode);
65 static void drbd_release(struct gendisk *gd, fmode_t mode);
66 static void md_sync_timer_fn(unsigned long data);
67 static int w_bitmap_io(struct drbd_work *w, int unused);
68
69 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
70 "Lars Ellenberg <lars@linbit.com>");
71 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
72 MODULE_VERSION(REL_VERSION);
73 MODULE_LICENSE("GPL");
74 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
75 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
76 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
77
78 #include <linux/moduleparam.h>
79 /* allow_open_on_secondary */
80 MODULE_PARM_DESC(allow_oos, "DONT USE!");
81 /* thanks to these macros, if compiled into the kernel (not-module),
82 * this becomes the boot parameter drbd.minor_count */
83 module_param(minor_count, uint, 0444);
84 module_param(disable_sendpage, bool, 0644);
85 module_param(allow_oos, bool, 0);
86 module_param(proc_details, int, 0644);
87
88 #ifdef CONFIG_DRBD_FAULT_INJECTION
89 int enable_faults;
90 int fault_rate;
91 static int fault_count;
92 int fault_devs;
93 /* bitmap of enabled faults */
94 module_param(enable_faults, int, 0664);
95 /* fault rate % value - applies to all enabled faults */
96 module_param(fault_rate, int, 0664);
97 /* count of faults inserted */
98 module_param(fault_count, int, 0664);
99 /* bitmap of devices to insert faults on */
100 module_param(fault_devs, int, 0644);
101 #endif
102
103 /* module parameter, defined */
104 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
105 bool disable_sendpage;
106 bool allow_oos;
107 int proc_details; /* Detail level in proc drbd*/
108
109 /* Module parameter for setting the user mode helper program
110 * to run. Default is /sbin/drbdadm */
111 char usermode_helper[80] = "/sbin/drbdadm";
112
113 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
114
115 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
116 * as member "struct gendisk *vdisk;"
117 */
118 struct idr drbd_devices;
119 struct list_head drbd_resources;
120 struct mutex resources_mutex;
121
122 struct kmem_cache *drbd_request_cache;
123 struct kmem_cache *drbd_ee_cache; /* peer requests */
124 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
125 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
126 mempool_t *drbd_request_mempool;
127 mempool_t *drbd_ee_mempool;
128 mempool_t *drbd_md_io_page_pool;
129 struct bio_set *drbd_md_io_bio_set;
130
131 /* I do not use a standard mempool, because:
132 1) I want to hand out the pre-allocated objects first.
133 2) I want to be able to interrupt sleeping allocation with a signal.
134 Note: This is a single linked list, the next pointer is the private
135 member of struct page.
136 */
137 struct page *drbd_pp_pool;
138 spinlock_t drbd_pp_lock;
139 int drbd_pp_vacant;
140 wait_queue_head_t drbd_pp_wait;
141
142 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
143
144 static const struct block_device_operations drbd_ops = {
145 .owner = THIS_MODULE,
146 .open = drbd_open,
147 .release = drbd_release,
148 };
149
150 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
151 {
152 struct bio *bio;
153
154 if (!drbd_md_io_bio_set)
155 return bio_alloc(gfp_mask, 1);
156
157 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
158 if (!bio)
159 return NULL;
160 return bio;
161 }
162
163 #ifdef __CHECKER__
164 /* When checking with sparse, and this is an inline function, sparse will
165 give tons of false positives. When this is a real functions sparse works.
166 */
167 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
168 {
169 int io_allowed;
170
171 atomic_inc(&device->local_cnt);
172 io_allowed = (device->state.disk >= mins);
173 if (!io_allowed) {
174 if (atomic_dec_and_test(&device->local_cnt))
175 wake_up(&device->misc_wait);
176 }
177 return io_allowed;
178 }
179
180 #endif
181
182 /**
183 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
184 * @connection: DRBD connection.
185 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
186 * @set_size: Expected number of requests before that barrier.
187 *
188 * In case the passed barrier_nr or set_size does not match the oldest
189 * epoch of not yet barrier-acked requests, this function will cause a
190 * termination of the connection.
191 */
192 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
193 unsigned int set_size)
194 {
195 struct drbd_request *r;
196 struct drbd_request *req = NULL;
197 int expect_epoch = 0;
198 int expect_size = 0;
199
200 spin_lock_irq(&connection->resource->req_lock);
201
202 /* find oldest not yet barrier-acked write request,
203 * count writes in its epoch. */
204 list_for_each_entry(r, &connection->transfer_log, tl_requests) {
205 const unsigned s = r->rq_state;
206 if (!req) {
207 if (!(s & RQ_WRITE))
208 continue;
209 if (!(s & RQ_NET_MASK))
210 continue;
211 if (s & RQ_NET_DONE)
212 continue;
213 req = r;
214 expect_epoch = req->epoch;
215 expect_size ++;
216 } else {
217 if (r->epoch != expect_epoch)
218 break;
219 if (!(s & RQ_WRITE))
220 continue;
221 /* if (s & RQ_DONE): not expected */
222 /* if (!(s & RQ_NET_MASK)): not expected */
223 expect_size++;
224 }
225 }
226
227 /* first some paranoia code */
228 if (req == NULL) {
229 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
230 barrier_nr);
231 goto bail;
232 }
233 if (expect_epoch != barrier_nr) {
234 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
235 barrier_nr, expect_epoch);
236 goto bail;
237 }
238
239 if (expect_size != set_size) {
240 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
241 barrier_nr, set_size, expect_size);
242 goto bail;
243 }
244
245 /* Clean up list of requests processed during current epoch. */
246 /* this extra list walk restart is paranoia,
247 * to catch requests being barrier-acked "unexpectedly".
248 * It usually should find the same req again, or some READ preceding it. */
249 list_for_each_entry(req, &connection->transfer_log, tl_requests)
250 if (req->epoch == expect_epoch)
251 break;
252 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
253 if (req->epoch != expect_epoch)
254 break;
255 _req_mod(req, BARRIER_ACKED);
256 }
257 spin_unlock_irq(&connection->resource->req_lock);
258
259 return;
260
261 bail:
262 spin_unlock_irq(&connection->resource->req_lock);
263 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
264 }
265
266
267 /**
268 * _tl_restart() - Walks the transfer log, and applies an action to all requests
269 * @connection: DRBD connection to operate on.
270 * @what: The action/event to perform with all request objects
271 *
272 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
273 * RESTART_FROZEN_DISK_IO.
274 */
275 /* must hold resource->req_lock */
276 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
277 {
278 struct drbd_request *req, *r;
279
280 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
281 _req_mod(req, what);
282 }
283
284 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
285 {
286 spin_lock_irq(&connection->resource->req_lock);
287 _tl_restart(connection, what);
288 spin_unlock_irq(&connection->resource->req_lock);
289 }
290
291 /**
292 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
293 * @device: DRBD device.
294 *
295 * This is called after the connection to the peer was lost. The storage covered
296 * by the requests on the transfer gets marked as our of sync. Called from the
297 * receiver thread and the worker thread.
298 */
299 void tl_clear(struct drbd_connection *connection)
300 {
301 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
302 }
303
304 /**
305 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
306 * @device: DRBD device.
307 */
308 void tl_abort_disk_io(struct drbd_device *device)
309 {
310 struct drbd_connection *connection = first_peer_device(device)->connection;
311 struct drbd_request *req, *r;
312
313 spin_lock_irq(&connection->resource->req_lock);
314 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
315 if (!(req->rq_state & RQ_LOCAL_PENDING))
316 continue;
317 if (req->device != device)
318 continue;
319 _req_mod(req, ABORT_DISK_IO);
320 }
321 spin_unlock_irq(&connection->resource->req_lock);
322 }
323
324 static int drbd_thread_setup(void *arg)
325 {
326 struct drbd_thread *thi = (struct drbd_thread *) arg;
327 struct drbd_resource *resource = thi->resource;
328 unsigned long flags;
329 int retval;
330
331 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
332 thi->name[0],
333 resource->name);
334
335 restart:
336 retval = thi->function(thi);
337
338 spin_lock_irqsave(&thi->t_lock, flags);
339
340 /* if the receiver has been "EXITING", the last thing it did
341 * was set the conn state to "StandAlone",
342 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
343 * and receiver thread will be "started".
344 * drbd_thread_start needs to set "RESTARTING" in that case.
345 * t_state check and assignment needs to be within the same spinlock,
346 * so either thread_start sees EXITING, and can remap to RESTARTING,
347 * or thread_start see NONE, and can proceed as normal.
348 */
349
350 if (thi->t_state == RESTARTING) {
351 drbd_info(resource, "Restarting %s thread\n", thi->name);
352 thi->t_state = RUNNING;
353 spin_unlock_irqrestore(&thi->t_lock, flags);
354 goto restart;
355 }
356
357 thi->task = NULL;
358 thi->t_state = NONE;
359 smp_mb();
360 complete_all(&thi->stop);
361 spin_unlock_irqrestore(&thi->t_lock, flags);
362
363 drbd_info(resource, "Terminating %s\n", current->comm);
364
365 /* Release mod reference taken when thread was started */
366
367 if (thi->connection)
368 kref_put(&thi->connection->kref, drbd_destroy_connection);
369 kref_put(&resource->kref, drbd_destroy_resource);
370 module_put(THIS_MODULE);
371 return retval;
372 }
373
374 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
375 int (*func) (struct drbd_thread *), const char *name)
376 {
377 spin_lock_init(&thi->t_lock);
378 thi->task = NULL;
379 thi->t_state = NONE;
380 thi->function = func;
381 thi->resource = resource;
382 thi->connection = NULL;
383 thi->name = name;
384 }
385
386 int drbd_thread_start(struct drbd_thread *thi)
387 {
388 struct drbd_resource *resource = thi->resource;
389 struct task_struct *nt;
390 unsigned long flags;
391
392 /* is used from state engine doing drbd_thread_stop_nowait,
393 * while holding the req lock irqsave */
394 spin_lock_irqsave(&thi->t_lock, flags);
395
396 switch (thi->t_state) {
397 case NONE:
398 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
399 thi->name, current->comm, current->pid);
400
401 /* Get ref on module for thread - this is released when thread exits */
402 if (!try_module_get(THIS_MODULE)) {
403 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
404 spin_unlock_irqrestore(&thi->t_lock, flags);
405 return false;
406 }
407
408 kref_get(&resource->kref);
409 if (thi->connection)
410 kref_get(&thi->connection->kref);
411
412 init_completion(&thi->stop);
413 thi->reset_cpu_mask = 1;
414 thi->t_state = RUNNING;
415 spin_unlock_irqrestore(&thi->t_lock, flags);
416 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
417
418 nt = kthread_create(drbd_thread_setup, (void *) thi,
419 "drbd_%c_%s", thi->name[0], thi->resource->name);
420
421 if (IS_ERR(nt)) {
422 drbd_err(resource, "Couldn't start thread\n");
423
424 if (thi->connection)
425 kref_put(&thi->connection->kref, drbd_destroy_connection);
426 kref_put(&resource->kref, drbd_destroy_resource);
427 module_put(THIS_MODULE);
428 return false;
429 }
430 spin_lock_irqsave(&thi->t_lock, flags);
431 thi->task = nt;
432 thi->t_state = RUNNING;
433 spin_unlock_irqrestore(&thi->t_lock, flags);
434 wake_up_process(nt);
435 break;
436 case EXITING:
437 thi->t_state = RESTARTING;
438 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
439 thi->name, current->comm, current->pid);
440 /* fall through */
441 case RUNNING:
442 case RESTARTING:
443 default:
444 spin_unlock_irqrestore(&thi->t_lock, flags);
445 break;
446 }
447
448 return true;
449 }
450
451
452 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
453 {
454 unsigned long flags;
455
456 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
457
458 /* may be called from state engine, holding the req lock irqsave */
459 spin_lock_irqsave(&thi->t_lock, flags);
460
461 if (thi->t_state == NONE) {
462 spin_unlock_irqrestore(&thi->t_lock, flags);
463 if (restart)
464 drbd_thread_start(thi);
465 return;
466 }
467
468 if (thi->t_state != ns) {
469 if (thi->task == NULL) {
470 spin_unlock_irqrestore(&thi->t_lock, flags);
471 return;
472 }
473
474 thi->t_state = ns;
475 smp_mb();
476 init_completion(&thi->stop);
477 if (thi->task != current)
478 force_sig(DRBD_SIGKILL, thi->task);
479 }
480
481 spin_unlock_irqrestore(&thi->t_lock, flags);
482
483 if (wait)
484 wait_for_completion(&thi->stop);
485 }
486
487 int conn_lowest_minor(struct drbd_connection *connection)
488 {
489 struct drbd_peer_device *peer_device;
490 int vnr = 0, minor = -1;
491
492 rcu_read_lock();
493 peer_device = idr_get_next(&connection->peer_devices, &vnr);
494 if (peer_device)
495 minor = device_to_minor(peer_device->device);
496 rcu_read_unlock();
497
498 return minor;
499 }
500
501 #ifdef CONFIG_SMP
502 /**
503 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
504 *
505 * Forces all threads of a resource onto the same CPU. This is beneficial for
506 * DRBD's performance. May be overwritten by user's configuration.
507 */
508 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
509 {
510 unsigned int *resources_per_cpu, min_index = ~0;
511
512 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
513 if (resources_per_cpu) {
514 struct drbd_resource *resource;
515 unsigned int cpu, min = ~0;
516
517 rcu_read_lock();
518 for_each_resource_rcu(resource, &drbd_resources) {
519 for_each_cpu(cpu, resource->cpu_mask)
520 resources_per_cpu[cpu]++;
521 }
522 rcu_read_unlock();
523 for_each_online_cpu(cpu) {
524 if (resources_per_cpu[cpu] < min) {
525 min = resources_per_cpu[cpu];
526 min_index = cpu;
527 }
528 }
529 kfree(resources_per_cpu);
530 }
531 if (min_index == ~0) {
532 cpumask_setall(*cpu_mask);
533 return;
534 }
535 cpumask_set_cpu(min_index, *cpu_mask);
536 }
537
538 /**
539 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
540 * @device: DRBD device.
541 * @thi: drbd_thread object
542 *
543 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
544 * prematurely.
545 */
546 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
547 {
548 struct drbd_resource *resource = thi->resource;
549 struct task_struct *p = current;
550
551 if (!thi->reset_cpu_mask)
552 return;
553 thi->reset_cpu_mask = 0;
554 set_cpus_allowed_ptr(p, resource->cpu_mask);
555 }
556 #else
557 #define drbd_calc_cpu_mask(A) ({})
558 #endif
559
560 /**
561 * drbd_header_size - size of a packet header
562 *
563 * The header size is a multiple of 8, so any payload following the header is
564 * word aligned on 64-bit architectures. (The bitmap send and receive code
565 * relies on this.)
