loop: prevent information leak after failed read
[deliverable/linux.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/miscdevice.h>
79 #include <linux/falloc.h>
80
81 #include <asm/uaccess.h>
82
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85
86 static int max_part;
87 static int part_shift;
88
89 /*
90 * Transfer functions
91 */
92 static int transfer_none(struct loop_device *lo, int cmd,
93 struct page *raw_page, unsigned raw_off,
94 struct page *loop_page, unsigned loop_off,
95 int size, sector_t real_block)
96 {
97 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
98 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
99
100 if (cmd == READ)
101 memcpy(loop_buf, raw_buf, size);
102 else
103 memcpy(raw_buf, loop_buf, size);
104
105 kunmap_atomic(loop_buf, KM_USER1);
106 kunmap_atomic(raw_buf, KM_USER0);
107 cond_resched();
108 return 0;
109 }
110
111 static int transfer_xor(struct loop_device *lo, int cmd,
112 struct page *raw_page, unsigned raw_off,
113 struct page *loop_page, unsigned loop_off,
114 int size, sector_t real_block)
115 {
116 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
117 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
118 char *in, *out, *key;
119 int i, keysize;
120
121 if (cmd == READ) {
122 in = raw_buf;
123 out = loop_buf;
124 } else {
125 in = loop_buf;
126 out = raw_buf;
127 }
128
129 key = lo->lo_encrypt_key;
130 keysize = lo->lo_encrypt_key_size;
131 for (i = 0; i < size; i++)
132 *out++ = *in++ ^ key[(i & 511) % keysize];
133
134 kunmap_atomic(loop_buf, KM_USER1);
135 kunmap_atomic(raw_buf, KM_USER0);
136 cond_resched();
137 return 0;
138 }
139
140 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
141 {
142 if (unlikely(info->lo_encrypt_key_size <= 0))
143 return -EINVAL;
144 return 0;
145 }
146
147 static struct loop_func_table none_funcs = {
148 .number = LO_CRYPT_NONE,
149 .transfer = transfer_none,
150 };
151
152 static struct loop_func_table xor_funcs = {
153 .number = LO_CRYPT_XOR,
154 .transfer = transfer_xor,
155 .init = xor_init
156 };
157
158 /* xfer_funcs[0] is special - its release function is never called */
159 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
160 &none_funcs,
161 &xor_funcs
162 };
163
164 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
165 {
166 loff_t size, offset, loopsize;
167
168 /* Compute loopsize in bytes */
169 size = i_size_read(file->f_mapping->host);
170 offset = lo->lo_offset;
171 loopsize = size - offset;
172 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
173 loopsize = lo->lo_sizelimit;
174
175 /*
176 * Unfortunately, if we want to do I/O on the device,
177 * the number of 512-byte sectors has to fit into a sector_t.
178 */
179 return loopsize >> 9;
180 }
181
182 static int
183 figure_loop_size(struct loop_device *lo)
184 {
185 loff_t size = get_loop_size(lo, lo->lo_backing_file);
186 sector_t x = (sector_t)size;
187
188 if (unlikely((loff_t)x != size))
189 return -EFBIG;
190
191 set_capacity(lo->lo_disk, x);
192 return 0;
193 }
194
195 static inline int
196 lo_do_transfer(struct loop_device *lo, int cmd,
197 struct page *rpage, unsigned roffs,
198 struct page *lpage, unsigned loffs,
199 int size, sector_t rblock)
200 {
201 if (unlikely(!lo->transfer))
202 return 0;
203
204 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
205 }
206
207 /**
208 * __do_lo_send_write - helper for writing data to a loop device
209 *
210 * This helper just factors out common code between do_lo_send_direct_write()
211 * and do_lo_send_write().
212 */
213 static int __do_lo_send_write(struct file *file,
214 u8 *buf, const int len, loff_t pos)
215 {
216 ssize_t bw;
217 mm_segment_t old_fs = get_fs();
218
219 set_fs(get_ds());
220 bw = file->f_op->write(file, buf, len, &pos);
221 set_fs(old_fs);
222 if (likely(bw == len))
223 return 0;
224 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
225 (unsigned long long)pos, len);
226 if (bw >= 0)
227 bw = -EIO;
228 return bw;
229 }
230
231 /**
232 * do_lo_send_direct_write - helper for writing data to a loop device
233 *
234 * This is the fast, non-transforming version that does not need double
235 * buffering.
236 */
237 static int do_lo_send_direct_write(struct loop_device *lo,
238 struct bio_vec *bvec, loff_t pos, struct page *page)
239 {
240 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
241 kmap(bvec->bv_page) + bvec->bv_offset,
242 bvec->bv_len, pos);
243 kunmap(bvec->bv_page);
244 cond_resched();
245 return bw;
246 }
247
248 /**
249 * do_lo_send_write - helper for writing data to a loop device
250 *
251 * This is the slow, transforming version that needs to double buffer the
252 * data as it cannot do the transformations in place without having direct
253 * access to the destination pages of the backing file.
