drbd: Minor cleanup in conn_new_minor()
[deliverable/linux.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48 #include <linux/workqueue.h>
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_protocol.h"
56 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
57
58 #include "drbd_vli.h"
59
60 static DEFINE_MUTEX(drbd_main_mutex);
61 int drbd_worker(struct drbd_thread *);
62
63 int drbd_init(void);
64 static int drbd_open(struct block_device *bdev, fmode_t mode);
65 static void drbd_release(struct gendisk *gd, fmode_t mode);
66 static int w_md_sync(struct drbd_work *w, int unused);
67 static void md_sync_timer_fn(unsigned long data);
68 static int w_bitmap_io(struct drbd_work *w, int unused);
69 static int w_go_diskless(struct drbd_work *w, int unused);
70
71 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
72 "Lars Ellenberg <lars@linbit.com>");
73 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
74 MODULE_VERSION(REL_VERSION);
75 MODULE_LICENSE("GPL");
76 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
77 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
78 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
79
80 #include <linux/moduleparam.h>
81 /* allow_open_on_secondary */
82 MODULE_PARM_DESC(allow_oos, "DONT USE!");
83 /* thanks to these macros, if compiled into the kernel (not-module),
84 * this becomes the boot parameter drbd.minor_count */
85 module_param(minor_count, uint, 0444);
86 module_param(disable_sendpage, bool, 0644);
87 module_param(allow_oos, bool, 0);
88 module_param(proc_details, int, 0644);
89
90 #ifdef CONFIG_DRBD_FAULT_INJECTION
91 int enable_faults;
92 int fault_rate;
93 static int fault_count;
94 int fault_devs;
95 /* bitmap of enabled faults */
96 module_param(enable_faults, int, 0664);
97 /* fault rate % value - applies to all enabled faults */
98 module_param(fault_rate, int, 0664);
99 /* count of faults inserted */
100 module_param(fault_count, int, 0664);
101 /* bitmap of devices to insert faults on */
102 module_param(fault_devs, int, 0644);
103 #endif
104
105 /* module parameter, defined */
106 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
107 bool disable_sendpage;
108 bool allow_oos;
109 int proc_details; /* Detail level in proc drbd*/
110
111 /* Module parameter for setting the user mode helper program
112 * to run. Default is /sbin/drbdadm */
113 char usermode_helper[80] = "/sbin/drbdadm";
114
115 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
116
117 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
118 * as member "struct gendisk *vdisk;"
119 */
120 struct idr drbd_devices;
121 struct list_head drbd_resources;
122
123 struct kmem_cache *drbd_request_cache;
124 struct kmem_cache *drbd_ee_cache; /* peer requests */
125 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
126 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
127 mempool_t *drbd_request_mempool;
128 mempool_t *drbd_ee_mempool;
129 mempool_t *drbd_md_io_page_pool;
130 struct bio_set *drbd_md_io_bio_set;
131
132 /* I do not use a standard mempool, because:
133 1) I want to hand out the pre-allocated objects first.
134 2) I want to be able to interrupt sleeping allocation with a signal.
135 Note: This is a single linked list, the next pointer is the private
136 member of struct page.
137 */
138 struct page *drbd_pp_pool;
139 spinlock_t drbd_pp_lock;
140 int drbd_pp_vacant;
141 wait_queue_head_t drbd_pp_wait;
142
143 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
144
145 static const struct block_device_operations drbd_ops = {
146 .owner = THIS_MODULE,
147 .open = drbd_open,
148 .release = drbd_release,
149 };
150
151 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
152 {
153 struct bio *bio;
154
155 if (!drbd_md_io_bio_set)
156 return bio_alloc(gfp_mask, 1);
157
158 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
159 if (!bio)
160 return NULL;
161 return bio;
162 }
163
164 #ifdef __CHECKER__
165 /* When checking with sparse, and this is an inline function, sparse will
166 give tons of false positives. When this is a real functions sparse works.
167 */
168 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
169 {
170 int io_allowed;
171
172 atomic_inc(&device->local_cnt);
173 io_allowed = (device->state.disk >= mins);
174 if (!io_allowed) {
175 if (atomic_dec_and_test(&device->local_cnt))
176 wake_up(&device->misc_wait);
177 }
178 return io_allowed;
179 }
180
181 #endif
182
183 /**
184 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
185 * @connection: DRBD connection.
186 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
187 * @set_size: Expected number of requests before that barrier.
188 *
189 * In case the passed barrier_nr or set_size does not match the oldest
190 * epoch of not yet barrier-acked requests, this function will cause a
191 * termination of the connection.
192 */
193 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
194 unsigned int set_size)
195 {
196 struct drbd_request *r;
197 struct drbd_request *req = NULL;
198 int expect_epoch = 0;
199 int expect_size = 0;
200
201 spin_lock_irq(&connection->req_lock);
202
203 /* find oldest not yet barrier-acked write request,
204 * count writes in its epoch. */
205 list_for_each_entry(r, &connection->transfer_log, tl_requests) {
206 const unsigned s = r->rq_state;
207 if (!req) {
208 if (!(s & RQ_WRITE))
209 continue;
210 if (!(s & RQ_NET_MASK))
211 continue;
212 if (s & RQ_NET_DONE)
213 continue;
214 req = r;
215 expect_epoch = req->epoch;
216 expect_size ++;
217 } else {
218 if (r->epoch != expect_epoch)
219 break;
220 if (!(s & RQ_WRITE))
221 continue;
222 /* if (s & RQ_DONE): not expected */
223 /* if (!(s & RQ_NET_MASK)): not expected */
224 expect_size++;
225 }
226 }
227
228 /* first some paranoia code */
229 if (req == NULL) {
230 conn_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
231 barrier_nr);
232 goto bail;
233 }
234 if (expect_epoch != barrier_nr) {
235 conn_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
236 barrier_nr, expect_epoch);
237 goto bail;
238 }
239
240 if (expect_size != set_size) {
241 conn_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
242 barrier_nr, set_size, expect_size);
243 goto bail;
244 }
245
246 /* Clean up list of requests processed during current epoch. */
247 /* this extra list walk restart is paranoia,
248 * to catch requests being barrier-acked "unexpectedly".
249 * It usually should find the same req again, or some READ preceding it. */
250 list_for_each_entry(req, &connection->transfer_log, tl_requests)
251 if (req->epoch == expect_epoch)
252 break;
253 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
254 if (req->epoch != expect_epoch)
255 break;
256 _req_mod(req, BARRIER_ACKED);
257 }
258 spin_unlock_irq(&connection->req_lock);
259
260 return;
261
262 bail:
263 spin_unlock_irq(&connection->req_lock);
264 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
265 }
266
267
268 /**
269 * _tl_restart() - Walks the transfer log, and applies an action to all requests
270 * @device: DRBD device.
271 * @what: The action/event to perform with all request objects
272 *
273 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
274 * RESTART_FROZEN_DISK_IO.
275 */
276 /* must hold resource->req_lock */
277 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
278 {
279 struct drbd_request *req, *r;
280
281 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
282 _req_mod(req, what);
283 }
284
285 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
286 {
287 spin_lock_irq(&connection->req_lock);
288 _tl_restart(connection, what);
289 spin_unlock_irq(&connection->req_lock);
290 }
291
292 /**
293 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
294 * @device: DRBD device.
295 *
296 * This is called after the connection to the peer was lost. The storage covered
297 * by the requests on the transfer gets marked as our of sync. Called from the
298 * receiver thread and the worker thread.
299 */
300 void tl_clear(struct drbd_connection *connection)
301 {
302 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
303 }
304
305 /**
306 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
307 * @device: DRBD device.
308 */
309 void tl_abort_disk_io(struct drbd_device *device)
310 {
311 struct drbd_connection *connection = first_peer_device(device)->connection;
312 struct drbd_request *req, *r;
313
314 spin_lock_irq(&connection->req_lock);
315 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
316 if (!(req->rq_state & RQ_LOCAL_PENDING))
317 continue;
318 if (req->w.device != device)
319 continue;
320 _req_mod(req, ABORT_DISK_IO);
321 }
322 spin_unlock_irq(&connection->req_lock);
323 }
324
325 static int drbd_thread_setup(void *arg)
326 {
327 struct drbd_thread *thi = (struct drbd_thread *) arg;
328 struct drbd_connection *connection = thi->connection;
329 unsigned long flags;
330 int retval;
331
332 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
333 thi->name[0],
334 thi->connection->resource->name);
335
336 restart:
337 retval = thi->function(thi);
338
339 spin_lock_irqsave(&thi->t_lock, flags);
340
341 /* if the receiver has been "EXITING", the last thing it did
342 * was set the conn state to "StandAlone",
343 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
344 * and receiver thread will be "started".
345 * drbd_thread_start needs to set "RESTARTING" in that case.
346 * t_state check and assignment needs to be within the same spinlock,
347 * so either thread_start sees EXITING, and can remap to RESTARTING,
348 * or thread_start see NONE, and can proceed as normal.
349 */
350
351 if (thi->t_state == RESTARTING) {
352 conn_info(connection, "Restarting %s thread\n", thi->name);
353 thi->t_state = RUNNING;
354 spin_unlock_irqrestore(&thi->t_lock, flags);
355 goto restart;
356 }
357
358 thi->task = NULL;
359 thi->t_state = NONE;
360 smp_mb();
361 complete_all(&thi->stop);
362 spin_unlock_irqrestore(&thi->t_lock, flags);
363
364 conn_info(connection, "Terminating %s\n", current->comm);
365
366 /* Release mod reference taken when thread was started */
367
368 kref_put(&connection->kref, drbd_destroy_connection);
369 module_put(THIS_MODULE);
370 return retval;
371 }
372
373 static void drbd_thread_init(struct drbd_connection *connection, struct drbd_thread *thi,
374 int (*func) (struct drbd_thread *), char *name)
375 {
376 spin_lock_init(&thi->t_lock);
377 thi->task = NULL;
378 thi->t_state = NONE;
379 thi->function = func;
380 thi->connection = connection;
381 strncpy(thi->name, name, ARRAY_SIZE(thi->name));
382 }
383
384 int drbd_thread_start(struct drbd_thread *thi)
385 {
386 struct drbd_connection *connection = thi->connection;
387 struct task_struct *nt;
388 unsigned long flags;
389
390 /* is used from state engine doing drbd_thread_stop_nowait,
391 * while holding the req lock irqsave */
392 spin_lock_irqsave(&thi->t_lock, flags);
393
394 switch (thi->t_state) {
395 case NONE:
396 conn_info(connection, "Starting %s thread (from %s [%d])\n",
397 thi->name, current->comm, current->pid);
398
399 /* Get ref on module for thread - this is released when thread exits */
400 if (!try_module_get(THIS_MODULE)) {
401 conn_err(connection, "Failed to get module reference in drbd_thread_start\n");
402 spin_unlock_irqrestore(&thi->t_lock, flags);
403 return false;
404 }
405
406 kref_get(&thi->connection->kref);
407
408 init_completion(&thi->stop);
409 thi->reset_cpu_mask = 1;
410 thi->t_state = RUNNING;
411 spin_unlock_irqrestore(&thi->t_lock, flags);
412 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
413
414 nt = kthread_create(drbd_thread_setup, (void *) thi,
415 "drbd_%c_%s", thi->name[0], thi->connection->resource->name);
416
417 if (IS_ERR(nt)) {
418 conn_err(connection, "Couldn't start thread\n");
419
420 kref_put(&connection->kref, drbd_destroy_connection);
421 module_put(THIS_MODULE);
422 return false;
423 }
424 spin_lock_irqsave(&thi->t_lock, flags);
425 thi->task = nt;
426 thi->t_state = RUNNING;
427 spin_unlock_irqrestore(&thi->t_lock, flags);
428 wake_up_process(nt);
429 break;
430 case EXITING:
431 thi->t_state = RESTARTING;
432 conn_info(connection, "Restarting %s thread (from %s [%d])\n",
433 thi->name, current->comm, current->pid);
434 /* fall through */
435 case RUNNING:
436 case RESTARTING:
437 default:
438 spin_unlock_irqrestore(&thi->t_lock, flags);
439 break;
440 }
441
442 return true;
443 }
444
445
446 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
447 {
448 unsigned long flags;
449
450 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
451
452 /* may be called from state engine, holding the req lock irqsave */
453 spin_lock_irqsave(&thi->t_lock, flags);
454
455 if (thi->t_state == NONE) {
456 spin_unlock_irqrestore(&thi->t_lock, flags);
457 if (restart)
458 drbd_thread_start(thi);
459 return;
460 }
461
462 if (thi->t_state != ns) {
463 if (thi->task == NULL) {
464 spin_unlock_irqrestore(&thi->t_lock, flags);
465 return;
466 }
467
468 thi->t_state = ns;
469 smp_mb();
470 init_completion(&thi->stop);
471 if (thi->task != current)
472 force_sig(DRBD_SIGKILL, thi->task);
473 }
474
475 spin_unlock_irqrestore(&thi->t_lock, flags);
476
477 if (wait)
478 wait_for_completion(&thi->stop);
479 }
480
481 static struct drbd_thread *drbd_task_to_thread(struct drbd_connection *connection, struct task_struct *task)
482 {
483 struct drbd_thread *thi =
484 task == connection->receiver.task ? &connection->receiver :
485 task == connection->asender.task ? &connection->asender :
486 task == connection->worker.task ? &connection->worker : NULL;
487
488 return thi;
489 }
490
491 char *drbd_task_to_thread_name(struct drbd_connection *connection, struct task_struct *task)
492 {
493 struct drbd_thread *thi = drbd_task_to_thread(connection, task);
494 return thi ? thi->name : task->comm;
495 }
496
497 int conn_lowest_minor(struct drbd_connection *connection)
498 {
499 struct drbd_device *device;
500 int vnr = 0, m;
501
502 rcu_read_lock();
503 device = idr_get_next(&connection->volumes, &vnr);
504 m = device ? device_to_minor(device) : -1;
505 rcu_read_unlock();
506
507 return m;
508 }
509
510 #ifdef CONFIG_SMP
511 /**
512 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
513 * @device: DRBD device.
514 *
515 * Forces all threads of a device onto the same CPU. This is beneficial for
516 * DRBD's performance. May be overwritten by user's configuration.
517 */
518 void drbd_calc_cpu_mask(struct drbd_connection *connection)
519 {
520 int ord, cpu;
521
522 /* user override. */
523 if (cpumask_weight(connection->cpu_mask))
524 return;
525
526 ord = conn_lowest_minor(connection) % cpumask_weight(cpu_online_mask);
527 for_each_online_cpu(cpu) {
528 if (ord-- == 0) {
529 cpumask_set_cpu(cpu, connection->cpu_mask);
530 return;
531 }
532 }
533 /* should not be reached */
534 cpumask_setall(connection->cpu_mask);
535 }
536
537 /**
538 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
539 * @device: DRBD device.
540 * @thi: drbd_thread object
541 *
542 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
543 * prematurely.
544 */
545 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
546 {
547 struct task_struct *p = current;
548
549 if (!thi->reset_cpu_mask)
550 return;
551 thi->reset_cpu_mask = 0;
552 set_cpus_allowed_ptr(p, thi->connection->cpu_mask);
553 }
554 #endif
555
556 /**
557 * drbd_header_size - size of a packet header
558 *
559 * The header size is a multiple of 8, so any payload following the header is
560 * word aligned on 64-bit architectures. (The bitmap send and receive code
561 * relies on this.)
