cb9ba141b6104c087b32b967806e8b2c58b982c2
[deliverable/linux.git] / drivers / block / drbd / drbd_worker.c
1 /*
2 drbd_worker.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 drbd is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 drbd is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with drbd; see the file COPYING. If not, write to
22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23
24 */
25
26 #include <linux/module.h>
27 #include <linux/drbd.h>
28 #include <linux/sched.h>
29 #include <linux/wait.h>
30 #include <linux/mm.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mm_inline.h>
33 #include <linux/slab.h>
34 #include <linux/random.h>
35 #include <linux/string.h>
36 #include <linux/scatterlist.h>
37
38 #include "drbd_int.h"
39 #include "drbd_protocol.h"
40 #include "drbd_req.h"
41
42 static int w_make_ov_request(struct drbd_work *w, int cancel);
43
44
45 /* endio handlers:
46 * drbd_md_io_complete (defined here)
47 * drbd_request_endio (defined here)
48 * drbd_peer_request_endio (defined here)
49 * bm_async_io_complete (defined in drbd_bitmap.c)
50 *
51 * For all these callbacks, note the following:
52 * The callbacks will be called in irq context by the IDE drivers,
53 * and in Softirqs/Tasklets/BH context by the SCSI drivers.
54 * Try to get the locking right :)
55 *
56 */
57
58
59 /* About the global_state_lock
60 Each state transition on an device holds a read lock. In case we have
61 to evaluate the resync after dependencies, we grab a write lock, because
62 we need stable states on all devices for that. */
63 rwlock_t global_state_lock;
64
65 /* used for synchronous meta data and bitmap IO
66 * submitted by drbd_md_sync_page_io()
67 */
68 void drbd_md_io_complete(struct bio *bio, int error)
69 {
70 struct drbd_md_io *md_io;
71 struct drbd_device *device;
72
73 md_io = (struct drbd_md_io *)bio->bi_private;
74 device = container_of(md_io, struct drbd_device, md_io);
75
76 md_io->error = error;
77
78 /* We grabbed an extra reference in _drbd_md_sync_page_io() to be able
79 * to timeout on the lower level device, and eventually detach from it.
80 * If this io completion runs after that timeout expired, this
81 * drbd_md_put_buffer() may allow us to finally try and re-attach.
82 * During normal operation, this only puts that extra reference
83 * down to 1 again.
84 * Make sure we first drop the reference, and only then signal
85 * completion, or we may (in drbd_al_read_log()) cycle so fast into the
86 * next drbd_md_sync_page_io(), that we trigger the
87 * ASSERT(atomic_read(&device->md_io_in_use) == 1) there.
88 */
89 drbd_md_put_buffer(device);
90 md_io->done = 1;
91 wake_up(&device->misc_wait);
92 bio_put(bio);
93 if (device->ldev) /* special case: drbd_md_read() during drbd_adm_attach() */
94 put_ldev(device);
95 }
96
97 /* reads on behalf of the partner,
98 * "submitted" by the receiver
99 */
100 static void drbd_endio_read_sec_final(struct drbd_peer_request *peer_req) __releases(local)
101 {
102 unsigned long flags = 0;
103 struct drbd_device *device = peer_req->w.device;
104
105 spin_lock_irqsave(&device->resource->req_lock, flags);
106 device->read_cnt += peer_req->i.size >> 9;
107 list_del(&peer_req->w.list);
108 if (list_empty(&device->read_ee))
109 wake_up(&device->ee_wait);
110 if (test_bit(__EE_WAS_ERROR, &peer_req->flags))
111 __drbd_chk_io_error(device, DRBD_READ_ERROR);
112 spin_unlock_irqrestore(&device->resource->req_lock, flags);
113
114 drbd_queue_work(&first_peer_device(device)->connection->sender_work, &peer_req->w);
115 put_ldev(device);
116 }
117
118 /* writes on behalf of the partner, or resync writes,
119 * "submitted" by the receiver, final stage. */
120 static void drbd_endio_write_sec_final(struct drbd_peer_request *peer_req) __releases(local)
121 {
122 unsigned long flags = 0;
123 struct drbd_device *device = peer_req->w.device;
124 struct drbd_interval i;
125 int do_wake;
126 u64 block_id;
127 int do_al_complete_io;
128
129 /* after we moved peer_req to done_ee,
130 * we may no longer access it,
131 * it may be freed/reused already!
132 * (as soon as we release the req_lock) */
133 i = peer_req->i;
134 do_al_complete_io = peer_req->flags & EE_CALL_AL_COMPLETE_IO;
135 block_id = peer_req->block_id;
136
137 spin_lock_irqsave(&device->resource->req_lock, flags);
138 device->writ_cnt += peer_req->i.size >> 9;
139 list_move_tail(&peer_req->w.list, &device->done_ee);
140
141 /*
142 * Do not remove from the write_requests tree here: we did not send the
143 * Ack yet and did not wake possibly waiting conflicting requests.
144 * Removed from the tree from "drbd_process_done_ee" within the
145 * appropriate w.cb (e_end_block/e_end_resync_block) or from
146 * _drbd_clear_done_ee.
147 */
148
149 do_wake = list_empty(block_id == ID_SYNCER ? &device->sync_ee : &device->active_ee);
150
151 if (test_bit(__EE_WAS_ERROR, &peer_req->flags))
152 __drbd_chk_io_error(device, DRBD_WRITE_ERROR);
153 spin_unlock_irqrestore(&device->resource->req_lock, flags);
154
155 if (block_id == ID_SYNCER)
156 drbd_rs_complete_io(device, i.sector);
157
158 if (do_wake)
159 wake_up(&device->ee_wait);
160
161 if (do_al_complete_io)
162 drbd_al_complete_io(device, &i);
163
164 wake_asender(first_peer_device(device)->connection);
165 put_ldev(device);
166 }
167
168 /* writes on behalf of the partner, or resync writes,
169 * "submitted" by the receiver.
170 */
171 void drbd_peer_request_endio(struct bio *bio, int error)
172 {
173 struct drbd_peer_request *peer_req = bio->bi_private;
174 struct drbd_device *device = peer_req->w.device;
175 int uptodate = bio_flagged(bio, BIO_UPTODATE);
176 int is_write = bio_data_dir(bio) == WRITE;
177
178 if (error && __ratelimit(&drbd_ratelimit_state))
179 drbd_warn(device, "%s: error=%d s=%llus\n",
180 is_write ? "write" : "read", error,
181 (unsigned long long)peer_req->i.sector);
182 if (!error && !uptodate) {
183 if (__ratelimit(&drbd_ratelimit_state))
184 drbd_warn(device, "%s: setting error to -EIO s=%llus\n",
185 is_write ? "write" : "read",
186 (unsigned long long)peer_req->i.sector);
187 /* strange behavior of some lower level drivers...
188 * fail the request by clearing the uptodate flag,
189 * but do not return any error?! */
190 error = -EIO;
191 }
192
193 if (error)
194 set_bit(__EE_WAS_ERROR, &peer_req->flags);
195
196 bio_put(bio); /* no need for the bio anymore */
197 if (atomic_dec_and_test(&peer_req->pending_bios)) {
198 if (is_write)
199 drbd_endio_write_sec_final(peer_req);
200 else
201 drbd_endio_read_sec_final(peer_req);
202 }
203 }
204
205 /* read, readA or write requests on R_PRIMARY coming from drbd_make_request
206 */
207 void drbd_request_endio(struct bio *bio, int error)
208 {
209 unsigned long flags;
210 struct drbd_request *req = bio->bi_private;
211 struct drbd_device *device = req->w.device;
212 struct bio_and_error m;
213 enum drbd_req_event what;
214 int uptodate = bio_flagged(bio, BIO_UPTODATE);
215
216 if (!error && !uptodate) {
217 drbd_warn(device, "p %s: setting error to -EIO\n",
218 bio_data_dir(bio) == WRITE ? "write" : "read");
219 /* strange behavior of some lower level drivers...
220 * fail the request by clearing the uptodate flag,
221 * but do not return any error?! */
222 error = -EIO;
223 }
224
225
226 /* If this request was aborted locally before,
227 * but now was completed "successfully",
228 * chances are that this caused arbitrary data corruption.
229 *
230 * "aborting" requests, or force-detaching the disk, is intended for
231 * completely blocked/hung local backing devices which do no longer
232 * complete requests at all, not even do error completions. In this
233 * situation, usually a hard-reset and failover is the only way out.
234 *
235 * By "aborting", basically faking a local error-completion,
236 * we allow for a more graceful swichover by cleanly migrating services.
237 * Still the affected node has to be rebooted "soon".
238 *
239 * By completing these requests, we allow the upper layers to re-use
240 * the associated data pages.
241 *
242 * If later the local backing device "recovers", and now DMAs some data
243 * from disk into the original request pages, in the best case it will
244 * just put random data into unused pages; but typically it will corrupt
245 * meanwhile completely unrelated data, causing all sorts of damage.
