drbd: Function prototype cleanups
[deliverable/linux.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48 #include <linux/workqueue.h>
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_protocol.h"
56 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
57
58 #include "drbd_vli.h"
59
60 static DEFINE_MUTEX(drbd_main_mutex);
61 static int drbd_open(struct block_device *bdev, fmode_t mode);
62 static void drbd_release(struct gendisk *gd, fmode_t mode);
63 static int w_md_sync(struct drbd_work *w, int unused);
64 static void md_sync_timer_fn(unsigned long data);
65 static int w_bitmap_io(struct drbd_work *w, int unused);
66 static int w_go_diskless(struct drbd_work *w, int unused);
67
68 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
69 "Lars Ellenberg <lars@linbit.com>");
70 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
71 MODULE_VERSION(REL_VERSION);
72 MODULE_LICENSE("GPL");
73 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
74 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
75 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
76
77 #include <linux/moduleparam.h>
78 /* allow_open_on_secondary */
79 MODULE_PARM_DESC(allow_oos, "DONT USE!");
80 /* thanks to these macros, if compiled into the kernel (not-module),
81 * this becomes the boot parameter drbd.minor_count */
82 module_param(minor_count, uint, 0444);
83 module_param(disable_sendpage, bool, 0644);
84 module_param(allow_oos, bool, 0);
85 module_param(proc_details, int, 0644);
86
87 #ifdef CONFIG_DRBD_FAULT_INJECTION
88 int enable_faults;
89 int fault_rate;
90 static int fault_count;
91 int fault_devs;
92 /* bitmap of enabled faults */
93 module_param(enable_faults, int, 0664);
94 /* fault rate % value - applies to all enabled faults */
95 module_param(fault_rate, int, 0664);
96 /* count of faults inserted */
97 module_param(fault_count, int, 0664);
98 /* bitmap of devices to insert faults on */
99 module_param(fault_devs, int, 0644);
100 #endif
101
102 /* module parameter, defined */
103 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
104 bool disable_sendpage;
105 bool allow_oos;
106 int proc_details; /* Detail level in proc drbd*/
107
108 /* Module parameter for setting the user mode helper program
109 * to run. Default is /sbin/drbdadm */
110 char usermode_helper[80] = "/sbin/drbdadm";
111
112 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
113
114 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
115 * as member "struct gendisk *vdisk;"
116 */
117 struct idr drbd_devices;
118 struct list_head drbd_resources;
119
120 struct kmem_cache *drbd_request_cache;
121 struct kmem_cache *drbd_ee_cache; /* peer requests */
122 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
123 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
124 mempool_t *drbd_request_mempool;
125 mempool_t *drbd_ee_mempool;
126 mempool_t *drbd_md_io_page_pool;
127 struct bio_set *drbd_md_io_bio_set;
128
129 /* I do not use a standard mempool, because:
130 1) I want to hand out the pre-allocated objects first.
131 2) I want to be able to interrupt sleeping allocation with a signal.
132 Note: This is a single linked list, the next pointer is the private
133 member of struct page.
134 */
135 struct page *drbd_pp_pool;
136 spinlock_t drbd_pp_lock;
137 int drbd_pp_vacant;
138 wait_queue_head_t drbd_pp_wait;
139
140 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
141
142 static const struct block_device_operations drbd_ops = {
143 .owner = THIS_MODULE,
144 .open = drbd_open,
145 .release = drbd_release,
146 };
147
148 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
149 {
150 struct bio *bio;
151
152 if (!drbd_md_io_bio_set)
153 return bio_alloc(gfp_mask, 1);
154
155 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
156 if (!bio)
157 return NULL;
158 return bio;
159 }
160
161 #ifdef __CHECKER__
162 /* When checking with sparse, and this is an inline function, sparse will
163 give tons of false positives. When this is a real functions sparse works.
164 */
165 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
166 {
167 int io_allowed;
168
169 atomic_inc(&device->local_cnt);
170 io_allowed = (device->state.disk >= mins);
171 if (!io_allowed) {
172 if (atomic_dec_and_test(&device->local_cnt))
173 wake_up(&device->misc_wait);
174 }
175 return io_allowed;
176 }
177
178 #endif
179
180 /**
181 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
182 * @connection: DRBD connection.
183 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
184 * @set_size: Expected number of requests before that barrier.
185 *
186 * In case the passed barrier_nr or set_size does not match the oldest
187 * epoch of not yet barrier-acked requests, this function will cause a
188 * termination of the connection.
189 */
190 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
191 unsigned int set_size)
192 {
193 struct drbd_request *r;
194 struct drbd_request *req = NULL;
195 int expect_epoch = 0;
196 int expect_size = 0;
197
198 spin_lock_irq(&connection->resource->req_lock);
199
200 /* find oldest not yet barrier-acked write request,
201 * count writes in its epoch. */
202 list_for_each_entry(r, &connection->transfer_log, tl_requests) {
203 const unsigned s = r->rq_state;
204 if (!req) {
205 if (!(s & RQ_WRITE))
206 continue;
207 if (!(s & RQ_NET_MASK))
208 continue;
209 if (s & RQ_NET_DONE)
210 continue;
211 req = r;
212 expect_epoch = req->epoch;
213 expect_size ++;
214 } else {
215 if (r->epoch != expect_epoch)
216 break;
217 if (!(s & RQ_WRITE))
218 continue;
219 /* if (s & RQ_DONE): not expected */
220 /* if (!(s & RQ_NET_MASK)): not expected */
221 expect_size++;
222 }
223 }
224
225 /* first some paranoia code */
226 if (req == NULL) {
227 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
228 barrier_nr);
229 goto bail;
230 }
231 if (expect_epoch != barrier_nr) {
232 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
233 barrier_nr, expect_epoch);
234 goto bail;
235 }
236
237 if (expect_size != set_size) {
238 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
239 barrier_nr, set_size, expect_size);
240 goto bail;
241 }
242
243 /* Clean up list of requests processed during current epoch. */
244 /* this extra list walk restart is paranoia,
245 * to catch requests being barrier-acked "unexpectedly".
246 * It usually should find the same req again, or some READ preceding it. */
247 list_for_each_entry(req, &connection->transfer_log, tl_requests)
248 if (req->epoch == expect_epoch)
249 break;
250 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
251 if (req->epoch != expect_epoch)
252 break;
253 _req_mod(req, BARRIER_ACKED);
254 }
255 spin_unlock_irq(&connection->resource->req_lock);
256
257 return;
258
259 bail:
260 spin_unlock_irq(&connection->resource->req_lock);
261 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
262 }
263
264
265 /**
266 * _tl_restart() - Walks the transfer log, and applies an action to all requests
267 * @device: DRBD device.
268 * @what: The action/event to perform with all request objects
269 *
270 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
271 * RESTART_FROZEN_DISK_IO.
272 */
273 /* must hold resource->req_lock */
274 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
275 {
276 struct drbd_request *req, *r;
277
278 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
279 _req_mod(req, what);
280 }
281
282 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
283 {
284 spin_lock_irq(&connection->resource->req_lock);
285 _tl_restart(connection, what);
286 spin_unlock_irq(&connection->resource->req_lock);
287 }
288
289 /**
290 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
291 * @device: DRBD device.
292 *
293 * This is called after the connection to the peer was lost. The storage covered
294 * by the requests on the transfer gets marked as our of sync. Called from the
295 * receiver thread and the worker thread.
296 */
297 void tl_clear(struct drbd_connection *connection)
298 {
299 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
300 }
301
302 /**
303 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
304 * @device: DRBD device.
305 */
306 void tl_abort_disk_io(struct drbd_device *device)
307 {
308 struct drbd_connection *connection = first_peer_device(device)->connection;
309 struct drbd_request *req, *r;
310
311 spin_lock_irq(&connection->resource->req_lock);
312 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
313 if (!(req->rq_state & RQ_LOCAL_PENDING))
314 continue;
315 if (req->w.device != device)
316 continue;
317 _req_mod(req, ABORT_DISK_IO);
318 }
319 spin_unlock_irq(&connection->resource->req_lock);
320 }
321
322 static int drbd_thread_setup(void *arg)
323 {
324 struct drbd_thread *thi = (struct drbd_thread *) arg;
325 struct drbd_connection *connection = thi->connection;
326 unsigned long flags;
327 int retval;
328
329 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
330 thi->name[0],
331 thi->connection->resource->name);
332
333 restart:
334 retval = thi->function(thi);
335
336 spin_lock_irqsave(&thi->t_lock, flags);
337
338 /* if the receiver has been "EXITING", the last thing it did
339 * was set the conn state to "StandAlone",
340 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
341 * and receiver thread will be "started".
342 * drbd_thread_start needs to set "RESTARTING" in that case.
343 * t_state check and assignment needs to be within the same spinlock,
344 * so either thread_start sees EXITING, and can remap to RESTARTING,
345 * or thread_start see NONE, and can proceed as normal.
346 */
347
348 if (thi->t_state == RESTARTING) {
349 drbd_info(connection, "Restarting %s thread\n", thi->name);
350 thi->t_state = RUNNING;
351 spin_unlock_irqrestore(&thi->t_lock, flags);
352 goto restart;
353 }
354
355 thi->task = NULL;
356 thi->t_state = NONE;
357 smp_mb();
358 complete_all(&thi->stop);
359 spin_unlock_irqrestore(&thi->t_lock, flags);
360
361 drbd_info(connection, "Terminating %s\n", current->comm);
362
363 /* Release mod reference taken when thread was started */
364
365 kref_put(&connection->kref, drbd_destroy_connection);
366 module_put(THIS_MODULE);
367 return retval;
368 }
369
370 static void drbd_thread_init(struct drbd_connection *connection, struct drbd_thread *thi,
371 int (*func) (struct drbd_thread *), char *name)
372 {
373 spin_lock_init(&thi->t_lock);
374 thi->task = NULL;
375 thi->t_state = NONE;
376 thi->function = func;
377 thi->connection = connection;
378 strncpy(thi->name, name, ARRAY_SIZE(thi->name));
379 }
380
381 int drbd_thread_start(struct drbd_thread *thi)
382 {
383 struct drbd_connection *connection = thi->connection;
384 struct task_struct *nt;
385 unsigned long flags;
386
387 /* is used from state engine doing drbd_thread_stop_nowait,
388 * while holding the req lock irqsave */
389 spin_lock_irqsave(&thi->t_lock, flags);
390
391 switch (thi->t_state) {
392 case NONE:
393 drbd_info(connection, "Starting %s thread (from %s [%d])\n",
394 thi->name, current->comm, current->pid);
395
396 /* Get ref on module for thread - this is released when thread exits */
397 if (!try_module_get(THIS_MODULE)) {
398 drbd_err(connection, "Failed to get module reference in drbd_thread_start\n");
399 spin_unlock_irqrestore(&thi->t_lock, flags);
400 return false;
401 }
402
403 kref_get(&thi->connection->kref);
404
405 init_completion(&thi->stop);
406 thi->reset_cpu_mask = 1;
407 thi->t_state = RUNNING;
408 spin_unlock_irqrestore(&thi->t_lock, flags);
409 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
410
411 nt = kthread_create(drbd_thread_setup, (void *) thi,
412 "drbd_%c_%s", thi->name[0], thi->connection->resource->name);
413
414 if (IS_ERR(nt)) {
415 drbd_err(connection, "Couldn't start thread\n");
416
417 kref_put(&connection->kref, drbd_destroy_connection);
418 module_put(THIS_MODULE);
419 return false;
420 }
421 spin_lock_irqsave(&thi->t_lock, flags);
422 thi->task = nt;
423 thi->t_state = RUNNING;
424 spin_unlock_irqrestore(&thi->t_lock, flags);
425 wake_up_process(nt);
426 break;
427 case EXITING:
428 thi->t_state = RESTARTING;
429 drbd_info(connection, "Restarting %s thread (from %s [%d])\n",
430 thi->name, current->comm, current->pid);
431 /* fall through */
432 case RUNNING:
433 case RESTARTING:
434 default:
435 spin_unlock_irqrestore(&thi->t_lock, flags);
436 break;
437 }
438
439 return true;
440 }
441
442
443 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
444 {
445 unsigned long flags;
446
447 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
448
449 /* may be called from state engine, holding the req lock irqsave */
450 spin_lock_irqsave(&thi->t_lock, flags);
451
452 if (thi->t_state == NONE) {
453 spin_unlock_irqrestore(&thi->t_lock, flags);
454 if (restart)
455 drbd_thread_start(thi);
456 return;
457 }
458
459 if (thi->t_state != ns) {
460 if (thi->task == NULL) {
461 spin_unlock_irqrestore(&thi->t_lock, flags);
462 return;
463 }
464
465 thi->t_state = ns;
466 smp_mb();
467 init_completion(&thi->stop);
468 if (thi->task != current)
469 force_sig(DRBD_SIGKILL, thi->task);
470 }
471
472 spin_unlock_irqrestore(&thi->t_lock, flags);
473
474 if (wait)
475 wait_for_completion(&thi->stop);
476 }
477
478 static struct drbd_thread *drbd_task_to_thread(struct drbd_connection *connection, struct task_struct *task)
479 {
480 struct drbd_thread *thi =
481 task == connection->receiver.task ? &connection->receiver :
482 task == connection->asender.task ? &connection->asender :
483 task == connection->worker.task ? &connection->worker : NULL;
484
485 return thi;
486 }
487
488 char *drbd_task_to_thread_name(struct drbd_connection *connection, struct task_struct *task)
489 {
490 struct drbd_thread *thi = drbd_task_to_thread(connection, task);
491 return thi ? thi->name : task->comm;
492 }
493
494 int conn_lowest_minor(struct drbd_connection *connection)
495 {
496 struct drbd_peer_device *peer_device;
497 int vnr = 0, minor = -1;
498
499 rcu_read_lock();
500 peer_device = idr_get_next(&connection->peer_devices, &vnr);
501 if (peer_device)
502 minor = device_to_minor(peer_device->device);
503 rcu_read_unlock();
504
505 return minor;
506 }
507
508 #ifdef CONFIG_SMP
509 /**
510 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
511 *
512 * Forces all threads of a resource onto the same CPU. This is beneficial for
513 * DRBD's performance. May be overwritten by user's configuration.
514 */
515 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
516 {
517 unsigned int *resources_per_cpu, min_index = ~0;
518
519 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
520 if (resources_per_cpu) {
521 struct drbd_resource *resource;
522 unsigned int cpu, min = ~0;
523
524 rcu_read_lock();
525 for_each_resource_rcu(resource, &drbd_resources) {
526 for_each_cpu(cpu, resource->cpu_mask)
527 resources_per_cpu[cpu]++;
528 }
529 rcu_read_unlock();
530 for_each_online_cpu(cpu) {
531 if (resources_per_cpu[cpu] < min) {
532 min = resources_per_cpu[cpu];
533 min_index = cpu;
534 }
535 }
536 kfree(resources_per_cpu);
537 }
538 if (min_index == ~0) {
539 cpumask_setall(*cpu_mask);
540 return;
541 }
542 cpumask_set_cpu(min_index, *cpu_mask);
543 }
544
545 /**
546 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
547 * @device: DRBD device.
548 * @thi: drbd_thread object
549 *
550 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
551 * prematurely.
