loop: add discard support for loop devices
[deliverable/linux.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/falloc.h>
79
80 #include <asm/uaccess.h>
81
82 static LIST_HEAD(loop_devices);
83 static DEFINE_MUTEX(loop_devices_mutex);
84
85 static int max_part;
86 static int part_shift;
87
88 /*
89 * Transfer functions
90 */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 struct page *raw_page, unsigned raw_off,
93 struct page *loop_page, unsigned loop_off,
94 int size, sector_t real_block)
95 {
96 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
97 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
98
99 if (cmd == READ)
100 memcpy(loop_buf, raw_buf, size);
101 else
102 memcpy(raw_buf, loop_buf, size);
103
104 kunmap_atomic(loop_buf, KM_USER1);
105 kunmap_atomic(raw_buf, KM_USER0);
106 cond_resched();
107 return 0;
108 }
109
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 struct page *raw_page, unsigned raw_off,
112 struct page *loop_page, unsigned loop_off,
113 int size, sector_t real_block)
114 {
115 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
116 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
117 char *in, *out, *key;
118 int i, keysize;
119
120 if (cmd == READ) {
121 in = raw_buf;
122 out = loop_buf;
123 } else {
124 in = loop_buf;
125 out = raw_buf;
126 }
127
128 key = lo->lo_encrypt_key;
129 keysize = lo->lo_encrypt_key_size;
130 for (i = 0; i < size; i++)
131 *out++ = *in++ ^ key[(i & 511) % keysize];
132
133 kunmap_atomic(loop_buf, KM_USER1);
134 kunmap_atomic(raw_buf, KM_USER0);
135 cond_resched();
136 return 0;
137 }
138
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 if (unlikely(info->lo_encrypt_key_size <= 0))
142 return -EINVAL;
143 return 0;
144 }
145
146 static struct loop_func_table none_funcs = {
147 .number = LO_CRYPT_NONE,
148 .transfer = transfer_none,
149 };
150
151 static struct loop_func_table xor_funcs = {
152 .number = LO_CRYPT_XOR,
153 .transfer = transfer_xor,
154 .init = xor_init
155 };
156
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 &none_funcs,
160 &xor_funcs
161 };
162
163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 loff_t size, offset, loopsize;
166
167 /* Compute loopsize in bytes */
168 size = i_size_read(file->f_mapping->host);
169 offset = lo->lo_offset;
170 loopsize = size - offset;
171 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
172 loopsize = lo->lo_sizelimit;
173
174 /*
175 * Unfortunately, if we want to do I/O on the device,
176 * the number of 512-byte sectors has to fit into a sector_t.
177 */
178 return loopsize >> 9;
179 }
180
181 static int
182 figure_loop_size(struct loop_device *lo)
183 {
184 loff_t size = get_loop_size(lo, lo->lo_backing_file);
185 sector_t x = (sector_t)size;
186
187 if (unlikely((loff_t)x != size))
188 return -EFBIG;
189
190 set_capacity(lo->lo_disk, x);
191 return 0;
192 }
193
194 static inline int
195 lo_do_transfer(struct loop_device *lo, int cmd,
196 struct page *rpage, unsigned roffs,
197 struct page *lpage, unsigned loffs,
198 int size, sector_t rblock)
199 {
200 if (unlikely(!lo->transfer))
201 return 0;
202
203 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
204 }
205
206 /**
207 * do_lo_send_aops - helper for writing data to a loop device
208 *
209 * This is the fast version for backing filesystems which implement the address
210 * space operations write_begin and write_end.
211 */
212 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
213 loff_t pos, struct page *unused)
214 {
215 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
216 struct address_space *mapping = file->f_mapping;
217 pgoff_t index;
218 unsigned offset, bv_offs;
219 int len, ret;
220
221 mutex_lock(&mapping->host->i_mutex);
222 index = pos >> PAGE_CACHE_SHIFT;
223 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
224 bv_offs = bvec->bv_offset;
225 len = bvec->bv_len;
226 while (len > 0) {
227 sector_t IV;
228 unsigned size, copied;
229 int transfer_result;
230 struct page *page;
231 void *fsdata;
232
233 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
234 size = PAGE_CACHE_SIZE - offset;
235 if (size > len)
236 size = len;
237
238 ret = pagecache_write_begin(file, mapping, pos, size, 0,
239 &page, &fsdata);
240 if (ret)
241 goto fail;
242
243 file_update_time(file);
244
245 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
246 bvec->bv_page, bv_offs, size, IV);
247 copied = size;
248 if (unlikely(transfer_result))
249 copied = 0;
250
251 ret = pagecache_write_end(file, mapping, pos, size, copied,
252 page, fsdata);
253 if (ret < 0 || ret != copied)
254 goto fail;
255
256 if (unlikely(transfer_result))
257 goto fail;
258
259 bv_offs += copied;
260 len -= copied;
261 offset = 0;
262 index++;
263 pos += copied;
264 }
265 ret = 0;
266 out:
267 mutex_unlock(&mapping->host->i_mutex);
268 return ret;
269 fail:
270 ret = -1;
271 goto out;
272 }
273
274 /**
275 * __do_lo_send_write - helper for writing data to a loop device
276 *
277 * This helper just factors out common code between do_lo_send_direct_write()
278 * and do_lo_send_write().
279 */
280 static int __do_lo_send_write(struct file *file,
281 u8 *buf, const int len, loff_t pos)
282 {
283 ssize_t bw;
284 mm_segment_t old_fs = get_fs();
285
286 set_fs(get_ds());
287 bw = file->f_op->write(file, buf, len, &pos);
288 set_fs(old_fs);
289 if (likely(bw == len))
290 return 0;
291 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
292 (unsigned long long)pos, len);
293 if (bw >= 0)
294 bw = -EIO;
295 return bw;
296 }
297
298 /**
299 * do_lo_send_direct_write - helper for writing data to a loop device
300 *
301 * This is the fast, non-transforming version for backing filesystems which do
302 * not implement the address space operations write_begin and write_end.
303 * It uses the write file operation which should be present on all writeable
304 * filesystems.