246 *
247 * Which means delayed successful completion,
248 * especially for READ requests,
249 * is a reason to panic().
250 *
251 * We assume that a delayed *error* completion is OK,
252 * though we still will complain noisily about it.
253 */
254 if (unlikely(req->rq_state & RQ_LOCAL_ABORTED)) {
255 if (__ratelimit(&drbd_ratelimit_state))
256 drbd_emerg(device, "delayed completion of aborted local request; disk-timeout may be too aggressive\n");
257
258 if (!error)
259 panic("possible random memory corruption caused by delayed completion of aborted local request\n");
260 }
261
262 /* to avoid recursion in __req_mod */
263 if (unlikely(error)) {
264 what = (bio_data_dir(bio) == WRITE)
265 ? WRITE_COMPLETED_WITH_ERROR
266 : (bio_rw(bio) == READ)
267 ? READ_COMPLETED_WITH_ERROR
268 : READ_AHEAD_COMPLETED_WITH_ERROR;
269 } else
270 what = COMPLETED_OK;
271
272 bio_put(req->private_bio);
273 req->private_bio = ERR_PTR(error);
274
275 /* not req_mod(), we need irqsave here! */
276 spin_lock_irqsave(&device->resource->req_lock, flags);
277 __req_mod(req, what, &m);
278 spin_unlock_irqrestore(&device->resource->req_lock, flags);
279 put_ldev(device);
280
281 if (m.bio)
282 complete_master_bio(device, &m);
283 }
284
285 void drbd_csum_ee(struct crypto_hash *tfm, struct drbd_peer_request *peer_req, void *digest)
286 {
287 struct hash_desc desc;
288 struct scatterlist sg;
289 struct page *page = peer_req->pages;
290 struct page *tmp;
291 unsigned len;
292
293 desc.tfm = tfm;
294 desc.flags = 0;
295
296 sg_init_table(&sg, 1);
297 crypto_hash_init(&desc);
298
299 while ((tmp = page_chain_next(page))) {
300 /* all but the last page will be fully used */
301 sg_set_page(&sg, page, PAGE_SIZE, 0);
302 crypto_hash_update(&desc, &sg, sg.length);
303 page = tmp;
304 }
305 /* and now the last, possibly only partially used page */
306 len = peer_req->i.size & (PAGE_SIZE - 1);
307 sg_set_page(&sg, page, len ?: PAGE_SIZE, 0);
308 crypto_hash_update(&desc, &sg, sg.length);
309 crypto_hash_final(&desc, digest);
310 }
311
312 void drbd_csum_bio(struct crypto_hash *tfm, struct bio *bio, void *digest)
313 {
314 struct hash_desc desc;
315 struct scatterlist sg;
316 struct bio_vec bvec;
317 struct bvec_iter iter;
318
319 desc.tfm = tfm;
320 desc.flags = 0;
321
322 sg_init_table(&sg, 1);
323 crypto_hash_init(&desc);
324
325 bio_for_each_segment(bvec, bio, iter) {
326 sg_set_page(&sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset);
327 crypto_hash_update(&desc, &sg, sg.length);
328 }
329 crypto_hash_final(&desc, digest);
330 }
331
332 /* MAYBE merge common code with w_e_end_ov_req */
333 static int w_e_send_csum(struct drbd_work *w, int cancel)
334 {
335 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
336 struct drbd_device *device = w->device;
337 int digest_size;
338 void *digest;
339 int err = 0;
340
341 if (unlikely(cancel))
342 goto out;
343
344 if (unlikely((peer_req->flags & EE_WAS_ERROR) != 0))
345 goto out;
346
347 digest_size = crypto_hash_digestsize(first_peer_device(device)->connection->csums_tfm);
348 digest = kmalloc(digest_size, GFP_NOIO);
349 if (digest) {
350 sector_t sector = peer_req->i.sector;
351 unsigned int size = peer_req->i.size;
352 drbd_csum_ee(first_peer_device(device)->connection->csums_tfm, peer_req, digest);
353 /* Free peer_req and pages before send.
354 * In case we block on congestion, we could otherwise run into
355 * some distributed deadlock, if the other side blocks on
356 * congestion as well, because our receiver blocks in
357 * drbd_alloc_pages due to pp_in_use > max_buffers. */
358 drbd_free_peer_req(device, peer_req);
359 peer_req = NULL;
360 inc_rs_pending(device);
361 err = drbd_send_drequest_csum(first_peer_device(device), sector, size,
362 digest, digest_size,
363 P_CSUM_RS_REQUEST);
364 kfree(digest);
365 } else {
366 drbd_err(device, "kmalloc() of digest failed.\n");
367 err = -ENOMEM;
368 }
369
370 out:
371 if (peer_req)
372 drbd_free_peer_req(device, peer_req);
373
374 if (unlikely(err))
375 drbd_err(device, "drbd_send_drequest(..., csum) failed\n");
376 return err;
377 }
378
379 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN)
380
381 static int read_for_csum(struct drbd_peer_device *peer_device, sector_t sector, int size)
382 {
383 struct drbd_device *device = peer_device->device;
384 struct drbd_peer_request *peer_req;
385
386 if (!get_ldev(device))
387 return -EIO;
388
389 if (drbd_rs_should_slow_down(device, sector))
390 goto defer;
391
392 /* GFP_TRY, because if there is no memory available right now, this may
393 * be rescheduled for later. It is "only" background resync, after all. */
394 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER /* unused */, sector,
395 size, GFP_TRY);
396 if (!peer_req)
397 goto defer;
398
399 peer_req->w.cb = w_e_send_csum;
400 spin_lock_irq(&device->resource->req_lock);
401 list_add(&peer_req->w.list, &device->read_ee);
402 spin_unlock_irq(&device->resource->req_lock);
403
404 atomic_add(size >> 9, &device->rs_sect_ev);
405 if (drbd_submit_peer_request(device, peer_req, READ, DRBD_FAULT_RS_RD) == 0)
406 return 0;
407
408 /* If it failed because of ENOMEM, retry should help. If it failed
409 * because bio_add_page failed (probably broken lower level driver),
410 * retry may or may not help.
411 * If it does not, you may need to force disconnect. */
412 spin_lock_irq(&device->resource->req_lock);
413 list_del(&peer_req->w.list);
414 spin_unlock_irq(&device->resource->req_lock);
415
416 drbd_free_peer_req(device, peer_req);
417 defer:
418 put_ldev(device);
419 return -EAGAIN;
420 }
421
422 int w_resync_timer(struct drbd_work *w, int cancel)
423 {
424 struct drbd_device *device = w->device;
425 switch (device->state.conn) {
426 case C_VERIFY_S:
427 w_make_ov_request(w, cancel);
428 break;
429 case C_SYNC_TARGET:
430 w_make_resync_request(w, cancel);
431 break;
432 }
433
434 return 0;
435 }
436
437 void resync_timer_fn(unsigned long data)
438 {
439 struct drbd_device *device = (struct drbd_device *) data;
440
441 if (list_empty(&device->resync_work.list))
442 drbd_queue_work(&first_peer_device(device)->connection->sender_work, &device->resync_work);
443 }
444
445 static void fifo_set(struct fifo_buffer *fb, int value)
446 {
447 int i;
448
449 for (i = 0; i < fb->size; i++)
450 fb->values[i] = value;
451 }
452
453 static int fifo_push(struct fifo_buffer *fb, int value)
454 {
455 int ov;
456
457 ov = fb->values[fb->head_index];
458 fb->values[fb->head_index++] = value;
459
460 if (fb->head_index >= fb->size)
461 fb->head_index = 0;
462
463 return ov;
464 }
465
466 static void fifo_add_val(struct fifo_buffer *fb, int value)
467 {
468 int i;
469
470 for (i = 0; i < fb->size; i++)
471 fb->values[i] += value;
472 }
473
474 struct fifo_buffer *fifo_alloc(int fifo_size)
475 {
476 struct fifo_buffer *fb;
477
478 fb = kzalloc(sizeof(struct fifo_buffer) + sizeof(int) * fifo_size, GFP_NOIO);
479 if (!fb)
480 return NULL;
481
482 fb->head_index = 0;
483 fb->size = fifo_size;
484 fb->total = 0;
485
486 return fb;
487 }
488
489 static int drbd_rs_controller(struct drbd_device *device)
490 {
491 struct disk_conf *dc;
492 unsigned int sect_in; /* Number of sectors that came in since the last turn */
493 unsigned int want; /* The number of sectors we want in the proxy */
494 int req_sect; /* Number of sectors to request in this turn */
495 int correction; /* Number of sectors more we need in the proxy*/
496 int cps; /* correction per invocation of drbd_rs_controller() */
