drbd: Rename drbdd_init() -> drbd_receiver()
[deliverable/linux.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48 #include <linux/workqueue.h>
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_protocol.h"
56 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
57
58 #include "drbd_vli.h"
59
60 static DEFINE_MUTEX(drbd_main_mutex);
61 int drbd_receiver(struct drbd_thread *);
62 int drbd_worker(struct drbd_thread *);
63
64 int drbd_init(void);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static void drbd_release(struct gendisk *gd, fmode_t mode);
67 static int w_md_sync(struct drbd_work *w, int unused);
68 static void md_sync_timer_fn(unsigned long data);
69 static int w_bitmap_io(struct drbd_work *w, int unused);
70 static int w_go_diskless(struct drbd_work *w, int unused);
71
72 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
73 "Lars Ellenberg <lars@linbit.com>");
74 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
75 MODULE_VERSION(REL_VERSION);
76 MODULE_LICENSE("GPL");
77 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
78 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
79 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
80
81 #include <linux/moduleparam.h>
82 /* allow_open_on_secondary */
83 MODULE_PARM_DESC(allow_oos, "DONT USE!");
84 /* thanks to these macros, if compiled into the kernel (not-module),
85 * this becomes the boot parameter drbd.minor_count */
86 module_param(minor_count, uint, 0444);
87 module_param(disable_sendpage, bool, 0644);
88 module_param(allow_oos, bool, 0);
89 module_param(proc_details, int, 0644);
90
91 #ifdef CONFIG_DRBD_FAULT_INJECTION
92 int enable_faults;
93 int fault_rate;
94 static int fault_count;
95 int fault_devs;
96 /* bitmap of enabled faults */
97 module_param(enable_faults, int, 0664);
98 /* fault rate % value - applies to all enabled faults */
99 module_param(fault_rate, int, 0664);
100 /* count of faults inserted */
101 module_param(fault_count, int, 0664);
102 /* bitmap of devices to insert faults on */
103 module_param(fault_devs, int, 0644);
104 #endif
105
106 /* module parameter, defined */
107 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
108 bool disable_sendpage;
109 bool allow_oos;
110 int proc_details; /* Detail level in proc drbd*/
111
112 /* Module parameter for setting the user mode helper program
113 * to run. Default is /sbin/drbdadm */
114 char usermode_helper[80] = "/sbin/drbdadm";
115
116 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
117
118 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
119 * as member "struct gendisk *vdisk;"
120 */
121 struct idr drbd_devices;
122 struct list_head drbd_resources;
123
124 struct kmem_cache *drbd_request_cache;
125 struct kmem_cache *drbd_ee_cache; /* peer requests */
126 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
127 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
128 mempool_t *drbd_request_mempool;
129 mempool_t *drbd_ee_mempool;
130 mempool_t *drbd_md_io_page_pool;
131 struct bio_set *drbd_md_io_bio_set;
132
133 /* I do not use a standard mempool, because:
134 1) I want to hand out the pre-allocated objects first.
135 2) I want to be able to interrupt sleeping allocation with a signal.
136 Note: This is a single linked list, the next pointer is the private
137 member of struct page.
138 */
139 struct page *drbd_pp_pool;
140 spinlock_t drbd_pp_lock;
141 int drbd_pp_vacant;
142 wait_queue_head_t drbd_pp_wait;
143
144 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
145
146 static const struct block_device_operations drbd_ops = {
147 .owner = THIS_MODULE,
148 .open = drbd_open,
149 .release = drbd_release,
150 };
151
152 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
153 {
154 struct bio *bio;
155
156 if (!drbd_md_io_bio_set)
157 return bio_alloc(gfp_mask, 1);
158
159 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
160 if (!bio)
161 return NULL;
162 return bio;
163 }
164
165 #ifdef __CHECKER__
166 /* When checking with sparse, and this is an inline function, sparse will
167 give tons of false positives. When this is a real functions sparse works.
168 */
169 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
170 {
171 int io_allowed;
172
173 atomic_inc(&device->local_cnt);
174 io_allowed = (device->state.disk >= mins);
175 if (!io_allowed) {
176 if (atomic_dec_and_test(&device->local_cnt))
177 wake_up(&device->misc_wait);
178 }
179 return io_allowed;
180 }
181
182 #endif
183
184 /**
185 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
186 * @connection: DRBD connection.
187 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
188 * @set_size: Expected number of requests before that barrier.
189 *
190 * In case the passed barrier_nr or set_size does not match the oldest
191 * epoch of not yet barrier-acked requests, this function will cause a
192 * termination of the connection.
193 */
194 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
195 unsigned int set_size)
196 {
197 struct drbd_request *r;
198 struct drbd_request *req = NULL;
199 int expect_epoch = 0;
200 int expect_size = 0;
201
202 spin_lock_irq(&connection->resource->req_lock);
203
204 /* find oldest not yet barrier-acked write request,
205 * count writes in its epoch. */
206 list_for_each_entry(r, &connection->transfer_log, tl_requests) {
207 const unsigned s = r->rq_state;
208 if (!req) {
209 if (!(s & RQ_WRITE))
210 continue;
211 if (!(s & RQ_NET_MASK))
212 continue;
213 if (s & RQ_NET_DONE)
214 continue;
215 req = r;
216 expect_epoch = req->epoch;
217 expect_size ++;
218 } else {
219 if (r->epoch != expect_epoch)
220 break;
221 if (!(s & RQ_WRITE))
222 continue;
223 /* if (s & RQ_DONE): not expected */
224 /* if (!(s & RQ_NET_MASK)): not expected */
225 expect_size++;
226 }
227 }
228
229 /* first some paranoia code */
230 if (req == NULL) {
231 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
232 barrier_nr);
233 goto bail;
234 }
235 if (expect_epoch != barrier_nr) {
236 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
237 barrier_nr, expect_epoch);
238 goto bail;
239 }
240
241 if (expect_size != set_size) {
242 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
243 barrier_nr, set_size, expect_size);
244 goto bail;
245 }
246
247 /* Clean up list of requests processed during current epoch. */
248 /* this extra list walk restart is paranoia,
249 * to catch requests being barrier-acked "unexpectedly".
250 * It usually should find the same req again, or some READ preceding it. */
251 list_for_each_entry(req, &connection->transfer_log, tl_requests)
252 if (req->epoch == expect_epoch)
253 break;
254 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
255 if (req->epoch != expect_epoch)
256 break;
257 _req_mod(req, BARRIER_ACKED);
258 }
259 spin_unlock_irq(&connection->resource->req_lock);
260
261 return;
262
263 bail:
264 spin_unlock_irq(&connection->resource->req_lock);
265 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
266 }
267
268
269 /**
270 * _tl_restart() - Walks the transfer log, and applies an action to all requests
271 * @device: DRBD device.
272 * @what: The action/event to perform with all request objects
273 *
274 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
275 * RESTART_FROZEN_DISK_IO.
276 */
277 /* must hold resource->req_lock */
278 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
279 {
280 struct drbd_request *req, *r;
281
282 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
283 _req_mod(req, what);
284 }
285
286 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
287 {
288 spin_lock_irq(&connection->resource->req_lock);
289 _tl_restart(connection, what);
290 spin_unlock_irq(&connection->resource->req_lock);
291 }
292
293 /**
294 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
295 * @device: DRBD device.
296 *
297 * This is called after the connection to the peer was lost. The storage covered
298 * by the requests on the transfer gets marked as our of sync. Called from the
299 * receiver thread and the worker thread.
300 */
301 void tl_clear(struct drbd_connection *connection)
302 {
303 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
304 }
305
306 /**
307 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
308 * @device: DRBD device.
309 */
310 void tl_abort_disk_io(struct drbd_device *device)
311 {
312 struct drbd_connection *connection = first_peer_device(device)->connection;
313 struct drbd_request *req, *r;
314
315 spin_lock_irq(&connection->resource->req_lock);
316 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
317 if (!(req->rq_state & RQ_LOCAL_PENDING))
318 continue;
319 if (req->w.device != device)
320 continue;
321 _req_mod(req, ABORT_DISK_IO);
322 }
323 spin_unlock_irq(&connection->resource->req_lock);
324 }
325
326 static int drbd_thread_setup(void *arg)
327 {
328 struct drbd_thread *thi = (struct drbd_thread *) arg;
329 struct drbd_connection *connection = thi->connection;
330 unsigned long flags;
331 int retval;
332
333 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
334 thi->name[0],
335 thi->connection->resource->name);
336
337 restart:
338 retval = thi->function(thi);
339
340 spin_lock_irqsave(&thi->t_lock, flags);
341
342 /* if the receiver has been "EXITING", the last thing it did
343 * was set the conn state to "StandAlone",
344 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
345 * and receiver thread will be "started".
346 * drbd_thread_start needs to set "RESTARTING" in that case.
347 * t_state check and assignment needs to be within the same spinlock,
348 * so either thread_start sees EXITING, and can remap to RESTARTING,
349 * or thread_start see NONE, and can proceed as normal.
350 */
351
352 if (thi->t_state == RESTARTING) {
353 drbd_info(connection, "Restarting %s thread\n", thi->name);
354 thi->t_state = RUNNING;
355 spin_unlock_irqrestore(&thi->t_lock, flags);
356 goto restart;
357 }
358
359 thi->task = NULL;
360 thi->t_state = NONE;
361 smp_mb();
362 complete_all(&thi->stop);
363 spin_unlock_irqrestore(&thi->t_lock, flags);
364
365 drbd_info(connection, "Terminating %s\n", current->comm);
366
367 /* Release mod reference taken when thread was started */
368
369 kref_put(&connection->kref, drbd_destroy_connection);
370 module_put(THIS_MODULE);
371 return retval;
372 }
373
374 static void drbd_thread_init(struct drbd_connection *connection, struct drbd_thread *thi,
375 int (*func) (struct drbd_thread *), char *name)
376 {
377 spin_lock_init(&thi->t_lock);
378 thi->task = NULL;
379 thi->t_state = NONE;
380 thi->function = func;
381 thi->connection = connection;
382 strncpy(thi->name, name, ARRAY_SIZE(thi->name));
383 }
384
385 int drbd_thread_start(struct drbd_thread *thi)
386 {
387 struct drbd_connection *connection = thi->connection;
388 struct task_struct *nt;
389 unsigned long flags;
390
391 /* is used from state engine doing drbd_thread_stop_nowait,
392 * while holding the req lock irqsave */
393 spin_lock_irqsave(&thi->t_lock, flags);
394
395 switch (thi->t_state) {
396 case NONE:
397 drbd_info(connection, "Starting %s thread (from %s [%d])\n",
398 thi->name, current->comm, current->pid);
399
400 /* Get ref on module for thread - this is released when thread exits */
401 if (!try_module_get(THIS_MODULE)) {
402 drbd_err(connection, "Failed to get module reference in drbd_thread_start\n");
403 spin_unlock_irqrestore(&thi->t_lock, flags);
404 return false;
405 }
406
407 kref_get(&thi->connection->kref);
408
409 init_completion(&thi->stop);
410 thi->reset_cpu_mask = 1;
411 thi->t_state = RUNNING;
412 spin_unlock_irqrestore(&thi->t_lock, flags);
413 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
414
415 nt = kthread_create(drbd_thread_setup, (void *) thi,
416 "drbd_%c_%s", thi->name[0], thi->connection->resource->name);
417
418 if (IS_ERR(nt)) {
419 drbd_err(connection, "Couldn't start thread\n");
420
421 kref_put(&connection->kref, drbd_destroy_connection);
422 module_put(THIS_MODULE);
423 return false;
424 }
425 spin_lock_irqsave(&thi->t_lock, flags);
426 thi->task = nt;
427 thi->t_state = RUNNING;
428 spin_unlock_irqrestore(&thi->t_lock, flags);
429 wake_up_process(nt);
430 break;
431 case EXITING:
432 thi->t_state = RESTARTING;
433 drbd_info(connection, "Restarting %s thread (from %s [%d])\n",
434 thi->name, current->comm, current->pid);
435 /* fall through */
436 case RUNNING:
437 case RESTARTING:
438 default:
439 spin_unlock_irqrestore(&thi->t_lock, flags);
440 break;
441 }
442
443 return true;
444 }
445
446
447 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
448 {
449 unsigned long flags;
450
451 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
452
453 /* may be called from state engine, holding the req lock irqsave */
454 spin_lock_irqsave(&thi->t_lock, flags);
455
456 if (thi->t_state == NONE) {
457 spin_unlock_irqrestore(&thi->t_lock, flags);
458 if (restart)
459 drbd_thread_start(thi);
460 return;
461 }
462
463 if (thi->t_state != ns) {
464 if (thi->task == NULL) {
465 spin_unlock_irqrestore(&thi->t_lock, flags);
466 return;
467 }
468
469 thi->t_state = ns;
470 smp_mb();
471 init_completion(&thi->stop);
472 if (thi->task != current)
473 force_sig(DRBD_SIGKILL, thi->task);
474 }
475
476 spin_unlock_irqrestore(&thi->t_lock, flags);
477
478 if (wait)
479 wait_for_completion(&thi->stop);
480 }
481
482 static struct drbd_thread *drbd_task_to_thread(struct drbd_connection *connection, struct task_struct *task)
483 {
484 struct drbd_thread *thi =
485 task == connection->receiver.task ? &connection->receiver :
486 task == connection->asender.task ? &connection->asender :
487 task == connection->worker.task ? &connection->worker : NULL;
488
489 return thi;
490 }
491
492 char *drbd_task_to_thread_name(struct drbd_connection *connection, struct task_struct *task)
493 {
494 struct drbd_thread *thi = drbd_task_to_thread(connection, task);
495 return thi ? thi->name : task->comm;
496 }
497
498 int conn_lowest_minor(struct drbd_connection *connection)
499 {
500 struct drbd_peer_device *peer_device;
501 int vnr = 0, minor = -1;
502
503 rcu_read_lock();
504 peer_device = idr_get_next(&connection->peer_devices, &vnr);
505 if (peer_device)
506 minor = device_to_minor(peer_device->device);
507 rcu_read_unlock();
508
509 return minor;
510 }
511
512 #ifdef CONFIG_SMP
513 /**
514 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
515 *
516 * Forces all threads of a resource onto the same CPU. This is beneficial for
517 * DRBD's performance. May be overwritten by user's configuration.
518 */
519 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
520 {
521 unsigned int *resources_per_cpu, min_index = ~0;
522
523 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
524 if (resources_per_cpu) {
525 struct drbd_resource *resource;
526 unsigned int cpu, min = ~0;
527
528 rcu_read_lock();
529 for_each_resource_rcu(resource, &drbd_resources) {
530 for_each_cpu(cpu, resource->cpu_mask)
531 resources_per_cpu[cpu]++;
532 }
533 rcu_read_unlock();
534 for_each_online_cpu(cpu) {
535 if (resources_per_cpu[cpu] < min) {
536 min = resources_per_cpu[cpu];
537 min_index = cpu;
538 }
539 }
540 kfree(resources_per_cpu);
541 }
542 if (min_index == ~0) {
543 cpumask_setall(*cpu_mask);
544 return;
545 }
546 cpumask_set_cpu(min_index, *cpu_mask);
547 }
548
549 /**
550 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
551 * @device: DRBD device.
552 * @thi: drbd_thread object
553 *
554 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
555 * prematurely.