562 */
563 unsigned int drbd_header_size(struct drbd_connection *connection)
564 {
565 if (connection->agreed_pro_version >= 100) {
566 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
567 return sizeof(struct p_header100);
568 } else {
569 BUILD_BUG_ON(sizeof(struct p_header80) !=
570 sizeof(struct p_header95));
571 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
572 return sizeof(struct p_header80);
573 }
574 }
575
576 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
577 {
578 h->magic = cpu_to_be32(DRBD_MAGIC);
579 h->command = cpu_to_be16(cmd);
580 h->length = cpu_to_be16(size);
581 return sizeof(struct p_header80);
582 }
583
584 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
585 {
586 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
587 h->command = cpu_to_be16(cmd);
588 h->length = cpu_to_be32(size);
589 return sizeof(struct p_header95);
590 }
591
592 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
593 int size, int vnr)
594 {
595 h->magic = cpu_to_be32(DRBD_MAGIC_100);
596 h->volume = cpu_to_be16(vnr);
597 h->command = cpu_to_be16(cmd);
598 h->length = cpu_to_be32(size);
599 h->pad = 0;
600 return sizeof(struct p_header100);
601 }
602
603 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
604 void *buffer, enum drbd_packet cmd, int size)
605 {
606 if (connection->agreed_pro_version >= 100)
607 return prepare_header100(buffer, cmd, size, vnr);
608 else if (connection->agreed_pro_version >= 95 &&
609 size > DRBD_MAX_SIZE_H80_PACKET)
610 return prepare_header95(buffer, cmd, size);
611 else
612 return prepare_header80(buffer, cmd, size);
613 }
614
615 static void *__conn_prepare_command(struct drbd_connection *connection,
616 struct drbd_socket *sock)
617 {
618 if (!sock->socket)
619 return NULL;
620 return sock->sbuf + drbd_header_size(connection);
621 }
622
623 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
624 {
625 void *p;
626
627 mutex_lock(&sock->mutex);
628 p = __conn_prepare_command(connection, sock);
629 if (!p)
630 mutex_unlock(&sock->mutex);
631
632 return p;
633 }
634
635 void *drbd_prepare_command(struct drbd_device *device, struct drbd_socket *sock)
636 {
637 return conn_prepare_command(first_peer_device(device)->connection, sock);
638 }
639
640 static int __send_command(struct drbd_connection *connection, int vnr,
641 struct drbd_socket *sock, enum drbd_packet cmd,
642 unsigned int header_size, void *data,
643 unsigned int size)
644 {
645 int msg_flags;
646 int err;
647
648 /*
649 * Called with @data == NULL and the size of the data blocks in @size
650 * for commands that send data blocks. For those commands, omit the
651 * MSG_MORE flag: this will increase the likelihood that data blocks
652 * which are page aligned on the sender will end up page aligned on the
653 * receiver.
654 */
655 msg_flags = data ? MSG_MORE : 0;
656
657 header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
658 header_size + size);
659 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
660 msg_flags);
661 if (data && !err)
662 err = drbd_send_all(connection, sock->socket, data, size, 0);
663 return err;
664 }
665
666 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
667 enum drbd_packet cmd, unsigned int header_size,
668 void *data, unsigned int size)
669 {
670 return __send_command(connection, 0, sock, cmd, header_size, data, size);
671 }
672
673 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
674 enum drbd_packet cmd, unsigned int header_size,
675 void *data, unsigned int size)
676 {
677 int err;
678
679 err = __conn_send_command(connection, sock, cmd, header_size, data, size);
680 mutex_unlock(&sock->mutex);
681 return err;
682 }
683
684 int drbd_send_command(struct drbd_device *device, struct drbd_socket *sock,
685 enum drbd_packet cmd, unsigned int header_size,
686 void *data, unsigned int size)
687 {
688 int err;
689
690 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, cmd, header_size,
691 data, size);
692 mutex_unlock(&sock->mutex);
693 return err;
694 }
695
696 int drbd_send_ping(struct drbd_connection *connection)
697 {
698 struct drbd_socket *sock;
699
700 sock = &connection->meta;
701 if (!conn_prepare_command(connection, sock))
702 return -EIO;
703 return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
704 }
705
706 int drbd_send_ping_ack(struct drbd_connection *connection)
707 {
708 struct drbd_socket *sock;
709
710 sock = &connection->meta;
711 if (!conn_prepare_command(connection, sock))
712 return -EIO;
713 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
714 }
715
716 int drbd_send_sync_param(struct drbd_device *device)
717 {
718 struct drbd_socket *sock;
719 struct p_rs_param_95 *p;
720 int size;
721 const int apv = first_peer_device(device)->connection->agreed_pro_version;
722 enum drbd_packet cmd;
723 struct net_conf *nc;
724 struct disk_conf *dc;
725
726 sock = &first_peer_device(device)->connection->data;
727 p = drbd_prepare_command(device, sock);
728 if (!p)
729 return -EIO;
730
731 rcu_read_lock();
732 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
733
734 size = apv <= 87 ? sizeof(struct p_rs_param)
735 : apv == 88 ? sizeof(struct p_rs_param)
736 + strlen(nc->verify_alg) + 1
737 : apv <= 94 ? sizeof(struct p_rs_param_89)
738 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
739
740 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
741
742 /* initialize verify_alg and csums_alg */
743 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
744
745 if (get_ldev(device)) {
746 dc = rcu_dereference(device->ldev->disk_conf);
747 p->resync_rate = cpu_to_be32(dc->resync_rate);
748 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
749 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
750 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
751 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
752 put_ldev(device);
753 } else {
754 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
755 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
756 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
757 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
758 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
759 }
760
761 if (apv >= 88)
762 strcpy(p->verify_alg, nc->verify_alg);
763 if (apv >= 89)
764 strcpy(p->csums_alg, nc->csums_alg);
765 rcu_read_unlock();
766
767 return drbd_send_command(device, sock, cmd, size, NULL, 0);
768 }
769
770 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
771 {
772 struct drbd_socket *sock;
773 struct p_protocol *p;
774 struct net_conf *nc;
775 int size, cf;
776
777 sock = &connection->data;
778 p = __conn_prepare_command(connection, sock);
779 if (!p)
780 return -EIO;
781
782 rcu_read_lock();
783 nc = rcu_dereference(connection->net_conf);
784
785 if (nc->tentative && connection->agreed_pro_version < 92) {
786 rcu_read_unlock();
787 mutex_unlock(&sock->mutex);
788 conn_err(connection, "--dry-run is not supported by peer");
789 return -EOPNOTSUPP;
790 }
791
792 size = sizeof(*p);
793 if (connection->agreed_pro_version >= 87)
794 size += strlen(nc->integrity_alg) + 1;
795
796 p->protocol = cpu_to_be32(nc->wire_protocol);
797 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
798 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
799 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
800 p->two_primaries = cpu_to_be32(nc->two_primaries);
801 cf = 0;
802 if (nc->discard_my_data)
803 cf |= CF_DISCARD_MY_DATA;
804 if (nc->tentative)
805 cf |= CF_DRY_RUN;
806 p->conn_flags = cpu_to_be32(cf);
807
808 if (connection->agreed_pro_version >= 87)
809 strcpy(p->integrity_alg, nc->integrity_alg);
810 rcu_read_unlock();
811
812 return __conn_send_command(connection, sock, cmd, size, NULL, 0);
813 }
814
815 int drbd_send_protocol(struct drbd_connection *connection)
816 {
817 int err;
818
819 mutex_lock(&connection->data.mutex);
820 err = __drbd_send_protocol(connection, P_PROTOCOL);
821 mutex_unlock(&connection->data.mutex);
822
823 return err;
824 }
825
826 static int _drbd_send_uuids(struct drbd_device *device, u64 uuid_flags)
827 {
828 struct drbd_socket *sock;
829 struct p_uuids *p;
830 int i;
831
832 if (!get_ldev_if_state(device, D_NEGOTIATING))
833 return 0;
834
835 sock = &first_peer_device(device)->connection->data;
836 p = drbd_prepare_command(device, sock);
837 if (!p) {
838 put_ldev(device);
839 return -EIO;
840 }
841 spin_lock_irq(&device->ldev->md.uuid_lock);
842 for (i = UI_CURRENT; i < UI_SIZE; i++)
843 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
844 spin_unlock_irq(&device->ldev->md.uuid_lock);
845
846 device->comm_bm_set = drbd_bm_total_weight(device);
847 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
848 rcu_read_lock();
849 uuid_flags |= rcu_dereference(first_peer_device(device)->connection->net_conf)->discard_my_data ? 1 : 0;
850 rcu_read_unlock();
851 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
852 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
853 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
854
855 put_ldev(device);
856 return drbd_send_command(device, sock, P_UUIDS, sizeof(*p), NULL, 0);
857 }
858
859 int drbd_send_uuids(struct drbd_device *device)
860 {
861 return _drbd_send_uuids(device, 0);
862 }
863
864 int drbd_send_uuids_skip_initial_sync(struct drbd_device *device)
865 {
866 return _drbd_send_uuids(device, 8);
867 }
868
869 void drbd_print_uuids(struct drbd_device *device, const char *text)
870 {
871 if (get_ldev_if_state(device, D_NEGOTIATING)) {
872 u64 *uuid = device->ldev->md.uuid;
873 dev_info(DEV, "%s %016llX:%016llX:%016llX:%016llX\n",
874 text,
875 (unsigned long long)uuid[UI_CURRENT],
876 (unsigned long long)uuid[UI_BITMAP],
877 (unsigned long long)uuid[UI_HISTORY_START],
878 (unsigned long long)uuid[UI_HISTORY_END]);
879 put_ldev(device);
880 } else {
881 dev_info(DEV, "%s effective data uuid: %016llX\n",
882 text,
883 (unsigned long long)device->ed_uuid);
884 }
885 }
886
887 void drbd_gen_and_send_sync_uuid(struct drbd_device *device)
888 {
889 struct drbd_socket *sock;
890 struct p_rs_uuid *p;
891 u64 uuid;
892
893 D_ASSERT(device->state.disk == D_UP_TO_DATE);
894
895 uuid = device->ldev->md.uuid[UI_BITMAP];
896 if (uuid && uuid != UUID_JUST_CREATED)
897 uuid = uuid + UUID_NEW_BM_OFFSET;
898 else
899 get_random_bytes(&uuid, sizeof(u64));
900 drbd_uuid_set(device, UI_BITMAP, uuid);
901 drbd_print_uuids(device, "updated sync UUID");
902 drbd_md_sync(device);
903
904 sock = &first_peer_device(device)->connection->data;
905 p = drbd_prepare_command(device, sock);
906 if (p) {
907 p->uuid = cpu_to_be64(uuid);
908 drbd_send_command(device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
909 }
910 }
911
912 int drbd_send_sizes(struct drbd_device *device, int trigger_reply, enum dds_flags flags)
913 {
914 struct drbd_socket *sock;
915 struct p_sizes *p;
916 sector_t d_size, u_size;
917 int q_order_type;
918 unsigned int max_bio_size;
919
920 if (get_ldev_if_state(device, D_NEGOTIATING)) {
921 D_ASSERT(device->ldev->backing_bdev);
922 d_size = drbd_get_max_capacity(device->ldev);
923 rcu_read_lock();
924 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
925 rcu_read_unlock();
926 q_order_type = drbd_queue_order_type(device);
927 max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
928 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
929 put_ldev(device);
930 } else {
931 d_size = 0;
932 u_size = 0;
933 q_order_type = QUEUE_ORDERED_NONE;
934 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
935 }
936
937 sock = &first_peer_device(device)->connection->data;
938 p = drbd_prepare_command(device, sock);
939 if (!p)
940 return -EIO;
941
942 if (first_peer_device(device)->connection->agreed_pro_version <= 94)
943 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
944 else if (first_peer_device(device)->connection->agreed_pro_version < 100)
945 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
946
947 p->d_size = cpu_to_be64(d_size);
948 p->u_size = cpu_to_be64(u_size);
949 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
950 p->max_bio_size = cpu_to_be32(max_bio_size);
951 p->queue_order_type = cpu_to_be16(q_order_type);
952 p->dds_flags = cpu_to_be16(flags);
953 return drbd_send_command(device, sock, P_SIZES, sizeof(*p), NULL, 0);
954 }
955
956 /**
957 * drbd_send_current_state() - Sends the drbd state to the peer
958 * @device: DRBD device.
959 */
960 int drbd_send_current_state(struct drbd_device *device)
961 {
962 struct drbd_socket *sock;
963 struct p_state *p;
964
965 sock = &first_peer_device(device)->connection->data;
966 p = drbd_prepare_command(device, sock);
967 if (!p)
968 return -EIO;
969 p->state = cpu_to_be32(device->state.i); /* Within the send mutex */
970 return drbd_send_command(device, sock, P_STATE, sizeof(*p), NULL, 0);
971 }
972
973 /**
974 * drbd_send_state() - After a state change, sends the new state to the peer
975 * @device: DRBD device.
976 * @state: the state to send, not necessarily the current state.
977 *
978 * Each state change queues an "after_state_ch" work, which will eventually
979 * send the resulting new state to the peer. If more state changes happen
980 * between queuing and processing of the after_state_ch work, we still
981 * want to send each intermediary state in the order it occurred.
982 */
983 int drbd_send_state(struct drbd_device *device, union drbd_state state)
984 {
985 struct drbd_socket *sock;
986 struct p_state *p;
987
988 sock = &first_peer_device(device)->connection->data;
989 p = drbd_prepare_command(device, sock);
990 if (!p)
991 return -EIO;
992 p->state = cpu_to_be32(state.i); /* Within the send mutex */
993 return drbd_send_command(device, sock, P_STATE, sizeof(*p), NULL, 0);
994 }
995
996 int drbd_send_state_req(struct drbd_device *device, union drbd_state mask, union drbd_state val)
997 {
998 struct drbd_socket *sock;
999 struct p_req_state *p;
1000
1001 sock = &first_peer_device(device)->connection->data;
1002 p = drbd_prepare_command(device, sock);
1003 if (!p)
1004 return -EIO;
1005 p->mask = cpu_to_be32(mask.i);
1006 p->val = cpu_to_be32(val.i);
1007 return drbd_send_command(device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1008 }
1009
1010 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1011 {
1012 enum drbd_packet cmd;
1013 struct drbd_socket *sock;
1014 struct p_req_state *p;
1015
1016 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1017 sock = &connection->data;
1018 p = conn_prepare_command(connection, sock);
1019 if (!p)
1020 return -EIO;
1021 p->mask = cpu_to_be32(mask.i);
1022 p->val = cpu_to_be32(val.i);
1023 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1024 }
1025
1026 void drbd_send_sr_reply(struct drbd_device *device, enum drbd_state_rv retcode)
1027 {
1028 struct drbd_socket *sock;
1029 struct p_req_state_reply *p;
1030
1031 sock = &first_peer_device(device)->connection->meta;
1032 p = drbd_prepare_command(device, sock);
1033 if (p) {
1034 p->retcode = cpu_to_be32(retcode);
1035 drbd_send_command(device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1036 }
1037 }
1038
1039 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1040 {
1041 struct drbd_socket *sock;
1042 struct p_req_state_reply *p;
1043 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1044
1045 sock = &connection->meta;
1046 p = conn_prepare_command(connection, sock);
1047 if (p) {
1048 p->retcode = cpu_to_be32(retcode);
1049 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1050 }
1051 }
1052
1053 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1054 {
1055 BUG_ON(code & ~0xf);
1056 p->encoding = (p->encoding & ~0xf) | code;
1057 }
1058
1059 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1060 {
1061 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1062 }
1063
1064 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1065 {
1066 BUG_ON(n & ~0x7);
1067 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1068 }
1069
1070 static int fill_bitmap_rle_bits(struct drbd_device *device,
1071 struct p_compressed_bm *p,
1072 unsigned int size,
1073 struct bm_xfer_ctx *c)
1074 {
1075 struct bitstream bs;
1076 unsigned long plain_bits;
1077 unsigned long tmp;
1078 unsigned long rl;
1079 unsigned len;
1080 unsigned toggle;
1081 int bits, use_rle;
1082
1083 /* may we use this feature? */
1084 rcu_read_lock();
1085 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1086 rcu_read_unlock();
1087 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1088 return 0;
1089
1090 if (c->bit_offset >= c->bm_bits)
1091 return 0; /* nothing to do. */
1092
1093 /* use at most thus many bytes */
1094 bitstream_init(&bs, p->code, size, 0);
1095 memset(p->code, 0, size);
1096 /* plain bits covered in this code string */
1097 plain_bits = 0;
1098
1099 /* p->encoding & 0x80 stores whether the first run length is set.