497 int steps; /* Number of time steps to plan ahead */
498 int curr_corr;
499 int max_sect;
500 struct fifo_buffer *plan;
501
502 sect_in = atomic_xchg(&device->rs_sect_in, 0); /* Number of sectors that came in */
503 device->rs_in_flight -= sect_in;
504
505 dc = rcu_dereference(device->ldev->disk_conf);
506 plan = rcu_dereference(device->rs_plan_s);
507
508 steps = plan->size; /* (dc->c_plan_ahead * 10 * SLEEP_TIME) / HZ; */
509
510 if (device->rs_in_flight + sect_in == 0) { /* At start of resync */
511 want = ((dc->resync_rate * 2 * SLEEP_TIME) / HZ) * steps;
512 } else { /* normal path */
513 want = dc->c_fill_target ? dc->c_fill_target :
514 sect_in * dc->c_delay_target * HZ / (SLEEP_TIME * 10);
515 }
516
517 correction = want - device->rs_in_flight - plan->total;
518
519 /* Plan ahead */
520 cps = correction / steps;
521 fifo_add_val(plan, cps);
522 plan->total += cps * steps;
523
524 /* What we do in this step */
525 curr_corr = fifo_push(plan, 0);
526 plan->total -= curr_corr;
527
528 req_sect = sect_in + curr_corr;
529 if (req_sect < 0)
530 req_sect = 0;
531
532 max_sect = (dc->c_max_rate * 2 * SLEEP_TIME) / HZ;
533 if (req_sect > max_sect)
534 req_sect = max_sect;
535
536 /*
537 drbd_warn(device, "si=%u if=%d wa=%u co=%d st=%d cps=%d pl=%d cc=%d rs=%d\n",
538 sect_in, device->rs_in_flight, want, correction,
539 steps, cps, device->rs_planed, curr_corr, req_sect);
540 */
541
542 return req_sect;
543 }
544
545 static int drbd_rs_number_requests(struct drbd_device *device)
546 {
547 int number;
548
549 rcu_read_lock();
550 if (rcu_dereference(device->rs_plan_s)->size) {
551 number = drbd_rs_controller(device) >> (BM_BLOCK_SHIFT - 9);
552 device->c_sync_rate = number * HZ * (BM_BLOCK_SIZE / 1024) / SLEEP_TIME;
553 } else {
554 device->c_sync_rate = rcu_dereference(device->ldev->disk_conf)->resync_rate;
555 number = SLEEP_TIME * device->c_sync_rate / ((BM_BLOCK_SIZE / 1024) * HZ);
556 }
557 rcu_read_unlock();
558
559 /* ignore the amount of pending requests, the resync controller should
560 * throttle down to incoming reply rate soon enough anyways. */
561 return number;
562 }
563
564 int w_make_resync_request(struct drbd_work *w, int cancel)
565 {
566 struct drbd_device *device = w->device;
567 unsigned long bit;
568 sector_t sector;
569 const sector_t capacity = drbd_get_capacity(device->this_bdev);
570 int max_bio_size;
571 int number, rollback_i, size;
572 int align, queued, sndbuf;
573 int i = 0;
574
575 if (unlikely(cancel))
576 return 0;
577
578 if (device->rs_total == 0) {
579 /* empty resync? */
580 drbd_resync_finished(device);
581 return 0;
582 }
583
584 if (!get_ldev(device)) {
585 /* Since we only need to access device->rsync a
586 get_ldev_if_state(device,D_FAILED) would be sufficient, but
587 to continue resync with a broken disk makes no sense at
588 all */
589 drbd_err(device, "Disk broke down during resync!\n");
590 return 0;
591 }
592
593 max_bio_size = queue_max_hw_sectors(device->rq_queue) << 9;
594 number = drbd_rs_number_requests(device);
595 if (number == 0)
596 goto requeue;
597
598 for (i = 0; i < number; i++) {
599 /* Stop generating RS requests, when half of the send buffer is filled */
600 mutex_lock(&first_peer_device(device)->connection->data.mutex);
601 if (first_peer_device(device)->connection->data.socket) {
602 queued = first_peer_device(device)->connection->data.socket->sk->sk_wmem_queued;
603 sndbuf = first_peer_device(device)->connection->data.socket->sk->sk_sndbuf;
604 } else {
605 queued = 1;
606 sndbuf = 0;
607 }
608 mutex_unlock(&first_peer_device(device)->connection->data.mutex);
609 if (queued > sndbuf / 2)
610 goto requeue;
611
612 next_sector:
613 size = BM_BLOCK_SIZE;
614 bit = drbd_bm_find_next(device, device->bm_resync_fo);
615
616 if (bit == DRBD_END_OF_BITMAP) {
617 device->bm_resync_fo = drbd_bm_bits(device);
618 put_ldev(device);
619 return 0;
620 }
621
622 sector = BM_BIT_TO_SECT(bit);
623
624 if (drbd_rs_should_slow_down(device, sector) ||
625 drbd_try_rs_begin_io(device, sector)) {
626 device->bm_resync_fo = bit;
627 goto requeue;
628 }
629 device->bm_resync_fo = bit + 1;
630
631 if (unlikely(drbd_bm_test_bit(device, bit) == 0)) {
632 drbd_rs_complete_io(device, sector);
633 goto next_sector;
634 }
635
636 #if DRBD_MAX_BIO_SIZE > BM_BLOCK_SIZE
637 /* try to find some adjacent bits.
638 * we stop if we have already the maximum req size.
639 *
640 * Additionally always align bigger requests, in order to
641 * be prepared for all stripe sizes of software RAIDs.
642 */
643 align = 1;
644 rollback_i = i;
645 for (;;) {
646 if (size + BM_BLOCK_SIZE > max_bio_size)
647 break;
648
649 /* Be always aligned */
650 if (sector & ((1<<(align+3))-1))
651 break;
652
653 /* do not cross extent boundaries */
654 if (((bit+1) & BM_BLOCKS_PER_BM_EXT_MASK) == 0)
655 break;
656 /* now, is it actually dirty, after all?
657 * caution, drbd_bm_test_bit is tri-state for some
658 * obscure reason; ( b == 0 ) would get the out-of-band
659 * only accidentally right because of the "oddly sized"
660 * adjustment below */
661 if (drbd_bm_test_bit(device, bit+1) != 1)
662 break;
663 bit++;
664 size += BM_BLOCK_SIZE;
665 if ((BM_BLOCK_SIZE << align) <= size)
666 align++;
667 i++;
668 }
669 /* if we merged some,
670 * reset the offset to start the next drbd_bm_find_next from */
671 if (size > BM_BLOCK_SIZE)
672 device->bm_resync_fo = bit + 1;
673 #endif
674
675 /* adjust very last sectors, in case we are oddly sized */
676 if (sector + (size>>9) > capacity)
677 size = (capacity-sector)<<9;
678 if (first_peer_device(device)->connection->agreed_pro_version >= 89 &&
679 first_peer_device(device)->connection->csums_tfm) {
680 switch (read_for_csum(first_peer_device(device), sector, size)) {
681 case -EIO: /* Disk failure */
682 put_ldev(device);
683 return -EIO;
684 case -EAGAIN: /* allocation failed, or ldev busy */
685 drbd_rs_complete_io(device, sector);
686 device->bm_resync_fo = BM_SECT_TO_BIT(sector);
687 i = rollback_i;
688 goto requeue;
689 case 0:
690 /* everything ok */
691 break;
692 default:
693 BUG();
694 }
695 } else {
696 int err;
697
698 inc_rs_pending(device);
699 err = drbd_send_drequest(first_peer_device(device), P_RS_DATA_REQUEST,
700 sector, size, ID_SYNCER);
701 if (err) {
702 drbd_err(device, "drbd_send_drequest() failed, aborting...\n");
703 dec_rs_pending(device);
704 put_ldev(device);
705 return err;
706 }
707 }
708 }
709
710 if (device->bm_resync_fo >= drbd_bm_bits(device)) {
711 /* last syncer _request_ was sent,
712 * but the P_RS_DATA_REPLY not yet received. sync will end (and
713 * next sync group will resume), as soon as we receive the last
714 * resync data block, and the last bit is cleared.
715 * until then resync "work" is "inactive" ...
716 */
717 put_ldev(device);
718 return 0;
719 }
720
721 requeue:
722 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
723 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
724 put_ldev(device);
725 return 0;
726 }
727
728 static int w_make_ov_request(struct drbd_work *w, int cancel)
729 {
730 struct drbd_device *device = w->device;
731 int number, i, size;
732 sector_t sector;
733 const sector_t capacity = drbd_get_capacity(device->this_bdev);
734 bool stop_sector_reached = false;
735
736 if (unlikely(cancel))
737 return 1;
738
739 number = drbd_rs_number_requests(device);
740
741 sector = device->ov_position;
742 for (i = 0; i < number; i++) {
743 if (sector >= capacity)
744 return 1;
745
746 /* We check for "finished" only in the reply path:
747 * w_e_end_ov_reply().
