block: loop: improve performance via blk-mq
[deliverable/linux.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/blk-mq.h>
79 #include "loop.h"
80
81 #include <asm/uaccess.h>
82
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85
86 static int max_part;
87 static int part_shift;
88
89 static struct workqueue_struct *loop_wq;
90
91 /*
92 * Transfer functions
93 */
94 static int transfer_none(struct loop_device *lo, int cmd,
95 struct page *raw_page, unsigned raw_off,
96 struct page *loop_page, unsigned loop_off,
97 int size, sector_t real_block)
98 {
99 char *raw_buf = kmap_atomic(raw_page) + raw_off;
100 char *loop_buf = kmap_atomic(loop_page) + loop_off;
101
102 if (cmd == READ)
103 memcpy(loop_buf, raw_buf, size);
104 else
105 memcpy(raw_buf, loop_buf, size);
106
107 kunmap_atomic(loop_buf);
108 kunmap_atomic(raw_buf);
109 cond_resched();
110 return 0;
111 }
112
113 static int transfer_xor(struct loop_device *lo, int cmd,
114 struct page *raw_page, unsigned raw_off,
115 struct page *loop_page, unsigned loop_off,
116 int size, sector_t real_block)
117 {
118 char *raw_buf = kmap_atomic(raw_page) + raw_off;
119 char *loop_buf = kmap_atomic(loop_page) + loop_off;
120 char *in, *out, *key;
121 int i, keysize;
122
123 if (cmd == READ) {
124 in = raw_buf;
125 out = loop_buf;
126 } else {
127 in = loop_buf;
128 out = raw_buf;
129 }
130
131 key = lo->lo_encrypt_key;
132 keysize = lo->lo_encrypt_key_size;
133 for (i = 0; i < size; i++)
134 *out++ = *in++ ^ key[(i & 511) % keysize];
135
136 kunmap_atomic(loop_buf);
137 kunmap_atomic(raw_buf);
138 cond_resched();
139 return 0;
140 }
141
142 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
143 {
144 if (unlikely(info->lo_encrypt_key_size <= 0))
145 return -EINVAL;
146 return 0;
147 }
148
149 static struct loop_func_table none_funcs = {
150 .number = LO_CRYPT_NONE,
151 .transfer = transfer_none,
152 };
153
154 static struct loop_func_table xor_funcs = {
155 .number = LO_CRYPT_XOR,
156 .transfer = transfer_xor,
157 .init = xor_init
158 };
159
160 /* xfer_funcs[0] is special - its release function is never called */
161 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
162 &none_funcs,
163 &xor_funcs
164 };
165
166 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
167 {
168 loff_t loopsize;
169
170 /* Compute loopsize in bytes */
171 loopsize = i_size_read(file->f_mapping->host);
172 if (offset > 0)
173 loopsize -= offset;
174 /* offset is beyond i_size, weird but possible */
175 if (loopsize < 0)
176 return 0;
177
178 if (sizelimit > 0 && sizelimit < loopsize)
179 loopsize = sizelimit;
180 /*
181 * Unfortunately, if we want to do I/O on the device,
182 * the number of 512-byte sectors has to fit into a sector_t.
183 */
184 return loopsize >> 9;
185 }
186
187 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
188 {
189 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
190 }
191
192 static int
193 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
194 {
195 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
196 sector_t x = (sector_t)size;
197 struct block_device *bdev = lo->lo_device;
198
199 if (unlikely((loff_t)x != size))
200 return -EFBIG;
201 if (lo->lo_offset != offset)
202 lo->lo_offset = offset;
203 if (lo->lo_sizelimit != sizelimit)
204 lo->lo_sizelimit = sizelimit;
205 set_capacity(lo->lo_disk, x);
206 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
207 /* let user-space know about the new size */
208 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
209 return 0;
210 }
211
212 static inline int
213 lo_do_transfer(struct loop_device *lo, int cmd,
214 struct page *rpage, unsigned roffs,
215 struct page *lpage, unsigned loffs,
216 int size, sector_t rblock)
217 {
218 if (unlikely(!lo->transfer))
219 return 0;
220
221 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
222 }
223
224 /**
225 * __do_lo_send_write - helper for writing data to a loop device
226 *
227 * This helper just factors out common code between do_lo_send_direct_write()
228 * and do_lo_send_write().
229 */
230 static int __do_lo_send_write(struct file *file,
231 u8 *buf, const int len, loff_t pos)
232 {
233 ssize_t bw;
234 mm_segment_t old_fs = get_fs();
235
236 file_start_write(file);
237 set_fs(get_ds());
238 bw = file->f_op->write(file, buf, len, &pos);
239 set_fs(old_fs);
240 file_end_write(file);
241 if (likely(bw == len))
242 return 0;
243 printk_ratelimited(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
244 (unsigned long long)pos, len);
245 if (bw >= 0)
246 bw = -EIO;
247 return bw;
248 }
249
250 /**
251 * do_lo_send_direct_write - helper for writing data to a loop device
252 *
253 * This is the fast, non-transforming version that does not need double
254 * buffering.
255 */
256 static int do_lo_send_direct_write(struct loop_device *lo,
257 struct bio_vec *bvec, loff_t pos, struct page *page)
258 {
259 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
260 kmap(bvec->bv_page) + bvec->bv_offset,
261 bvec->bv_len, pos);
262 kunmap(bvec->bv_page);
263 cond_resched();
264 return bw;
265 }
266
267 /**
268 * do_lo_send_write - helper for writing data to a loop device
269 *
270 * This is the slow, transforming version that needs to double buffer the
271 * data as it cannot do the transformations in place without having direct
272 * access to the destination pages of the backing file.