556 */
557 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
558 {
559 struct task_struct *p = current;
560
561 if (!thi->reset_cpu_mask)
562 return;
563 thi->reset_cpu_mask = 0;
564 set_cpus_allowed_ptr(p, thi->connection->resource->cpu_mask);
565 }
566 #else
567 #define drbd_calc_cpu_mask(A) ({})
568 #endif
569
570 /**
571 * drbd_header_size - size of a packet header
572 *
573 * The header size is a multiple of 8, so any payload following the header is
574 * word aligned on 64-bit architectures. (The bitmap send and receive code
575 * relies on this.)
576 */
577 unsigned int drbd_header_size(struct drbd_connection *connection)
578 {
579 if (connection->agreed_pro_version >= 100) {
580 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
581 return sizeof(struct p_header100);
582 } else {
583 BUILD_BUG_ON(sizeof(struct p_header80) !=
584 sizeof(struct p_header95));
585 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
586 return sizeof(struct p_header80);
587 }
588 }
589
590 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
591 {
592 h->magic = cpu_to_be32(DRBD_MAGIC);
593 h->command = cpu_to_be16(cmd);
594 h->length = cpu_to_be16(size);
595 return sizeof(struct p_header80);
596 }
597
598 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
599 {
600 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
601 h->command = cpu_to_be16(cmd);
602 h->length = cpu_to_be32(size);
603 return sizeof(struct p_header95);
604 }
605
606 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
607 int size, int vnr)
608 {
609 h->magic = cpu_to_be32(DRBD_MAGIC_100);
610 h->volume = cpu_to_be16(vnr);
611 h->command = cpu_to_be16(cmd);
612 h->length = cpu_to_be32(size);
613 h->pad = 0;
614 return sizeof(struct p_header100);
615 }
616
617 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
618 void *buffer, enum drbd_packet cmd, int size)
619 {
620 if (connection->agreed_pro_version >= 100)
621 return prepare_header100(buffer, cmd, size, vnr);
622 else if (connection->agreed_pro_version >= 95 &&
623 size > DRBD_MAX_SIZE_H80_PACKET)
624 return prepare_header95(buffer, cmd, size);
625 else
626 return prepare_header80(buffer, cmd, size);
627 }
628
629 static void *__conn_prepare_command(struct drbd_connection *connection,
630 struct drbd_socket *sock)
631 {
632 if (!sock->socket)
633 return NULL;
634 return sock->sbuf + drbd_header_size(connection);
635 }
636
637 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
638 {
639 void *p;
640
641 mutex_lock(&sock->mutex);
642 p = __conn_prepare_command(connection, sock);
643 if (!p)
644 mutex_unlock(&sock->mutex);
645
646 return p;
647 }
648
649 void *drbd_prepare_command(struct drbd_device *device, struct drbd_socket *sock)
650 {
651 return conn_prepare_command(first_peer_device(device)->connection, sock);
652 }
653
654 static int __send_command(struct drbd_connection *connection, int vnr,
655 struct drbd_socket *sock, enum drbd_packet cmd,
656 unsigned int header_size, void *data,
657 unsigned int size)
658 {
659 int msg_flags;
660 int err;
661
662 /*
663 * Called with @data == NULL and the size of the data blocks in @size
664 * for commands that send data blocks. For those commands, omit the
665 * MSG_MORE flag: this will increase the likelihood that data blocks
666 * which are page aligned on the sender will end up page aligned on the
667 * receiver.
668 */
669 msg_flags = data ? MSG_MORE : 0;
670
671 header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
672 header_size + size);
673 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
674 msg_flags);
675 if (data && !err)
676 err = drbd_send_all(connection, sock->socket, data, size, 0);
677 return err;
678 }
679
680 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
681 enum drbd_packet cmd, unsigned int header_size,
682 void *data, unsigned int size)
683 {
684 return __send_command(connection, 0, sock, cmd, header_size, data, size);
685 }
686
687 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
688 enum drbd_packet cmd, unsigned int header_size,
689 void *data, unsigned int size)
690 {
691 int err;
692
693 err = __conn_send_command(connection, sock, cmd, header_size, data, size);
694 mutex_unlock(&sock->mutex);
695 return err;
696 }
697
698 int drbd_send_command(struct drbd_device *device, struct drbd_socket *sock,
699 enum drbd_packet cmd, unsigned int header_size,
700 void *data, unsigned int size)
701 {
702 int err;
703
704 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, cmd, header_size,
705 data, size);
706 mutex_unlock(&sock->mutex);
707 return err;
708 }
709
710 int drbd_send_ping(struct drbd_connection *connection)
711 {
712 struct drbd_socket *sock;
713
714 sock = &connection->meta;
715 if (!conn_prepare_command(connection, sock))
716 return -EIO;
717 return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
718 }
719
720 int drbd_send_ping_ack(struct drbd_connection *connection)
721 {
722 struct drbd_socket *sock;
723
724 sock = &connection->meta;
725 if (!conn_prepare_command(connection, sock))
726 return -EIO;
727 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
728 }
729
730 int drbd_send_sync_param(struct drbd_device *device)
731 {
732 struct drbd_socket *sock;
733 struct p_rs_param_95 *p;
734 int size;
735 const int apv = first_peer_device(device)->connection->agreed_pro_version;
736 enum drbd_packet cmd;
737 struct net_conf *nc;
738 struct disk_conf *dc;
739
740 sock = &first_peer_device(device)->connection->data;
741 p = drbd_prepare_command(device, sock);
742 if (!p)
743 return -EIO;
744
745 rcu_read_lock();
746 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
747
748 size = apv <= 87 ? sizeof(struct p_rs_param)
749 : apv == 88 ? sizeof(struct p_rs_param)
750 + strlen(nc->verify_alg) + 1
751 : apv <= 94 ? sizeof(struct p_rs_param_89)
752 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
753
754 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
755
756 /* initialize verify_alg and csums_alg */
757 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
758
759 if (get_ldev(device)) {
760 dc = rcu_dereference(device->ldev->disk_conf);
761 p->resync_rate = cpu_to_be32(dc->resync_rate);
762 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
763 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
764 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
765 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
766 put_ldev(device);
767 } else {
768 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
769 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
770 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
771 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
772 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
773 }
774
775 if (apv >= 88)
776 strcpy(p->verify_alg, nc->verify_alg);
777 if (apv >= 89)
778 strcpy(p->csums_alg, nc->csums_alg);
779 rcu_read_unlock();
780
781 return drbd_send_command(device, sock, cmd, size, NULL, 0);
782 }
783
784 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
785 {
786 struct drbd_socket *sock;
787 struct p_protocol *p;
788 struct net_conf *nc;
789 int size, cf;
790
791 sock = &connection->data;
792 p = __conn_prepare_command(connection, sock);
793 if (!p)
794 return -EIO;
795
796 rcu_read_lock();
797 nc = rcu_dereference(connection->net_conf);
798
799 if (nc->tentative && connection->agreed_pro_version < 92) {
800 rcu_read_unlock();
801 mutex_unlock(&sock->mutex);
802 drbd_err(connection, "--dry-run is not supported by peer");
803 return -EOPNOTSUPP;
804 }
805
806 size = sizeof(*p);
807 if (connection->agreed_pro_version >= 87)
808 size += strlen(nc->integrity_alg) + 1;
809
810 p->protocol = cpu_to_be32(nc->wire_protocol);
811 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
812 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
813 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
814 p->two_primaries = cpu_to_be32(nc->two_primaries);
815 cf = 0;
816 if (nc->discard_my_data)
817 cf |= CF_DISCARD_MY_DATA;
818 if (nc->tentative)
819 cf |= CF_DRY_RUN;
820 p->conn_flags = cpu_to_be32(cf);
821
822 if (connection->agreed_pro_version >= 87)
823 strcpy(p->integrity_alg, nc->integrity_alg);
824 rcu_read_unlock();
825
826 return __conn_send_command(connection, sock, cmd, size, NULL, 0);
827 }
828
829 int drbd_send_protocol(struct drbd_connection *connection)
830 {
831 int err;
832
833 mutex_lock(&connection->data.mutex);
834 err = __drbd_send_protocol(connection, P_PROTOCOL);
835 mutex_unlock(&connection->data.mutex);
836
837 return err;
838 }
839
840 static int _drbd_send_uuids(struct drbd_device *device, u64 uuid_flags)
841 {
842 struct drbd_socket *sock;
843 struct p_uuids *p;
844 int i;
845
846 if (!get_ldev_if_state(device, D_NEGOTIATING))
847 return 0;
848
849 sock = &first_peer_device(device)->connection->data;
850 p = drbd_prepare_command(device, sock);
851 if (!p) {
852 put_ldev(device);
853 return -EIO;
854 }
855 spin_lock_irq(&device->ldev->md.uuid_lock);
856 for (i = UI_CURRENT; i < UI_SIZE; i++)
857 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
858 spin_unlock_irq(&device->ldev->md.uuid_lock);
859
860 device->comm_bm_set = drbd_bm_total_weight(device);
861 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
862 rcu_read_lock();
863 uuid_flags |= rcu_dereference(first_peer_device(device)->connection->net_conf)->discard_my_data ? 1 : 0;
864 rcu_read_unlock();
865 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
866 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
867 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
868
869 put_ldev(device);
870 return drbd_send_command(device, sock, P_UUIDS, sizeof(*p), NULL, 0);
871 }
872
873 int drbd_send_uuids(struct drbd_device *device)
874 {
875 return _drbd_send_uuids(device, 0);
876 }
877
878 int drbd_send_uuids_skip_initial_sync(struct drbd_device *device)
879 {
880 return _drbd_send_uuids(device, 8);
881 }
882
883 void drbd_print_uuids(struct drbd_device *device, const char *text)
884 {
885 if (get_ldev_if_state(device, D_NEGOTIATING)) {
886 u64 *uuid = device->ldev->md.uuid;
887 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
888 text,
889 (unsigned long long)uuid[UI_CURRENT],
890 (unsigned long long)uuid[UI_BITMAP],
891 (unsigned long long)uuid[UI_HISTORY_START],
892 (unsigned long long)uuid[UI_HISTORY_END]);
893 put_ldev(device);
894 } else {
895 drbd_info(device, "%s effective data uuid: %016llX\n",
896 text,
897 (unsigned long long)device->ed_uuid);
898 }
899 }
900
901 void drbd_gen_and_send_sync_uuid(struct drbd_device *device)
902 {
903 struct drbd_socket *sock;
904 struct p_rs_uuid *p;
905 u64 uuid;
906
907 D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
908
909 uuid = device->ldev->md.uuid[UI_BITMAP];
910 if (uuid && uuid != UUID_JUST_CREATED)
911 uuid = uuid + UUID_NEW_BM_OFFSET;
912 else
913 get_random_bytes(&uuid, sizeof(u64));
914 drbd_uuid_set(device, UI_BITMAP, uuid);
915 drbd_print_uuids(device, "updated sync UUID");
916 drbd_md_sync(device);
917
918 sock = &first_peer_device(device)->connection->data;
919 p = drbd_prepare_command(device, sock);
920 if (p) {
921 p->uuid = cpu_to_be64(uuid);
922 drbd_send_command(device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
923 }
924 }
925
926 int drbd_send_sizes(struct drbd_device *device, int trigger_reply, enum dds_flags flags)
927 {
928 struct drbd_socket *sock;
929 struct p_sizes *p;
930 sector_t d_size, u_size;
931 int q_order_type;
932 unsigned int max_bio_size;
933
934 if (get_ldev_if_state(device, D_NEGOTIATING)) {
935 D_ASSERT(device, device->ldev->backing_bdev);
936 d_size = drbd_get_max_capacity(device->ldev);
937 rcu_read_lock();
938 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
939 rcu_read_unlock();
940 q_order_type = drbd_queue_order_type(device);
941 max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
942 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
943 put_ldev(device);
944 } else {
945 d_size = 0;
946 u_size = 0;
947 q_order_type = QUEUE_ORDERED_NONE;
948 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
949 }
950
951 sock = &first_peer_device(device)->connection->data;
952 p = drbd_prepare_command(device, sock);
953 if (!p)
954 return -EIO;
955
956 if (first_peer_device(device)->connection->agreed_pro_version <= 94)
957 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
958 else if (first_peer_device(device)->connection->agreed_pro_version < 100)
959 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
960
961 p->d_size = cpu_to_be64(d_size);
962 p->u_size = cpu_to_be64(u_size);
963 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
964 p->max_bio_size = cpu_to_be32(max_bio_size);
965 p->queue_order_type = cpu_to_be16(q_order_type);
966 p->dds_flags = cpu_to_be16(flags);
967 return drbd_send_command(device, sock, P_SIZES, sizeof(*p), NULL, 0);
968 }
969
970 /**
971 * drbd_send_current_state() - Sends the drbd state to the peer
972 * @device: DRBD device.
973 */
974 int drbd_send_current_state(struct drbd_device *device)
975 {
976 struct drbd_socket *sock;
977 struct p_state *p;
978
979 sock = &first_peer_device(device)->connection->data;
980 p = drbd_prepare_command(device, sock);
981 if (!p)
982 return -EIO;
983 p->state = cpu_to_be32(device->state.i); /* Within the send mutex */
984 return drbd_send_command(device, sock, P_STATE, sizeof(*p), NULL, 0);
985 }
986
987 /**
988 * drbd_send_state() - After a state change, sends the new state to the peer
989 * @device: DRBD device.
990 * @state: the state to send, not necessarily the current state.
991 *
992 * Each state change queues an "after_state_ch" work, which will eventually
993 * send the resulting new state to the peer. If more state changes happen
994 * between queuing and processing of the after_state_ch work, we still
995 * want to send each intermediary state in the order it occurred.