748 * We need to send at least one request out. */
749 stop_sector_reached = i > 0
750 && verify_can_do_stop_sector(device)
751 && sector >= device->ov_stop_sector;
752 if (stop_sector_reached)
753 break;
754
755 size = BM_BLOCK_SIZE;
756
757 if (drbd_rs_should_slow_down(device, sector) ||
758 drbd_try_rs_begin_io(device, sector)) {
759 device->ov_position = sector;
760 goto requeue;
761 }
762
763 if (sector + (size>>9) > capacity)
764 size = (capacity-sector)<<9;
765
766 inc_rs_pending(device);
767 if (drbd_send_ov_request(first_peer_device(device), sector, size)) {
768 dec_rs_pending(device);
769 return 0;
770 }
771 sector += BM_SECT_PER_BIT;
772 }
773 device->ov_position = sector;
774
775 requeue:
776 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
777 if (i == 0 || !stop_sector_reached)
778 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
779 return 1;
780 }
781
782 int w_ov_finished(struct drbd_work *w, int cancel)
783 {
784 struct drbd_device *device = w->device;
785 kfree(w);
786 ov_out_of_sync_print(device);
787 drbd_resync_finished(device);
788
789 return 0;
790 }
791
792 static int w_resync_finished(struct drbd_work *w, int cancel)
793 {
794 struct drbd_device *device = w->device;
795 kfree(w);
796
797 drbd_resync_finished(device);
798
799 return 0;
800 }
801
802 static void ping_peer(struct drbd_device *device)
803 {
804 struct drbd_connection *connection = first_peer_device(device)->connection;
805
806 clear_bit(GOT_PING_ACK, &connection->flags);
807 request_ping(connection);
808 wait_event(connection->ping_wait,
809 test_bit(GOT_PING_ACK, &connection->flags) || device->state.conn < C_CONNECTED);
810 }
811
812 int drbd_resync_finished(struct drbd_device *device)
813 {
814 unsigned long db, dt, dbdt;
815 unsigned long n_oos;
816 union drbd_state os, ns;
817 struct drbd_work *w;
818 char *khelper_cmd = NULL;
819 int verify_done = 0;
820
821 /* Remove all elements from the resync LRU. Since future actions
822 * might set bits in the (main) bitmap, then the entries in the
823 * resync LRU would be wrong. */
824 if (drbd_rs_del_all(device)) {
825 /* In case this is not possible now, most probably because
826 * there are P_RS_DATA_REPLY Packets lingering on the worker's
827 * queue (or even the read operations for those packets
828 * is not finished by now). Retry in 100ms. */
829
830 schedule_timeout_interruptible(HZ / 10);
831 w = kmalloc(sizeof(struct drbd_work), GFP_ATOMIC);
832 if (w) {
833 w->cb = w_resync_finished;
834 w->device = device;
835 drbd_queue_work(&first_peer_device(device)->connection->sender_work, w);
836 return 1;
837 }
838 drbd_err(device, "Warn failed to drbd_rs_del_all() and to kmalloc(w).\n");
839 }
840
841 dt = (jiffies - device->rs_start - device->rs_paused) / HZ;
842 if (dt <= 0)
843 dt = 1;
844
845 db = device->rs_total;
846 /* adjust for verify start and stop sectors, respective reached position */
847 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
848 db -= device->ov_left;
849
850 dbdt = Bit2KB(db/dt);
851 device->rs_paused /= HZ;
852
853 if (!get_ldev(device))
854 goto out;
855
856 ping_peer(device);
857
858 spin_lock_irq(&device->resource->req_lock);
859 os = drbd_read_state(device);
860
861 verify_done = (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T);
862
863 /* This protects us against multiple calls (that can happen in the presence
864 of application IO), and against connectivity loss just before we arrive here. */
865 if (os.conn <= C_CONNECTED)
866 goto out_unlock;
867
868 ns = os;
869 ns.conn = C_CONNECTED;
870
871 drbd_info(device, "%s done (total %lu sec; paused %lu sec; %lu K/sec)\n",
872 verify_done ? "Online verify" : "Resync",
873 dt + device->rs_paused, device->rs_paused, dbdt);
874
875 n_oos = drbd_bm_total_weight(device);
876
877 if (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) {
878 if (n_oos) {
879 drbd_alert(device, "Online verify found %lu %dk block out of sync!\n",
880 n_oos, Bit2KB(1));
881 khelper_cmd = "out-of-sync";
882 }
883 } else {
884 D_ASSERT(device, (n_oos - device->rs_failed) == 0);
885
886 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T)
887 khelper_cmd = "after-resync-target";
888
889 if (first_peer_device(device)->connection->csums_tfm && device->rs_total) {
890 const unsigned long s = device->rs_same_csum;
891 const unsigned long t = device->rs_total;
892 const int ratio =
893 (t == 0) ? 0 :
894 (t < 100000) ? ((s*100)/t) : (s/(t/100));
895 drbd_info(device, "%u %% had equal checksums, eliminated: %luK; "
896 "transferred %luK total %luK\n",
897 ratio,
898 Bit2KB(device->rs_same_csum),
899 Bit2KB(device->rs_total - device->rs_same_csum),
900 Bit2KB(device->rs_total));
901 }
902 }
903
904 if (device->rs_failed) {
905 drbd_info(device, " %lu failed blocks\n", device->rs_failed);
906
907 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
908 ns.disk = D_INCONSISTENT;
909 ns.pdsk = D_UP_TO_DATE;
910 } else {
911 ns.disk = D_UP_TO_DATE;
912 ns.pdsk = D_INCONSISTENT;
913 }
914 } else {
915 ns.disk = D_UP_TO_DATE;
916 ns.pdsk = D_UP_TO_DATE;
917
918 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
919 if (device->p_uuid) {
920 int i;
921 for (i = UI_BITMAP ; i <= UI_HISTORY_END ; i++)
922 _drbd_uuid_set(device, i, device->p_uuid[i]);
923 drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_CURRENT]);
924 _drbd_uuid_set(device, UI_CURRENT, device->p_uuid[UI_CURRENT]);
925 } else {
926 drbd_err(device, "device->p_uuid is NULL! BUG\n");
927 }
928 }
929
930 if (!(os.conn == C_VERIFY_S || os.conn == C_VERIFY_T)) {
931 /* for verify runs, we don't update uuids here,
932 * so there would be nothing to report. */
933 drbd_uuid_set_bm(device, 0UL);
934 drbd_print_uuids(device, "updated UUIDs");
935 if (device->p_uuid) {
936 /* Now the two UUID sets are equal, update what we
937 * know of the peer. */
938 int i;
939 for (i = UI_CURRENT ; i <= UI_HISTORY_END ; i++)
940 device->p_uuid[i] = device->ldev->md.uuid[i];
941 }
942 }
943 }
944
945 _drbd_set_state(device, ns, CS_VERBOSE, NULL);
946 out_unlock:
947 spin_unlock_irq(&device->resource->req_lock);
948 put_ldev(device);
949 out:
950 device->rs_total = 0;
951 device->rs_failed = 0;
952 device->rs_paused = 0;
953
954 /* reset start sector, if we reached end of device */
955 if (verify_done && device->ov_left == 0)
956 device->ov_start_sector = 0;
957
958 drbd_md_sync(device);
959
960 if (khelper_cmd)
961 drbd_khelper(device, khelper_cmd);
962
963 return 1;
964 }
965
966 /* helper */
967 static void move_to_net_ee_or_free(struct drbd_device *device, struct drbd_peer_request *peer_req)
968 {
969 if (drbd_peer_req_has_active_page(peer_req)) {
970 /* This might happen if sendpage() has not finished */
971 int i = (peer_req->i.size + PAGE_SIZE -1) >> PAGE_SHIFT;
972 atomic_add(i, &device->pp_in_use_by_net);
973 atomic_sub(i, &device->pp_in_use);
974 spin_lock_irq(&device->resource->req_lock);
975 list_add_tail(&peer_req->w.list, &device->net_ee);
976 spin_unlock_irq(&device->resource->req_lock);
977 wake_up(&drbd_pp_wait);
978 } else
979 drbd_free_peer_req(device, peer_req);
980 }
981
982 /**
983 * w_e_end_data_req() - Worker callback, to send a P_DATA_REPLY packet in response to a P_DATA_REQUEST
984 * @device: DRBD device.
985 * @w: work object.
986 * @cancel: The connection will be closed anyways
987 */
988 int w_e_end_data_req(struct drbd_work *w, int cancel)
989 {
990 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
991 struct drbd_device *device = w->device;
992 int err;
993
994 if (unlikely(cancel)) {
995 drbd_free_peer_req(device, peer_req);
996 dec_unacked(device);
997 return 0;
998 }
999
1000 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1001 err = drbd_send_block(first_peer_device(device), P_DATA_REPLY, peer_req);
1002 } else {
1003 if (__ratelimit(&drbd_ratelimit_state))
1004 drbd_err(device, "Sending NegDReply. sector=%llus.\n",
1005 (unsigned long long)peer_req->i.sector);
1006
1007 err = drbd_send_ack(first_peer_device(device), P_NEG_DREPLY, peer_req);
1008 }
1009
1010 dec_unacked(device);
1011
1012 move_to_net_ee_or_free(device, peer_req);
1013
1014 if (unlikely(err))
1015 drbd_err(device, "drbd_send_block() failed\n");
1016 return err;
1017 }
1018
1019 /**
1020 * w_e_end_rsdata_req() - Worker callback to send a P_RS_DATA_REPLY packet in response to a P_RS_DATA_REQUEST
1021 * @device: DRBD device.