1100 * bit offset is implicit.
1101 * start with toggle == 2 to be able to tell the first iteration */
1102 toggle = 2;
1103
1104 /* see how much plain bits we can stuff into one packet
1105 * using RLE and VLI. */
1106 do {
1107 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1108 : _drbd_bm_find_next(device, c->bit_offset);
1109 if (tmp == -1UL)
1110 tmp = c->bm_bits;
1111 rl = tmp - c->bit_offset;
1112
1113 if (toggle == 2) { /* first iteration */
1114 if (rl == 0) {
1115 /* the first checked bit was set,
1116 * store start value, */
1117 dcbp_set_start(p, 1);
1118 /* but skip encoding of zero run length */
1119 toggle = !toggle;
1120 continue;
1121 }
1122 dcbp_set_start(p, 0);
1123 }
1124
1125 /* paranoia: catch zero runlength.
1126 * can only happen if bitmap is modified while we scan it. */
1127 if (rl == 0) {
1128 dev_err(DEV, "unexpected zero runlength while encoding bitmap "
1129 "t:%u bo:%lu\n", toggle, c->bit_offset);
1130 return -1;
1131 }
1132
1133 bits = vli_encode_bits(&bs, rl);
1134 if (bits == -ENOBUFS) /* buffer full */
1135 break;
1136 if (bits <= 0) {
1137 dev_err(DEV, "error while encoding bitmap: %d\n", bits);
1138 return 0;
1139 }
1140
1141 toggle = !toggle;
1142 plain_bits += rl;
1143 c->bit_offset = tmp;
1144 } while (c->bit_offset < c->bm_bits);
1145
1146 len = bs.cur.b - p->code + !!bs.cur.bit;
1147
1148 if (plain_bits < (len << 3)) {
1149 /* incompressible with this method.
1150 * we need to rewind both word and bit position. */
1151 c->bit_offset -= plain_bits;
1152 bm_xfer_ctx_bit_to_word_offset(c);
1153 c->bit_offset = c->word_offset * BITS_PER_LONG;
1154 return 0;
1155 }
1156
1157 /* RLE + VLI was able to compress it just fine.
1158 * update c->word_offset. */
1159 bm_xfer_ctx_bit_to_word_offset(c);
1160
1161 /* store pad_bits */
1162 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1163
1164 return len;
1165 }
1166
1167 /**
1168 * send_bitmap_rle_or_plain
1169 *
1170 * Return 0 when done, 1 when another iteration is needed, and a negative error
1171 * code upon failure.
1172 */
1173 static int
1174 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1175 {
1176 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1177 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1178 struct p_compressed_bm *p = sock->sbuf + header_size;
1179 int len, err;
1180
1181 len = fill_bitmap_rle_bits(device, p,
1182 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1183 if (len < 0)
1184 return -EIO;
1185
1186 if (len) {
1187 dcbp_set_code(p, RLE_VLI_Bits);
1188 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1189 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1190 NULL, 0);
1191 c->packets[0]++;
1192 c->bytes[0] += header_size + sizeof(*p) + len;
1193
1194 if (c->bit_offset >= c->bm_bits)
1195 len = 0; /* DONE */
1196 } else {
1197 /* was not compressible.
1198 * send a buffer full of plain text bits instead. */
1199 unsigned int data_size;
1200 unsigned long num_words;
1201 unsigned long *p = sock->sbuf + header_size;
1202
1203 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1204 num_words = min_t(size_t, data_size / sizeof(*p),
1205 c->bm_words - c->word_offset);
1206 len = num_words * sizeof(*p);
1207 if (len)
1208 drbd_bm_get_lel(device, c->word_offset, num_words, p);
1209 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1210 c->word_offset += num_words;
1211 c->bit_offset = c->word_offset * BITS_PER_LONG;
1212
1213 c->packets[1]++;
1214 c->bytes[1] += header_size + len;
1215
1216 if (c->bit_offset > c->bm_bits)
1217 c->bit_offset = c->bm_bits;
1218 }
1219 if (!err) {
1220 if (len == 0) {
1221 INFO_bm_xfer_stats(device, "send", c);
1222 return 0;
1223 } else
1224 return 1;
1225 }
1226 return -EIO;
1227 }
1228
1229 /* See the comment at receive_bitmap() */
1230 static int _drbd_send_bitmap(struct drbd_device *device)
1231 {
1232 struct bm_xfer_ctx c;
1233 int err;
1234
1235 if (!expect(device->bitmap))
1236 return false;
1237
1238 if (get_ldev(device)) {
1239 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1240 dev_info(DEV, "Writing the whole bitmap, MDF_FullSync was set.\n");
1241 drbd_bm_set_all(device);
1242 if (drbd_bm_write(device)) {
1243 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1244 * but otherwise process as per normal - need to tell other
1245 * side that a full resync is required! */
1246 dev_err(DEV, "Failed to write bitmap to disk!\n");
1247 } else {
1248 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1249 drbd_md_sync(device);
1250 }
1251 }
1252 put_ldev(device);
1253 }
1254
1255 c = (struct bm_xfer_ctx) {
1256 .bm_bits = drbd_bm_bits(device),
1257 .bm_words = drbd_bm_words(device),
1258 };
1259
1260 do {
1261 err = send_bitmap_rle_or_plain(device, &c);
1262 } while (err > 0);
1263
1264 return err == 0;
1265 }
1266
1267 int drbd_send_bitmap(struct drbd_device *device)
1268 {
1269 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1270 int err = -1;
1271
1272 mutex_lock(&sock->mutex);
1273 if (sock->socket)
1274 err = !_drbd_send_bitmap(device);
1275 mutex_unlock(&sock->mutex);
1276 return err;
1277 }
1278
1279 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1280 {
1281 struct drbd_socket *sock;
1282 struct p_barrier_ack *p;
1283
1284 if (connection->cstate < C_WF_REPORT_PARAMS)
1285 return;
1286
1287 sock = &connection->meta;
1288 p = conn_prepare_command(connection, sock);
1289 if (!p)
1290 return;
1291 p->barrier = barrier_nr;
1292 p->set_size = cpu_to_be32(set_size);
1293 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1294 }
1295
1296 /**
1297 * _drbd_send_ack() - Sends an ack packet
1298 * @device: DRBD device.
1299 * @cmd: Packet command code.
1300 * @sector: sector, needs to be in big endian byte order
1301 * @blksize: size in byte, needs to be in big endian byte order
1302 * @block_id: Id, big endian byte order
1303 */
1304 static int _drbd_send_ack(struct drbd_device *device, enum drbd_packet cmd,
1305 u64 sector, u32 blksize, u64 block_id)
1306 {
1307 struct drbd_socket *sock;
1308 struct p_block_ack *p;
1309
1310 if (device->state.conn < C_CONNECTED)
1311 return -EIO;
1312
1313 sock = &first_peer_device(device)->connection->meta;
1314 p = drbd_prepare_command(device, sock);
1315 if (!p)
1316 return -EIO;
1317 p->sector = sector;
1318 p->block_id = block_id;
1319 p->blksize = blksize;
1320 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1321 return drbd_send_command(device, sock, cmd, sizeof(*p), NULL, 0);
1322 }
1323
1324 /* dp->sector and dp->block_id already/still in network byte order,
1325 * data_size is payload size according to dp->head,
1326 * and may need to be corrected for digest size. */
1327 void drbd_send_ack_dp(struct drbd_device *device, enum drbd_packet cmd,
1328 struct p_data *dp, int data_size)
1329 {
1330 if (first_peer_device(device)->connection->peer_integrity_tfm)
1331 data_size -= crypto_hash_digestsize(first_peer_device(device)->connection->peer_integrity_tfm);
1332 _drbd_send_ack(device, cmd, dp->sector, cpu_to_be32(data_size),
1333 dp->block_id);
1334 }
1335
1336 void drbd_send_ack_rp(struct drbd_device *device, enum drbd_packet cmd,
1337 struct p_block_req *rp)
1338 {
1339 _drbd_send_ack(device, cmd, rp->sector, rp->blksize, rp->block_id);
1340 }
1341
1342 /**
1343 * drbd_send_ack() - Sends an ack packet
1344 * @device: DRBD device
1345 * @cmd: packet command code
1346 * @peer_req: peer request
1347 */
1348 int drbd_send_ack(struct drbd_device *device, enum drbd_packet cmd,
1349 struct drbd_peer_request *peer_req)
1350 {
1351 return _drbd_send_ack(device, cmd,
1352 cpu_to_be64(peer_req->i.sector),
1353 cpu_to_be32(peer_req->i.size),
1354 peer_req->block_id);
1355 }
1356
1357 /* This function misuses the block_id field to signal if the blocks
1358 * are is sync or not. */
1359 int drbd_send_ack_ex(struct drbd_device *device, enum drbd_packet cmd,
1360 sector_t sector, int blksize, u64 block_id)
1361 {
1362 return _drbd_send_ack(device, cmd,
1363 cpu_to_be64(sector),
1364 cpu_to_be32(blksize),
1365 cpu_to_be64(block_id));
1366 }
1367
1368 int drbd_send_drequest(struct drbd_device *device, int cmd,
1369 sector_t sector, int size, u64 block_id)
1370 {
1371 struct drbd_socket *sock;
1372 struct p_block_req *p;
1373
1374 sock = &first_peer_device(device)->connection->data;
1375 p = drbd_prepare_command(device, sock);
1376 if (!p)
1377 return -EIO;
1378 p->sector = cpu_to_be64(sector);
1379 p->block_id = block_id;
1380 p->blksize = cpu_to_be32(size);
1381 return drbd_send_command(device, sock, cmd, sizeof(*p), NULL, 0);
1382 }
1383
1384 int drbd_send_drequest_csum(struct drbd_device *device, sector_t sector, int size,
1385 void *digest, int digest_size, enum drbd_packet cmd)
1386 {
1387 struct drbd_socket *sock;
1388 struct p_block_req *p;
1389
1390 /* FIXME: Put the digest into the preallocated socket buffer. */
1391
1392 sock = &first_peer_device(device)->connection->data;
1393 p = drbd_prepare_command(device, sock);
1394 if (!p)
1395 return -EIO;
1396 p->sector = cpu_to_be64(sector);
1397 p->block_id = ID_SYNCER /* unused */;
1398 p->blksize = cpu_to_be32(size);
1399 return drbd_send_command(device, sock, cmd, sizeof(*p),
1400 digest, digest_size);
1401 }
1402
1403 int drbd_send_ov_request(struct drbd_device *device, sector_t sector, int size)
1404 {
1405 struct drbd_socket *sock;
1406 struct p_block_req *p;
1407
1408 sock = &first_peer_device(device)->connection->data;
1409 p = drbd_prepare_command(device, sock);
1410 if (!p)
1411 return -EIO;
1412 p->sector = cpu_to_be64(sector);
1413 p->block_id = ID_SYNCER /* unused */;
1414 p->blksize = cpu_to_be32(size);
1415 return drbd_send_command(device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1416 }
1417
1418 /* called on sndtimeo
1419 * returns false if we should retry,
1420 * true if we think connection is dead
1421 */
1422 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1423 {
1424 int drop_it;
1425 /* long elapsed = (long)(jiffies - device->last_received); */
1426
1427 drop_it = connection->meta.socket == sock
1428 || !connection->asender.task
1429 || get_t_state(&connection->asender) != RUNNING
1430 || connection->cstate < C_WF_REPORT_PARAMS;
1431
1432 if (drop_it)
1433 return true;
1434
1435 drop_it = !--connection->ko_count;
1436 if (!drop_it) {
1437 conn_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1438 current->comm, current->pid, connection->ko_count);
1439 request_ping(connection);
1440 }
1441
1442 return drop_it; /* && (device->state == R_PRIMARY) */;
1443 }
1444
1445 static void drbd_update_congested(struct drbd_connection *connection)
1446 {
1447 struct sock *sk = connection->data.socket->sk;
1448 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1449 set_bit(NET_CONGESTED, &connection->flags);
1450 }
1451
1452 /* The idea of sendpage seems to be to put some kind of reference
1453 * to the page into the skb, and to hand it over to the NIC. In
1454 * this process get_page() gets called.
1455 *
1456 * As soon as the page was really sent over the network put_page()
1457 * gets called by some part of the network layer. [ NIC driver? ]
1458 *
1459 * [ get_page() / put_page() increment/decrement the count. If count
1460 * reaches 0 the page will be freed. ]
1461 *
1462 * This works nicely with pages from FSs.
1463 * But this means that in protocol A we might signal IO completion too early!
1464 *
1465 * In order not to corrupt data during a resync we must make sure
1466 * that we do not reuse our own buffer pages (EEs) to early, therefore
1467 * we have the net_ee list.
1468 *
1469 * XFS seems to have problems, still, it submits pages with page_count == 0!
1470 * As a workaround, we disable sendpage on pages
1471 * with page_count == 0 or PageSlab.
1472 */
1473 static int _drbd_no_send_page(struct drbd_device *device, struct page *page,
1474 int offset, size_t size, unsigned msg_flags)
1475 {
1476 struct socket *socket;
1477 void *addr;
1478 int err;
1479
1480 socket = first_peer_device(device)->connection->data.socket;
1481 addr = kmap(page) + offset;
1482 err = drbd_send_all(first_peer_device(device)->connection, socket, addr, size, msg_flags);
1483 kunmap(page);
1484 if (!err)
1485 device->send_cnt += size >> 9;
1486 return err;
1487 }
1488
1489 static int _drbd_send_page(struct drbd_device *device, struct page *page,
1490 int offset, size_t size, unsigned msg_flags)
1491 {
1492 struct socket *socket = first_peer_device(device)->connection->data.socket;
1493 mm_segment_t oldfs = get_fs();
1494 int len = size;
1495 int err = -EIO;
1496
1497 /* e.g. XFS meta- & log-data is in slab pages, which have a
1498 * page_count of 0 and/or have PageSlab() set.