273 */
274 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
275 loff_t pos, struct page *page)
276 {
277 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
278 bvec->bv_offset, bvec->bv_len, pos >> 9);
279 if (likely(!ret))
280 return __do_lo_send_write(lo->lo_backing_file,
281 page_address(page), bvec->bv_len,
282 pos);
283 printk_ratelimited(KERN_ERR "loop: Transfer error at byte offset %llu, "
284 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
285 if (ret > 0)
286 ret = -EIO;
287 return ret;
288 }
289
290 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
291 {
292 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
293 struct page *page);
294 struct bio_vec bvec;
295 struct bvec_iter iter;
296 struct page *page = NULL;
297 int ret = 0;
298
299 if (lo->transfer != transfer_none) {
300 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
301 if (unlikely(!page))
302 goto fail;
303 kmap(page);
304 do_lo_send = do_lo_send_write;
305 } else {
306 do_lo_send = do_lo_send_direct_write;
307 }
308
309 bio_for_each_segment(bvec, bio, iter) {
310 ret = do_lo_send(lo, &bvec, pos, page);
311 if (ret < 0)
312 break;
313 pos += bvec.bv_len;
314 }
315 if (page) {
316 kunmap(page);
317 __free_page(page);
318 }
319 out:
320 return ret;
321 fail:
322 printk_ratelimited(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
323 ret = -ENOMEM;
324 goto out;
325 }
326
327 struct lo_read_data {
328 struct loop_device *lo;
329 struct page *page;
330 unsigned offset;
331 int bsize;
332 };
333
334 static int
335 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
336 struct splice_desc *sd)
337 {
338 struct lo_read_data *p = sd->u.data;
339 struct loop_device *lo = p->lo;
340 struct page *page = buf->page;
341 sector_t IV;
342 int size;
343
344 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
345 (buf->offset >> 9);
346 size = sd->len;
347 if (size > p->bsize)
348 size = p->bsize;
349
350 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
351 printk_ratelimited(KERN_ERR "loop: transfer error block %ld\n",
352 page->index);
353 size = -EINVAL;
354 }
355
356 flush_dcache_page(p->page);
357
358 if (size > 0)
359 p->offset += size;
360
361 return size;
362 }
363
364 static int
365 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
366 {
367 return __splice_from_pipe(pipe, sd, lo_splice_actor);
368 }
369
370 static ssize_t
371 do_lo_receive(struct loop_device *lo,
372 struct bio_vec *bvec, int bsize, loff_t pos)
373 {
374 struct lo_read_data cookie;
375 struct splice_desc sd;
376 struct file *file;
377 ssize_t retval;
378
379 cookie.lo = lo;
380 cookie.page = bvec->bv_page;
381 cookie.offset = bvec->bv_offset;
382 cookie.bsize = bsize;
383
384 sd.len = 0;
385 sd.total_len = bvec->bv_len;
386 sd.flags = 0;
387 sd.pos = pos;
388 sd.u.data = &cookie;
389
390 file = lo->lo_backing_file;
391 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
392
393 return retval;
394 }
395
396 static int
397 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
398 {
399 struct bio_vec bvec;
400 struct bvec_iter iter;
401 ssize_t s;
402
403 bio_for_each_segment(bvec, bio, iter) {
404 s = do_lo_receive(lo, &bvec, bsize, pos);
405 if (s < 0)
406 return s;
407
408 if (s != bvec.bv_len) {
409 zero_fill_bio(bio);
410 break;
411 }
412 pos += bvec.bv_len;
413 }
414 return 0;
415 }
416
417 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
418 {
419 loff_t pos;
420 int ret;
421
422 pos = ((loff_t) bio->bi_iter.bi_sector << 9) + lo->lo_offset;
423
424 if (bio_rw(bio) == WRITE) {
425 struct file *file = lo->lo_backing_file;
426
427 if (bio->bi_rw & REQ_FLUSH) {
428 ret = vfs_fsync(file, 0);
429 if (unlikely(ret && ret != -EINVAL)) {
430 ret = -EIO;
431 goto out;
432 }
433 }
434
435 /*
436 * We use punch hole to reclaim the free space used by the
437 * image a.k.a. discard. However we do not support discard if
438 * encryption is enabled, because it may give an attacker
439 * useful information.
440 */
441 if (bio->bi_rw & REQ_DISCARD) {
442 struct file *file = lo->lo_backing_file;
443 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
444
445 if ((!file->f_op->fallocate) ||
446 lo->lo_encrypt_key_size) {
447 ret = -EOPNOTSUPP;
448 goto out;
449 }
450 ret = file->f_op->fallocate(file, mode, pos,
451 bio->bi_iter.bi_size);
452 if (unlikely(ret && ret != -EINVAL &&
453 ret != -EOPNOTSUPP))
454 ret = -EIO;
455 goto out;
456 }
457
458 ret = lo_send(lo, bio, pos);
459
460 if ((bio->bi_rw & REQ_FUA) && !ret) {
461 ret = vfs_fsync(file, 0);
462 if (unlikely(ret && ret != -EINVAL))
463 ret = -EIO;
464 }
465 } else
466 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
467
468 out:
469 return ret;
470 }
471
472 struct switch_request {
473 struct file *file;
474 struct completion wait;
475 };
476
477 static inline int loop_handle_bio(struct loop_device *lo, struct bio *bio)
478 {
479 return do_bio_filebacked(lo, bio);
480 }
481
482 /*
483 * Do the actual switch; called from the BIO completion routine
484 */
485 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
486 {
487 struct file *file = p->file;
488 struct file *old_file = lo->lo_backing_file;
489 struct address_space *mapping;
490
491 /* if no new file, only flush of queued bios requested */
492 if (!file)
493 return;
494
495 mapping = file->f_mapping;
496 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
497 lo->lo_backing_file = file;
498 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
499 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
500 lo->old_gfp_mask = mapping_gfp_mask(mapping);
501 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
502 }
503
504 /*
505 * loop_switch performs the hard work of switching a backing store.
506 * First it needs to flush existing IO, it does this by sending a magic
507 * BIO down the pipe. The completion of this BIO does the actual switch.