1022 * @w: work object.
1023 * @cancel: The connection will be closed anyways
1024 */
1025 int w_e_end_rsdata_req(struct drbd_work *w, int cancel)
1026 {
1027 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1028 struct drbd_device *device = w->device;
1029 int err;
1030
1031 if (unlikely(cancel)) {
1032 drbd_free_peer_req(device, peer_req);
1033 dec_unacked(device);
1034 return 0;
1035 }
1036
1037 if (get_ldev_if_state(device, D_FAILED)) {
1038 drbd_rs_complete_io(device, peer_req->i.sector);
1039 put_ldev(device);
1040 }
1041
1042 if (device->state.conn == C_AHEAD) {
1043 err = drbd_send_ack(first_peer_device(device), P_RS_CANCEL, peer_req);
1044 } else if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1045 if (likely(device->state.pdsk >= D_INCONSISTENT)) {
1046 inc_rs_pending(device);
1047 err = drbd_send_block(first_peer_device(device), P_RS_DATA_REPLY, peer_req);
1048 } else {
1049 if (__ratelimit(&drbd_ratelimit_state))
1050 drbd_err(device, "Not sending RSDataReply, "
1051 "partner DISKLESS!\n");
1052 err = 0;
1053 }
1054 } else {
1055 if (__ratelimit(&drbd_ratelimit_state))
1056 drbd_err(device, "Sending NegRSDReply. sector %llus.\n",
1057 (unsigned long long)peer_req->i.sector);
1058
1059 err = drbd_send_ack(first_peer_device(device), P_NEG_RS_DREPLY, peer_req);
1060
1061 /* update resync data with failure */
1062 drbd_rs_failed_io(device, peer_req->i.sector, peer_req->i.size);
1063 }
1064
1065 dec_unacked(device);
1066
1067 move_to_net_ee_or_free(device, peer_req);
1068
1069 if (unlikely(err))
1070 drbd_err(device, "drbd_send_block() failed\n");
1071 return err;
1072 }
1073
1074 int w_e_end_csum_rs_req(struct drbd_work *w, int cancel)
1075 {
1076 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1077 struct drbd_device *device = w->device;
1078 struct digest_info *di;
1079 int digest_size;
1080 void *digest = NULL;
1081 int err, eq = 0;
1082
1083 if (unlikely(cancel)) {
1084 drbd_free_peer_req(device, peer_req);
1085 dec_unacked(device);
1086 return 0;
1087 }
1088
1089 if (get_ldev(device)) {
1090 drbd_rs_complete_io(device, peer_req->i.sector);
1091 put_ldev(device);
1092 }
1093
1094 di = peer_req->digest;
1095
1096 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1097 /* quick hack to try to avoid a race against reconfiguration.
1098 * a real fix would be much more involved,
1099 * introducing more locking mechanisms */
1100 if (first_peer_device(device)->connection->csums_tfm) {
1101 digest_size = crypto_hash_digestsize(first_peer_device(device)->connection->csums_tfm);
1102 D_ASSERT(device, digest_size == di->digest_size);
1103 digest = kmalloc(digest_size, GFP_NOIO);
1104 }
1105 if (digest) {
1106 drbd_csum_ee(first_peer_device(device)->connection->csums_tfm, peer_req, digest);
1107 eq = !memcmp(digest, di->digest, digest_size);
1108 kfree(digest);
1109 }
1110
1111 if (eq) {
1112 drbd_set_in_sync(device, peer_req->i.sector, peer_req->i.size);
1113 /* rs_same_csums unit is BM_BLOCK_SIZE */
1114 device->rs_same_csum += peer_req->i.size >> BM_BLOCK_SHIFT;
1115 err = drbd_send_ack(first_peer_device(device), P_RS_IS_IN_SYNC, peer_req);
1116 } else {
1117 inc_rs_pending(device);
1118 peer_req->block_id = ID_SYNCER; /* By setting block_id, digest pointer becomes invalid! */
1119 peer_req->flags &= ~EE_HAS_DIGEST; /* This peer request no longer has a digest pointer */
1120 kfree(di);
1121 err = drbd_send_block(first_peer_device(device), P_RS_DATA_REPLY, peer_req);
1122 }
1123 } else {
1124 err = drbd_send_ack(first_peer_device(device), P_NEG_RS_DREPLY, peer_req);
1125 if (__ratelimit(&drbd_ratelimit_state))
1126 drbd_err(device, "Sending NegDReply. I guess it gets messy.\n");
1127 }
1128
1129 dec_unacked(device);
1130 move_to_net_ee_or_free(device, peer_req);
1131
1132 if (unlikely(err))
1133 drbd_err(device, "drbd_send_block/ack() failed\n");
1134 return err;
1135 }
1136
1137 int w_e_end_ov_req(struct drbd_work *w, int cancel)
1138 {
1139 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1140 struct drbd_device *device = w->device;
1141 sector_t sector = peer_req->i.sector;
1142 unsigned int size = peer_req->i.size;
1143 int digest_size;
1144 void *digest;
1145 int err = 0;
1146
1147 if (unlikely(cancel))
1148 goto out;
1149
1150 digest_size = crypto_hash_digestsize(first_peer_device(device)->connection->verify_tfm);
1151 digest = kmalloc(digest_size, GFP_NOIO);
1152 if (!digest) {
1153 err = 1; /* terminate the connection in case the allocation failed */
1154 goto out;
1155 }
1156
1157 if (likely(!(peer_req->flags & EE_WAS_ERROR)))
1158 drbd_csum_ee(first_peer_device(device)->connection->verify_tfm, peer_req, digest);
1159 else
1160 memset(digest, 0, digest_size);
1161
1162 /* Free e and pages before send.
1163 * In case we block on congestion, we could otherwise run into
1164 * some distributed deadlock, if the other side blocks on
1165 * congestion as well, because our receiver blocks in
1166 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1167 drbd_free_peer_req(device, peer_req);
1168 peer_req = NULL;
1169 inc_rs_pending(device);
1170 err = drbd_send_drequest_csum(first_peer_device(device), sector, size, digest, digest_size, P_OV_REPLY);
1171 if (err)
1172 dec_rs_pending(device);
1173 kfree(digest);
1174
1175 out:
1176 if (peer_req)
1177 drbd_free_peer_req(device, peer_req);
1178 dec_unacked(device);
1179 return err;
1180 }
1181
1182 void drbd_ov_out_of_sync_found(struct drbd_device *device, sector_t sector, int size)
1183 {
1184 if (device->ov_last_oos_start + device->ov_last_oos_size == sector) {
1185 device->ov_last_oos_size += size>>9;
1186 } else {
1187 device->ov_last_oos_start = sector;
1188 device->ov_last_oos_size = size>>9;
1189 }
1190 drbd_set_out_of_sync(device, sector, size);
1191 }
1192
1193 int w_e_end_ov_reply(struct drbd_work *w, int cancel)
1194 {
1195 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1196 struct drbd_device *device = w->device;
1197 struct digest_info *di;
1198 void *digest;
1199 sector_t sector = peer_req->i.sector;
1200 unsigned int size = peer_req->i.size;
1201 int digest_size;
1202 int err, eq = 0;
1203 bool stop_sector_reached = false;
1204
1205 if (unlikely(cancel)) {
1206 drbd_free_peer_req(device, peer_req);
1207 dec_unacked(device);
1208 return 0;
1209 }
1210
1211 /* after "cancel", because after drbd_disconnect/drbd_rs_cancel_all
1212 * the resync lru has been cleaned up already */
1213 if (get_ldev(device)) {
1214 drbd_rs_complete_io(device, peer_req->i.sector);
1215 put_ldev(device);
1216 }
1217
1218 di = peer_req->digest;
1219
1220 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1221 digest_size = crypto_hash_digestsize(first_peer_device(device)->connection->verify_tfm);
1222 digest = kmalloc(digest_size, GFP_NOIO);
1223 if (digest) {
1224 drbd_csum_ee(first_peer_device(device)->connection->verify_tfm, peer_req, digest);
1225
1226 D_ASSERT(device, digest_size == di->digest_size);
1227 eq = !memcmp(digest, di->digest, digest_size);
1228 kfree(digest);
1229 }
1230 }
1231
1232 /* Free peer_req and pages before send.