254 */
255 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
256 loff_t pos, struct page *page)
257 {
258 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
259 bvec->bv_offset, bvec->bv_len, pos >> 9);
260 if (likely(!ret))
261 return __do_lo_send_write(lo->lo_backing_file,
262 page_address(page), bvec->bv_len,
263 pos);
264 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
265 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
266 if (ret > 0)
267 ret = -EIO;
268 return ret;
269 }
270
271 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
272 {
273 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
274 struct page *page);
275 struct bio_vec *bvec;
276 struct page *page = NULL;
277 int i, ret = 0;
278
279 if (lo->transfer != transfer_none) {
280 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
281 if (unlikely(!page))
282 goto fail;
283 kmap(page);
284 do_lo_send = do_lo_send_write;
285 } else {
286 do_lo_send = do_lo_send_direct_write;
287 }
288
289 bio_for_each_segment(bvec, bio, i) {
290 ret = do_lo_send(lo, bvec, pos, page);
291 if (ret < 0)
292 break;
293 pos += bvec->bv_len;
294 }
295 if (page) {
296 kunmap(page);
297 __free_page(page);
298 }
299 out:
300 return ret;
301 fail:
302 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
303 ret = -ENOMEM;
304 goto out;
305 }
306
307 struct lo_read_data {
308 struct loop_device *lo;
309 struct page *page;
310 unsigned offset;
311 int bsize;
312 };
313
314 static int
315 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
316 struct splice_desc *sd)
317 {
318 struct lo_read_data *p = sd->u.data;
319 struct loop_device *lo = p->lo;
320 struct page *page = buf->page;
321 sector_t IV;
322 int size;
323
324 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
325 (buf->offset >> 9);
326 size = sd->len;
327 if (size > p->bsize)
328 size = p->bsize;
329
330 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
331 printk(KERN_ERR "loop: transfer error block %ld\n",
332 page->index);
333 size = -EINVAL;
334 }
335
336 flush_dcache_page(p->page);
337
338 if (size > 0)
339 p->offset += size;
340
341 return size;
342 }
343
344 static int
345 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
346 {
347 return __splice_from_pipe(pipe, sd, lo_splice_actor);
348 }
349
350 static int
351 do_lo_receive(struct loop_device *lo,
352 struct bio_vec *bvec, int bsize, loff_t pos)
353 {
354 struct lo_read_data cookie;
355 struct splice_desc sd;
356 struct file *file;
357 long retval;
358
359 cookie.lo = lo;
360 cookie.page = bvec->bv_page;
361 cookie.offset = bvec->bv_offset;
362 cookie.bsize = bsize;
363
364 sd.len = 0;
365 sd.total_len = bvec->bv_len;
366 sd.flags = 0;
367 sd.pos = pos;
368 sd.u.data = &cookie;
369
370 file = lo->lo_backing_file;
371 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
372
373 if (retval < 0)
374 return retval;
375 if (retval != bvec->bv_len)
376 return -EIO;
377 return 0;
378 }
379
380 static int
381 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
382 {
383 struct bio_vec *bvec;
384 int i, ret = 0;
385
386 bio_for_each_segment(bvec, bio, i) {
387 ret = do_lo_receive(lo, bvec, bsize, pos);
388 if (ret < 0)
389 break;
390 pos += bvec->bv_len;
391 }
392 return ret;
393 }
394
395 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
396 {
397 loff_t pos;
398 int ret;
399
400 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
401
402 if (bio_rw(bio) == WRITE) {
403 struct file *file = lo->lo_backing_file;
404
405 if (bio->bi_rw & REQ_FLUSH) {
406 ret = vfs_fsync(file, 0);
407 if (unlikely(ret && ret != -EINVAL)) {
408 ret = -EIO;
409 goto out;
410 }
411 }
412
413 /*
414 * We use punch hole to reclaim the free space used by the
415 * image a.k.a. discard. However we do support discard if
416 * encryption is enabled, because it may give an attacker
417 * useful information.
418 */
419 if (bio->bi_rw & REQ_DISCARD) {
420 struct file *file = lo->lo_backing_file;
421 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
422
423 if ((!file->f_op->fallocate) ||
424 lo->lo_encrypt_key_size) {
425 ret = -EOPNOTSUPP;
426 goto out;
427 }
428 ret = file->f_op->fallocate(file, mode, pos,
429 bio->bi_size);
430 if (unlikely(ret && ret != -EINVAL &&
431 ret != -EOPNOTSUPP))
432 ret = -EIO;
433 goto out;
434 }
435
436 ret = lo_send(lo, bio, pos);
437
438 if ((bio->bi_rw & REQ_FUA) && !ret) {
439 ret = vfs_fsync(file, 0);
440 if (unlikely(ret && ret != -EINVAL))
441 ret = -EIO;
442 }
443 } else
444 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
445
446 out:
447 return ret;
448 }
449
450 /*
451 * Add bio to back of pending list
452 */
453 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
454 {
455 bio_list_add(&lo->lo_bio_list, bio);
456 }
457
458 /*
459 * Grab first pending buffer
460 */
461 static struct bio *loop_get_bio(struct loop_device *lo)
462 {
463 return bio_list_pop(&lo->lo_bio_list);
464 }
465
466 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
467 {
468 struct loop_device *lo = q->queuedata;
469 int rw = bio_rw(old_bio);
470
471 if (rw == READA)
472 rw = READ;
473
474 BUG_ON(!lo || (rw != READ && rw != WRITE));
475
476 spin_lock_irq(&lo->lo_lock);
477 if (lo->lo_state != Lo_bound)
478 goto out;
479 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
480 goto out;
481 loop_add_bio(lo, old_bio);
482 wake_up(&lo->lo_event);
483 spin_unlock_irq(&lo->lo_lock);
484 return;
485
486 out:
487 spin_unlock_irq(&lo->lo_lock);
488 bio_io_error(old_bio);
489 }
490
491 struct switch_request {
492 struct file *file;
493 struct completion wait;
494 };
495
496 static void do_loop_switch(struct loop_device *, struct switch_request *);
497
498 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
499 {
500 if (unlikely(!bio->bi_bdev)) {
501 do_loop_switch(lo, bio->bi_private);
502 bio_put(bio);
503 } else {
504 int ret = do_bio_filebacked(lo, bio);
505 bio_endio(bio, ret);
506 }
507 }
508
509 /*
510 * worker thread that handles reads/writes to file backed loop devices,
511 * to avoid blocking in our make_request_fn. it also does loop decrypting
512 * on reads for block backed loop, as that is too heavy to do from
513 * b_end_io context where irqs may be disabled.
514 *
515 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
516 * calling kthread_stop(). Therefore once kthread_should_stop() is
517 * true, make_request will not place any more requests. Therefore
518 * once kthread_should_stop() is true and lo_bio is NULL, we are
519 * done with the loop.
520 */
521 static int loop_thread(void *data)
522 {
523 struct loop_device *lo = data;
524 struct bio *bio;
525
526 set_user_nice(current, -20);
527
528 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
529
530 wait_event_interruptible(lo->lo_event,
531 !bio_list_empty(&lo->lo_bio_list) ||
532 kthread_should_stop());
533
534 if (bio_list_empty(&lo->lo_bio_list))
535 continue;
536 spin_lock_irq(&lo->lo_lock);
537 bio = loop_get_bio(lo);
538 spin_unlock_irq(&lo->lo_lock);
539
540 BUG_ON(!bio);
541 loop_handle_bio(lo, bio);
542 }
543
544 return 0;
545 }
546
547 /*
548 * loop_switch performs the hard work of switching a backing store.
549 * First it needs to flush existing IO, it does this by sending a magic
550 * BIO down the pipe. The completion of this BIO does the actual switch.