566 */
567 unsigned int drbd_header_size(struct drbd_connection *connection)
568 {
569 if (connection->agreed_pro_version >= 100) {
570 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
571 return sizeof(struct p_header100);
572 } else {
573 BUILD_BUG_ON(sizeof(struct p_header80) !=
574 sizeof(struct p_header95));
575 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
576 return sizeof(struct p_header80);
577 }
578 }
579
580 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
581 {
582 h->magic = cpu_to_be32(DRBD_MAGIC);
583 h->command = cpu_to_be16(cmd);
584 h->length = cpu_to_be16(size);
585 return sizeof(struct p_header80);
586 }
587
588 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
589 {
590 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
591 h->command = cpu_to_be16(cmd);
592 h->length = cpu_to_be32(size);
593 return sizeof(struct p_header95);
594 }
595
596 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
597 int size, int vnr)
598 {
599 h->magic = cpu_to_be32(DRBD_MAGIC_100);
600 h->volume = cpu_to_be16(vnr);
601 h->command = cpu_to_be16(cmd);
602 h->length = cpu_to_be32(size);
603 h->pad = 0;
604 return sizeof(struct p_header100);
605 }
606
607 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
608 void *buffer, enum drbd_packet cmd, int size)
609 {
610 if (connection->agreed_pro_version >= 100)
611 return prepare_header100(buffer, cmd, size, vnr);
612 else if (connection->agreed_pro_version >= 95 &&
613 size > DRBD_MAX_SIZE_H80_PACKET)
614 return prepare_header95(buffer, cmd, size);
615 else
616 return prepare_header80(buffer, cmd, size);
617 }
618
619 static void *__conn_prepare_command(struct drbd_connection *connection,
620 struct drbd_socket *sock)
621 {
622 if (!sock->socket)
623 return NULL;
624 return sock->sbuf + drbd_header_size(connection);
625 }
626
627 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
628 {
629 void *p;
630
631 mutex_lock(&sock->mutex);
632 p = __conn_prepare_command(connection, sock);
633 if (!p)
634 mutex_unlock(&sock->mutex);
635
636 return p;
637 }
638
639 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
640 {
641 return conn_prepare_command(peer_device->connection, sock);
642 }
643
644 static int __send_command(struct drbd_connection *connection, int vnr,
645 struct drbd_socket *sock, enum drbd_packet cmd,
646 unsigned int header_size, void *data,
647 unsigned int size)
648 {
649 int msg_flags;
650 int err;
651
652 /*
653 * Called with @data == NULL and the size of the data blocks in @size
654 * for commands that send data blocks. For those commands, omit the
655 * MSG_MORE flag: this will increase the likelihood that data blocks
656 * which are page aligned on the sender will end up page aligned on the
657 * receiver.
658 */
659 msg_flags = data ? MSG_MORE : 0;
660
661 header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
662 header_size + size);
663 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
664 msg_flags);
665 if (data && !err)
666 err = drbd_send_all(connection, sock->socket, data, size, 0);
667 /* DRBD protocol "pings" are latency critical.
668 * This is supposed to trigger tcp_push_pending_frames() */
669 if (!err && (cmd == P_PING || cmd == P_PING_ACK))
670 drbd_tcp_nodelay(sock->socket);
671
672 return err;
673 }
674
675 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
676 enum drbd_packet cmd, unsigned int header_size,
677 void *data, unsigned int size)
678 {
679 return __send_command(connection, 0, sock, cmd, header_size, data, size);
680 }
681
682 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
683 enum drbd_packet cmd, unsigned int header_size,
684 void *data, unsigned int size)
685 {
686 int err;
687
688 err = __conn_send_command(connection, sock, cmd, header_size, data, size);
689 mutex_unlock(&sock->mutex);
690 return err;
691 }
692
693 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
694 enum drbd_packet cmd, unsigned int header_size,
695 void *data, unsigned int size)
696 {
697 int err;
698
699 err = __send_command(peer_device->connection, peer_device->device->vnr,
700 sock, cmd, header_size, data, size);
701 mutex_unlock(&sock->mutex);
702 return err;
703 }
704
705 int drbd_send_ping(struct drbd_connection *connection)
706 {
707 struct drbd_socket *sock;
708
709 sock = &connection->meta;
710 if (!conn_prepare_command(connection, sock))
711 return -EIO;
712 return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
713 }
714
715 int drbd_send_ping_ack(struct drbd_connection *connection)
716 {
717 struct drbd_socket *sock;
718
719 sock = &connection->meta;
720 if (!conn_prepare_command(connection, sock))
721 return -EIO;
722 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
723 }
724
725 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
726 {
727 struct drbd_socket *sock;
728 struct p_rs_param_95 *p;
729 int size;
730 const int apv = peer_device->connection->agreed_pro_version;
731 enum drbd_packet cmd;
732 struct net_conf *nc;
733 struct disk_conf *dc;
734
735 sock = &peer_device->connection->data;
736 p = drbd_prepare_command(peer_device, sock);
737 if (!p)
738 return -EIO;
739
740 rcu_read_lock();
741 nc = rcu_dereference(peer_device->connection->net_conf);
742
743 size = apv <= 87 ? sizeof(struct p_rs_param)
744 : apv == 88 ? sizeof(struct p_rs_param)
745 + strlen(nc->verify_alg) + 1
746 : apv <= 94 ? sizeof(struct p_rs_param_89)
747 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
748
749 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
750
751 /* initialize verify_alg and csums_alg */
752 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
753
754 if (get_ldev(peer_device->device)) {
755 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
756 p->resync_rate = cpu_to_be32(dc->resync_rate);
757 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
758 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
759 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
760 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
761 put_ldev(peer_device->device);
762 } else {
763 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
764 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
765 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
766 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
767 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
768 }
769
770 if (apv >= 88)
771 strcpy(p->verify_alg, nc->verify_alg);
772 if (apv >= 89)
773 strcpy(p->csums_alg, nc->csums_alg);
774 rcu_read_unlock();
775
776 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
777 }
778
779 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
780 {
781 struct drbd_socket *sock;
782 struct p_protocol *p;
783 struct net_conf *nc;
784 int size, cf;
785
786 sock = &connection->data;
787 p = __conn_prepare_command(connection, sock);
788 if (!p)
789 return -EIO;
790
791 rcu_read_lock();
792 nc = rcu_dereference(connection->net_conf);
793
794 if (nc->tentative && connection->agreed_pro_version < 92) {
795 rcu_read_unlock();
796 mutex_unlock(&sock->mutex);
797 drbd_err(connection, "--dry-run is not supported by peer");
798 return -EOPNOTSUPP;
799 }
800
801 size = sizeof(*p);
802 if (connection->agreed_pro_version >= 87)
803 size += strlen(nc->integrity_alg) + 1;
804
805 p->protocol = cpu_to_be32(nc->wire_protocol);
806 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
807 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
808 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
809 p->two_primaries = cpu_to_be32(nc->two_primaries);
810 cf = 0;
811 if (nc->discard_my_data)
812 cf |= CF_DISCARD_MY_DATA;
813 if (nc->tentative)
814 cf |= CF_DRY_RUN;
815 p->conn_flags = cpu_to_be32(cf);
816
817 if (connection->agreed_pro_version >= 87)
818 strcpy(p->integrity_alg, nc->integrity_alg);
819 rcu_read_unlock();
820
821 return __conn_send_command(connection, sock, cmd, size, NULL, 0);
822 }
823
824 int drbd_send_protocol(struct drbd_connection *connection)
825 {
826 int err;
827
828 mutex_lock(&connection->data.mutex);
829 err = __drbd_send_protocol(connection, P_PROTOCOL);
830 mutex_unlock(&connection->data.mutex);
831
832 return err;
833 }
834
835 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
836 {
837 struct drbd_device *device = peer_device->device;
838 struct drbd_socket *sock;
839 struct p_uuids *p;
840 int i;
841
842 if (!get_ldev_if_state(device, D_NEGOTIATING))
843 return 0;
844
845 sock = &peer_device->connection->data;
846 p = drbd_prepare_command(peer_device, sock);
847 if (!p) {
848 put_ldev(device);
849 return -EIO;
850 }
851 spin_lock_irq(&device->ldev->md.uuid_lock);
852 for (i = UI_CURRENT; i < UI_SIZE; i++)
853 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
854 spin_unlock_irq(&device->ldev->md.uuid_lock);
855
856 device->comm_bm_set = drbd_bm_total_weight(device);
857 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
858 rcu_read_lock();
859 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
860 rcu_read_unlock();
861 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
862 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
863 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
864
865 put_ldev(device);
866 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
867 }
868
869 int drbd_send_uuids(struct drbd_peer_device *peer_device)
870 {
871 return _drbd_send_uuids(peer_device, 0);
872 }
873
874 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
875 {
876 return _drbd_send_uuids(peer_device, 8);
877 }
878
879 void drbd_print_uuids(struct drbd_device *device, const char *text)
880 {
881 if (get_ldev_if_state(device, D_NEGOTIATING)) {
882 u64 *uuid = device->ldev->md.uuid;
883 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
884 text,
885 (unsigned long long)uuid[UI_CURRENT],
886 (unsigned long long)uuid[UI_BITMAP],
887 (unsigned long long)uuid[UI_HISTORY_START],
888 (unsigned long long)uuid[UI_HISTORY_END]);
889 put_ldev(device);
890 } else {
891 drbd_info(device, "%s effective data uuid: %016llX\n",
892 text,
893 (unsigned long long)device->ed_uuid);
894 }
895 }
896
897 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
898 {
899 struct drbd_device *device = peer_device->device;
900 struct drbd_socket *sock;
901 struct p_rs_uuid *p;
902 u64 uuid;
903
904 D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
905
906 uuid = device->ldev->md.uuid[UI_BITMAP];
907 if (uuid && uuid != UUID_JUST_CREATED)
908 uuid = uuid + UUID_NEW_BM_OFFSET;
909 else
910 get_random_bytes(&uuid, sizeof(u64));
911 drbd_uuid_set(device, UI_BITMAP, uuid);
912 drbd_print_uuids(device, "updated sync UUID");
913 drbd_md_sync(device);
914
915 sock = &peer_device->connection->data;
916 p = drbd_prepare_command(peer_device, sock);
917 if (p) {
918 p->uuid = cpu_to_be64(uuid);
919 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
920 }
921 }
922
923 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
924 {
925 struct drbd_device *device = peer_device->device;
926 struct drbd_socket *sock;
927 struct p_sizes *p;
928 sector_t d_size, u_size;
929 int q_order_type;
930 unsigned int max_bio_size;
931
932 if (get_ldev_if_state(device, D_NEGOTIATING)) {
933 D_ASSERT(device, device->ldev->backing_bdev);
934 d_size = drbd_get_max_capacity(device->ldev);
935 rcu_read_lock();
936 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
937 rcu_read_unlock();
938 q_order_type = drbd_queue_order_type(device);
939 max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
940 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
941 put_ldev(device);
942 } else {
943 d_size = 0;
944 u_size = 0;
945 q_order_type = QUEUE_ORDERED_NONE;
946 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
947 }
948
949 sock = &peer_device->connection->data;
950 p = drbd_prepare_command(peer_device, sock);
951 if (!p)
952 return -EIO;
953
954 if (peer_device->connection->agreed_pro_version <= 94)
955 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
956 else if (peer_device->connection->agreed_pro_version < 100)
957 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
958
959 p->d_size = cpu_to_be64(d_size);
960 p->u_size = cpu_to_be64(u_size);
961 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
962 p->max_bio_size = cpu_to_be32(max_bio_size);
963 p->queue_order_type = cpu_to_be16(q_order_type);
964 p->dds_flags = cpu_to_be16(flags);
965 return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0);
966 }
967
968 /**
969 * drbd_send_current_state() - Sends the drbd state to the peer
970 * @peer_device: DRBD peer device.
971 */
972 int drbd_send_current_state(struct drbd_peer_device *peer_device)
973 {
974 struct drbd_socket *sock;
975 struct p_state *p;
976
977 sock = &peer_device->connection->data;
978 p = drbd_prepare_command(peer_device, sock);
979 if (!p)
980 return -EIO;
981 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
982 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
983 }
984
985 /**
986 * drbd_send_state() - After a state change, sends the new state to the peer
987 * @peer_device: DRBD peer device.
988 * @state: the state to send, not necessarily the current state.
989 *
990 * Each state change queues an "after_state_ch" work, which will eventually
991 * send the resulting new state to the peer. If more state changes happen
992 * between queuing and processing of the after_state_ch work, we still
993 * want to send each intermediary state in the order it occurred.
994 */
995 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
996 {
997 struct drbd_socket *sock;
998 struct p_state *p;
999
1000 sock = &peer_device->connection->data;
1001 p = drbd_prepare_command(peer_device, sock);
1002 if (!p)
1003 return -EIO;
1004 p->state = cpu_to_be32(state.i); /* Within the send mutex */
1005 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1006 }
1007
1008 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1009 {
1010 struct drbd_socket *sock;
1011 struct p_req_state *p;
1012
1013 sock = &peer_device->connection->data;
1014 p = drbd_prepare_command(peer_device, sock);
1015 if (!p)
1016 return -EIO;
1017 p->mask = cpu_to_be32(mask.i);
1018 p->val = cpu_to_be32(val.i);
1019 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1020 }
1021
1022 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1023 {
1024 enum drbd_packet cmd;
1025 struct drbd_socket *sock;
1026 struct p_req_state *p;
1027
1028 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1029 sock = &connection->data;
1030 p = conn_prepare_command(connection, sock);
1031 if (!p)
1032 return -EIO;
1033 p->mask = cpu_to_be32(mask.i);
1034 p->val = cpu_to_be32(val.i);
1035 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1036 }
1037
1038 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1039 {
1040 struct drbd_socket *sock;
1041 struct p_req_state_reply *p;
1042
1043 sock = &peer_device->connection->meta;
1044 p = drbd_prepare_command(peer_device, sock);
1045 if (p) {
1046 p->retcode = cpu_to_be32(retcode);
1047 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1048 }
1049 }
1050
1051 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1052 {
1053 struct drbd_socket *sock;
1054 struct p_req_state_reply *p;
1055 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1056
1057 sock = &connection->meta;
1058 p = conn_prepare_command(connection, sock);
1059 if (p) {
1060 p->retcode = cpu_to_be32(retcode);
1061 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1062 }
1063 }
1064
1065 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1066 {
1067 BUG_ON(code & ~0xf);
1068 p->encoding = (p->encoding & ~0xf) | code;
1069 }
1070
1071 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1072 {
1073 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1074 }
1075
1076 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1077 {
1078 BUG_ON(n & ~0x7);
1079 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1080 }
1081
1082 static int fill_bitmap_rle_bits(struct drbd_device *device,
1083 struct p_compressed_bm *p,
1084 unsigned int size,
1085 struct bm_xfer_ctx *c)
1086 {
1087 struct bitstream bs;
1088 unsigned long plain_bits;
1089 unsigned long tmp;
1090 unsigned long rl;
1091 unsigned len;
1092 unsigned toggle;
1093 int bits, use_rle;
1094
1095 /* may we use this feature? */
1096 rcu_read_lock();
1097 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1098 rcu_read_unlock();
1099 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1100 return 0;
1101
1102 if (c->bit_offset >= c->bm_bits)
1103 return 0; /* nothing to do. */
1104
1105 /* use at most thus many bytes */
1106 bitstream_init(&bs, p->code, size, 0);
1107 memset(p->code, 0, size);
1108 /* plain bits covered in this code string */
1109 plain_bits = 0;
1110
1111 /* p->encoding & 0x80 stores whether the first run length is set.