1233 * In case we block on congestion, we could otherwise run into
1234 * some distributed deadlock, if the other side blocks on
1235 * congestion as well, because our receiver blocks in
1236 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1237 drbd_free_peer_req(device, peer_req);
1238 if (!eq)
1239 drbd_ov_out_of_sync_found(device, sector, size);
1240 else
1241 ov_out_of_sync_print(device);
1242
1243 err = drbd_send_ack_ex(first_peer_device(device), P_OV_RESULT, sector, size,
1244 eq ? ID_IN_SYNC : ID_OUT_OF_SYNC);
1245
1246 dec_unacked(device);
1247
1248 --device->ov_left;
1249
1250 /* let's advance progress step marks only for every other megabyte */
1251 if ((device->ov_left & 0x200) == 0x200)
1252 drbd_advance_rs_marks(device, device->ov_left);
1253
1254 stop_sector_reached = verify_can_do_stop_sector(device) &&
1255 (sector + (size>>9)) >= device->ov_stop_sector;
1256
1257 if (device->ov_left == 0 || stop_sector_reached) {
1258 ov_out_of_sync_print(device);
1259 drbd_resync_finished(device);
1260 }
1261
1262 return err;
1263 }
1264
1265 /* FIXME
1266 * We need to track the number of pending barrier acks,
1267 * and to be able to wait for them.
1268 * See also comment in drbd_adm_attach before drbd_suspend_io.
1269 */
1270 static int drbd_send_barrier(struct drbd_connection *connection)
1271 {
1272 struct p_barrier *p;
1273 struct drbd_socket *sock;
1274
1275 sock = &connection->data;
1276 p = conn_prepare_command(connection, sock);
1277 if (!p)
1278 return -EIO;
1279 p->barrier = connection->send.current_epoch_nr;
1280 p->pad = 0;
1281 connection->send.current_epoch_writes = 0;
1282
1283 return conn_send_command(connection, sock, P_BARRIER, sizeof(*p), NULL, 0);
1284 }
1285
1286 int w_send_write_hint(struct drbd_work *w, int cancel)
1287 {
1288 struct drbd_device *device = w->device;
1289 struct drbd_socket *sock;
1290
1291 if (cancel)
1292 return 0;
1293 sock = &first_peer_device(device)->connection->data;
1294 if (!drbd_prepare_command(first_peer_device(device), sock))
1295 return -EIO;
1296 return drbd_send_command(first_peer_device(device), sock, P_UNPLUG_REMOTE, 0, NULL, 0);
1297 }
1298
1299 static void re_init_if_first_write(struct drbd_connection *connection, unsigned int epoch)
1300 {
1301 if (!connection->send.seen_any_write_yet) {
1302 connection->send.seen_any_write_yet = true;
1303 connection->send.current_epoch_nr = epoch;
1304 connection->send.current_epoch_writes = 0;
1305 }
1306 }
1307
1308 static void maybe_send_barrier(struct drbd_connection *connection, unsigned int epoch)
1309 {
1310 /* re-init if first write on this connection */
1311 if (!connection->send.seen_any_write_yet)
1312 return;
1313 if (connection->send.current_epoch_nr != epoch) {
1314 if (connection->send.current_epoch_writes)
1315 drbd_send_barrier(connection);
1316 connection->send.current_epoch_nr = epoch;
1317 }
1318 }
1319
1320 int w_send_out_of_sync(struct drbd_work *w, int cancel)
1321 {
1322 struct drbd_request *req = container_of(w, struct drbd_request, w);
1323 struct drbd_device *device = w->device;
1324 struct drbd_connection *connection = first_peer_device(device)->connection;
1325 int err;
1326
1327 if (unlikely(cancel)) {
1328 req_mod(req, SEND_CANCELED);
1329 return 0;
1330 }
1331
1332 /* this time, no connection->send.current_epoch_writes++;
1333 * If it was sent, it was the closing barrier for the last
1334 * replicated epoch, before we went into AHEAD mode.
1335 * No more barriers will be sent, until we leave AHEAD mode again. */
1336 maybe_send_barrier(connection, req->epoch);
1337
1338 err = drbd_send_out_of_sync(first_peer_device(device), req);
1339 req_mod(req, OOS_HANDED_TO_NETWORK);
1340
1341 return err;
1342 }
1343
1344 /**
1345 * w_send_dblock() - Worker callback to send a P_DATA packet in order to mirror a write request
1346 * @device: DRBD device.
1347 * @w: work object.
1348 * @cancel: The connection will be closed anyways
1349 */
1350 int w_send_dblock(struct drbd_work *w, int cancel)
1351 {
1352 struct drbd_request *req = container_of(w, struct drbd_request, w);
1353 struct drbd_device *device = w->device;
1354 struct drbd_connection *connection = first_peer_device(device)->connection;
1355 int err;
1356
1357 if (unlikely(cancel)) {
1358 req_mod(req, SEND_CANCELED);
1359 return 0;
1360 }
1361
1362 re_init_if_first_write(connection, req->epoch);
1363 maybe_send_barrier(connection, req->epoch);
1364 connection->send.current_epoch_writes++;
1365
1366 err = drbd_send_dblock(first_peer_device(device), req);
1367 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1368
1369 return err;
1370 }
1371
1372 /**
1373 * w_send_read_req() - Worker callback to send a read request (P_DATA_REQUEST) packet
1374 * @device: DRBD device.
1375 * @w: work object.
1376 * @cancel: The connection will be closed anyways
1377 */
1378 int w_send_read_req(struct drbd_work *w, int cancel)
1379 {
1380 struct drbd_request *req = container_of(w, struct drbd_request, w);
1381 struct drbd_device *device = w->device;
1382 struct drbd_connection *connection = first_peer_device(device)->connection;
1383 int err;
1384
1385 if (unlikely(cancel)) {
1386 req_mod(req, SEND_CANCELED);
1387 return 0;
1388 }
1389
1390 /* Even read requests may close a write epoch,
1391 * if there was any yet. */
1392 maybe_send_barrier(connection, req->epoch);
1393
1394 err = drbd_send_drequest(first_peer_device(device), P_DATA_REQUEST, req->i.sector, req->i.size,
1395 (unsigned long)req);
1396
1397 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1398
1399 return err;
1400 }
1401
1402 int w_restart_disk_io(struct drbd_work *w, int cancel)
1403 {
1404 struct drbd_request *req = container_of(w, struct drbd_request, w);
1405 struct drbd_device *device = w->device;
1406
1407 if (bio_data_dir(req->master_bio) == WRITE && req->rq_state & RQ_IN_ACT_LOG)
1408 drbd_al_begin_io(device, &req->i, false);
1409
1410 drbd_req_make_private_bio(req, req->master_bio);
1411 req->private_bio->bi_bdev = device->ldev->backing_bdev;
1412 generic_make_request(req->private_bio);
1413
1414 return 0;
1415 }
1416
1417 static int _drbd_may_sync_now(struct drbd_device *device)
1418 {
1419 struct drbd_device *odev = device;
1420 int resync_after;
1421
1422 while (1) {
1423 if (!odev->ldev || odev->state.disk == D_DISKLESS)
1424 return 1;
1425 rcu_read_lock();
1426 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1427 rcu_read_unlock();
1428 if (resync_after == -1)
1429 return 1;
1430 odev = minor_to_device(resync_after);
1431 if (!odev)
1432 return 1;
1433 if ((odev->state.conn >= C_SYNC_SOURCE &&
1434 odev->state.conn <= C_PAUSED_SYNC_T) ||
1435 odev->state.aftr_isp || odev->state.peer_isp ||
1436 odev->state.user_isp)
1437 return 0;
1438 }
1439 }
1440
1441 /**
1442 * _drbd_pause_after() - Pause resync on all devices that may not resync now
1443 * @device: DRBD device.
1444 *
1445 * Called from process context only (admin command and after_state_ch).
1446 */
1447 static int _drbd_pause_after(struct drbd_device *device)
1448 {
1449 struct drbd_device *odev;
1450 int i, rv = 0;
1451
1452 rcu_read_lock();
1453 idr_for_each_entry(&drbd_devices, odev, i) {
1454 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1455 continue;
1456 if (!_drbd_may_sync_now(odev))
1457 rv |= (__drbd_set_state(_NS(odev, aftr_isp, 1), CS_HARD, NULL)
1458 != SS_NOTHING_TO_DO);
1459 }
1460 rcu_read_unlock();
1461
1462 return rv;
1463 }
1464
1465 /**
1466 * _drbd_resume_next() - Resume resync on all devices that may resync now
1467 * @device: DRBD device.
1468 *
1469 * Called from process context only (admin command and worker).