552 */
553 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
554 {
555 struct task_struct *p = current;
556
557 if (!thi->reset_cpu_mask)
558 return;
559 thi->reset_cpu_mask = 0;
560 set_cpus_allowed_ptr(p, thi->connection->resource->cpu_mask);
561 }
562 #else
563 #define drbd_calc_cpu_mask(A) ({})
564 #endif
565
566 /**
567 * drbd_header_size - size of a packet header
568 *
569 * The header size is a multiple of 8, so any payload following the header is
570 * word aligned on 64-bit architectures. (The bitmap send and receive code
571 * relies on this.)
572 */
573 unsigned int drbd_header_size(struct drbd_connection *connection)
574 {
575 if (connection->agreed_pro_version >= 100) {
576 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
577 return sizeof(struct p_header100);
578 } else {
579 BUILD_BUG_ON(sizeof(struct p_header80) !=
580 sizeof(struct p_header95));
581 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
582 return sizeof(struct p_header80);
583 }
584 }
585
586 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
587 {
588 h->magic = cpu_to_be32(DRBD_MAGIC);
589 h->command = cpu_to_be16(cmd);
590 h->length = cpu_to_be16(size);
591 return sizeof(struct p_header80);
592 }
593
594 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
595 {
596 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
597 h->command = cpu_to_be16(cmd);
598 h->length = cpu_to_be32(size);
599 return sizeof(struct p_header95);
600 }
601
602 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
603 int size, int vnr)
604 {
605 h->magic = cpu_to_be32(DRBD_MAGIC_100);
606 h->volume = cpu_to_be16(vnr);
607 h->command = cpu_to_be16(cmd);
608 h->length = cpu_to_be32(size);
609 h->pad = 0;
610 return sizeof(struct p_header100);
611 }
612
613 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
614 void *buffer, enum drbd_packet cmd, int size)
615 {
616 if (connection->agreed_pro_version >= 100)
617 return prepare_header100(buffer, cmd, size, vnr);
618 else if (connection->agreed_pro_version >= 95 &&
619 size > DRBD_MAX_SIZE_H80_PACKET)
620 return prepare_header95(buffer, cmd, size);
621 else
622 return prepare_header80(buffer, cmd, size);
623 }
624
625 static void *__conn_prepare_command(struct drbd_connection *connection,
626 struct drbd_socket *sock)
627 {
628 if (!sock->socket)
629 return NULL;
630 return sock->sbuf + drbd_header_size(connection);
631 }
632
633 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
634 {
635 void *p;
636
637 mutex_lock(&sock->mutex);
638 p = __conn_prepare_command(connection, sock);
639 if (!p)
640 mutex_unlock(&sock->mutex);
641
642 return p;
643 }
644
645 void *drbd_prepare_command(struct drbd_device *device, struct drbd_socket *sock)
646 {
647 return conn_prepare_command(first_peer_device(device)->connection, sock);
648 }
649
650 static int __send_command(struct drbd_connection *connection, int vnr,
651 struct drbd_socket *sock, enum drbd_packet cmd,
652 unsigned int header_size, void *data,
653 unsigned int size)
654 {
655 int msg_flags;
656 int err;
657
658 /*
659 * Called with @data == NULL and the size of the data blocks in @size
660 * for commands that send data blocks. For those commands, omit the
661 * MSG_MORE flag: this will increase the likelihood that data blocks
662 * which are page aligned on the sender will end up page aligned on the
663 * receiver.
664 */
665 msg_flags = data ? MSG_MORE : 0;
666
667 header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
668 header_size + size);
669 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
670 msg_flags);
671 if (data && !err)
672 err = drbd_send_all(connection, sock->socket, data, size, 0);
673 return err;
674 }
675
676 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677 enum drbd_packet cmd, unsigned int header_size,
678 void *data, unsigned int size)
679 {
680 return __send_command(connection, 0, sock, cmd, header_size, data, size);
681 }
682
683 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
684 enum drbd_packet cmd, unsigned int header_size,
685 void *data, unsigned int size)
686 {
687 int err;
688
689 err = __conn_send_command(connection, sock, cmd, header_size, data, size);
690 mutex_unlock(&sock->mutex);
691 return err;
692 }
693
694 int drbd_send_command(struct drbd_device *device, struct drbd_socket *sock,
695 enum drbd_packet cmd, unsigned int header_size,
696 void *data, unsigned int size)
697 {
698 int err;
699
700 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, cmd, header_size,
701 data, size);
702 mutex_unlock(&sock->mutex);
703 return err;
704 }
705
706 int drbd_send_ping(struct drbd_connection *connection)
707 {
708 struct drbd_socket *sock;
709
710 sock = &connection->meta;
711 if (!conn_prepare_command(connection, sock))
712 return -EIO;
713 return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
714 }
715
716 int drbd_send_ping_ack(struct drbd_connection *connection)
717 {
718 struct drbd_socket *sock;
719
720 sock = &connection->meta;
721 if (!conn_prepare_command(connection, sock))
722 return -EIO;
723 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
724 }
725
726 int drbd_send_sync_param(struct drbd_device *device)
727 {
728 struct drbd_socket *sock;
729 struct p_rs_param_95 *p;
730 int size;
731 const int apv = first_peer_device(device)->connection->agreed_pro_version;
732 enum drbd_packet cmd;
733 struct net_conf *nc;
734 struct disk_conf *dc;
735
736 sock = &first_peer_device(device)->connection->data;
737 p = drbd_prepare_command(device, sock);
738 if (!p)
739 return -EIO;
740
741 rcu_read_lock();
742 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
743
744 size = apv <= 87 ? sizeof(struct p_rs_param)
745 : apv == 88 ? sizeof(struct p_rs_param)
746 + strlen(nc->verify_alg) + 1
747 : apv <= 94 ? sizeof(struct p_rs_param_89)
748 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
749
750 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
751
752 /* initialize verify_alg and csums_alg */
753 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
754
755 if (get_ldev(device)) {
756 dc = rcu_dereference(device->ldev->disk_conf);
757 p->resync_rate = cpu_to_be32(dc->resync_rate);
758 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
759 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
760 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
761 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
762 put_ldev(device);
763 } else {
764 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
765 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
766 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
767 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
768 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
769 }
770
771 if (apv >= 88)
772 strcpy(p->verify_alg, nc->verify_alg);
773 if (apv >= 89)
774 strcpy(p->csums_alg, nc->csums_alg);
775 rcu_read_unlock();
776
777 return drbd_send_command(device, sock, cmd, size, NULL, 0);
778 }
779
780 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
781 {
782 struct drbd_socket *sock;
783 struct p_protocol *p;
784 struct net_conf *nc;
785 int size, cf;
786
787 sock = &connection->data;
788 p = __conn_prepare_command(connection, sock);
789 if (!p)
790 return -EIO;
791
792 rcu_read_lock();
793 nc = rcu_dereference(connection->net_conf);
794
795 if (nc->tentative && connection->agreed_pro_version < 92) {
796 rcu_read_unlock();
797 mutex_unlock(&sock->mutex);
798 drbd_err(connection, "--dry-run is not supported by peer");
799 return -EOPNOTSUPP;
800 }
801
802 size = sizeof(*p);
803 if (connection->agreed_pro_version >= 87)
804 size += strlen(nc->integrity_alg) + 1;
805
806 p->protocol = cpu_to_be32(nc->wire_protocol);
807 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
808 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
809 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
810 p->two_primaries = cpu_to_be32(nc->two_primaries);
811 cf = 0;
812 if (nc->discard_my_data)
813 cf |= CF_DISCARD_MY_DATA;
814 if (nc->tentative)
815 cf |= CF_DRY_RUN;
816 p->conn_flags = cpu_to_be32(cf);
817
818 if (connection->agreed_pro_version >= 87)
819 strcpy(p->integrity_alg, nc->integrity_alg);
820 rcu_read_unlock();
821
822 return __conn_send_command(connection, sock, cmd, size, NULL, 0);
823 }
824
825 int drbd_send_protocol(struct drbd_connection *connection)
826 {
827 int err;
828
829 mutex_lock(&connection->data.mutex);
830 err = __drbd_send_protocol(connection, P_PROTOCOL);
831 mutex_unlock(&connection->data.mutex);
832
833 return err;
834 }
835
836 static int _drbd_send_uuids(struct drbd_device *device, u64 uuid_flags)
837 {
838 struct drbd_socket *sock;
839 struct p_uuids *p;
840 int i;
841
842 if (!get_ldev_if_state(device, D_NEGOTIATING))
843 return 0;
844
845 sock = &first_peer_device(device)->connection->data;
846 p = drbd_prepare_command(device, sock);
847 if (!p) {
848 put_ldev(device);
849 return -EIO;
850 }
851 spin_lock_irq(&device->ldev->md.uuid_lock);
852 for (i = UI_CURRENT; i < UI_SIZE; i++)
853 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
854 spin_unlock_irq(&device->ldev->md.uuid_lock);
855
856 device->comm_bm_set = drbd_bm_total_weight(device);
857 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
858 rcu_read_lock();
859 uuid_flags |= rcu_dereference(first_peer_device(device)->connection->net_conf)->discard_my_data ? 1 : 0;
860 rcu_read_unlock();
861 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
862 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
863 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
864
865 put_ldev(device);
866 return drbd_send_command(device, sock, P_UUIDS, sizeof(*p), NULL, 0);
867 }
868
869 int drbd_send_uuids(struct drbd_device *device)
870 {
871 return _drbd_send_uuids(device, 0);
872 }
873
874 int drbd_send_uuids_skip_initial_sync(struct drbd_device *device)
875 {
876 return _drbd_send_uuids(device, 8);
877 }
878
879 void drbd_print_uuids(struct drbd_device *device, const char *text)
880 {
881 if (get_ldev_if_state(device, D_NEGOTIATING)) {
882 u64 *uuid = device->ldev->md.uuid;
883 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
884 text,
885 (unsigned long long)uuid[UI_CURRENT],
886 (unsigned long long)uuid[UI_BITMAP],
887 (unsigned long long)uuid[UI_HISTORY_START],
888 (unsigned long long)uuid[UI_HISTORY_END]);
889 put_ldev(device);
890 } else {
891 drbd_info(device, "%s effective data uuid: %016llX\n",
892 text,
893 (unsigned long long)device->ed_uuid);
894 }
895 }
896
897 void drbd_gen_and_send_sync_uuid(struct drbd_device *device)
898 {
899 struct drbd_socket *sock;
900 struct p_rs_uuid *p;
901 u64 uuid;
902
903 D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
904
905 uuid = device->ldev->md.uuid[UI_BITMAP];
906 if (uuid && uuid != UUID_JUST_CREATED)
907 uuid = uuid + UUID_NEW_BM_OFFSET;
908 else
909 get_random_bytes(&uuid, sizeof(u64));
910 drbd_uuid_set(device, UI_BITMAP, uuid);
911 drbd_print_uuids(device, "updated sync UUID");
912 drbd_md_sync(device);
913
914 sock = &first_peer_device(device)->connection->data;
915 p = drbd_prepare_command(device, sock);
916 if (p) {
917 p->uuid = cpu_to_be64(uuid);
918 drbd_send_command(device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
919 }
920 }
921
922 int drbd_send_sizes(struct drbd_device *device, int trigger_reply, enum dds_flags flags)
923 {
924 struct drbd_socket *sock;
925 struct p_sizes *p;
926 sector_t d_size, u_size;
927 int q_order_type;
928 unsigned int max_bio_size;
929
930 if (get_ldev_if_state(device, D_NEGOTIATING)) {
931 D_ASSERT(device, device->ldev->backing_bdev);
932 d_size = drbd_get_max_capacity(device->ldev);
933 rcu_read_lock();
934 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
935 rcu_read_unlock();
936 q_order_type = drbd_queue_order_type(device);
937 max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
938 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
939 put_ldev(device);
940 } else {
941 d_size = 0;
942 u_size = 0;
943 q_order_type = QUEUE_ORDERED_NONE;
944 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
945 }
946
947 sock = &first_peer_device(device)->connection->data;
948 p = drbd_prepare_command(device, sock);
949 if (!p)
950 return -EIO;
951
952 if (first_peer_device(device)->connection->agreed_pro_version <= 94)
953 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
954 else if (first_peer_device(device)->connection->agreed_pro_version < 100)
955 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
956
957 p->d_size = cpu_to_be64(d_size);
958 p->u_size = cpu_to_be64(u_size);
959 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
960 p->max_bio_size = cpu_to_be32(max_bio_size);
961 p->queue_order_type = cpu_to_be16(q_order_type);
962 p->dds_flags = cpu_to_be16(flags);
963 return drbd_send_command(device, sock, P_SIZES, sizeof(*p), NULL, 0);
964 }
965
966 /**
967 * drbd_send_current_state() - Sends the drbd state to the peer
968 * @device: DRBD device.
969 */
970 int drbd_send_current_state(struct drbd_device *device)
971 {
972 struct drbd_socket *sock;
973 struct p_state *p;
974
975 sock = &first_peer_device(device)->connection->data;
976 p = drbd_prepare_command(device, sock);
977 if (!p)
978 return -EIO;
979 p->state = cpu_to_be32(device->state.i); /* Within the send mutex */
980 return drbd_send_command(device, sock, P_STATE, sizeof(*p), NULL, 0);
981 }
982
983 /**
984 * drbd_send_state() - After a state change, sends the new state to the peer
985 * @device: DRBD device.
986 * @state: the state to send, not necessarily the current state.
987 *
988 * Each state change queues an "after_state_ch" work, which will eventually
989 * send the resulting new state to the peer. If more state changes happen
990 * between queuing and processing of the after_state_ch work, we still
991 * want to send each intermediary state in the order it occurred.