305 */
306 static int do_lo_send_direct_write(struct loop_device *lo,
307 struct bio_vec *bvec, loff_t pos, struct page *page)
308 {
309 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
310 kmap(bvec->bv_page) + bvec->bv_offset,
311 bvec->bv_len, pos);
312 kunmap(bvec->bv_page);
313 cond_resched();
314 return bw;
315 }
316
317 /**
318 * do_lo_send_write - helper for writing data to a loop device
319 *
320 * This is the slow, transforming version for filesystems which do not
321 * implement the address space operations write_begin and write_end. It
322 * uses the write file operation which should be present on all writeable
323 * filesystems.
324 *
325 * Using fops->write is slower than using aops->{prepare,commit}_write in the
326 * transforming case because we need to double buffer the data as we cannot do
327 * the transformations in place as we do not have direct access to the
328 * destination pages of the backing file.
329 */
330 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
331 loff_t pos, struct page *page)
332 {
333 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
334 bvec->bv_offset, bvec->bv_len, pos >> 9);
335 if (likely(!ret))
336 return __do_lo_send_write(lo->lo_backing_file,
337 page_address(page), bvec->bv_len,
338 pos);
339 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
340 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
341 if (ret > 0)
342 ret = -EIO;
343 return ret;
344 }
345
346 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
347 {
348 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
349 struct page *page);
350 struct bio_vec *bvec;
351 struct page *page = NULL;
352 int i, ret = 0;
353
354 do_lo_send = do_lo_send_aops;
355 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
356 do_lo_send = do_lo_send_direct_write;
357 if (lo->transfer != transfer_none) {
358 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
359 if (unlikely(!page))
360 goto fail;
361 kmap(page);
362 do_lo_send = do_lo_send_write;
363 }
364 }
365 bio_for_each_segment(bvec, bio, i) {
366 ret = do_lo_send(lo, bvec, pos, page);
367 if (ret < 0)
368 break;
369 pos += bvec->bv_len;
370 }
371 if (page) {
372 kunmap(page);
373 __free_page(page);
374 }
375 out:
376 return ret;
377 fail:
378 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
379 ret = -ENOMEM;
380 goto out;
381 }
382
383 struct lo_read_data {
384 struct loop_device *lo;
385 struct page *page;
386 unsigned offset;
387 int bsize;
388 };
389
390 static int
391 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
392 struct splice_desc *sd)
393 {
394 struct lo_read_data *p = sd->u.data;
395 struct loop_device *lo = p->lo;
396 struct page *page = buf->page;
397 sector_t IV;
398 int size;
399
400 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
401 (buf->offset >> 9);
402 size = sd->len;
403 if (size > p->bsize)
404 size = p->bsize;
405
406 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
407 printk(KERN_ERR "loop: transfer error block %ld\n",
408 page->index);
409 size = -EINVAL;
410 }
411
412 flush_dcache_page(p->page);
413
414 if (size > 0)
415 p->offset += size;
416
417 return size;
418 }
419
420 static int
421 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
422 {
423 return __splice_from_pipe(pipe, sd, lo_splice_actor);
424 }
425
426 static int
427 do_lo_receive(struct loop_device *lo,
428 struct bio_vec *bvec, int bsize, loff_t pos)
429 {
430 struct lo_read_data cookie;
431 struct splice_desc sd;
432 struct file *file;
433 long retval;
434
435 cookie.lo = lo;
436 cookie.page = bvec->bv_page;
437 cookie.offset = bvec->bv_offset;
438 cookie.bsize = bsize;
439
440 sd.len = 0;
441 sd.total_len = bvec->bv_len;
442 sd.flags = 0;
443 sd.pos = pos;
444 sd.u.data = &cookie;
445
446 file = lo->lo_backing_file;
447 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
448
449 if (retval < 0)
450 return retval;
451
452 return 0;
453 }
454
455 static int
456 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
457 {
458 struct bio_vec *bvec;
459 int i, ret = 0;
460
461 bio_for_each_segment(bvec, bio, i) {
462 ret = do_lo_receive(lo, bvec, bsize, pos);
463 if (ret < 0)
464 break;
465 pos += bvec->bv_len;
466 }
467 return ret;
468 }
469
470 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
471 {
472 loff_t pos;
473 int ret;
474
475 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
476
477 if (bio_rw(bio) == WRITE) {
478 struct file *file = lo->lo_backing_file;
479
480 if (bio->bi_rw & REQ_FLUSH) {
481 ret = vfs_fsync(file, 0);
482 if (unlikely(ret && ret != -EINVAL)) {
483 ret = -EIO;
484 goto out;
485 }
486 }
487
488 /*
489 * We use punch hole to reclaim the free space used by the
490 * image a.k.a. discard. However we do support discard if
491 * encryption is enabled, because it may give an attacker
492 * useful information.
493 */
494 if (bio->bi_rw & REQ_DISCARD) {
495 struct file *file = lo->lo_backing_file;
496 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
497
498 if ((!file->f_op->fallocate) ||
499 lo->lo_encrypt_key_size) {
500 ret = -EOPNOTSUPP;
501 goto out;
502 }
503 ret = file->f_op->fallocate(file, mode, pos,
504 bio->bi_size);
505 if (unlikely(ret && ret != -EINVAL &&
506 ret != -EOPNOTSUPP))
507 ret = -EIO;
508 goto out;
509 }
510
511 ret = lo_send(lo, bio, pos);
512
513 if ((bio->bi_rw & REQ_FUA) && !ret) {
514 ret = vfs_fsync(file, 0);
515 if (unlikely(ret && ret != -EINVAL))
516 ret = -EIO;
517 }
518 } else
519 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
520
521 out:
522 return ret;
523 }
524
525 /*
526 * Add bio to back of pending list
527 */
528 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
529 {
530 bio_list_add(&lo->lo_bio_list, bio);
531 }
532
533 /*
534 * Grab first pending buffer
535 */
536 static struct bio *loop_get_bio(struct loop_device *lo)
537 {
538 return bio_list_pop(&lo->lo_bio_list);
539 }
540
541 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
542 {
543 struct loop_device *lo = q->queuedata;
544 int rw = bio_rw(old_bio);
545
546 if (rw == READA)
547 rw = READ;
548
549 BUG_ON(!lo || (rw != READ && rw != WRITE));
550
551 spin_lock_irq(&lo->lo_lock);
552 if (lo->lo_state != Lo_bound)
553 goto out;
554 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
555 goto out;
556 loop_add_bio(lo, old_bio);
557 wake_up(&lo->lo_event);
558 spin_unlock_irq(&lo->lo_lock);
559 return 0;
560
561 out:
562 spin_unlock_irq(&lo->lo_lock);
563 bio_io_error(old_bio);
564 return 0;
565 }
566
567 struct switch_request {
568 struct file *file;
569 struct completion wait;
570 };
571
572 static void do_loop_switch(struct loop_device *, struct switch_request *);
573
574 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
575 {
576 if (unlikely(!bio->bi_bdev)) {
577 do_loop_switch(lo, bio->bi_private);
578 bio_put(bio);
579 } else {
580 int ret = do_bio_filebacked(lo, bio);
581 bio_endio(bio, ret);
582 }
583 }
584
585 /*
586 * worker thread that handles reads/writes to file backed loop devices,
587 * to avoid blocking in our make_request_fn. it also does loop decrypting
588 * on reads for block backed loop, as that is too heavy to do from
589 * b_end_io context where irqs may be disabled.