1470 */
1471 static int _drbd_resume_next(struct drbd_device *device)
1472 {
1473 struct drbd_device *odev;
1474 int i, rv = 0;
1475
1476 rcu_read_lock();
1477 idr_for_each_entry(&drbd_devices, odev, i) {
1478 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1479 continue;
1480 if (odev->state.aftr_isp) {
1481 if (_drbd_may_sync_now(odev))
1482 rv |= (__drbd_set_state(_NS(odev, aftr_isp, 0),
1483 CS_HARD, NULL)
1484 != SS_NOTHING_TO_DO) ;
1485 }
1486 }
1487 rcu_read_unlock();
1488 return rv;
1489 }
1490
1491 void resume_next_sg(struct drbd_device *device)
1492 {
1493 write_lock_irq(&global_state_lock);
1494 _drbd_resume_next(device);
1495 write_unlock_irq(&global_state_lock);
1496 }
1497
1498 void suspend_other_sg(struct drbd_device *device)
1499 {
1500 write_lock_irq(&global_state_lock);
1501 _drbd_pause_after(device);
1502 write_unlock_irq(&global_state_lock);
1503 }
1504
1505 /* caller must hold global_state_lock */
1506 enum drbd_ret_code drbd_resync_after_valid(struct drbd_device *device, int o_minor)
1507 {
1508 struct drbd_device *odev;
1509 int resync_after;
1510
1511 if (o_minor == -1)
1512 return NO_ERROR;
1513 if (o_minor < -1 || o_minor > MINORMASK)
1514 return ERR_RESYNC_AFTER;
1515
1516 /* check for loops */
1517 odev = minor_to_device(o_minor);
1518 while (1) {
1519 if (odev == device)
1520 return ERR_RESYNC_AFTER_CYCLE;
1521
1522 /* You are free to depend on diskless, non-existing,
1523 * or not yet/no longer existing minors.
1524 * We only reject dependency loops.
1525 * We cannot follow the dependency chain beyond a detached or
1526 * missing minor.
1527 */
1528 if (!odev || !odev->ldev || odev->state.disk == D_DISKLESS)
1529 return NO_ERROR;
1530
1531 rcu_read_lock();
1532 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1533 rcu_read_unlock();
1534 /* dependency chain ends here, no cycles. */
1535 if (resync_after == -1)
1536 return NO_ERROR;
1537
1538 /* follow the dependency chain */
1539 odev = minor_to_device(resync_after);
1540 }
1541 }
1542
1543 /* caller must hold global_state_lock */
1544 void drbd_resync_after_changed(struct drbd_device *device)
1545 {
1546 int changes;
1547
1548 do {
1549 changes = _drbd_pause_after(device);
1550 changes |= _drbd_resume_next(device);
1551 } while (changes);
1552 }
1553
1554 void drbd_rs_controller_reset(struct drbd_device *device)
1555 {
1556 struct fifo_buffer *plan;
1557
1558 atomic_set(&device->rs_sect_in, 0);
1559 atomic_set(&device->rs_sect_ev, 0);
1560 device->rs_in_flight = 0;
1561
1562 /* Updating the RCU protected object in place is necessary since
1563 this function gets called from atomic context.
1564 It is valid since all other updates also lead to an completely
1565 empty fifo */
1566 rcu_read_lock();
1567 plan = rcu_dereference(device->rs_plan_s);
1568 plan->total = 0;
1569 fifo_set(plan, 0);
1570 rcu_read_unlock();
1571 }
1572
1573 void start_resync_timer_fn(unsigned long data)
1574 {
1575 struct drbd_device *device = (struct drbd_device *) data;
1576
1577 drbd_queue_work(&first_peer_device(device)->connection->sender_work, &device->start_resync_work);
1578 }
1579
1580 int w_start_resync(struct drbd_work *w, int cancel)
1581 {
1582 struct drbd_device *device = w->device;
1583
1584 if (atomic_read(&device->unacked_cnt) || atomic_read(&device->rs_pending_cnt)) {
1585 drbd_warn(device, "w_start_resync later...\n");
1586 device->start_resync_timer.expires = jiffies + HZ/10;
1587 add_timer(&device->start_resync_timer);
1588 return 0;
1589 }
1590
1591 drbd_start_resync(device, C_SYNC_SOURCE);
1592 clear_bit(AHEAD_TO_SYNC_SOURCE, &device->flags);
1593 return 0;
1594 }
1595
1596 /**
1597 * drbd_start_resync() - Start the resync process
1598 * @device: DRBD device.
1599 * @side: Either C_SYNC_SOURCE or C_SYNC_TARGET
1600 *
1601 * This function might bring you directly into one of the
1602 * C_PAUSED_SYNC_* states.
1603 */
1604 void drbd_start_resync(struct drbd_device *device, enum drbd_conns side)
1605 {
1606 union drbd_state ns;
1607 int r;
1608
1609 if (device->state.conn >= C_SYNC_SOURCE && device->state.conn < C_AHEAD) {
1610 drbd_err(device, "Resync already running!\n");
1611 return;
1612 }
1613
1614 if (!test_bit(B_RS_H_DONE, &device->flags)) {
1615 if (side == C_SYNC_TARGET) {
1616 /* Since application IO was locked out during C_WF_BITMAP_T and
1617 C_WF_SYNC_UUID we are still unmodified. Before going to C_SYNC_TARGET
1618 we check that we might make the data inconsistent. */
1619 r = drbd_khelper(device, "before-resync-target");
1620 r = (r >> 8) & 0xff;
1621 if (r > 0) {
1622 drbd_info(device, "before-resync-target handler returned %d, "
1623 "dropping connection.\n", r);
1624 conn_request_state(first_peer_device(device)->connection, NS(conn, C_DISCONNECTING), CS_HARD);
1625 return;
1626 }
1627 } else /* C_SYNC_SOURCE */ {
1628 r = drbd_khelper(device, "before-resync-source");
1629 r = (r >> 8) & 0xff;
1630 if (r > 0) {
1631 if (r == 3) {
1632 drbd_info(device, "before-resync-source handler returned %d, "
1633 "ignoring. Old userland tools?", r);
1634 } else {
1635 drbd_info(device, "before-resync-source handler returned %d, "
1636 "dropping connection.\n", r);
1637 conn_request_state(first_peer_device(device)->connection,
1638 NS(conn, C_DISCONNECTING), CS_HARD);
1639 return;
1640 }
1641 }
1642 }
1643 }
1644
1645 if (current == first_peer_device(device)->connection->worker.task) {
1646 /* The worker should not sleep waiting for state_mutex,
1647 that can take long */
1648 if (!mutex_trylock(device->state_mutex)) {
1649 set_bit(B_RS_H_DONE, &device->flags);
1650 device->start_resync_timer.expires = jiffies + HZ/5;
1651 add_timer(&device->start_resync_timer);
1652 return;
1653 }
1654 } else {
1655 mutex_lock(device->state_mutex);
1656 }
1657 clear_bit(B_RS_H_DONE, &device->flags);
1658
1659 write_lock_irq(&global_state_lock);
1660 /* Did some connection breakage or IO error race with us? */
1661 if (device->state.conn < C_CONNECTED
1662 || !get_ldev_if_state(device, D_NEGOTIATING)) {
1663 write_unlock_irq(&global_state_lock);
1664 mutex_unlock(device->state_mutex);
1665 return;
1666 }
1667
1668 ns = drbd_read_state(device);
1669
1670 ns.aftr_isp = !_drbd_may_sync_now(device);
1671
1672 ns.conn = side;
1673
1674 if (side == C_SYNC_TARGET)
1675 ns.disk = D_INCONSISTENT;
1676 else /* side == C_SYNC_SOURCE */
1677 ns.pdsk = D_INCONSISTENT;
1678
1679 r = __drbd_set_state(device, ns, CS_VERBOSE, NULL);
1680 ns = drbd_read_state(device);
1681
1682 if (ns.conn < C_CONNECTED)
1683 r = SS_UNKNOWN_ERROR;
1684
1685 if (r == SS_SUCCESS) {
1686 unsigned long tw = drbd_bm_total_weight(device);
1687 unsigned long now = jiffies;
1688 int i;
1689
1690 device->rs_failed = 0;
1691 device->rs_paused = 0;
1692 device->rs_same_csum = 0;
1693 device->rs_last_events = 0;
1694 device->rs_last_sect_ev = 0;
1695 device->rs_total = tw;
1696 device->rs_start = now;
1697 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1698 device->rs_mark_left[i] = tw;
1699 device->rs_mark_time[i] = now;
1700 }
1701 _drbd_pause_after(device);
1702 }
1703 write_unlock_irq(&global_state_lock);
1704
1705 if (r == SS_SUCCESS) {
1706 /* reset rs_last_bcast when a resync or verify is started,
1707 * to deal with potential jiffies wrap. */
1708 device->rs_last_bcast = jiffies - HZ;
1709
1710 drbd_info(device, "Began resync as %s (will sync %lu KB [%lu bits set]).\n",
1711 drbd_conn_str(ns.conn),
1712 (unsigned long) device->rs_total << (BM_BLOCK_SHIFT-10),
1713 (unsigned long) device->rs_total);
1714 if (side == C_SYNC_TARGET)
1715 device->bm_resync_fo = 0;
1716
1717 /* Since protocol 96, we must serialize drbd_gen_and_send_sync_uuid
1718 * with w_send_oos, or the sync target will get confused as to
1719 * how much bits to resync. We cannot do that always, because for an
1720 * empty resync and protocol < 95, we need to do it here, as we call
1721 * drbd_resync_finished from here in that case.