992 */
993 int drbd_send_state(struct drbd_device *device, union drbd_state state)
994 {
995 struct drbd_socket *sock;
996 struct p_state *p;
997
998 sock = &first_peer_device(device)->connection->data;
999 p = drbd_prepare_command(device, sock);
1000 if (!p)
1001 return -EIO;
1002 p->state = cpu_to_be32(state.i); /* Within the send mutex */
1003 return drbd_send_command(device, sock, P_STATE, sizeof(*p), NULL, 0);
1004 }
1005
1006 int drbd_send_state_req(struct drbd_device *device, union drbd_state mask, union drbd_state val)
1007 {
1008 struct drbd_socket *sock;
1009 struct p_req_state *p;
1010
1011 sock = &first_peer_device(device)->connection->data;
1012 p = drbd_prepare_command(device, sock);
1013 if (!p)
1014 return -EIO;
1015 p->mask = cpu_to_be32(mask.i);
1016 p->val = cpu_to_be32(val.i);
1017 return drbd_send_command(device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1018 }
1019
1020 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1021 {
1022 enum drbd_packet cmd;
1023 struct drbd_socket *sock;
1024 struct p_req_state *p;
1025
1026 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1027 sock = &connection->data;
1028 p = conn_prepare_command(connection, sock);
1029 if (!p)
1030 return -EIO;
1031 p->mask = cpu_to_be32(mask.i);
1032 p->val = cpu_to_be32(val.i);
1033 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1034 }
1035
1036 void drbd_send_sr_reply(struct drbd_device *device, enum drbd_state_rv retcode)
1037 {
1038 struct drbd_socket *sock;
1039 struct p_req_state_reply *p;
1040
1041 sock = &first_peer_device(device)->connection->meta;
1042 p = drbd_prepare_command(device, sock);
1043 if (p) {
1044 p->retcode = cpu_to_be32(retcode);
1045 drbd_send_command(device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1046 }
1047 }
1048
1049 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1050 {
1051 struct drbd_socket *sock;
1052 struct p_req_state_reply *p;
1053 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1054
1055 sock = &connection->meta;
1056 p = conn_prepare_command(connection, sock);
1057 if (p) {
1058 p->retcode = cpu_to_be32(retcode);
1059 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1060 }
1061 }
1062
1063 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1064 {
1065 BUG_ON(code & ~0xf);
1066 p->encoding = (p->encoding & ~0xf) | code;
1067 }
1068
1069 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1070 {
1071 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1072 }
1073
1074 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1075 {
1076 BUG_ON(n & ~0x7);
1077 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1078 }
1079
1080 static int fill_bitmap_rle_bits(struct drbd_device *device,
1081 struct p_compressed_bm *p,
1082 unsigned int size,
1083 struct bm_xfer_ctx *c)
1084 {
1085 struct bitstream bs;
1086 unsigned long plain_bits;
1087 unsigned long tmp;
1088 unsigned long rl;
1089 unsigned len;
1090 unsigned toggle;
1091 int bits, use_rle;
1092
1093 /* may we use this feature? */
1094 rcu_read_lock();
1095 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1096 rcu_read_unlock();
1097 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1098 return 0;
1099
1100 if (c->bit_offset >= c->bm_bits)
1101 return 0; /* nothing to do. */
1102
1103 /* use at most thus many bytes */
1104 bitstream_init(&bs, p->code, size, 0);
1105 memset(p->code, 0, size);
1106 /* plain bits covered in this code string */
1107 plain_bits = 0;
1108
1109 /* p->encoding & 0x80 stores whether the first run length is set.
1110 * bit offset is implicit.
1111 * start with toggle == 2 to be able to tell the first iteration */
1112 toggle = 2;
1113
1114 /* see how much plain bits we can stuff into one packet
1115 * using RLE and VLI. */
1116 do {
1117 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1118 : _drbd_bm_find_next(device, c->bit_offset);
1119 if (tmp == -1UL)
1120 tmp = c->bm_bits;
1121 rl = tmp - c->bit_offset;
1122
1123 if (toggle == 2) { /* first iteration */
1124 if (rl == 0) {
1125 /* the first checked bit was set,
1126 * store start value, */
1127 dcbp_set_start(p, 1);
1128 /* but skip encoding of zero run length */
1129 toggle = !toggle;
1130 continue;
1131 }
1132 dcbp_set_start(p, 0);
1133 }
1134
1135 /* paranoia: catch zero runlength.
1136 * can only happen if bitmap is modified while we scan it. */
1137 if (rl == 0) {
1138 drbd_err(device, "unexpected zero runlength while encoding bitmap "
1139 "t:%u bo:%lu\n", toggle, c->bit_offset);
1140 return -1;
1141 }
1142
1143 bits = vli_encode_bits(&bs, rl);
1144 if (bits == -ENOBUFS) /* buffer full */
1145 break;
1146 if (bits <= 0) {
1147 drbd_err(device, "error while encoding bitmap: %d\n", bits);
1148 return 0;
1149 }
1150
1151 toggle = !toggle;
1152 plain_bits += rl;
1153 c->bit_offset = tmp;
1154 } while (c->bit_offset < c->bm_bits);
1155
1156 len = bs.cur.b - p->code + !!bs.cur.bit;
1157
1158 if (plain_bits < (len << 3)) {
1159 /* incompressible with this method.
1160 * we need to rewind both word and bit position. */
1161 c->bit_offset -= plain_bits;
1162 bm_xfer_ctx_bit_to_word_offset(c);
1163 c->bit_offset = c->word_offset * BITS_PER_LONG;
1164 return 0;
1165 }
1166
1167 /* RLE + VLI was able to compress it just fine.
1168 * update c->word_offset. */
1169 bm_xfer_ctx_bit_to_word_offset(c);
1170
1171 /* store pad_bits */
1172 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1173
1174 return len;
1175 }
1176
1177 /**
1178 * send_bitmap_rle_or_plain
1179 *
1180 * Return 0 when done, 1 when another iteration is needed, and a negative error
1181 * code upon failure.
1182 */
1183 static int
1184 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1185 {
1186 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1187 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1188 struct p_compressed_bm *p = sock->sbuf + header_size;
1189 int len, err;
1190
1191 len = fill_bitmap_rle_bits(device, p,
1192 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1193 if (len < 0)
1194 return -EIO;
1195
1196 if (len) {
1197 dcbp_set_code(p, RLE_VLI_Bits);
1198 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1199 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1200 NULL, 0);
1201 c->packets[0]++;
1202 c->bytes[0] += header_size + sizeof(*p) + len;
1203
1204 if (c->bit_offset >= c->bm_bits)
1205 len = 0; /* DONE */
1206 } else {
1207 /* was not compressible.
1208 * send a buffer full of plain text bits instead. */
1209 unsigned int data_size;
1210 unsigned long num_words;
1211 unsigned long *p = sock->sbuf + header_size;
1212
1213 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1214 num_words = min_t(size_t, data_size / sizeof(*p),
1215 c->bm_words - c->word_offset);
1216 len = num_words * sizeof(*p);
1217 if (len)
1218 drbd_bm_get_lel(device, c->word_offset, num_words, p);
1219 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1220 c->word_offset += num_words;
1221 c->bit_offset = c->word_offset * BITS_PER_LONG;
1222
1223 c->packets[1]++;
1224 c->bytes[1] += header_size + len;
1225
1226 if (c->bit_offset > c->bm_bits)
1227 c->bit_offset = c->bm_bits;
1228 }
1229 if (!err) {
1230 if (len == 0) {
1231 INFO_bm_xfer_stats(device, "send", c);
1232 return 0;
1233 } else
1234 return 1;
1235 }
1236 return -EIO;
1237 }
1238
1239 /* See the comment at receive_bitmap() */
1240 static int _drbd_send_bitmap(struct drbd_device *device)
1241 {
1242 struct bm_xfer_ctx c;
1243 int err;
1244
1245 if (!expect(device->bitmap))
1246 return false;
1247
1248 if (get_ldev(device)) {
1249 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1250 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1251 drbd_bm_set_all(device);
1252 if (drbd_bm_write(device)) {
1253 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1254 * but otherwise process as per normal - need to tell other
1255 * side that a full resync is required! */
1256 drbd_err(device, "Failed to write bitmap to disk!\n");
1257 } else {
1258 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1259 drbd_md_sync(device);
1260 }
1261 }
1262 put_ldev(device);
1263 }
1264
1265 c = (struct bm_xfer_ctx) {
1266 .bm_bits = drbd_bm_bits(device),
1267 .bm_words = drbd_bm_words(device),
1268 };
1269
1270 do {
1271 err = send_bitmap_rle_or_plain(device, &c);
1272 } while (err > 0);
1273
1274 return err == 0;
1275 }
1276
1277 int drbd_send_bitmap(struct drbd_device *device)
1278 {
1279 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1280 int err = -1;
1281
1282 mutex_lock(&sock->mutex);
1283 if (sock->socket)
1284 err = !_drbd_send_bitmap(device);
1285 mutex_unlock(&sock->mutex);
1286 return err;
1287 }
1288
1289 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1290 {
1291 struct drbd_socket *sock;
1292 struct p_barrier_ack *p;
1293
1294 if (connection->cstate < C_WF_REPORT_PARAMS)
1295 return;
1296
1297 sock = &connection->meta;
1298 p = conn_prepare_command(connection, sock);
1299 if (!p)
1300 return;
1301 p->barrier = barrier_nr;
1302 p->set_size = cpu_to_be32(set_size);
1303 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1304 }
1305
1306 /**
1307 * _drbd_send_ack() - Sends an ack packet
1308 * @device: DRBD device.
1309 * @cmd: Packet command code.
1310 * @sector: sector, needs to be in big endian byte order
1311 * @blksize: size in byte, needs to be in big endian byte order
1312 * @block_id: Id, big endian byte order
1313 */
1314 static int _drbd_send_ack(struct drbd_device *device, enum drbd_packet cmd,
1315 u64 sector, u32 blksize, u64 block_id)
1316 {
1317 struct drbd_socket *sock;
1318 struct p_block_ack *p;
1319
1320 if (device->state.conn < C_CONNECTED)
1321 return -EIO;
1322
1323 sock = &first_peer_device(device)->connection->meta;
1324 p = drbd_prepare_command(device, sock);
1325 if (!p)
1326 return -EIO;
1327 p->sector = sector;
1328 p->block_id = block_id;
1329 p->blksize = blksize;
1330 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1331 return drbd_send_command(device, sock, cmd, sizeof(*p), NULL, 0);
1332 }
1333
1334 /* dp->sector and dp->block_id already/still in network byte order,
1335 * data_size is payload size according to dp->head,
1336 * and may need to be corrected for digest size. */
1337 void drbd_send_ack_dp(struct drbd_device *device, enum drbd_packet cmd,
1338 struct p_data *dp, int data_size)
1339 {
1340 if (first_peer_device(device)->connection->peer_integrity_tfm)
1341 data_size -= crypto_hash_digestsize(first_peer_device(device)->connection->peer_integrity_tfm);
1342 _drbd_send_ack(device, cmd, dp->sector, cpu_to_be32(data_size),
1343 dp->block_id);
1344 }
1345
1346 void drbd_send_ack_rp(struct drbd_device *device, enum drbd_packet cmd,
1347 struct p_block_req *rp)
1348 {
1349 _drbd_send_ack(device, cmd, rp->sector, rp->blksize, rp->block_id);
1350 }
1351
1352 /**
1353 * drbd_send_ack() - Sends an ack packet
1354 * @device: DRBD device
1355 * @cmd: packet command code
1356 * @peer_req: peer request
1357 */
1358 int drbd_send_ack(struct drbd_device *device, enum drbd_packet cmd,
1359 struct drbd_peer_request *peer_req)
1360 {
1361 return _drbd_send_ack(device, cmd,
1362 cpu_to_be64(peer_req->i.sector),
1363 cpu_to_be32(peer_req->i.size),
1364 peer_req->block_id);
1365 }
1366
1367 /* This function misuses the block_id field to signal if the blocks
1368 * are is sync or not. */
1369 int drbd_send_ack_ex(struct drbd_device *device, enum drbd_packet cmd,
1370 sector_t sector, int blksize, u64 block_id)
1371 {
1372 return _drbd_send_ack(device, cmd,
1373 cpu_to_be64(sector),
1374 cpu_to_be32(blksize),
1375 cpu_to_be64(block_id));
1376 }
1377
1378 int drbd_send_drequest(struct drbd_device *device, int cmd,
1379 sector_t sector, int size, u64 block_id)
1380 {
1381 struct drbd_socket *sock;
1382 struct p_block_req *p;
1383
1384 sock = &first_peer_device(device)->connection->data;
1385 p = drbd_prepare_command(device, sock);
1386 if (!p)
1387 return -EIO;
1388 p->sector = cpu_to_be64(sector);
1389 p->block_id = block_id;
1390 p->blksize = cpu_to_be32(size);
1391 return drbd_send_command(device, sock, cmd, sizeof(*p), NULL, 0);
1392 }
1393
1394 int drbd_send_drequest_csum(struct drbd_device *device, sector_t sector, int size,
1395 void *digest, int digest_size, enum drbd_packet cmd)
1396 {
1397 struct drbd_socket *sock;
1398 struct p_block_req *p;
1399
1400 /* FIXME: Put the digest into the preallocated socket buffer. */
1401
1402 sock = &first_peer_device(device)->connection->data;
1403 p = drbd_prepare_command(device, sock);
1404 if (!p)
1405 return -EIO;
1406 p->sector = cpu_to_be64(sector);
1407 p->block_id = ID_SYNCER /* unused */;
1408 p->blksize = cpu_to_be32(size);
1409 return drbd_send_command(device, sock, cmd, sizeof(*p),
1410 digest, digest_size);
1411 }
1412
1413 int drbd_send_ov_request(struct drbd_device *device, sector_t sector, int size)
1414 {
1415 struct drbd_socket *sock;
1416 struct p_block_req *p;
1417
1418 sock = &first_peer_device(device)->connection->data;
1419 p = drbd_prepare_command(device, sock);
1420 if (!p)
1421 return -EIO;
1422 p->sector = cpu_to_be64(sector);
1423 p->block_id = ID_SYNCER /* unused */;
1424 p->blksize = cpu_to_be32(size);
1425 return drbd_send_command(device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1426 }
1427
1428 /* called on sndtimeo
1429 * returns false if we should retry,
1430 * true if we think connection is dead
1431 */
1432 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1433 {
1434 int drop_it;
1435 /* long elapsed = (long)(jiffies - device->last_received); */
1436
1437 drop_it = connection->meta.socket == sock
1438 || !connection->asender.task
1439 || get_t_state(&connection->asender) != RUNNING
1440 || connection->cstate < C_WF_REPORT_PARAMS;
1441
1442 if (drop_it)
1443 return true;
1444
1445 drop_it = !--connection->ko_count;
1446 if (!drop_it) {
1447 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1448 current->comm, current->pid, connection->ko_count);
1449 request_ping(connection);
1450 }
1451
1452 return drop_it; /* && (device->state == R_PRIMARY) */;
1453 }
1454
1455 static void drbd_update_congested(struct drbd_connection *connection)
1456 {
1457 struct sock *sk = connection->data.socket->sk;
1458 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1459 set_bit(NET_CONGESTED, &connection->flags);
1460 }
1461
1462 /* The idea of sendpage seems to be to put some kind of reference
1463 * to the page into the skb, and to hand it over to the NIC. In
1464 * this process get_page() gets called.
1465 *
1466 * As soon as the page was really sent over the network put_page()
1467 * gets called by some part of the network layer. [ NIC driver? ]
1468 *
1469 * [ get_page() / put_page() increment/decrement the count. If count
1470 * reaches 0 the page will be freed. ]
1471 *
1472 * This works nicely with pages from FSs.
1473 * But this means that in protocol A we might signal IO completion too early!
1474 *
1475 * In order not to corrupt data during a resync we must make sure
1476 * that we do not reuse our own buffer pages (EEs) to early, therefore
1477 * we have the net_ee list.
1478 *
1479 * XFS seems to have problems, still, it submits pages with page_count == 0!
1480 * As a workaround, we disable sendpage on pages
1481 * with page_count == 0 or PageSlab.
1482 */
1483 static int _drbd_no_send_page(struct drbd_device *device, struct page *page,
1484 int offset, size_t size, unsigned msg_flags)
1485 {
1486 struct socket *socket;
1487 void *addr;
1488 int err;
1489
1490 socket = first_peer_device(device)->connection->data.socket;
1491 addr = kmap(page) + offset;
1492 err = drbd_send_all(first_peer_device(device)->connection, socket, addr, size, msg_flags);
1493 kunmap(page);
1494 if (!err)
1495 device->send_cnt += size >> 9;
1496 return err;
1497 }
1498
1499 static int _drbd_send_page(struct drbd_device *device, struct page *page,
1500 int offset, size_t size, unsigned msg_flags)
1501 {
1502 struct socket *socket = first_peer_device(device)->connection->data.socket;
1503 mm_segment_t oldfs = get_fs();
1504 int len = size;
1505 int err = -EIO;
1506
1507 /* e.g. XFS meta- & log-data is in slab pages, which have a
1508 * page_count of 0 and/or have PageSlab() set.