551 */
552 static int loop_switch(struct loop_device *lo, struct file *file)
553 {
554 struct switch_request w;
555 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
556 if (!bio)
557 return -ENOMEM;
558 init_completion(&w.wait);
559 w.file = file;
560 bio->bi_private = &w;
561 bio->bi_bdev = NULL;
562 loop_make_request(lo->lo_queue, bio);
563 wait_for_completion(&w.wait);
564 return 0;
565 }
566
567 /*
568 * Helper to flush the IOs in loop, but keeping loop thread running
569 */
570 static int loop_flush(struct loop_device *lo)
571 {
572 /* loop not yet configured, no running thread, nothing to flush */
573 if (!lo->lo_thread)
574 return 0;
575
576 return loop_switch(lo, NULL);
577 }
578
579 /*
580 * Do the actual switch; called from the BIO completion routine
581 */
582 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
583 {
584 struct file *file = p->file;
585 struct file *old_file = lo->lo_backing_file;
586 struct address_space *mapping;
587
588 /* if no new file, only flush of queued bios requested */
589 if (!file)
590 goto out;
591
592 mapping = file->f_mapping;
593 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
594 lo->lo_backing_file = file;
595 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
596 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
597 lo->old_gfp_mask = mapping_gfp_mask(mapping);
598 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
599 out:
600 complete(&p->wait);
601 }
602
603
604 /*
605 * loop_change_fd switched the backing store of a loopback device to
606 * a new file. This is useful for operating system installers to free up
607 * the original file and in High Availability environments to switch to
608 * an alternative location for the content in case of server meltdown.
609 * This can only work if the loop device is used read-only, and if the
610 * new backing store is the same size and type as the old backing store.
611 */
612 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
613 unsigned int arg)
614 {
615 struct file *file, *old_file;
616 struct inode *inode;
617 int error;
618
619 error = -ENXIO;
620 if (lo->lo_state != Lo_bound)
621 goto out;
622
623 /* the loop device has to be read-only */
624 error = -EINVAL;
625 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
626 goto out;
627
628 error = -EBADF;
629 file = fget(arg);
630 if (!file)
631 goto out;
632
633 inode = file->f_mapping->host;
634 old_file = lo->lo_backing_file;
635
636 error = -EINVAL;
637
638 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
639 goto out_putf;
640
641 /* size of the new backing store needs to be the same */
642 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
643 goto out_putf;
644
645 /* and ... switch */
646 error = loop_switch(lo, file);
647 if (error)
648 goto out_putf;
649
650 fput(old_file);
651 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
652 ioctl_by_bdev(bdev, BLKRRPART, 0);
653 return 0;
654
655 out_putf:
656 fput(file);
657 out:
658 return error;
659 }
660
661 static inline int is_loop_device(struct file *file)
662 {
663 struct inode *i = file->f_mapping->host;
664
665 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
666 }
667
668 /* loop sysfs attributes */
669
670 static ssize_t loop_attr_show(struct device *dev, char *page,
671 ssize_t (*callback)(struct loop_device *, char *))
672 {
673 struct gendisk *disk = dev_to_disk(dev);
674 struct loop_device *lo = disk->private_data;
675
676 return callback(lo, page);
677 }
678
679 #define LOOP_ATTR_RO(_name) \
680 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
681 static ssize_t loop_attr_do_show_##_name(struct device *d, \
682 struct device_attribute *attr, char *b) \
683 { \
684 return loop_attr_show(d, b, loop_attr_##_name##_show); \
685 } \
686 static struct device_attribute loop_attr_##_name = \
687 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
688
689 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
690 {
691 ssize_t ret;
692 char *p = NULL;
693
694 spin_lock_irq(&lo->lo_lock);
695 if (lo->lo_backing_file)
696 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
697 spin_unlock_irq(&lo->lo_lock);
698
699 if (IS_ERR_OR_NULL(p))
700 ret = PTR_ERR(p);
701 else {
702 ret = strlen(p);
703 memmove(buf, p, ret);
704 buf[ret++] = '\n';
705 buf[ret] = 0;
706 }
707
708 return ret;
709 }
710
711 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
712 {
713 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
714 }
715
716 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
717 {
718 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
719 }
720
721 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
722 {
723 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
724
725 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
726 }
727
728 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
729 {
730 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
731
732 return sprintf(buf, "%s\n", partscan ? "1" : "0");
733 }
734
735 LOOP_ATTR_RO(backing_file);
736 LOOP_ATTR_RO(offset);
737 LOOP_ATTR_RO(sizelimit);
738 LOOP_ATTR_RO(autoclear);
739 LOOP_ATTR_RO(partscan);
740
741 static struct attribute *loop_attrs[] = {
742 &loop_attr_backing_file.attr,
743 &loop_attr_offset.attr,
744 &loop_attr_sizelimit.attr,
745 &loop_attr_autoclear.attr,
746 &loop_attr_partscan.attr,
747 NULL,
748 };
749
750 static struct attribute_group loop_attribute_group = {
751 .name = "loop",
752 .attrs= loop_attrs,
753 };
754
755 static int loop_sysfs_init(struct loop_device *lo)
756 {
757 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
758 &loop_attribute_group);
759 }
760
761 static void loop_sysfs_exit(struct loop_device *lo)
762 {
763 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
764 &loop_attribute_group);
765 }
766
767 static void loop_config_discard(struct loop_device *lo)
768 {
769 struct file *file = lo->lo_backing_file;
770 struct inode *inode = file->f_mapping->host;
771 struct request_queue *q = lo->lo_queue;
772
773 /*
774 * We use punch hole to reclaim the free space used by the
775 * image a.k.a. discard. However we do support discard if
776 * encryption is enabled, because it may give an attacker
777 * useful information.
778 */
779 if ((!file->f_op->fallocate) ||
780 lo->lo_encrypt_key_size) {
781 q->limits.discard_granularity = 0;
782 q->limits.discard_alignment = 0;
783 q->limits.max_discard_sectors = 0;
784 q->limits.discard_zeroes_data = 0;
785 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
786 return;
787 }
788
789 q->limits.discard_granularity = inode->i_sb->s_blocksize;
790 q->limits.discard_alignment = inode->i_sb->s_blocksize;
791 q->limits.max_discard_sectors = UINT_MAX >> 9;
792 q->limits.discard_zeroes_data = 1;
793 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
794 }
795
796 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
797 struct block_device *bdev, unsigned int arg)
798 {
799 struct file *file, *f;
800 struct inode *inode;
801 struct address_space *mapping;
802 unsigned lo_blocksize;
803 int lo_flags = 0;
804 int error;
805 loff_t size;
806
807 /* This is safe, since we have a reference from open(). */
808 __module_get(THIS_MODULE);
809
810 error = -EBADF;
811 file = fget(arg);
812 if (!file)
813 goto out;
814
815 error = -EBUSY;
816 if (lo->lo_state != Lo_unbound)
817 goto out_putf;
818
819 /* Avoid recursion */
820 f = file;
821 while (is_loop_device(f)) {
822 struct loop_device *l;
823
824 if (f->f_mapping->host->i_bdev == bdev)
825 goto out_putf;
826
827 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
828 if (l->lo_state == Lo_unbound) {
829 error = -EINVAL;
830 goto out_putf;
831 }
832 f = l->lo_backing_file;
833 }
834
835 mapping = file->f_mapping;
836 inode = mapping->host;
837
838 error = -EINVAL;
839 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
840 goto out_putf;
841
842 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
843 !file->f_op->write)
844 lo_flags |= LO_FLAGS_READ_ONLY;
845
846 lo_blocksize = S_ISBLK(inode->i_mode) ?