590 *
591 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
592 * calling kthread_stop(). Therefore once kthread_should_stop() is
593 * true, make_request will not place any more requests. Therefore
594 * once kthread_should_stop() is true and lo_bio is NULL, we are
595 * done with the loop.
596 */
597 static int loop_thread(void *data)
598 {
599 struct loop_device *lo = data;
600 struct bio *bio;
601
602 set_user_nice(current, -20);
603
604 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
605
606 wait_event_interruptible(lo->lo_event,
607 !bio_list_empty(&lo->lo_bio_list) ||
608 kthread_should_stop());
609
610 if (bio_list_empty(&lo->lo_bio_list))
611 continue;
612 spin_lock_irq(&lo->lo_lock);
613 bio = loop_get_bio(lo);
614 spin_unlock_irq(&lo->lo_lock);
615
616 BUG_ON(!bio);
617 loop_handle_bio(lo, bio);
618 }
619
620 return 0;
621 }
622
623 /*
624 * loop_switch performs the hard work of switching a backing store.
625 * First it needs to flush existing IO, it does this by sending a magic
626 * BIO down the pipe. The completion of this BIO does the actual switch.
627 */
628 static int loop_switch(struct loop_device *lo, struct file *file)
629 {
630 struct switch_request w;
631 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
632 if (!bio)
633 return -ENOMEM;
634 init_completion(&w.wait);
635 w.file = file;
636 bio->bi_private = &w;
637 bio->bi_bdev = NULL;
638 loop_make_request(lo->lo_queue, bio);
639 wait_for_completion(&w.wait);
640 return 0;
641 }
642
643 /*
644 * Helper to flush the IOs in loop, but keeping loop thread running
645 */
646 static int loop_flush(struct loop_device *lo)
647 {
648 /* loop not yet configured, no running thread, nothing to flush */
649 if (!lo->lo_thread)
650 return 0;
651
652 return loop_switch(lo, NULL);
653 }
654
655 /*
656 * Do the actual switch; called from the BIO completion routine
657 */
658 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
659 {
660 struct file *file = p->file;
661 struct file *old_file = lo->lo_backing_file;
662 struct address_space *mapping;
663
664 /* if no new file, only flush of queued bios requested */
665 if (!file)
666 goto out;
667
668 mapping = file->f_mapping;
669 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
670 lo->lo_backing_file = file;
671 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
672 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
673 lo->old_gfp_mask = mapping_gfp_mask(mapping);
674 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
675 out:
676 complete(&p->wait);
677 }
678
679
680 /*
681 * loop_change_fd switched the backing store of a loopback device to
682 * a new file. This is useful for operating system installers to free up
683 * the original file and in High Availability environments to switch to
684 * an alternative location for the content in case of server meltdown.
685 * This can only work if the loop device is used read-only, and if the
686 * new backing store is the same size and type as the old backing store.
687 */
688 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
689 unsigned int arg)
690 {
691 struct file *file, *old_file;
692 struct inode *inode;
693 int error;
694
695 error = -ENXIO;
696 if (lo->lo_state != Lo_bound)
697 goto out;
698
699 /* the loop device has to be read-only */
700 error = -EINVAL;
701 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
702 goto out;
703
704 error = -EBADF;
705 file = fget(arg);
706 if (!file)
707 goto out;
708
709 inode = file->f_mapping->host;
710 old_file = lo->lo_backing_file;
711
712 error = -EINVAL;
713
714 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
715 goto out_putf;
716
717 /* size of the new backing store needs to be the same */
718 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
719 goto out_putf;
720
721 /* and ... switch */
722 error = loop_switch(lo, file);
723 if (error)
724 goto out_putf;
725
726 fput(old_file);
727 if (max_part > 0)
728 ioctl_by_bdev(bdev, BLKRRPART, 0);
729 return 0;
730
731 out_putf:
732 fput(file);
733 out:
734 return error;
735 }
736
737 static inline int is_loop_device(struct file *file)
738 {
739 struct inode *i = file->f_mapping->host;
740
741 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
742 }
743
744 /* loop sysfs attributes */
745
746 static ssize_t loop_attr_show(struct device *dev, char *page,
747 ssize_t (*callback)(struct loop_device *, char *))
748 {
749 struct loop_device *l, *lo = NULL;
750
751 mutex_lock(&loop_devices_mutex);
752 list_for_each_entry(l, &loop_devices, lo_list)
753 if (disk_to_dev(l->lo_disk) == dev) {
754 lo = l;
755 break;
756 }
757 mutex_unlock(&loop_devices_mutex);
758
759 return lo ? callback(lo, page) : -EIO;
760 }
761
762 #define LOOP_ATTR_RO(_name) \
763 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
764 static ssize_t loop_attr_do_show_##_name(struct device *d, \
765 struct device_attribute *attr, char *b) \
766 { \
767 return loop_attr_show(d, b, loop_attr_##_name##_show); \
768 } \
769 static struct device_attribute loop_attr_##_name = \
770 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
771
772 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
773 {
774 ssize_t ret;
775 char *p = NULL;
776
777 mutex_lock(&lo->lo_ctl_mutex);
778 if (lo->lo_backing_file)
779 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
780 mutex_unlock(&lo->lo_ctl_mutex);
781
782 if (IS_ERR_OR_NULL(p))
783 ret = PTR_ERR(p);
784 else {
785 ret = strlen(p);
786 memmove(buf, p, ret);
787 buf[ret++] = '\n';
788 buf[ret] = 0;
789 }
790
791 return ret;
792 }
793
794 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
795 {
796 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
797 }
798
799 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
800 {
801 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
802 }
803
804 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
805 {
806 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
807
808 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
809 }
810
811 LOOP_ATTR_RO(backing_file);
812 LOOP_ATTR_RO(offset);
813 LOOP_ATTR_RO(sizelimit);
814 LOOP_ATTR_RO(autoclear);
815
816 static struct attribute *loop_attrs[] = {
817 &loop_attr_backing_file.attr,
818 &loop_attr_offset.attr,
819 &loop_attr_sizelimit.attr,
820 &loop_attr_autoclear.attr,
821 NULL,
822 };
823
824 static struct attribute_group loop_attribute_group = {
825 .name = "loop",
826 .attrs= loop_attrs,
827 };
828
829 static int loop_sysfs_init(struct loop_device *lo)
830 {
831 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
832 &loop_attribute_group);
833 }
834
835 static void loop_sysfs_exit(struct loop_device *lo)
836 {
837 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
838 &loop_attribute_group);
839 }
840
841 static void loop_config_discard(struct loop_device *lo)
842 {
843 struct file *file = lo->lo_backing_file;
844 struct inode *inode = file->f_mapping->host;
845 struct request_queue *q = lo->lo_queue;
846
847 /*
848 * We use punch hole to reclaim the free space used by the
849 * image a.k.a. discard. However we do support discard if
850 * encryption is enabled, because it may give an attacker
851 * useful information.