1112 * bit offset is implicit.
1113 * start with toggle == 2 to be able to tell the first iteration */
1114 toggle = 2;
1115
1116 /* see how much plain bits we can stuff into one packet
1117 * using RLE and VLI. */
1118 do {
1119 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1120 : _drbd_bm_find_next(device, c->bit_offset);
1121 if (tmp == -1UL)
1122 tmp = c->bm_bits;
1123 rl = tmp - c->bit_offset;
1124
1125 if (toggle == 2) { /* first iteration */
1126 if (rl == 0) {
1127 /* the first checked bit was set,
1128 * store start value, */
1129 dcbp_set_start(p, 1);
1130 /* but skip encoding of zero run length */
1131 toggle = !toggle;
1132 continue;
1133 }
1134 dcbp_set_start(p, 0);
1135 }
1136
1137 /* paranoia: catch zero runlength.
1138 * can only happen if bitmap is modified while we scan it. */
1139 if (rl == 0) {
1140 drbd_err(device, "unexpected zero runlength while encoding bitmap "
1141 "t:%u bo:%lu\n", toggle, c->bit_offset);
1142 return -1;
1143 }
1144
1145 bits = vli_encode_bits(&bs, rl);
1146 if (bits == -ENOBUFS) /* buffer full */
1147 break;
1148 if (bits <= 0) {
1149 drbd_err(device, "error while encoding bitmap: %d\n", bits);
1150 return 0;
1151 }
1152
1153 toggle = !toggle;
1154 plain_bits += rl;
1155 c->bit_offset = tmp;
1156 } while (c->bit_offset < c->bm_bits);
1157
1158 len = bs.cur.b - p->code + !!bs.cur.bit;
1159
1160 if (plain_bits < (len << 3)) {
1161 /* incompressible with this method.
1162 * we need to rewind both word and bit position. */
1163 c->bit_offset -= plain_bits;
1164 bm_xfer_ctx_bit_to_word_offset(c);
1165 c->bit_offset = c->word_offset * BITS_PER_LONG;
1166 return 0;
1167 }
1168
1169 /* RLE + VLI was able to compress it just fine.
1170 * update c->word_offset. */
1171 bm_xfer_ctx_bit_to_word_offset(c);
1172
1173 /* store pad_bits */
1174 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1175
1176 return len;
1177 }
1178
1179 /**
1180 * send_bitmap_rle_or_plain
1181 *
1182 * Return 0 when done, 1 when another iteration is needed, and a negative error
1183 * code upon failure.
1184 */
1185 static int
1186 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1187 {
1188 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1189 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1190 struct p_compressed_bm *p = sock->sbuf + header_size;
1191 int len, err;
1192
1193 len = fill_bitmap_rle_bits(device, p,
1194 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1195 if (len < 0)
1196 return -EIO;
1197
1198 if (len) {
1199 dcbp_set_code(p, RLE_VLI_Bits);
1200 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1201 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1202 NULL, 0);
1203 c->packets[0]++;
1204 c->bytes[0] += header_size + sizeof(*p) + len;
1205
1206 if (c->bit_offset >= c->bm_bits)
1207 len = 0; /* DONE */
1208 } else {
1209 /* was not compressible.
1210 * send a buffer full of plain text bits instead. */
1211 unsigned int data_size;
1212 unsigned long num_words;
1213 unsigned long *p = sock->sbuf + header_size;
1214
1215 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1216 num_words = min_t(size_t, data_size / sizeof(*p),
1217 c->bm_words - c->word_offset);
1218 len = num_words * sizeof(*p);
1219 if (len)
1220 drbd_bm_get_lel(device, c->word_offset, num_words, p);
1221 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1222 c->word_offset += num_words;
1223 c->bit_offset = c->word_offset * BITS_PER_LONG;
1224
1225 c->packets[1]++;
1226 c->bytes[1] += header_size + len;
1227
1228 if (c->bit_offset > c->bm_bits)
1229 c->bit_offset = c->bm_bits;
1230 }
1231 if (!err) {
1232 if (len == 0) {
1233 INFO_bm_xfer_stats(device, "send", c);
1234 return 0;
1235 } else
1236 return 1;
1237 }
1238 return -EIO;
1239 }
1240
1241 /* See the comment at receive_bitmap() */
1242 static int _drbd_send_bitmap(struct drbd_device *device)
1243 {
1244 struct bm_xfer_ctx c;
1245 int err;
1246
1247 if (!expect(device->bitmap))
1248 return false;
1249
1250 if (get_ldev(device)) {
1251 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1252 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1253 drbd_bm_set_all(device);
1254 if (drbd_bm_write(device)) {
1255 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1256 * but otherwise process as per normal - need to tell other
1257 * side that a full resync is required! */
1258 drbd_err(device, "Failed to write bitmap to disk!\n");
1259 } else {
1260 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1261 drbd_md_sync(device);
1262 }
1263 }
1264 put_ldev(device);
1265 }
1266
1267 c = (struct bm_xfer_ctx) {
1268 .bm_bits = drbd_bm_bits(device),
1269 .bm_words = drbd_bm_words(device),
1270 };
1271
1272 do {
1273 err = send_bitmap_rle_or_plain(device, &c);
1274 } while (err > 0);
1275
1276 return err == 0;
1277 }
1278
1279 int drbd_send_bitmap(struct drbd_device *device)
1280 {
1281 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1282 int err = -1;
1283
1284 mutex_lock(&sock->mutex);
1285 if (sock->socket)
1286 err = !_drbd_send_bitmap(device);
1287 mutex_unlock(&sock->mutex);
1288 return err;
1289 }
1290
1291 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1292 {
1293 struct drbd_socket *sock;
1294 struct p_barrier_ack *p;
1295
1296 if (connection->cstate < C_WF_REPORT_PARAMS)
1297 return;
1298
1299 sock = &connection->meta;
1300 p = conn_prepare_command(connection, sock);
1301 if (!p)
1302 return;
1303 p->barrier = barrier_nr;
1304 p->set_size = cpu_to_be32(set_size);
1305 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1306 }
1307
1308 /**
1309 * _drbd_send_ack() - Sends an ack packet
1310 * @device: DRBD device.
1311 * @cmd: Packet command code.
1312 * @sector: sector, needs to be in big endian byte order
1313 * @blksize: size in byte, needs to be in big endian byte order
1314 * @block_id: Id, big endian byte order
1315 */
1316 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1317 u64 sector, u32 blksize, u64 block_id)
1318 {
1319 struct drbd_socket *sock;
1320 struct p_block_ack *p;
1321
1322 if (peer_device->device->state.conn < C_CONNECTED)
1323 return -EIO;
1324
1325 sock = &peer_device->connection->meta;
1326 p = drbd_prepare_command(peer_device, sock);
1327 if (!p)
1328 return -EIO;
1329 p->sector = sector;
1330 p->block_id = block_id;
1331 p->blksize = blksize;
1332 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1333 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1334 }
1335
1336 /* dp->sector and dp->block_id already/still in network byte order,
1337 * data_size is payload size according to dp->head,
1338 * and may need to be corrected for digest size. */
1339 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1340 struct p_data *dp, int data_size)
1341 {
1342 if (peer_device->connection->peer_integrity_tfm)
1343 data_size -= crypto_hash_digestsize(peer_device->connection->peer_integrity_tfm);
1344 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1345 dp->block_id);
1346 }
1347
1348 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1349 struct p_block_req *rp)
1350 {
1351 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1352 }
1353
1354 /**
1355 * drbd_send_ack() - Sends an ack packet
1356 * @device: DRBD device
1357 * @cmd: packet command code
1358 * @peer_req: peer request
1359 */
1360 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1361 struct drbd_peer_request *peer_req)
1362 {
1363 return _drbd_send_ack(peer_device, cmd,
1364 cpu_to_be64(peer_req->i.sector),
1365 cpu_to_be32(peer_req->i.size),
1366 peer_req->block_id);
1367 }
1368
1369 /* This function misuses the block_id field to signal if the blocks
1370 * are is sync or not. */
1371 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1372 sector_t sector, int blksize, u64 block_id)
1373 {
1374 return _drbd_send_ack(peer_device, cmd,
1375 cpu_to_be64(sector),
1376 cpu_to_be32(blksize),
1377 cpu_to_be64(block_id));
1378 }
1379
1380 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1381 sector_t sector, int size, u64 block_id)
1382 {
1383 struct drbd_socket *sock;
1384 struct p_block_req *p;
1385
1386 sock = &peer_device->connection->data;
1387 p = drbd_prepare_command(peer_device, sock);
1388 if (!p)
1389 return -EIO;
1390 p->sector = cpu_to_be64(sector);
1391 p->block_id = block_id;
1392 p->blksize = cpu_to_be32(size);
1393 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1394 }
1395
1396 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1397 void *digest, int digest_size, enum drbd_packet cmd)
1398 {
1399 struct drbd_socket *sock;
1400 struct p_block_req *p;
1401
1402 /* FIXME: Put the digest into the preallocated socket buffer. */
1403
1404 sock = &peer_device->connection->data;
1405 p = drbd_prepare_command(peer_device, sock);
1406 if (!p)
1407 return -EIO;
1408 p->sector = cpu_to_be64(sector);
1409 p->block_id = ID_SYNCER /* unused */;
1410 p->blksize = cpu_to_be32(size);
1411 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1412 }
1413
1414 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1415 {
1416 struct drbd_socket *sock;
1417 struct p_block_req *p;
1418
1419 sock = &peer_device->connection->data;
1420 p = drbd_prepare_command(peer_device, sock);
1421 if (!p)
1422 return -EIO;
1423 p->sector = cpu_to_be64(sector);
1424 p->block_id = ID_SYNCER /* unused */;
1425 p->blksize = cpu_to_be32(size);
1426 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1427 }
1428
1429 /* called on sndtimeo
1430 * returns false if we should retry,
1431 * true if we think connection is dead
1432 */
1433 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1434 {
1435 int drop_it;
1436 /* long elapsed = (long)(jiffies - device->last_received); */
1437
1438 drop_it = connection->meta.socket == sock
1439 || !connection->asender.task
1440 || get_t_state(&connection->asender) != RUNNING
1441 || connection->cstate < C_WF_REPORT_PARAMS;
1442
1443 if (drop_it)
1444 return true;
1445
1446 drop_it = !--connection->ko_count;
1447 if (!drop_it) {
1448 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1449 current->comm, current->pid, connection->ko_count);
1450 request_ping(connection);
1451 }
1452
1453 return drop_it; /* && (device->state == R_PRIMARY) */;
1454 }
1455
1456 static void drbd_update_congested(struct drbd_connection *connection)
1457 {
1458 struct sock *sk = connection->data.socket->sk;
1459 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1460 set_bit(NET_CONGESTED, &connection->flags);
1461 }
1462
1463 /* The idea of sendpage seems to be to put some kind of reference
1464 * to the page into the skb, and to hand it over to the NIC. In
1465 * this process get_page() gets called.
1466 *
1467 * As soon as the page was really sent over the network put_page()
1468 * gets called by some part of the network layer. [ NIC driver? ]
1469 *
1470 * [ get_page() / put_page() increment/decrement the count. If count
1471 * reaches 0 the page will be freed. ]
1472 *
1473 * This works nicely with pages from FSs.
1474 * But this means that in protocol A we might signal IO completion too early!
1475 *
1476 * In order not to corrupt data during a resync we must make sure
1477 * that we do not reuse our own buffer pages (EEs) to early, therefore
1478 * we have the net_ee list.
1479 *
1480 * XFS seems to have problems, still, it submits pages with page_count == 0!
1481 * As a workaround, we disable sendpage on pages
1482 * with page_count == 0 or PageSlab.
1483 */
1484 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1485 int offset, size_t size, unsigned msg_flags)
1486 {
1487 struct socket *socket;
1488 void *addr;
1489 int err;
1490
1491 socket = peer_device->connection->data.socket;
1492 addr = kmap(page) + offset;
1493 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1494 kunmap(page);
1495 if (!err)
1496 peer_device->device->send_cnt += size >> 9;
1497 return err;
1498 }
1499
1500 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1501 int offset, size_t size, unsigned msg_flags)
1502 {
1503 struct socket *socket = peer_device->connection->data.socket;
1504 mm_segment_t oldfs = get_fs();
1505 int len = size;
1506 int err = -EIO;
1507
1508 /* e.g. XFS meta- & log-data is in slab pages, which have a
1509 * page_count of 0 and/or have PageSlab() set.