847 inode->i_bdev->bd_block_size : PAGE_SIZE;
848
849 error = -EFBIG;
850 size = get_loop_size(lo, file);
851 if ((loff_t)(sector_t)size != size)
852 goto out_putf;
853
854 error = 0;
855
856 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
857
858 lo->lo_blocksize = lo_blocksize;
859 lo->lo_device = bdev;
860 lo->lo_flags = lo_flags;
861 lo->lo_backing_file = file;
862 lo->transfer = transfer_none;
863 lo->ioctl = NULL;
864 lo->lo_sizelimit = 0;
865 lo->old_gfp_mask = mapping_gfp_mask(mapping);
866 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
867
868 bio_list_init(&lo->lo_bio_list);
869
870 /*
871 * set queue make_request_fn, and add limits based on lower level
872 * device
873 */
874 blk_queue_make_request(lo->lo_queue, loop_make_request);
875 lo->lo_queue->queuedata = lo;
876
877 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
878 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
879
880 set_capacity(lo->lo_disk, size);
881 bd_set_size(bdev, size << 9);
882 loop_sysfs_init(lo);
883 /* let user-space know about the new size */
884 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
885
886 set_blocksize(bdev, lo_blocksize);
887
888 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
889 lo->lo_number);
890 if (IS_ERR(lo->lo_thread)) {
891 error = PTR_ERR(lo->lo_thread);
892 goto out_clr;
893 }
894 lo->lo_state = Lo_bound;
895 wake_up_process(lo->lo_thread);
896 if (part_shift)
897 lo->lo_flags |= LO_FLAGS_PARTSCAN;
898 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
899 ioctl_by_bdev(bdev, BLKRRPART, 0);
900 return 0;
901
902 out_clr:
903 loop_sysfs_exit(lo);
904 lo->lo_thread = NULL;
905 lo->lo_device = NULL;
906 lo->lo_backing_file = NULL;
907 lo->lo_flags = 0;
908 set_capacity(lo->lo_disk, 0);
909 invalidate_bdev(bdev);
910 bd_set_size(bdev, 0);
911 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
912 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
913 lo->lo_state = Lo_unbound;
914 out_putf:
915 fput(file);
916 out:
917 /* This is safe: open() is still holding a reference. */
918 module_put(THIS_MODULE);
919 return error;
920 }
921
922 static int
923 loop_release_xfer(struct loop_device *lo)
924 {
925 int err = 0;
926 struct loop_func_table *xfer = lo->lo_encryption;
927
928 if (xfer) {
929 if (xfer->release)
930 err = xfer->release(lo);
931 lo->transfer = NULL;
932 lo->lo_encryption = NULL;
933 module_put(xfer->owner);
934 }
935 return err;
936 }
937
938 static int
939 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
940 const struct loop_info64 *i)
941 {
942 int err = 0;
943
944 if (xfer) {
945 struct module *owner = xfer->owner;
946
947 if (!try_module_get(owner))
948 return -EINVAL;
949 if (xfer->init)
950 err = xfer->init(lo, i);
951 if (err)
952 module_put(owner);
953 else
954 lo->lo_encryption = xfer;
955 }
956 return err;
957 }
958
959 static int loop_clr_fd(struct loop_device *lo)
960 {
961 struct file *filp = lo->lo_backing_file;
962 gfp_t gfp = lo->old_gfp_mask;
963 struct block_device *bdev = lo->lo_device;
964
965 if (lo->lo_state != Lo_bound)
966 return -ENXIO;
967
968 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
969 return -EBUSY;
970
971 if (filp == NULL)
972 return -EINVAL;
973
974 spin_lock_irq(&lo->lo_lock);
975 lo->lo_state = Lo_rundown;
976 spin_unlock_irq(&lo->lo_lock);
977
978 kthread_stop(lo->lo_thread);
979
980 spin_lock_irq(&lo->lo_lock);
981 lo->lo_backing_file = NULL;
982 spin_unlock_irq(&lo->lo_lock);
983
984 loop_release_xfer(lo);
985 lo->transfer = NULL;
986 lo->ioctl = NULL;
987 lo->lo_device = NULL;
988 lo->lo_encryption = NULL;
989 lo->lo_offset = 0;
990 lo->lo_sizelimit = 0;
991 lo->lo_encrypt_key_size = 0;
992 lo->lo_thread = NULL;
993 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
994 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
995 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
996 if (bdev)
997 invalidate_bdev(bdev);
998 set_capacity(lo->lo_disk, 0);
999 loop_sysfs_exit(lo);
1000 if (bdev) {
1001 bd_set_size(bdev, 0);
1002 /* let user-space know about this change */
1003 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1004 }
1005 mapping_set_gfp_mask(filp->f_mapping, gfp);
1006 lo->lo_state = Lo_unbound;
1007 /* This is safe: open() is still holding a reference. */
1008 module_put(THIS_MODULE);
1009 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1010 ioctl_by_bdev(bdev, BLKRRPART, 0);
1011 lo->lo_flags = 0;
1012 if (!part_shift)
1013 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1014 mutex_unlock(&lo->lo_ctl_mutex);
1015 /*
1016 * Need not hold lo_ctl_mutex to fput backing file.
1017 * Calling fput holding lo_ctl_mutex triggers a circular
1018 * lock dependency possibility warning as fput can take
1019 * bd_mutex which is usually taken before lo_ctl_mutex.