508 */
509 static int loop_switch(struct loop_device *lo, struct file *file)
510 {
511 struct switch_request w;
512
513 w.file = file;
514
515 /* freeze queue and wait for completion of scheduled requests */
516 blk_mq_freeze_queue(lo->lo_queue);
517
518 /* do the switch action */
519 do_loop_switch(lo, &w);
520
521 /* unfreeze */
522 blk_mq_unfreeze_queue(lo->lo_queue);
523
524 return 0;
525 }
526
527 /*
528 * Helper to flush the IOs in loop, but keeping loop thread running
529 */
530 static int loop_flush(struct loop_device *lo)
531 {
532 return loop_switch(lo, NULL);
533 }
534
535 /*
536 * loop_change_fd switched the backing store of a loopback device to
537 * a new file. This is useful for operating system installers to free up
538 * the original file and in High Availability environments to switch to
539 * an alternative location for the content in case of server meltdown.
540 * This can only work if the loop device is used read-only, and if the
541 * new backing store is the same size and type as the old backing store.
542 */
543 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
544 unsigned int arg)
545 {
546 struct file *file, *old_file;
547 struct inode *inode;
548 int error;
549
550 error = -ENXIO;
551 if (lo->lo_state != Lo_bound)
552 goto out;
553
554 /* the loop device has to be read-only */
555 error = -EINVAL;
556 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
557 goto out;
558
559 error = -EBADF;
560 file = fget(arg);
561 if (!file)
562 goto out;
563
564 inode = file->f_mapping->host;
565 old_file = lo->lo_backing_file;
566
567 error = -EINVAL;
568
569 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
570 goto out_putf;
571
572 /* size of the new backing store needs to be the same */
573 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
574 goto out_putf;
575
576 /* and ... switch */
577 error = loop_switch(lo, file);
578 if (error)
579 goto out_putf;
580
581 fput(old_file);
582 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
583 ioctl_by_bdev(bdev, BLKRRPART, 0);
584 return 0;
585
586 out_putf:
587 fput(file);
588 out:
589 return error;
590 }
591
592 static inline int is_loop_device(struct file *file)
593 {
594 struct inode *i = file->f_mapping->host;
595
596 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
597 }
598
599 /* loop sysfs attributes */
600
601 static ssize_t loop_attr_show(struct device *dev, char *page,
602 ssize_t (*callback)(struct loop_device *, char *))
603 {
604 struct gendisk *disk = dev_to_disk(dev);
605 struct loop_device *lo = disk->private_data;
606
607 return callback(lo, page);
608 }
609
610 #define LOOP_ATTR_RO(_name) \
611 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
612 static ssize_t loop_attr_do_show_##_name(struct device *d, \
613 struct device_attribute *attr, char *b) \
614 { \
615 return loop_attr_show(d, b, loop_attr_##_name##_show); \
616 } \
617 static struct device_attribute loop_attr_##_name = \
618 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
619
620 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
621 {
622 ssize_t ret;
623 char *p = NULL;
624
625 spin_lock_irq(&lo->lo_lock);
626 if (lo->lo_backing_file)
627 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
628 spin_unlock_irq(&lo->lo_lock);
629
630 if (IS_ERR_OR_NULL(p))
631 ret = PTR_ERR(p);
632 else {
633 ret = strlen(p);
634 memmove(buf, p, ret);
635 buf[ret++] = '\n';
636 buf[ret] = 0;
637 }
638
639 return ret;
640 }
641
642 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
643 {
644 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
645 }
646
647 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
648 {
649 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
650 }
651
652 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
653 {
654 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
655
656 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
657 }
658
659 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
660 {
661 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
662
663 return sprintf(buf, "%s\n", partscan ? "1" : "0");
664 }
665
666 LOOP_ATTR_RO(backing_file);
667 LOOP_ATTR_RO(offset);
668 LOOP_ATTR_RO(sizelimit);
669 LOOP_ATTR_RO(autoclear);
670 LOOP_ATTR_RO(partscan);
671
672 static struct attribute *loop_attrs[] = {
673 &loop_attr_backing_file.attr,
674 &loop_attr_offset.attr,
675 &loop_attr_sizelimit.attr,
676 &loop_attr_autoclear.attr,
677 &loop_attr_partscan.attr,
678 NULL,
679 };
680
681 static struct attribute_group loop_attribute_group = {
682 .name = "loop",
683 .attrs= loop_attrs,
684 };
685
686 static int loop_sysfs_init(struct loop_device *lo)
687 {
688 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
689 &loop_attribute_group);
690 }
691
692 static void loop_sysfs_exit(struct loop_device *lo)
693 {
694 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
695 &loop_attribute_group);
696 }
697
698 static void loop_config_discard(struct loop_device *lo)
699 {
700 struct file *file = lo->lo_backing_file;
701 struct inode *inode = file->f_mapping->host;
702 struct request_queue *q = lo->lo_queue;
703
704 /*
705 * We use punch hole to reclaim the free space used by the
706 * image a.k.a. discard. However we do not support discard if
707 * encryption is enabled, because it may give an attacker
708 * useful information.