1510 * we cannot use send_page for those, as that does get_page();
1511 * put_page(); and would cause either a VM_BUG directly, or
1512 * __page_cache_release a page that would actually still be referenced
1513 * by someone, leading to some obscure delayed Oops somewhere else. */
1514 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1515 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1516
1517 msg_flags |= MSG_NOSIGNAL;
1518 drbd_update_congested(peer_device->connection);
1519 set_fs(KERNEL_DS);
1520 do {
1521 int sent;
1522
1523 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1524 if (sent <= 0) {
1525 if (sent == -EAGAIN) {
1526 if (we_should_drop_the_connection(peer_device->connection, socket))
1527 break;
1528 continue;
1529 }
1530 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1531 __func__, (int)size, len, sent);
1532 if (sent < 0)
1533 err = sent;
1534 break;
1535 }
1536 len -= sent;
1537 offset += sent;
1538 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1539 set_fs(oldfs);
1540 clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1541
1542 if (len == 0) {
1543 err = 0;
1544 peer_device->device->send_cnt += size >> 9;
1545 }
1546 return err;
1547 }
1548
1549 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1550 {
1551 struct bio_vec bvec;
1552 struct bvec_iter iter;
1553
1554 /* hint all but last page with MSG_MORE */
1555 bio_for_each_segment(bvec, bio, iter) {
1556 int err;
1557
1558 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1559 bvec.bv_offset, bvec.bv_len,
1560 bio_iter_last(bvec, iter)
1561 ? 0 : MSG_MORE);
1562 if (err)
1563 return err;
1564 }
1565 return 0;
1566 }
1567
1568 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1569 {
1570 struct bio_vec bvec;
1571 struct bvec_iter iter;
1572
1573 /* hint all but last page with MSG_MORE */
1574 bio_for_each_segment(bvec, bio, iter) {
1575 int err;
1576
1577 err = _drbd_send_page(peer_device, bvec.bv_page,
1578 bvec.bv_offset, bvec.bv_len,
1579 bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1580 if (err)
1581 return err;
1582 }
1583 return 0;
1584 }
1585
1586 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1587 struct drbd_peer_request *peer_req)
1588 {
1589 struct page *page = peer_req->pages;
1590 unsigned len = peer_req->i.size;
1591 int err;
1592
1593 /* hint all but last page with MSG_MORE */
1594 page_chain_for_each(page) {
1595 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1596
1597 err = _drbd_send_page(peer_device, page, 0, l,
1598 page_chain_next(page) ? MSG_MORE : 0);
1599 if (err)
1600 return err;
1601 len -= l;
1602 }
1603 return 0;
1604 }
1605
1606 static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw)
1607 {
1608 if (connection->agreed_pro_version >= 95)
1609 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1610 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1611 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1612 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1613 else
1614 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1615 }
1616
1617 /* Used to send write or TRIM aka REQ_DISCARD requests
1618 * R_PRIMARY -> Peer (P_DATA, P_TRIM)
1619 */
1620 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1621 {
1622 struct drbd_device *device = peer_device->device;
1623 struct drbd_socket *sock;
1624 struct p_data *p;
1625 unsigned int dp_flags = 0;
1626 int digest_size;
1627 int err;
1628
1629 sock = &peer_device->connection->data;
1630 p = drbd_prepare_command(peer_device, sock);
1631 digest_size = peer_device->connection->integrity_tfm ?
1632 crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1633
1634 if (!p)
1635 return -EIO;
1636 p->sector = cpu_to_be64(req->i.sector);
1637 p->block_id = (unsigned long)req;
1638 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1639 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw);
1640 if (device->state.conn >= C_SYNC_SOURCE &&
1641 device->state.conn <= C_PAUSED_SYNC_T)
1642 dp_flags |= DP_MAY_SET_IN_SYNC;
1643 if (peer_device->connection->agreed_pro_version >= 100) {
1644 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1645 dp_flags |= DP_SEND_RECEIVE_ACK;
1646 /* During resync, request an explicit write ack,
1647 * even in protocol != C */
1648 if (req->rq_state & RQ_EXP_WRITE_ACK
1649 || (dp_flags & DP_MAY_SET_IN_SYNC))
1650 dp_flags |= DP_SEND_WRITE_ACK;
1651 }
1652 p->dp_flags = cpu_to_be32(dp_flags);
1653
1654 if (dp_flags & DP_DISCARD) {
1655 struct p_trim *t = (struct p_trim*)p;
1656 t->size = cpu_to_be32(req->i.size);
1657 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1658 goto out;
1659 }
1660
1661 /* our digest is still only over the payload.
1662 * TRIM does not carry any payload. */
1663 if (digest_size)
1664 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1);
1665 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + digest_size, NULL, req->i.size);
1666 if (!err) {
1667 /* For protocol A, we have to memcpy the payload into
1668 * socket buffers, as we may complete right away
1669 * as soon as we handed it over to tcp, at which point the data
1670 * pages may become invalid.
1671 *
1672 * For data-integrity enabled, we copy it as well, so we can be
1673 * sure that even if the bio pages may still be modified, it
1674 * won't change the data on the wire, thus if the digest checks
1675 * out ok after sending on this side, but does not fit on the
1676 * receiving side, we sure have detected corruption elsewhere.
1677 */
1678 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1679 err = _drbd_send_bio(peer_device, req->master_bio);
1680 else
1681 err = _drbd_send_zc_bio(peer_device, req->master_bio);
1682
1683 /* double check digest, sometimes buffers have been modified in flight. */
1684 if (digest_size > 0 && digest_size <= 64) {
1685 /* 64 byte, 512 bit, is the largest digest size
1686 * currently supported in kernel crypto. */
1687 unsigned char digest[64];
1688 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1689 if (memcmp(p + 1, digest, digest_size)) {
1690 drbd_warn(device,
1691 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1692 (unsigned long long)req->i.sector, req->i.size);
1693 }
1694 } /* else if (digest_size > 64) {
1695 ... Be noisy about digest too large ...
1696 } */
1697 }
1698 out:
1699 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1700
1701 return err;
1702 }
1703
1704 /* answer packet, used to send data back for read requests:
1705 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1706 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1707 */
1708 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1709 struct drbd_peer_request *peer_req)
1710 {
1711 struct drbd_device *device = peer_device->device;
1712 struct drbd_socket *sock;
1713 struct p_data *p;
1714 int err;
1715 int digest_size;
1716
1717 sock = &peer_device->connection->data;
1718 p = drbd_prepare_command(peer_device, sock);
1719
1720 digest_size = peer_device->connection->integrity_tfm ?
1721 crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1722
1723 if (!p)
1724 return -EIO;
1725 p->sector = cpu_to_be64(peer_req->i.sector);
1726 p->block_id = peer_req->block_id;
1727 p->seq_num = 0; /* unused */
1728 p->dp_flags = 0;
1729 if (digest_size)
1730 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1731 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1732 if (!err)
1733 err = _drbd_send_zc_ee(peer_device, peer_req);
1734 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1735
1736 return err;
1737 }
1738
1739 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1740 {
1741 struct drbd_socket *sock;
1742 struct p_block_desc *p;
1743
1744 sock = &peer_device->connection->data;
1745 p = drbd_prepare_command(peer_device, sock);
1746 if (!p)
1747 return -EIO;
1748 p->sector = cpu_to_be64(req->i.sector);
1749 p->blksize = cpu_to_be32(req->i.size);
1750 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1751 }
1752
1753 /*
1754 drbd_send distinguishes two cases:
1755
1756 Packets sent via the data socket "sock"
1757 and packets sent via the meta data socket "msock"
1758
1759 sock msock
1760 -----------------+-------------------------+------------------------------
1761 timeout conf.timeout / 2 conf.timeout / 2
1762 timeout action send a ping via msock Abort communication
1763 and close all sockets
1764 */
1765
1766 /*
1767 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1768 */
1769 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1770 void *buf, size_t size, unsigned msg_flags)
1771 {
1772 struct kvec iov;
1773 struct msghdr msg;
1774 int rv, sent = 0;
1775
1776 if (!sock)
1777 return -EBADR;
1778
1779 /* THINK if (signal_pending) return ... ? */
1780
1781 iov.iov_base = buf;
1782 iov.iov_len = size;
1783
1784 msg.msg_name = NULL;
1785 msg.msg_namelen = 0;
1786 msg.msg_control = NULL;
1787 msg.msg_controllen = 0;
1788 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1789
1790 if (sock == connection->data.socket) {
1791 rcu_read_lock();
1792 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1793 rcu_read_unlock();
1794 drbd_update_congested(connection);
1795 }
1796 do {
1797 /* STRANGE
1798 * tcp_sendmsg does _not_ use its size parameter at all ?
1799 *
1800 * -EAGAIN on timeout, -EINTR on signal.
1801 */
1802 /* THINK
1803 * do we need to block DRBD_SIG if sock == &meta.socket ??
1804 * otherwise wake_asender() might interrupt some send_*Ack !
1805 */
1806 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1807 if (rv == -EAGAIN) {
1808 if (we_should_drop_the_connection(connection, sock))
1809 break;
1810 else
1811 continue;
1812 }
1813 if (rv == -EINTR) {
1814 flush_signals(current);
1815 rv = 0;
1816 }
1817 if (rv < 0)
1818 break;
1819 sent += rv;
1820 iov.iov_base += rv;
1821 iov.iov_len -= rv;
1822 } while (sent < size);
1823
1824 if (sock == connection->data.socket)
1825 clear_bit(NET_CONGESTED, &connection->flags);
1826
1827 if (rv <= 0) {
1828 if (rv != -EAGAIN) {
1829 drbd_err(connection, "%s_sendmsg returned %d\n",
1830 sock == connection->meta.socket ? "msock" : "sock",
1831 rv);
1832 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1833 } else
1834 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1835 }
1836
1837 return sent;
1838 }
1839
1840 /**
1841 * drbd_send_all - Send an entire buffer
1842 *
1843 * Returns 0 upon success and a negative error value otherwise.
1844 */
1845 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1846 size_t size, unsigned msg_flags)
1847 {
1848 int err;
1849
1850 err = drbd_send(connection, sock, buffer, size, msg_flags);
1851 if (err < 0)
1852 return err;
1853 if (err != size)
1854 return -EIO;
1855 return 0;
1856 }
1857
1858 static int drbd_open(struct block_device *bdev, fmode_t mode)
1859 {
1860 struct drbd_device *device = bdev->bd_disk->private_data;
1861 unsigned long flags;
1862 int rv = 0;
1863
1864 mutex_lock(&drbd_main_mutex);
1865 spin_lock_irqsave(&device->resource->req_lock, flags);
1866 /* to have a stable device->state.role
1867 * and no race with updating open_cnt */
1868
1869 if (device->state.role != R_PRIMARY) {
1870 if (mode & FMODE_WRITE)
1871 rv = -EROFS;
1872 else if (!allow_oos)
1873 rv = -EMEDIUMTYPE;
1874 }
1875
1876 if (!rv)
1877 device->open_cnt++;
1878 spin_unlock_irqrestore(&device->resource->req_lock, flags);
1879 mutex_unlock(&drbd_main_mutex);
1880
1881 return rv;
1882 }
1883
1884 static void drbd_release(struct gendisk *gd, fmode_t mode)
1885 {
1886 struct drbd_device *device = gd->private_data;
1887 mutex_lock(&drbd_main_mutex);
1888 device->open_cnt--;
1889 mutex_unlock(&drbd_main_mutex);
1890 }
1891
1892 static void drbd_set_defaults(struct drbd_device *device)
1893 {
1894 /* Beware! The actual layout differs
1895 * between big endian and little endian */
1896 device->state = (union drbd_dev_state) {
1897 { .role = R_SECONDARY,
1898 .peer = R_UNKNOWN,
1899 .conn = C_STANDALONE,
1900 .disk = D_DISKLESS,
1901 .pdsk = D_UNKNOWN,
1902 } };
1903 }
1904
1905 void drbd_init_set_defaults(struct drbd_device *device)
1906 {
1907 /* the memset(,0,) did most of this.