1509 * we cannot use send_page for those, as that does get_page();
1510 * put_page(); and would cause either a VM_BUG directly, or
1511 * __page_cache_release a page that would actually still be referenced
1512 * by someone, leading to some obscure delayed Oops somewhere else. */
1513 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1514 return _drbd_no_send_page(device, page, offset, size, msg_flags);
1515
1516 msg_flags |= MSG_NOSIGNAL;
1517 drbd_update_congested(first_peer_device(device)->connection);
1518 set_fs(KERNEL_DS);
1519 do {
1520 int sent;
1521
1522 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1523 if (sent <= 0) {
1524 if (sent == -EAGAIN) {
1525 if (we_should_drop_the_connection(first_peer_device(device)->connection, socket))
1526 break;
1527 continue;
1528 }
1529 drbd_warn(device, "%s: size=%d len=%d sent=%d\n",
1530 __func__, (int)size, len, sent);
1531 if (sent < 0)
1532 err = sent;
1533 break;
1534 }
1535 len -= sent;
1536 offset += sent;
1537 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1538 set_fs(oldfs);
1539 clear_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags);
1540
1541 if (len == 0) {
1542 err = 0;
1543 device->send_cnt += size >> 9;
1544 }
1545 return err;
1546 }
1547
1548 static int _drbd_send_bio(struct drbd_device *device, struct bio *bio)
1549 {
1550 struct bio_vec bvec;
1551 struct bvec_iter iter;
1552
1553 /* hint all but last page with MSG_MORE */
1554 bio_for_each_segment(bvec, bio, iter) {
1555 int err;
1556
1557 err = _drbd_no_send_page(device, bvec.bv_page,
1558 bvec.bv_offset, bvec.bv_len,
1559 bio_iter_last(bvec, iter)
1560 ? 0 : MSG_MORE);
1561 if (err)
1562 return err;
1563 }
1564 return 0;
1565 }
1566
1567 static int _drbd_send_zc_bio(struct drbd_device *device, struct bio *bio)
1568 {
1569 struct bio_vec bvec;
1570 struct bvec_iter iter;
1571
1572 /* hint all but last page with MSG_MORE */
1573 bio_for_each_segment(bvec, bio, iter) {
1574 int err;
1575
1576 err = _drbd_send_page(device, bvec.bv_page,
1577 bvec.bv_offset, bvec.bv_len,
1578 bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1579 if (err)
1580 return err;
1581 }
1582 return 0;
1583 }
1584
1585 static int _drbd_send_zc_ee(struct drbd_device *device,
1586 struct drbd_peer_request *peer_req)
1587 {
1588 struct page *page = peer_req->pages;
1589 unsigned len = peer_req->i.size;
1590 int err;
1591
1592 /* hint all but last page with MSG_MORE */
1593 page_chain_for_each(page) {
1594 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1595
1596 err = _drbd_send_page(device, page, 0, l,
1597 page_chain_next(page) ? MSG_MORE : 0);
1598 if (err)
1599 return err;
1600 len -= l;
1601 }
1602 return 0;
1603 }
1604
1605 static u32 bio_flags_to_wire(struct drbd_device *device, unsigned long bi_rw)
1606 {
1607 if (first_peer_device(device)->connection->agreed_pro_version >= 95)
1608 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1609 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1610 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1611 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1612 else
1613 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1614 }
1615
1616 /* Used to send write requests
1617 * R_PRIMARY -> Peer (P_DATA)
1618 */
1619 int drbd_send_dblock(struct drbd_device *device, struct drbd_request *req)
1620 {
1621 struct drbd_socket *sock;
1622 struct p_data *p;
1623 unsigned int dp_flags = 0;
1624 int dgs;
1625 int err;
1626
1627 sock = &first_peer_device(device)->connection->data;
1628 p = drbd_prepare_command(device, sock);
1629 dgs = first_peer_device(device)->connection->integrity_tfm ?
1630 crypto_hash_digestsize(first_peer_device(device)->connection->integrity_tfm) : 0;
1631
1632 if (!p)
1633 return -EIO;
1634 p->sector = cpu_to_be64(req->i.sector);
1635 p->block_id = (unsigned long)req;
1636 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1637 dp_flags = bio_flags_to_wire(device, req->master_bio->bi_rw);
1638 if (device->state.conn >= C_SYNC_SOURCE &&
1639 device->state.conn <= C_PAUSED_SYNC_T)
1640 dp_flags |= DP_MAY_SET_IN_SYNC;
1641 if (first_peer_device(device)->connection->agreed_pro_version >= 100) {
1642 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1643 dp_flags |= DP_SEND_RECEIVE_ACK;
1644 if (req->rq_state & RQ_EXP_WRITE_ACK)
1645 dp_flags |= DP_SEND_WRITE_ACK;
1646 }
1647 p->dp_flags = cpu_to_be32(dp_flags);
1648 if (dgs)
1649 drbd_csum_bio(device, first_peer_device(device)->connection->integrity_tfm, req->master_bio, p + 1);
1650 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1651 if (!err) {
1652 /* For protocol A, we have to memcpy the payload into
1653 * socket buffers, as we may complete right away
1654 * as soon as we handed it over to tcp, at which point the data
1655 * pages may become invalid.
1656 *
1657 * For data-integrity enabled, we copy it as well, so we can be
1658 * sure that even if the bio pages may still be modified, it
1659 * won't change the data on the wire, thus if the digest checks
1660 * out ok after sending on this side, but does not fit on the
1661 * receiving side, we sure have detected corruption elsewhere.
1662 */
1663 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1664 err = _drbd_send_bio(device, req->master_bio);
1665 else
1666 err = _drbd_send_zc_bio(device, req->master_bio);
1667
1668 /* double check digest, sometimes buffers have been modified in flight. */
1669 if (dgs > 0 && dgs <= 64) {
1670 /* 64 byte, 512 bit, is the largest digest size
1671 * currently supported in kernel crypto. */
1672 unsigned char digest[64];
1673 drbd_csum_bio(device, first_peer_device(device)->connection->integrity_tfm, req->master_bio, digest);
1674 if (memcmp(p + 1, digest, dgs)) {
1675 drbd_warn(device,
1676 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1677 (unsigned long long)req->i.sector, req->i.size);
1678 }
1679 } /* else if (dgs > 64) {
1680 ... Be noisy about digest too large ...
1681 } */
1682 }
1683 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1684
1685 return err;
1686 }
1687
1688 /* answer packet, used to send data back for read requests:
1689 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1690 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1691 */
1692 int drbd_send_block(struct drbd_device *device, enum drbd_packet cmd,
1693 struct drbd_peer_request *peer_req)
1694 {
1695 struct drbd_socket *sock;
1696 struct p_data *p;
1697 int err;
1698 int dgs;
1699
1700 sock = &first_peer_device(device)->connection->data;
1701 p = drbd_prepare_command(device, sock);
1702
1703 dgs = first_peer_device(device)->connection->integrity_tfm ?
1704 crypto_hash_digestsize(first_peer_device(device)->connection->integrity_tfm) : 0;
1705
1706 if (!p)
1707 return -EIO;
1708 p->sector = cpu_to_be64(peer_req->i.sector);
1709 p->block_id = peer_req->block_id;
1710 p->seq_num = 0; /* unused */
1711 p->dp_flags = 0;
1712 if (dgs)
1713 drbd_csum_ee(device, first_peer_device(device)->connection->integrity_tfm, peer_req, p + 1);
1714 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1715 if (!err)
1716 err = _drbd_send_zc_ee(device, peer_req);
1717 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1718
1719 return err;
1720 }
1721
1722 int drbd_send_out_of_sync(struct drbd_device *device, struct drbd_request *req)
1723 {
1724 struct drbd_socket *sock;
1725 struct p_block_desc *p;
1726
1727 sock = &first_peer_device(device)->connection->data;
1728 p = drbd_prepare_command(device, sock);
1729 if (!p)
1730 return -EIO;
1731 p->sector = cpu_to_be64(req->i.sector);
1732 p->blksize = cpu_to_be32(req->i.size);
1733 return drbd_send_command(device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1734 }
1735
1736 /*
1737 drbd_send distinguishes two cases:
1738
1739 Packets sent via the data socket "sock"
1740 and packets sent via the meta data socket "msock"
1741
1742 sock msock
1743 -----------------+-------------------------+------------------------------
1744 timeout conf.timeout / 2 conf.timeout / 2
1745 timeout action send a ping via msock Abort communication
1746 and close all sockets
1747 */
1748
1749 /*
1750 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1751 */
1752 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1753 void *buf, size_t size, unsigned msg_flags)
1754 {
1755 struct kvec iov;
1756 struct msghdr msg;
1757 int rv, sent = 0;
1758
1759 if (!sock)
1760 return -EBADR;
1761
1762 /* THINK if (signal_pending) return ... ? */
1763
1764 iov.iov_base = buf;
1765 iov.iov_len = size;
1766
1767 msg.msg_name = NULL;
1768 msg.msg_namelen = 0;
1769 msg.msg_control = NULL;
1770 msg.msg_controllen = 0;
1771 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1772
1773 if (sock == connection->data.socket) {
1774 rcu_read_lock();
1775 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1776 rcu_read_unlock();
1777 drbd_update_congested(connection);
1778 }
1779 do {
1780 /* STRANGE
1781 * tcp_sendmsg does _not_ use its size parameter at all ?
1782 *
1783 * -EAGAIN on timeout, -EINTR on signal.
1784 */
1785 /* THINK
1786 * do we need to block DRBD_SIG if sock == &meta.socket ??
1787 * otherwise wake_asender() might interrupt some send_*Ack !
1788 */
1789 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1790 if (rv == -EAGAIN) {
1791 if (we_should_drop_the_connection(connection, sock))
1792 break;
1793 else
1794 continue;
1795 }
1796 if (rv == -EINTR) {
1797 flush_signals(current);
1798 rv = 0;
1799 }
1800 if (rv < 0)
1801 break;
1802 sent += rv;
1803 iov.iov_base += rv;
1804 iov.iov_len -= rv;
1805 } while (sent < size);
1806
1807 if (sock == connection->data.socket)
1808 clear_bit(NET_CONGESTED, &connection->flags);
1809
1810 if (rv <= 0) {
1811 if (rv != -EAGAIN) {
1812 drbd_err(connection, "%s_sendmsg returned %d\n",
1813 sock == connection->meta.socket ? "msock" : "sock",
1814 rv);
1815 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1816 } else
1817 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1818 }
1819
1820 return sent;
1821 }
1822
1823 /**
1824 * drbd_send_all - Send an entire buffer
1825 *
1826 * Returns 0 upon success and a negative error value otherwise.
1827 */
1828 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1829 size_t size, unsigned msg_flags)
1830 {
1831 int err;
1832
1833 err = drbd_send(connection, sock, buffer, size, msg_flags);
1834 if (err < 0)
1835 return err;
1836 if (err != size)
1837 return -EIO;
1838 return 0;
1839 }
1840
1841 static int drbd_open(struct block_device *bdev, fmode_t mode)
1842 {
1843 struct drbd_device *device = bdev->bd_disk->private_data;
1844 unsigned long flags;
1845 int rv = 0;
1846
1847 mutex_lock(&drbd_main_mutex);
1848 spin_lock_irqsave(&device->resource->req_lock, flags);
1849 /* to have a stable device->state.role
1850 * and no race with updating open_cnt */
1851
1852 if (device->state.role != R_PRIMARY) {
1853 if (mode & FMODE_WRITE)
1854 rv = -EROFS;
1855 else if (!allow_oos)
1856 rv = -EMEDIUMTYPE;
1857 }
1858
1859 if (!rv)
1860 device->open_cnt++;
1861 spin_unlock_irqrestore(&device->resource->req_lock, flags);
1862 mutex_unlock(&drbd_main_mutex);
1863
1864 return rv;
1865 }
1866
1867 static void drbd_release(struct gendisk *gd, fmode_t mode)
1868 {
1869 struct drbd_device *device = gd->private_data;
1870 mutex_lock(&drbd_main_mutex);
1871 device->open_cnt--;
1872 mutex_unlock(&drbd_main_mutex);
1873 }
1874
1875 static void drbd_set_defaults(struct drbd_device *device)
1876 {
1877 /* Beware! The actual layout differs
1878 * between big endian and little endian */
1879 device->state = (union drbd_dev_state) {
1880 { .role = R_SECONDARY,
1881 .peer = R_UNKNOWN,
1882 .conn = C_STANDALONE,
1883 .disk = D_DISKLESS,
1884 .pdsk = D_UNKNOWN,
1885 } };
1886 }
1887
1888 void drbd_init_set_defaults(struct drbd_device *device)
1889 {
1890 /* the memset(,0,) did most of this.