709 */
710 if ((!file->f_op->fallocate) ||
711 lo->lo_encrypt_key_size) {
712 q->limits.discard_granularity = 0;
713 q->limits.discard_alignment = 0;
714 q->limits.max_discard_sectors = 0;
715 q->limits.discard_zeroes_data = 0;
716 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
717 return;
718 }
719
720 q->limits.discard_granularity = inode->i_sb->s_blocksize;
721 q->limits.discard_alignment = 0;
722 q->limits.max_discard_sectors = UINT_MAX >> 9;
723 q->limits.discard_zeroes_data = 1;
724 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
725 }
726
727 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
728 struct block_device *bdev, unsigned int arg)
729 {
730 struct file *file, *f;
731 struct inode *inode;
732 struct address_space *mapping;
733 unsigned lo_blocksize;
734 int lo_flags = 0;
735 int error;
736 loff_t size;
737
738 /* This is safe, since we have a reference from open(). */
739 __module_get(THIS_MODULE);
740
741 error = -EBADF;
742 file = fget(arg);
743 if (!file)
744 goto out;
745
746 error = -EBUSY;
747 if (lo->lo_state != Lo_unbound)
748 goto out_putf;
749
750 /* Avoid recursion */
751 f = file;
752 while (is_loop_device(f)) {
753 struct loop_device *l;
754
755 if (f->f_mapping->host->i_bdev == bdev)
756 goto out_putf;
757
758 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
759 if (l->lo_state == Lo_unbound) {
760 error = -EINVAL;
761 goto out_putf;
762 }
763 f = l->lo_backing_file;
764 }
765
766 mapping = file->f_mapping;
767 inode = mapping->host;
768
769 error = -EINVAL;
770 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
771 goto out_putf;
772
773 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
774 !file->f_op->write)
775 lo_flags |= LO_FLAGS_READ_ONLY;
776
777 lo_blocksize = S_ISBLK(inode->i_mode) ?
778 inode->i_bdev->bd_block_size : PAGE_SIZE;
779
780 error = -EFBIG;
781 size = get_loop_size(lo, file);
782 if ((loff_t)(sector_t)size != size)
783 goto out_putf;
784
785 error = 0;
786
787 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
788
789 lo->lo_blocksize = lo_blocksize;
790 lo->lo_device = bdev;
791 lo->lo_flags = lo_flags;
792 lo->lo_backing_file = file;
793 lo->transfer = transfer_none;
794 lo->ioctl = NULL;
795 lo->lo_sizelimit = 0;
796 lo->old_gfp_mask = mapping_gfp_mask(mapping);
797 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
798
799 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
800 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
801
802 set_capacity(lo->lo_disk, size);
803 bd_set_size(bdev, size << 9);
804 loop_sysfs_init(lo);
805 /* let user-space know about the new size */
806 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
807
808 set_blocksize(bdev, lo_blocksize);
809
810 lo->lo_state = Lo_bound;
811 if (part_shift)
812 lo->lo_flags |= LO_FLAGS_PARTSCAN;
813 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
814 ioctl_by_bdev(bdev, BLKRRPART, 0);
815
816 /* Grab the block_device to prevent its destruction after we
817 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
818 */
819 bdgrab(bdev);
820 return 0;
821
822 out_putf:
823 fput(file);
824 out:
825 /* This is safe: open() is still holding a reference. */
826 module_put(THIS_MODULE);
827 return error;
828 }
829
830 static int
831 loop_release_xfer(struct loop_device *lo)
832 {
833 int err = 0;
834 struct loop_func_table *xfer = lo->lo_encryption;
835
836 if (xfer) {
837 if (xfer->release)
838 err = xfer->release(lo);
839 lo->transfer = NULL;
840 lo->lo_encryption = NULL;
841 module_put(xfer->owner);
842 }
843 return err;
844 }
845
846 static int
847 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
848 const struct loop_info64 *i)
849 {
850 int err = 0;
851
852 if (xfer) {
853 struct module *owner = xfer->owner;
854
855 if (!try_module_get(owner))
856 return -EINVAL;
857 if (xfer->init)
858 err = xfer->init(lo, i);
859 if (err)
860 module_put(owner);
861 else
862 lo->lo_encryption = xfer;
863 }
864 return err;
865 }
866
867 static int loop_clr_fd(struct loop_device *lo)
868 {
869 struct file *filp = lo->lo_backing_file;
870 gfp_t gfp = lo->old_gfp_mask;
871 struct block_device *bdev = lo->lo_device;
872
873 if (lo->lo_state != Lo_bound)
874 return -ENXIO;
875
876 /*
877 * If we've explicitly asked to tear down the loop device,
878 * and it has an elevated reference count, set it for auto-teardown when
879 * the last reference goes away. This stops $!~#$@ udev from
880 * preventing teardown because it decided that it needs to run blkid on
881 * the loopback device whenever they appear. xfstests is notorious for
882 * failing tests because blkid via udev races with a losetup
883 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
884 * command to fail with EBUSY.
885 */
886 if (lo->lo_refcnt > 1) {
887 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
888 mutex_unlock(&lo->lo_ctl_mutex);
889 return 0;
890 }
891
892 if (filp == NULL)
893 return -EINVAL;
894
895 spin_lock_irq(&lo->lo_lock);
896 lo->lo_state = Lo_rundown;
897 lo->lo_backing_file = NULL;
898 spin_unlock_irq(&lo->lo_lock);
899
900 loop_release_xfer(lo);
901 lo->transfer = NULL;
902 lo->ioctl = NULL;
903 lo->lo_device = NULL;
904 lo->lo_encryption = NULL;
905 lo->lo_offset = 0;
906 lo->lo_sizelimit = 0;
907 lo->lo_encrypt_key_size = 0;
908 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
909 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
910 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
911 if (bdev) {
912 bdput(bdev);
913 invalidate_bdev(bdev);
914 }
915 set_capacity(lo->lo_disk, 0);
916 loop_sysfs_exit(lo);
917 if (bdev) {
918 bd_set_size(bdev, 0);
919 /* let user-space know about this change */
920 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
921 }
922 mapping_set_gfp_mask(filp->f_mapping, gfp);
923 lo->lo_state = Lo_unbound;
924 /* This is safe: open() is still holding a reference. */
925 module_put(THIS_MODULE);
926 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
927 ioctl_by_bdev(bdev, BLKRRPART, 0);
928 lo->lo_flags = 0;
929 if (!part_shift)
930 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
931 mutex_unlock(&lo->lo_ctl_mutex);
932 /*
933 * Need not hold lo_ctl_mutex to fput backing file.