996 */
997 int drbd_send_state(struct drbd_device *device, union drbd_state state)
998 {
999 struct drbd_socket *sock;
1000 struct p_state *p;
1001
1002 sock = &first_peer_device(device)->connection->data;
1003 p = drbd_prepare_command(device, sock);
1004 if (!p)
1005 return -EIO;
1006 p->state = cpu_to_be32(state.i); /* Within the send mutex */
1007 return drbd_send_command(device, sock, P_STATE, sizeof(*p), NULL, 0);
1008 }
1009
1010 int drbd_send_state_req(struct drbd_device *device, union drbd_state mask, union drbd_state val)
1011 {
1012 struct drbd_socket *sock;
1013 struct p_req_state *p;
1014
1015 sock = &first_peer_device(device)->connection->data;
1016 p = drbd_prepare_command(device, sock);
1017 if (!p)
1018 return -EIO;
1019 p->mask = cpu_to_be32(mask.i);
1020 p->val = cpu_to_be32(val.i);
1021 return drbd_send_command(device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1022 }
1023
1024 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1025 {
1026 enum drbd_packet cmd;
1027 struct drbd_socket *sock;
1028 struct p_req_state *p;
1029
1030 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1031 sock = &connection->data;
1032 p = conn_prepare_command(connection, sock);
1033 if (!p)
1034 return -EIO;
1035 p->mask = cpu_to_be32(mask.i);
1036 p->val = cpu_to_be32(val.i);
1037 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1038 }
1039
1040 void drbd_send_sr_reply(struct drbd_device *device, enum drbd_state_rv retcode)
1041 {
1042 struct drbd_socket *sock;
1043 struct p_req_state_reply *p;
1044
1045 sock = &first_peer_device(device)->connection->meta;
1046 p = drbd_prepare_command(device, sock);
1047 if (p) {
1048 p->retcode = cpu_to_be32(retcode);
1049 drbd_send_command(device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1050 }
1051 }
1052
1053 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1054 {
1055 struct drbd_socket *sock;
1056 struct p_req_state_reply *p;
1057 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1058
1059 sock = &connection->meta;
1060 p = conn_prepare_command(connection, sock);
1061 if (p) {
1062 p->retcode = cpu_to_be32(retcode);
1063 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1064 }
1065 }
1066
1067 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1068 {
1069 BUG_ON(code & ~0xf);
1070 p->encoding = (p->encoding & ~0xf) | code;
1071 }
1072
1073 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1074 {
1075 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1076 }
1077
1078 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1079 {
1080 BUG_ON(n & ~0x7);
1081 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1082 }
1083
1084 static int fill_bitmap_rle_bits(struct drbd_device *device,
1085 struct p_compressed_bm *p,
1086 unsigned int size,
1087 struct bm_xfer_ctx *c)
1088 {
1089 struct bitstream bs;
1090 unsigned long plain_bits;
1091 unsigned long tmp;
1092 unsigned long rl;
1093 unsigned len;
1094 unsigned toggle;
1095 int bits, use_rle;
1096
1097 /* may we use this feature? */
1098 rcu_read_lock();
1099 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1100 rcu_read_unlock();
1101 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1102 return 0;
1103
1104 if (c->bit_offset >= c->bm_bits)
1105 return 0; /* nothing to do. */
1106
1107 /* use at most thus many bytes */
1108 bitstream_init(&bs, p->code, size, 0);
1109 memset(p->code, 0, size);
1110 /* plain bits covered in this code string */
1111 plain_bits = 0;
1112
1113 /* p->encoding & 0x80 stores whether the first run length is set.
1114 * bit offset is implicit.
1115 * start with toggle == 2 to be able to tell the first iteration */
1116 toggle = 2;
1117
1118 /* see how much plain bits we can stuff into one packet
1119 * using RLE and VLI. */
1120 do {
1121 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1122 : _drbd_bm_find_next(device, c->bit_offset);
1123 if (tmp == -1UL)
1124 tmp = c->bm_bits;
1125 rl = tmp - c->bit_offset;
1126
1127 if (toggle == 2) { /* first iteration */
1128 if (rl == 0) {
1129 /* the first checked bit was set,
1130 * store start value, */
1131 dcbp_set_start(p, 1);
1132 /* but skip encoding of zero run length */
1133 toggle = !toggle;
1134 continue;
1135 }
1136 dcbp_set_start(p, 0);
1137 }
1138
1139 /* paranoia: catch zero runlength.
1140 * can only happen if bitmap is modified while we scan it. */
1141 if (rl == 0) {
1142 drbd_err(device, "unexpected zero runlength while encoding bitmap "
1143 "t:%u bo:%lu\n", toggle, c->bit_offset);
1144 return -1;
1145 }
1146
1147 bits = vli_encode_bits(&bs, rl);
1148 if (bits == -ENOBUFS) /* buffer full */
1149 break;
1150 if (bits <= 0) {
1151 drbd_err(device, "error while encoding bitmap: %d\n", bits);
1152 return 0;
1153 }
1154
1155 toggle = !toggle;
1156 plain_bits += rl;
1157 c->bit_offset = tmp;
1158 } while (c->bit_offset < c->bm_bits);
1159
1160 len = bs.cur.b - p->code + !!bs.cur.bit;
1161
1162 if (plain_bits < (len << 3)) {
1163 /* incompressible with this method.
1164 * we need to rewind both word and bit position. */
1165 c->bit_offset -= plain_bits;
1166 bm_xfer_ctx_bit_to_word_offset(c);
1167 c->bit_offset = c->word_offset * BITS_PER_LONG;
1168 return 0;
1169 }
1170
1171 /* RLE + VLI was able to compress it just fine.
1172 * update c->word_offset. */
1173 bm_xfer_ctx_bit_to_word_offset(c);
1174
1175 /* store pad_bits */
1176 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1177
1178 return len;
1179 }
1180
1181 /**
1182 * send_bitmap_rle_or_plain
1183 *
1184 * Return 0 when done, 1 when another iteration is needed, and a negative error
1185 * code upon failure.
1186 */
1187 static int
1188 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1189 {
1190 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1191 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1192 struct p_compressed_bm *p = sock->sbuf + header_size;
1193 int len, err;
1194
1195 len = fill_bitmap_rle_bits(device, p,
1196 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1197 if (len < 0)
1198 return -EIO;
1199
1200 if (len) {
1201 dcbp_set_code(p, RLE_VLI_Bits);
1202 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1203 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1204 NULL, 0);
1205 c->packets[0]++;
1206 c->bytes[0] += header_size + sizeof(*p) + len;
1207
1208 if (c->bit_offset >= c->bm_bits)
1209 len = 0; /* DONE */
1210 } else {
1211 /* was not compressible.
1212 * send a buffer full of plain text bits instead. */
1213 unsigned int data_size;
1214 unsigned long num_words;
1215 unsigned long *p = sock->sbuf + header_size;
1216
1217 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1218 num_words = min_t(size_t, data_size / sizeof(*p),
1219 c->bm_words - c->word_offset);
1220 len = num_words * sizeof(*p);
1221 if (len)
1222 drbd_bm_get_lel(device, c->word_offset, num_words, p);
1223 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1224 c->word_offset += num_words;
1225 c->bit_offset = c->word_offset * BITS_PER_LONG;
1226
1227 c->packets[1]++;
1228 c->bytes[1] += header_size + len;
1229
1230 if (c->bit_offset > c->bm_bits)
1231 c->bit_offset = c->bm_bits;
1232 }
1233 if (!err) {
1234 if (len == 0) {
1235 INFO_bm_xfer_stats(device, "send", c);
1236 return 0;
1237 } else
1238 return 1;
1239 }
1240 return -EIO;
1241 }
1242
1243 /* See the comment at receive_bitmap() */
1244 static int _drbd_send_bitmap(struct drbd_device *device)
1245 {
1246 struct bm_xfer_ctx c;
1247 int err;
1248
1249 if (!expect(device->bitmap))
1250 return false;
1251
1252 if (get_ldev(device)) {
1253 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1254 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1255 drbd_bm_set_all(device);
1256 if (drbd_bm_write(device)) {
1257 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1258 * but otherwise process as per normal - need to tell other
1259 * side that a full resync is required! */
1260 drbd_err(device, "Failed to write bitmap to disk!\n");
1261 } else {
1262 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1263 drbd_md_sync(device);
1264 }
1265 }
1266 put_ldev(device);
1267 }
1268
1269 c = (struct bm_xfer_ctx) {
1270 .bm_bits = drbd_bm_bits(device),
1271 .bm_words = drbd_bm_words(device),
1272 };
1273
1274 do {
1275 err = send_bitmap_rle_or_plain(device, &c);
1276 } while (err > 0);
1277
1278 return err == 0;
1279 }
1280
1281 int drbd_send_bitmap(struct drbd_device *device)
1282 {
1283 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1284 int err = -1;
1285
1286 mutex_lock(&sock->mutex);
1287 if (sock->socket)
1288 err = !_drbd_send_bitmap(device);
1289 mutex_unlock(&sock->mutex);
1290 return err;
1291 }
1292
1293 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1294 {
1295 struct drbd_socket *sock;
1296 struct p_barrier_ack *p;
1297
1298 if (connection->cstate < C_WF_REPORT_PARAMS)
1299 return;
1300
1301 sock = &connection->meta;
1302 p = conn_prepare_command(connection, sock);
1303 if (!p)
1304 return;
1305 p->barrier = barrier_nr;
1306 p->set_size = cpu_to_be32(set_size);
1307 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1308 }
1309
1310 /**
1311 * _drbd_send_ack() - Sends an ack packet
1312 * @device: DRBD device.
1313 * @cmd: Packet command code.
1314 * @sector: sector, needs to be in big endian byte order
1315 * @blksize: size in byte, needs to be in big endian byte order
1316 * @block_id: Id, big endian byte order
1317 */
1318 static int _drbd_send_ack(struct drbd_device *device, enum drbd_packet cmd,
1319 u64 sector, u32 blksize, u64 block_id)
1320 {
1321 struct drbd_socket *sock;
1322 struct p_block_ack *p;
1323
1324 if (device->state.conn < C_CONNECTED)
1325 return -EIO;
1326
1327 sock = &first_peer_device(device)->connection->meta;
1328 p = drbd_prepare_command(device, sock);
1329 if (!p)
1330 return -EIO;
1331 p->sector = sector;
1332 p->block_id = block_id;
1333 p->blksize = blksize;
1334 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1335 return drbd_send_command(device, sock, cmd, sizeof(*p), NULL, 0);
1336 }
1337
1338 /* dp->sector and dp->block_id already/still in network byte order,
1339 * data_size is payload size according to dp->head,
1340 * and may need to be corrected for digest size. */
1341 void drbd_send_ack_dp(struct drbd_device *device, enum drbd_packet cmd,
1342 struct p_data *dp, int data_size)
1343 {
1344 if (first_peer_device(device)->connection->peer_integrity_tfm)
1345 data_size -= crypto_hash_digestsize(first_peer_device(device)->connection->peer_integrity_tfm);
1346 _drbd_send_ack(device, cmd, dp->sector, cpu_to_be32(data_size),
1347 dp->block_id);
1348 }
1349
1350 void drbd_send_ack_rp(struct drbd_device *device, enum drbd_packet cmd,
1351 struct p_block_req *rp)
1352 {
1353 _drbd_send_ack(device, cmd, rp->sector, rp->blksize, rp->block_id);
1354 }
1355
1356 /**
1357 * drbd_send_ack() - Sends an ack packet
1358 * @device: DRBD device
1359 * @cmd: packet command code
1360 * @peer_req: peer request
1361 */
1362 int drbd_send_ack(struct drbd_device *device, enum drbd_packet cmd,
1363 struct drbd_peer_request *peer_req)
1364 {
1365 return _drbd_send_ack(device, cmd,
1366 cpu_to_be64(peer_req->i.sector),
1367 cpu_to_be32(peer_req->i.size),
1368 peer_req->block_id);
1369 }
1370
1371 /* This function misuses the block_id field to signal if the blocks
1372 * are is sync or not. */
1373 int drbd_send_ack_ex(struct drbd_device *device, enum drbd_packet cmd,
1374 sector_t sector, int blksize, u64 block_id)
1375 {
1376 return _drbd_send_ack(device, cmd,
1377 cpu_to_be64(sector),
1378 cpu_to_be32(blksize),
1379 cpu_to_be64(block_id));
1380 }
1381
1382 int drbd_send_drequest(struct drbd_device *device, int cmd,
1383 sector_t sector, int size, u64 block_id)
1384 {
1385 struct drbd_socket *sock;
1386 struct p_block_req *p;
1387
1388 sock = &first_peer_device(device)->connection->data;
1389 p = drbd_prepare_command(device, sock);
1390 if (!p)
1391 return -EIO;
1392 p->sector = cpu_to_be64(sector);
1393 p->block_id = block_id;
1394 p->blksize = cpu_to_be32(size);
1395 return drbd_send_command(device, sock, cmd, sizeof(*p), NULL, 0);
1396 }
1397
1398 int drbd_send_drequest_csum(struct drbd_device *device, sector_t sector, int size,
1399 void *digest, int digest_size, enum drbd_packet cmd)
1400 {
1401 struct drbd_socket *sock;
1402 struct p_block_req *p;
1403
1404 /* FIXME: Put the digest into the preallocated socket buffer. */
1405
1406 sock = &first_peer_device(device)->connection->data;
1407 p = drbd_prepare_command(device, sock);
1408 if (!p)
1409 return -EIO;
1410 p->sector = cpu_to_be64(sector);
1411 p->block_id = ID_SYNCER /* unused */;
1412 p->blksize = cpu_to_be32(size);
1413 return drbd_send_command(device, sock, cmd, sizeof(*p),
1414 digest, digest_size);
1415 }
1416
1417 int drbd_send_ov_request(struct drbd_device *device, sector_t sector, int size)
1418 {
1419 struct drbd_socket *sock;
1420 struct p_block_req *p;
1421
1422 sock = &first_peer_device(device)->connection->data;
1423 p = drbd_prepare_command(device, sock);
1424 if (!p)
1425 return -EIO;
1426 p->sector = cpu_to_be64(sector);
1427 p->block_id = ID_SYNCER /* unused */;
1428 p->blksize = cpu_to_be32(size);
1429 return drbd_send_command(device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1430 }
1431
1432 /* called on sndtimeo
1433 * returns false if we should retry,
1434 * true if we think connection is dead
1435 */
1436 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1437 {
1438 int drop_it;
1439 /* long elapsed = (long)(jiffies - device->last_received); */
1440
1441 drop_it = connection->meta.socket == sock
1442 || !connection->asender.task
1443 || get_t_state(&connection->asender) != RUNNING
1444 || connection->cstate < C_WF_REPORT_PARAMS;
1445
1446 if (drop_it)
1447 return true;
1448
1449 drop_it = !--connection->ko_count;
1450 if (!drop_it) {
1451 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1452 current->comm, current->pid, connection->ko_count);
1453 request_ping(connection);
1454 }
1455
1456 return drop_it; /* && (device->state == R_PRIMARY) */;
1457 }
1458
1459 static void drbd_update_congested(struct drbd_connection *connection)
1460 {
1461 struct sock *sk = connection->data.socket->sk;
1462 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1463 set_bit(NET_CONGESTED, &connection->flags);
1464 }
1465
1466 /* The idea of sendpage seems to be to put some kind of reference
1467 * to the page into the skb, and to hand it over to the NIC. In
1468 * this process get_page() gets called.
1469 *
1470 * As soon as the page was really sent over the network put_page()
1471 * gets called by some part of the network layer. [ NIC driver? ]
1472 *
1473 * [ get_page() / put_page() increment/decrement the count. If count
1474 * reaches 0 the page will be freed. ]
1475 *
1476 * This works nicely with pages from FSs.
1477 * But this means that in protocol A we might signal IO completion too early!
1478 *
1479 * In order not to corrupt data during a resync we must make sure
1480 * that we do not reuse our own buffer pages (EEs) to early, therefore
1481 * we have the net_ee list.
1482 *
1483 * XFS seems to have problems, still, it submits pages with page_count == 0!
1484 * As a workaround, we disable sendpage on pages
1485 * with page_count == 0 or PageSlab.
1486 */
1487 static int _drbd_no_send_page(struct drbd_device *device, struct page *page,
1488 int offset, size_t size, unsigned msg_flags)
1489 {
1490 struct socket *socket;
1491 void *addr;
1492 int err;
1493
1494 socket = first_peer_device(device)->connection->data.socket;
1495 addr = kmap(page) + offset;
1496 err = drbd_send_all(first_peer_device(device)->connection, socket, addr, size, msg_flags);
1497 kunmap(page);
1498 if (!err)
1499 device->send_cnt += size >> 9;
1500 return err;
1501 }
1502
1503 static int _drbd_send_page(struct drbd_device *device, struct page *page,
1504 int offset, size_t size, unsigned msg_flags)
1505 {
1506 struct socket *socket = first_peer_device(device)->connection->data.socket;
1507 mm_segment_t oldfs = get_fs();
1508 int len = size;
1509 int err = -EIO;
1510
1511 /* e.g. XFS meta- & log-data is in slab pages, which have a
1512 * page_count of 0 and/or have PageSlab() set.