1499 * we cannot use send_page for those, as that does get_page();
1500 * put_page(); and would cause either a VM_BUG directly, or
1501 * __page_cache_release a page that would actually still be referenced
1502 * by someone, leading to some obscure delayed Oops somewhere else. */
1503 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1504 return _drbd_no_send_page(device, page, offset, size, msg_flags);
1505
1506 msg_flags |= MSG_NOSIGNAL;
1507 drbd_update_congested(first_peer_device(device)->connection);
1508 set_fs(KERNEL_DS);
1509 do {
1510 int sent;
1511
1512 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1513 if (sent <= 0) {
1514 if (sent == -EAGAIN) {
1515 if (we_should_drop_the_connection(first_peer_device(device)->connection, socket))
1516 break;
1517 continue;
1518 }
1519 dev_warn(DEV, "%s: size=%d len=%d sent=%d\n",
1520 __func__, (int)size, len, sent);
1521 if (sent < 0)
1522 err = sent;
1523 break;
1524 }
1525 len -= sent;
1526 offset += sent;
1527 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1528 set_fs(oldfs);
1529 clear_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags);
1530
1531 if (len == 0) {
1532 err = 0;
1533 device->send_cnt += size >> 9;
1534 }
1535 return err;
1536 }
1537
1538 static int _drbd_send_bio(struct drbd_device *device, struct bio *bio)
1539 {
1540 struct bio_vec bvec;
1541 struct bvec_iter iter;
1542
1543 /* hint all but last page with MSG_MORE */
1544 bio_for_each_segment(bvec, bio, iter) {
1545 int err;
1546
1547 err = _drbd_no_send_page(device, bvec.bv_page,
1548 bvec.bv_offset, bvec.bv_len,
1549 bio_iter_last(bvec, iter)
1550 ? 0 : MSG_MORE);
1551 if (err)
1552 return err;
1553 }
1554 return 0;
1555 }
1556
1557 static int _drbd_send_zc_bio(struct drbd_device *device, struct bio *bio)
1558 {
1559 struct bio_vec bvec;
1560 struct bvec_iter iter;
1561
1562 /* hint all but last page with MSG_MORE */
1563 bio_for_each_segment(bvec, bio, iter) {
1564 int err;
1565
1566 err = _drbd_send_page(device, bvec.bv_page,
1567 bvec.bv_offset, bvec.bv_len,
1568 bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1569 if (err)
1570 return err;
1571 }
1572 return 0;
1573 }
1574
1575 static int _drbd_send_zc_ee(struct drbd_device *device,
1576 struct drbd_peer_request *peer_req)
1577 {
1578 struct page *page = peer_req->pages;
1579 unsigned len = peer_req->i.size;
1580 int err;
1581
1582 /* hint all but last page with MSG_MORE */
1583 page_chain_for_each(page) {
1584 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1585
1586 err = _drbd_send_page(device, page, 0, l,
1587 page_chain_next(page) ? MSG_MORE : 0);
1588 if (err)
1589 return err;
1590 len -= l;
1591 }
1592 return 0;
1593 }
1594
1595 static u32 bio_flags_to_wire(struct drbd_device *device, unsigned long bi_rw)
1596 {
1597 if (first_peer_device(device)->connection->agreed_pro_version >= 95)
1598 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1599 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1600 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1601 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1602 else
1603 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1604 }
1605
1606 /* Used to send write requests
1607 * R_PRIMARY -> Peer (P_DATA)
1608 */
1609 int drbd_send_dblock(struct drbd_device *device, struct drbd_request *req)
1610 {
1611 struct drbd_socket *sock;
1612 struct p_data *p;
1613 unsigned int dp_flags = 0;
1614 int dgs;
1615 int err;
1616
1617 sock = &first_peer_device(device)->connection->data;
1618 p = drbd_prepare_command(device, sock);
1619 dgs = first_peer_device(device)->connection->integrity_tfm ?
1620 crypto_hash_digestsize(first_peer_device(device)->connection->integrity_tfm) : 0;
1621
1622 if (!p)
1623 return -EIO;
1624 p->sector = cpu_to_be64(req->i.sector);
1625 p->block_id = (unsigned long)req;
1626 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1627 dp_flags = bio_flags_to_wire(device, req->master_bio->bi_rw);
1628 if (device->state.conn >= C_SYNC_SOURCE &&
1629 device->state.conn <= C_PAUSED_SYNC_T)
1630 dp_flags |= DP_MAY_SET_IN_SYNC;
1631 if (first_peer_device(device)->connection->agreed_pro_version >= 100) {
1632 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1633 dp_flags |= DP_SEND_RECEIVE_ACK;
1634 if (req->rq_state & RQ_EXP_WRITE_ACK)
1635 dp_flags |= DP_SEND_WRITE_ACK;
1636 }
1637 p->dp_flags = cpu_to_be32(dp_flags);
1638 if (dgs)
1639 drbd_csum_bio(device, first_peer_device(device)->connection->integrity_tfm, req->master_bio, p + 1);
1640 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1641 if (!err) {
1642 /* For protocol A, we have to memcpy the payload into
1643 * socket buffers, as we may complete right away
1644 * as soon as we handed it over to tcp, at which point the data
1645 * pages may become invalid.
1646 *
1647 * For data-integrity enabled, we copy it as well, so we can be
1648 * sure that even if the bio pages may still be modified, it
1649 * won't change the data on the wire, thus if the digest checks
1650 * out ok after sending on this side, but does not fit on the
1651 * receiving side, we sure have detected corruption elsewhere.
1652 */
1653 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1654 err = _drbd_send_bio(device, req->master_bio);
1655 else
1656 err = _drbd_send_zc_bio(device, req->master_bio);
1657
1658 /* double check digest, sometimes buffers have been modified in flight. */
1659 if (dgs > 0 && dgs <= 64) {
1660 /* 64 byte, 512 bit, is the largest digest size
1661 * currently supported in kernel crypto. */
1662 unsigned char digest[64];
1663 drbd_csum_bio(device, first_peer_device(device)->connection->integrity_tfm, req->master_bio, digest);
1664 if (memcmp(p + 1, digest, dgs)) {
1665 dev_warn(DEV,
1666 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1667 (unsigned long long)req->i.sector, req->i.size);
1668 }
1669 } /* else if (dgs > 64) {
1670 ... Be noisy about digest too large ...
1671 } */
1672 }
1673 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1674
1675 return err;
1676 }
1677
1678 /* answer packet, used to send data back for read requests:
1679 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1680 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1681 */
1682 int drbd_send_block(struct drbd_device *device, enum drbd_packet cmd,
1683 struct drbd_peer_request *peer_req)
1684 {
1685 struct drbd_socket *sock;
1686 struct p_data *p;
1687 int err;
1688 int dgs;
1689
1690 sock = &first_peer_device(device)->connection->data;
1691 p = drbd_prepare_command(device, sock);
1692
1693 dgs = first_peer_device(device)->connection->integrity_tfm ?
1694 crypto_hash_digestsize(first_peer_device(device)->connection->integrity_tfm) : 0;
1695
1696 if (!p)
1697 return -EIO;
1698 p->sector = cpu_to_be64(peer_req->i.sector);
1699 p->block_id = peer_req->block_id;
1700 p->seq_num = 0; /* unused */
1701 p->dp_flags = 0;
1702 if (dgs)
1703 drbd_csum_ee(device, first_peer_device(device)->connection->integrity_tfm, peer_req, p + 1);
1704 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1705 if (!err)
1706 err = _drbd_send_zc_ee(device, peer_req);
1707 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1708
1709 return err;
1710 }
1711
1712 int drbd_send_out_of_sync(struct drbd_device *device, struct drbd_request *req)
1713 {
1714 struct drbd_socket *sock;
1715 struct p_block_desc *p;
1716
1717 sock = &first_peer_device(device)->connection->data;
1718 p = drbd_prepare_command(device, sock);
1719 if (!p)
1720 return -EIO;
1721 p->sector = cpu_to_be64(req->i.sector);
1722 p->blksize = cpu_to_be32(req->i.size);
1723 return drbd_send_command(device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1724 }
1725
1726 /*
1727 drbd_send distinguishes two cases:
1728
1729 Packets sent via the data socket "sock"
1730 and packets sent via the meta data socket "msock"
1731
1732 sock msock
1733 -----------------+-------------------------+------------------------------
1734 timeout conf.timeout / 2 conf.timeout / 2
1735 timeout action send a ping via msock Abort communication
1736 and close all sockets
1737 */
1738
1739 /*
1740 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1741 */
1742 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1743 void *buf, size_t size, unsigned msg_flags)
1744 {
1745 struct kvec iov;
1746 struct msghdr msg;
1747 int rv, sent = 0;
1748
1749 if (!sock)
1750 return -EBADR;
1751
1752 /* THINK if (signal_pending) return ... ? */
1753
1754 iov.iov_base = buf;
1755 iov.iov_len = size;
1756
1757 msg.msg_name = NULL;
1758 msg.msg_namelen = 0;
1759 msg.msg_control = NULL;
1760 msg.msg_controllen = 0;
1761 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1762
1763 if (sock == connection->data.socket) {
1764 rcu_read_lock();
1765 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1766 rcu_read_unlock();
1767 drbd_update_congested(connection);
1768 }
1769 do {
1770 /* STRANGE
1771 * tcp_sendmsg does _not_ use its size parameter at all ?
1772 *
1773 * -EAGAIN on timeout, -EINTR on signal.
1774 */
1775 /* THINK
1776 * do we need to block DRBD_SIG if sock == &meta.socket ??
1777 * otherwise wake_asender() might interrupt some send_*Ack !
1778 */
1779 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1780 if (rv == -EAGAIN) {
1781 if (we_should_drop_the_connection(connection, sock))
1782 break;
1783 else
1784 continue;
1785 }
1786 if (rv == -EINTR) {
1787 flush_signals(current);
1788 rv = 0;
1789 }
1790 if (rv < 0)
1791 break;
1792 sent += rv;
1793 iov.iov_base += rv;
1794 iov.iov_len -= rv;
1795 } while (sent < size);
1796
1797 if (sock == connection->data.socket)
1798 clear_bit(NET_CONGESTED, &connection->flags);
1799
1800 if (rv <= 0) {
1801 if (rv != -EAGAIN) {
1802 conn_err(connection, "%s_sendmsg returned %d\n",
1803 sock == connection->meta.socket ? "msock" : "sock",
1804 rv);
1805 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1806 } else
1807 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1808 }
1809
1810 return sent;
1811 }
1812
1813 /**
1814 * drbd_send_all - Send an entire buffer
1815 *
1816 * Returns 0 upon success and a negative error value otherwise.
1817 */
1818 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1819 size_t size, unsigned msg_flags)
1820 {
1821 int err;
1822
1823 err = drbd_send(connection, sock, buffer, size, msg_flags);
1824 if (err < 0)
1825 return err;
1826 if (err != size)
1827 return -EIO;
1828 return 0;
1829 }
1830
1831 static int drbd_open(struct block_device *bdev, fmode_t mode)
1832 {
1833 struct drbd_device *device = bdev->bd_disk->private_data;
1834 unsigned long flags;
1835 int rv = 0;
1836
1837 mutex_lock(&drbd_main_mutex);
1838 spin_lock_irqsave(&first_peer_device(device)->connection->req_lock, flags);
1839 /* to have a stable device->state.role
1840 * and no race with updating open_cnt */
1841
1842 if (device->state.role != R_PRIMARY) {
1843 if (mode & FMODE_WRITE)
1844 rv = -EROFS;
1845 else if (!allow_oos)
1846 rv = -EMEDIUMTYPE;
1847 }
1848
1849 if (!rv)
1850 device->open_cnt++;
1851 spin_unlock_irqrestore(&first_peer_device(device)->connection->req_lock, flags);
1852 mutex_unlock(&drbd_main_mutex);
1853
1854 return rv;
1855 }
1856
1857 static void drbd_release(struct gendisk *gd, fmode_t mode)
1858 {
1859 struct drbd_device *device = gd->private_data;
1860 mutex_lock(&drbd_main_mutex);
1861 device->open_cnt--;
1862 mutex_unlock(&drbd_main_mutex);
1863 }
1864
1865 static void drbd_set_defaults(struct drbd_device *device)
1866 {
1867 /* Beware! The actual layout differs
1868 * between big endian and little endian */
1869 device->state = (union drbd_dev_state) {
1870 { .role = R_SECONDARY,
1871 .peer = R_UNKNOWN,
1872 .conn = C_STANDALONE,
1873 .disk = D_DISKLESS,
1874 .pdsk = D_UNKNOWN,
1875 } };
1876 }
1877
1878 void drbd_init_set_defaults(struct drbd_device *device)
1879 {
1880 /* the memset(,0,) did most of this.