934 * Calling fput holding lo_ctl_mutex triggers a circular
935 * lock dependency possibility warning as fput can take
936 * bd_mutex which is usually taken before lo_ctl_mutex.
937 */
938 fput(filp);
939 return 0;
940 }
941
942 static int
943 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
944 {
945 int err;
946 struct loop_func_table *xfer;
947 kuid_t uid = current_uid();
948
949 if (lo->lo_encrypt_key_size &&
950 !uid_eq(lo->lo_key_owner, uid) &&
951 !capable(CAP_SYS_ADMIN))
952 return -EPERM;
953 if (lo->lo_state != Lo_bound)
954 return -ENXIO;
955 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
956 return -EINVAL;
957
958 err = loop_release_xfer(lo);
959 if (err)
960 return err;
961
962 if (info->lo_encrypt_type) {
963 unsigned int type = info->lo_encrypt_type;
964
965 if (type >= MAX_LO_CRYPT)
966 return -EINVAL;
967 xfer = xfer_funcs[type];
968 if (xfer == NULL)
969 return -EINVAL;
970 } else
971 xfer = NULL;
972
973 err = loop_init_xfer(lo, xfer, info);
974 if (err)
975 return err;
976
977 if (lo->lo_offset != info->lo_offset ||
978 lo->lo_sizelimit != info->lo_sizelimit)
979 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
980 return -EFBIG;
981
982 loop_config_discard(lo);
983
984 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
985 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
986 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
987 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
988
989 if (!xfer)
990 xfer = &none_funcs;
991 lo->transfer = xfer->transfer;
992 lo->ioctl = xfer->ioctl;
993
994 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
995 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
996 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
997
998 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
999 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1000 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1001 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1002 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1003 }
1004
1005 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1006 lo->lo_init[0] = info->lo_init[0];
1007 lo->lo_init[1] = info->lo_init[1];
1008 if (info->lo_encrypt_key_size) {
1009 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1010 info->lo_encrypt_key_size);
1011 lo->lo_key_owner = uid;
1012 }
1013
1014 return 0;
1015 }
1016
1017 static int
1018 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1019 {
1020 struct file *file = lo->lo_backing_file;
1021 struct kstat stat;
1022 int error;
1023
1024 if (lo->lo_state != Lo_bound)
1025 return -ENXIO;
1026 error = vfs_getattr(&file->f_path, &stat);
1027 if (error)
1028 return error;
1029 memset(info, 0, sizeof(*info));
1030 info->lo_number = lo->lo_number;
1031 info->lo_device = huge_encode_dev(stat.dev);
1032 info->lo_inode = stat.ino;
1033 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1034 info->lo_offset = lo->lo_offset;
1035 info->lo_sizelimit = lo->lo_sizelimit;
1036 info->lo_flags = lo->lo_flags;
1037 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1038 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1039 info->lo_encrypt_type =
1040 lo->lo_encryption ? lo->lo_encryption->number : 0;
1041 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1042 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1043 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1044 lo->lo_encrypt_key_size);
1045 }
1046 return 0;
1047 }
1048
1049 static void
1050 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1051 {
1052 memset(info64, 0, sizeof(*info64));
1053 info64->lo_number = info->lo_number;
1054 info64->lo_device = info->lo_device;
1055 info64->lo_inode = info->lo_inode;
1056 info64->lo_rdevice = info->lo_rdevice;
1057 info64->lo_offset = info->lo_offset;
1058 info64->lo_sizelimit = 0;
1059 info64->lo_encrypt_type = info->lo_encrypt_type;
1060 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1061 info64->lo_flags = info->lo_flags;
1062 info64->lo_init[0] = info->lo_init[0];
1063 info64->lo_init[1] = info->lo_init[1];
1064 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1065 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1066 else
1067 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1068 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1069 }
1070
1071 static int
1072 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1073 {
1074 memset(info, 0, sizeof(*info));
1075 info->lo_number = info64->lo_number;
1076 info->lo_device = info64->lo_device;
1077 info->lo_inode = info64->lo_inode;
1078 info->lo_rdevice = info64->lo_rdevice;
1079 info->lo_offset = info64->lo_offset;
1080 info->lo_encrypt_type = info64->lo_encrypt_type;
1081 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1082 info->lo_flags = info64->lo_flags;
1083 info->lo_init[0] = info64->lo_init[0];
1084 info->lo_init[1] = info64->lo_init[1];
1085 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1086 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1087 else
1088 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1089 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1090
1091 /* error in case values were truncated */
1092 if (info->lo_device != info64->lo_device ||
1093 info->lo_rdevice != info64->lo_rdevice ||
1094 info->lo_inode != info64->lo_inode ||
1095 info->lo_offset != info64->lo_offset)
1096 return -EOVERFLOW;
1097
1098 return 0;
1099 }
1100
1101 static int
1102 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1103 {
1104 struct loop_info info;