1513 * we cannot use send_page for those, as that does get_page();
1514 * put_page(); and would cause either a VM_BUG directly, or
1515 * __page_cache_release a page that would actually still be referenced
1516 * by someone, leading to some obscure delayed Oops somewhere else. */
1517 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1518 return _drbd_no_send_page(device, page, offset, size, msg_flags);
1519
1520 msg_flags |= MSG_NOSIGNAL;
1521 drbd_update_congested(first_peer_device(device)->connection);
1522 set_fs(KERNEL_DS);
1523 do {
1524 int sent;
1525
1526 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1527 if (sent <= 0) {
1528 if (sent == -EAGAIN) {
1529 if (we_should_drop_the_connection(first_peer_device(device)->connection, socket))
1530 break;
1531 continue;
1532 }
1533 drbd_warn(device, "%s: size=%d len=%d sent=%d\n",
1534 __func__, (int)size, len, sent);
1535 if (sent < 0)
1536 err = sent;
1537 break;
1538 }
1539 len -= sent;
1540 offset += sent;
1541 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1542 set_fs(oldfs);
1543 clear_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags);
1544
1545 if (len == 0) {
1546 err = 0;
1547 device->send_cnt += size >> 9;
1548 }
1549 return err;
1550 }
1551
1552 static int _drbd_send_bio(struct drbd_device *device, struct bio *bio)
1553 {
1554 struct bio_vec bvec;
1555 struct bvec_iter iter;
1556
1557 /* hint all but last page with MSG_MORE */
1558 bio_for_each_segment(bvec, bio, iter) {
1559 int err;
1560
1561 err = _drbd_no_send_page(device, bvec.bv_page,
1562 bvec.bv_offset, bvec.bv_len,
1563 bio_iter_last(bvec, iter)
1564 ? 0 : MSG_MORE);
1565 if (err)
1566 return err;
1567 }
1568 return 0;
1569 }
1570
1571 static int _drbd_send_zc_bio(struct drbd_device *device, struct bio *bio)
1572 {
1573 struct bio_vec bvec;
1574 struct bvec_iter iter;
1575
1576 /* hint all but last page with MSG_MORE */
1577 bio_for_each_segment(bvec, bio, iter) {
1578 int err;
1579
1580 err = _drbd_send_page(device, bvec.bv_page,
1581 bvec.bv_offset, bvec.bv_len,
1582 bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1583 if (err)
1584 return err;
1585 }
1586 return 0;
1587 }
1588
1589 static int _drbd_send_zc_ee(struct drbd_device *device,
1590 struct drbd_peer_request *peer_req)
1591 {
1592 struct page *page = peer_req->pages;
1593 unsigned len = peer_req->i.size;
1594 int err;
1595
1596 /* hint all but last page with MSG_MORE */
1597 page_chain_for_each(page) {
1598 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1599
1600 err = _drbd_send_page(device, page, 0, l,
1601 page_chain_next(page) ? MSG_MORE : 0);
1602 if (err)
1603 return err;
1604 len -= l;
1605 }
1606 return 0;
1607 }
1608
1609 static u32 bio_flags_to_wire(struct drbd_device *device, unsigned long bi_rw)
1610 {
1611 if (first_peer_device(device)->connection->agreed_pro_version >= 95)
1612 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1613 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1614 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1615 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1616 else
1617 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1618 }
1619
1620 /* Used to send write requests
1621 * R_PRIMARY -> Peer (P_DATA)
1622 */
1623 int drbd_send_dblock(struct drbd_device *device, struct drbd_request *req)
1624 {
1625 struct drbd_socket *sock;
1626 struct p_data *p;
1627 unsigned int dp_flags = 0;
1628 int dgs;
1629 int err;
1630
1631 sock = &first_peer_device(device)->connection->data;
1632 p = drbd_prepare_command(device, sock);
1633 dgs = first_peer_device(device)->connection->integrity_tfm ?
1634 crypto_hash_digestsize(first_peer_device(device)->connection->integrity_tfm) : 0;
1635
1636 if (!p)
1637 return -EIO;
1638 p->sector = cpu_to_be64(req->i.sector);
1639 p->block_id = (unsigned long)req;
1640 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1641 dp_flags = bio_flags_to_wire(device, req->master_bio->bi_rw);
1642 if (device->state.conn >= C_SYNC_SOURCE &&
1643 device->state.conn <= C_PAUSED_SYNC_T)
1644 dp_flags |= DP_MAY_SET_IN_SYNC;
1645 if (first_peer_device(device)->connection->agreed_pro_version >= 100) {
1646 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1647 dp_flags |= DP_SEND_RECEIVE_ACK;
1648 if (req->rq_state & RQ_EXP_WRITE_ACK)
1649 dp_flags |= DP_SEND_WRITE_ACK;
1650 }
1651 p->dp_flags = cpu_to_be32(dp_flags);
1652 if (dgs)
1653 drbd_csum_bio(device, first_peer_device(device)->connection->integrity_tfm, req->master_bio, p + 1);
1654 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1655 if (!err) {
1656 /* For protocol A, we have to memcpy the payload into
1657 * socket buffers, as we may complete right away
1658 * as soon as we handed it over to tcp, at which point the data
1659 * pages may become invalid.
1660 *
1661 * For data-integrity enabled, we copy it as well, so we can be
1662 * sure that even if the bio pages may still be modified, it
1663 * won't change the data on the wire, thus if the digest checks
1664 * out ok after sending on this side, but does not fit on the
1665 * receiving side, we sure have detected corruption elsewhere.
1666 */
1667 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1668 err = _drbd_send_bio(device, req->master_bio);
1669 else
1670 err = _drbd_send_zc_bio(device, req->master_bio);
1671
1672 /* double check digest, sometimes buffers have been modified in flight. */
1673 if (dgs > 0 && dgs <= 64) {
1674 /* 64 byte, 512 bit, is the largest digest size
1675 * currently supported in kernel crypto. */
1676 unsigned char digest[64];
1677 drbd_csum_bio(device, first_peer_device(device)->connection->integrity_tfm, req->master_bio, digest);
1678 if (memcmp(p + 1, digest, dgs)) {
1679 drbd_warn(device,
1680 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1681 (unsigned long long)req->i.sector, req->i.size);
1682 }
1683 } /* else if (dgs > 64) {
1684 ... Be noisy about digest too large ...
1685 } */
1686 }
1687 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1688
1689 return err;
1690 }
1691
1692 /* answer packet, used to send data back for read requests:
1693 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1694 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1695 */
1696 int drbd_send_block(struct drbd_device *device, enum drbd_packet cmd,
1697 struct drbd_peer_request *peer_req)
1698 {
1699 struct drbd_socket *sock;
1700 struct p_data *p;
1701 int err;
1702 int dgs;
1703
1704 sock = &first_peer_device(device)->connection->data;
1705 p = drbd_prepare_command(device, sock);
1706
1707 dgs = first_peer_device(device)->connection->integrity_tfm ?
1708 crypto_hash_digestsize(first_peer_device(device)->connection->integrity_tfm) : 0;
1709
1710 if (!p)
1711 return -EIO;
1712 p->sector = cpu_to_be64(peer_req->i.sector);
1713 p->block_id = peer_req->block_id;
1714 p->seq_num = 0; /* unused */
1715 p->dp_flags = 0;
1716 if (dgs)
1717 drbd_csum_ee(device, first_peer_device(device)->connection->integrity_tfm, peer_req, p + 1);
1718 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1719 if (!err)
1720 err = _drbd_send_zc_ee(device, peer_req);
1721 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1722
1723 return err;
1724 }
1725
1726 int drbd_send_out_of_sync(struct drbd_device *device, struct drbd_request *req)
1727 {
1728 struct drbd_socket *sock;
1729 struct p_block_desc *p;
1730
1731 sock = &first_peer_device(device)->connection->data;
1732 p = drbd_prepare_command(device, sock);
1733 if (!p)
1734 return -EIO;
1735 p->sector = cpu_to_be64(req->i.sector);
1736 p->blksize = cpu_to_be32(req->i.size);
1737 return drbd_send_command(device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1738 }
1739
1740 /*
1741 drbd_send distinguishes two cases:
1742
1743 Packets sent via the data socket "sock"
1744 and packets sent via the meta data socket "msock"
1745
1746 sock msock
1747 -----------------+-------------------------+------------------------------
1748 timeout conf.timeout / 2 conf.timeout / 2
1749 timeout action send a ping via msock Abort communication
1750 and close all sockets
1751 */
1752
1753 /*
1754 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1755 */
1756 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1757 void *buf, size_t size, unsigned msg_flags)
1758 {
1759 struct kvec iov;
1760 struct msghdr msg;
1761 int rv, sent = 0;
1762
1763 if (!sock)
1764 return -EBADR;
1765
1766 /* THINK if (signal_pending) return ... ? */
1767
1768 iov.iov_base = buf;
1769 iov.iov_len = size;
1770
1771 msg.msg_name = NULL;
1772 msg.msg_namelen = 0;
1773 msg.msg_control = NULL;
1774 msg.msg_controllen = 0;
1775 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1776
1777 if (sock == connection->data.socket) {
1778 rcu_read_lock();
1779 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1780 rcu_read_unlock();
1781 drbd_update_congested(connection);
1782 }
1783 do {
1784 /* STRANGE
1785 * tcp_sendmsg does _not_ use its size parameter at all ?
1786 *
1787 * -EAGAIN on timeout, -EINTR on signal.
1788 */
1789 /* THINK
1790 * do we need to block DRBD_SIG if sock == &meta.socket ??
1791 * otherwise wake_asender() might interrupt some send_*Ack !
1792 */
1793 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1794 if (rv == -EAGAIN) {
1795 if (we_should_drop_the_connection(connection, sock))
1796 break;
1797 else
1798 continue;
1799 }
1800 if (rv == -EINTR) {
1801 flush_signals(current);
1802 rv = 0;
1803 }
1804 if (rv < 0)
1805 break;
1806 sent += rv;
1807 iov.iov_base += rv;
1808 iov.iov_len -= rv;
1809 } while (sent < size);
1810
1811 if (sock == connection->data.socket)
1812 clear_bit(NET_CONGESTED, &connection->flags);
1813
1814 if (rv <= 0) {
1815 if (rv != -EAGAIN) {
1816 drbd_err(connection, "%s_sendmsg returned %d\n",
1817 sock == connection->meta.socket ? "msock" : "sock",
1818 rv);
1819 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1820 } else
1821 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1822 }
1823
1824 return sent;
1825 }
1826
1827 /**
1828 * drbd_send_all - Send an entire buffer
1829 *
1830 * Returns 0 upon success and a negative error value otherwise.
1831 */
1832 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1833 size_t size, unsigned msg_flags)
1834 {
1835 int err;
1836
1837 err = drbd_send(connection, sock, buffer, size, msg_flags);
1838 if (err < 0)
1839 return err;
1840 if (err != size)
1841 return -EIO;
1842 return 0;
1843 }
1844
1845 static int drbd_open(struct block_device *bdev, fmode_t mode)
1846 {
1847 struct drbd_device *device = bdev->bd_disk->private_data;
1848 unsigned long flags;
1849 int rv = 0;
1850
1851 mutex_lock(&drbd_main_mutex);
1852 spin_lock_irqsave(&device->resource->req_lock, flags);
1853 /* to have a stable device->state.role
1854 * and no race with updating open_cnt */
1855
1856 if (device->state.role != R_PRIMARY) {
1857 if (mode & FMODE_WRITE)
1858 rv = -EROFS;
1859 else if (!allow_oos)
1860 rv = -EMEDIUMTYPE;
1861 }
1862
1863 if (!rv)
1864 device->open_cnt++;
1865 spin_unlock_irqrestore(&device->resource->req_lock, flags);
1866 mutex_unlock(&drbd_main_mutex);
1867
1868 return rv;
1869 }
1870
1871 static void drbd_release(struct gendisk *gd, fmode_t mode)
1872 {
1873 struct drbd_device *device = gd->private_data;
1874 mutex_lock(&drbd_main_mutex);
1875 device->open_cnt--;
1876 mutex_unlock(&drbd_main_mutex);
1877 }
1878
1879 static void drbd_set_defaults(struct drbd_device *device)
1880 {
1881 /* Beware! The actual layout differs
1882 * between big endian and little endian */
1883 device->state = (union drbd_dev_state) {
1884 { .role = R_SECONDARY,
1885 .peer = R_UNKNOWN,
1886 .conn = C_STANDALONE,
1887 .disk = D_DISKLESS,
1888 .pdsk = D_UNKNOWN,
1889 } };
1890 }
1891
1892 void drbd_init_set_defaults(struct drbd_device *device)
1893 {
1894 /* the memset(,0,) did most of this.