1881 * note: only assignments, no allocation in here */
1882
1883 drbd_set_defaults(device);
1884
1885 atomic_set(&device->ap_bio_cnt, 0);
1886 atomic_set(&device->ap_pending_cnt, 0);
1887 atomic_set(&device->rs_pending_cnt, 0);
1888 atomic_set(&device->unacked_cnt, 0);
1889 atomic_set(&device->local_cnt, 0);
1890 atomic_set(&device->pp_in_use_by_net, 0);
1891 atomic_set(&device->rs_sect_in, 0);
1892 atomic_set(&device->rs_sect_ev, 0);
1893 atomic_set(&device->ap_in_flight, 0);
1894 atomic_set(&device->md_io_in_use, 0);
1895
1896 mutex_init(&device->own_state_mutex);
1897 device->state_mutex = &device->own_state_mutex;
1898
1899 spin_lock_init(&device->al_lock);
1900 spin_lock_init(&device->peer_seq_lock);
1901
1902 INIT_LIST_HEAD(&device->active_ee);
1903 INIT_LIST_HEAD(&device->sync_ee);
1904 INIT_LIST_HEAD(&device->done_ee);
1905 INIT_LIST_HEAD(&device->read_ee);
1906 INIT_LIST_HEAD(&device->net_ee);
1907 INIT_LIST_HEAD(&device->resync_reads);
1908 INIT_LIST_HEAD(&device->resync_work.list);
1909 INIT_LIST_HEAD(&device->unplug_work.list);
1910 INIT_LIST_HEAD(&device->go_diskless.list);
1911 INIT_LIST_HEAD(&device->md_sync_work.list);
1912 INIT_LIST_HEAD(&device->start_resync_work.list);
1913 INIT_LIST_HEAD(&device->bm_io_work.w.list);
1914
1915 device->resync_work.cb = w_resync_timer;
1916 device->unplug_work.cb = w_send_write_hint;
1917 device->go_diskless.cb = w_go_diskless;
1918 device->md_sync_work.cb = w_md_sync;
1919 device->bm_io_work.w.cb = w_bitmap_io;
1920 device->start_resync_work.cb = w_start_resync;
1921
1922 device->resync_work.device = device;
1923 device->unplug_work.device = device;
1924 device->go_diskless.device = device;
1925 device->md_sync_work.device = device;
1926 device->bm_io_work.w.device = device;
1927 device->start_resync_work.device = device;
1928
1929 init_timer(&device->resync_timer);
1930 init_timer(&device->md_sync_timer);
1931 init_timer(&device->start_resync_timer);
1932 init_timer(&device->request_timer);
1933 device->resync_timer.function = resync_timer_fn;
1934 device->resync_timer.data = (unsigned long) device;
1935 device->md_sync_timer.function = md_sync_timer_fn;
1936 device->md_sync_timer.data = (unsigned long) device;
1937 device->start_resync_timer.function = start_resync_timer_fn;
1938 device->start_resync_timer.data = (unsigned long) device;
1939 device->request_timer.function = request_timer_fn;
1940 device->request_timer.data = (unsigned long) device;
1941
1942 init_waitqueue_head(&device->misc_wait);
1943 init_waitqueue_head(&device->state_wait);
1944 init_waitqueue_head(&device->ee_wait);
1945 init_waitqueue_head(&device->al_wait);
1946 init_waitqueue_head(&device->seq_wait);
1947
1948 device->resync_wenr = LC_FREE;
1949 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1950 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1951 }
1952
1953 void drbd_device_cleanup(struct drbd_device *device)
1954 {
1955 int i;
1956 if (first_peer_device(device)->connection->receiver.t_state != NONE)
1957 dev_err(DEV, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1958 first_peer_device(device)->connection->receiver.t_state);
1959
1960 device->al_writ_cnt =
1961 device->bm_writ_cnt =
1962 device->read_cnt =
1963 device->recv_cnt =
1964 device->send_cnt =
1965 device->writ_cnt =
1966 device->p_size =
1967 device->rs_start =
1968 device->rs_total =
1969 device->rs_failed = 0;
1970 device->rs_last_events = 0;
1971 device->rs_last_sect_ev = 0;
1972 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1973 device->rs_mark_left[i] = 0;
1974 device->rs_mark_time[i] = 0;
1975 }
1976 D_ASSERT(first_peer_device(device)->connection->net_conf == NULL);
1977
1978 drbd_set_my_capacity(device, 0);
1979 if (device->bitmap) {
1980 /* maybe never allocated. */
1981 drbd_bm_resize(device, 0, 1);
1982 drbd_bm_cleanup(device);
1983 }
1984
1985 drbd_free_bc(device->ldev);
1986 device->ldev = NULL;
1987
1988 clear_bit(AL_SUSPENDED, &device->flags);
1989
1990 D_ASSERT(list_empty(&device->active_ee));
1991 D_ASSERT(list_empty(&device->sync_ee));
1992 D_ASSERT(list_empty(&device->done_ee));
1993 D_ASSERT(list_empty(&device->read_ee));
1994 D_ASSERT(list_empty(&device->net_ee));
1995 D_ASSERT(list_empty(&device->resync_reads));
1996 D_ASSERT(list_empty(&first_peer_device(device)->connection->sender_work.q));
1997 D_ASSERT(list_empty(&device->resync_work.list));
1998 D_ASSERT(list_empty(&device->unplug_work.list));
1999 D_ASSERT(list_empty(&device->go_diskless.list));
2000
2001 drbd_set_defaults(device);
2002 }
2003
2004
2005 static void drbd_destroy_mempools(void)
2006 {
2007 struct page *page;
2008
2009 while (drbd_pp_pool) {
2010 page = drbd_pp_pool;
2011 drbd_pp_pool = (struct page *)page_private(page);
2012 __free_page(page);
2013 drbd_pp_vacant--;
2014 }
2015
2016 /* D_ASSERT(atomic_read(&drbd_pp_vacant)==0); */
2017
2018 if (drbd_md_io_bio_set)
2019 bioset_free(drbd_md_io_bio_set);
2020 if (drbd_md_io_page_pool)
2021 mempool_destroy(drbd_md_io_page_pool);
2022 if (drbd_ee_mempool)
2023 mempool_destroy(drbd_ee_mempool);
2024 if (drbd_request_mempool)
2025 mempool_destroy(drbd_request_mempool);
2026 if (drbd_ee_cache)
2027 kmem_cache_destroy(drbd_ee_cache);
2028 if (drbd_request_cache)
2029 kmem_cache_destroy(drbd_request_cache);
2030 if (drbd_bm_ext_cache)
2031 kmem_cache_destroy(drbd_bm_ext_cache);
2032 if (drbd_al_ext_cache)
2033 kmem_cache_destroy(drbd_al_ext_cache);
2034
2035 drbd_md_io_bio_set = NULL;
2036 drbd_md_io_page_pool = NULL;
2037 drbd_ee_mempool = NULL;
2038 drbd_request_mempool = NULL;
2039 drbd_ee_cache = NULL;
2040 drbd_request_cache = NULL;
2041 drbd_bm_ext_cache = NULL;
2042 drbd_al_ext_cache = NULL;
2043
2044 return;
2045 }
2046
2047 static int drbd_create_mempools(void)
2048 {
2049 struct page *page;
2050 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2051 int i;
2052
2053 /* prepare our caches and mempools */
2054 drbd_request_mempool = NULL;
2055 drbd_ee_cache = NULL;
2056 drbd_request_cache = NULL;
2057 drbd_bm_ext_cache = NULL;
2058 drbd_al_ext_cache = NULL;
2059 drbd_pp_pool = NULL;
2060 drbd_md_io_page_pool = NULL;
2061 drbd_md_io_bio_set = NULL;
2062
2063 /* caches */
2064 drbd_request_cache = kmem_cache_create(
2065 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2066 if (drbd_request_cache == NULL)
2067 goto Enomem;
2068
2069 drbd_ee_cache = kmem_cache_create(
2070 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2071 if (drbd_ee_cache == NULL)
2072 goto Enomem;
2073
2074 drbd_bm_ext_cache = kmem_cache_create(
2075 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2076 if (drbd_bm_ext_cache == NULL)
2077 goto Enomem;
2078
2079 drbd_al_ext_cache = kmem_cache_create(
2080 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2081 if (drbd_al_ext_cache == NULL)
2082 goto Enomem;
2083
2084 /* mempools */
2085 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2086 if (drbd_md_io_bio_set == NULL)
2087 goto Enomem;
2088
2089 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2090 if (drbd_md_io_page_pool == NULL)
2091 goto Enomem;
2092
2093 drbd_request_mempool = mempool_create(number,
2094 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2095 if (drbd_request_mempool == NULL)
2096 goto Enomem;
2097
2098 drbd_ee_mempool = mempool_create(number,
2099 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2100 if (drbd_ee_mempool == NULL)
2101 goto Enomem;
2102
2103 /* drbd's page pool */
2104 spin_lock_init(&drbd_pp_lock);
2105
2106 for (i = 0; i < number; i++) {
2107 page = alloc_page(GFP_HIGHUSER);
2108 if (!page)
2109 goto Enomem;
2110 set_page_private(page, (unsigned long)drbd_pp_pool);
2111 drbd_pp_pool = page;
2112 }
2113 drbd_pp_vacant = number;
2114
2115 return 0;
2116
2117 Enomem:
2118 drbd_destroy_mempools(); /* in case we allocated some */
2119 return -ENOMEM;
2120 }
2121
2122 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2123 void *unused)
2124 {
2125 /* just so we have it. you never know what interesting things we
2126 * might want to do here some day...
2127 */
2128
2129 return NOTIFY_DONE;
2130 }
2131
2132 static struct notifier_block drbd_notifier = {
2133 .notifier_call = drbd_notify_sys,
2134 };
2135
2136 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2137 {
2138 int rr;
2139
2140 rr = drbd_free_peer_reqs(device, &device->active_ee);
2141 if (rr)
2142 dev_err(DEV, "%d EEs in active list found!\n", rr);
2143
2144 rr = drbd_free_peer_reqs(device, &device->sync_ee);
2145 if (rr)
2146 dev_err(DEV, "%d EEs in sync list found!\n", rr);
2147
2148 rr = drbd_free_peer_reqs(device, &device->read_ee);
2149 if (rr)
2150 dev_err(DEV, "%d EEs in read list found!\n", rr);
2151
2152 rr = drbd_free_peer_reqs(device, &device->done_ee);
2153 if (rr)
2154 dev_err(DEV, "%d EEs in done list found!\n", rr);
2155
2156 rr = drbd_free_peer_reqs(device, &device->net_ee);
2157 if (rr)
2158 dev_err(DEV, "%d EEs in net list found!\n", rr);
2159 }
2160
2161 /* caution. no locking. */
2162 void drbd_destroy_device(struct kref *kref)
2163 {
2164 struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2165 struct drbd_connection *connection = first_peer_device(device)->connection;
2166
2167 del_timer_sync(&device->request_timer);
2168
2169 /* paranoia asserts */
2170 D_ASSERT(device->open_cnt == 0);
2171 /* end paranoia asserts */
2172
2173 /* cleanup stuff that may have been allocated during
2174 * device (re-)configuration or state changes */
2175
2176 if (device->this_bdev)
2177 bdput(device->this_bdev);
2178
2179 drbd_free_bc(device->ldev);
2180 device->ldev = NULL;
2181
2182 drbd_release_all_peer_reqs(device);
2183
2184 lc_destroy(device->act_log);
2185 lc_destroy(device->resync);
2186
2187 kfree(device->p_uuid);
2188 /* device->p_uuid = NULL; */
2189
2190 if (device->bitmap) /* should no longer be there. */
2191 drbd_bm_cleanup(device);
2192 __free_page(device->md_io_page);
2193 put_disk(device->vdisk);
2194 blk_cleanup_queue(device->rq_queue);
2195 kfree(device->rs_plan_s);
2196 kfree(first_peer_device(device));
2197 kfree(device);
2198
2199 kref_put(&connection->kref, drbd_destroy_connection);
2200 }
2201
2202 /* One global retry thread, if we need to push back some bio and have it
2203 * reinserted through our make request function.
2204 */
2205 static struct retry_worker {
2206 struct workqueue_struct *wq;
2207 struct work_struct worker;
2208
2209 spinlock_t lock;
2210 struct list_head writes;
2211 } retry;
2212
2213 static void do_retry(struct work_struct *ws)
2214 {
2215 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2216 LIST_HEAD(writes);
2217 struct drbd_request *req, *tmp;
2218
2219 spin_lock_irq(&retry->lock);
2220 list_splice_init(&retry->writes, &writes);
2221 spin_unlock_irq(&retry->lock);
2222
2223 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2224 struct drbd_device *device = req->w.device;
2225 struct bio *bio = req->master_bio;
2226 unsigned long start_time = req->start_time;
2227 bool expected;
2228
2229 expected =
2230 expect(atomic_read(&req->completion_ref) == 0) &&
2231 expect(req->rq_state & RQ_POSTPONED) &&
2232 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2233 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2234
2235 if (!expected)
2236 dev_err(DEV, "req=%p completion_ref=%d rq_state=%x\n",
2237 req, atomic_read(&req->completion_ref),
2238 req->rq_state);
2239
2240 /* We still need to put one kref associated with the
2241 * "completion_ref" going zero in the code path that queued it
2242 * here. The request object may still be referenced by a
2243 * frozen local req->private_bio, in case we force-detached.
2244 */
2245 kref_put(&req->kref, drbd_req_destroy);
2246
2247 /* A single suspended or otherwise blocking device may stall
2248 * all others as well. Fortunately, this code path is to
2249 * recover from a situation that "should not happen":
2250 * concurrent writes in multi-primary setup.
2251 * In a "normal" lifecycle, this workqueue is supposed to be
2252 * destroyed without ever doing anything.
2253 * If it turns out to be an issue anyways, we can do per
2254 * resource (replication group) or per device (minor) retry
2255 * workqueues instead.
2256 */
2257
2258 /* We are not just doing generic_make_request(),
2259 * as we want to keep the start_time information. */
2260 inc_ap_bio(device);
2261 __drbd_make_request(device, bio, start_time);
2262 }
2263 }
2264
2265 void drbd_restart_request(struct drbd_request *req)
2266 {
2267 unsigned long flags;
2268 spin_lock_irqsave(&retry.lock, flags);
2269 list_move_tail(&req->tl_requests, &retry.writes);
2270 spin_unlock_irqrestore(&retry.lock, flags);
2271
2272 /* Drop the extra reference that would otherwise
2273 * have been dropped by complete_master_bio.
2274 * do_retry() needs to grab a new one. */
2275 dec_ap_bio(req->w.device);
2276
2277 queue_work(retry.wq, &retry.worker);
2278 }
2279
2280 void drbd_destroy_resource(struct kref *kref)
2281 {
2282 struct drbd_resource *resource =
2283 container_of(kref, struct drbd_resource, kref);
2284
2285 kfree(resource->name);
2286 kfree(resource);
2287 }
2288
2289 void drbd_free_resource(struct drbd_resource *resource)
2290 {
2291 struct drbd_connection *connection, *tmp;
2292
2293 for_each_connection_safe(connection, tmp, resource) {
2294 list_del(&connection->connections);
2295 kref_put(&connection->kref, drbd_destroy_connection);
2296 }
2297 kref_put(&resource->kref, drbd_destroy_resource);
2298 }
2299
2300 static void drbd_cleanup(void)
2301 {
2302 unsigned int i;
2303 struct drbd_device *device;
2304 struct drbd_resource *resource, *tmp;
2305
2306 unregister_reboot_notifier(&drbd_notifier);
2307
2308 /* first remove proc,
2309 * drbdsetup uses it's presence to detect
2310 * whether DRBD is loaded.
2311 * If we would get stuck in proc removal,
2312 * but have netlink already deregistered,
2313 * some drbdsetup commands may wait forever
2314 * for an answer.
2315 */
2316 if (drbd_proc)
2317 remove_proc_entry("drbd", NULL);
2318
2319 if (retry.wq)
2320 destroy_workqueue(retry.wq);
2321
2322 drbd_genl_unregister();
2323
2324 idr_for_each_entry(&drbd_devices, device, i) {
2325 idr_remove(&drbd_devices, device_to_minor(device));
2326 idr_remove(&first_peer_device(device)->connection->volumes, device->vnr);
2327 destroy_workqueue(device->submit.wq);
2328 del_gendisk(device->vdisk);
2329 /* synchronize_rcu(); No other threads running at this point */
2330 kref_put(&device->kref, drbd_destroy_device);
2331 }
2332
2333 /* not _rcu since, no other updater anymore. Genl already unregistered */
2334 for_each_resource_safe(resource, tmp, &drbd_resources) {
2335 list_del(&resource->resources);
2336 drbd_free_resource(resource);
2337 }
2338
2339 drbd_destroy_mempools();
2340 unregister_blkdev(DRBD_MAJOR, "drbd");
2341
2342 idr_destroy(&drbd_devices);
2343
2344 printk(KERN_INFO "drbd: module cleanup done.\n");
2345 }
2346
2347 /**
2348 * drbd_congested() - Callback for the flusher thread
2349 * @congested_data: User data
2350 * @bdi_bits: Bits the BDI flusher thread is currently interested in
2351 *
2352 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2353 */
2354 static int drbd_congested(void *congested_data, int bdi_bits)
2355 {
2356 struct drbd_device *device = congested_data;
2357 struct request_queue *q;
2358 char reason = '-';
2359 int r = 0;
2360
2361 if (!may_inc_ap_bio(device)) {
2362 /* DRBD has frozen IO */
2363 r = bdi_bits;
2364 reason = 'd';
2365 goto out;
2366 }
2367
2368 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2369 r |= (1 << BDI_async_congested);
2370 /* Without good local data, we would need to read from remote,
2371 * and that would need the worker thread as well, which is
2372 * currently blocked waiting for that usermode helper to
2373 * finish.