1105 struct loop_info64 info64;
1106
1107 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1108 return -EFAULT;
1109 loop_info64_from_old(&info, &info64);
1110 return loop_set_status(lo, &info64);
1111 }
1112
1113 static int
1114 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1115 {
1116 struct loop_info64 info64;
1117
1118 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1119 return -EFAULT;
1120 return loop_set_status(lo, &info64);
1121 }
1122
1123 static int
1124 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1125 struct loop_info info;
1126 struct loop_info64 info64;
1127 int err = 0;
1128
1129 if (!arg)
1130 err = -EINVAL;
1131 if (!err)
1132 err = loop_get_status(lo, &info64);
1133 if (!err)
1134 err = loop_info64_to_old(&info64, &info);
1135 if (!err && copy_to_user(arg, &info, sizeof(info)))
1136 err = -EFAULT;
1137
1138 return err;
1139 }
1140
1141 static int
1142 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1143 struct loop_info64 info64;
1144 int err = 0;
1145
1146 if (!arg)
1147 err = -EINVAL;
1148 if (!err)
1149 err = loop_get_status(lo, &info64);
1150 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1151 err = -EFAULT;
1152
1153 return err;
1154 }
1155
1156 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1157 {
1158 if (unlikely(lo->lo_state != Lo_bound))
1159 return -ENXIO;
1160
1161 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1162 }
1163
1164 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1165 unsigned int cmd, unsigned long arg)
1166 {
1167 struct loop_device *lo = bdev->bd_disk->private_data;
1168 int err;
1169
1170 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1171 switch (cmd) {
1172 case LOOP_SET_FD:
1173 err = loop_set_fd(lo, mode, bdev, arg);
1174 break;
1175 case LOOP_CHANGE_FD:
1176 err = loop_change_fd(lo, bdev, arg);
1177 break;
1178 case LOOP_CLR_FD:
1179 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1180 err = loop_clr_fd(lo);
1181 if (!err)
1182 goto out_unlocked;
1183 break;
1184 case LOOP_SET_STATUS:
1185 err = -EPERM;
1186 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1187 err = loop_set_status_old(lo,
1188 (struct loop_info __user *)arg);
1189 break;
1190 case LOOP_GET_STATUS:
1191 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1192 break;
1193 case LOOP_SET_STATUS64:
1194 err = -EPERM;
1195 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1196 err = loop_set_status64(lo,
1197 (struct loop_info64 __user *) arg);
1198 break;
1199 case LOOP_GET_STATUS64:
1200 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1201 break;
1202 case LOOP_SET_CAPACITY:
1203 err = -EPERM;
1204 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1205 err = loop_set_capacity(lo, bdev);
1206 break;
1207 default:
1208 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1209 }
1210 mutex_unlock(&lo->lo_ctl_mutex);
1211
1212 out_unlocked:
1213 return err;
1214 }
1215
1216 #ifdef CONFIG_COMPAT
1217 struct compat_loop_info {
1218 compat_int_t lo_number; /* ioctl r/o */
1219 compat_dev_t lo_device; /* ioctl r/o */
1220 compat_ulong_t lo_inode; /* ioctl r/o */
1221 compat_dev_t lo_rdevice; /* ioctl r/o */
1222 compat_int_t lo_offset;
1223 compat_int_t lo_encrypt_type;
1224 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1225 compat_int_t lo_flags; /* ioctl r/o */
1226 char lo_name[LO_NAME_SIZE];
1227 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1228 compat_ulong_t lo_init[2];
1229 char reserved[4];
1230 };
1231
1232 /*
1233 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1234 * - noinlined to reduce stack space usage in main part of driver
1235 */
1236 static noinline int
1237 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1238 struct loop_info64 *info64)
1239 {
1240 struct compat_loop_info info;
1241
1242 if (copy_from_user(&info, arg, sizeof(info)))
1243 return -EFAULT;
1244
1245 memset(info64, 0, sizeof(*info64));
1246 info64->lo_number = info.lo_number;
1247 info64->lo_device = info.lo_device;
1248 info64->lo_inode = info.lo_inode;
1249 info64->lo_rdevice = info.lo_rdevice;
1250 info64->lo_offset = info.lo_offset;
1251 info64->lo_sizelimit = 0;
1252 info64->lo_encrypt_type = info.lo_encrypt_type;
1253 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1254 info64->lo_flags = info.lo_flags;
1255 info64->lo_init[0] = info.lo_init[0];
1256 info64->lo_init[1] = info.lo_init[1];
1257 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1258 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1259 else
1260 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1261 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1262 return 0;
1263 }
1264
1265 /*
1266 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1267 * - noinlined to reduce stack space usage in main part of driver
1268 */
1269 static noinline int
1270 loop_info64_to_compat(const struct loop_info64 *info64,
1271 struct compat_loop_info __user *arg)
1272 {
1273 struct compat_loop_info info;
1274
1275 memset(&info, 0, sizeof(info));
1276 info.lo_number = info64->lo_number;
1277 info.lo_device = info64->lo_device;
1278 info.lo_inode = info64->lo_inode;
1279 info.lo_rdevice = info64->lo_rdevice;
1280 info.lo_offset = info64->lo_offset;
1281 info.lo_encrypt_type = info64->lo_encrypt_type;
1282 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1283 info.lo_flags = info64->lo_flags;
1284 info.lo_init[0] = info64->lo_init[0];
1285 info.lo_init[1] = info64->lo_init[1];
1286 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1287 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1288 else