1895 * note: only assignments, no allocation in here */
1896
1897 drbd_set_defaults(device);
1898
1899 atomic_set(&device->ap_bio_cnt, 0);
1900 atomic_set(&device->ap_pending_cnt, 0);
1901 atomic_set(&device->rs_pending_cnt, 0);
1902 atomic_set(&device->unacked_cnt, 0);
1903 atomic_set(&device->local_cnt, 0);
1904 atomic_set(&device->pp_in_use_by_net, 0);
1905 atomic_set(&device->rs_sect_in, 0);
1906 atomic_set(&device->rs_sect_ev, 0);
1907 atomic_set(&device->ap_in_flight, 0);
1908 atomic_set(&device->md_io_in_use, 0);
1909
1910 mutex_init(&device->own_state_mutex);
1911 device->state_mutex = &device->own_state_mutex;
1912
1913 spin_lock_init(&device->al_lock);
1914 spin_lock_init(&device->peer_seq_lock);
1915
1916 INIT_LIST_HEAD(&device->active_ee);
1917 INIT_LIST_HEAD(&device->sync_ee);
1918 INIT_LIST_HEAD(&device->done_ee);
1919 INIT_LIST_HEAD(&device->read_ee);
1920 INIT_LIST_HEAD(&device->net_ee);
1921 INIT_LIST_HEAD(&device->resync_reads);
1922 INIT_LIST_HEAD(&device->resync_work.list);
1923 INIT_LIST_HEAD(&device->unplug_work.list);
1924 INIT_LIST_HEAD(&device->go_diskless.list);
1925 INIT_LIST_HEAD(&device->md_sync_work.list);
1926 INIT_LIST_HEAD(&device->start_resync_work.list);
1927 INIT_LIST_HEAD(&device->bm_io_work.w.list);
1928
1929 device->resync_work.cb = w_resync_timer;
1930 device->unplug_work.cb = w_send_write_hint;
1931 device->go_diskless.cb = w_go_diskless;
1932 device->md_sync_work.cb = w_md_sync;
1933 device->bm_io_work.w.cb = w_bitmap_io;
1934 device->start_resync_work.cb = w_start_resync;
1935
1936 device->resync_work.device = device;
1937 device->unplug_work.device = device;
1938 device->go_diskless.device = device;
1939 device->md_sync_work.device = device;
1940 device->bm_io_work.w.device = device;
1941 device->start_resync_work.device = device;
1942
1943 init_timer(&device->resync_timer);
1944 init_timer(&device->md_sync_timer);
1945 init_timer(&device->start_resync_timer);
1946 init_timer(&device->request_timer);
1947 device->resync_timer.function = resync_timer_fn;
1948 device->resync_timer.data = (unsigned long) device;
1949 device->md_sync_timer.function = md_sync_timer_fn;
1950 device->md_sync_timer.data = (unsigned long) device;
1951 device->start_resync_timer.function = start_resync_timer_fn;
1952 device->start_resync_timer.data = (unsigned long) device;
1953 device->request_timer.function = request_timer_fn;
1954 device->request_timer.data = (unsigned long) device;
1955
1956 init_waitqueue_head(&device->misc_wait);
1957 init_waitqueue_head(&device->state_wait);
1958 init_waitqueue_head(&device->ee_wait);
1959 init_waitqueue_head(&device->al_wait);
1960 init_waitqueue_head(&device->seq_wait);
1961
1962 device->resync_wenr = LC_FREE;
1963 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1964 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1965 }
1966
1967 void drbd_device_cleanup(struct drbd_device *device)
1968 {
1969 int i;
1970 if (first_peer_device(device)->connection->receiver.t_state != NONE)
1971 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1972 first_peer_device(device)->connection->receiver.t_state);
1973
1974 device->al_writ_cnt =
1975 device->bm_writ_cnt =
1976 device->read_cnt =
1977 device->recv_cnt =
1978 device->send_cnt =
1979 device->writ_cnt =
1980 device->p_size =
1981 device->rs_start =
1982 device->rs_total =
1983 device->rs_failed = 0;
1984 device->rs_last_events = 0;
1985 device->rs_last_sect_ev = 0;
1986 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1987 device->rs_mark_left[i] = 0;
1988 device->rs_mark_time[i] = 0;
1989 }
1990 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
1991
1992 drbd_set_my_capacity(device, 0);
1993 if (device->bitmap) {
1994 /* maybe never allocated. */
1995 drbd_bm_resize(device, 0, 1);
1996 drbd_bm_cleanup(device);
1997 }
1998
1999 drbd_free_bc(device->ldev);
2000 device->ldev = NULL;
2001
2002 clear_bit(AL_SUSPENDED, &device->flags);
2003
2004 D_ASSERT(device, list_empty(&device->active_ee));
2005 D_ASSERT(device, list_empty(&device->sync_ee));
2006 D_ASSERT(device, list_empty(&device->done_ee));
2007 D_ASSERT(device, list_empty(&device->read_ee));
2008 D_ASSERT(device, list_empty(&device->net_ee));
2009 D_ASSERT(device, list_empty(&device->resync_reads));
2010 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2011 D_ASSERT(device, list_empty(&device->resync_work.list));
2012 D_ASSERT(device, list_empty(&device->unplug_work.list));
2013 D_ASSERT(device, list_empty(&device->go_diskless.list));
2014
2015 drbd_set_defaults(device);
2016 }
2017
2018
2019 static void drbd_destroy_mempools(void)
2020 {
2021 struct page *page;
2022
2023 while (drbd_pp_pool) {
2024 page = drbd_pp_pool;
2025 drbd_pp_pool = (struct page *)page_private(page);
2026 __free_page(page);
2027 drbd_pp_vacant--;
2028 }
2029
2030 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2031
2032 if (drbd_md_io_bio_set)
2033 bioset_free(drbd_md_io_bio_set);
2034 if (drbd_md_io_page_pool)
2035 mempool_destroy(drbd_md_io_page_pool);
2036 if (drbd_ee_mempool)
2037 mempool_destroy(drbd_ee_mempool);
2038 if (drbd_request_mempool)
2039 mempool_destroy(drbd_request_mempool);
2040 if (drbd_ee_cache)
2041 kmem_cache_destroy(drbd_ee_cache);
2042 if (drbd_request_cache)
2043 kmem_cache_destroy(drbd_request_cache);
2044 if (drbd_bm_ext_cache)
2045 kmem_cache_destroy(drbd_bm_ext_cache);
2046 if (drbd_al_ext_cache)
2047 kmem_cache_destroy(drbd_al_ext_cache);
2048
2049 drbd_md_io_bio_set = NULL;
2050 drbd_md_io_page_pool = NULL;
2051 drbd_ee_mempool = NULL;
2052 drbd_request_mempool = NULL;
2053 drbd_ee_cache = NULL;
2054 drbd_request_cache = NULL;
2055 drbd_bm_ext_cache = NULL;
2056 drbd_al_ext_cache = NULL;
2057
2058 return;
2059 }
2060
2061 static int drbd_create_mempools(void)
2062 {
2063 struct page *page;
2064 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2065 int i;
2066
2067 /* prepare our caches and mempools */
2068 drbd_request_mempool = NULL;
2069 drbd_ee_cache = NULL;
2070 drbd_request_cache = NULL;
2071 drbd_bm_ext_cache = NULL;
2072 drbd_al_ext_cache = NULL;
2073 drbd_pp_pool = NULL;
2074 drbd_md_io_page_pool = NULL;
2075 drbd_md_io_bio_set = NULL;
2076
2077 /* caches */
2078 drbd_request_cache = kmem_cache_create(
2079 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2080 if (drbd_request_cache == NULL)
2081 goto Enomem;
2082
2083 drbd_ee_cache = kmem_cache_create(
2084 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2085 if (drbd_ee_cache == NULL)
2086 goto Enomem;
2087
2088 drbd_bm_ext_cache = kmem_cache_create(
2089 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2090 if (drbd_bm_ext_cache == NULL)
2091 goto Enomem;
2092
2093 drbd_al_ext_cache = kmem_cache_create(
2094 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2095 if (drbd_al_ext_cache == NULL)
2096 goto Enomem;
2097
2098 /* mempools */
2099 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2100 if (drbd_md_io_bio_set == NULL)
2101 goto Enomem;
2102
2103 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2104 if (drbd_md_io_page_pool == NULL)
2105 goto Enomem;
2106
2107 drbd_request_mempool = mempool_create(number,
2108 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2109 if (drbd_request_mempool == NULL)
2110 goto Enomem;
2111
2112 drbd_ee_mempool = mempool_create(number,
2113 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2114 if (drbd_ee_mempool == NULL)
2115 goto Enomem;
2116
2117 /* drbd's page pool */
2118 spin_lock_init(&drbd_pp_lock);
2119
2120 for (i = 0; i < number; i++) {
2121 page = alloc_page(GFP_HIGHUSER);
2122 if (!page)
2123 goto Enomem;
2124 set_page_private(page, (unsigned long)drbd_pp_pool);
2125 drbd_pp_pool = page;
2126 }
2127 drbd_pp_vacant = number;
2128
2129 return 0;
2130
2131 Enomem:
2132 drbd_destroy_mempools(); /* in case we allocated some */
2133 return -ENOMEM;
2134 }
2135
2136 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2137 void *unused)
2138 {
2139 /* just so we have it. you never know what interesting things we
2140 * might want to do here some day...
2141 */
2142
2143 return NOTIFY_DONE;
2144 }
2145
2146 static struct notifier_block drbd_notifier = {
2147 .notifier_call = drbd_notify_sys,
2148 };
2149
2150 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2151 {
2152 int rr;
2153
2154 rr = drbd_free_peer_reqs(device, &device->active_ee);
2155 if (rr)
2156 drbd_err(device, "%d EEs in active list found!\n", rr);
2157
2158 rr = drbd_free_peer_reqs(device, &device->sync_ee);
2159 if (rr)
2160 drbd_err(device, "%d EEs in sync list found!\n", rr);
2161
2162 rr = drbd_free_peer_reqs(device, &device->read_ee);
2163 if (rr)
2164 drbd_err(device, "%d EEs in read list found!\n", rr);
2165
2166 rr = drbd_free_peer_reqs(device, &device->done_ee);
2167 if (rr)
2168 drbd_err(device, "%d EEs in done list found!\n", rr);
2169
2170 rr = drbd_free_peer_reqs(device, &device->net_ee);
2171 if (rr)
2172 drbd_err(device, "%d EEs in net list found!\n", rr);
2173 }
2174
2175 /* caution. no locking. */
2176 void drbd_destroy_device(struct kref *kref)
2177 {
2178 struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2179 struct drbd_resource *resource = device->resource;
2180 struct drbd_connection *connection;
2181
2182 del_timer_sync(&device->request_timer);
2183
2184 /* paranoia asserts */
2185 D_ASSERT(device, device->open_cnt == 0);
2186 /* end paranoia asserts */
2187
2188 /* cleanup stuff that may have been allocated during
2189 * device (re-)configuration or state changes */
2190
2191 if (device->this_bdev)
2192 bdput(device->this_bdev);
2193
2194 drbd_free_bc(device->ldev);
2195 device->ldev = NULL;
2196
2197 drbd_release_all_peer_reqs(device);
2198
2199 lc_destroy(device->act_log);
2200 lc_destroy(device->resync);
2201
2202 kfree(device->p_uuid);
2203 /* device->p_uuid = NULL; */
2204
2205 if (device->bitmap) /* should no longer be there. */
2206 drbd_bm_cleanup(device);
2207 __free_page(device->md_io_page);
2208 put_disk(device->vdisk);
2209 blk_cleanup_queue(device->rq_queue);
2210 kfree(device->rs_plan_s);
2211 kfree(first_peer_device(device));
2212 kfree(device);
2213
2214 for_each_connection(connection, resource)
2215 kref_put(&connection->kref, drbd_destroy_connection);
2216 kref_put(&resource->kref, drbd_destroy_resource);
2217 }
2218
2219 /* One global retry thread, if we need to push back some bio and have it
2220 * reinserted through our make request function.
2221 */
2222 static struct retry_worker {
2223 struct workqueue_struct *wq;
2224 struct work_struct worker;
2225
2226 spinlock_t lock;
2227 struct list_head writes;
2228 } retry;
2229
2230 static void do_retry(struct work_struct *ws)
2231 {
2232 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2233 LIST_HEAD(writes);
2234 struct drbd_request *req, *tmp;
2235
2236 spin_lock_irq(&retry->lock);
2237 list_splice_init(&retry->writes, &writes);
2238 spin_unlock_irq(&retry->lock);
2239
2240 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2241 struct drbd_device *device = req->w.device;
2242 struct bio *bio = req->master_bio;
2243 unsigned long start_time = req->start_time;
2244 bool expected;
2245
2246 expected =
2247 expect(atomic_read(&req->completion_ref) == 0) &&
2248 expect(req->rq_state & RQ_POSTPONED) &&
2249 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2250 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2251
2252 if (!expected)
2253 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2254 req, atomic_read(&req->completion_ref),
2255 req->rq_state);
2256
2257 /* We still need to put one kref associated with the
2258 * "completion_ref" going zero in the code path that queued it
2259 * here. The request object may still be referenced by a
2260 * frozen local req->private_bio, in case we force-detached.
2261 */
2262 kref_put(&req->kref, drbd_req_destroy);
2263
2264 /* A single suspended or otherwise blocking device may stall
2265 * all others as well. Fortunately, this code path is to
2266 * recover from a situation that "should not happen":
2267 * concurrent writes in multi-primary setup.
2268 * In a "normal" lifecycle, this workqueue is supposed to be
2269 * destroyed without ever doing anything.
2270 * If it turns out to be an issue anyways, we can do per
2271 * resource (replication group) or per device (minor) retry
2272 * workqueues instead.
2273 */
2274
2275 /* We are not just doing generic_make_request(),
2276 * as we want to keep the start_time information. */
2277 inc_ap_bio(device);
2278 __drbd_make_request(device, bio, start_time);
2279 }
2280 }
2281
2282 void drbd_restart_request(struct drbd_request *req)
2283 {
2284 unsigned long flags;
2285 spin_lock_irqsave(&retry.lock, flags);
2286 list_move_tail(&req->tl_requests, &retry.writes);
2287 spin_unlock_irqrestore(&retry.lock, flags);
2288
2289 /* Drop the extra reference that would otherwise
2290 * have been dropped by complete_master_bio.
2291 * do_retry() needs to grab a new one. */
2292 dec_ap_bio(req->w.device);
2293
2294 queue_work(retry.wq, &retry.worker);
2295 }
2296
2297 void drbd_destroy_resource(struct kref *kref)
2298 {
2299 struct drbd_resource *resource =
2300 container_of(kref, struct drbd_resource, kref);
2301
2302 idr_destroy(&resource->devices);
2303 free_cpumask_var(resource->cpu_mask);
2304 kfree(resource->name);
2305 kfree(resource);
2306 }
2307
2308 void drbd_free_resource(struct drbd_resource *resource)
2309 {
2310 struct drbd_connection *connection, *tmp;
2311
2312 for_each_connection_safe(connection, tmp, resource) {
2313 list_del(&connection->connections);
2314 kref_put(&connection->kref, drbd_destroy_connection);
2315 }
2316 kref_put(&resource->kref, drbd_destroy_resource);
2317 }
2318
2319 static void drbd_cleanup(void)
2320 {
2321 unsigned int i;
2322 struct drbd_device *device;
2323 struct drbd_resource *resource, *tmp;
2324
2325 unregister_reboot_notifier(&drbd_notifier);
2326
2327 /* first remove proc,
2328 * drbdsetup uses it's presence to detect
2329 * whether DRBD is loaded.
2330 * If we would get stuck in proc removal,
2331 * but have netlink already deregistered,
2332 * some drbdsetup commands may wait forever
2333 * for an answer.
2334 */
2335 if (drbd_proc)
2336 remove_proc_entry("drbd", NULL);
2337
2338 if (retry.wq)
2339 destroy_workqueue(retry.wq);
2340
2341 drbd_genl_unregister();
2342
2343 idr_for_each_entry(&drbd_devices, device, i)
2344 drbd_delete_device(device);
2345
2346 /* not _rcu since, no other updater anymore. Genl already unregistered */
2347 for_each_resource_safe(resource, tmp, &drbd_resources) {
2348 list_del(&resource->resources);
2349 drbd_free_resource(resource);
2350 }
2351
2352 drbd_destroy_mempools();
2353 unregister_blkdev(DRBD_MAJOR, "drbd");
2354
2355 idr_destroy(&drbd_devices);
2356
2357 printk(KERN_INFO "drbd: module cleanup done.\n");
2358 }
2359
2360 /**
2361 * drbd_congested() - Callback for the flusher thread
2362 * @congested_data: User data
2363 * @bdi_bits: Bits the BDI flusher thread is currently interested in
2364 *
2365 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2366 */
2367 static int drbd_congested(void *congested_data, int bdi_bits)
2368 {
2369 struct drbd_device *device = congested_data;
2370 struct request_queue *q;
2371 char reason = '-';
2372 int r = 0;
2373
2374 if (!may_inc_ap_bio(device)) {
2375 /* DRBD has frozen IO */
2376 r = bdi_bits;
2377 reason = 'd';
2378 goto out;
2379 }
2380
2381 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2382 r |= (1 << BDI_async_congested);
2383 /* Without good local data, we would need to read from remote,
2384 * and that would need the worker thread as well, which is
2385 * currently blocked waiting for that usermode helper to
2386 * finish.