1020 */
1021 fput(filp);
1022 return 0;
1023 }
1024
1025 static int
1026 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1027 {
1028 int err;
1029 struct loop_func_table *xfer;
1030 uid_t uid = current_uid();
1031
1032 if (lo->lo_encrypt_key_size &&
1033 lo->lo_key_owner != uid &&
1034 !capable(CAP_SYS_ADMIN))
1035 return -EPERM;
1036 if (lo->lo_state != Lo_bound)
1037 return -ENXIO;
1038 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1039 return -EINVAL;
1040
1041 err = loop_release_xfer(lo);
1042 if (err)
1043 return err;
1044
1045 if (info->lo_encrypt_type) {
1046 unsigned int type = info->lo_encrypt_type;
1047
1048 if (type >= MAX_LO_CRYPT)
1049 return -EINVAL;
1050 xfer = xfer_funcs[type];
1051 if (xfer == NULL)
1052 return -EINVAL;
1053 } else
1054 xfer = NULL;
1055
1056 err = loop_init_xfer(lo, xfer, info);
1057 if (err)
1058 return err;
1059
1060 if (lo->lo_offset != info->lo_offset ||
1061 lo->lo_sizelimit != info->lo_sizelimit) {
1062 lo->lo_offset = info->lo_offset;
1063 lo->lo_sizelimit = info->lo_sizelimit;
1064 if (figure_loop_size(lo))
1065 return -EFBIG;
1066 }
1067 loop_config_discard(lo);
1068
1069 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1070 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1071 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1072 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1073
1074 if (!xfer)
1075 xfer = &none_funcs;
1076 lo->transfer = xfer->transfer;
1077 lo->ioctl = xfer->ioctl;
1078
1079 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1080 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1081 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1082
1083 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1084 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1085 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1086 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1087 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1088 }
1089
1090 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1091 lo->lo_init[0] = info->lo_init[0];
1092 lo->lo_init[1] = info->lo_init[1];
1093 if (info->lo_encrypt_key_size) {
1094 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1095 info->lo_encrypt_key_size);
1096 lo->lo_key_owner = uid;
1097 }
1098
1099 return 0;
1100 }
1101
1102 static int
1103 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1104 {
1105 struct file *file = lo->lo_backing_file;
1106 struct kstat stat;
1107 int error;
1108
1109 if (lo->lo_state != Lo_bound)
1110 return -ENXIO;
1111 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1112 if (error)
1113 return error;
1114 memset(info, 0, sizeof(*info));
1115 info->lo_number = lo->lo_number;
1116 info->lo_device = huge_encode_dev(stat.dev);
1117 info->lo_inode = stat.ino;
1118 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1119 info->lo_offset = lo->lo_offset;
1120 info->lo_sizelimit = lo->lo_sizelimit;
1121 info->lo_flags = lo->lo_flags;
1122 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1123 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1124 info->lo_encrypt_type =
1125 lo->lo_encryption ? lo->lo_encryption->number : 0;
1126 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1127 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1128 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1129 lo->lo_encrypt_key_size);
1130 }
1131 return 0;
1132 }
1133
1134 static void
1135 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1136 {
1137 memset(info64, 0, sizeof(*info64));
1138 info64->lo_number = info->lo_number;
1139 info64->lo_device = info->lo_device;
1140 info64->lo_inode = info->lo_inode;
1141 info64->lo_rdevice = info->lo_rdevice;
1142 info64->lo_offset = info->lo_offset;
1143 info64->lo_sizelimit = 0;
1144 info64->lo_encrypt_type = info->lo_encrypt_type;
1145 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1146 info64->lo_flags = info->lo_flags;
1147 info64->lo_init[0] = info->lo_init[0];
1148 info64->lo_init[1] = info->lo_init[1];
1149 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1150 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1151 else
1152 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1153 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1154 }
1155
1156 static int
1157 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1158 {
1159 memset(info, 0, sizeof(*info));
1160 info->lo_number = info64->lo_number;
1161 info->lo_device = info64->lo_device;
1162 info->lo_inode = info64->lo_inode;
1163 info->lo_rdevice = info64->lo_rdevice;
1164 info->lo_offset = info64->lo_offset;
1165 info->lo_encrypt_type = info64->lo_encrypt_type;
1166 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1167 info->lo_flags = info64->lo_flags;
1168 info->lo_init[0] = info64->lo_init[0];
1169 info->lo_init[1] = info64->lo_init[1];
1170 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1171 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1172 else
1173 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1174 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1175
1176 /* error in case values were truncated */
1177 if (info->lo_device != info64->lo_device ||
1178 info->lo_rdevice != info64->lo_rdevice ||
1179 info->lo_inode != info64->lo_inode ||
1180 info->lo_offset != info64->lo_offset)
1181 return -EOVERFLOW;
1182
1183 return 0;
1184 }
1185
1186 static int
1187 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1188 {
1189 struct loop_info info;
1190 struct loop_info64 info64;
1191
1192 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1193 return -EFAULT;
1194 loop_info64_from_old(&info, &info64);
1195 return loop_set_status(lo, &info64);
1196 }
1197
1198 static int
1199 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1200 {
1201 struct loop_info64 info64;
1202
1203 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1204 return -EFAULT;
1205 return loop_set_status(lo, &info64);
1206 }
1207
1208 static int
1209 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1210 struct loop_info info;
1211 struct loop_info64 info64;
1212 int err = 0;
1213
1214 if (!arg)
1215 err = -EINVAL;
1216 if (!err)
1217 err = loop_get_status(lo, &info64);
1218 if (!err)
1219 err = loop_info64_to_old(&info64, &info);
1220 if (!err && copy_to_user(arg, &info, sizeof(info)))
1221 err = -EFAULT;
1222
1223 return err;
1224 }
1225
1226 static int
1227 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1228 struct loop_info64 info64;
1229 int err = 0;
1230
1231 if (!arg)
1232 err = -EINVAL;
1233 if (!err)
1234 err = loop_get_status(lo, &info64);
1235 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1236 err = -EFAULT;
1237
1238 return err;
1239 }
1240
1241 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1242 {
1243 int err;
1244 sector_t sec;
1245 loff_t sz;
1246
1247 err = -ENXIO;
1248 if (unlikely(lo->lo_state != Lo_bound))
1249 goto out;
1250 err = figure_loop_size(lo);
1251 if (unlikely(err))
1252 goto out;
1253 sec = get_capacity(lo->lo_disk);
1254 /* the width of sector_t may be narrow for bit-shift */
1255 sz = sec;
1256 sz <<= 9;
1257 mutex_lock(&bdev->bd_mutex);
1258 bd_set_size(bdev, sz);