1908 * note: only assignments, no allocation in here */
1909
1910 drbd_set_defaults(device);
1911
1912 atomic_set(&device->ap_bio_cnt, 0);
1913 atomic_set(&device->ap_actlog_cnt, 0);
1914 atomic_set(&device->ap_pending_cnt, 0);
1915 atomic_set(&device->rs_pending_cnt, 0);
1916 atomic_set(&device->unacked_cnt, 0);
1917 atomic_set(&device->local_cnt, 0);
1918 atomic_set(&device->pp_in_use_by_net, 0);
1919 atomic_set(&device->rs_sect_in, 0);
1920 atomic_set(&device->rs_sect_ev, 0);
1921 atomic_set(&device->ap_in_flight, 0);
1922 atomic_set(&device->md_io.in_use, 0);
1923
1924 mutex_init(&device->own_state_mutex);
1925 device->state_mutex = &device->own_state_mutex;
1926
1927 spin_lock_init(&device->al_lock);
1928 spin_lock_init(&device->peer_seq_lock);
1929
1930 INIT_LIST_HEAD(&device->active_ee);
1931 INIT_LIST_HEAD(&device->sync_ee);
1932 INIT_LIST_HEAD(&device->done_ee);
1933 INIT_LIST_HEAD(&device->read_ee);
1934 INIT_LIST_HEAD(&device->net_ee);
1935 INIT_LIST_HEAD(&device->resync_reads);
1936 INIT_LIST_HEAD(&device->resync_work.list);
1937 INIT_LIST_HEAD(&device->unplug_work.list);
1938 INIT_LIST_HEAD(&device->bm_io_work.w.list);
1939 INIT_LIST_HEAD(&device->pending_master_completion[0]);
1940 INIT_LIST_HEAD(&device->pending_master_completion[1]);
1941 INIT_LIST_HEAD(&device->pending_completion[0]);
1942 INIT_LIST_HEAD(&device->pending_completion[1]);
1943
1944 device->resync_work.cb = w_resync_timer;
1945 device->unplug_work.cb = w_send_write_hint;
1946 device->bm_io_work.w.cb = w_bitmap_io;
1947
1948 init_timer(&device->resync_timer);
1949 init_timer(&device->md_sync_timer);
1950 init_timer(&device->start_resync_timer);
1951 init_timer(&device->request_timer);
1952 device->resync_timer.function = resync_timer_fn;
1953 device->resync_timer.data = (unsigned long) device;
1954 device->md_sync_timer.function = md_sync_timer_fn;
1955 device->md_sync_timer.data = (unsigned long) device;
1956 device->start_resync_timer.function = start_resync_timer_fn;
1957 device->start_resync_timer.data = (unsigned long) device;
1958 device->request_timer.function = request_timer_fn;
1959 device->request_timer.data = (unsigned long) device;
1960
1961 init_waitqueue_head(&device->misc_wait);
1962 init_waitqueue_head(&device->state_wait);
1963 init_waitqueue_head(&device->ee_wait);
1964 init_waitqueue_head(&device->al_wait);
1965 init_waitqueue_head(&device->seq_wait);
1966
1967 device->resync_wenr = LC_FREE;
1968 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1969 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1970 }
1971
1972 void drbd_device_cleanup(struct drbd_device *device)
1973 {
1974 int i;
1975 if (first_peer_device(device)->connection->receiver.t_state != NONE)
1976 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1977 first_peer_device(device)->connection->receiver.t_state);
1978
1979 device->al_writ_cnt =
1980 device->bm_writ_cnt =
1981 device->read_cnt =
1982 device->recv_cnt =
1983 device->send_cnt =
1984 device->writ_cnt =
1985 device->p_size =
1986 device->rs_start =
1987 device->rs_total =
1988 device->rs_failed = 0;
1989 device->rs_last_events = 0;
1990 device->rs_last_sect_ev = 0;
1991 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1992 device->rs_mark_left[i] = 0;
1993 device->rs_mark_time[i] = 0;
1994 }
1995 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
1996
1997 drbd_set_my_capacity(device, 0);
1998 if (device->bitmap) {
1999 /* maybe never allocated. */
2000 drbd_bm_resize(device, 0, 1);
2001 drbd_bm_cleanup(device);
2002 }
2003
2004 drbd_free_ldev(device->ldev);
2005 device->ldev = NULL;
2006
2007 clear_bit(AL_SUSPENDED, &device->flags);
2008
2009 D_ASSERT(device, list_empty(&device->active_ee));
2010 D_ASSERT(device, list_empty(&device->sync_ee));
2011 D_ASSERT(device, list_empty(&device->done_ee));
2012 D_ASSERT(device, list_empty(&device->read_ee));
2013 D_ASSERT(device, list_empty(&device->net_ee));
2014 D_ASSERT(device, list_empty(&device->resync_reads));
2015 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2016 D_ASSERT(device, list_empty(&device->resync_work.list));
2017 D_ASSERT(device, list_empty(&device->unplug_work.list));
2018
2019 drbd_set_defaults(device);
2020 }
2021
2022
2023 static void drbd_destroy_mempools(void)
2024 {
2025 struct page *page;
2026
2027 while (drbd_pp_pool) {
2028 page = drbd_pp_pool;
2029 drbd_pp_pool = (struct page *)page_private(page);
2030 __free_page(page);
2031 drbd_pp_vacant--;
2032 }
2033
2034 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2035
2036 if (drbd_md_io_bio_set)
2037 bioset_free(drbd_md_io_bio_set);
2038 if (drbd_md_io_page_pool)
2039 mempool_destroy(drbd_md_io_page_pool);
2040 if (drbd_ee_mempool)
2041 mempool_destroy(drbd_ee_mempool);
2042 if (drbd_request_mempool)
2043 mempool_destroy(drbd_request_mempool);
2044 if (drbd_ee_cache)
2045 kmem_cache_destroy(drbd_ee_cache);
2046 if (drbd_request_cache)
2047 kmem_cache_destroy(drbd_request_cache);
2048 if (drbd_bm_ext_cache)
2049 kmem_cache_destroy(drbd_bm_ext_cache);
2050 if (drbd_al_ext_cache)
2051 kmem_cache_destroy(drbd_al_ext_cache);
2052
2053 drbd_md_io_bio_set = NULL;
2054 drbd_md_io_page_pool = NULL;
2055 drbd_ee_mempool = NULL;
2056 drbd_request_mempool = NULL;
2057 drbd_ee_cache = NULL;
2058 drbd_request_cache = NULL;
2059 drbd_bm_ext_cache = NULL;
2060 drbd_al_ext_cache = NULL;
2061
2062 return;
2063 }
2064
2065 static int drbd_create_mempools(void)
2066 {
2067 struct page *page;
2068 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2069 int i;
2070
2071 /* prepare our caches and mempools */
2072 drbd_request_mempool = NULL;
2073 drbd_ee_cache = NULL;
2074 drbd_request_cache = NULL;
2075 drbd_bm_ext_cache = NULL;
2076 drbd_al_ext_cache = NULL;
2077 drbd_pp_pool = NULL;
2078 drbd_md_io_page_pool = NULL;
2079 drbd_md_io_bio_set = NULL;
2080
2081 /* caches */
2082 drbd_request_cache = kmem_cache_create(
2083 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2084 if (drbd_request_cache == NULL)
2085 goto Enomem;
2086
2087 drbd_ee_cache = kmem_cache_create(
2088 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2089 if (drbd_ee_cache == NULL)
2090 goto Enomem;
2091
2092 drbd_bm_ext_cache = kmem_cache_create(
2093 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2094 if (drbd_bm_ext_cache == NULL)
2095 goto Enomem;
2096
2097 drbd_al_ext_cache = kmem_cache_create(
2098 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2099 if (drbd_al_ext_cache == NULL)
2100 goto Enomem;
2101
2102 /* mempools */
2103 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2104 if (drbd_md_io_bio_set == NULL)
2105 goto Enomem;
2106
2107 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2108 if (drbd_md_io_page_pool == NULL)
2109 goto Enomem;
2110
2111 drbd_request_mempool = mempool_create_slab_pool(number,
2112 drbd_request_cache);
2113 if (drbd_request_mempool == NULL)
2114 goto Enomem;
2115
2116 drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2117 if (drbd_ee_mempool == NULL)
2118 goto Enomem;
2119
2120 /* drbd's page pool */
2121 spin_lock_init(&drbd_pp_lock);
2122
2123 for (i = 0; i < number; i++) {
2124 page = alloc_page(GFP_HIGHUSER);
2125 if (!page)
2126 goto Enomem;
2127 set_page_private(page, (unsigned long)drbd_pp_pool);
2128 drbd_pp_pool = page;
2129 }
2130 drbd_pp_vacant = number;
2131
2132 return 0;
2133
2134 Enomem:
2135 drbd_destroy_mempools(); /* in case we allocated some */
2136 return -ENOMEM;
2137 }
2138
2139 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2140 {
2141 int rr;
2142
2143 rr = drbd_free_peer_reqs(device, &device->active_ee);
2144 if (rr)
2145 drbd_err(device, "%d EEs in active list found!\n", rr);
2146
2147 rr = drbd_free_peer_reqs(device, &device->sync_ee);
2148 if (rr)
2149 drbd_err(device, "%d EEs in sync list found!\n", rr);
2150
2151 rr = drbd_free_peer_reqs(device, &device->read_ee);
2152 if (rr)
2153 drbd_err(device, "%d EEs in read list found!\n", rr);
2154
2155 rr = drbd_free_peer_reqs(device, &device->done_ee);
2156 if (rr)
2157 drbd_err(device, "%d EEs in done list found!\n", rr);
2158
2159 rr = drbd_free_peer_reqs(device, &device->net_ee);
2160 if (rr)
2161 drbd_err(device, "%d EEs in net list found!\n", rr);
2162 }
2163
2164 /* caution. no locking. */
2165 void drbd_destroy_device(struct kref *kref)
2166 {
2167 struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2168 struct drbd_resource *resource = device->resource;
2169 struct drbd_peer_device *peer_device, *tmp_peer_device;
2170
2171 del_timer_sync(&device->request_timer);
2172
2173 /* paranoia asserts */
2174 D_ASSERT(device, device->open_cnt == 0);
2175 /* end paranoia asserts */
2176
2177 /* cleanup stuff that may have been allocated during
2178 * device (re-)configuration or state changes */
2179
2180 if (device->this_bdev)
2181 bdput(device->this_bdev);
2182
2183 drbd_free_ldev(device->ldev);
2184 device->ldev = NULL;
2185
2186 drbd_release_all_peer_reqs(device);
2187
2188 lc_destroy(device->act_log);
2189 lc_destroy(device->resync);
2190
2191 kfree(device->p_uuid);
2192 /* device->p_uuid = NULL; */
2193
2194 if (device->bitmap) /* should no longer be there. */
2195 drbd_bm_cleanup(device);
2196 __free_page(device->md_io.page);
2197 put_disk(device->vdisk);
2198 blk_cleanup_queue(device->rq_queue);
2199 kfree(device->rs_plan_s);
2200
2201 /* not for_each_connection(connection, resource):
2202 * those may have been cleaned up and disassociated already.
2203 */
2204 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2205 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2206 kfree(peer_device);
2207 }
2208 memset(device, 0xfd, sizeof(*device));
2209 kfree(device);
2210 kref_put(&resource->kref, drbd_destroy_resource);
2211 }
2212
2213 /* One global retry thread, if we need to push back some bio and have it
2214 * reinserted through our make request function.
2215 */
2216 static struct retry_worker {
2217 struct workqueue_struct *wq;
2218 struct work_struct worker;
2219
2220 spinlock_t lock;
2221 struct list_head writes;
2222 } retry;
2223
2224 static void do_retry(struct work_struct *ws)
2225 {
2226 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2227 LIST_HEAD(writes);
2228 struct drbd_request *req, *tmp;
2229
2230 spin_lock_irq(&retry->lock);
2231 list_splice_init(&retry->writes, &writes);
2232 spin_unlock_irq(&retry->lock);
2233
2234 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2235 struct drbd_device *device = req->device;
2236 struct bio *bio = req->master_bio;
2237 unsigned long start_jif = req->start_jif;
2238 bool expected;
2239
2240 expected =
2241 expect(atomic_read(&req->completion_ref) == 0) &&
2242 expect(req->rq_state & RQ_POSTPONED) &&
2243 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2244 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2245
2246 if (!expected)
2247 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2248 req, atomic_read(&req->completion_ref),
2249 req->rq_state);
2250
2251 /* We still need to put one kref associated with the
2252 * "completion_ref" going zero in the code path that queued it
2253 * here. The request object may still be referenced by a
2254 * frozen local req->private_bio, in case we force-detached.
2255 */
2256 kref_put(&req->kref, drbd_req_destroy);
2257
2258 /* A single suspended or otherwise blocking device may stall
2259 * all others as well. Fortunately, this code path is to
2260 * recover from a situation that "should not happen":
2261 * concurrent writes in multi-primary setup.
2262 * In a "normal" lifecycle, this workqueue is supposed to be
2263 * destroyed without ever doing anything.
2264 * If it turns out to be an issue anyways, we can do per
2265 * resource (replication group) or per device (minor) retry
2266 * workqueues instead.
2267 */
2268
2269 /* We are not just doing generic_make_request(),
2270 * as we want to keep the start_time information. */
2271 inc_ap_bio(device);
2272 __drbd_make_request(device, bio, start_jif);
2273 }
2274 }
2275
2276 /* called via drbd_req_put_completion_ref(),
2277 * holds resource->req_lock */
2278 void drbd_restart_request(struct drbd_request *req)
2279 {
2280 unsigned long flags;
2281 spin_lock_irqsave(&retry.lock, flags);
2282 list_move_tail(&req->tl_requests, &retry.writes);
2283 spin_unlock_irqrestore(&retry.lock, flags);
2284
2285 /* Drop the extra reference that would otherwise
2286 * have been dropped by complete_master_bio.
2287 * do_retry() needs to grab a new one. */
2288 dec_ap_bio(req->device);
2289
2290 queue_work(retry.wq, &retry.worker);
2291 }
2292
2293 void drbd_destroy_resource(struct kref *kref)
2294 {
2295 struct drbd_resource *resource =
2296 container_of(kref, struct drbd_resource, kref);
2297
2298 idr_destroy(&resource->devices);
2299 free_cpumask_var(resource->cpu_mask);
2300 kfree(resource->name);
2301 memset(resource, 0xf2, sizeof(*resource));
2302 kfree(resource);
2303 }
2304
2305 void drbd_free_resource(struct drbd_resource *resource)
2306 {
2307 struct drbd_connection *connection, *tmp;
2308
2309 for_each_connection_safe(connection, tmp, resource) {
2310 list_del(&connection->connections);
2311 drbd_debugfs_connection_cleanup(connection);
2312 kref_put(&connection->kref, drbd_destroy_connection);
2313 }
2314 drbd_debugfs_resource_cleanup(resource);
2315 kref_put(&resource->kref, drbd_destroy_resource);
2316 }
2317
2318 static void drbd_cleanup(void)
2319 {
2320 unsigned int i;
2321 struct drbd_device *device;
2322 struct drbd_resource *resource, *tmp;
2323
2324 /* first remove proc,
2325 * drbdsetup uses it's presence to detect
2326 * whether DRBD is loaded.
2327 * If we would get stuck in proc removal,
2328 * but have netlink already deregistered,
2329 * some drbdsetup commands may wait forever
2330 * for an answer.
2331 */
2332 if (drbd_proc)
2333 remove_proc_entry("drbd", NULL);
2334
2335 if (retry.wq)
2336 destroy_workqueue(retry.wq);
2337
2338 drbd_genl_unregister();
2339 drbd_debugfs_cleanup();
2340
2341 idr_for_each_entry(&drbd_devices, device, i)
2342 drbd_delete_device(device);
2343
2344 /* not _rcu since, no other updater anymore. Genl already unregistered */
2345 for_each_resource_safe(resource, tmp, &drbd_resources) {
2346 list_del(&resource->resources);
2347 drbd_free_resource(resource);
2348 }
2349
2350 drbd_destroy_mempools();
2351 unregister_blkdev(DRBD_MAJOR, "drbd");
2352
2353 idr_destroy(&drbd_devices);
2354
2355 pr_info("module cleanup done.\n");
2356 }
2357
2358 /**
2359 * drbd_congested() - Callback for the flusher thread
2360 * @congested_data: User data
2361 * @bdi_bits: Bits the BDI flusher thread is currently interested in
2362 *
2363 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2364 */
2365 static int drbd_congested(void *congested_data, int bdi_bits)
2366 {
2367 struct drbd_device *device = congested_data;
2368 struct request_queue *q;
2369 char reason = '-';
2370 int r = 0;
2371
2372 if (!may_inc_ap_bio(device)) {
2373 /* DRBD has frozen IO */
2374 r = bdi_bits;
2375 reason = 'd';
2376 goto out;
2377 }
2378
2379 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2380 r |= (1 << WB_async_congested);
2381 /* Without good local data, we would need to read from remote,
2382 * and that would need the worker thread as well, which is
2383 * currently blocked waiting for that usermode helper to
2384 * finish.