2387 */
2388 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2389 r |= (1 << BDI_sync_congested);
2390 else
2391 put_ldev(device);
2392 r &= bdi_bits;
2393 reason = 'c';
2394 goto out;
2395 }
2396
2397 if (get_ldev(device)) {
2398 q = bdev_get_queue(device->ldev->backing_bdev);
2399 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2400 put_ldev(device);
2401 if (r)
2402 reason = 'b';
2403 }
2404
2405 if (bdi_bits & (1 << BDI_async_congested) &&
2406 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2407 r |= (1 << BDI_async_congested);
2408 reason = reason == 'b' ? 'a' : 'n';
2409 }
2410
2411 out:
2412 device->congestion_reason = reason;
2413 return r;
2414 }
2415
2416 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2417 {
2418 spin_lock_init(&wq->q_lock);
2419 INIT_LIST_HEAD(&wq->q);
2420 init_waitqueue_head(&wq->q_wait);
2421 }
2422
2423 struct drbd_resource *drbd_find_resource(const char *name)
2424 {
2425 struct drbd_resource *resource;
2426
2427 if (!name || !name[0])
2428 return NULL;
2429
2430 rcu_read_lock();
2431 for_each_resource_rcu(resource, &drbd_resources) {
2432 if (!strcmp(resource->name, name)) {
2433 kref_get(&resource->kref);
2434 goto found;
2435 }
2436 }
2437 resource = NULL;
2438 found:
2439 rcu_read_unlock();
2440 return resource;
2441 }
2442
2443 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2444 void *peer_addr, int peer_addr_len)
2445 {
2446 struct drbd_resource *resource;
2447 struct drbd_connection *connection;
2448
2449 rcu_read_lock();
2450 for_each_resource_rcu(resource, &drbd_resources) {
2451 for_each_connection_rcu(connection, resource) {
2452 if (connection->my_addr_len == my_addr_len &&
2453 connection->peer_addr_len == peer_addr_len &&
2454 !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2455 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2456 kref_get(&connection->kref);
2457 goto found;
2458 }
2459 }
2460 }
2461 connection = NULL;
2462 found:
2463 rcu_read_unlock();
2464 return connection;
2465 }
2466
2467 static int drbd_alloc_socket(struct drbd_socket *socket)
2468 {
2469 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2470 if (!socket->rbuf)
2471 return -ENOMEM;
2472 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2473 if (!socket->sbuf)
2474 return -ENOMEM;
2475 return 0;
2476 }
2477
2478 static void drbd_free_socket(struct drbd_socket *socket)
2479 {
2480 free_page((unsigned long) socket->sbuf);
2481 free_page((unsigned long) socket->rbuf);
2482 }
2483
2484 void conn_free_crypto(struct drbd_connection *connection)
2485 {
2486 drbd_free_sock(connection);
2487
2488 crypto_free_hash(connection->csums_tfm);
2489 crypto_free_hash(connection->verify_tfm);
2490 crypto_free_hash(connection->cram_hmac_tfm);
2491 crypto_free_hash(connection->integrity_tfm);
2492 crypto_free_hash(connection->peer_integrity_tfm);
2493 kfree(connection->int_dig_in);
2494 kfree(connection->int_dig_vv);
2495
2496 connection->csums_tfm = NULL;
2497 connection->verify_tfm = NULL;
2498 connection->cram_hmac_tfm = NULL;
2499 connection->integrity_tfm = NULL;
2500 connection->peer_integrity_tfm = NULL;
2501 connection->int_dig_in = NULL;
2502 connection->int_dig_vv = NULL;
2503 }
2504
2505 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2506 {
2507 struct drbd_connection *connection;
2508 cpumask_var_t new_cpu_mask;
2509 int err;
2510
2511 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2512 return -ENOMEM;
2513 /*
2514 retcode = ERR_NOMEM;
2515 drbd_msg_put_info("unable to allocate cpumask");
2516 */
2517
2518 /* silently ignore cpu mask on UP kernel */
2519 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2520 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2521 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2522 if (err) {
2523 drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2524 /* retcode = ERR_CPU_MASK_PARSE; */
2525 goto fail;
2526 }
2527 }
2528 resource->res_opts = *res_opts;
2529 if (cpumask_empty(new_cpu_mask))
2530 drbd_calc_cpu_mask(&new_cpu_mask);
2531 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2532 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2533 for_each_connection_rcu(connection, resource) {
2534 connection->receiver.reset_cpu_mask = 1;
2535 connection->asender.reset_cpu_mask = 1;
2536 connection->worker.reset_cpu_mask = 1;
2537 }
2538 }
2539 err = 0;
2540
2541 fail:
2542 free_cpumask_var(new_cpu_mask);
2543 return err;
2544
2545 }
2546
2547 struct drbd_resource *drbd_create_resource(const char *name)
2548 {
2549 struct drbd_resource *resource;
2550
2551 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2552 if (!resource)
2553 goto fail;
2554 resource->name = kstrdup(name, GFP_KERNEL);
2555 if (!resource->name)
2556 goto fail_free_resource;
2557 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2558 goto fail_free_name;
2559 kref_init(&resource->kref);
2560 idr_init(&resource->devices);
2561 INIT_LIST_HEAD(&resource->connections);
2562 list_add_tail_rcu(&resource->resources, &drbd_resources);
2563 mutex_init(&resource->conf_update);
2564 spin_lock_init(&resource->req_lock);
2565 return resource;
2566
2567 fail_free_name:
2568 kfree(resource->name);
2569 fail_free_resource:
2570 kfree(resource);
2571 fail:
2572 return NULL;
2573 }
2574
2575 /* caller must be under genl_lock() */
2576 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2577 {
2578 struct drbd_resource *resource;
2579 struct drbd_connection *connection;
2580
2581 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2582 if (!connection)
2583 return NULL;
2584
2585 if (drbd_alloc_socket(&connection->data))
2586 goto fail;
2587 if (drbd_alloc_socket(&connection->meta))
2588 goto fail;
2589
2590 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2591 if (!connection->current_epoch)
2592 goto fail;
2593
2594 INIT_LIST_HEAD(&connection->transfer_log);
2595
2596 INIT_LIST_HEAD(&connection->current_epoch->list);
2597 connection->epochs = 1;
2598 spin_lock_init(&connection->epoch_lock);
2599 connection->write_ordering = WO_bdev_flush;
2600
2601 connection->send.seen_any_write_yet = false;
2602 connection->send.current_epoch_nr = 0;
2603 connection->send.current_epoch_writes = 0;
2604
2605 resource = drbd_create_resource(name);
2606 if (!resource)
2607 goto fail;
2608
2609 connection->cstate = C_STANDALONE;
2610 mutex_init(&connection->cstate_mutex);
2611 init_waitqueue_head(&connection->ping_wait);
2612 idr_init(&connection->peer_devices);
2613
2614 drbd_init_workqueue(&connection->sender_work);
2615 mutex_init(&connection->data.mutex);
2616 mutex_init(&connection->meta.mutex);
2617
2618 drbd_thread_init(connection, &connection->receiver, drbd_receiver, "receiver");
2619 drbd_thread_init(connection, &connection->worker, drbd_worker, "worker");
2620 drbd_thread_init(connection, &connection->asender, drbd_asender, "asender");
2621
2622 kref_init(&connection->kref);
2623
2624 connection->resource = resource;
2625
2626 if (set_resource_options(resource, res_opts))
2627 goto fail_resource;
2628
2629 kref_get(&resource->kref);
2630 list_add_tail_rcu(&connection->connections, &resource->connections);
2631 return connection;
2632
2633 fail_resource:
2634 list_del(&resource->resources);
2635 drbd_free_resource(resource);
2636 fail:
2637 kfree(connection->current_epoch);
2638 drbd_free_socket(&connection->meta);
2639 drbd_free_socket(&connection->data);
2640 kfree(connection);
2641 return NULL;
2642 }
2643
2644 void drbd_destroy_connection(struct kref *kref)
2645 {
2646 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2647 struct drbd_resource *resource = connection->resource;
2648
2649 if (atomic_read(&connection->current_epoch->epoch_size) != 0)
2650 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2651 kfree(connection->current_epoch);
2652
2653 idr_destroy(&connection->peer_devices);
2654
2655 drbd_free_socket(&connection->meta);
2656 drbd_free_socket(&connection->data);
2657 kfree(connection->int_dig_in);
2658 kfree(connection->int_dig_vv);
2659 kfree(connection);
2660 kref_put(&resource->kref, drbd_destroy_resource);
2661 }
2662
2663 static int init_submitter(struct drbd_device *device)
2664 {
2665 /* opencoded create_singlethread_workqueue(),
2666 * to be able to say "drbd%d", ..., minor */
2667 device->submit.wq = alloc_workqueue("drbd%u_submit",
2668 WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor);
2669 if (!device->submit.wq)
2670 return -ENOMEM;
2671
2672 INIT_WORK(&device->submit.worker, do_submit);
2673 spin_lock_init(&device->submit.lock);
2674 INIT_LIST_HEAD(&device->submit.writes);
2675 return 0;
2676 }
2677
2678 enum drbd_ret_code drbd_create_device(struct drbd_resource *resource, unsigned int minor, int vnr)
2679 {
2680 struct drbd_connection *connection;
2681 struct drbd_device *device;
2682 struct drbd_peer_device *peer_device, *tmp_peer_device;
2683 struct gendisk *disk;
2684 struct request_queue *q;
2685 int id;
2686 enum drbd_ret_code err = ERR_NOMEM;
2687
2688 device = minor_to_device(minor);
2689 if (device)
2690 return ERR_MINOR_EXISTS;
2691
2692 /* GFP_KERNEL, we are outside of all write-out paths */
2693 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2694 if (!device)
2695 return ERR_NOMEM;
2696 kref_init(&device->kref);
2697
2698 kref_get(&resource->kref);
2699 device->resource = resource;
2700 device->minor = minor;
2701 device->vnr = vnr;
2702
2703 drbd_init_set_defaults(device);
2704
2705 q = blk_alloc_queue(GFP_KERNEL);
2706 if (!q)
2707 goto out_no_q;
2708 device->rq_queue = q;
2709 q->queuedata = device;
2710
2711 disk = alloc_disk(1);
2712 if (!disk)
2713 goto out_no_disk;
2714 device->vdisk = disk;
2715
2716 set_disk_ro(disk, true);
2717
2718 disk->queue = q;
2719 disk->major = DRBD_MAJOR;
2720 disk->first_minor = minor;
2721 disk->fops = &drbd_ops;
2722 sprintf(disk->disk_name, "drbd%d", minor);
2723 disk->private_data = device;
2724
2725 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2726 /* we have no partitions. we contain only ourselves. */
2727 device->this_bdev->bd_contains = device->this_bdev;
2728
2729 q->backing_dev_info.congested_fn = drbd_congested;
2730 q->backing_dev_info.congested_data = device;
2731
2732 blk_queue_make_request(q, drbd_make_request);
2733 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2734 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2735 This triggers a max_bio_size message upon first attach or connect */
2736 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2737 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2738 blk_queue_merge_bvec(q, drbd_merge_bvec);
2739 q->queue_lock = &resource->req_lock;
2740
2741 device->md_io_page = alloc_page(GFP_KERNEL);
2742 if (!device->md_io_page)
2743 goto out_no_io_page;
2744
2745 if (drbd_bm_init(device))
2746 goto out_no_bitmap;
2747 device->read_requests = RB_ROOT;
2748 device->write_requests = RB_ROOT;
2749
2750 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2751 if (id < 0) {
2752 if (id == -ENOSPC) {
2753 err = ERR_MINOR_EXISTS;
2754 drbd_msg_put_info("requested minor exists already");
2755 }
2756 goto out_no_minor_idr;
2757 }
2758 kref_get(&device->kref);
2759
2760 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2761 if (id < 0) {
2762 if (id == -ENOSPC) {
2763 err = ERR_MINOR_EXISTS;
2764 drbd_msg_put_info("requested minor exists already");
2765 }
2766 goto out_idr_remove_minor;
2767 }
2768 kref_get(&device->kref);
2769
2770 INIT_LIST_HEAD(&device->peer_devices);
2771 for_each_connection(connection, resource) {
2772 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2773 if (!peer_device)
2774 goto out_idr_remove_from_resource;
2775 peer_device->connection = connection;
2776 peer_device->device = device;
2777
2778 list_add(&peer_device->peer_devices, &device->peer_devices);
2779 kref_get(&device->kref);
2780
2781 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2782 if (id < 0) {
2783 if (id == -ENOSPC) {
2784 err = ERR_INVALID_REQUEST;
2785 drbd_msg_put_info("requested volume exists already");
2786 }
2787 goto out_idr_remove_from_resource;
2788 }
2789 kref_get(&connection->kref);
2790 }
2791
2792 if (init_submitter(device)) {
2793 err = ERR_NOMEM;
2794 drbd_msg_put_info("unable to create submit workqueue");
2795 goto out_idr_remove_vol;
2796 }
2797
2798 add_disk(disk);
2799
2800 /* inherit the connection state */
2801 device->state.conn = first_connection(resource)->cstate;
2802 if (device->state.conn == C_WF_REPORT_PARAMS)
2803 drbd_connected(device);
2804
2805 return NO_ERROR;
2806
2807 out_idr_remove_vol:
2808 idr_remove(&connection->peer_devices, vnr);
2809 out_idr_remove_from_resource:
2810 for_each_connection(connection, resource) {
2811 peer_device = idr_find(&connection->peer_devices, vnr);
2812 if (peer_device) {
2813 idr_remove(&connection->peer_devices, vnr);
2814 kref_put(&connection->kref, drbd_destroy_connection);
2815 }
2816 }
2817 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2818 list_del(&peer_device->peer_devices);
2819 kfree(peer_device);
2820 }
2821 idr_remove(&resource->devices, vnr);
2822 out_idr_remove_minor:
2823 idr_remove(&drbd_devices, minor);
2824 synchronize_rcu();
2825 out_no_minor_idr:
2826 drbd_bm_cleanup(device);
2827 out_no_bitmap:
2828 __free_page(device->md_io_page);
2829 out_no_io_page:
2830 put_disk(disk);
2831 out_no_disk:
2832 blk_cleanup_queue(q);
2833 out_no_q:
2834 kref_put(&resource->kref, drbd_destroy_resource);
2835 kfree(device);
2836 return err;
2837 }
2838
2839 void drbd_delete_device(struct drbd_device *device)
2840 {
2841 struct drbd_resource *resource = device->resource;
2842 struct drbd_connection *connection;
2843 int refs = 3;
2844
2845 for_each_connection(connection, resource) {
2846 idr_remove(&connection->peer_devices, device->vnr);
2847 refs++;
2848 }
2849 idr_remove(&resource->devices, device->vnr);
2850 idr_remove(&drbd_devices, device_to_minor(device));
2851 del_gendisk(device->vdisk);
2852 synchronize_rcu();
2853 kref_sub(&device->kref, refs, drbd_destroy_device);
2854 }
2855
2856 int __init drbd_init(void)
2857 {
2858 int err;
2859
2860 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2861 printk(KERN_ERR
2862 "drbd: invalid minor_count (%d)\n", minor_count);
2863 #ifdef MODULE
2864 return -EINVAL;
2865 #else
2866 minor_count = DRBD_MINOR_COUNT_DEF;
2867 #endif
2868 }
2869
2870 err = register_blkdev(DRBD_MAJOR, "drbd");
2871 if (err) {
2872 printk(KERN_ERR
2873 "drbd: unable to register block device major %d\n",
2874 DRBD_MAJOR);
2875 return err;
2876 }
2877
2878 register_reboot_notifier(&drbd_notifier);
2879
2880 /*
2881 * allocate all necessary structs
2882 */
2883 init_waitqueue_head(&drbd_pp_wait);
2884
2885 drbd_proc = NULL; /* play safe for drbd_cleanup */
2886 idr_init(&drbd_devices);
2887
2888 rwlock_init(&global_state_lock);
2889 INIT_LIST_HEAD(&drbd_resources);
2890
2891 err = drbd_genl_register();
2892 if (err) {
2893 printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2894 goto fail;
2895 }
2896
2897 err = drbd_create_mempools();
2898 if (err)
2899 goto fail;
2900
2901 err = -ENOMEM;
2902 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2903 if (!drbd_proc) {
2904 printk(KERN_ERR "drbd: unable to register proc file\n");
2905 goto fail;
2906 }
2907
2908 retry.wq = create_singlethread_workqueue("drbd-reissue");
2909 if (!retry.wq) {
2910 printk(KERN_ERR "drbd: unable to create retry workqueue\n");
2911 goto fail;
2912 }
2913 INIT_WORK(&retry.worker, do_retry);
2914 spin_lock_init(&retry.lock);
2915 INIT_LIST_HEAD(&retry.writes);
2916
2917 printk(KERN_INFO "drbd: initialized. "
2918 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2919 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2920 printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2921 printk(KERN_INFO "drbd: registered as block device major %d\n",
2922 DRBD_MAJOR);
2923
2924 return 0; /* Success! */
2925
2926 fail:
2927 drbd_cleanup();
2928 if (err == -ENOMEM)
2929 printk(KERN_ERR "drbd: ran out of memory\n");
2930 else
2931 printk(KERN_ERR "drbd: initialization failure\n");
2932 return err;
2933 }
2934
2935 void drbd_free_bc(struct drbd_backing_dev *ldev)
2936 {
2937 if (ldev == NULL)