852 */
853 if ((!file->f_op->fallocate) ||
854 lo->lo_encrypt_key_size) {
855 q->limits.discard_granularity = 0;
856 q->limits.discard_alignment = 0;
857 q->limits.max_discard_sectors = 0;
858 q->limits.discard_zeroes_data = 0;
859 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
860 return;
861 }
862
863 q->limits.discard_granularity = inode->i_sb->s_blocksize;
864 q->limits.discard_alignment = inode->i_sb->s_blocksize;
865 q->limits.max_discard_sectors = UINT_MAX >> 9;
866 q->limits.discard_zeroes_data = 1;
867 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
868 }
869
870 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
871 struct block_device *bdev, unsigned int arg)
872 {
873 struct file *file, *f;
874 struct inode *inode;
875 struct address_space *mapping;
876 unsigned lo_blocksize;
877 int lo_flags = 0;
878 int error;
879 loff_t size;
880
881 /* This is safe, since we have a reference from open(). */
882 __module_get(THIS_MODULE);
883
884 error = -EBADF;
885 file = fget(arg);
886 if (!file)
887 goto out;
888
889 error = -EBUSY;
890 if (lo->lo_state != Lo_unbound)
891 goto out_putf;
892
893 /* Avoid recursion */
894 f = file;
895 while (is_loop_device(f)) {
896 struct loop_device *l;
897
898 if (f->f_mapping->host->i_bdev == bdev)
899 goto out_putf;
900
901 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
902 if (l->lo_state == Lo_unbound) {
903 error = -EINVAL;
904 goto out_putf;
905 }
906 f = l->lo_backing_file;
907 }
908
909 mapping = file->f_mapping;
910 inode = mapping->host;
911
912 if (!(file->f_mode & FMODE_WRITE))
913 lo_flags |= LO_FLAGS_READ_ONLY;
914
915 error = -EINVAL;
916 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
917 const struct address_space_operations *aops = mapping->a_ops;
918
919 if (aops->write_begin)
920 lo_flags |= LO_FLAGS_USE_AOPS;
921 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
922 lo_flags |= LO_FLAGS_READ_ONLY;
923
924 lo_blocksize = S_ISBLK(inode->i_mode) ?
925 inode->i_bdev->bd_block_size : PAGE_SIZE;
926
927 error = 0;
928 } else {
929 goto out_putf;
930 }
931
932 size = get_loop_size(lo, file);
933
934 if ((loff_t)(sector_t)size != size) {
935 error = -EFBIG;
936 goto out_putf;
937 }
938
939 if (!(mode & FMODE_WRITE))
940 lo_flags |= LO_FLAGS_READ_ONLY;
941
942 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
943
944 lo->lo_blocksize = lo_blocksize;
945 lo->lo_device = bdev;
946 lo->lo_flags = lo_flags;
947 lo->lo_backing_file = file;
948 lo->transfer = transfer_none;
949 lo->ioctl = NULL;
950 lo->lo_sizelimit = 0;
951 lo->old_gfp_mask = mapping_gfp_mask(mapping);
952 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
953
954 bio_list_init(&lo->lo_bio_list);
955
956 /*
957 * set queue make_request_fn, and add limits based on lower level
958 * device
959 */
960 blk_queue_make_request(lo->lo_queue, loop_make_request);
961 lo->lo_queue->queuedata = lo;
962
963 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
964 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
965
966 set_capacity(lo->lo_disk, size);
967 bd_set_size(bdev, size << 9);
968 loop_sysfs_init(lo);
969 /* let user-space know about the new size */
970 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
971
972 set_blocksize(bdev, lo_blocksize);
973
974 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
975 lo->lo_number);
976 if (IS_ERR(lo->lo_thread)) {
977 error = PTR_ERR(lo->lo_thread);
978 goto out_clr;
979 }
980 lo->lo_state = Lo_bound;
981 wake_up_process(lo->lo_thread);
982 if (max_part > 0)
983 ioctl_by_bdev(bdev, BLKRRPART, 0);
984 return 0;
985
986 out_clr:
987 loop_sysfs_exit(lo);
988 lo->lo_thread = NULL;
989 lo->lo_device = NULL;
990 lo->lo_backing_file = NULL;
991 lo->lo_flags = 0;
992 set_capacity(lo->lo_disk, 0);
993 invalidate_bdev(bdev);
994 bd_set_size(bdev, 0);
995 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
996 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
997 lo->lo_state = Lo_unbound;
998 out_putf:
999 fput(file);
1000 out:
1001 /* This is safe: open() is still holding a reference. */
1002 module_put(THIS_MODULE);
1003 return error;
1004 }
1005
1006 static int
1007 loop_release_xfer(struct loop_device *lo)
1008 {
1009 int err = 0;
1010 struct loop_func_table *xfer = lo->lo_encryption;
1011
1012 if (xfer) {
1013 if (xfer->release)
1014 err = xfer->release(lo);
1015 lo->transfer = NULL;
1016 lo->lo_encryption = NULL;
1017 module_put(xfer->owner);
1018 }
1019 return err;
1020 }
1021
1022 static int
1023 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1024 const struct loop_info64 *i)
1025 {
1026 int err = 0;
1027
1028 if (xfer) {
1029 struct module *owner = xfer->owner;
1030
1031 if (!try_module_get(owner))
1032 return -EINVAL;
1033 if (xfer->init)
1034 err = xfer->init(lo, i);
1035 if (err)
1036 module_put(owner);
1037 else
1038 lo->lo_encryption = xfer;
1039 }
1040 return err;
1041 }
1042
1043 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
1044 {
1045 struct file *filp = lo->lo_backing_file;
1046 gfp_t gfp = lo->old_gfp_mask;
1047
1048 if (lo->lo_state != Lo_bound)
1049 return -ENXIO;
1050
1051 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
1052 return -EBUSY;
1053
1054 if (filp == NULL)
1055 return -EINVAL;
1056
1057 spin_lock_irq(&lo->lo_lock);
1058 lo->lo_state = Lo_rundown;