2385 */
2386 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2387 r |= (1 << WB_sync_congested);
2388 else
2389 put_ldev(device);
2390 r &= bdi_bits;
2391 reason = 'c';
2392 goto out;
2393 }
2394
2395 if (get_ldev(device)) {
2396 q = bdev_get_queue(device->ldev->backing_bdev);
2397 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2398 put_ldev(device);
2399 if (r)
2400 reason = 'b';
2401 }
2402
2403 if (bdi_bits & (1 << WB_async_congested) &&
2404 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2405 r |= (1 << WB_async_congested);
2406 reason = reason == 'b' ? 'a' : 'n';
2407 }
2408
2409 out:
2410 device->congestion_reason = reason;
2411 return r;
2412 }
2413
2414 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2415 {
2416 spin_lock_init(&wq->q_lock);
2417 INIT_LIST_HEAD(&wq->q);
2418 init_waitqueue_head(&wq->q_wait);
2419 }
2420
2421 struct completion_work {
2422 struct drbd_work w;
2423 struct completion done;
2424 };
2425
2426 static int w_complete(struct drbd_work *w, int cancel)
2427 {
2428 struct completion_work *completion_work =
2429 container_of(w, struct completion_work, w);
2430
2431 complete(&completion_work->done);
2432 return 0;
2433 }
2434
2435 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2436 {
2437 struct completion_work completion_work;
2438
2439 completion_work.w.cb = w_complete;
2440 init_completion(&completion_work.done);
2441 drbd_queue_work(work_queue, &completion_work.w);
2442 wait_for_completion(&completion_work.done);
2443 }
2444
2445 struct drbd_resource *drbd_find_resource(const char *name)
2446 {
2447 struct drbd_resource *resource;
2448
2449 if (!name || !name[0])
2450 return NULL;
2451
2452 rcu_read_lock();
2453 for_each_resource_rcu(resource, &drbd_resources) {
2454 if (!strcmp(resource->name, name)) {
2455 kref_get(&resource->kref);
2456 goto found;
2457 }
2458 }
2459 resource = NULL;
2460 found:
2461 rcu_read_unlock();
2462 return resource;
2463 }
2464
2465 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2466 void *peer_addr, int peer_addr_len)
2467 {
2468 struct drbd_resource *resource;
2469 struct drbd_connection *connection;
2470
2471 rcu_read_lock();
2472 for_each_resource_rcu(resource, &drbd_resources) {
2473 for_each_connection_rcu(connection, resource) {
2474 if (connection->my_addr_len == my_addr_len &&
2475 connection->peer_addr_len == peer_addr_len &&
2476 !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2477 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2478 kref_get(&connection->kref);
2479 goto found;
2480 }
2481 }
2482 }
2483 connection = NULL;
2484 found:
2485 rcu_read_unlock();
2486 return connection;
2487 }
2488
2489 static int drbd_alloc_socket(struct drbd_socket *socket)
2490 {
2491 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2492 if (!socket->rbuf)
2493 return -ENOMEM;
2494 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2495 if (!socket->sbuf)
2496 return -ENOMEM;
2497 return 0;
2498 }
2499
2500 static void drbd_free_socket(struct drbd_socket *socket)
2501 {
2502 free_page((unsigned long) socket->sbuf);
2503 free_page((unsigned long) socket->rbuf);
2504 }
2505
2506 void conn_free_crypto(struct drbd_connection *connection)
2507 {
2508 drbd_free_sock(connection);
2509
2510 crypto_free_hash(connection->csums_tfm);
2511 crypto_free_hash(connection->verify_tfm);
2512 crypto_free_hash(connection->cram_hmac_tfm);
2513 crypto_free_hash(connection->integrity_tfm);
2514 crypto_free_hash(connection->peer_integrity_tfm);
2515 kfree(connection->int_dig_in);
2516 kfree(connection->int_dig_vv);
2517
2518 connection->csums_tfm = NULL;
2519 connection->verify_tfm = NULL;
2520 connection->cram_hmac_tfm = NULL;
2521 connection->integrity_tfm = NULL;
2522 connection->peer_integrity_tfm = NULL;
2523 connection->int_dig_in = NULL;
2524 connection->int_dig_vv = NULL;
2525 }
2526
2527 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2528 {
2529 struct drbd_connection *connection;
2530 cpumask_var_t new_cpu_mask;
2531 int err;
2532
2533 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2534 return -ENOMEM;
2535
2536 /* silently ignore cpu mask on UP kernel */
2537 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2538 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2539 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2540 if (err == -EOVERFLOW) {
2541 /* So what. mask it out. */
2542 cpumask_var_t tmp_cpu_mask;
2543 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2544 cpumask_setall(tmp_cpu_mask);
2545 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2546 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2547 res_opts->cpu_mask,
2548 strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2549 nr_cpu_ids);
2550 free_cpumask_var(tmp_cpu_mask);
2551 err = 0;
2552 }
2553 }
2554 if (err) {
2555 drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2556 /* retcode = ERR_CPU_MASK_PARSE; */
2557 goto fail;
2558 }
2559 }
2560 resource->res_opts = *res_opts;
2561 if (cpumask_empty(new_cpu_mask))
2562 drbd_calc_cpu_mask(&new_cpu_mask);
2563 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2564 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2565 for_each_connection_rcu(connection, resource) {
2566 connection->receiver.reset_cpu_mask = 1;
2567 connection->asender.reset_cpu_mask = 1;
2568 connection->worker.reset_cpu_mask = 1;
2569 }
2570 }
2571 err = 0;
2572
2573 fail:
2574 free_cpumask_var(new_cpu_mask);
2575 return err;
2576
2577 }
2578
2579 struct drbd_resource *drbd_create_resource(const char *name)
2580 {
2581 struct drbd_resource *resource;
2582
2583 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2584 if (!resource)
2585 goto fail;
2586 resource->name = kstrdup(name, GFP_KERNEL);
2587 if (!resource->name)
2588 goto fail_free_resource;
2589 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2590 goto fail_free_name;
2591 kref_init(&resource->kref);
2592 idr_init(&resource->devices);
2593 INIT_LIST_HEAD(&resource->connections);
2594 resource->write_ordering = WO_BDEV_FLUSH;
2595 list_add_tail_rcu(&resource->resources, &drbd_resources);
2596 mutex_init(&resource->conf_update);
2597 mutex_init(&resource->adm_mutex);
2598 spin_lock_init(&resource->req_lock);
2599 drbd_debugfs_resource_add(resource);
2600 return resource;
2601
2602 fail_free_name:
2603 kfree(resource->name);
2604 fail_free_resource:
2605 kfree(resource);
2606 fail:
2607 return NULL;
2608 }
2609
2610 /* caller must be under adm_mutex */
2611 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2612 {
2613 struct drbd_resource *resource;
2614 struct drbd_connection *connection;
2615
2616 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2617 if (!connection)
2618 return NULL;
2619
2620 if (drbd_alloc_socket(&connection->data))
2621 goto fail;
2622 if (drbd_alloc_socket(&connection->meta))
2623 goto fail;
2624
2625 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2626 if (!connection->current_epoch)
2627 goto fail;
2628
2629 INIT_LIST_HEAD(&connection->transfer_log);
2630
2631 INIT_LIST_HEAD(&connection->current_epoch->list);
2632 connection->epochs = 1;
2633 spin_lock_init(&connection->epoch_lock);
2634
2635 connection->send.seen_any_write_yet = false;
2636 connection->send.current_epoch_nr = 0;
2637 connection->send.current_epoch_writes = 0;
2638
2639 resource = drbd_create_resource(name);
2640 if (!resource)
2641 goto fail;
2642
2643 connection->cstate = C_STANDALONE;
2644 mutex_init(&connection->cstate_mutex);
2645 init_waitqueue_head(&connection->ping_wait);
2646 idr_init(&connection->peer_devices);
2647
2648 drbd_init_workqueue(&connection->sender_work);
2649 mutex_init(&connection->data.mutex);
2650 mutex_init(&connection->meta.mutex);
2651
2652 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2653 connection->receiver.connection = connection;
2654 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2655 connection->worker.connection = connection;
2656 drbd_thread_init(resource, &connection->asender, drbd_asender, "asender");
2657 connection->asender.connection = connection;
2658
2659 kref_init(&connection->kref);
2660
2661 connection->resource = resource;
2662
2663 if (set_resource_options(resource, res_opts))
2664 goto fail_resource;
2665
2666 kref_get(&resource->kref);
2667 list_add_tail_rcu(&connection->connections, &resource->connections);
2668 drbd_debugfs_connection_add(connection);
2669 return connection;
2670
2671 fail_resource:
2672 list_del(&resource->resources);
2673 drbd_free_resource(resource);
2674 fail:
2675 kfree(connection->current_epoch);
2676 drbd_free_socket(&connection->meta);
2677 drbd_free_socket(&connection->data);
2678 kfree(connection);
2679 return NULL;
2680 }
2681
2682 void drbd_destroy_connection(struct kref *kref)
2683 {
2684 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2685 struct drbd_resource *resource = connection->resource;
2686
2687 if (atomic_read(&connection->current_epoch->epoch_size) != 0)
2688 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2689 kfree(connection->current_epoch);
2690
2691 idr_destroy(&connection->peer_devices);
2692
2693 drbd_free_socket(&connection->meta);
2694 drbd_free_socket(&connection->data);
2695 kfree(connection->int_dig_in);
2696 kfree(connection->int_dig_vv);
2697 memset(connection, 0xfc, sizeof(*connection));
2698 kfree(connection);
2699 kref_put(&resource->kref, drbd_destroy_resource);
2700 }
2701
2702 static int init_submitter(struct drbd_device *device)
2703 {
2704 /* opencoded create_singlethread_workqueue(),
2705 * to be able to say "drbd%d", ..., minor */
2706 device->submit.wq = alloc_workqueue("drbd%u_submit",
2707 WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor);
2708 if (!device->submit.wq)
2709 return -ENOMEM;
2710
2711 INIT_WORK(&device->submit.worker, do_submit);
2712 INIT_LIST_HEAD(&device->submit.writes);
2713 return 0;
2714 }
2715
2716 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2717 {
2718 struct drbd_resource *resource = adm_ctx->resource;
2719 struct drbd_connection *connection;
2720 struct drbd_device *device;
2721 struct drbd_peer_device *peer_device, *tmp_peer_device;
2722 struct gendisk *disk;
2723 struct request_queue *q;
2724 int id;
2725 int vnr = adm_ctx->volume;
2726 enum drbd_ret_code err = ERR_NOMEM;
2727
2728 device = minor_to_device(minor);
2729 if (device)
2730 return ERR_MINOR_OR_VOLUME_EXISTS;
2731
2732 /* GFP_KERNEL, we are outside of all write-out paths */
2733 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2734 if (!device)
2735 return ERR_NOMEM;
2736 kref_init(&device->kref);
2737
2738 kref_get(&resource->kref);
2739 device->resource = resource;
2740 device->minor = minor;
2741 device->vnr = vnr;
2742
2743 drbd_init_set_defaults(device);
2744
2745 q = blk_alloc_queue(GFP_KERNEL);
2746 if (!q)
2747 goto out_no_q;
2748 device->rq_queue = q;
2749 q->queuedata = device;
2750
2751 disk = alloc_disk(1);
2752 if (!disk)
2753 goto out_no_disk;
2754 device->vdisk = disk;
2755
2756 set_disk_ro(disk, true);
2757
2758 disk->queue = q;
2759 disk->major = DRBD_MAJOR;
2760 disk->first_minor = minor;
2761 disk->fops = &drbd_ops;
2762 sprintf(disk->disk_name, "drbd%d", minor);
2763 disk->private_data = device;
2764
2765 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2766 /* we have no partitions. we contain only ourselves. */
2767 device->this_bdev->bd_contains = device->this_bdev;
2768
2769 q->backing_dev_info.congested_fn = drbd_congested;
2770 q->backing_dev_info.congested_data = device;
2771
2772 blk_queue_make_request(q, drbd_make_request);
2773 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2774 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2775 This triggers a max_bio_size message upon first attach or connect */
2776 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2777 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2778 q->queue_lock = &resource->req_lock;
2779
2780 device->md_io.page = alloc_page(GFP_KERNEL);
2781 if (!device->md_io.page)
2782 goto out_no_io_page;
2783
2784 if (drbd_bm_init(device))
2785 goto out_no_bitmap;
2786 device->read_requests = RB_ROOT;
2787 device->write_requests = RB_ROOT;
2788
2789 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2790 if (id < 0) {
2791 if (id == -ENOSPC)
2792 err = ERR_MINOR_OR_VOLUME_EXISTS;
2793 goto out_no_minor_idr;
2794 }
2795 kref_get(&device->kref);
2796
2797 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2798 if (id < 0) {
2799 if (id == -ENOSPC)
2800 err = ERR_MINOR_OR_VOLUME_EXISTS;
2801 goto out_idr_remove_minor;
2802 }
2803 kref_get(&device->kref);
2804
2805 INIT_LIST_HEAD(&device->peer_devices);
2806 INIT_LIST_HEAD(&device->pending_bitmap_io);
2807 for_each_connection(connection, resource) {
2808 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2809 if (!peer_device)
2810 goto out_idr_remove_from_resource;
2811 peer_device->connection = connection;
2812 peer_device->device = device;
2813
2814 list_add(&peer_device->peer_devices, &device->peer_devices);
2815 kref_get(&device->kref);
2816
2817 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2818 if (id < 0) {
2819 if (id == -ENOSPC)
2820 err = ERR_INVALID_REQUEST;
2821 goto out_idr_remove_from_resource;
2822 }
2823 kref_get(&connection->kref);
2824 }
2825
2826 if (init_submitter(device)) {
2827 err = ERR_NOMEM;
2828 goto out_idr_remove_vol;
2829 }
2830
2831 add_disk(disk);
2832
2833 /* inherit the connection state */
2834 device->state.conn = first_connection(resource)->cstate;
2835 if (device->state.conn == C_WF_REPORT_PARAMS) {
2836 for_each_peer_device(peer_device, device)
2837 drbd_connected(peer_device);
2838 }
2839 /* move to create_peer_device() */
2840 for_each_peer_device(peer_device, device)
2841 drbd_debugfs_peer_device_add(peer_device);
2842 drbd_debugfs_device_add(device);
2843 return NO_ERROR;
2844
2845 out_idr_remove_vol:
2846 idr_remove(&connection->peer_devices, vnr);
2847 out_idr_remove_from_resource:
2848 for_each_connection(connection, resource) {
2849 peer_device = idr_find(&connection->peer_devices, vnr);
2850 if (peer_device) {
2851 idr_remove(&connection->peer_devices, vnr);
2852 kref_put(&connection->kref, drbd_destroy_connection);
2853 }
2854 }
2855 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2856 list_del(&peer_device->peer_devices);
2857 kfree(peer_device);
2858 }
2859 idr_remove(&resource->devices, vnr);
2860 out_idr_remove_minor:
2861 idr_remove(&drbd_devices, minor);
2862 synchronize_rcu();
2863 out_no_minor_idr:
2864 drbd_bm_cleanup(device);
2865 out_no_bitmap:
2866 __free_page(device->md_io.page);
2867 out_no_io_page:
2868 put_disk(disk);
2869 out_no_disk:
2870 blk_cleanup_queue(q);
2871 out_no_q:
2872 kref_put(&resource->kref, drbd_destroy_resource);
2873 kfree(device);
2874 return err;
2875 }
2876
2877 void drbd_delete_device(struct drbd_device *device)
2878 {
2879 struct drbd_resource *resource = device->resource;
2880 struct drbd_connection *connection;
2881 struct drbd_peer_device *peer_device;
2882 int refs = 3;
2883
2884 /* move to free_peer_device() */
2885 for_each_peer_device(peer_device, device)
2886 drbd_debugfs_peer_device_cleanup(peer_device);
2887 drbd_debugfs_device_cleanup(device);
2888 for_each_connection(connection, resource) {
2889 idr_remove(&connection->peer_devices, device->vnr);
2890 refs++;
2891 }
2892 idr_remove(&resource->devices, device->vnr);
2893 idr_remove(&drbd_devices, device_to_minor(device));
2894 del_gendisk(device->vdisk);
2895 synchronize_rcu();
2896 kref_sub(&device->kref, refs, drbd_destroy_device);
2897 }
2898
2899 static int __init drbd_init(void)
2900 {
2901 int err;
2902
2903 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2904 pr_err("invalid minor_count (%d)\n", minor_count);
2905 #ifdef MODULE
2906 return -EINVAL;
2907 #else
2908 minor_count = DRBD_MINOR_COUNT_DEF;
2909 #endif
2910 }
2911
2912 err = register_blkdev(DRBD_MAJOR, "drbd");
2913 if (err) {
2914 pr_err("unable to register block device major %d\n",
2915 DRBD_MAJOR);
2916 return err;
2917 }
2918
2919 /*
2920 * allocate all necessary structs
2921 */