2938 return;
2939
2940 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2941 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2942
2943 kfree(ldev->disk_conf);
2944 kfree(ldev);
2945 }
2946
2947 void drbd_free_sock(struct drbd_connection *connection)
2948 {
2949 if (connection->data.socket) {
2950 mutex_lock(&connection->data.mutex);
2951 kernel_sock_shutdown(connection->data.socket, SHUT_RDWR);
2952 sock_release(connection->data.socket);
2953 connection->data.socket = NULL;
2954 mutex_unlock(&connection->data.mutex);
2955 }
2956 if (connection->meta.socket) {
2957 mutex_lock(&connection->meta.mutex);
2958 kernel_sock_shutdown(connection->meta.socket, SHUT_RDWR);
2959 sock_release(connection->meta.socket);
2960 connection->meta.socket = NULL;
2961 mutex_unlock(&connection->meta.mutex);
2962 }
2963 }
2964
2965 /* meta data management */
2966
2967 void conn_md_sync(struct drbd_connection *connection)
2968 {
2969 struct drbd_peer_device *peer_device;
2970 int vnr;
2971
2972 rcu_read_lock();
2973 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2974 struct drbd_device *device = peer_device->device;
2975
2976 kref_get(&device->kref);
2977 rcu_read_unlock();
2978 drbd_md_sync(device);
2979 kref_put(&device->kref, drbd_destroy_device);
2980 rcu_read_lock();
2981 }
2982 rcu_read_unlock();
2983 }
2984
2985 /* aligned 4kByte */
2986 struct meta_data_on_disk {
2987 u64 la_size_sect; /* last agreed size. */
2988 u64 uuid[UI_SIZE]; /* UUIDs. */
2989 u64 device_uuid;
2990 u64 reserved_u64_1;
2991 u32 flags; /* MDF */
2992 u32 magic;
2993 u32 md_size_sect;
2994 u32 al_offset; /* offset to this block */
2995 u32 al_nr_extents; /* important for restoring the AL (userspace) */
2996 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2997 u32 bm_offset; /* offset to the bitmap, from here */
2998 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2999 u32 la_peer_max_bio_size; /* last peer max_bio_size */
3000
3001 /* see al_tr_number_to_on_disk_sector() */
3002 u32 al_stripes;
3003 u32 al_stripe_size_4k;
3004
3005 u8 reserved_u8[4096 - (7*8 + 10*4)];
3006 } __packed;
3007
3008
3009
3010 void drbd_md_write(struct drbd_device *device, void *b)
3011 {
3012 struct meta_data_on_disk *buffer = b;
3013 sector_t sector;
3014 int i;
3015
3016 memset(buffer, 0, sizeof(*buffer));
3017
3018 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3019 for (i = UI_CURRENT; i < UI_SIZE; i++)
3020 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3021 buffer->flags = cpu_to_be32(device->ldev->md.flags);
3022 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3023
3024 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
3025 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
3026 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3027 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3028 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3029
3030 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3031 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3032
3033 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3034 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3035
3036 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3037 sector = device->ldev->md.md_offset;
3038
3039 if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
3040 /* this was a try anyways ... */
3041 drbd_err(device, "meta data update failed!\n");
3042 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3043 }
3044 }
3045
3046 /**
3047 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3048 * @device: DRBD device.
3049 */
3050 void drbd_md_sync(struct drbd_device *device)
3051 {
3052 struct meta_data_on_disk *buffer;
3053
3054 /* Don't accidentally change the DRBD meta data layout. */
3055 BUILD_BUG_ON(UI_SIZE != 4);
3056 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3057
3058 del_timer(&device->md_sync_timer);
3059 /* timer may be rearmed by drbd_md_mark_dirty() now. */
3060 if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3061 return;
3062
3063 /* We use here D_FAILED and not D_ATTACHING because we try to write
3064 * metadata even if we detach due to a disk failure! */
3065 if (!get_ldev_if_state(device, D_FAILED))
3066 return;
3067
3068 buffer = drbd_md_get_buffer(device);
3069 if (!buffer)
3070 goto out;
3071
3072 drbd_md_write(device, buffer);
3073
3074 /* Update device->ldev->md.la_size_sect,
3075 * since we updated it on metadata. */
3076 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3077
3078 drbd_md_put_buffer(device);
3079 out:
3080 put_ldev(device);
3081 }
3082
3083 static int check_activity_log_stripe_size(struct drbd_device *device,
3084 struct meta_data_on_disk *on_disk,
3085 struct drbd_md *in_core)
3086 {
3087 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3088 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3089 u64 al_size_4k;
3090
3091 /* both not set: default to old fixed size activity log */
3092 if (al_stripes == 0 && al_stripe_size_4k == 0) {
3093 al_stripes = 1;
3094 al_stripe_size_4k = MD_32kB_SECT/8;
3095 }
3096
3097 /* some paranoia plausibility checks */
3098
3099 /* we need both values to be set */
3100 if (al_stripes == 0 || al_stripe_size_4k == 0)
3101 goto err;
3102
3103 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3104
3105 /* Upper limit of activity log area, to avoid potential overflow
3106 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3107 * than 72 * 4k blocks total only increases the amount of history,
3108 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3109 if (al_size_4k > (16 * 1024 * 1024/4))
3110 goto err;
3111
3112 /* Lower limit: we need at least 8 transaction slots (32kB)
3113 * to not break existing setups */
3114 if (al_size_4k < MD_32kB_SECT/8)
3115 goto err;
3116
3117 in_core->al_stripe_size_4k = al_stripe_size_4k;
3118 in_core->al_stripes = al_stripes;
3119 in_core->al_size_4k = al_size_4k;
3120
3121 return 0;
3122 err:
3123 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3124 al_stripes, al_stripe_size_4k);
3125 return -EINVAL;
3126 }
3127
3128 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3129 {
3130 sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3131 struct drbd_md *in_core = &bdev->md;
3132 s32 on_disk_al_sect;
3133 s32 on_disk_bm_sect;
3134
3135 /* The on-disk size of the activity log, calculated from offsets, and
3136 * the size of the activity log calculated from the stripe settings,
3137 * should match.
3138 * Though we could relax this a bit: it is ok, if the striped activity log
3139 * fits in the available on-disk activity log size.
3140 * Right now, that would break how resize is implemented.
3141 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3142 * of possible unused padding space in the on disk layout. */
3143 if (in_core->al_offset < 0) {
3144 if (in_core->bm_offset > in_core->al_offset)
3145 goto err;
3146 on_disk_al_sect = -in_core->al_offset;
3147 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3148 } else {
3149 if (in_core->al_offset != MD_4kB_SECT)
3150 goto err;
3151 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3152 goto err;
3153
3154 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3155 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3156 }
3157
3158 /* old fixed size meta data is exactly that: fixed. */
3159 if (in_core->meta_dev_idx >= 0) {
3160 if (in_core->md_size_sect != MD_128MB_SECT
3161 || in_core->al_offset != MD_4kB_SECT
3162 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3163 || in_core->al_stripes != 1
3164 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3165 goto err;
3166 }
3167
3168 if (capacity < in_core->md_size_sect)
3169 goto err;
3170 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3171 goto err;
3172
3173 /* should be aligned, and at least 32k */
3174 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3175 goto err;
3176
3177 /* should fit (for now: exactly) into the available on-disk space;
3178 * overflow prevention is in check_activity_log_stripe_size() above. */
3179 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3180 goto err;
3181
3182 /* again, should be aligned */
3183 if (in_core->bm_offset & 7)
3184 goto err;
3185
3186 /* FIXME check for device grow with flex external meta data? */
3187
3188 /* can the available bitmap space cover the last agreed device size? */
3189 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3190 goto err;
3191
3192 return 0;
3193
3194 err:
3195 drbd_err(device, "meta data offsets don't make sense: idx=%d "
3196 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3197 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3198 in_core->meta_dev_idx,
3199 in_core->al_stripes, in_core->al_stripe_size_4k,
3200 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3201 (unsigned long long)in_core->la_size_sect,
3202 (unsigned long long)capacity);
3203
3204 return -EINVAL;
3205 }
3206
3207
3208 /**
3209 * drbd_md_read() - Reads in the meta data super block
3210 * @device: DRBD device.
3211 * @bdev: Device from which the meta data should be read in.
3212 *
3213 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3214 * something goes wrong.
3215 *
3216 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3217 * even before @bdev is assigned to @device->ldev.
3218 */
3219 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3220 {
3221 struct meta_data_on_disk *buffer;
3222 u32 magic, flags;
3223 int i, rv = NO_ERROR;
3224
3225 if (device->state.disk != D_DISKLESS)
3226 return ERR_DISK_CONFIGURED;
3227
3228 buffer = drbd_md_get_buffer(device);
3229 if (!buffer)
3230 return ERR_NOMEM;
3231
3232 /* First, figure out where our meta data superblock is located,
3233 * and read it. */
3234 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3235 bdev->md.md_offset = drbd_md_ss(bdev);
3236
3237 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3238 /* NOTE: can't do normal error processing here as this is
3239 called BEFORE disk is attached */
3240 drbd_err(device, "Error while reading metadata.\n");
3241 rv = ERR_IO_MD_DISK;
3242 goto err;
3243 }
3244
3245 magic = be32_to_cpu(buffer->magic);
3246 flags = be32_to_cpu(buffer->flags);
3247 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3248 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3249 /* btw: that's Activity Log clean, not "all" clean. */
3250 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3251 rv = ERR_MD_UNCLEAN;
3252 goto err;
3253 }
3254
3255 rv = ERR_MD_INVALID;
3256 if (magic != DRBD_MD_MAGIC_08) {
3257 if (magic == DRBD_MD_MAGIC_07)
3258 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3259 else
3260 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3261 goto err;
3262 }
3263
3264 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3265 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3266 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3267 goto err;
3268 }
3269
3270
3271 /* convert to in_core endian */
3272 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3273 for (i = UI_CURRENT; i < UI_SIZE; i++)
3274 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3275 bdev->md.flags = be32_to_cpu(buffer->flags);
3276 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3277
3278 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3279 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3280 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3281
3282 if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3283 goto err;
3284 if (check_offsets_and_sizes(device, bdev))
3285 goto err;
3286
3287 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3288 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3289 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3290 goto err;
3291 }
3292 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3293 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3294 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3295 goto err;
3296 }
3297
3298 rv = NO_ERROR;
3299
3300 spin_lock_irq(&device->resource->req_lock);
3301 if (device->state.conn < C_CONNECTED) {
3302 unsigned int peer;
3303 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3304 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3305 device->peer_max_bio_size = peer;
3306 }
3307 spin_unlock_irq(&device->resource->req_lock);
3308
3309 err:
3310 drbd_md_put_buffer(device);
3311
3312 return rv;
3313 }
3314
3315 /**
3316 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3317 * @device: DRBD device.
3318 *
3319 * Call this function if you change anything that should be written to
3320 * the meta-data super block. This function sets MD_DIRTY, and starts a
3321 * timer that ensures that within five seconds you have to call drbd_md_sync().
3322 */
3323 #ifdef DEBUG
3324 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3325 {
3326 if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3327 mod_timer(&device->md_sync_timer, jiffies + HZ);
3328 device->last_md_mark_dirty.line = line;
3329 device->last_md_mark_dirty.func = func;
3330 }
3331 }
3332 #else
3333 void drbd_md_mark_dirty(struct drbd_device *device)
3334 {
3335 if (!test_and_set_bit(MD_DIRTY, &device->flags))
3336 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3337 }
3338 #endif
3339
3340 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3341 {
3342 int i;
3343
3344 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3345 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3346 }
3347
3348 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3349 {
3350 if (idx == UI_CURRENT) {
3351 if (device->state.role == R_PRIMARY)
3352 val |= 1;
3353 else
3354 val &= ~((u64)1);
3355
3356 drbd_set_ed_uuid(device, val);
3357 }
3358
3359 device->ldev->md.uuid[idx] = val;
3360 drbd_md_mark_dirty(device);
3361 }
3362
3363 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3364 {
3365 unsigned long flags;
3366 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3367 __drbd_uuid_set(device, idx, val);
3368 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3369 }
3370
3371 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3372 {
3373 unsigned long flags;
3374 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3375 if (device->ldev->md.uuid[idx]) {
3376 drbd_uuid_move_history(device);
3377 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3378 }
3379 __drbd_uuid_set(device, idx, val);
3380 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3381 }
3382
3383 /**
3384 * drbd_uuid_new_current() - Creates a new current UUID
3385 * @device: DRBD device.
3386 *
3387 * Creates a new current UUID, and rotates the old current UUID into
3388 * the bitmap slot. Causes an incremental resync upon next connect.
3389 */
3390 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3391 {
3392 u64 val;
3393 unsigned long long bm_uuid;
3394
3395 get_random_bytes(&val, sizeof(u64));
3396
3397 spin_lock_irq(&device->ldev->md.uuid_lock);
3398 bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3399
3400 if (bm_uuid)
3401 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3402
3403 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3404 __drbd_uuid_set(device, UI_CURRENT, val);
3405 spin_unlock_irq(&device->ldev->md.uuid_lock);
3406
3407 drbd_print_uuids(device, "new current UUID");
3408 /* get it to stable storage _now_ */
3409 drbd_md_sync(device);
3410 }
3411
3412 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3413 {
3414 unsigned long flags;
3415 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3416 return;
3417
3418 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3419 if (val == 0) {
3420 drbd_uuid_move_history(device);
3421 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3422 device->ldev->md.uuid[UI_BITMAP] = 0;
3423 } else {
3424 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3425 if (bm_uuid)
3426 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3427
3428 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3429 }
3430 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3431
3432 drbd_md_mark_dirty(device);
3433 }
3434
3435 /**
3436 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3437 * @device: DRBD device.