1259 /* let user-space know about the new size */
1260 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1261 mutex_unlock(&bdev->bd_mutex);
1262
1263 out:
1264 return err;
1265 }
1266
1267 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1268 unsigned int cmd, unsigned long arg)
1269 {
1270 struct loop_device *lo = bdev->bd_disk->private_data;
1271 int err;
1272
1273 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1274 switch (cmd) {
1275 case LOOP_SET_FD:
1276 err = loop_set_fd(lo, mode, bdev, arg);
1277 break;
1278 case LOOP_CHANGE_FD:
1279 err = loop_change_fd(lo, bdev, arg);
1280 break;
1281 case LOOP_CLR_FD:
1282 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1283 err = loop_clr_fd(lo);
1284 if (!err)
1285 goto out_unlocked;
1286 break;
1287 case LOOP_SET_STATUS:
1288 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1289 break;
1290 case LOOP_GET_STATUS:
1291 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1292 break;
1293 case LOOP_SET_STATUS64:
1294 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1295 break;
1296 case LOOP_GET_STATUS64:
1297 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1298 break;
1299 case LOOP_SET_CAPACITY:
1300 err = -EPERM;
1301 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1302 err = loop_set_capacity(lo, bdev);
1303 break;
1304 default:
1305 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1306 }
1307 mutex_unlock(&lo->lo_ctl_mutex);
1308
1309 out_unlocked:
1310 return err;
1311 }
1312
1313 #ifdef CONFIG_COMPAT
1314 struct compat_loop_info {
1315 compat_int_t lo_number; /* ioctl r/o */
1316 compat_dev_t lo_device; /* ioctl r/o */
1317 compat_ulong_t lo_inode; /* ioctl r/o */
1318 compat_dev_t lo_rdevice; /* ioctl r/o */
1319 compat_int_t lo_offset;
1320 compat_int_t lo_encrypt_type;
1321 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1322 compat_int_t lo_flags; /* ioctl r/o */
1323 char lo_name[LO_NAME_SIZE];
1324 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1325 compat_ulong_t lo_init[2];
1326 char reserved[4];
1327 };
1328
1329 /*
1330 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1331 * - noinlined to reduce stack space usage in main part of driver
1332 */
1333 static noinline int
1334 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1335 struct loop_info64 *info64)
1336 {
1337 struct compat_loop_info info;
1338
1339 if (copy_from_user(&info, arg, sizeof(info)))
1340 return -EFAULT;
1341
1342 memset(info64, 0, sizeof(*info64));
1343 info64->lo_number = info.lo_number;
1344 info64->lo_device = info.lo_device;
1345 info64->lo_inode = info.lo_inode;
1346 info64->lo_rdevice = info.lo_rdevice;
1347 info64->lo_offset = info.lo_offset;
1348 info64->lo_sizelimit = 0;
1349 info64->lo_encrypt_type = info.lo_encrypt_type;
1350 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1351 info64->lo_flags = info.lo_flags;
1352 info64->lo_init[0] = info.lo_init[0];
1353 info64->lo_init[1] = info.lo_init[1];
1354 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1355 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1356 else
1357 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1358 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1359 return 0;
1360 }
1361
1362 /*
1363 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1364 * - noinlined to reduce stack space usage in main part of driver
1365 */
1366 static noinline int
1367 loop_info64_to_compat(const struct loop_info64 *info64,
1368 struct compat_loop_info __user *arg)
1369 {
1370 struct compat_loop_info info;
1371
1372 memset(&info, 0, sizeof(info));
1373 info.lo_number = info64->lo_number;
1374 info.lo_device = info64->lo_device;
1375 info.lo_inode = info64->lo_inode;
1376 info.lo_rdevice = info64->lo_rdevice;
1377 info.lo_offset = info64->lo_offset;
1378 info.lo_encrypt_type = info64->lo_encrypt_type;
1379 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1380 info.lo_flags = info64->lo_flags;
1381 info.lo_init[0] = info64->lo_init[0];
1382 info.lo_init[1] = info64->lo_init[1];
1383 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1384 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1385 else
1386 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1387 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1388
1389 /* error in case values were truncated */
1390 if (info.lo_device != info64->lo_device ||
1391 info.lo_rdevice != info64->lo_rdevice ||
1392 info.lo_inode != info64->lo_inode ||
1393 info.lo_offset != info64->lo_offset ||
1394 info.lo_init[0] != info64->lo_init[0] ||
1395 info.lo_init[1] != info64->lo_init[1])
1396 return -EOVERFLOW;
1397
1398 if (copy_to_user(arg, &info, sizeof(info)))
1399 return -EFAULT;
1400 return 0;
1401 }
1402
1403 static int
1404 loop_set_status_compat(struct loop_device *lo,
1405 const struct compat_loop_info __user *arg)
1406 {
1407 struct loop_info64 info64;
1408 int ret;
1409
1410 ret = loop_info64_from_compat(arg, &info64);
1411 if (ret < 0)
1412 return ret;
1413 return loop_set_status(lo, &info64);
1414 }
1415
1416 static int
1417 loop_get_status_compat(struct loop_device *lo,
1418 struct compat_loop_info __user *arg)
1419 {
1420 struct loop_info64 info64;
1421 int err = 0;
1422
1423 if (!arg)
1424 err = -EINVAL;
1425 if (!err)
1426 err = loop_get_status(lo, &info64);
1427 if (!err)
1428 err = loop_info64_to_compat(&info64, arg);
1429 return err;
1430 }
1431
1432 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1433 unsigned int cmd, unsigned long arg)
1434 {
1435 struct loop_device *lo = bdev->bd_disk->private_data;
1436 int err;
1437
1438 switch(cmd) {
1439 case LOOP_SET_STATUS:
1440 mutex_lock(&lo->lo_ctl_mutex);
1441 err = loop_set_status_compat(
1442 lo, (const struct compat_loop_info __user *) arg);
1443 mutex_unlock(&lo->lo_ctl_mutex);
1444 break;
1445 case LOOP_GET_STATUS:
1446 mutex_lock(&lo->lo_ctl_mutex);
1447 err = loop_get_status_compat(
1448 lo, (struct compat_loop_info __user *) arg);
1449 mutex_unlock(&lo->lo_ctl_mutex);
1450 break;
1451 case LOOP_SET_CAPACITY:
1452 case LOOP_CLR_FD:
1453 case LOOP_GET_STATUS64:
1454 case LOOP_SET_STATUS64:
1455 arg = (unsigned long) compat_ptr(arg);
1456 case LOOP_SET_FD:
1457 case LOOP_CHANGE_FD:
1458 err = lo_ioctl(bdev, mode, cmd, arg);
1459 break;
1460 default:
1461 err = -ENOIOCTLCMD;
1462 break;
1463 }
1464 return err;
1465 }
1466 #endif
1467
1468 static int lo_open(struct block_device *bdev, fmode_t mode)
1469 {
1470 struct loop_device *lo;
1471 int err = 0;
1472
1473 mutex_lock(&loop_index_mutex);
1474 lo = bdev->bd_disk->private_data;
1475 if (!lo) {
1476 err = -ENXIO;
1477 goto out;
1478 }
1479
1480 mutex_lock(&lo->lo_ctl_mutex);
1481 lo->lo_refcnt++;
1482 mutex_unlock(&lo->lo_ctl_mutex);
1483 out:
1484 mutex_unlock(&loop_index_mutex);
1485 return err;
1486 }
1487
1488 static int lo_release(struct gendisk *disk, fmode_t mode)
1489 {
1490 struct loop_device *lo = disk->private_data;
1491 int err;
1492
1493 mutex_lock(&lo->lo_ctl_mutex);
1494
1495 if (--lo->lo_refcnt)
1496 goto out;
1497
1498 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1499 /*
1500 * In autoclear mode, stop the loop thread
1501 * and remove configuration after last close.