1059 spin_unlock_irq(&lo->lo_lock);
1060
1061 kthread_stop(lo->lo_thread);
1062
1063 lo->lo_backing_file = NULL;
1064
1065 loop_release_xfer(lo);
1066 lo->transfer = NULL;
1067 lo->ioctl = NULL;
1068 lo->lo_device = NULL;
1069 lo->lo_encryption = NULL;
1070 lo->lo_offset = 0;
1071 lo->lo_sizelimit = 0;
1072 lo->lo_encrypt_key_size = 0;
1073 lo->lo_flags = 0;
1074 lo->lo_thread = NULL;
1075 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1076 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1077 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1078 if (bdev)
1079 invalidate_bdev(bdev);
1080 set_capacity(lo->lo_disk, 0);
1081 loop_sysfs_exit(lo);
1082 if (bdev) {
1083 bd_set_size(bdev, 0);
1084 /* let user-space know about this change */
1085 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1086 }
1087 mapping_set_gfp_mask(filp->f_mapping, gfp);
1088 lo->lo_state = Lo_unbound;
1089 /* This is safe: open() is still holding a reference. */
1090 module_put(THIS_MODULE);
1091 if (max_part > 0 && bdev)
1092 ioctl_by_bdev(bdev, BLKRRPART, 0);
1093 mutex_unlock(&lo->lo_ctl_mutex);
1094 /*
1095 * Need not hold lo_ctl_mutex to fput backing file.
1096 * Calling fput holding lo_ctl_mutex triggers a circular
1097 * lock dependency possibility warning as fput can take
1098 * bd_mutex which is usually taken before lo_ctl_mutex.
1099 */
1100 fput(filp);
1101 return 0;
1102 }
1103
1104 static int
1105 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1106 {
1107 int err;
1108 struct loop_func_table *xfer;
1109 uid_t uid = current_uid();
1110
1111 if (lo->lo_encrypt_key_size &&
1112 lo->lo_key_owner != uid &&
1113 !capable(CAP_SYS_ADMIN))
1114 return -EPERM;
1115 if (lo->lo_state != Lo_bound)
1116 return -ENXIO;
1117 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1118 return -EINVAL;
1119
1120 err = loop_release_xfer(lo);
1121 if (err)
1122 return err;
1123
1124 if (info->lo_encrypt_type) {
1125 unsigned int type = info->lo_encrypt_type;
1126
1127 if (type >= MAX_LO_CRYPT)
1128 return -EINVAL;
1129 xfer = xfer_funcs[type];
1130 if (xfer == NULL)
1131 return -EINVAL;
1132 } else
1133 xfer = NULL;
1134
1135 err = loop_init_xfer(lo, xfer, info);
1136 if (err)
1137 return err;
1138
1139 if (lo->lo_offset != info->lo_offset ||
1140 lo->lo_sizelimit != info->lo_sizelimit) {
1141 lo->lo_offset = info->lo_offset;
1142 lo->lo_sizelimit = info->lo_sizelimit;
1143 if (figure_loop_size(lo))
1144 return -EFBIG;
1145 }
1146 loop_config_discard(lo);
1147
1148 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1149 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1150 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1151 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1152
1153 if (!xfer)
1154 xfer = &none_funcs;
1155 lo->transfer = xfer->transfer;
1156 lo->ioctl = xfer->ioctl;
1157
1158 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1159 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1160 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1161
1162 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1163 lo->lo_init[0] = info->lo_init[0];
1164 lo->lo_init[1] = info->lo_init[1];
1165 if (info->lo_encrypt_key_size) {
1166 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1167 info->lo_encrypt_key_size);
1168 lo->lo_key_owner = uid;
1169 }
1170
1171 return 0;
1172 }
1173
1174 static int
1175 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1176 {
1177 struct file *file = lo->lo_backing_file;
1178 struct kstat stat;
1179 int error;
1180
1181 if (lo->lo_state != Lo_bound)
1182 return -ENXIO;
1183 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1184 if (error)
1185 return error;
1186 memset(info, 0, sizeof(*info));
1187 info->lo_number = lo->lo_number;
1188 info->lo_device = huge_encode_dev(stat.dev);
1189 info->lo_inode = stat.ino;
1190 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1191 info->lo_offset = lo->lo_offset;
1192 info->lo_sizelimit = lo->lo_sizelimit;
1193 info->lo_flags = lo->lo_flags;
1194 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1195 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1196 info->lo_encrypt_type =
1197 lo->lo_encryption ? lo->lo_encryption->number : 0;
1198 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1199 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1200 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1201 lo->lo_encrypt_key_size);
1202 }
1203 return 0;
1204 }
1205
1206 static void
1207 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1208 {
1209 memset(info64, 0, sizeof(*info64));
1210 info64->lo_number = info->lo_number;
1211 info64->lo_device = info->lo_device;
1212 info64->lo_inode = info->lo_inode;
1213 info64->lo_rdevice = info->lo_rdevice;
1214 info64->lo_offset = info->lo_offset;
1215 info64->lo_sizelimit = 0;
1216 info64->lo_encrypt_type = info->lo_encrypt_type;
1217 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1218 info64->lo_flags = info->lo_flags;
1219 info64->lo_init[0] = info->lo_init[0];
1220 info64->lo_init[1] = info->lo_init[1];
1221 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1222 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1223 else
1224 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1225 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1226 }