3438 *
3439 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3440 */
3441 int drbd_bmio_set_n_write(struct drbd_device *device)
3442 {
3443 int rv = -EIO;
3444
3445 if (get_ldev_if_state(device, D_ATTACHING)) {
3446 drbd_md_set_flag(device, MDF_FULL_SYNC);
3447 drbd_md_sync(device);
3448 drbd_bm_set_all(device);
3449
3450 rv = drbd_bm_write(device);
3451
3452 if (!rv) {
3453 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3454 drbd_md_sync(device);
3455 }
3456
3457 put_ldev(device);
3458 }
3459
3460 return rv;
3461 }
3462
3463 /**
3464 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3465 * @device: DRBD device.
3466 *
3467 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3468 */
3469 int drbd_bmio_clear_n_write(struct drbd_device *device)
3470 {
3471 int rv = -EIO;
3472
3473 drbd_resume_al(device);
3474 if (get_ldev_if_state(device, D_ATTACHING)) {
3475 drbd_bm_clear_all(device);
3476 rv = drbd_bm_write(device);
3477 put_ldev(device);
3478 }
3479
3480 return rv;
3481 }
3482
3483 static int w_bitmap_io(struct drbd_work *w, int unused)
3484 {
3485 struct bm_io_work *work = container_of(w, struct bm_io_work, w);
3486 struct drbd_device *device = w->device;
3487 int rv = -EIO;
3488
3489 D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0);
3490
3491 if (get_ldev(device)) {
3492 drbd_bm_lock(device, work->why, work->flags);
3493 rv = work->io_fn(device);
3494 drbd_bm_unlock(device);
3495 put_ldev(device);
3496 }
3497
3498 clear_bit_unlock(BITMAP_IO, &device->flags);
3499 wake_up(&device->misc_wait);
3500
3501 if (work->done)
3502 work->done(device, rv);
3503
3504 clear_bit(BITMAP_IO_QUEUED, &device->flags);
3505 work->why = NULL;
3506 work->flags = 0;
3507
3508 return 0;
3509 }
3510
3511 void drbd_ldev_destroy(struct drbd_device *device)
3512 {
3513 lc_destroy(device->resync);
3514 device->resync = NULL;
3515 lc_destroy(device->act_log);
3516 device->act_log = NULL;
3517 __no_warn(local,
3518 drbd_free_bc(device->ldev);
3519 device->ldev = NULL;);
3520
3521 clear_bit(GO_DISKLESS, &device->flags);
3522 }
3523
3524 static int w_go_diskless(struct drbd_work *w, int unused)
3525 {
3526 struct drbd_device *device = w->device;
3527
3528 D_ASSERT(device, device->state.disk == D_FAILED);
3529 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
3530 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
3531 * the protected members anymore, though, so once put_ldev reaches zero
3532 * again, it will be safe to free them. */
3533
3534 /* Try to write changed bitmap pages, read errors may have just
3535 * set some bits outside the area covered by the activity log.
3536 *
3537 * If we have an IO error during the bitmap writeout,
3538 * we will want a full sync next time, just in case.
3539 * (Do we want a specific meta data flag for this?)
3540 *
3541 * If that does not make it to stable storage either,
3542 * we cannot do anything about that anymore.
3543 *
3544 * We still need to check if both bitmap and ldev are present, we may
3545 * end up here after a failed attach, before ldev was even assigned.
3546 */
3547 if (device->bitmap && device->ldev) {
3548 /* An interrupted resync or similar is allowed to recounts bits
3549 * while we detach.
3550 * Any modifications would not be expected anymore, though.
3551 */
3552 if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
3553 "detach", BM_LOCKED_TEST_ALLOWED)) {
3554 if (test_bit(WAS_READ_ERROR, &device->flags)) {
3555 drbd_md_set_flag(device, MDF_FULL_SYNC);
3556 drbd_md_sync(device);
3557 }
3558 }
3559 }
3560
3561 drbd_force_state(device, NS(disk, D_DISKLESS));
3562 return 0;
3563 }
3564
3565 /**
3566 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3567 * @device: DRBD device.
3568 * @io_fn: IO callback to be called when bitmap IO is possible
3569 * @done: callback to be called after the bitmap IO was performed
3570 * @why: Descriptive text of the reason for doing the IO
3571 *
3572 * While IO on the bitmap happens we freeze application IO thus we ensure
3573 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3574 * called from worker context. It MUST NOT be used while a previous such
3575 * work is still pending!
3576 */
3577 void drbd_queue_bitmap_io(struct drbd_device *device,
3578 int (*io_fn)(struct drbd_device *),
3579 void (*done)(struct drbd_device *, int),
3580 char *why, enum bm_flag flags)
3581 {
3582 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3583
3584 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3585 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3586 D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3587 if (device->bm_io_work.why)
3588 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3589 why, device->bm_io_work.why);
3590
3591 device->bm_io_work.io_fn = io_fn;
3592 device->bm_io_work.done = done;
3593 device->bm_io_work.why = why;
3594 device->bm_io_work.flags = flags;
3595
3596 spin_lock_irq(&device->resource->req_lock);
3597 set_bit(BITMAP_IO, &device->flags);
3598 if (atomic_read(&device->ap_bio_cnt) == 0) {
3599 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3600 drbd_queue_work(&first_peer_device(device)->connection->sender_work, &device->bm_io_work.w);
3601 }
3602 spin_unlock_irq(&device->resource->req_lock);
3603 }
3604
3605 /**
3606 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3607 * @device: DRBD device.
3608 * @io_fn: IO callback to be called when bitmap IO is possible
3609 * @why: Descriptive text of the reason for doing the IO
3610 *
3611 * freezes application IO while that the actual IO operations runs. This
3612 * functions MAY NOT be called from worker context.
3613 */
3614 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3615 char *why, enum bm_flag flags)
3616 {
3617 int rv;
3618
3619 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3620
3621 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3622 drbd_suspend_io(device);
3623
3624 drbd_bm_lock(device, why, flags);
3625 rv = io_fn(device);
3626 drbd_bm_unlock(device);
3627
3628 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3629 drbd_resume_io(device);
3630
3631 return rv;
3632 }
3633
3634 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3635 {
3636 if ((device->ldev->md.flags & flag) != flag) {
3637 drbd_md_mark_dirty(device);
3638 device->ldev->md.flags |= flag;
3639 }
3640 }
3641
3642 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3643 {
3644 if ((device->ldev->md.flags & flag) != 0) {
3645 drbd_md_mark_dirty(device);
3646 device->ldev->md.flags &= ~flag;
3647 }
3648 }
3649 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3650 {
3651 return (bdev->md.flags & flag) != 0;
3652 }
3653
3654 static void md_sync_timer_fn(unsigned long data)
3655 {
3656 struct drbd_device *device = (struct drbd_device *) data;
3657
3658 /* must not double-queue! */
3659 if (list_empty(&device->md_sync_work.list))
3660 drbd_queue_work_front(&first_peer_device(device)->connection->sender_work, &device->md_sync_work);
3661 }
3662
3663 static int w_md_sync(struct drbd_work *w, int unused)
3664 {
3665 struct drbd_device *device = w->device;
3666
3667 drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3668 #ifdef DEBUG
3669 drbd_warn(device, "last md_mark_dirty: %s:%u\n",
3670 device->last_md_mark_dirty.func, device->last_md_mark_dirty.line);
3671 #endif
3672 drbd_md_sync(device);
3673 return 0;
3674 }
3675
3676 const char *cmdname(enum drbd_packet cmd)
3677 {
3678 /* THINK may need to become several global tables
3679 * when we want to support more than
3680 * one PRO_VERSION */
3681 static const char *cmdnames[] = {
3682 [P_DATA] = "Data",
3683 [P_DATA_REPLY] = "DataReply",
3684 [P_RS_DATA_REPLY] = "RSDataReply",
3685 [P_BARRIER] = "Barrier",
3686 [P_BITMAP] = "ReportBitMap",
3687 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3688 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3689 [P_UNPLUG_REMOTE] = "UnplugRemote",
3690 [P_DATA_REQUEST] = "DataRequest",
3691 [P_RS_DATA_REQUEST] = "RSDataRequest",
3692 [P_SYNC_PARAM] = "SyncParam",
3693 [P_SYNC_PARAM89] = "SyncParam89",
3694 [P_PROTOCOL] = "ReportProtocol",
3695 [P_UUIDS] = "ReportUUIDs",
3696 [P_SIZES] = "ReportSizes",
3697 [P_STATE] = "ReportState",
3698 [P_SYNC_UUID] = "ReportSyncUUID",
3699 [P_AUTH_CHALLENGE] = "AuthChallenge",
3700 [P_AUTH_RESPONSE] = "AuthResponse",
3701 [P_PING] = "Ping",
3702 [P_PING_ACK] = "PingAck",
3703 [P_RECV_ACK] = "RecvAck",
3704 [P_WRITE_ACK] = "WriteAck",
3705 [P_RS_WRITE_ACK] = "RSWriteAck",
3706 [P_SUPERSEDED] = "Superseded",
3707 [P_NEG_ACK] = "NegAck",
3708 [P_NEG_DREPLY] = "NegDReply",
3709 [P_NEG_RS_DREPLY] = "NegRSDReply",
3710 [P_BARRIER_ACK] = "BarrierAck",
3711 [P_STATE_CHG_REQ] = "StateChgRequest",
3712 [P_STATE_CHG_REPLY] = "StateChgReply",
3713 [P_OV_REQUEST] = "OVRequest",
3714 [P_OV_REPLY] = "OVReply",
3715 [P_OV_RESULT] = "OVResult",
3716 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3717 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3718 [P_COMPRESSED_BITMAP] = "CBitmap",
3719 [P_DELAY_PROBE] = "DelayProbe",
3720 [P_OUT_OF_SYNC] = "OutOfSync",
3721 [P_RETRY_WRITE] = "RetryWrite",
3722 [P_RS_CANCEL] = "RSCancel",
3723 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3724 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3725 [P_RETRY_WRITE] = "retry_write",
3726 [P_PROTOCOL_UPDATE] = "protocol_update",
3727
3728 /* enum drbd_packet, but not commands - obsoleted flags:
3729 * P_MAY_IGNORE
3730 * P_MAX_OPT_CMD
3731 */
3732 };
3733
3734 /* too big for the array: 0xfffX */
3735 if (cmd == P_INITIAL_META)
3736 return "InitialMeta";
3737 if (cmd == P_INITIAL_DATA)
3738 return "InitialData";
3739 if (cmd == P_CONNECTION_FEATURES)
3740 return "ConnectionFeatures";
3741 if (cmd >= ARRAY_SIZE(cmdnames))
3742 return "Unknown";
3743 return cmdnames[cmd];
3744 }
3745
3746 /**
3747 * drbd_wait_misc - wait for a request to make progress
3748 * @device: device associated with the request
3749 * @i: the struct drbd_interval embedded in struct drbd_request or
3750 * struct drbd_peer_request
3751 */
3752 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3753 {
3754 struct net_conf *nc;
3755 DEFINE_WAIT(wait);
3756 long timeout;
3757
3758 rcu_read_lock();
3759 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3760 if (!nc) {
3761 rcu_read_unlock();
3762 return -ETIMEDOUT;
3763 }
3764 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3765 rcu_read_unlock();
3766
3767 /* Indicate to wake up device->misc_wait on progress. */
3768 i->waiting = true;
3769 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3770 spin_unlock_irq(&device->resource->req_lock);
3771 timeout = schedule_timeout(timeout);
3772 finish_wait(&device->misc_wait, &wait);
3773 spin_lock_irq(&device->resource->req_lock);
3774 if (!timeout || device->state.conn < C_CONNECTED)
3775 return -ETIMEDOUT;
3776 if (signal_pending(current))
3777 return -ERESTARTSYS;
3778 return 0;
3779 }
3780
3781 #ifdef CONFIG_DRBD_FAULT_INJECTION
3782 /* Fault insertion support including random number generator shamelessly
3783 * stolen from kernel/rcutorture.c */
3784 struct fault_random_state {
3785 unsigned long state;
3786 unsigned long count;
3787 };
3788
3789 #define FAULT_RANDOM_MULT 39916801 /* prime */
3790 #define FAULT_RANDOM_ADD 479001701 /* prime */
3791 #define FAULT_RANDOM_REFRESH 10000
3792
3793 /*
3794 * Crude but fast random-number generator. Uses a linear congruential
3795 * generator, with occasional help from get_random_bytes().
3796 */
3797 static unsigned long
3798 _drbd_fault_random(struct fault_random_state *rsp)
3799 {
3800 long refresh;
3801
3802 if (!rsp->count--) {
3803 get_random_bytes(&refresh, sizeof(refresh));
3804 rsp->state += refresh;
3805 rsp->count = FAULT_RANDOM_REFRESH;
3806 }
3807 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3808 return swahw32(rsp->state);
3809 }
3810
3811 static char *
3812 _drbd_fault_str(unsigned int type) {
3813 static char *_faults[] = {
3814 [DRBD_FAULT_MD_WR] = "Meta-data write",
3815 [DRBD_FAULT_MD_RD] = "Meta-data read",
3816 [DRBD_FAULT_RS_WR] = "Resync write",
3817 [DRBD_FAULT_RS_RD] = "Resync read",
3818 [DRBD_FAULT_DT_WR] = "Data write",
3819 [DRBD_FAULT_DT_RD] = "Data read",
3820 [DRBD_FAULT_DT_RA] = "Data read ahead",
3821 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3822 [DRBD_FAULT_AL_EE] = "EE allocation",
3823 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3824 };
3825
3826 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3827 }
3828
3829 unsigned int
3830 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3831 {
3832 static struct fault_random_state rrs = {0, 0};
3833
3834 unsigned int ret = (
3835 (fault_devs == 0 ||
3836 ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3837 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3838
3839 if (ret) {
3840 fault_count++;
3841
3842 if (__ratelimit(&drbd_ratelimit_state))
3843 drbd_warn(device, "***Simulating %s failure\n",
3844 _drbd_fault_str(type));
3845 }
3846
3847 return ret;
3848 }
3849 #endif
3850
3851 const char *drbd_buildtag(void)
3852 {
3853 /* DRBD built from external sources has here a reference to the
3854 git hash of the source code. */
3855
3856 static char buildtag[38] = "\0uilt-in";
3857
3858 if (buildtag[0] == 0) {
3859 #ifdef MODULE
3860 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3861 #else
3862 buildtag[0] = 'b';
3863 #endif
3864 }
3865
3866 return buildtag;
3867 }
3868
3869 module_init(drbd_init)
3870 module_exit(drbd_cleanup)
3871
3872 EXPORT_SYMBOL(drbd_conn_str);
3873 EXPORT_SYMBOL(drbd_role_str);
3874 EXPORT_SYMBOL(drbd_disk_str);
3875 EXPORT_SYMBOL(drbd_set_st_err_str);
This page took 0.105441 seconds and 6 git commands to generate.