1891 * note: only assignments, no allocation in here */
1892
1893 drbd_set_defaults(device);
1894
1895 atomic_set(&device->ap_bio_cnt, 0);
1896 atomic_set(&device->ap_pending_cnt, 0);
1897 atomic_set(&device->rs_pending_cnt, 0);
1898 atomic_set(&device->unacked_cnt, 0);
1899 atomic_set(&device->local_cnt, 0);
1900 atomic_set(&device->pp_in_use_by_net, 0);
1901 atomic_set(&device->rs_sect_in, 0);
1902 atomic_set(&device->rs_sect_ev, 0);
1903 atomic_set(&device->ap_in_flight, 0);
1904 atomic_set(&device->md_io_in_use, 0);
1905
1906 mutex_init(&device->own_state_mutex);
1907 device->state_mutex = &device->own_state_mutex;
1908
1909 spin_lock_init(&device->al_lock);
1910 spin_lock_init(&device->peer_seq_lock);
1911
1912 INIT_LIST_HEAD(&device->active_ee);
1913 INIT_LIST_HEAD(&device->sync_ee);
1914 INIT_LIST_HEAD(&device->done_ee);
1915 INIT_LIST_HEAD(&device->read_ee);
1916 INIT_LIST_HEAD(&device->net_ee);
1917 INIT_LIST_HEAD(&device->resync_reads);
1918 INIT_LIST_HEAD(&device->resync_work.list);
1919 INIT_LIST_HEAD(&device->unplug_work.list);
1920 INIT_LIST_HEAD(&device->go_diskless.list);
1921 INIT_LIST_HEAD(&device->md_sync_work.list);
1922 INIT_LIST_HEAD(&device->start_resync_work.list);
1923 INIT_LIST_HEAD(&device->bm_io_work.w.list);
1924
1925 device->resync_work.cb = w_resync_timer;
1926 device->unplug_work.cb = w_send_write_hint;
1927 device->go_diskless.cb = w_go_diskless;
1928 device->md_sync_work.cb = w_md_sync;
1929 device->bm_io_work.w.cb = w_bitmap_io;
1930 device->start_resync_work.cb = w_start_resync;
1931
1932 device->resync_work.device = device;
1933 device->unplug_work.device = device;
1934 device->go_diskless.device = device;
1935 device->md_sync_work.device = device;
1936 device->bm_io_work.w.device = device;
1937 device->start_resync_work.device = device;
1938
1939 init_timer(&device->resync_timer);
1940 init_timer(&device->md_sync_timer);
1941 init_timer(&device->start_resync_timer);
1942 init_timer(&device->request_timer);
1943 device->resync_timer.function = resync_timer_fn;
1944 device->resync_timer.data = (unsigned long) device;
1945 device->md_sync_timer.function = md_sync_timer_fn;
1946 device->md_sync_timer.data = (unsigned long) device;
1947 device->start_resync_timer.function = start_resync_timer_fn;
1948 device->start_resync_timer.data = (unsigned long) device;
1949 device->request_timer.function = request_timer_fn;
1950 device->request_timer.data = (unsigned long) device;
1951
1952 init_waitqueue_head(&device->misc_wait);
1953 init_waitqueue_head(&device->state_wait);
1954 init_waitqueue_head(&device->ee_wait);
1955 init_waitqueue_head(&device->al_wait);
1956 init_waitqueue_head(&device->seq_wait);
1957
1958 device->resync_wenr = LC_FREE;
1959 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1960 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1961 }
1962
1963 void drbd_device_cleanup(struct drbd_device *device)
1964 {
1965 int i;
1966 if (first_peer_device(device)->connection->receiver.t_state != NONE)
1967 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1968 first_peer_device(device)->connection->receiver.t_state);
1969
1970 device->al_writ_cnt =
1971 device->bm_writ_cnt =
1972 device->read_cnt =
1973 device->recv_cnt =
1974 device->send_cnt =
1975 device->writ_cnt =
1976 device->p_size =
1977 device->rs_start =
1978 device->rs_total =
1979 device->rs_failed = 0;
1980 device->rs_last_events = 0;
1981 device->rs_last_sect_ev = 0;
1982 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1983 device->rs_mark_left[i] = 0;
1984 device->rs_mark_time[i] = 0;
1985 }
1986 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
1987
1988 drbd_set_my_capacity(device, 0);
1989 if (device->bitmap) {
1990 /* maybe never allocated. */
1991 drbd_bm_resize(device, 0, 1);
1992 drbd_bm_cleanup(device);
1993 }
1994
1995 drbd_free_bc(device->ldev);
1996 device->ldev = NULL;
1997
1998 clear_bit(AL_SUSPENDED, &device->flags);
1999
2000 D_ASSERT(device, list_empty(&device->active_ee));
2001 D_ASSERT(device, list_empty(&device->sync_ee));
2002 D_ASSERT(device, list_empty(&device->done_ee));
2003 D_ASSERT(device, list_empty(&device->read_ee));
2004 D_ASSERT(device, list_empty(&device->net_ee));
2005 D_ASSERT(device, list_empty(&device->resync_reads));
2006 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2007 D_ASSERT(device, list_empty(&device->resync_work.list));
2008 D_ASSERT(device, list_empty(&device->unplug_work.list));
2009 D_ASSERT(device, list_empty(&device->go_diskless.list));
2010
2011 drbd_set_defaults(device);
2012 }
2013
2014
2015 static void drbd_destroy_mempools(void)
2016 {
2017 struct page *page;
2018
2019 while (drbd_pp_pool) {
2020 page = drbd_pp_pool;
2021 drbd_pp_pool = (struct page *)page_private(page);
2022 __free_page(page);
2023 drbd_pp_vacant--;
2024 }
2025
2026 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2027
2028 if (drbd_md_io_bio_set)
2029 bioset_free(drbd_md_io_bio_set);
2030 if (drbd_md_io_page_pool)
2031 mempool_destroy(drbd_md_io_page_pool);
2032 if (drbd_ee_mempool)
2033 mempool_destroy(drbd_ee_mempool);
2034 if (drbd_request_mempool)
2035 mempool_destroy(drbd_request_mempool);
2036 if (drbd_ee_cache)
2037 kmem_cache_destroy(drbd_ee_cache);
2038 if (drbd_request_cache)
2039 kmem_cache_destroy(drbd_request_cache);
2040 if (drbd_bm_ext_cache)
2041 kmem_cache_destroy(drbd_bm_ext_cache);
2042 if (drbd_al_ext_cache)
2043 kmem_cache_destroy(drbd_al_ext_cache);
2044
2045 drbd_md_io_bio_set = NULL;
2046 drbd_md_io_page_pool = NULL;
2047 drbd_ee_mempool = NULL;
2048 drbd_request_mempool = NULL;
2049 drbd_ee_cache = NULL;
2050 drbd_request_cache = NULL;
2051 drbd_bm_ext_cache = NULL;
2052 drbd_al_ext_cache = NULL;
2053
2054 return;
2055 }
2056
2057 static int drbd_create_mempools(void)
2058 {
2059 struct page *page;
2060 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2061 int i;
2062
2063 /* prepare our caches and mempools */
2064 drbd_request_mempool = NULL;
2065 drbd_ee_cache = NULL;
2066 drbd_request_cache = NULL;
2067 drbd_bm_ext_cache = NULL;
2068 drbd_al_ext_cache = NULL;
2069 drbd_pp_pool = NULL;
2070 drbd_md_io_page_pool = NULL;
2071 drbd_md_io_bio_set = NULL;
2072
2073 /* caches */
2074 drbd_request_cache = kmem_cache_create(
2075 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2076 if (drbd_request_cache == NULL)
2077 goto Enomem;
2078
2079 drbd_ee_cache = kmem_cache_create(
2080 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2081 if (drbd_ee_cache == NULL)
2082 goto Enomem;
2083
2084 drbd_bm_ext_cache = kmem_cache_create(
2085 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2086 if (drbd_bm_ext_cache == NULL)
2087 goto Enomem;
2088
2089 drbd_al_ext_cache = kmem_cache_create(
2090 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2091 if (drbd_al_ext_cache == NULL)
2092 goto Enomem;
2093
2094 /* mempools */
2095 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2096 if (drbd_md_io_bio_set == NULL)
2097 goto Enomem;
2098
2099 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2100 if (drbd_md_io_page_pool == NULL)
2101 goto Enomem;
2102
2103 drbd_request_mempool = mempool_create(number,
2104 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2105 if (drbd_request_mempool == NULL)
2106 goto Enomem;
2107
2108 drbd_ee_mempool = mempool_create(number,
2109 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2110 if (drbd_ee_mempool == NULL)
2111 goto Enomem;
2112
2113 /* drbd's page pool */
2114 spin_lock_init(&drbd_pp_lock);
2115
2116 for (i = 0; i < number; i++) {
2117 page = alloc_page(GFP_HIGHUSER);
2118 if (!page)
2119 goto Enomem;
2120 set_page_private(page, (unsigned long)drbd_pp_pool);
2121 drbd_pp_pool = page;
2122 }
2123 drbd_pp_vacant = number;
2124
2125 return 0;
2126
2127 Enomem:
2128 drbd_destroy_mempools(); /* in case we allocated some */
2129 return -ENOMEM;
2130 }
2131
2132 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2133 void *unused)
2134 {
2135 /* just so we have it. you never know what interesting things we
2136 * might want to do here some day...
2137 */
2138
2139 return NOTIFY_DONE;
2140 }
2141
2142 static struct notifier_block drbd_notifier = {
2143 .notifier_call = drbd_notify_sys,
2144 };
2145
2146 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2147 {
2148 int rr;
2149
2150 rr = drbd_free_peer_reqs(device, &device->active_ee);
2151 if (rr)
2152 drbd_err(device, "%d EEs in active list found!\n", rr);
2153
2154 rr = drbd_free_peer_reqs(device, &device->sync_ee);
2155 if (rr)
2156 drbd_err(device, "%d EEs in sync list found!\n", rr);
2157
2158 rr = drbd_free_peer_reqs(device, &device->read_ee);
2159 if (rr)
2160 drbd_err(device, "%d EEs in read list found!\n", rr);
2161
2162 rr = drbd_free_peer_reqs(device, &device->done_ee);
2163 if (rr)
2164 drbd_err(device, "%d EEs in done list found!\n", rr);
2165
2166 rr = drbd_free_peer_reqs(device, &device->net_ee);
2167 if (rr)
2168 drbd_err(device, "%d EEs in net list found!\n", rr);
2169 }
2170
2171 /* caution. no locking. */
2172 void drbd_destroy_device(struct kref *kref)
2173 {
2174 struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2175 struct drbd_resource *resource = device->resource;
2176 struct drbd_connection *connection;
2177
2178 del_timer_sync(&device->request_timer);
2179
2180 /* paranoia asserts */
2181 D_ASSERT(device, device->open_cnt == 0);
2182 /* end paranoia asserts */
2183
2184 /* cleanup stuff that may have been allocated during
2185 * device (re-)configuration or state changes */
2186
2187 if (device->this_bdev)
2188 bdput(device->this_bdev);
2189
2190 drbd_free_bc(device->ldev);
2191 device->ldev = NULL;
2192
2193 drbd_release_all_peer_reqs(device);
2194
2195 lc_destroy(device->act_log);
2196 lc_destroy(device->resync);
2197
2198 kfree(device->p_uuid);
2199 /* device->p_uuid = NULL; */
2200
2201 if (device->bitmap) /* should no longer be there. */
2202 drbd_bm_cleanup(device);
2203 __free_page(device->md_io_page);
2204 put_disk(device->vdisk);
2205 blk_cleanup_queue(device->rq_queue);
2206 kfree(device->rs_plan_s);
2207 kfree(first_peer_device(device));
2208 kfree(device);
2209
2210 for_each_connection(connection, resource)
2211 kref_put(&connection->kref, drbd_destroy_connection);
2212 kref_put(&resource->kref, drbd_destroy_resource);
2213 }
2214
2215 /* One global retry thread, if we need to push back some bio and have it
2216 * reinserted through our make request function.
2217 */
2218 static struct retry_worker {
2219 struct workqueue_struct *wq;
2220 struct work_struct worker;
2221
2222 spinlock_t lock;
2223 struct list_head writes;
2224 } retry;
2225
2226 static void do_retry(struct work_struct *ws)
2227 {
2228 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2229 LIST_HEAD(writes);
2230 struct drbd_request *req, *tmp;
2231
2232 spin_lock_irq(&retry->lock);
2233 list_splice_init(&retry->writes, &writes);
2234 spin_unlock_irq(&retry->lock);
2235
2236 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2237 struct drbd_device *device = req->w.device;
2238 struct bio *bio = req->master_bio;
2239 unsigned long start_time = req->start_time;
2240 bool expected;
2241
2242 expected =
2243 expect(atomic_read(&req->completion_ref) == 0) &&
2244 expect(req->rq_state & RQ_POSTPONED) &&
2245 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2246 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2247
2248 if (!expected)
2249 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2250 req, atomic_read(&req->completion_ref),
2251 req->rq_state);
2252
2253 /* We still need to put one kref associated with the
2254 * "completion_ref" going zero in the code path that queued it
2255 * here. The request object may still be referenced by a
2256 * frozen local req->private_bio, in case we force-detached.
2257 */
2258 kref_put(&req->kref, drbd_req_destroy);
2259
2260 /* A single suspended or otherwise blocking device may stall
2261 * all others as well. Fortunately, this code path is to
2262 * recover from a situation that "should not happen":
2263 * concurrent writes in multi-primary setup.
2264 * In a "normal" lifecycle, this workqueue is supposed to be
2265 * destroyed without ever doing anything.
2266 * If it turns out to be an issue anyways, we can do per
2267 * resource (replication group) or per device (minor) retry
2268 * workqueues instead.
2269 */
2270
2271 /* We are not just doing generic_make_request(),
2272 * as we want to keep the start_time information. */
2273 inc_ap_bio(device);
2274 __drbd_make_request(device, bio, start_time);
2275 }
2276 }
2277
2278 void drbd_restart_request(struct drbd_request *req)
2279 {
2280 unsigned long flags;
2281 spin_lock_irqsave(&retry.lock, flags);
2282 list_move_tail(&req->tl_requests, &retry.writes);
2283 spin_unlock_irqrestore(&retry.lock, flags);
2284
2285 /* Drop the extra reference that would otherwise
2286 * have been dropped by complete_master_bio.
2287 * do_retry() needs to grab a new one. */
2288 dec_ap_bio(req->w.device);
2289
2290 queue_work(retry.wq, &retry.worker);
2291 }
2292
2293 void drbd_destroy_resource(struct kref *kref)
2294 {
2295 struct drbd_resource *resource =
2296 container_of(kref, struct drbd_resource, kref);
2297
2298 idr_destroy(&resource->devices);
2299 free_cpumask_var(resource->cpu_mask);
2300 kfree(resource->name);
2301 kfree(resource);
2302 }
2303
2304 void drbd_free_resource(struct drbd_resource *resource)
2305 {
2306 struct drbd_connection *connection, *tmp;
2307
2308 for_each_connection_safe(connection, tmp, resource) {
2309 list_del(&connection->connections);
2310 kref_put(&connection->kref, drbd_destroy_connection);
2311 }
2312 kref_put(&resource->kref, drbd_destroy_resource);
2313 }
2314
2315 static void drbd_cleanup(void)
2316 {
2317 unsigned int i;
2318 struct drbd_device *device;
2319 struct drbd_resource *resource, *tmp;
2320
2321 unregister_reboot_notifier(&drbd_notifier);
2322
2323 /* first remove proc,
2324 * drbdsetup uses it's presence to detect
2325 * whether DRBD is loaded.
2326 * If we would get stuck in proc removal,
2327 * but have netlink already deregistered,
2328 * some drbdsetup commands may wait forever
2329 * for an answer.
2330 */
2331 if (drbd_proc)
2332 remove_proc_entry("drbd", NULL);
2333
2334 if (retry.wq)
2335 destroy_workqueue(retry.wq);
2336
2337 drbd_genl_unregister();
2338
2339 idr_for_each_entry(&drbd_devices, device, i)
2340 drbd_delete_device(device);
2341
2342 /* not _rcu since, no other updater anymore. Genl already unregistered */
2343 for_each_resource_safe(resource, tmp, &drbd_resources) {
2344 list_del(&resource->resources);
2345 drbd_free_resource(resource);
2346 }
2347
2348 drbd_destroy_mempools();
2349 unregister_blkdev(DRBD_MAJOR, "drbd");
2350
2351 idr_destroy(&drbd_devices);
2352
2353 printk(KERN_INFO "drbd: module cleanup done.\n");
2354 }
2355
2356 /**
2357 * drbd_congested() - Callback for the flusher thread
2358 * @congested_data: User data
2359 * @bdi_bits: Bits the BDI flusher thread is currently interested in
2360 *
2361 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2362 */
2363 static int drbd_congested(void *congested_data, int bdi_bits)
2364 {
2365 struct drbd_device *device = congested_data;
2366 struct request_queue *q;
2367 char reason = '-';
2368 int r = 0;
2369
2370 if (!may_inc_ap_bio(device)) {
2371 /* DRBD has frozen IO */
2372 r = bdi_bits;
2373 reason = 'd';
2374 goto out;
2375 }
2376
2377 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2378 r |= (1 << BDI_async_congested);
2379 /* Without good local data, we would need to read from remote,
2380 * and that would need the worker thread as well, which is
2381 * currently blocked waiting for that usermode helper to
2382 * finish.