1227
1228 static int
1229 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1230 {
1231 memset(info, 0, sizeof(*info));
1232 info->lo_number = info64->lo_number;
1233 info->lo_device = info64->lo_device;
1234 info->lo_inode = info64->lo_inode;
1235 info->lo_rdevice = info64->lo_rdevice;
1236 info->lo_offset = info64->lo_offset;
1237 info->lo_encrypt_type = info64->lo_encrypt_type;
1238 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1239 info->lo_flags = info64->lo_flags;
1240 info->lo_init[0] = info64->lo_init[0];
1241 info->lo_init[1] = info64->lo_init[1];
1242 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1243 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1244 else
1245 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1246 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1247
1248 /* error in case values were truncated */
1249 if (info->lo_device != info64->lo_device ||
1250 info->lo_rdevice != info64->lo_rdevice ||
1251 info->lo_inode != info64->lo_inode ||
1252 info->lo_offset != info64->lo_offset)
1253 return -EOVERFLOW;
1254
1255 return 0;
1256 }
1257
1258 static int
1259 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1260 {
1261 struct loop_info info;
1262 struct loop_info64 info64;
1263
1264 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1265 return -EFAULT;
1266 loop_info64_from_old(&info, &info64);
1267 return loop_set_status(lo, &info64);
1268 }
1269
1270 static int
1271 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1272 {
1273 struct loop_info64 info64;
1274
1275 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1276 return -EFAULT;
1277 return loop_set_status(lo, &info64);
1278 }
1279
1280 static int
1281 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1282 struct loop_info info;
1283 struct loop_info64 info64;
1284 int err = 0;
1285
1286 if (!arg)
1287 err = -EINVAL;
1288 if (!err)
1289 err = loop_get_status(lo, &info64);
1290 if (!err)
1291 err = loop_info64_to_old(&info64, &info);
1292 if (!err && copy_to_user(arg, &info, sizeof(info)))
1293 err = -EFAULT;
1294
1295 return err;
1296 }
1297
1298 static int
1299 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1300 struct loop_info64 info64;
1301 int err = 0;
1302
1303 if (!arg)
1304 err = -EINVAL;
1305 if (!err)
1306 err = loop_get_status(lo, &info64);
1307 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1308 err = -EFAULT;
1309
1310 return err;
1311 }
1312
1313 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1314 {
1315 int err;
1316 sector_t sec;
1317 loff_t sz;
1318
1319 err = -ENXIO;
1320 if (unlikely(lo->lo_state != Lo_bound))
1321 goto out;
1322 err = figure_loop_size(lo);
1323 if (unlikely(err))
1324 goto out;
1325 sec = get_capacity(lo->lo_disk);
1326 /* the width of sector_t may be narrow for bit-shift */
1327 sz = sec;
1328 sz <<= 9;
1329 mutex_lock(&bdev->bd_mutex);
1330 bd_set_size(bdev, sz);
1331 /* let user-space know about the new size */
1332 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1333 mutex_unlock(&bdev->bd_mutex);
1334
1335 out:
1336 return err;
1337 }
1338
1339 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1340 unsigned int cmd, unsigned long arg)
1341 {
1342 struct loop_device *lo = bdev->bd_disk->private_data;
1343 int err;
1344
1345 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1346 switch (cmd) {
1347 case LOOP_SET_FD:
1348 err = loop_set_fd(lo, mode, bdev, arg);
1349 break;
1350 case LOOP_CHANGE_FD:
1351 err = loop_change_fd(lo, bdev, arg);
1352 break;
1353 case LOOP_CLR_FD:
1354 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1355 err = loop_clr_fd(lo, bdev);
1356 if (!err)
1357 goto out_unlocked;
1358 break;
1359 case LOOP_SET_STATUS:
1360 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1361 break;
1362 case LOOP_GET_STATUS:
1363 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1364 break;
1365 case LOOP_SET_STATUS64:
1366 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1367 break;
1368 case LOOP_GET_STATUS64:
1369 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1370 break;
1371 case LOOP_SET_CAPACITY:
1372 err = -EPERM;
1373 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1374 err = loop_set_capacity(lo, bdev);
1375 break;
1376 default:
1377 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1378 }
1379 mutex_unlock(&lo->lo_ctl_mutex);
1380
1381 out_unlocked:
1382 return err;
1383 }
1384
1385 #ifdef CONFIG_COMPAT
1386 struct compat_loop_info {
1387 compat_int_t lo_number; /* ioctl r/o */
1388 compat_dev_t lo_device; /* ioctl r/o */
1389 compat_ulong_t lo_inode; /* ioctl r/o */
1390 compat_dev_t lo_rdevice; /* ioctl r/o */
1391 compat_int_t lo_offset;
1392 compat_int_t lo_encrypt_type;
1393 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1394 compat_int_t lo_flags; /* ioctl r/o */
1395 char lo_name[LO_NAME_SIZE];
1396 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1397 compat_ulong_t lo_init[2];
1398 char reserved[4];
1399 };
1400
1401 /*
1402 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1403 * - noinlined to reduce stack space usage in main part of driver
1404 */
1405 static noinline int
1406 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1407 struct loop_info64 *info64)
1408 {
1409 struct compat_loop_info info;
1410