1289 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1290 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1291
1292 /* error in case values were truncated */
1293 if (info.lo_device != info64->lo_device ||
1294 info.lo_rdevice != info64->lo_rdevice ||
1295 info.lo_inode != info64->lo_inode ||
1296 info.lo_offset != info64->lo_offset ||
1297 info.lo_init[0] != info64->lo_init[0] ||
1298 info.lo_init[1] != info64->lo_init[1])
1299 return -EOVERFLOW;
1300
1301 if (copy_to_user(arg, &info, sizeof(info)))
1302 return -EFAULT;
1303 return 0;
1304 }
1305
1306 static int
1307 loop_set_status_compat(struct loop_device *lo,
1308 const struct compat_loop_info __user *arg)
1309 {
1310 struct loop_info64 info64;
1311 int ret;
1312
1313 ret = loop_info64_from_compat(arg, &info64);
1314 if (ret < 0)
1315 return ret;
1316 return loop_set_status(lo, &info64);
1317 }
1318
1319 static int
1320 loop_get_status_compat(struct loop_device *lo,
1321 struct compat_loop_info __user *arg)
1322 {
1323 struct loop_info64 info64;
1324 int err = 0;
1325
1326 if (!arg)
1327 err = -EINVAL;
1328 if (!err)
1329 err = loop_get_status(lo, &info64);
1330 if (!err)
1331 err = loop_info64_to_compat(&info64, arg);
1332 return err;
1333 }
1334
1335 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1336 unsigned int cmd, unsigned long arg)
1337 {
1338 struct loop_device *lo = bdev->bd_disk->private_data;
1339 int err;
1340
1341 switch(cmd) {
1342 case LOOP_SET_STATUS:
1343 mutex_lock(&lo->lo_ctl_mutex);
1344 err = loop_set_status_compat(
1345 lo, (const struct compat_loop_info __user *) arg);
1346 mutex_unlock(&lo->lo_ctl_mutex);
1347 break;
1348 case LOOP_GET_STATUS:
1349 mutex_lock(&lo->lo_ctl_mutex);
1350 err = loop_get_status_compat(
1351 lo, (struct compat_loop_info __user *) arg);
1352 mutex_unlock(&lo->lo_ctl_mutex);
1353 break;
1354 case LOOP_SET_CAPACITY:
1355 case LOOP_CLR_FD:
1356 case LOOP_GET_STATUS64:
1357 case LOOP_SET_STATUS64:
1358 arg = (unsigned long) compat_ptr(arg);
1359 case LOOP_SET_FD:
1360 case LOOP_CHANGE_FD:
1361 err = lo_ioctl(bdev, mode, cmd, arg);
1362 break;
1363 default:
1364 err = -ENOIOCTLCMD;
1365 break;
1366 }
1367 return err;
1368 }
1369 #endif
1370
1371 static int lo_open(struct block_device *bdev, fmode_t mode)
1372 {
1373 struct loop_device *lo;
1374 int err = 0;
1375
1376 mutex_lock(&loop_index_mutex);
1377 lo = bdev->bd_disk->private_data;
1378 if (!lo) {
1379 err = -ENXIO;
1380 goto out;
1381 }
1382
1383 mutex_lock(&lo->lo_ctl_mutex);
1384 lo->lo_refcnt++;
1385 mutex_unlock(&lo->lo_ctl_mutex);
1386 out:
1387 mutex_unlock(&loop_index_mutex);
1388 return err;
1389 }
1390
1391 static void lo_release(struct gendisk *disk, fmode_t mode)
1392 {
1393 struct loop_device *lo = disk->private_data;
1394 int err;
1395
1396 mutex_lock(&lo->lo_ctl_mutex);
1397
1398 if (--lo->lo_refcnt)
1399 goto out;
1400
1401 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1402 /*
1403 * In autoclear mode, stop the loop thread
1404 * and remove configuration after last close.
1405 */
1406 err = loop_clr_fd(lo);
1407 if (!err)
1408 return;
1409 } else {
1410 /*
1411 * Otherwise keep thread (if running) and config,
1412 * but flush possible ongoing bios in thread.
1413 */
1414 loop_flush(lo);
1415 }
1416
1417 out:
1418 mutex_unlock(&lo->lo_ctl_mutex);
1419 }
1420
1421 static const struct block_device_operations lo_fops = {
1422 .owner = THIS_MODULE,
1423 .open = lo_open,
1424 .release = lo_release,
1425 .ioctl = lo_ioctl,
1426 #ifdef CONFIG_COMPAT
1427 .compat_ioctl = lo_compat_ioctl,
1428 #endif
1429 };
1430
1431 /*
1432 * And now the modules code and kernel interface.
1433 */
1434 static int max_loop;
1435 module_param(max_loop, int, S_IRUGO);
1436 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1437 module_param(max_part, int, S_IRUGO);
1438 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1439 MODULE_LICENSE("GPL");
1440 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1441
1442 int loop_register_transfer(struct loop_func_table *funcs)
1443 {
1444 unsigned int n = funcs->number;
1445
1446 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1447 return -EINVAL;
1448 xfer_funcs[n] = funcs;
1449 return 0;
1450 }
1451
1452 static int unregister_transfer_cb(int id, void *ptr, void *data)
1453 {
1454 struct loop_device *lo = ptr;
1455 struct loop_func_table *xfer = data;
1456
1457 mutex_lock(&lo->lo_ctl_mutex);
1458 if (lo->lo_encryption == xfer)
1459 loop_release_xfer(lo);
1460 mutex_unlock(&lo->lo_ctl_mutex);
1461 return 0;
1462 }
1463
1464 int loop_unregister_transfer(int number)
1465 {
1466 unsigned int n = number;
1467 struct loop_func_table *xfer;
1468
1469 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1470 return -EINVAL;
1471
1472 xfer_funcs[n] = NULL;
1473 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1474 return 0;
1475 }
1476
1477 EXPORT_SYMBOL(loop_register_transfer);
1478 EXPORT_SYMBOL(loop_unregister_transfer);
1479
1480 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1481 const struct blk_mq_queue_data *bd)
1482 {
1483 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1484
1485 blk_mq_start_request(bd->rq);
1486
1487 if (cmd->rq->cmd_flags & REQ_WRITE) {
1488 struct loop_device *lo = cmd->rq->q->queuedata;
1489 bool need_sched = true;
1490
1491 spin_lock_irq(&lo->lo_lock);
1492 if (lo->write_started)
1493 need_sched = false;
1494 else
1495 lo->write_started = true;
1496 list_add_tail(&cmd->list, &lo->write_cmd_head);
1497 spin_unlock_irq(&lo->lo_lock);