2383 */
2384 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2385 r |= (1 << BDI_sync_congested);
2386 else
2387 put_ldev(device);
2388 r &= bdi_bits;
2389 reason = 'c';
2390 goto out;
2391 }
2392
2393 if (get_ldev(device)) {
2394 q = bdev_get_queue(device->ldev->backing_bdev);
2395 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2396 put_ldev(device);
2397 if (r)
2398 reason = 'b';
2399 }
2400
2401 if (bdi_bits & (1 << BDI_async_congested) &&
2402 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2403 r |= (1 << BDI_async_congested);
2404 reason = reason == 'b' ? 'a' : 'n';
2405 }
2406
2407 out:
2408 device->congestion_reason = reason;
2409 return r;
2410 }
2411
2412 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2413 {
2414 spin_lock_init(&wq->q_lock);
2415 INIT_LIST_HEAD(&wq->q);
2416 init_waitqueue_head(&wq->q_wait);
2417 }
2418
2419 struct drbd_resource *drbd_find_resource(const char *name)
2420 {
2421 struct drbd_resource *resource;
2422
2423 if (!name || !name[0])
2424 return NULL;
2425
2426 rcu_read_lock();
2427 for_each_resource_rcu(resource, &drbd_resources) {
2428 if (!strcmp(resource->name, name)) {
2429 kref_get(&resource->kref);
2430 goto found;
2431 }
2432 }
2433 resource = NULL;
2434 found:
2435 rcu_read_unlock();
2436 return resource;
2437 }
2438
2439 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2440 void *peer_addr, int peer_addr_len)
2441 {
2442 struct drbd_resource *resource;
2443 struct drbd_connection *connection;
2444
2445 rcu_read_lock();
2446 for_each_resource_rcu(resource, &drbd_resources) {
2447 for_each_connection_rcu(connection, resource) {
2448 if (connection->my_addr_len == my_addr_len &&
2449 connection->peer_addr_len == peer_addr_len &&
2450 !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2451 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2452 kref_get(&connection->kref);
2453 goto found;
2454 }
2455 }
2456 }
2457 connection = NULL;
2458 found:
2459 rcu_read_unlock();
2460 return connection;
2461 }
2462
2463 static int drbd_alloc_socket(struct drbd_socket *socket)
2464 {
2465 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2466 if (!socket->rbuf)
2467 return -ENOMEM;
2468 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2469 if (!socket->sbuf)
2470 return -ENOMEM;
2471 return 0;
2472 }
2473
2474 static void drbd_free_socket(struct drbd_socket *socket)
2475 {
2476 free_page((unsigned long) socket->sbuf);
2477 free_page((unsigned long) socket->rbuf);
2478 }
2479
2480 void conn_free_crypto(struct drbd_connection *connection)
2481 {
2482 drbd_free_sock(connection);
2483
2484 crypto_free_hash(connection->csums_tfm);
2485 crypto_free_hash(connection->verify_tfm);
2486 crypto_free_hash(connection->cram_hmac_tfm);
2487 crypto_free_hash(connection->integrity_tfm);
2488 crypto_free_hash(connection->peer_integrity_tfm);
2489 kfree(connection->int_dig_in);
2490 kfree(connection->int_dig_vv);
2491
2492 connection->csums_tfm = NULL;
2493 connection->verify_tfm = NULL;
2494 connection->cram_hmac_tfm = NULL;
2495 connection->integrity_tfm = NULL;
2496 connection->peer_integrity_tfm = NULL;
2497 connection->int_dig_in = NULL;
2498 connection->int_dig_vv = NULL;
2499 }
2500
2501 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2502 {
2503 struct drbd_connection *connection;
2504 cpumask_var_t new_cpu_mask;
2505 int err;
2506
2507 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2508 return -ENOMEM;
2509 /*
2510 retcode = ERR_NOMEM;
2511 drbd_msg_put_info("unable to allocate cpumask");
2512 */
2513
2514 /* silently ignore cpu mask on UP kernel */
2515 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2516 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2517 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2518 if (err) {
2519 drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2520 /* retcode = ERR_CPU_MASK_PARSE; */
2521 goto fail;
2522 }
2523 }
2524 resource->res_opts = *res_opts;
2525 if (cpumask_empty(new_cpu_mask))
2526 drbd_calc_cpu_mask(&new_cpu_mask);
2527 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2528 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2529 for_each_connection_rcu(connection, resource) {
2530 connection->receiver.reset_cpu_mask = 1;
2531 connection->asender.reset_cpu_mask = 1;
2532 connection->worker.reset_cpu_mask = 1;
2533 }
2534 }
2535 err = 0;
2536
2537 fail:
2538 free_cpumask_var(new_cpu_mask);
2539 return err;
2540
2541 }
2542
2543 struct drbd_resource *drbd_create_resource(const char *name)
2544 {
2545 struct drbd_resource *resource;
2546
2547 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2548 if (!resource)
2549 goto fail;
2550 resource->name = kstrdup(name, GFP_KERNEL);
2551 if (!resource->name)
2552 goto fail_free_resource;
2553 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2554 goto fail_free_name;
2555 kref_init(&resource->kref);
2556 idr_init(&resource->devices);
2557 INIT_LIST_HEAD(&resource->connections);
2558 list_add_tail_rcu(&resource->resources, &drbd_resources);
2559 mutex_init(&resource->conf_update);
2560 spin_lock_init(&resource->req_lock);
2561 return resource;
2562
2563 fail_free_name:
2564 kfree(resource->name);
2565 fail_free_resource:
2566 kfree(resource);
2567 fail:
2568 return NULL;
2569 }
2570
2571 /* caller must be under genl_lock() */
2572 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2573 {
2574 struct drbd_resource *resource;
2575 struct drbd_connection *connection;
2576
2577 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2578 if (!connection)
2579 return NULL;
2580
2581 if (drbd_alloc_socket(&connection->data))
2582 goto fail;
2583 if (drbd_alloc_socket(&connection->meta))
2584 goto fail;
2585
2586 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2587 if (!connection->current_epoch)
2588 goto fail;
2589
2590 INIT_LIST_HEAD(&connection->transfer_log);
2591
2592 INIT_LIST_HEAD(&connection->current_epoch->list);
2593 connection->epochs = 1;
2594 spin_lock_init(&connection->epoch_lock);
2595 connection->write_ordering = WO_bdev_flush;
2596
2597 connection->send.seen_any_write_yet = false;
2598 connection->send.current_epoch_nr = 0;
2599 connection->send.current_epoch_writes = 0;
2600
2601 resource = drbd_create_resource(name);
2602 if (!resource)
2603 goto fail;
2604
2605 connection->cstate = C_STANDALONE;
2606 mutex_init(&connection->cstate_mutex);
2607 init_waitqueue_head(&connection->ping_wait);
2608 idr_init(&connection->peer_devices);
2609
2610 drbd_init_workqueue(&connection->sender_work);
2611 mutex_init(&connection->data.mutex);
2612 mutex_init(&connection->meta.mutex);
2613
2614 drbd_thread_init(connection, &connection->receiver, drbd_receiver, "receiver");
2615 drbd_thread_init(connection, &connection->worker, drbd_worker, "worker");
2616 drbd_thread_init(connection, &connection->asender, drbd_asender, "asender");
2617
2618 kref_init(&connection->kref);
2619
2620 connection->resource = resource;
2621
2622 if (set_resource_options(resource, res_opts))
2623 goto fail_resource;
2624
2625 kref_get(&resource->kref);
2626 list_add_tail_rcu(&connection->connections, &resource->connections);
2627 return connection;
2628
2629 fail_resource:
2630 list_del(&resource->resources);
2631 drbd_free_resource(resource);
2632 fail:
2633 kfree(connection->current_epoch);
2634 drbd_free_socket(&connection->meta);
2635 drbd_free_socket(&connection->data);
2636 kfree(connection);
2637 return NULL;
2638 }
2639
2640 void drbd_destroy_connection(struct kref *kref)
2641 {
2642 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2643 struct drbd_resource *resource = connection->resource;
2644
2645 if (atomic_read(&connection->current_epoch->epoch_size) != 0)
2646 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2647 kfree(connection->current_epoch);
2648
2649 idr_destroy(&connection->peer_devices);
2650
2651 drbd_free_socket(&connection->meta);
2652 drbd_free_socket(&connection->data);
2653 kfree(connection->int_dig_in);
2654 kfree(connection->int_dig_vv);
2655 kfree(connection);
2656 kref_put(&resource->kref, drbd_destroy_resource);
2657 }
2658
2659 static int init_submitter(struct drbd_device *device)
2660 {
2661 /* opencoded create_singlethread_workqueue(),
2662 * to be able to say "drbd%d", ..., minor */
2663 device->submit.wq = alloc_workqueue("drbd%u_submit",
2664 WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor);
2665 if (!device->submit.wq)
2666 return -ENOMEM;
2667
2668 INIT_WORK(&device->submit.worker, do_submit);
2669 spin_lock_init(&device->submit.lock);
2670 INIT_LIST_HEAD(&device->submit.writes);
2671 return 0;
2672 }
2673
2674 enum drbd_ret_code drbd_create_device(struct drbd_resource *resource, unsigned int minor, int vnr)
2675 {
2676 struct drbd_connection *connection;
2677 struct drbd_device *device;
2678 struct drbd_peer_device *peer_device, *tmp_peer_device;
2679 struct gendisk *disk;
2680 struct request_queue *q;
2681 int id;
2682 enum drbd_ret_code err = ERR_NOMEM;
2683
2684 device = minor_to_device(minor);
2685 if (device)
2686 return ERR_MINOR_EXISTS;
2687
2688 /* GFP_KERNEL, we are outside of all write-out paths */
2689 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2690 if (!device)
2691 return ERR_NOMEM;
2692 kref_init(&device->kref);
2693
2694 kref_get(&resource->kref);
2695 device->resource = resource;
2696 device->minor = minor;
2697 device->vnr = vnr;
2698
2699 drbd_init_set_defaults(device);
2700
2701 q = blk_alloc_queue(GFP_KERNEL);
2702 if (!q)
2703 goto out_no_q;
2704 device->rq_queue = q;
2705 q->queuedata = device;
2706
2707 disk = alloc_disk(1);
2708 if (!disk)
2709 goto out_no_disk;
2710 device->vdisk = disk;
2711
2712 set_disk_ro(disk, true);
2713
2714 disk->queue = q;
2715 disk->major = DRBD_MAJOR;
2716 disk->first_minor = minor;
2717 disk->fops = &drbd_ops;
2718 sprintf(disk->disk_name, "drbd%d", minor);
2719 disk->private_data = device;
2720
2721 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2722 /* we have no partitions. we contain only ourselves. */
2723 device->this_bdev->bd_contains = device->this_bdev;
2724
2725 q->backing_dev_info.congested_fn = drbd_congested;
2726 q->backing_dev_info.congested_data = device;
2727
2728 blk_queue_make_request(q, drbd_make_request);
2729 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2730 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2731 This triggers a max_bio_size message upon first attach or connect */
2732 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2733 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2734 blk_queue_merge_bvec(q, drbd_merge_bvec);
2735 q->queue_lock = &resource->req_lock;
2736
2737 device->md_io_page = alloc_page(GFP_KERNEL);
2738 if (!device->md_io_page)
2739 goto out_no_io_page;
2740
2741 if (drbd_bm_init(device))
2742 goto out_no_bitmap;
2743 device->read_requests = RB_ROOT;
2744 device->write_requests = RB_ROOT;
2745
2746 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2747 if (id < 0) {
2748 if (id == -ENOSPC) {
2749 err = ERR_MINOR_EXISTS;
2750 drbd_msg_put_info("requested minor exists already");
2751 }
2752 goto out_no_minor_idr;
2753 }
2754 kref_get(&device->kref);
2755
2756 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2757 if (id < 0) {
2758 if (id == -ENOSPC) {
2759 err = ERR_MINOR_EXISTS;
2760 drbd_msg_put_info("requested minor exists already");
2761 }
2762 goto out_idr_remove_minor;
2763 }
2764 kref_get(&device->kref);
2765
2766 INIT_LIST_HEAD(&device->peer_devices);
2767 for_each_connection(connection, resource) {
2768 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2769 if (!peer_device)
2770 goto out_idr_remove_from_resource;
2771 peer_device->connection = connection;
2772 peer_device->device = device;
2773
2774 list_add(&peer_device->peer_devices, &device->peer_devices);
2775 kref_get(&device->kref);
2776
2777 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2778 if (id < 0) {
2779 if (id == -ENOSPC) {
2780 err = ERR_INVALID_REQUEST;
2781 drbd_msg_put_info("requested volume exists already");
2782 }
2783 goto out_idr_remove_from_resource;
2784 }
2785 kref_get(&connection->kref);
2786 }
2787
2788 if (init_submitter(device)) {
2789 err = ERR_NOMEM;
2790 drbd_msg_put_info("unable to create submit workqueue");
2791 goto out_idr_remove_vol;
2792 }
2793
2794 add_disk(disk);
2795
2796 /* inherit the connection state */
2797 device->state.conn = first_connection(resource)->cstate;
2798 if (device->state.conn == C_WF_REPORT_PARAMS)
2799 drbd_connected(device);
2800
2801 return NO_ERROR;
2802
2803 out_idr_remove_vol:
2804 idr_remove(&connection->peer_devices, vnr);
2805 out_idr_remove_from_resource:
2806 for_each_connection(connection, resource) {
2807 peer_device = idr_find(&connection->peer_devices, vnr);
2808 if (peer_device) {
2809 idr_remove(&connection->peer_devices, vnr);
2810 kref_put(&connection->kref, drbd_destroy_connection);
2811 }
2812 }
2813 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2814 list_del(&peer_device->peer_devices);
2815 kfree(peer_device);
2816 }
2817 idr_remove(&resource->devices, vnr);
2818 out_idr_remove_minor:
2819 idr_remove(&drbd_devices, minor);
2820 synchronize_rcu();
2821 out_no_minor_idr:
2822 drbd_bm_cleanup(device);
2823 out_no_bitmap:
2824 __free_page(device->md_io_page);
2825 out_no_io_page:
2826 put_disk(disk);
2827 out_no_disk:
2828 blk_cleanup_queue(q);
2829 out_no_q:
2830 kref_put(&resource->kref, drbd_destroy_resource);
2831 kfree(device);
2832 return err;
2833 }
2834
2835 void drbd_delete_device(struct drbd_device *device)
2836 {
2837 struct drbd_resource *resource = device->resource;
2838 struct drbd_connection *connection;
2839 int refs = 3;
2840
2841 for_each_connection(connection, resource) {
2842 idr_remove(&connection->peer_devices, device->vnr);
2843 refs++;
2844 }
2845 idr_remove(&resource->devices, device->vnr);
2846 idr_remove(&drbd_devices, device_to_minor(device));
2847 del_gendisk(device->vdisk);
2848 synchronize_rcu();
2849 kref_sub(&device->kref, refs, drbd_destroy_device);
2850 }
2851
2852 int __init drbd_init(void)
2853 {
2854 int err;
2855
2856 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2857 printk(KERN_ERR
2858 "drbd: invalid minor_count (%d)\n", minor_count);
2859 #ifdef MODULE
2860 return -EINVAL;
2861 #else
2862 minor_count = DRBD_MINOR_COUNT_DEF;
2863 #endif
2864 }
2865
2866 err = register_blkdev(DRBD_MAJOR, "drbd");
2867 if (err) {
2868 printk(KERN_ERR
2869 "drbd: unable to register block device major %d\n",
2870 DRBD_MAJOR);
2871 return err;
2872 }
2873
2874 register_reboot_notifier(&drbd_notifier);
2875
2876 /*
2877 * allocate all necessary structs
2878 */
2879 init_waitqueue_head(&drbd_pp_wait);
2880
2881 drbd_proc = NULL; /* play safe for drbd_cleanup */
2882 idr_init(&drbd_devices);
2883
2884 rwlock_init(&global_state_lock);
2885 INIT_LIST_HEAD(&drbd_resources);
2886
2887 err = drbd_genl_register();
2888 if (err) {
2889 printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2890 goto fail;
2891 }
2892
2893 err = drbd_create_mempools();
2894 if (err)
2895 goto fail;
2896
2897 err = -ENOMEM;
2898 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2899 if (!drbd_proc) {
2900 printk(KERN_ERR "drbd: unable to register proc file\n");
2901 goto fail;
2902 }
2903
2904 retry.wq = create_singlethread_workqueue("drbd-reissue");
2905 if (!retry.wq) {
2906 printk(KERN_ERR "drbd: unable to create retry workqueue\n");
2907 goto fail;
2908 }
2909 INIT_WORK(&retry.worker, do_retry);
2910 spin_lock_init(&retry.lock);
2911 INIT_LIST_HEAD(&retry.writes);
2912
2913 printk(KERN_INFO "drbd: initialized. "
2914 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2915 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2916 printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2917 printk(KERN_INFO "drbd: registered as block device major %d\n",
2918 DRBD_MAJOR);
2919
2920 return 0; /* Success! */
2921
2922 fail:
2923 drbd_cleanup();
2924 if (err == -ENOMEM)
2925 printk(KERN_ERR "drbd: ran out of memory\n");
2926 else
2927 printk(KERN_ERR "drbd: initialization failure\n");
2928 return err;
2929 }
2930
2931 void drbd_free_bc(struct drbd_backing_dev *ldev)
2932 {
2933 if (ldev == NULL)