1411 if (copy_from_user(&info, arg, sizeof(info)))
1412 return -EFAULT;
1413
1414 memset(info64, 0, sizeof(*info64));
1415 info64->lo_number = info.lo_number;
1416 info64->lo_device = info.lo_device;
1417 info64->lo_inode = info.lo_inode;
1418 info64->lo_rdevice = info.lo_rdevice;
1419 info64->lo_offset = info.lo_offset;
1420 info64->lo_sizelimit = 0;
1421 info64->lo_encrypt_type = info.lo_encrypt_type;
1422 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1423 info64->lo_flags = info.lo_flags;
1424 info64->lo_init[0] = info.lo_init[0];
1425 info64->lo_init[1] = info.lo_init[1];
1426 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1427 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1428 else
1429 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1430 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1431 return 0;
1432 }
1433
1434 /*
1435 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1436 * - noinlined to reduce stack space usage in main part of driver
1437 */
1438 static noinline int
1439 loop_info64_to_compat(const struct loop_info64 *info64,
1440 struct compat_loop_info __user *arg)
1441 {
1442 struct compat_loop_info info;
1443
1444 memset(&info, 0, sizeof(info));
1445 info.lo_number = info64->lo_number;
1446 info.lo_device = info64->lo_device;
1447 info.lo_inode = info64->lo_inode;
1448 info.lo_rdevice = info64->lo_rdevice;
1449 info.lo_offset = info64->lo_offset;
1450 info.lo_encrypt_type = info64->lo_encrypt_type;
1451 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1452 info.lo_flags = info64->lo_flags;
1453 info.lo_init[0] = info64->lo_init[0];
1454 info.lo_init[1] = info64->lo_init[1];
1455 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1456 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1457 else
1458 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1459 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1460
1461 /* error in case values were truncated */
1462 if (info.lo_device != info64->lo_device ||
1463 info.lo_rdevice != info64->lo_rdevice ||
1464 info.lo_inode != info64->lo_inode ||
1465 info.lo_offset != info64->lo_offset ||
1466 info.lo_init[0] != info64->lo_init[0] ||
1467 info.lo_init[1] != info64->lo_init[1])
1468 return -EOVERFLOW;
1469
1470 if (copy_to_user(arg, &info, sizeof(info)))
1471 return -EFAULT;
1472 return 0;
1473 }
1474
1475 static int
1476 loop_set_status_compat(struct loop_device *lo,
1477 const struct compat_loop_info __user *arg)
1478 {
1479 struct loop_info64 info64;
1480 int ret;
1481
1482 ret = loop_info64_from_compat(arg, &info64);
1483 if (ret < 0)
1484 return ret;
1485 return loop_set_status(lo, &info64);
1486 }
1487
1488 static int
1489 loop_get_status_compat(struct loop_device *lo,
1490 struct compat_loop_info __user *arg)
1491 {
1492 struct loop_info64 info64;
1493 int err = 0;
1494
1495 if (!arg)
1496 err = -EINVAL;
1497 if (!err)
1498 err = loop_get_status(lo, &info64);
1499 if (!err)
1500 err = loop_info64_to_compat(&info64, arg);
1501 return err;
1502 }
1503
1504 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1505 unsigned int cmd, unsigned long arg)
1506 {
1507 struct loop_device *lo = bdev->bd_disk->private_data;
1508 int err;
1509
1510 switch(cmd) {
1511 case LOOP_SET_STATUS:
1512 mutex_lock(&lo->lo_ctl_mutex);
1513 err = loop_set_status_compat(
1514 lo, (const struct compat_loop_info __user *) arg);
1515 mutex_unlock(&lo->lo_ctl_mutex);
1516 break;
1517 case LOOP_GET_STATUS:
1518 mutex_lock(&lo->lo_ctl_mutex);
1519 err = loop_get_status_compat(
1520 lo, (struct compat_loop_info __user *) arg);
1521 mutex_unlock(&lo->lo_ctl_mutex);
1522 break;
1523 case LOOP_SET_CAPACITY:
1524 case LOOP_CLR_FD:
1525 case LOOP_GET_STATUS64:
1526 case LOOP_SET_STATUS64:
1527 arg = (unsigned long) compat_ptr(arg);
1528 case LOOP_SET_FD:
1529 case LOOP_CHANGE_FD:
1530 err = lo_ioctl(bdev, mode, cmd, arg);
1531 break;
1532 default:
1533 err = -ENOIOCTLCMD;
1534 break;
1535 }
1536 return err;
1537 }
1538 #endif
1539
1540 static int lo_open(struct block_device *bdev, fmode_t mode)
1541 {
1542 struct loop_device *lo = bdev->bd_disk->private_data;
1543
1544 mutex_lock(&lo->lo_ctl_mutex);
1545 lo->lo_refcnt++;
1546 mutex_unlock(&lo->lo_ctl_mutex);
1547
1548 return 0;
1549 }
1550
1551 static int lo_release(struct gendisk *disk, fmode_t mode)
1552 {
1553 struct loop_device *lo = disk->private_data;
1554 int err;
1555
1556 mutex_lock(&lo->lo_ctl_mutex);
1557
1558 if (--lo->lo_refcnt)
1559 goto out;
1560
1561 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1562 /*
1563 * In autoclear mode, stop the loop thread
1564 * and remove configuration after last close.
1565 */
1566 err = loop_clr_fd(lo, NULL);
1567 if (!err)
1568 goto out_unlocked;
1569 } else {
1570 /*
1571 * Otherwise keep thread (if running) and config,
1572 * but flush possible ongoing bios in thread.
1573 */
1574 loop_flush(lo);
1575 }
1576
1577 out:
1578 mutex_unlock(&lo->lo_ctl_mutex);
1579 out_unlocked:
1580 return 0;
1581 }
1582
1583 static const struct block_device_operations lo_fops = {
1584 .owner = THIS_MODULE,
1585 .open = lo_open,
1586 .release = lo_release,
1587 .ioctl = lo_ioctl,
1588 #ifdef CONFIG_COMPAT
1589 .compat_ioctl = lo_compat_ioctl,
1590 #endif
1591 };
1592
1593 /*
1594 * And now the modules code and kernel interface.