2374 */
2375 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2376 r |= (1 << BDI_sync_congested);
2377 else
2378 put_ldev(device);
2379 r &= bdi_bits;
2380 reason = 'c';
2381 goto out;
2382 }
2383
2384 if (get_ldev(device)) {
2385 q = bdev_get_queue(device->ldev->backing_bdev);
2386 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2387 put_ldev(device);
2388 if (r)
2389 reason = 'b';
2390 }
2391
2392 if (bdi_bits & (1 << BDI_async_congested) &&
2393 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2394 r |= (1 << BDI_async_congested);
2395 reason = reason == 'b' ? 'a' : 'n';
2396 }
2397
2398 out:
2399 device->congestion_reason = reason;
2400 return r;
2401 }
2402
2403 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2404 {
2405 spin_lock_init(&wq->q_lock);
2406 INIT_LIST_HEAD(&wq->q);
2407 init_waitqueue_head(&wq->q_wait);
2408 }
2409
2410 struct drbd_connection *conn_get_by_name(const char *name)
2411 {
2412 struct drbd_connection *connection;
2413 struct drbd_resource *resource;
2414
2415 if (!name || !name[0])
2416 return NULL;
2417
2418 rcu_read_lock();
2419 for_each_resource_rcu(resource, &drbd_resources) {
2420 if (!strcmp(resource->name, name)) {
2421 connection = first_connection(resource);
2422 kref_get(&connection->kref);
2423 goto found;
2424 }
2425 }
2426 connection = NULL;
2427 found:
2428 rcu_read_unlock();
2429 return connection;
2430 }
2431
2432 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2433 void *peer_addr, int peer_addr_len)
2434 {
2435 struct drbd_resource *resource;
2436 struct drbd_connection *connection;
2437
2438 rcu_read_lock();
2439 for_each_resource_rcu(resource, &drbd_resources) {
2440 for_each_connection_rcu(connection, resource) {
2441 if (connection->my_addr_len == my_addr_len &&
2442 connection->peer_addr_len == peer_addr_len &&
2443 !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2444 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2445 kref_get(&connection->kref);
2446 goto found;
2447 }
2448 }
2449 }
2450 connection = NULL;
2451 found:
2452 rcu_read_unlock();
2453 return connection;
2454 }
2455
2456 static int drbd_alloc_socket(struct drbd_socket *socket)
2457 {
2458 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2459 if (!socket->rbuf)
2460 return -ENOMEM;
2461 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2462 if (!socket->sbuf)
2463 return -ENOMEM;
2464 return 0;
2465 }
2466
2467 static void drbd_free_socket(struct drbd_socket *socket)
2468 {
2469 free_page((unsigned long) socket->sbuf);
2470 free_page((unsigned long) socket->rbuf);
2471 }
2472
2473 void conn_free_crypto(struct drbd_connection *connection)
2474 {
2475 drbd_free_sock(connection);
2476
2477 crypto_free_hash(connection->csums_tfm);
2478 crypto_free_hash(connection->verify_tfm);
2479 crypto_free_hash(connection->cram_hmac_tfm);
2480 crypto_free_hash(connection->integrity_tfm);
2481 crypto_free_hash(connection->peer_integrity_tfm);
2482 kfree(connection->int_dig_in);
2483 kfree(connection->int_dig_vv);
2484
2485 connection->csums_tfm = NULL;
2486 connection->verify_tfm = NULL;
2487 connection->cram_hmac_tfm = NULL;
2488 connection->integrity_tfm = NULL;
2489 connection->peer_integrity_tfm = NULL;
2490 connection->int_dig_in = NULL;
2491 connection->int_dig_vv = NULL;
2492 }
2493
2494 int set_resource_options(struct drbd_connection *connection, struct res_opts *res_opts)
2495 {
2496 cpumask_var_t new_cpu_mask;
2497 int err;
2498
2499 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2500 return -ENOMEM;
2501 /*
2502 retcode = ERR_NOMEM;
2503 drbd_msg_put_info("unable to allocate cpumask");
2504 */
2505
2506 /* silently ignore cpu mask on UP kernel */
2507 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2508 /* FIXME: Get rid of constant 32 here */
2509 err = bitmap_parse(res_opts->cpu_mask, 32,
2510 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2511 if (err) {
2512 conn_warn(connection, "bitmap_parse() failed with %d\n", err);
2513 /* retcode = ERR_CPU_MASK_PARSE; */
2514 goto fail;
2515 }
2516 }
2517 connection->res_opts = *res_opts;
2518 if (!cpumask_equal(connection->cpu_mask, new_cpu_mask)) {
2519 cpumask_copy(connection->cpu_mask, new_cpu_mask);
2520 drbd_calc_cpu_mask(connection);
2521 connection->receiver.reset_cpu_mask = 1;
2522 connection->asender.reset_cpu_mask = 1;
2523 connection->worker.reset_cpu_mask = 1;
2524 }
2525 err = 0;
2526
2527 fail:
2528 free_cpumask_var(new_cpu_mask);
2529 return err;
2530
2531 }
2532
2533 struct drbd_resource *drbd_create_resource(const char *name)
2534 {
2535 struct drbd_resource *resource;
2536
2537 resource = kmalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2538 if (!resource)
2539 return NULL;
2540 resource->name = kstrdup(name, GFP_KERNEL);
2541 if (!resource->name) {
2542 kfree(resource);
2543 return NULL;
2544 }
2545 kref_init(&resource->kref);
2546 INIT_LIST_HEAD(&resource->connections);
2547 list_add_tail_rcu(&resource->resources, &drbd_resources);
2548 return resource;
2549 }
2550
2551 /* caller must be under genl_lock() */
2552 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2553 {
2554 struct drbd_resource *resource;
2555 struct drbd_connection *connection;
2556
2557 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2558 if (!connection)
2559 return NULL;
2560
2561 if (drbd_alloc_socket(&connection->data))
2562 goto fail;
2563 if (drbd_alloc_socket(&connection->meta))
2564 goto fail;
2565
2566 if (!zalloc_cpumask_var(&connection->cpu_mask, GFP_KERNEL))
2567 goto fail;
2568
2569 if (set_resource_options(connection, res_opts))
2570 goto fail;
2571
2572 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2573 if (!connection->current_epoch)
2574 goto fail;
2575
2576 INIT_LIST_HEAD(&connection->transfer_log);
2577
2578 INIT_LIST_HEAD(&connection->current_epoch->list);
2579 connection->epochs = 1;
2580 spin_lock_init(&connection->epoch_lock);
2581 connection->write_ordering = WO_bdev_flush;
2582
2583 connection->send.seen_any_write_yet = false;
2584 connection->send.current_epoch_nr = 0;
2585 connection->send.current_epoch_writes = 0;
2586
2587 resource = drbd_create_resource(name);
2588 if (!resource)
2589 goto fail;
2590
2591 connection->cstate = C_STANDALONE;
2592 mutex_init(&connection->cstate_mutex);
2593 spin_lock_init(&connection->req_lock);
2594 mutex_init(&connection->conf_update);
2595 init_waitqueue_head(&connection->ping_wait);
2596 idr_init(&connection->volumes);
2597
2598 drbd_init_workqueue(&connection->sender_work);
2599 mutex_init(&connection->data.mutex);
2600 mutex_init(&connection->meta.mutex);
2601
2602 drbd_thread_init(connection, &connection->receiver, drbdd_init, "receiver");
2603 drbd_thread_init(connection, &connection->worker, drbd_worker, "worker");
2604 drbd_thread_init(connection, &connection->asender, drbd_asender, "asender");
2605
2606 kref_init(&connection->kref);
2607
2608 kref_get(&resource->kref);
2609 connection->resource = resource;
2610 list_add_tail_rcu(&connection->connections, &resource->connections);
2611
2612 return connection;
2613
2614 fail:
2615 kfree(connection->current_epoch);
2616 free_cpumask_var(connection->cpu_mask);
2617 drbd_free_socket(&connection->meta);
2618 drbd_free_socket(&connection->data);
2619 kfree(connection);
2620
2621 return NULL;
2622 }
2623
2624 void drbd_destroy_connection(struct kref *kref)
2625 {
2626 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2627 struct drbd_resource *resource = connection->resource;
2628
2629 if (atomic_read(&connection->current_epoch->epoch_size) != 0)
2630 conn_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2631 kfree(connection->current_epoch);
2632
2633 idr_destroy(&connection->volumes);
2634
2635 free_cpumask_var(connection->cpu_mask);
2636 drbd_free_socket(&connection->meta);
2637 drbd_free_socket(&connection->data);
2638 kfree(connection->int_dig_in);
2639 kfree(connection->int_dig_vv);
2640 kfree(connection);
2641 kref_put(&resource->kref, drbd_destroy_resource);
2642 }
2643
2644 static int init_submitter(struct drbd_device *device)
2645 {
2646 /* opencoded create_singlethread_workqueue(),
2647 * to be able to say "drbd%d", ..., minor */
2648 device->submit.wq = alloc_workqueue("drbd%u_submit",
2649 WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor);
2650 if (!device->submit.wq)
2651 return -ENOMEM;
2652
2653 INIT_WORK(&device->submit.worker, do_submit);
2654 spin_lock_init(&device->submit.lock);
2655 INIT_LIST_HEAD(&device->submit.writes);
2656 return 0;
2657 }
2658
2659 enum drbd_ret_code drbd_create_minor(struct drbd_connection *connection, unsigned int minor, int vnr)
2660 {
2661 struct drbd_device *device;
2662 struct drbd_peer_device *peer_device;
2663 struct gendisk *disk;
2664 struct request_queue *q;
2665 int id;
2666 enum drbd_ret_code err = ERR_NOMEM;
2667
2668 device = minor_to_device(minor);
2669 if (device)
2670 return ERR_MINOR_EXISTS;
2671
2672 /* GFP_KERNEL, we are outside of all write-out paths */
2673 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2674 if (!device)
2675 return ERR_NOMEM;
2676 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2677 if (!peer_device)
2678 goto out_no_peer_device;
2679
2680 INIT_LIST_HEAD(&device->peer_devices);
2681 list_add(&peer_device->peer_devices, &device->peer_devices);
2682 kref_get(&connection->kref);
2683 device->resource = connection->resource;
2684 peer_device->connection = connection;
2685 peer_device->device = device;
2686
2687 device->minor = minor;
2688 device->vnr = vnr;
2689
2690 drbd_init_set_defaults(device);
2691
2692 q = blk_alloc_queue(GFP_KERNEL);
2693 if (!q)
2694 goto out_no_q;
2695 device->rq_queue = q;
2696 q->queuedata = device;
2697
2698 disk = alloc_disk(1);
2699 if (!disk)
2700 goto out_no_disk;
2701 device->vdisk = disk;
2702
2703 set_disk_ro(disk, true);
2704
2705 disk->queue = q;
2706 disk->major = DRBD_MAJOR;
2707 disk->first_minor = minor;
2708 disk->fops = &drbd_ops;
2709 sprintf(disk->disk_name, "drbd%d", minor);
2710 disk->private_data = device;
2711
2712 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2713 /* we have no partitions. we contain only ourselves. */
2714 device->this_bdev->bd_contains = device->this_bdev;
2715
2716 q->backing_dev_info.congested_fn = drbd_congested;
2717 q->backing_dev_info.congested_data = device;
2718
2719 blk_queue_make_request(q, drbd_make_request);
2720 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2721 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2722 This triggers a max_bio_size message upon first attach or connect */
2723 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2724 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2725 blk_queue_merge_bvec(q, drbd_merge_bvec);
2726 q->queue_lock = &first_peer_device(device)->connection->req_lock; /* needed since we use */
2727
2728 device->md_io_page = alloc_page(GFP_KERNEL);
2729 if (!device->md_io_page)
2730 goto out_no_io_page;
2731
2732 if (drbd_bm_init(device))
2733 goto out_no_bitmap;
2734 device->read_requests = RB_ROOT;
2735 device->write_requests = RB_ROOT;
2736
2737 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2738 if (id < 0) {
2739 if (id == -ENOSPC) {
2740 err = ERR_MINOR_EXISTS;
2741 drbd_msg_put_info("requested minor exists already");
2742 }
2743 goto out_no_minor_idr;
2744 }
2745
2746 id = idr_alloc(&connection->volumes, device, vnr, vnr + 1, GFP_KERNEL);
2747 if (id < 0) {
2748 if (id == -ENOSPC) {
2749 err = ERR_INVALID_REQUEST;
2750 drbd_msg_put_info("requested volume exists already");
2751 }
2752 goto out_idr_remove_minor;
2753 }
2754
2755 if (init_submitter(device)) {
2756 err = ERR_NOMEM;
2757 drbd_msg_put_info("unable to create submit workqueue");
2758 goto out_idr_remove_vol;
2759 }
2760
2761 add_disk(disk);
2762 kref_init(&device->kref); /* one ref for both idrs and the the add_disk */
2763
2764 /* inherit the connection state */
2765 device->state.conn = connection->cstate;
2766 if (device->state.conn == C_WF_REPORT_PARAMS)
2767 drbd_connected(device);
2768
2769 return NO_ERROR;
2770
2771 out_idr_remove_vol:
2772 idr_remove(&connection->volumes, vnr);
2773 out_idr_remove_minor:
2774 idr_remove(&drbd_devices, minor);
2775 synchronize_rcu();
2776 out_no_minor_idr:
2777 drbd_bm_cleanup(device);
2778 out_no_bitmap:
2779 __free_page(device->md_io_page);
2780 out_no_io_page:
2781 put_disk(disk);
2782 out_no_disk:
2783 blk_cleanup_queue(q);
2784 out_no_q:
2785 kref_put(&connection->kref, drbd_destroy_connection);
2786 out_no_peer_device:
2787 kfree(device);
2788 return err;
2789 }
2790
2791 int __init drbd_init(void)
2792 {
2793 int err;
2794
2795 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2796 printk(KERN_ERR
2797 "drbd: invalid minor_count (%d)\n", minor_count);
2798 #ifdef MODULE
2799 return -EINVAL;
2800 #else
2801 minor_count = DRBD_MINOR_COUNT_DEF;
2802 #endif
2803 }
2804
2805 err = register_blkdev(DRBD_MAJOR, "drbd");
2806 if (err) {
2807 printk(KERN_ERR
2808 "drbd: unable to register block device major %d\n",
2809 DRBD_MAJOR);
2810 return err;
2811 }
2812
2813 register_reboot_notifier(&drbd_notifier);
2814
2815 /*
2816 * allocate all necessary structs
2817 */
2818 init_waitqueue_head(&drbd_pp_wait);
2819
2820 drbd_proc = NULL; /* play safe for drbd_cleanup */
2821 idr_init(&drbd_devices);
2822
2823 rwlock_init(&global_state_lock);
2824 INIT_LIST_HEAD(&drbd_resources);
2825
2826 err = drbd_genl_register();
2827 if (err) {
2828 printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2829 goto fail;
2830 }
2831
2832 err = drbd_create_mempools();
2833 if (err)
2834 goto fail;
2835
2836 err = -ENOMEM;
2837 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2838 if (!drbd_proc) {
2839 printk(KERN_ERR "drbd: unable to register proc file\n");
2840 goto fail;
2841 }
2842
2843 retry.wq = create_singlethread_workqueue("drbd-reissue");
2844 if (!retry.wq) {
2845 printk(KERN_ERR "drbd: unable to create retry workqueue\n");
2846 goto fail;
2847 }
2848 INIT_WORK(&retry.worker, do_retry);
2849 spin_lock_init(&retry.lock);
2850 INIT_LIST_HEAD(&retry.writes);
2851
2852 printk(KERN_INFO "drbd: initialized. "
2853 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2854 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2855 printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2856 printk(KERN_INFO "drbd: registered as block device major %d\n",
2857 DRBD_MAJOR);
2858
2859 return 0; /* Success! */
2860
2861 fail:
2862 drbd_cleanup();
2863 if (err == -ENOMEM)
2864 printk(KERN_ERR "drbd: ran out of memory\n");
2865 else
2866 printk(KERN_ERR "drbd: initialization failure\n");
2867 return err;
2868 }
2869
2870 void drbd_free_bc(struct drbd_backing_dev *ldev)
2871 {
2872 if (ldev == NULL)
2873 return;
2874
2875 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2876 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2877
2878 kfree(ldev->disk_conf);
2879 kfree(ldev);
2880 }
2881
2882 void drbd_free_sock(struct drbd_connection *connection)
2883 {
2884 if (connection->data.socket) {
2885 mutex_lock(&connection->data.mutex);
2886 kernel_sock_shutdown(connection->data.socket, SHUT_RDWR);
2887 sock_release(connection->data.socket);
2888 connection->data.socket = NULL;
2889 mutex_unlock(&connection->data.mutex);
2890 }
2891 if (connection->meta.socket) {
2892 mutex_lock(&connection->meta.mutex);
2893 kernel_sock_shutdown(connection->meta.socket, SHUT_RDWR);
2894 sock_release(connection->meta.socket);
2895 connection->meta.socket = NULL;
2896 mutex_unlock(&connection->meta.mutex);
2897 }
2898 }
2899
2900 /* meta data management */
2901
2902 void conn_md_sync(struct drbd_connection *connection)
2903 {
2904 struct drbd_device *device;
2905 int vnr;
2906
2907 rcu_read_lock();
2908 idr_for_each_entry(&connection->volumes, device, vnr) {
2909 kref_get(&device->kref);
2910 rcu_read_unlock();
2911 drbd_md_sync(device);
2912 kref_put(&device->kref, drbd_destroy_device);
2913 rcu_read_lock();
2914 }
2915 rcu_read_unlock();
2916 }
2917
2918 /* aligned 4kByte */
2919 struct meta_data_on_disk {
2920 u64 la_size_sect; /* last agreed size. */
2921 u64 uuid[UI_SIZE]; /* UUIDs. */
2922 u64 device_uuid;
2923 u64 reserved_u64_1;
2924 u32 flags; /* MDF */
2925 u32 magic;
2926 u32 md_size_sect;
2927 u32 al_offset; /* offset to this block */
2928 u32 al_nr_extents; /* important for restoring the AL (userspace) */
2929 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2930 u32 bm_offset; /* offset to the bitmap, from here */
2931 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2932 u32 la_peer_max_bio_size; /* last peer max_bio_size */
2933
2934 /* see al_tr_number_to_on_disk_sector() */
2935 u32 al_stripes;
2936 u32 al_stripe_size_4k;
2937
2938 u8 reserved_u8[4096 - (7*8 + 10*4)];
2939 } __packed;
2940
2941
2942
2943 void drbd_md_write(struct drbd_device *device, void *b)
2944 {
2945 struct meta_data_on_disk *buffer = b;
2946 sector_t sector;
2947 int i;
2948
2949 memset(buffer, 0, sizeof(*buffer));
2950
2951 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
2952 for (i = UI_CURRENT; i < UI_SIZE; i++)
2953 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
2954 buffer->flags = cpu_to_be32(device->ldev->md.flags);
2955 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
2956
2957 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
2958 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
2959 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
2960 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
2961 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
2962
2963 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
2964 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
2965
2966 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
2967 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
2968
2969 D_ASSERT(drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
2970 sector = device->ldev->md.md_offset;
2971
2972 if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
2973 /* this was a try anyways ... */
2974 dev_err(DEV, "meta data update failed!\n");
2975 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
2976 }
2977 }
2978
2979 /**
2980 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
2981 * @device: DRBD device.