2934 return;
2935
2936 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2937 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2938
2939 kfree(ldev->disk_conf);
2940 kfree(ldev);
2941 }
2942
2943 void drbd_free_sock(struct drbd_connection *connection)
2944 {
2945 if (connection->data.socket) {
2946 mutex_lock(&connection->data.mutex);
2947 kernel_sock_shutdown(connection->data.socket, SHUT_RDWR);
2948 sock_release(connection->data.socket);
2949 connection->data.socket = NULL;
2950 mutex_unlock(&connection->data.mutex);
2951 }
2952 if (connection->meta.socket) {
2953 mutex_lock(&connection->meta.mutex);
2954 kernel_sock_shutdown(connection->meta.socket, SHUT_RDWR);
2955 sock_release(connection->meta.socket);
2956 connection->meta.socket = NULL;
2957 mutex_unlock(&connection->meta.mutex);
2958 }
2959 }
2960
2961 /* meta data management */
2962
2963 void conn_md_sync(struct drbd_connection *connection)
2964 {
2965 struct drbd_peer_device *peer_device;
2966 int vnr;
2967
2968 rcu_read_lock();
2969 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2970 struct drbd_device *device = peer_device->device;
2971
2972 kref_get(&device->kref);
2973 rcu_read_unlock();
2974 drbd_md_sync(device);
2975 kref_put(&device->kref, drbd_destroy_device);
2976 rcu_read_lock();
2977 }
2978 rcu_read_unlock();
2979 }
2980
2981 /* aligned 4kByte */
2982 struct meta_data_on_disk {
2983 u64 la_size_sect; /* last agreed size. */
2984 u64 uuid[UI_SIZE]; /* UUIDs. */
2985 u64 device_uuid;
2986 u64 reserved_u64_1;
2987 u32 flags; /* MDF */
2988 u32 magic;
2989 u32 md_size_sect;
2990 u32 al_offset; /* offset to this block */
2991 u32 al_nr_extents; /* important for restoring the AL (userspace) */
2992 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2993 u32 bm_offset; /* offset to the bitmap, from here */
2994 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2995 u32 la_peer_max_bio_size; /* last peer max_bio_size */
2996
2997 /* see al_tr_number_to_on_disk_sector() */
2998 u32 al_stripes;
2999 u32 al_stripe_size_4k;
3000
3001 u8 reserved_u8[4096 - (7*8 + 10*4)];
3002 } __packed;
3003
3004
3005
3006 void drbd_md_write(struct drbd_device *device, void *b)
3007 {
3008 struct meta_data_on_disk *buffer = b;
3009 sector_t sector;
3010 int i;
3011
3012 memset(buffer, 0, sizeof(*buffer));
3013
3014 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3015 for (i = UI_CURRENT; i < UI_SIZE; i++)
3016 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3017 buffer->flags = cpu_to_be32(device->ldev->md.flags);
3018 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3019
3020 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
3021 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
3022 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3023 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3024 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3025
3026 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3027 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3028
3029 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3030 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3031
3032 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3033 sector = device->ldev->md.md_offset;
3034
3035 if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
3036 /* this was a try anyways ... */
3037 drbd_err(device, "meta data update failed!\n");
3038 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3039 }
3040 }
3041
3042 /**
3043 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3044 * @device: DRBD device.
3045 */
3046 void drbd_md_sync(struct drbd_device *device)
3047 {
3048 struct meta_data_on_disk *buffer;
3049
3050 /* Don't accidentally change the DRBD meta data layout. */
3051 BUILD_BUG_ON(UI_SIZE != 4);
3052 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3053
3054 del_timer(&device->md_sync_timer);
3055 /* timer may be rearmed by drbd_md_mark_dirty() now. */
3056 if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3057 return;
3058
3059 /* We use here D_FAILED and not D_ATTACHING because we try to write
3060 * metadata even if we detach due to a disk failure! */
3061 if (!get_ldev_if_state(device, D_FAILED))
3062 return;
3063
3064 buffer = drbd_md_get_buffer(device);
3065 if (!buffer)
3066 goto out;
3067
3068 drbd_md_write(device, buffer);
3069
3070 /* Update device->ldev->md.la_size_sect,
3071 * since we updated it on metadata. */
3072 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3073
3074 drbd_md_put_buffer(device);
3075 out:
3076 put_ldev(device);
3077 }
3078
3079 static int check_activity_log_stripe_size(struct drbd_device *device,
3080 struct meta_data_on_disk *on_disk,
3081 struct drbd_md *in_core)
3082 {
3083 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3084 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3085 u64 al_size_4k;
3086
3087 /* both not set: default to old fixed size activity log */
3088 if (al_stripes == 0 && al_stripe_size_4k == 0) {
3089 al_stripes = 1;
3090 al_stripe_size_4k = MD_32kB_SECT/8;
3091 }
3092
3093 /* some paranoia plausibility checks */
3094
3095 /* we need both values to be set */
3096 if (al_stripes == 0 || al_stripe_size_4k == 0)
3097 goto err;
3098
3099 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3100
3101 /* Upper limit of activity log area, to avoid potential overflow
3102 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3103 * than 72 * 4k blocks total only increases the amount of history,
3104 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3105 if (al_size_4k > (16 * 1024 * 1024/4))
3106 goto err;
3107
3108 /* Lower limit: we need at least 8 transaction slots (32kB)
3109 * to not break existing setups */
3110 if (al_size_4k < MD_32kB_SECT/8)
3111 goto err;
3112
3113 in_core->al_stripe_size_4k = al_stripe_size_4k;
3114 in_core->al_stripes = al_stripes;
3115 in_core->al_size_4k = al_size_4k;
3116
3117 return 0;
3118 err:
3119 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3120 al_stripes, al_stripe_size_4k);
3121 return -EINVAL;
3122 }
3123
3124 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3125 {
3126 sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3127 struct drbd_md *in_core = &bdev->md;
3128 s32 on_disk_al_sect;
3129 s32 on_disk_bm_sect;
3130
3131 /* The on-disk size of the activity log, calculated from offsets, and
3132 * the size of the activity log calculated from the stripe settings,
3133 * should match.
3134 * Though we could relax this a bit: it is ok, if the striped activity log
3135 * fits in the available on-disk activity log size.
3136 * Right now, that would break how resize is implemented.
3137 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3138 * of possible unused padding space in the on disk layout. */
3139 if (in_core->al_offset < 0) {
3140 if (in_core->bm_offset > in_core->al_offset)
3141 goto err;
3142 on_disk_al_sect = -in_core->al_offset;
3143 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3144 } else {
3145 if (in_core->al_offset != MD_4kB_SECT)
3146 goto err;
3147 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3148 goto err;
3149
3150 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3151 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3152 }
3153
3154 /* old fixed size meta data is exactly that: fixed. */
3155 if (in_core->meta_dev_idx >= 0) {
3156 if (in_core->md_size_sect != MD_128MB_SECT
3157 || in_core->al_offset != MD_4kB_SECT
3158 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3159 || in_core->al_stripes != 1
3160 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3161 goto err;
3162 }
3163
3164 if (capacity < in_core->md_size_sect)
3165 goto err;
3166 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3167 goto err;
3168
3169 /* should be aligned, and at least 32k */
3170 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3171 goto err;
3172
3173 /* should fit (for now: exactly) into the available on-disk space;
3174 * overflow prevention is in check_activity_log_stripe_size() above. */
3175 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3176 goto err;
3177
3178 /* again, should be aligned */
3179 if (in_core->bm_offset & 7)
3180 goto err;
3181
3182 /* FIXME check for device grow with flex external meta data? */
3183
3184 /* can the available bitmap space cover the last agreed device size? */
3185 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3186 goto err;
3187
3188 return 0;
3189
3190 err:
3191 drbd_err(device, "meta data offsets don't make sense: idx=%d "
3192 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3193 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3194 in_core->meta_dev_idx,
3195 in_core->al_stripes, in_core->al_stripe_size_4k,
3196 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3197 (unsigned long long)in_core->la_size_sect,
3198 (unsigned long long)capacity);
3199
3200 return -EINVAL;
3201 }
3202
3203
3204 /**
3205 * drbd_md_read() - Reads in the meta data super block
3206 * @device: DRBD device.
3207 * @bdev: Device from which the meta data should be read in.
3208 *
3209 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3210 * something goes wrong.
3211 *
3212 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3213 * even before @bdev is assigned to @device->ldev.
3214 */
3215 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3216 {
3217 struct meta_data_on_disk *buffer;
3218 u32 magic, flags;
3219 int i, rv = NO_ERROR;
3220
3221 if (device->state.disk != D_DISKLESS)
3222 return ERR_DISK_CONFIGURED;
3223
3224 buffer = drbd_md_get_buffer(device);
3225 if (!buffer)
3226 return ERR_NOMEM;
3227
3228 /* First, figure out where our meta data superblock is located,
3229 * and read it. */
3230 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3231 bdev->md.md_offset = drbd_md_ss(bdev);
3232
3233 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3234 /* NOTE: can't do normal error processing here as this is
3235 called BEFORE disk is attached */
3236 drbd_err(device, "Error while reading metadata.\n");
3237 rv = ERR_IO_MD_DISK;
3238 goto err;
3239 }
3240
3241 magic = be32_to_cpu(buffer->magic);
3242 flags = be32_to_cpu(buffer->flags);
3243 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3244 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3245 /* btw: that's Activity Log clean, not "all" clean. */
3246 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3247 rv = ERR_MD_UNCLEAN;
3248 goto err;
3249 }
3250
3251 rv = ERR_MD_INVALID;
3252 if (magic != DRBD_MD_MAGIC_08) {
3253 if (magic == DRBD_MD_MAGIC_07)
3254 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3255 else
3256 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3257 goto err;
3258 }
3259
3260 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3261 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3262 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3263 goto err;
3264 }
3265
3266
3267 /* convert to in_core endian */
3268 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3269 for (i = UI_CURRENT; i < UI_SIZE; i++)
3270 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3271 bdev->md.flags = be32_to_cpu(buffer->flags);
3272 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3273
3274 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3275 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3276 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3277
3278 if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3279 goto err;
3280 if (check_offsets_and_sizes(device, bdev))
3281 goto err;
3282
3283 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3284 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3285 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3286 goto err;
3287 }
3288 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3289 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3290 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3291 goto err;
3292 }
3293
3294 rv = NO_ERROR;
3295
3296 spin_lock_irq(&device->resource->req_lock);
3297 if (device->state.conn < C_CONNECTED) {
3298 unsigned int peer;
3299 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3300 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3301 device->peer_max_bio_size = peer;
3302 }
3303 spin_unlock_irq(&device->resource->req_lock);
3304
3305 err:
3306 drbd_md_put_buffer(device);
3307
3308 return rv;
3309 }
3310
3311 /**
3312 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3313 * @device: DRBD device.
3314 *
3315 * Call this function if you change anything that should be written to
3316 * the meta-data super block. This function sets MD_DIRTY, and starts a
3317 * timer that ensures that within five seconds you have to call drbd_md_sync().
3318 */
3319 #ifdef DEBUG
3320 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3321 {
3322 if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3323 mod_timer(&device->md_sync_timer, jiffies + HZ);
3324 device->last_md_mark_dirty.line = line;
3325 device->last_md_mark_dirty.func = func;
3326 }
3327 }
3328 #else
3329 void drbd_md_mark_dirty(struct drbd_device *device)
3330 {
3331 if (!test_and_set_bit(MD_DIRTY, &device->flags))
3332 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3333 }
3334 #endif
3335
3336 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3337 {
3338 int i;
3339
3340 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3341 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3342 }
3343
3344 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3345 {
3346 if (idx == UI_CURRENT) {
3347 if (device->state.role == R_PRIMARY)
3348 val |= 1;
3349 else
3350 val &= ~((u64)1);
3351
3352 drbd_set_ed_uuid(device, val);
3353 }
3354
3355 device->ldev->md.uuid[idx] = val;
3356 drbd_md_mark_dirty(device);
3357 }
3358
3359 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3360 {
3361 unsigned long flags;
3362 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3363 __drbd_uuid_set(device, idx, val);
3364 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3365 }
3366
3367 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3368 {
3369 unsigned long flags;
3370 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3371 if (device->ldev->md.uuid[idx]) {
3372 drbd_uuid_move_history(device);
3373 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3374 }
3375 __drbd_uuid_set(device, idx, val);
3376 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3377 }
3378
3379 /**
3380 * drbd_uuid_new_current() - Creates a new current UUID
3381 * @device: DRBD device.
3382 *
3383 * Creates a new current UUID, and rotates the old current UUID into
3384 * the bitmap slot. Causes an incremental resync upon next connect.
3385 */
3386 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3387 {
3388 u64 val;
3389 unsigned long long bm_uuid;
3390
3391 get_random_bytes(&val, sizeof(u64));
3392
3393 spin_lock_irq(&device->ldev->md.uuid_lock);
3394 bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3395
3396 if (bm_uuid)
3397 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3398
3399 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3400 __drbd_uuid_set(device, UI_CURRENT, val);
3401 spin_unlock_irq(&device->ldev->md.uuid_lock);
3402
3403 drbd_print_uuids(device, "new current UUID");
3404 /* get it to stable storage _now_ */
3405 drbd_md_sync(device);
3406 }
3407
3408 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3409 {
3410 unsigned long flags;
3411 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3412 return;
3413
3414 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3415 if (val == 0) {
3416 drbd_uuid_move_history(device);
3417 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3418 device->ldev->md.uuid[UI_BITMAP] = 0;
3419 } else {
3420 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3421 if (bm_uuid)
3422 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3423
3424 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3425 }
3426 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3427
3428 drbd_md_mark_dirty(device);
3429 }
3430
3431 /**
3432 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3433 * @device: DRBD device.