1502 */
1503 err = loop_clr_fd(lo);
1504 if (!err)
1505 goto out_unlocked;
1506 } else {
1507 /*
1508 * Otherwise keep thread (if running) and config,
1509 * but flush possible ongoing bios in thread.
1510 */
1511 loop_flush(lo);
1512 }
1513
1514 out:
1515 mutex_unlock(&lo->lo_ctl_mutex);
1516 out_unlocked:
1517 return 0;
1518 }
1519
1520 static const struct block_device_operations lo_fops = {
1521 .owner = THIS_MODULE,
1522 .open = lo_open,
1523 .release = lo_release,
1524 .ioctl = lo_ioctl,
1525 #ifdef CONFIG_COMPAT
1526 .compat_ioctl = lo_compat_ioctl,
1527 #endif
1528 };
1529
1530 /*
1531 * And now the modules code and kernel interface.
1532 */
1533 static int max_loop;
1534 module_param(max_loop, int, S_IRUGO);
1535 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1536 module_param(max_part, int, S_IRUGO);
1537 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1538 MODULE_LICENSE("GPL");
1539 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1540
1541 int loop_register_transfer(struct loop_func_table *funcs)
1542 {
1543 unsigned int n = funcs->number;
1544
1545 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1546 return -EINVAL;
1547 xfer_funcs[n] = funcs;
1548 return 0;
1549 }
1550
1551 static int unregister_transfer_cb(int id, void *ptr, void *data)
1552 {
1553 struct loop_device *lo = ptr;
1554 struct loop_func_table *xfer = data;
1555
1556 mutex_lock(&lo->lo_ctl_mutex);
1557 if (lo->lo_encryption == xfer)
1558 loop_release_xfer(lo);
1559 mutex_unlock(&lo->lo_ctl_mutex);
1560 return 0;
1561 }
1562
1563 int loop_unregister_transfer(int number)
1564 {
1565 unsigned int n = number;
1566 struct loop_func_table *xfer;
1567
1568 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1569 return -EINVAL;
1570
1571 xfer_funcs[n] = NULL;
1572 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1573 return 0;
1574 }
1575
1576 EXPORT_SYMBOL(loop_register_transfer);
1577 EXPORT_SYMBOL(loop_unregister_transfer);
1578
1579 static int loop_add(struct loop_device **l, int i)
1580 {
1581 struct loop_device *lo;
1582 struct gendisk *disk;
1583 int err;
1584
1585 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1586 if (!lo) {
1587 err = -ENOMEM;
1588 goto out;
1589 }
1590
1591 err = idr_pre_get(&loop_index_idr, GFP_KERNEL);
1592 if (err < 0)
1593 goto out_free_dev;
1594
1595 if (i >= 0) {
1596 int m;
1597
1598 /* create specific i in the index */
1599 err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1600 if (err >= 0 && i != m) {
1601 idr_remove(&loop_index_idr, m);
1602 err = -EEXIST;
1603 }
1604 } else if (i == -1) {
1605 int m;
1606
1607 /* get next free nr */
1608 err = idr_get_new(&loop_index_idr, lo, &m);
1609 if (err >= 0)
1610 i = m;
1611 } else {
1612 err = -EINVAL;
1613 }
1614 if (err < 0)
1615 goto out_free_dev;
1616
1617 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1618 if (!lo->lo_queue)
1619 goto out_free_dev;
1620
1621 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1622 if (!disk)
1623 goto out_free_queue;
1624
1625 /*
1626 * Disable partition scanning by default. The in-kernel partition
1627 * scanning can be requested individually per-device during its
1628 * setup. Userspace can always add and remove partitions from all
1629 * devices. The needed partition minors are allocated from the
1630 * extended minor space, the main loop device numbers will continue
1631 * to match the loop minors, regardless of the number of partitions
1632 * used.
1633 *
1634 * If max_part is given, partition scanning is globally enabled for
1635 * all loop devices. The minors for the main loop devices will be
1636 * multiples of max_part.
1637 *
1638 * Note: Global-for-all-devices, set-only-at-init, read-only module
1639 * parameteters like 'max_loop' and 'max_part' make things needlessly
1640 * complicated, are too static, inflexible and may surprise
1641 * userspace tools. Parameters like this in general should be avoided.