2982 */
2983 void drbd_md_sync(struct drbd_device *device)
2984 {
2985 struct meta_data_on_disk *buffer;
2986
2987 /* Don't accidentally change the DRBD meta data layout. */
2988 BUILD_BUG_ON(UI_SIZE != 4);
2989 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
2990
2991 del_timer(&device->md_sync_timer);
2992 /* timer may be rearmed by drbd_md_mark_dirty() now. */
2993 if (!test_and_clear_bit(MD_DIRTY, &device->flags))
2994 return;
2995
2996 /* We use here D_FAILED and not D_ATTACHING because we try to write
2997 * metadata even if we detach due to a disk failure! */
2998 if (!get_ldev_if_state(device, D_FAILED))
2999 return;
3000
3001 buffer = drbd_md_get_buffer(device);
3002 if (!buffer)
3003 goto out;
3004
3005 drbd_md_write(device, buffer);
3006
3007 /* Update device->ldev->md.la_size_sect,
3008 * since we updated it on metadata. */
3009 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3010
3011 drbd_md_put_buffer(device);
3012 out:
3013 put_ldev(device);
3014 }
3015
3016 static int check_activity_log_stripe_size(struct drbd_device *device,
3017 struct meta_data_on_disk *on_disk,
3018 struct drbd_md *in_core)
3019 {
3020 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3021 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3022 u64 al_size_4k;
3023
3024 /* both not set: default to old fixed size activity log */
3025 if (al_stripes == 0 && al_stripe_size_4k == 0) {
3026 al_stripes = 1;
3027 al_stripe_size_4k = MD_32kB_SECT/8;
3028 }
3029
3030 /* some paranoia plausibility checks */
3031
3032 /* we need both values to be set */
3033 if (al_stripes == 0 || al_stripe_size_4k == 0)
3034 goto err;
3035
3036 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3037
3038 /* Upper limit of activity log area, to avoid potential overflow
3039 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3040 * than 72 * 4k blocks total only increases the amount of history,
3041 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3042 if (al_size_4k > (16 * 1024 * 1024/4))
3043 goto err;
3044
3045 /* Lower limit: we need at least 8 transaction slots (32kB)
3046 * to not break existing setups */
3047 if (al_size_4k < MD_32kB_SECT/8)
3048 goto err;
3049
3050 in_core->al_stripe_size_4k = al_stripe_size_4k;
3051 in_core->al_stripes = al_stripes;
3052 in_core->al_size_4k = al_size_4k;
3053
3054 return 0;
3055 err:
3056 dev_err(DEV, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3057 al_stripes, al_stripe_size_4k);
3058 return -EINVAL;
3059 }
3060
3061 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3062 {
3063 sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3064 struct drbd_md *in_core = &bdev->md;
3065 s32 on_disk_al_sect;
3066 s32 on_disk_bm_sect;
3067
3068 /* The on-disk size of the activity log, calculated from offsets, and
3069 * the size of the activity log calculated from the stripe settings,
3070 * should match.
3071 * Though we could relax this a bit: it is ok, if the striped activity log
3072 * fits in the available on-disk activity log size.
3073 * Right now, that would break how resize is implemented.
3074 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3075 * of possible unused padding space in the on disk layout. */
3076 if (in_core->al_offset < 0) {
3077 if (in_core->bm_offset > in_core->al_offset)
3078 goto err;
3079 on_disk_al_sect = -in_core->al_offset;
3080 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3081 } else {
3082 if (in_core->al_offset != MD_4kB_SECT)
3083 goto err;
3084 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3085 goto err;
3086
3087 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3088 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3089 }
3090
3091 /* old fixed size meta data is exactly that: fixed. */
3092 if (in_core->meta_dev_idx >= 0) {
3093 if (in_core->md_size_sect != MD_128MB_SECT
3094 || in_core->al_offset != MD_4kB_SECT
3095 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3096 || in_core->al_stripes != 1
3097 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3098 goto err;
3099 }
3100
3101 if (capacity < in_core->md_size_sect)
3102 goto err;
3103 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3104 goto err;
3105
3106 /* should be aligned, and at least 32k */
3107 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3108 goto err;
3109
3110 /* should fit (for now: exactly) into the available on-disk space;
3111 * overflow prevention is in check_activity_log_stripe_size() above. */
3112 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3113 goto err;
3114
3115 /* again, should be aligned */
3116 if (in_core->bm_offset & 7)
3117 goto err;
3118
3119 /* FIXME check for device grow with flex external meta data? */
3120
3121 /* can the available bitmap space cover the last agreed device size? */
3122 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3123 goto err;
3124
3125 return 0;
3126
3127 err:
3128 dev_err(DEV, "meta data offsets don't make sense: idx=%d "
3129 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3130 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3131 in_core->meta_dev_idx,
3132 in_core->al_stripes, in_core->al_stripe_size_4k,
3133 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3134 (unsigned long long)in_core->la_size_sect,
3135 (unsigned long long)capacity);
3136
3137 return -EINVAL;
3138 }
3139
3140
3141 /**
3142 * drbd_md_read() - Reads in the meta data super block
3143 * @device: DRBD device.
3144 * @bdev: Device from which the meta data should be read in.
3145 *
3146 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3147 * something goes wrong.
3148 *
3149 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3150 * even before @bdev is assigned to @device->ldev.
3151 */
3152 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3153 {
3154 struct meta_data_on_disk *buffer;
3155 u32 magic, flags;
3156 int i, rv = NO_ERROR;
3157
3158 if (device->state.disk != D_DISKLESS)
3159 return ERR_DISK_CONFIGURED;
3160
3161 buffer = drbd_md_get_buffer(device);
3162 if (!buffer)
3163 return ERR_NOMEM;
3164
3165 /* First, figure out where our meta data superblock is located,
3166 * and read it. */
3167 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3168 bdev->md.md_offset = drbd_md_ss(bdev);
3169
3170 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3171 /* NOTE: can't do normal error processing here as this is
3172 called BEFORE disk is attached */
3173 dev_err(DEV, "Error while reading metadata.\n");
3174 rv = ERR_IO_MD_DISK;
3175 goto err;
3176 }
3177
3178 magic = be32_to_cpu(buffer->magic);
3179 flags = be32_to_cpu(buffer->flags);
3180 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3181 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3182 /* btw: that's Activity Log clean, not "all" clean. */
3183 dev_err(DEV, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3184 rv = ERR_MD_UNCLEAN;
3185 goto err;
3186 }
3187
3188 rv = ERR_MD_INVALID;
3189 if (magic != DRBD_MD_MAGIC_08) {
3190 if (magic == DRBD_MD_MAGIC_07)
3191 dev_err(DEV, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3192 else
3193 dev_err(DEV, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3194 goto err;
3195 }
3196
3197 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3198 dev_err(DEV, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3199 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3200 goto err;
3201 }
3202
3203
3204 /* convert to in_core endian */
3205 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3206 for (i = UI_CURRENT; i < UI_SIZE; i++)
3207 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3208 bdev->md.flags = be32_to_cpu(buffer->flags);
3209 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3210
3211 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3212 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3213 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3214
3215 if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3216 goto err;
3217 if (check_offsets_and_sizes(device, bdev))
3218 goto err;
3219
3220 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3221 dev_err(DEV, "unexpected bm_offset: %d (expected %d)\n",
3222 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3223 goto err;
3224 }
3225 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3226 dev_err(DEV, "unexpected md_size: %u (expected %u)\n",
3227 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3228 goto err;
3229 }
3230
3231 rv = NO_ERROR;
3232
3233 spin_lock_irq(&first_peer_device(device)->connection->req_lock);
3234 if (device->state.conn < C_CONNECTED) {
3235 unsigned int peer;
3236 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3237 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3238 device->peer_max_bio_size = peer;
3239 }
3240 spin_unlock_irq(&first_peer_device(device)->connection->req_lock);
3241
3242 err:
3243 drbd_md_put_buffer(device);
3244
3245 return rv;
3246 }
3247
3248 /**
3249 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3250 * @device: DRBD device.
3251 *
3252 * Call this function if you change anything that should be written to
3253 * the meta-data super block. This function sets MD_DIRTY, and starts a
3254 * timer that ensures that within five seconds you have to call drbd_md_sync().
3255 */
3256 #ifdef DEBUG
3257 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3258 {
3259 if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3260 mod_timer(&device->md_sync_timer, jiffies + HZ);
3261 device->last_md_mark_dirty.line = line;
3262 device->last_md_mark_dirty.func = func;
3263 }
3264 }
3265 #else
3266 void drbd_md_mark_dirty(struct drbd_device *device)
3267 {
3268 if (!test_and_set_bit(MD_DIRTY, &device->flags))
3269 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3270 }
3271 #endif
3272
3273 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3274 {
3275 int i;
3276
3277 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3278 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3279 }
3280
3281 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3282 {
3283 if (idx == UI_CURRENT) {
3284 if (device->state.role == R_PRIMARY)
3285 val |= 1;
3286 else
3287 val &= ~((u64)1);
3288
3289 drbd_set_ed_uuid(device, val);
3290 }
3291
3292 device->ldev->md.uuid[idx] = val;
3293 drbd_md_mark_dirty(device);
3294 }
3295
3296 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3297 {
3298 unsigned long flags;
3299 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3300 __drbd_uuid_set(device, idx, val);
3301 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3302 }
3303
3304 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3305 {
3306 unsigned long flags;
3307 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3308 if (device->ldev->md.uuid[idx]) {
3309 drbd_uuid_move_history(device);
3310 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3311 }
3312 __drbd_uuid_set(device, idx, val);
3313 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3314 }
3315
3316 /**
3317 * drbd_uuid_new_current() - Creates a new current UUID
3318 * @device: DRBD device.
3319 *
3320 * Creates a new current UUID, and rotates the old current UUID into
3321 * the bitmap slot. Causes an incremental resync upon next connect.
3322 */
3323 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3324 {
3325 u64 val;
3326 unsigned long long bm_uuid;
3327
3328 get_random_bytes(&val, sizeof(u64));
3329
3330 spin_lock_irq(&device->ldev->md.uuid_lock);
3331 bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3332
3333 if (bm_uuid)
3334 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
3335
3336 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3337 __drbd_uuid_set(device, UI_CURRENT, val);
3338 spin_unlock_irq(&device->ldev->md.uuid_lock);
3339
3340 drbd_print_uuids(device, "new current UUID");
3341 /* get it to stable storage _now_ */
3342 drbd_md_sync(device);
3343 }
3344
3345 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3346 {
3347 unsigned long flags;
3348 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3349 return;
3350
3351 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3352 if (val == 0) {
3353 drbd_uuid_move_history(device);
3354 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3355 device->ldev->md.uuid[UI_BITMAP] = 0;
3356 } else {
3357 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3358 if (bm_uuid)
3359 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
3360
3361 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3362 }
3363 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3364
3365 drbd_md_mark_dirty(device);
3366 }
3367
3368 /**
3369 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3370 * @device: DRBD device.