2922 init_waitqueue_head(&drbd_pp_wait);
2923
2924 drbd_proc = NULL; /* play safe for drbd_cleanup */
2925 idr_init(&drbd_devices);
2926
2927 mutex_init(&resources_mutex);
2928 INIT_LIST_HEAD(&drbd_resources);
2929
2930 err = drbd_genl_register();
2931 if (err) {
2932 pr_err("unable to register generic netlink family\n");
2933 goto fail;
2934 }
2935
2936 err = drbd_create_mempools();
2937 if (err)
2938 goto fail;
2939
2940 err = -ENOMEM;
2941 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2942 if (!drbd_proc) {
2943 pr_err("unable to register proc file\n");
2944 goto fail;
2945 }
2946
2947 retry.wq = create_singlethread_workqueue("drbd-reissue");
2948 if (!retry.wq) {
2949 pr_err("unable to create retry workqueue\n");
2950 goto fail;
2951 }
2952 INIT_WORK(&retry.worker, do_retry);
2953 spin_lock_init(&retry.lock);
2954 INIT_LIST_HEAD(&retry.writes);
2955
2956 if (drbd_debugfs_init())
2957 pr_notice("failed to initialize debugfs -- will not be available\n");
2958
2959 pr_info("initialized. "
2960 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2961 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2962 pr_info("%s\n", drbd_buildtag());
2963 pr_info("registered as block device major %d\n", DRBD_MAJOR);
2964 return 0; /* Success! */
2965
2966 fail:
2967 drbd_cleanup();
2968 if (err == -ENOMEM)
2969 pr_err("ran out of memory\n");
2970 else
2971 pr_err("initialization failure\n");
2972 return err;
2973 }
2974
2975 void drbd_free_ldev(struct drbd_backing_dev *ldev)
2976 {
2977 if (ldev == NULL)
2978 return;
2979
2980 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2981 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2982
2983 kfree(ldev->disk_conf);
2984 kfree(ldev);
2985 }
2986
2987 static void drbd_free_one_sock(struct drbd_socket *ds)
2988 {
2989 struct socket *s;
2990 mutex_lock(&ds->mutex);
2991 s = ds->socket;
2992 ds->socket = NULL;
2993 mutex_unlock(&ds->mutex);
2994 if (s) {
2995 /* so debugfs does not need to mutex_lock() */
2996 synchronize_rcu();
2997 kernel_sock_shutdown(s, SHUT_RDWR);
2998 sock_release(s);
2999 }
3000 }
3001
3002 void drbd_free_sock(struct drbd_connection *connection)
3003 {
3004 if (connection->data.socket)
3005 drbd_free_one_sock(&connection->data);
3006 if (connection->meta.socket)
3007 drbd_free_one_sock(&connection->meta);
3008 }
3009
3010 /* meta data management */
3011
3012 void conn_md_sync(struct drbd_connection *connection)
3013 {
3014 struct drbd_peer_device *peer_device;
3015 int vnr;
3016
3017 rcu_read_lock();
3018 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3019 struct drbd_device *device = peer_device->device;
3020
3021 kref_get(&device->kref);
3022 rcu_read_unlock();
3023 drbd_md_sync(device);
3024 kref_put(&device->kref, drbd_destroy_device);
3025 rcu_read_lock();
3026 }
3027 rcu_read_unlock();
3028 }
3029
3030 /* aligned 4kByte */
3031 struct meta_data_on_disk {
3032 u64 la_size_sect; /* last agreed size. */
3033 u64 uuid[UI_SIZE]; /* UUIDs. */
3034 u64 device_uuid;
3035 u64 reserved_u64_1;
3036 u32 flags; /* MDF */
3037 u32 magic;
3038 u32 md_size_sect;
3039 u32 al_offset; /* offset to this block */
3040 u32 al_nr_extents; /* important for restoring the AL (userspace) */
3041 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3042 u32 bm_offset; /* offset to the bitmap, from here */
3043 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
3044 u32 la_peer_max_bio_size; /* last peer max_bio_size */
3045
3046 /* see al_tr_number_to_on_disk_sector() */
3047 u32 al_stripes;
3048 u32 al_stripe_size_4k;
3049
3050 u8 reserved_u8[4096 - (7*8 + 10*4)];
3051 } __packed;
3052
3053
3054
3055 void drbd_md_write(struct drbd_device *device, void *b)
3056 {
3057 struct meta_data_on_disk *buffer = b;
3058 sector_t sector;
3059 int i;
3060
3061 memset(buffer, 0, sizeof(*buffer));
3062
3063 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3064 for (i = UI_CURRENT; i < UI_SIZE; i++)
3065 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3066 buffer->flags = cpu_to_be32(device->ldev->md.flags);
3067 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3068
3069 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
3070 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
3071 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3072 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3073 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3074
3075 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3076 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3077
3078 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3079 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3080
3081 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3082 sector = device->ldev->md.md_offset;
3083
3084 if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
3085 /* this was a try anyways ... */
3086 drbd_err(device, "meta data update failed!\n");
3087 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3088 }
3089 }
3090
3091 /**
3092 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3093 * @device: DRBD device.
3094 */
3095 void drbd_md_sync(struct drbd_device *device)
3096 {
3097 struct meta_data_on_disk *buffer;
3098
3099 /* Don't accidentally change the DRBD meta data layout. */
3100 BUILD_BUG_ON(UI_SIZE != 4);
3101 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3102
3103 del_timer(&device->md_sync_timer);
3104 /* timer may be rearmed by drbd_md_mark_dirty() now. */
3105 if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3106 return;
3107
3108 /* We use here D_FAILED and not D_ATTACHING because we try to write
3109 * metadata even if we detach due to a disk failure! */
3110 if (!get_ldev_if_state(device, D_FAILED))
3111 return;
3112
3113 buffer = drbd_md_get_buffer(device, __func__);
3114 if (!buffer)
3115 goto out;
3116
3117 drbd_md_write(device, buffer);
3118
3119 /* Update device->ldev->md.la_size_sect,
3120 * since we updated it on metadata. */
3121 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3122
3123 drbd_md_put_buffer(device);
3124 out:
3125 put_ldev(device);
3126 }
3127
3128 static int check_activity_log_stripe_size(struct drbd_device *device,
3129 struct meta_data_on_disk *on_disk,
3130 struct drbd_md *in_core)
3131 {
3132 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3133 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3134 u64 al_size_4k;
3135
3136 /* both not set: default to old fixed size activity log */
3137 if (al_stripes == 0 && al_stripe_size_4k == 0) {
3138 al_stripes = 1;
3139 al_stripe_size_4k = MD_32kB_SECT/8;
3140 }
3141
3142 /* some paranoia plausibility checks */
3143
3144 /* we need both values to be set */
3145 if (al_stripes == 0 || al_stripe_size_4k == 0)
3146 goto err;
3147
3148 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3149
3150 /* Upper limit of activity log area, to avoid potential overflow
3151 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3152 * than 72 * 4k blocks total only increases the amount of history,
3153 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3154 if (al_size_4k > (16 * 1024 * 1024/4))
3155 goto err;
3156
3157 /* Lower limit: we need at least 8 transaction slots (32kB)
3158 * to not break existing setups */
3159 if (al_size_4k < MD_32kB_SECT/8)
3160 goto err;
3161
3162 in_core->al_stripe_size_4k = al_stripe_size_4k;
3163 in_core->al_stripes = al_stripes;
3164 in_core->al_size_4k = al_size_4k;
3165
3166 return 0;
3167 err:
3168 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3169 al_stripes, al_stripe_size_4k);
3170 return -EINVAL;
3171 }
3172
3173 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3174 {
3175 sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3176 struct drbd_md *in_core = &bdev->md;
3177 s32 on_disk_al_sect;
3178 s32 on_disk_bm_sect;
3179
3180 /* The on-disk size of the activity log, calculated from offsets, and
3181 * the size of the activity log calculated from the stripe settings,
3182 * should match.
3183 * Though we could relax this a bit: it is ok, if the striped activity log
3184 * fits in the available on-disk activity log size.
3185 * Right now, that would break how resize is implemented.
3186 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3187 * of possible unused padding space in the on disk layout. */
3188 if (in_core->al_offset < 0) {
3189 if (in_core->bm_offset > in_core->al_offset)
3190 goto err;
3191 on_disk_al_sect = -in_core->al_offset;
3192 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3193 } else {
3194 if (in_core->al_offset != MD_4kB_SECT)
3195 goto err;
3196 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3197 goto err;
3198
3199 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3200 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3201 }
3202
3203 /* old fixed size meta data is exactly that: fixed. */
3204 if (in_core->meta_dev_idx >= 0) {
3205 if (in_core->md_size_sect != MD_128MB_SECT
3206 || in_core->al_offset != MD_4kB_SECT
3207 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3208 || in_core->al_stripes != 1
3209 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3210 goto err;
3211 }
3212
3213 if (capacity < in_core->md_size_sect)
3214 goto err;
3215 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3216 goto err;
3217
3218 /* should be aligned, and at least 32k */
3219 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3220 goto err;
3221
3222 /* should fit (for now: exactly) into the available on-disk space;
3223 * overflow prevention is in check_activity_log_stripe_size() above. */
3224 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3225 goto err;
3226
3227 /* again, should be aligned */
3228 if (in_core->bm_offset & 7)
3229 goto err;
3230
3231 /* FIXME check for device grow with flex external meta data? */
3232
3233 /* can the available bitmap space cover the last agreed device size? */
3234 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3235 goto err;
3236
3237 return 0;
3238
3239 err:
3240 drbd_err(device, "meta data offsets don't make sense: idx=%d "
3241 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3242 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3243 in_core->meta_dev_idx,
3244 in_core->al_stripes, in_core->al_stripe_size_4k,
3245 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3246 (unsigned long long)in_core->la_size_sect,
3247 (unsigned long long)capacity);
3248
3249 return -EINVAL;
3250 }
3251
3252
3253 /**
3254 * drbd_md_read() - Reads in the meta data super block
3255 * @device: DRBD device.
3256 * @bdev: Device from which the meta data should be read in.
3257 *
3258 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3259 * something goes wrong.
3260 *
3261 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3262 * even before @bdev is assigned to @device->ldev.
3263 */
3264 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3265 {
3266 struct meta_data_on_disk *buffer;
3267 u32 magic, flags;
3268 int i, rv = NO_ERROR;
3269
3270 if (device->state.disk != D_DISKLESS)
3271 return ERR_DISK_CONFIGURED;
3272
3273 buffer = drbd_md_get_buffer(device, __func__);
3274 if (!buffer)
3275 return ERR_NOMEM;
3276
3277 /* First, figure out where our meta data superblock is located,
3278 * and read it. */
3279 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3280 bdev->md.md_offset = drbd_md_ss(bdev);
3281
3282 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3283 /* NOTE: can't do normal error processing here as this is
3284 called BEFORE disk is attached */
3285 drbd_err(device, "Error while reading metadata.\n");
3286 rv = ERR_IO_MD_DISK;
3287 goto err;
3288 }
3289
3290 magic = be32_to_cpu(buffer->magic);
3291 flags = be32_to_cpu(buffer->flags);
3292 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3293 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3294 /* btw: that's Activity Log clean, not "all" clean. */
3295 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3296 rv = ERR_MD_UNCLEAN;
3297 goto err;
3298 }
3299
3300 rv = ERR_MD_INVALID;
3301 if (magic != DRBD_MD_MAGIC_08) {
3302 if (magic == DRBD_MD_MAGIC_07)
3303 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3304 else
3305 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3306 goto err;
3307 }
3308
3309 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3310 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3311 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3312 goto err;
3313 }
3314
3315
3316 /* convert to in_core endian */
3317 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3318 for (i = UI_CURRENT; i < UI_SIZE; i++)
3319 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3320 bdev->md.flags = be32_to_cpu(buffer->flags);
3321 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3322
3323 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3324 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3325 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3326
3327 if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3328 goto err;
3329 if (check_offsets_and_sizes(device, bdev))
3330 goto err;
3331
3332 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3333 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3334 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3335 goto err;
3336 }
3337 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3338 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3339 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3340 goto err;
3341 }
3342
3343 rv = NO_ERROR;
3344
3345 spin_lock_irq(&device->resource->req_lock);
3346 if (device->state.conn < C_CONNECTED) {
3347 unsigned int peer;
3348 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3349 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3350 device->peer_max_bio_size = peer;
3351 }
3352 spin_unlock_irq(&device->resource->req_lock);
3353
3354 err:
3355 drbd_md_put_buffer(device);
3356
3357 return rv;
3358 }
3359
3360 /**
3361 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3362 * @device: DRBD device.
3363 *
3364 * Call this function if you change anything that should be written to
3365 * the meta-data super block. This function sets MD_DIRTY, and starts a
3366 * timer that ensures that within five seconds you have to call drbd_md_sync().
3367 */
3368 #ifdef DEBUG
3369 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3370 {
3371 if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3372 mod_timer(&device->md_sync_timer, jiffies + HZ);
3373 device->last_md_mark_dirty.line = line;
3374 device->last_md_mark_dirty.func = func;
3375 }
3376 }
3377 #else
3378 void drbd_md_mark_dirty(struct drbd_device *device)
3379 {
3380 if (!test_and_set_bit(MD_DIRTY, &device->flags))
3381 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3382 }
3383 #endif
3384
3385 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3386 {
3387 int i;
3388
3389 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3390 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3391 }
3392
3393 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3394 {
3395 if (idx == UI_CURRENT) {
3396 if (device->state.role == R_PRIMARY)
3397 val |= 1;
3398 else
3399 val &= ~((u64)1);
3400
3401 drbd_set_ed_uuid(device, val);
3402 }
3403
3404 device->ldev->md.uuid[idx] = val;
3405 drbd_md_mark_dirty(device);
3406 }
3407
3408 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3409 {
3410 unsigned long flags;
3411 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3412 __drbd_uuid_set(device, idx, val);
3413 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3414 }
3415
3416 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3417 {
3418 unsigned long flags;
3419 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3420 if (device->ldev->md.uuid[idx]) {
3421 drbd_uuid_move_history(device);
3422 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3423 }
3424 __drbd_uuid_set(device, idx, val);
3425 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3426 }
3427
3428 /**
3429 * drbd_uuid_new_current() - Creates a new current UUID
3430 * @device: DRBD device.