3434 *
3435 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3436 */
3437 int drbd_bmio_set_n_write(struct drbd_device *device)
3438 {
3439 int rv = -EIO;
3440
3441 if (get_ldev_if_state(device, D_ATTACHING)) {
3442 drbd_md_set_flag(device, MDF_FULL_SYNC);
3443 drbd_md_sync(device);
3444 drbd_bm_set_all(device);
3445
3446 rv = drbd_bm_write(device);
3447
3448 if (!rv) {
3449 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3450 drbd_md_sync(device);
3451 }
3452
3453 put_ldev(device);
3454 }
3455
3456 return rv;
3457 }
3458
3459 /**
3460 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3461 * @device: DRBD device.
3462 *
3463 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3464 */
3465 int drbd_bmio_clear_n_write(struct drbd_device *device)
3466 {
3467 int rv = -EIO;
3468
3469 drbd_resume_al(device);
3470 if (get_ldev_if_state(device, D_ATTACHING)) {
3471 drbd_bm_clear_all(device);
3472 rv = drbd_bm_write(device);
3473 put_ldev(device);
3474 }
3475
3476 return rv;
3477 }
3478
3479 static int w_bitmap_io(struct drbd_work *w, int unused)
3480 {
3481 struct bm_io_work *work = container_of(w, struct bm_io_work, w);
3482 struct drbd_device *device = w->device;
3483 int rv = -EIO;
3484
3485 D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0);
3486
3487 if (get_ldev(device)) {
3488 drbd_bm_lock(device, work->why, work->flags);
3489 rv = work->io_fn(device);
3490 drbd_bm_unlock(device);
3491 put_ldev(device);
3492 }
3493
3494 clear_bit_unlock(BITMAP_IO, &device->flags);
3495 wake_up(&device->misc_wait);
3496
3497 if (work->done)
3498 work->done(device, rv);
3499
3500 clear_bit(BITMAP_IO_QUEUED, &device->flags);
3501 work->why = NULL;
3502 work->flags = 0;
3503
3504 return 0;
3505 }
3506
3507 void drbd_ldev_destroy(struct drbd_device *device)
3508 {
3509 lc_destroy(device->resync);
3510 device->resync = NULL;
3511 lc_destroy(device->act_log);
3512 device->act_log = NULL;
3513 __no_warn(local,
3514 drbd_free_bc(device->ldev);
3515 device->ldev = NULL;);
3516
3517 clear_bit(GO_DISKLESS, &device->flags);
3518 }
3519
3520 static int w_go_diskless(struct drbd_work *w, int unused)
3521 {
3522 struct drbd_device *device = w->device;
3523
3524 D_ASSERT(device, device->state.disk == D_FAILED);
3525 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
3526 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
3527 * the protected members anymore, though, so once put_ldev reaches zero
3528 * again, it will be safe to free them. */
3529
3530 /* Try to write changed bitmap pages, read errors may have just
3531 * set some bits outside the area covered by the activity log.
3532 *
3533 * If we have an IO error during the bitmap writeout,
3534 * we will want a full sync next time, just in case.
3535 * (Do we want a specific meta data flag for this?)
3536 *
3537 * If that does not make it to stable storage either,
3538 * we cannot do anything about that anymore.
3539 *
3540 * We still need to check if both bitmap and ldev are present, we may
3541 * end up here after a failed attach, before ldev was even assigned.
3542 */
3543 if (device->bitmap && device->ldev) {
3544 /* An interrupted resync or similar is allowed to recounts bits
3545 * while we detach.
3546 * Any modifications would not be expected anymore, though.
3547 */
3548 if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
3549 "detach", BM_LOCKED_TEST_ALLOWED)) {
3550 if (test_bit(WAS_READ_ERROR, &device->flags)) {
3551 drbd_md_set_flag(device, MDF_FULL_SYNC);
3552 drbd_md_sync(device);
3553 }
3554 }
3555 }
3556
3557 drbd_force_state(device, NS(disk, D_DISKLESS));
3558 return 0;
3559 }
3560
3561 /**
3562 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3563 * @device: DRBD device.
3564 * @io_fn: IO callback to be called when bitmap IO is possible
3565 * @done: callback to be called after the bitmap IO was performed
3566 * @why: Descriptive text of the reason for doing the IO
3567 *
3568 * While IO on the bitmap happens we freeze application IO thus we ensure
3569 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3570 * called from worker context. It MUST NOT be used while a previous such
3571 * work is still pending!
3572 */
3573 void drbd_queue_bitmap_io(struct drbd_device *device,
3574 int (*io_fn)(struct drbd_device *),
3575 void (*done)(struct drbd_device *, int),
3576 char *why, enum bm_flag flags)
3577 {
3578 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3579
3580 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3581 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3582 D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3583 if (device->bm_io_work.why)
3584 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3585 why, device->bm_io_work.why);
3586
3587 device->bm_io_work.io_fn = io_fn;
3588 device->bm_io_work.done = done;
3589 device->bm_io_work.why = why;
3590 device->bm_io_work.flags = flags;
3591
3592 spin_lock_irq(&device->resource->req_lock);
3593 set_bit(BITMAP_IO, &device->flags);
3594 if (atomic_read(&device->ap_bio_cnt) == 0) {
3595 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3596 drbd_queue_work(&first_peer_device(device)->connection->sender_work, &device->bm_io_work.w);
3597 }
3598 spin_unlock_irq(&device->resource->req_lock);
3599 }
3600
3601 /**
3602 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3603 * @device: DRBD device.
3604 * @io_fn: IO callback to be called when bitmap IO is possible
3605 * @why: Descriptive text of the reason for doing the IO
3606 *
3607 * freezes application IO while that the actual IO operations runs. This
3608 * functions MAY NOT be called from worker context.
3609 */
3610 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3611 char *why, enum bm_flag flags)
3612 {
3613 int rv;
3614
3615 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3616
3617 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3618 drbd_suspend_io(device);
3619
3620 drbd_bm_lock(device, why, flags);
3621 rv = io_fn(device);
3622 drbd_bm_unlock(device);
3623
3624 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3625 drbd_resume_io(device);
3626
3627 return rv;
3628 }
3629
3630 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3631 {
3632 if ((device->ldev->md.flags & flag) != flag) {
3633 drbd_md_mark_dirty(device);
3634 device->ldev->md.flags |= flag;
3635 }
3636 }
3637
3638 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3639 {
3640 if ((device->ldev->md.flags & flag) != 0) {
3641 drbd_md_mark_dirty(device);
3642 device->ldev->md.flags &= ~flag;
3643 }
3644 }
3645 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3646 {
3647 return (bdev->md.flags & flag) != 0;
3648 }
3649
3650 static void md_sync_timer_fn(unsigned long data)
3651 {
3652 struct drbd_device *device = (struct drbd_device *) data;
3653
3654 /* must not double-queue! */
3655 if (list_empty(&device->md_sync_work.list))
3656 drbd_queue_work_front(&first_peer_device(device)->connection->sender_work, &device->md_sync_work);
3657 }
3658
3659 static int w_md_sync(struct drbd_work *w, int unused)
3660 {
3661 struct drbd_device *device = w->device;
3662
3663 drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3664 #ifdef DEBUG
3665 drbd_warn(device, "last md_mark_dirty: %s:%u\n",
3666 device->last_md_mark_dirty.func, device->last_md_mark_dirty.line);
3667 #endif
3668 drbd_md_sync(device);
3669 return 0;
3670 }
3671
3672 const char *cmdname(enum drbd_packet cmd)
3673 {
3674 /* THINK may need to become several global tables
3675 * when we want to support more than
3676 * one PRO_VERSION */
3677 static const char *cmdnames[] = {
3678 [P_DATA] = "Data",
3679 [P_DATA_REPLY] = "DataReply",
3680 [P_RS_DATA_REPLY] = "RSDataReply",
3681 [P_BARRIER] = "Barrier",
3682 [P_BITMAP] = "ReportBitMap",
3683 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3684 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3685 [P_UNPLUG_REMOTE] = "UnplugRemote",
3686 [P_DATA_REQUEST] = "DataRequest",
3687 [P_RS_DATA_REQUEST] = "RSDataRequest",
3688 [P_SYNC_PARAM] = "SyncParam",
3689 [P_SYNC_PARAM89] = "SyncParam89",
3690 [P_PROTOCOL] = "ReportProtocol",
3691 [P_UUIDS] = "ReportUUIDs",
3692 [P_SIZES] = "ReportSizes",
3693 [P_STATE] = "ReportState",
3694 [P_SYNC_UUID] = "ReportSyncUUID",
3695 [P_AUTH_CHALLENGE] = "AuthChallenge",
3696 [P_AUTH_RESPONSE] = "AuthResponse",
3697 [P_PING] = "Ping",
3698 [P_PING_ACK] = "PingAck",
3699 [P_RECV_ACK] = "RecvAck",
3700 [P_WRITE_ACK] = "WriteAck",
3701 [P_RS_WRITE_ACK] = "RSWriteAck",
3702 [P_SUPERSEDED] = "Superseded",
3703 [P_NEG_ACK] = "NegAck",
3704 [P_NEG_DREPLY] = "NegDReply",
3705 [P_NEG_RS_DREPLY] = "NegRSDReply",
3706 [P_BARRIER_ACK] = "BarrierAck",
3707 [P_STATE_CHG_REQ] = "StateChgRequest",
3708 [P_STATE_CHG_REPLY] = "StateChgReply",
3709 [P_OV_REQUEST] = "OVRequest",
3710 [P_OV_REPLY] = "OVReply",
3711 [P_OV_RESULT] = "OVResult",
3712 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3713 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3714 [P_COMPRESSED_BITMAP] = "CBitmap",
3715 [P_DELAY_PROBE] = "DelayProbe",
3716 [P_OUT_OF_SYNC] = "OutOfSync",
3717 [P_RETRY_WRITE] = "RetryWrite",
3718 [P_RS_CANCEL] = "RSCancel",
3719 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3720 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3721 [P_RETRY_WRITE] = "retry_write",
3722 [P_PROTOCOL_UPDATE] = "protocol_update",
3723
3724 /* enum drbd_packet, but not commands - obsoleted flags:
3725 * P_MAY_IGNORE
3726 * P_MAX_OPT_CMD
3727 */
3728 };
3729
3730 /* too big for the array: 0xfffX */
3731 if (cmd == P_INITIAL_META)
3732 return "InitialMeta";
3733 if (cmd == P_INITIAL_DATA)
3734 return "InitialData";
3735 if (cmd == P_CONNECTION_FEATURES)
3736 return "ConnectionFeatures";
3737 if (cmd >= ARRAY_SIZE(cmdnames))
3738 return "Unknown";
3739 return cmdnames[cmd];
3740 }
3741
3742 /**
3743 * drbd_wait_misc - wait for a request to make progress
3744 * @device: device associated with the request
3745 * @i: the struct drbd_interval embedded in struct drbd_request or
3746 * struct drbd_peer_request
3747 */
3748 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3749 {
3750 struct net_conf *nc;
3751 DEFINE_WAIT(wait);
3752 long timeout;
3753
3754 rcu_read_lock();
3755 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3756 if (!nc) {
3757 rcu_read_unlock();
3758 return -ETIMEDOUT;
3759 }
3760 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3761 rcu_read_unlock();
3762
3763 /* Indicate to wake up device->misc_wait on progress. */
3764 i->waiting = true;
3765 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3766 spin_unlock_irq(&device->resource->req_lock);
3767 timeout = schedule_timeout(timeout);
3768 finish_wait(&device->misc_wait, &wait);
3769 spin_lock_irq(&device->resource->req_lock);
3770 if (!timeout || device->state.conn < C_CONNECTED)
3771 return -ETIMEDOUT;
3772 if (signal_pending(current))
3773 return -ERESTARTSYS;
3774 return 0;
3775 }
3776
3777 #ifdef CONFIG_DRBD_FAULT_INJECTION
3778 /* Fault insertion support including random number generator shamelessly
3779 * stolen from kernel/rcutorture.c */
3780 struct fault_random_state {
3781 unsigned long state;
3782 unsigned long count;
3783 };
3784
3785 #define FAULT_RANDOM_MULT 39916801 /* prime */
3786 #define FAULT_RANDOM_ADD 479001701 /* prime */
3787 #define FAULT_RANDOM_REFRESH 10000
3788
3789 /*
3790 * Crude but fast random-number generator. Uses a linear congruential
3791 * generator, with occasional help from get_random_bytes().
3792 */
3793 static unsigned long
3794 _drbd_fault_random(struct fault_random_state *rsp)
3795 {
3796 long refresh;
3797
3798 if (!rsp->count--) {
3799 get_random_bytes(&refresh, sizeof(refresh));
3800 rsp->state += refresh;
3801 rsp->count = FAULT_RANDOM_REFRESH;
3802 }
3803 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3804 return swahw32(rsp->state);
3805 }
3806
3807 static char *
3808 _drbd_fault_str(unsigned int type) {
3809 static char *_faults[] = {
3810 [DRBD_FAULT_MD_WR] = "Meta-data write",
3811 [DRBD_FAULT_MD_RD] = "Meta-data read",
3812 [DRBD_FAULT_RS_WR] = "Resync write",
3813 [DRBD_FAULT_RS_RD] = "Resync read",
3814 [DRBD_FAULT_DT_WR] = "Data write",
3815 [DRBD_FAULT_DT_RD] = "Data read",
3816 [DRBD_FAULT_DT_RA] = "Data read ahead",
3817 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3818 [DRBD_FAULT_AL_EE] = "EE allocation",
3819 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3820 };
3821
3822 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3823 }
3824
3825 unsigned int
3826 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3827 {
3828 static struct fault_random_state rrs = {0, 0};
3829
3830 unsigned int ret = (
3831 (fault_devs == 0 ||
3832 ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3833 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3834
3835 if (ret) {
3836 fault_count++;
3837
3838 if (__ratelimit(&drbd_ratelimit_state))
3839 drbd_warn(device, "***Simulating %s failure\n",
3840 _drbd_fault_str(type));
3841 }
3842
3843 return ret;
3844 }
3845 #endif
3846
3847 const char *drbd_buildtag(void)
3848 {
3849 /* DRBD built from external sources has here a reference to the
3850 git hash of the source code. */
3851
3852 static char buildtag[38] = "\0uilt-in";
3853
3854 if (buildtag[0] == 0) {
3855 #ifdef MODULE
3856 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3857 #else
3858 buildtag[0] = 'b';
3859 #endif
3860 }
3861
3862 return buildtag;
3863 }
3864
3865 module_init(drbd_init)
3866 module_exit(drbd_cleanup)
3867
3868 EXPORT_SYMBOL(drbd_conn_str);
3869 EXPORT_SYMBOL(drbd_role_str);
3870 EXPORT_SYMBOL(drbd_disk_str);
3871 EXPORT_SYMBOL(drbd_set_st_err_str);
This page took 0.11081 seconds and 6 git commands to generate.