3371 *
3372 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3373 */
3374 int drbd_bmio_set_n_write(struct drbd_device *device)
3375 {
3376 int rv = -EIO;
3377
3378 if (get_ldev_if_state(device, D_ATTACHING)) {
3379 drbd_md_set_flag(device, MDF_FULL_SYNC);
3380 drbd_md_sync(device);
3381 drbd_bm_set_all(device);
3382
3383 rv = drbd_bm_write(device);
3384
3385 if (!rv) {
3386 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3387 drbd_md_sync(device);
3388 }
3389
3390 put_ldev(device);
3391 }
3392
3393 return rv;
3394 }
3395
3396 /**
3397 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3398 * @device: DRBD device.
3399 *
3400 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3401 */
3402 int drbd_bmio_clear_n_write(struct drbd_device *device)
3403 {
3404 int rv = -EIO;
3405
3406 drbd_resume_al(device);
3407 if (get_ldev_if_state(device, D_ATTACHING)) {
3408 drbd_bm_clear_all(device);
3409 rv = drbd_bm_write(device);
3410 put_ldev(device);
3411 }
3412
3413 return rv;
3414 }
3415
3416 static int w_bitmap_io(struct drbd_work *w, int unused)
3417 {
3418 struct bm_io_work *work = container_of(w, struct bm_io_work, w);
3419 struct drbd_device *device = w->device;
3420 int rv = -EIO;
3421
3422 D_ASSERT(atomic_read(&device->ap_bio_cnt) == 0);
3423
3424 if (get_ldev(device)) {
3425 drbd_bm_lock(device, work->why, work->flags);
3426 rv = work->io_fn(device);
3427 drbd_bm_unlock(device);
3428 put_ldev(device);
3429 }
3430
3431 clear_bit_unlock(BITMAP_IO, &device->flags);
3432 wake_up(&device->misc_wait);
3433
3434 if (work->done)
3435 work->done(device, rv);
3436
3437 clear_bit(BITMAP_IO_QUEUED, &device->flags);
3438 work->why = NULL;
3439 work->flags = 0;
3440
3441 return 0;
3442 }
3443
3444 void drbd_ldev_destroy(struct drbd_device *device)
3445 {
3446 lc_destroy(device->resync);
3447 device->resync = NULL;
3448 lc_destroy(device->act_log);
3449 device->act_log = NULL;
3450 __no_warn(local,
3451 drbd_free_bc(device->ldev);
3452 device->ldev = NULL;);
3453
3454 clear_bit(GO_DISKLESS, &device->flags);
3455 }
3456
3457 static int w_go_diskless(struct drbd_work *w, int unused)
3458 {
3459 struct drbd_device *device = w->device;
3460
3461 D_ASSERT(device->state.disk == D_FAILED);
3462 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
3463 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
3464 * the protected members anymore, though, so once put_ldev reaches zero
3465 * again, it will be safe to free them. */
3466
3467 /* Try to write changed bitmap pages, read errors may have just
3468 * set some bits outside the area covered by the activity log.
3469 *
3470 * If we have an IO error during the bitmap writeout,
3471 * we will want a full sync next time, just in case.
3472 * (Do we want a specific meta data flag for this?)
3473 *
3474 * If that does not make it to stable storage either,
3475 * we cannot do anything about that anymore.
3476 *
3477 * We still need to check if both bitmap and ldev are present, we may
3478 * end up here after a failed attach, before ldev was even assigned.
3479 */
3480 if (device->bitmap && device->ldev) {
3481 /* An interrupted resync or similar is allowed to recounts bits
3482 * while we detach.
3483 * Any modifications would not be expected anymore, though.
3484 */
3485 if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
3486 "detach", BM_LOCKED_TEST_ALLOWED)) {
3487 if (test_bit(WAS_READ_ERROR, &device->flags)) {
3488 drbd_md_set_flag(device, MDF_FULL_SYNC);
3489 drbd_md_sync(device);
3490 }
3491 }
3492 }
3493
3494 drbd_force_state(device, NS(disk, D_DISKLESS));
3495 return 0;
3496 }
3497
3498 /**
3499 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3500 * @device: DRBD device.
3501 * @io_fn: IO callback to be called when bitmap IO is possible
3502 * @done: callback to be called after the bitmap IO was performed
3503 * @why: Descriptive text of the reason for doing the IO
3504 *
3505 * While IO on the bitmap happens we freeze application IO thus we ensure
3506 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3507 * called from worker context. It MUST NOT be used while a previous such
3508 * work is still pending!
3509 */
3510 void drbd_queue_bitmap_io(struct drbd_device *device,
3511 int (*io_fn)(struct drbd_device *),
3512 void (*done)(struct drbd_device *, int),
3513 char *why, enum bm_flag flags)
3514 {
3515 D_ASSERT(current == first_peer_device(device)->connection->worker.task);
3516
3517 D_ASSERT(!test_bit(BITMAP_IO_QUEUED, &device->flags));
3518 D_ASSERT(!test_bit(BITMAP_IO, &device->flags));
3519 D_ASSERT(list_empty(&device->bm_io_work.w.list));
3520 if (device->bm_io_work.why)
3521 dev_err(DEV, "FIXME going to queue '%s' but '%s' still pending?\n",
3522 why, device->bm_io_work.why);
3523
3524 device->bm_io_work.io_fn = io_fn;
3525 device->bm_io_work.done = done;
3526 device->bm_io_work.why = why;
3527 device->bm_io_work.flags = flags;
3528
3529 spin_lock_irq(&first_peer_device(device)->connection->req_lock);
3530 set_bit(BITMAP_IO, &device->flags);
3531 if (atomic_read(&device->ap_bio_cnt) == 0) {
3532 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3533 drbd_queue_work(&first_peer_device(device)->connection->sender_work, &device->bm_io_work.w);
3534 }
3535 spin_unlock_irq(&first_peer_device(device)->connection->req_lock);
3536 }
3537
3538 /**
3539 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3540 * @device: DRBD device.
3541 * @io_fn: IO callback to be called when bitmap IO is possible
3542 * @why: Descriptive text of the reason for doing the IO
3543 *
3544 * freezes application IO while that the actual IO operations runs. This
3545 * functions MAY NOT be called from worker context.
3546 */
3547 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3548 char *why, enum bm_flag flags)
3549 {
3550 int rv;
3551
3552 D_ASSERT(current != first_peer_device(device)->connection->worker.task);
3553
3554 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3555 drbd_suspend_io(device);
3556
3557 drbd_bm_lock(device, why, flags);
3558 rv = io_fn(device);
3559 drbd_bm_unlock(device);
3560
3561 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3562 drbd_resume_io(device);
3563
3564 return rv;
3565 }
3566
3567 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3568 {
3569 if ((device->ldev->md.flags & flag) != flag) {
3570 drbd_md_mark_dirty(device);
3571 device->ldev->md.flags |= flag;
3572 }
3573 }
3574
3575 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3576 {
3577 if ((device->ldev->md.flags & flag) != 0) {
3578 drbd_md_mark_dirty(device);
3579 device->ldev->md.flags &= ~flag;
3580 }
3581 }
3582 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3583 {
3584 return (bdev->md.flags & flag) != 0;
3585 }
3586
3587 static void md_sync_timer_fn(unsigned long data)
3588 {
3589 struct drbd_device *device = (struct drbd_device *) data;
3590
3591 /* must not double-queue! */
3592 if (list_empty(&device->md_sync_work.list))
3593 drbd_queue_work_front(&first_peer_device(device)->connection->sender_work, &device->md_sync_work);
3594 }
3595
3596 static int w_md_sync(struct drbd_work *w, int unused)
3597 {
3598 struct drbd_device *device = w->device;
3599
3600 dev_warn(DEV, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3601 #ifdef DEBUG
3602 dev_warn(DEV, "last md_mark_dirty: %s:%u\n",
3603 device->last_md_mark_dirty.func, device->last_md_mark_dirty.line);
3604 #endif
3605 drbd_md_sync(device);
3606 return 0;
3607 }
3608
3609 const char *cmdname(enum drbd_packet cmd)
3610 {
3611 /* THINK may need to become several global tables
3612 * when we want to support more than
3613 * one PRO_VERSION */
3614 static const char *cmdnames[] = {
3615 [P_DATA] = "Data",
3616 [P_DATA_REPLY] = "DataReply",
3617 [P_RS_DATA_REPLY] = "RSDataReply",
3618 [P_BARRIER] = "Barrier",
3619 [P_BITMAP] = "ReportBitMap",
3620 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3621 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3622 [P_UNPLUG_REMOTE] = "UnplugRemote",
3623 [P_DATA_REQUEST] = "DataRequest",
3624 [P_RS_DATA_REQUEST] = "RSDataRequest",
3625 [P_SYNC_PARAM] = "SyncParam",
3626 [P_SYNC_PARAM89] = "SyncParam89",
3627 [P_PROTOCOL] = "ReportProtocol",
3628 [P_UUIDS] = "ReportUUIDs",
3629 [P_SIZES] = "ReportSizes",
3630 [P_STATE] = "ReportState",
3631 [P_SYNC_UUID] = "ReportSyncUUID",
3632 [P_AUTH_CHALLENGE] = "AuthChallenge",
3633 [P_AUTH_RESPONSE] = "AuthResponse",
3634 [P_PING] = "Ping",
3635 [P_PING_ACK] = "PingAck",
3636 [P_RECV_ACK] = "RecvAck",
3637 [P_WRITE_ACK] = "WriteAck",
3638 [P_RS_WRITE_ACK] = "RSWriteAck",
3639 [P_SUPERSEDED] = "Superseded",
3640 [P_NEG_ACK] = "NegAck",
3641 [P_NEG_DREPLY] = "NegDReply",
3642 [P_NEG_RS_DREPLY] = "NegRSDReply",
3643 [P_BARRIER_ACK] = "BarrierAck",
3644 [P_STATE_CHG_REQ] = "StateChgRequest",
3645 [P_STATE_CHG_REPLY] = "StateChgReply",
3646 [P_OV_REQUEST] = "OVRequest",
3647 [P_OV_REPLY] = "OVReply",
3648 [P_OV_RESULT] = "OVResult",
3649 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3650 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3651 [P_COMPRESSED_BITMAP] = "CBitmap",
3652 [P_DELAY_PROBE] = "DelayProbe",
3653 [P_OUT_OF_SYNC] = "OutOfSync",
3654 [P_RETRY_WRITE] = "RetryWrite",
3655 [P_RS_CANCEL] = "RSCancel",
3656 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3657 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3658 [P_RETRY_WRITE] = "retry_write",
3659 [P_PROTOCOL_UPDATE] = "protocol_update",
3660
3661 /* enum drbd_packet, but not commands - obsoleted flags:
3662 * P_MAY_IGNORE
3663 * P_MAX_OPT_CMD
3664 */
3665 };
3666
3667 /* too big for the array: 0xfffX */
3668 if (cmd == P_INITIAL_META)
3669 return "InitialMeta";
3670 if (cmd == P_INITIAL_DATA)
3671 return "InitialData";
3672 if (cmd == P_CONNECTION_FEATURES)
3673 return "ConnectionFeatures";
3674 if (cmd >= ARRAY_SIZE(cmdnames))
3675 return "Unknown";
3676 return cmdnames[cmd];
3677 }
3678
3679 /**
3680 * drbd_wait_misc - wait for a request to make progress
3681 * @device: device associated with the request
3682 * @i: the struct drbd_interval embedded in struct drbd_request or
3683 * struct drbd_peer_request
3684 */
3685 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3686 {
3687 struct net_conf *nc;
3688 DEFINE_WAIT(wait);
3689 long timeout;
3690
3691 rcu_read_lock();
3692 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3693 if (!nc) {
3694 rcu_read_unlock();
3695 return -ETIMEDOUT;
3696 }
3697 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3698 rcu_read_unlock();
3699
3700 /* Indicate to wake up device->misc_wait on progress. */
3701 i->waiting = true;
3702 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3703 spin_unlock_irq(&first_peer_device(device)->connection->req_lock);
3704 timeout = schedule_timeout(timeout);
3705 finish_wait(&device->misc_wait, &wait);
3706 spin_lock_irq(&first_peer_device(device)->connection->req_lock);
3707 if (!timeout || device->state.conn < C_CONNECTED)
3708 return -ETIMEDOUT;
3709 if (signal_pending(current))
3710 return -ERESTARTSYS;
3711 return 0;
3712 }
3713
3714 #ifdef CONFIG_DRBD_FAULT_INJECTION
3715 /* Fault insertion support including random number generator shamelessly
3716 * stolen from kernel/rcutorture.c */
3717 struct fault_random_state {
3718 unsigned long state;
3719 unsigned long count;
3720 };
3721
3722 #define FAULT_RANDOM_MULT 39916801 /* prime */
3723 #define FAULT_RANDOM_ADD 479001701 /* prime */
3724 #define FAULT_RANDOM_REFRESH 10000
3725
3726 /*
3727 * Crude but fast random-number generator. Uses a linear congruential
3728 * generator, with occasional help from get_random_bytes().
3729 */
3730 static unsigned long
3731 _drbd_fault_random(struct fault_random_state *rsp)
3732 {
3733 long refresh;
3734
3735 if (!rsp->count--) {
3736 get_random_bytes(&refresh, sizeof(refresh));
3737 rsp->state += refresh;
3738 rsp->count = FAULT_RANDOM_REFRESH;
3739 }
3740 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3741 return swahw32(rsp->state);
3742 }
3743
3744 static char *
3745 _drbd_fault_str(unsigned int type) {
3746 static char *_faults[] = {
3747 [DRBD_FAULT_MD_WR] = "Meta-data write",
3748 [DRBD_FAULT_MD_RD] = "Meta-data read",
3749 [DRBD_FAULT_RS_WR] = "Resync write",
3750 [DRBD_FAULT_RS_RD] = "Resync read",
3751 [DRBD_FAULT_DT_WR] = "Data write",
3752 [DRBD_FAULT_DT_RD] = "Data read",
3753 [DRBD_FAULT_DT_RA] = "Data read ahead",
3754 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3755 [DRBD_FAULT_AL_EE] = "EE allocation",
3756 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3757 };
3758
3759 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3760 }
3761
3762 unsigned int
3763 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3764 {
3765 static struct fault_random_state rrs = {0, 0};
3766
3767 unsigned int ret = (
3768 (fault_devs == 0 ||
3769 ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3770 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3771
3772 if (ret) {
3773 fault_count++;
3774
3775 if (__ratelimit(&drbd_ratelimit_state))
3776 dev_warn(DEV, "***Simulating %s failure\n",
3777 _drbd_fault_str(type));
3778 }
3779
3780 return ret;
3781 }
3782 #endif
3783
3784 const char *drbd_buildtag(void)
3785 {
3786 /* DRBD built from external sources has here a reference to the
3787 git hash of the source code. */
3788
3789 static char buildtag[38] = "\0uilt-in";
3790
3791 if (buildtag[0] == 0) {
3792 #ifdef MODULE
3793 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3794 #else
3795 buildtag[0] = 'b';
3796 #endif
3797 }
3798
3799 return buildtag;
3800 }
3801
3802 module_init(drbd_init)
3803 module_exit(drbd_cleanup)
3804
3805 EXPORT_SYMBOL(drbd_conn_str);
3806 EXPORT_SYMBOL(drbd_role_str);
3807 EXPORT_SYMBOL(drbd_disk_str);
3808 EXPORT_SYMBOL(drbd_set_st_err_str);
This page took 0.109215 seconds and 6 git commands to generate.