1722 * We drbd_gen_and_send_sync_uuid here for protocol < 96,
1723 * and from after_state_ch otherwise. */
1724 if (side == C_SYNC_SOURCE &&
1725 first_peer_device(device)->connection->agreed_pro_version < 96)
1726 drbd_gen_and_send_sync_uuid(first_peer_device(device));
1727
1728 if (first_peer_device(device)->connection->agreed_pro_version < 95 &&
1729 device->rs_total == 0) {
1730 /* This still has a race (about when exactly the peers
1731 * detect connection loss) that can lead to a full sync
1732 * on next handshake. In 8.3.9 we fixed this with explicit
1733 * resync-finished notifications, but the fix
1734 * introduces a protocol change. Sleeping for some
1735 * time longer than the ping interval + timeout on the
1736 * SyncSource, to give the SyncTarget the chance to
1737 * detect connection loss, then waiting for a ping
1738 * response (implicit in drbd_resync_finished) reduces
1739 * the race considerably, but does not solve it. */
1740 if (side == C_SYNC_SOURCE) {
1741 struct net_conf *nc;
1742 int timeo;
1743
1744 rcu_read_lock();
1745 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
1746 timeo = nc->ping_int * HZ + nc->ping_timeo * HZ / 9;
1747 rcu_read_unlock();
1748 schedule_timeout_interruptible(timeo);
1749 }
1750 drbd_resync_finished(device);
1751 }
1752
1753 drbd_rs_controller_reset(device);
1754 /* ns.conn may already be != device->state.conn,
1755 * we may have been paused in between, or become paused until
1756 * the timer triggers.
1757 * No matter, that is handled in resync_timer_fn() */
1758 if (ns.conn == C_SYNC_TARGET)
1759 mod_timer(&device->resync_timer, jiffies);
1760
1761 drbd_md_sync(device);
1762 }
1763 put_ldev(device);
1764 mutex_unlock(device->state_mutex);
1765 }
1766
1767 /* If the resource already closed the current epoch, but we did not
1768 * (because we have not yet seen new requests), we should send the
1769 * corresponding barrier now. Must be checked within the same spinlock
1770 * that is used to check for new requests. */
1771 static bool need_to_send_barrier(struct drbd_connection *connection)
1772 {
1773 if (!connection->send.seen_any_write_yet)
1774 return false;
1775
1776 /* Skip barriers that do not contain any writes.
1777 * This may happen during AHEAD mode. */
1778 if (!connection->send.current_epoch_writes)
1779 return false;
1780
1781 /* ->req_lock is held when requests are queued on
1782 * connection->sender_work, and put into ->transfer_log.
1783 * It is also held when ->current_tle_nr is increased.
1784 * So either there are already new requests queued,
1785 * and corresponding barriers will be send there.
1786 * Or nothing new is queued yet, so the difference will be 1.
1787 */
1788 if (atomic_read(&connection->current_tle_nr) !=
1789 connection->send.current_epoch_nr + 1)
1790 return false;
1791
1792 return true;
1793 }
1794
1795 static bool dequeue_work_batch(struct drbd_work_queue *queue, struct list_head *work_list)
1796 {
1797 spin_lock_irq(&queue->q_lock);
1798 list_splice_init(&queue->q, work_list);
1799 spin_unlock_irq(&queue->q_lock);
1800 return !list_empty(work_list);
1801 }
1802
1803 static bool dequeue_work_item(struct drbd_work_queue *queue, struct list_head *work_list)
1804 {
1805 spin_lock_irq(&queue->q_lock);
1806 if (!list_empty(&queue->q))
1807 list_move(queue->q.next, work_list);
1808 spin_unlock_irq(&queue->q_lock);
1809 return !list_empty(work_list);
1810 }
1811
1812 static void wait_for_work(struct drbd_connection *connection, struct list_head *work_list)
1813 {
1814 DEFINE_WAIT(wait);
1815 struct net_conf *nc;
1816 int uncork, cork;
1817
1818 dequeue_work_item(&connection->sender_work, work_list);
1819 if (!list_empty(work_list))
1820 return;
1821
1822 /* Still nothing to do?
1823 * Maybe we still need to close the current epoch,
1824 * even if no new requests are queued yet.
1825 *
1826 * Also, poke TCP, just in case.
1827 * Then wait for new work (or signal). */
1828 rcu_read_lock();
1829 nc = rcu_dereference(connection->net_conf);
1830 uncork = nc ? nc->tcp_cork : 0;
1831 rcu_read_unlock();
1832 if (uncork) {
1833 mutex_lock(&connection->data.mutex);
1834 if (connection->data.socket)
1835 drbd_tcp_uncork(connection->data.socket);
1836 mutex_unlock(&connection->data.mutex);
1837 }
1838
1839 for (;;) {
1840 int send_barrier;
1841 prepare_to_wait(&connection->sender_work.q_wait, &wait, TASK_INTERRUPTIBLE);
1842 spin_lock_irq(&connection->resource->req_lock);
1843 spin_lock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */
1844 /* dequeue single item only,
1845 * we still use drbd_queue_work_front() in some places */
1846 if (!list_empty(&connection->sender_work.q))
1847 list_move(connection->sender_work.q.next, work_list);
1848 spin_unlock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */
1849 if (!list_empty(work_list) || signal_pending(current)) {
1850 spin_unlock_irq(&connection->resource->req_lock);
1851 break;
1852 }
1853 send_barrier = need_to_send_barrier(connection);
1854 spin_unlock_irq(&connection->resource->req_lock);
1855 if (send_barrier) {
1856 drbd_send_barrier(connection);
1857 connection->send.current_epoch_nr++;
1858 }
1859 schedule();
1860 /* may be woken up for other things but new work, too,
1861 * e.g. if the current epoch got closed.
1862 * In which case we send the barrier above. */
1863 }
1864 finish_wait(&connection->sender_work.q_wait, &wait);
1865
1866 /* someone may have changed the config while we have been waiting above. */
1867 rcu_read_lock();
1868 nc = rcu_dereference(connection->net_conf);
1869 cork = nc ? nc->tcp_cork : 0;
1870 rcu_read_unlock();
1871 mutex_lock(&connection->data.mutex);
1872 if (connection->data.socket) {
1873 if (cork)
1874 drbd_tcp_cork(connection->data.socket);
1875 else if (!uncork)
1876 drbd_tcp_uncork(connection->data.socket);
1877 }
1878 mutex_unlock(&connection->data.mutex);
1879 }
1880
1881 int drbd_worker(struct drbd_thread *thi)
1882 {
1883 struct drbd_connection *connection = thi->connection;
1884 struct drbd_work *w = NULL;
1885 struct drbd_peer_device *peer_device;
1886 LIST_HEAD(work_list);
1887 int vnr;
1888
1889 while (get_t_state(thi) == RUNNING) {
1890 drbd_thread_current_set_cpu(thi);
1891
1892 /* as long as we use drbd_queue_work_front(),
1893 * we may only dequeue single work items here, not batches. */
1894 if (list_empty(&work_list))
1895 wait_for_work(connection, &work_list);
1896
1897 if (signal_pending(current)) {
1898 flush_signals(current);
1899 if (get_t_state(thi) == RUNNING) {
1900 drbd_warn(connection, "Worker got an unexpected signal\n");
1901 continue;
1902 }
1903 break;
1904 }
1905
1906 if (get_t_state(thi) != RUNNING)
1907 break;
1908
1909 while (!list_empty(&work_list)) {
1910 w = list_first_entry(&work_list, struct drbd_work, list);
1911 list_del_init(&w->list);
1912 if (w->cb(w, connection->cstate < C_WF_REPORT_PARAMS) == 0)
1913 continue;
1914 if (connection->cstate >= C_WF_REPORT_PARAMS)
1915 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
1916 }
1917 }
1918
1919 do {
1920 while (!list_empty(&work_list)) {
1921 w = list_first_entry(&work_list, struct drbd_work, list);
1922 list_del_init(&w->list);
1923 w->cb(w, 1);
1924 }
1925 dequeue_work_batch(&connection->sender_work, &work_list);
1926 } while (!list_empty(&work_list));
1927
1928 rcu_read_lock();
1929 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1930 struct drbd_device *device = peer_device->device;
1931 D_ASSERT(device, device->state.disk == D_DISKLESS && device->state.conn == C_STANDALONE);
1932 kref_get(&device->kref);
1933 rcu_read_unlock();
1934 drbd_device_cleanup(device);
1935 kref_put(&device->kref, drbd_destroy_device);
1936 rcu_read_lock();
1937 }
1938 rcu_read_unlock();
1939
1940 return 0;
1941 }
This page took 0.06743 seconds and 4 git commands to generate.