3431 *
3432 * Creates a new current UUID, and rotates the old current UUID into
3433 * the bitmap slot. Causes an incremental resync upon next connect.
3434 */
3435 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3436 {
3437 u64 val;
3438 unsigned long long bm_uuid;
3439
3440 get_random_bytes(&val, sizeof(u64));
3441
3442 spin_lock_irq(&device->ldev->md.uuid_lock);
3443 bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3444
3445 if (bm_uuid)
3446 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3447
3448 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3449 __drbd_uuid_set(device, UI_CURRENT, val);
3450 spin_unlock_irq(&device->ldev->md.uuid_lock);
3451
3452 drbd_print_uuids(device, "new current UUID");
3453 /* get it to stable storage _now_ */
3454 drbd_md_sync(device);
3455 }
3456
3457 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3458 {
3459 unsigned long flags;
3460 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3461 return;
3462
3463 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3464 if (val == 0) {
3465 drbd_uuid_move_history(device);
3466 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3467 device->ldev->md.uuid[UI_BITMAP] = 0;
3468 } else {
3469 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3470 if (bm_uuid)
3471 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3472
3473 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3474 }
3475 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3476
3477 drbd_md_mark_dirty(device);
3478 }
3479
3480 /**
3481 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3482 * @device: DRBD device.
3483 *
3484 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3485 */
3486 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3487 {
3488 int rv = -EIO;
3489
3490 drbd_md_set_flag(device, MDF_FULL_SYNC);
3491 drbd_md_sync(device);
3492 drbd_bm_set_all(device);
3493
3494 rv = drbd_bm_write(device);
3495
3496 if (!rv) {
3497 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3498 drbd_md_sync(device);
3499 }
3500
3501 return rv;
3502 }
3503
3504 /**
3505 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3506 * @device: DRBD device.
3507 *
3508 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3509 */
3510 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3511 {
3512 drbd_resume_al(device);
3513 drbd_bm_clear_all(device);
3514 return drbd_bm_write(device);
3515 }
3516
3517 static int w_bitmap_io(struct drbd_work *w, int unused)
3518 {
3519 struct drbd_device *device =
3520 container_of(w, struct drbd_device, bm_io_work.w);
3521 struct bm_io_work *work = &device->bm_io_work;
3522 int rv = -EIO;
3523
3524 D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0);
3525
3526 if (get_ldev(device)) {
3527 drbd_bm_lock(device, work->why, work->flags);
3528 rv = work->io_fn(device);
3529 drbd_bm_unlock(device);
3530 put_ldev(device);
3531 }
3532
3533 clear_bit_unlock(BITMAP_IO, &device->flags);
3534 wake_up(&device->misc_wait);
3535
3536 if (work->done)
3537 work->done(device, rv);
3538
3539 clear_bit(BITMAP_IO_QUEUED, &device->flags);
3540 work->why = NULL;
3541 work->flags = 0;
3542
3543 return 0;
3544 }
3545
3546 /**
3547 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3548 * @device: DRBD device.
3549 * @io_fn: IO callback to be called when bitmap IO is possible
3550 * @done: callback to be called after the bitmap IO was performed
3551 * @why: Descriptive text of the reason for doing the IO
3552 *
3553 * While IO on the bitmap happens we freeze application IO thus we ensure
3554 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3555 * called from worker context. It MUST NOT be used while a previous such
3556 * work is still pending!
3557 *
3558 * Its worker function encloses the call of io_fn() by get_ldev() and
3559 * put_ldev().
3560 */
3561 void drbd_queue_bitmap_io(struct drbd_device *device,
3562 int (*io_fn)(struct drbd_device *),
3563 void (*done)(struct drbd_device *, int),
3564 char *why, enum bm_flag flags)
3565 {
3566 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3567
3568 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3569 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3570 D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3571 if (device->bm_io_work.why)
3572 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3573 why, device->bm_io_work.why);
3574
3575 device->bm_io_work.io_fn = io_fn;
3576 device->bm_io_work.done = done;
3577 device->bm_io_work.why = why;
3578 device->bm_io_work.flags = flags;
3579
3580 spin_lock_irq(&device->resource->req_lock);
3581 set_bit(BITMAP_IO, &device->flags);
3582 if (atomic_read(&device->ap_bio_cnt) == 0) {
3583 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3584 drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3585 &device->bm_io_work.w);
3586 }
3587 spin_unlock_irq(&device->resource->req_lock);
3588 }
3589
3590 /**
3591 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3592 * @device: DRBD device.
3593 * @io_fn: IO callback to be called when bitmap IO is possible
3594 * @why: Descriptive text of the reason for doing the IO
3595 *
3596 * freezes application IO while that the actual IO operations runs. This
3597 * functions MAY NOT be called from worker context.
3598 */
3599 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3600 char *why, enum bm_flag flags)
3601 {
3602 int rv;
3603
3604 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3605
3606 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3607 drbd_suspend_io(device);
3608
3609 drbd_bm_lock(device, why, flags);
3610 rv = io_fn(device);
3611 drbd_bm_unlock(device);
3612
3613 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3614 drbd_resume_io(device);
3615
3616 return rv;
3617 }
3618
3619 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3620 {
3621 if ((device->ldev->md.flags & flag) != flag) {
3622 drbd_md_mark_dirty(device);
3623 device->ldev->md.flags |= flag;
3624 }
3625 }
3626
3627 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3628 {
3629 if ((device->ldev->md.flags & flag) != 0) {
3630 drbd_md_mark_dirty(device);
3631 device->ldev->md.flags &= ~flag;
3632 }
3633 }
3634 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3635 {
3636 return (bdev->md.flags & flag) != 0;
3637 }
3638
3639 static void md_sync_timer_fn(unsigned long data)
3640 {
3641 struct drbd_device *device = (struct drbd_device *) data;
3642 drbd_device_post_work(device, MD_SYNC);
3643 }
3644
3645 const char *cmdname(enum drbd_packet cmd)
3646 {
3647 /* THINK may need to become several global tables
3648 * when we want to support more than
3649 * one PRO_VERSION */
3650 static const char *cmdnames[] = {
3651 [P_DATA] = "Data",
3652 [P_DATA_REPLY] = "DataReply",
3653 [P_RS_DATA_REPLY] = "RSDataReply",
3654 [P_BARRIER] = "Barrier",
3655 [P_BITMAP] = "ReportBitMap",
3656 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3657 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3658 [P_UNPLUG_REMOTE] = "UnplugRemote",
3659 [P_DATA_REQUEST] = "DataRequest",
3660 [P_RS_DATA_REQUEST] = "RSDataRequest",
3661 [P_SYNC_PARAM] = "SyncParam",
3662 [P_SYNC_PARAM89] = "SyncParam89",
3663 [P_PROTOCOL] = "ReportProtocol",
3664 [P_UUIDS] = "ReportUUIDs",
3665 [P_SIZES] = "ReportSizes",
3666 [P_STATE] = "ReportState",
3667 [P_SYNC_UUID] = "ReportSyncUUID",
3668 [P_AUTH_CHALLENGE] = "AuthChallenge",
3669 [P_AUTH_RESPONSE] = "AuthResponse",
3670 [P_PING] = "Ping",
3671 [P_PING_ACK] = "PingAck",
3672 [P_RECV_ACK] = "RecvAck",
3673 [P_WRITE_ACK] = "WriteAck",
3674 [P_RS_WRITE_ACK] = "RSWriteAck",
3675 [P_SUPERSEDED] = "Superseded",
3676 [P_NEG_ACK] = "NegAck",
3677 [P_NEG_DREPLY] = "NegDReply",
3678 [P_NEG_RS_DREPLY] = "NegRSDReply",
3679 [P_BARRIER_ACK] = "BarrierAck",
3680 [P_STATE_CHG_REQ] = "StateChgRequest",
3681 [P_STATE_CHG_REPLY] = "StateChgReply",
3682 [P_OV_REQUEST] = "OVRequest",
3683 [P_OV_REPLY] = "OVReply",
3684 [P_OV_RESULT] = "OVResult",
3685 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3686 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3687 [P_COMPRESSED_BITMAP] = "CBitmap",
3688 [P_DELAY_PROBE] = "DelayProbe",
3689 [P_OUT_OF_SYNC] = "OutOfSync",
3690 [P_RETRY_WRITE] = "RetryWrite",
3691 [P_RS_CANCEL] = "RSCancel",
3692 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3693 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3694 [P_RETRY_WRITE] = "retry_write",
3695 [P_PROTOCOL_UPDATE] = "protocol_update",
3696
3697 /* enum drbd_packet, but not commands - obsoleted flags:
3698 * P_MAY_IGNORE
3699 * P_MAX_OPT_CMD
3700 */
3701 };
3702
3703 /* too big for the array: 0xfffX */
3704 if (cmd == P_INITIAL_META)
3705 return "InitialMeta";
3706 if (cmd == P_INITIAL_DATA)
3707 return "InitialData";
3708 if (cmd == P_CONNECTION_FEATURES)
3709 return "ConnectionFeatures";
3710 if (cmd >= ARRAY_SIZE(cmdnames))
3711 return "Unknown";
3712 return cmdnames[cmd];
3713 }
3714
3715 /**
3716 * drbd_wait_misc - wait for a request to make progress
3717 * @device: device associated with the request
3718 * @i: the struct drbd_interval embedded in struct drbd_request or
3719 * struct drbd_peer_request
3720 */
3721 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3722 {
3723 struct net_conf *nc;
3724 DEFINE_WAIT(wait);
3725 long timeout;
3726
3727 rcu_read_lock();
3728 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3729 if (!nc) {
3730 rcu_read_unlock();
3731 return -ETIMEDOUT;
3732 }
3733 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3734 rcu_read_unlock();
3735
3736 /* Indicate to wake up device->misc_wait on progress. */
3737 i->waiting = true;
3738 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3739 spin_unlock_irq(&device->resource->req_lock);
3740 timeout = schedule_timeout(timeout);
3741 finish_wait(&device->misc_wait, &wait);
3742 spin_lock_irq(&device->resource->req_lock);
3743 if (!timeout || device->state.conn < C_CONNECTED)
3744 return -ETIMEDOUT;
3745 if (signal_pending(current))
3746 return -ERESTARTSYS;
3747 return 0;
3748 }
3749
3750 void lock_all_resources(void)
3751 {
3752 struct drbd_resource *resource;
3753 int __maybe_unused i = 0;
3754
3755 mutex_lock(&resources_mutex);
3756 local_irq_disable();
3757 for_each_resource(resource, &drbd_resources)
3758 spin_lock_nested(&resource->req_lock, i++);
3759 }
3760
3761 void unlock_all_resources(void)
3762 {
3763 struct drbd_resource *resource;
3764
3765 for_each_resource(resource, &drbd_resources)
3766 spin_unlock(&resource->req_lock);
3767 local_irq_enable();
3768 mutex_unlock(&resources_mutex);
3769 }
3770
3771 #ifdef CONFIG_DRBD_FAULT_INJECTION
3772 /* Fault insertion support including random number generator shamelessly
3773 * stolen from kernel/rcutorture.c */
3774 struct fault_random_state {
3775 unsigned long state;
3776 unsigned long count;
3777 };
3778
3779 #define FAULT_RANDOM_MULT 39916801 /* prime */
3780 #define FAULT_RANDOM_ADD 479001701 /* prime */
3781 #define FAULT_RANDOM_REFRESH 10000
3782
3783 /*
3784 * Crude but fast random-number generator. Uses a linear congruential
3785 * generator, with occasional help from get_random_bytes().
3786 */
3787 static unsigned long
3788 _drbd_fault_random(struct fault_random_state *rsp)
3789 {
3790 long refresh;
3791
3792 if (!rsp->count--) {
3793 get_random_bytes(&refresh, sizeof(refresh));
3794 rsp->state += refresh;
3795 rsp->count = FAULT_RANDOM_REFRESH;
3796 }
3797 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3798 return swahw32(rsp->state);
3799 }
3800
3801 static char *
3802 _drbd_fault_str(unsigned int type) {
3803 static char *_faults[] = {
3804 [DRBD_FAULT_MD_WR] = "Meta-data write",
3805 [DRBD_FAULT_MD_RD] = "Meta-data read",
3806 [DRBD_FAULT_RS_WR] = "Resync write",
3807 [DRBD_FAULT_RS_RD] = "Resync read",
3808 [DRBD_FAULT_DT_WR] = "Data write",
3809 [DRBD_FAULT_DT_RD] = "Data read",
3810 [DRBD_FAULT_DT_RA] = "Data read ahead",
3811 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3812 [DRBD_FAULT_AL_EE] = "EE allocation",
3813 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3814 };
3815
3816 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3817 }
3818
3819 unsigned int
3820 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3821 {
3822 static struct fault_random_state rrs = {0, 0};
3823
3824 unsigned int ret = (
3825 (fault_devs == 0 ||
3826 ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3827 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3828
3829 if (ret) {
3830 fault_count++;
3831
3832 if (__ratelimit(&drbd_ratelimit_state))
3833 drbd_warn(device, "***Simulating %s failure\n",
3834 _drbd_fault_str(type));
3835 }
3836
3837 return ret;
3838 }
3839 #endif
3840
3841 const char *drbd_buildtag(void)
3842 {
3843 /* DRBD built from external sources has here a reference to the
3844 git hash of the source code. */
3845
3846 static char buildtag[38] = "\0uilt-in";
3847
3848 if (buildtag[0] == 0) {
3849 #ifdef MODULE
3850 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3851 #else
3852 buildtag[0] = 'b';
3853 #endif
3854 }
3855
3856 return buildtag;
3857 }
3858
3859 module_init(drbd_init)
3860 module_exit(drbd_cleanup)
3861
3862 EXPORT_SYMBOL(drbd_conn_str);
3863 EXPORT_SYMBOL(drbd_role_str);
3864 EXPORT_SYMBOL(drbd_disk_str);
3865 EXPORT_SYMBOL(drbd_set_st_err_str);
This page took 0.158827 seconds and 5 git commands to generate.