1595 */
1596 static int max_loop;
1597 module_param(max_loop, int, S_IRUGO);
1598 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1599 module_param(max_part, int, S_IRUGO);
1600 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1601 MODULE_LICENSE("GPL");
1602 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1603
1604 int loop_register_transfer(struct loop_func_table *funcs)
1605 {
1606 unsigned int n = funcs->number;
1607
1608 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1609 return -EINVAL;
1610 xfer_funcs[n] = funcs;
1611 return 0;
1612 }
1613
1614 int loop_unregister_transfer(int number)
1615 {
1616 unsigned int n = number;
1617 struct loop_device *lo;
1618 struct loop_func_table *xfer;
1619
1620 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1621 return -EINVAL;
1622
1623 xfer_funcs[n] = NULL;
1624
1625 list_for_each_entry(lo, &loop_devices, lo_list) {
1626 mutex_lock(&lo->lo_ctl_mutex);
1627
1628 if (lo->lo_encryption == xfer)
1629 loop_release_xfer(lo);
1630
1631 mutex_unlock(&lo->lo_ctl_mutex);
1632 }
1633
1634 return 0;
1635 }
1636
1637 EXPORT_SYMBOL(loop_register_transfer);
1638 EXPORT_SYMBOL(loop_unregister_transfer);
1639
1640 static struct loop_device *loop_alloc(int i)
1641 {
1642 struct loop_device *lo;
1643 struct gendisk *disk;
1644
1645 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1646 if (!lo)
1647 goto out;
1648
1649 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1650 if (!lo->lo_queue)
1651 goto out_free_dev;
1652
1653 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1654 if (!disk)
1655 goto out_free_queue;
1656
1657 mutex_init(&lo->lo_ctl_mutex);
1658 lo->lo_number = i;
1659 lo->lo_thread = NULL;
1660 init_waitqueue_head(&lo->lo_event);
1661 spin_lock_init(&lo->lo_lock);
1662 disk->major = LOOP_MAJOR;
1663 disk->first_minor = i << part_shift;
1664 disk->fops = &lo_fops;
1665 disk->private_data = lo;
1666 disk->queue = lo->lo_queue;
1667 sprintf(disk->disk_name, "loop%d", i);
1668 return lo;
1669
1670 out_free_queue:
1671 blk_cleanup_queue(lo->lo_queue);
1672 out_free_dev:
1673 kfree(lo);
1674 out:
1675 return NULL;
1676 }
1677
1678 static void loop_free(struct loop_device *lo)
1679 {
1680 blk_cleanup_queue(lo->lo_queue);
1681 put_disk(lo->lo_disk);
1682 list_del(&lo->lo_list);
1683 kfree(lo);
1684 }
1685
1686 static struct loop_device *loop_init_one(int i)
1687 {
1688 struct loop_device *lo;
1689
1690 list_for_each_entry(lo, &loop_devices, lo_list) {
1691 if (lo->lo_number == i)
1692 return lo;
1693 }
1694
1695 lo = loop_alloc(i);
1696 if (lo) {
1697 add_disk(lo->lo_disk);
1698 list_add_tail(&lo->lo_list, &loop_devices);
1699 }
1700 return lo;
1701 }
1702
1703 static void loop_del_one(struct loop_device *lo)
1704 {
1705 del_gendisk(lo->lo_disk);
1706 loop_free(lo);
1707 }
1708
1709 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1710 {
1711 struct loop_device *lo;
1712 struct kobject *kobj;
1713
1714 mutex_lock(&loop_devices_mutex);
1715 lo = loop_init_one(MINOR(dev) >> part_shift);
1716 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1717 mutex_unlock(&loop_devices_mutex);
1718
1719 *part = 0;
1720 return kobj;
1721 }
1722
1723 static int __init loop_init(void)
1724 {
1725 int i, nr;
1726 unsigned long range;
1727 struct loop_device *lo, *next;
1728
1729 /*
1730 * loop module now has a feature to instantiate underlying device
1731 * structure on-demand, provided that there is an access dev node.
1732 * However, this will not work well with user space tool that doesn't
1733 * know about such "feature". In order to not break any existing
1734 * tool, we do the following:
1735 *
1736 * (1) if max_loop is specified, create that many upfront, and this
1737 * also becomes a hard limit.
1738 * (2) if max_loop is not specified, create 8 loop device on module
1739 * load, user can further extend loop device by create dev node
1740 * themselves and have kernel automatically instantiate actual
1741 * device on-demand.
1742 */
1743
1744 part_shift = 0;
1745 if (max_part > 0) {
1746 part_shift = fls(max_part);
1747
1748 /*
1749 * Adjust max_part according to part_shift as it is exported
1750 * to user space so that user can decide correct minor number
1751 * if [s]he want to create more devices.
1752 *
1753 * Note that -1 is required because partition 0 is reserved
1754 * for the whole disk.
1755 */
1756 max_part = (1UL << part_shift) - 1;
1757 }
1758
1759 if ((1UL << part_shift) > DISK_MAX_PARTS)
1760 return -EINVAL;
1761
1762 if (max_loop > 1UL << (MINORBITS - part_shift))
1763 return -EINVAL;
1764
1765 if (max_loop) {
1766 nr = max_loop;
1767 range = max_loop << part_shift;
1768 } else {
1769 nr = 8;
1770 range = 1UL << MINORBITS;
1771 }
1772
1773 if (register_blkdev(LOOP_MAJOR, "loop"))
1774 return -EIO;
1775
1776 for (i = 0; i < nr; i++) {
1777 lo = loop_alloc(i);
1778 if (!lo)
1779 goto Enomem;
1780 list_add_tail(&lo->lo_list, &loop_devices);
1781 }
1782
1783 /* point of no return */
1784
1785 list_for_each_entry(lo, &loop_devices, lo_list)
1786 add_disk(lo->lo_disk);
1787
1788 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1789 THIS_MODULE, loop_probe, NULL, NULL);
1790
1791 printk(KERN_INFO "loop: module loaded\n");
1792 return 0;
1793
1794 Enomem:
1795 printk(KERN_INFO "loop: out of memory\n");
1796
1797 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1798 loop_free(lo);
1799
1800 unregister_blkdev(LOOP_MAJOR, "loop");
1801 return -ENOMEM;
1802 }
1803
1804 static void __exit loop_exit(void)
1805 {
1806 unsigned long range;
1807 struct loop_device *lo, *next;
1808
1809 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1810
1811 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1812 loop_del_one(lo);
1813
1814 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1815 unregister_blkdev(LOOP_MAJOR, "loop");
1816 }
1817
1818 module_init(loop_init);
1819 module_exit(loop_exit);
1820
1821 #ifndef MODULE
1822 static int __init max_loop_setup(char *str)
1823 {
1824 max_loop = simple_strtol(str, NULL, 0);
1825 return 1;
1826 }
1827
1828 __setup("max_loop=", max_loop_setup);
1829 #endif
This page took 0.110476 seconds and 5 git commands to generate.