1642 */
1643 if (!part_shift)
1644 disk->flags |= GENHD_FL_NO_PART_SCAN;
1645 disk->flags |= GENHD_FL_EXT_DEVT;
1646 mutex_init(&lo->lo_ctl_mutex);
1647 lo->lo_number = i;
1648 lo->lo_thread = NULL;
1649 init_waitqueue_head(&lo->lo_event);
1650 spin_lock_init(&lo->lo_lock);
1651 disk->major = LOOP_MAJOR;
1652 disk->first_minor = i << part_shift;
1653 disk->fops = &lo_fops;
1654 disk->private_data = lo;
1655 disk->queue = lo->lo_queue;
1656 sprintf(disk->disk_name, "loop%d", i);
1657 add_disk(disk);
1658 *l = lo;
1659 return lo->lo_number;
1660
1661 out_free_queue:
1662 blk_cleanup_queue(lo->lo_queue);
1663 out_free_dev:
1664 kfree(lo);
1665 out:
1666 return err;
1667 }
1668
1669 static void loop_remove(struct loop_device *lo)
1670 {
1671 del_gendisk(lo->lo_disk);
1672 blk_cleanup_queue(lo->lo_queue);
1673 put_disk(lo->lo_disk);
1674 kfree(lo);
1675 }
1676
1677 static int find_free_cb(int id, void *ptr, void *data)
1678 {
1679 struct loop_device *lo = ptr;
1680 struct loop_device **l = data;
1681
1682 if (lo->lo_state == Lo_unbound) {
1683 *l = lo;
1684 return 1;
1685 }
1686 return 0;
1687 }
1688
1689 static int loop_lookup(struct loop_device **l, int i)
1690 {
1691 struct loop_device *lo;
1692 int ret = -ENODEV;
1693
1694 if (i < 0) {
1695 int err;
1696
1697 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1698 if (err == 1) {
1699 *l = lo;
1700 ret = lo->lo_number;
1701 }
1702 goto out;
1703 }
1704
1705 /* lookup and return a specific i */
1706 lo = idr_find(&loop_index_idr, i);
1707 if (lo) {
1708 *l = lo;
1709 ret = lo->lo_number;
1710 }
1711 out:
1712 return ret;
1713 }
1714
1715 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1716 {
1717 struct loop_device *lo;
1718 struct kobject *kobj;
1719 int err;
1720
1721 mutex_lock(&loop_index_mutex);
1722 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1723 if (err < 0)
1724 err = loop_add(&lo, MINOR(dev) >> part_shift);
1725 if (err < 0)
1726 kobj = ERR_PTR(err);
1727 else
1728 kobj = get_disk(lo->lo_disk);
1729 mutex_unlock(&loop_index_mutex);
1730
1731 *part = 0;
1732 return kobj;
1733 }
1734
1735 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1736 unsigned long parm)
1737 {
1738 struct loop_device *lo;
1739 int ret = -ENOSYS;
1740
1741 mutex_lock(&loop_index_mutex);
1742 switch (cmd) {
1743 case LOOP_CTL_ADD:
1744 ret = loop_lookup(&lo, parm);
1745 if (ret >= 0) {
1746 ret = -EEXIST;
1747 break;
1748 }
1749 ret = loop_add(&lo, parm);
1750 break;
1751 case LOOP_CTL_REMOVE:
1752 ret = loop_lookup(&lo, parm);
1753 if (ret < 0)
1754 break;
1755 mutex_lock(&lo->lo_ctl_mutex);
1756 if (lo->lo_state != Lo_unbound) {
1757 ret = -EBUSY;
1758 mutex_unlock(&lo->lo_ctl_mutex);
1759 break;
1760 }
1761 if (lo->lo_refcnt > 0) {
1762 ret = -EBUSY;
1763 mutex_unlock(&lo->lo_ctl_mutex);
1764 break;
1765 }
1766 lo->lo_disk->private_data = NULL;
1767 mutex_unlock(&lo->lo_ctl_mutex);
1768 idr_remove(&loop_index_idr, lo->lo_number);
1769 loop_remove(lo);
1770 break;
1771 case LOOP_CTL_GET_FREE:
1772 ret = loop_lookup(&lo, -1);
1773 if (ret >= 0)
1774 break;
1775 ret = loop_add(&lo, -1);
1776 }
1777 mutex_unlock(&loop_index_mutex);
1778
1779 return ret;
1780 }
1781
1782 static const struct file_operations loop_ctl_fops = {
1783 .open = nonseekable_open,
1784 .unlocked_ioctl = loop_control_ioctl,
1785 .compat_ioctl = loop_control_ioctl,
1786 .owner = THIS_MODULE,
1787 .llseek = noop_llseek,
1788 };
1789
1790 static struct miscdevice loop_misc = {
1791 .minor = LOOP_CTRL_MINOR,
1792 .name = "loop-control",
1793 .fops = &loop_ctl_fops,
1794 };
1795
1796 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1797 MODULE_ALIAS("devname:loop-control");
1798
1799 static int __init loop_init(void)
1800 {
1801 int i, nr;
1802 unsigned long range;
1803 struct loop_device *lo;
1804 int err;
1805
1806 err = misc_register(&loop_misc);
1807 if (err < 0)
1808 return err;
1809
1810 part_shift = 0;
1811 if (max_part > 0) {
1812 part_shift = fls(max_part);
1813
1814 /*
1815 * Adjust max_part according to part_shift as it is exported
1816 * to user space so that user can decide correct minor number
1817 * if [s]he want to create more devices.
1818 *
1819 * Note that -1 is required because partition 0 is reserved
1820 * for the whole disk.
1821 */
1822 max_part = (1UL << part_shift) - 1;
1823 }
1824
1825 if ((1UL << part_shift) > DISK_MAX_PARTS)
1826 return -EINVAL;
1827
1828 if (max_loop > 1UL << (MINORBITS - part_shift))
1829 return -EINVAL;
1830
1831 /*
1832 * If max_loop is specified, create that many devices upfront.
1833 * This also becomes a hard limit. If max_loop is not specified,
1834 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1835 * init time. Loop devices can be requested on-demand with the
1836 * /dev/loop-control interface, or be instantiated by accessing
1837 * a 'dead' device node.
1838 */
1839 if (max_loop) {
1840 nr = max_loop;
1841 range = max_loop << part_shift;
1842 } else {
1843 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1844 range = 1UL << MINORBITS;
1845 }
1846
1847 if (register_blkdev(LOOP_MAJOR, "loop"))
1848 return -EIO;
1849
1850 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1851 THIS_MODULE, loop_probe, NULL, NULL);
1852
1853 /* pre-create number of devices given by config or max_loop */
1854 mutex_lock(&loop_index_mutex);
1855 for (i = 0; i < nr; i++)
1856 loop_add(&lo, i);
1857 mutex_unlock(&loop_index_mutex);
1858
1859 printk(KERN_INFO "loop: module loaded\n");
1860 return 0;
1861 }
1862
1863 static int loop_exit_cb(int id, void *ptr, void *data)
1864 {
1865 struct loop_device *lo = ptr;
1866
1867 loop_remove(lo);
1868 return 0;
1869 }
1870
1871 static void __exit loop_exit(void)
1872 {
1873 unsigned long range;
1874
1875 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1876
1877 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1878 idr_remove_all(&loop_index_idr);
1879 idr_destroy(&loop_index_idr);
1880
1881 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1882 unregister_blkdev(LOOP_MAJOR, "loop");
1883
1884 misc_deregister(&loop_misc);
1885 }
1886
1887 module_init(loop_init);
1888 module_exit(loop_exit);
1889
1890 #ifndef MODULE
1891 static int __init max_loop_setup(char *str)
1892 {
1893 max_loop = simple_strtol(str, NULL, 0);
1894 return 1;
1895 }
1896
1897 __setup("max_loop=", max_loop_setup);
1898 #endif
This page took 0.125887 seconds and 5 git commands to generate.