1498
1499 if (need_sched)
1500 queue_work(loop_wq, &lo->write_work);
1501 } else {
1502 queue_work(loop_wq, &cmd->read_work);
1503 }
1504
1505 return BLK_MQ_RQ_QUEUE_OK;
1506 }
1507
1508 static void loop_handle_cmd(struct loop_cmd *cmd)
1509 {
1510 const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1511 struct loop_device *lo = cmd->rq->q->queuedata;
1512 int ret = -EIO;
1513 struct bio *bio;
1514
1515 if (lo->lo_state != Lo_bound)
1516 goto failed;
1517
1518 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1519 goto failed;
1520
1521 ret = 0;
1522 __rq_for_each_bio(bio, cmd->rq)
1523 ret |= loop_handle_bio(lo, bio);
1524
1525 failed:
1526 if (ret)
1527 cmd->rq->errors = -EIO;
1528 blk_mq_complete_request(cmd->rq);
1529 }
1530
1531 static void loop_queue_write_work(struct work_struct *work)
1532 {
1533 struct loop_device *lo =
1534 container_of(work, struct loop_device, write_work);
1535 LIST_HEAD(cmd_list);
1536
1537 spin_lock_irq(&lo->lo_lock);
1538 repeat:
1539 list_splice_init(&lo->write_cmd_head, &cmd_list);
1540 spin_unlock_irq(&lo->lo_lock);
1541
1542 while (!list_empty(&cmd_list)) {
1543 struct loop_cmd *cmd = list_first_entry(&cmd_list,
1544 struct loop_cmd, list);
1545 list_del_init(&cmd->list);
1546 loop_handle_cmd(cmd);
1547 }
1548
1549 spin_lock_irq(&lo->lo_lock);
1550 if (!list_empty(&lo->write_cmd_head))
1551 goto repeat;
1552 lo->write_started = false;
1553 spin_unlock_irq(&lo->lo_lock);
1554 }
1555
1556 static void loop_queue_read_work(struct work_struct *work)
1557 {
1558 struct loop_cmd *cmd =
1559 container_of(work, struct loop_cmd, read_work);
1560
1561 loop_handle_cmd(cmd);
1562 }
1563
1564 static int loop_init_request(void *data, struct request *rq,
1565 unsigned int hctx_idx, unsigned int request_idx,
1566 unsigned int numa_node)
1567 {
1568 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1569
1570 cmd->rq = rq;
1571 INIT_WORK(&cmd->read_work, loop_queue_read_work);
1572
1573 return 0;
1574 }
1575
1576 static struct blk_mq_ops loop_mq_ops = {
1577 .queue_rq = loop_queue_rq,
1578 .map_queue = blk_mq_map_queue,
1579 .init_request = loop_init_request,
1580 };
1581
1582 static int loop_add(struct loop_device **l, int i)
1583 {
1584 struct loop_device *lo;
1585 struct gendisk *disk;
1586 int err;
1587
1588 err = -ENOMEM;
1589 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1590 if (!lo)
1591 goto out;
1592
1593 lo->lo_state = Lo_unbound;
1594
1595 /* allocate id, if @id >= 0, we're requesting that specific id */
1596 if (i >= 0) {
1597 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1598 if (err == -ENOSPC)
1599 err = -EEXIST;
1600 } else {
1601 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1602 }
1603 if (err < 0)
1604 goto out_free_dev;
1605 i = err;
1606
1607 err = -ENOMEM;
1608 lo->tag_set.ops = &loop_mq_ops;
1609 lo->tag_set.nr_hw_queues = 1;
1610 lo->tag_set.queue_depth = 128;
1611 lo->tag_set.numa_node = NUMA_NO_NODE;
1612 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1613 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1614 lo->tag_set.driver_data = lo;
1615
1616 err = blk_mq_alloc_tag_set(&lo->tag_set);
1617 if (err)
1618 goto out_free_idr;
1619
1620 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1621 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1622 err = PTR_ERR(lo->lo_queue);
1623 goto out_cleanup_tags;
1624 }
1625 lo->lo_queue->queuedata = lo;
1626
1627 INIT_LIST_HEAD(&lo->write_cmd_head);
1628 INIT_WORK(&lo->write_work, loop_queue_write_work);
1629
1630 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1631 if (!disk)
1632 goto out_free_queue;
1633
1634 /*
1635 * Disable partition scanning by default. The in-kernel partition
1636 * scanning can be requested individually per-device during its
1637 * setup. Userspace can always add and remove partitions from all
1638 * devices. The needed partition minors are allocated from the
1639 * extended minor space, the main loop device numbers will continue
1640 * to match the loop minors, regardless of the number of partitions
1641 * used.
1642 *
1643 * If max_part is given, partition scanning is globally enabled for
1644 * all loop devices. The minors for the main loop devices will be
1645 * multiples of max_part.
1646 *
1647 * Note: Global-for-all-devices, set-only-at-init, read-only module
1648 * parameteters like 'max_loop' and 'max_part' make things needlessly
1649 * complicated, are too static, inflexible and may surprise
1650 * userspace tools. Parameters like this in general should be avoided.
1651 */
1652 if (!part_shift)
1653 disk->flags |= GENHD_FL_NO_PART_SCAN;
1654 disk->flags |= GENHD_FL_EXT_DEVT;
1655 mutex_init(&lo->lo_ctl_mutex);
1656 lo->lo_number = i;
1657 spin_lock_init(&lo->lo_lock);
1658 disk->major = LOOP_MAJOR;
1659 disk->first_minor = i << part_shift;
1660 disk->fops = &lo_fops;
1661 disk->private_data = lo;
1662 disk->queue = lo->lo_queue;
1663 sprintf(disk->disk_name, "loop%d", i);
1664 add_disk(disk);
1665 *l = lo;
1666 return lo->lo_number;
1667
1668 out_free_queue:
1669 blk_cleanup_queue(lo->lo_queue);
1670 out_cleanup_tags:
1671 blk_mq_free_tag_set(&lo->tag_set);
1672 out_free_idr:
1673 idr_remove(&loop_index_idr, i);
1674 out_free_dev:
1675 kfree(lo);
1676 out:
1677 return err;
1678 }
1679
1680 static void loop_remove(struct loop_device *lo)
1681 {
1682 del_gendisk(lo->lo_disk);
1683 blk_cleanup_queue(lo->lo_queue);
1684 blk_mq_free_tag_set(&lo->tag_set);
1685 put_disk(lo->lo_disk);
1686 kfree(lo);
1687 }
1688
1689 static int find_free_cb(int id, void *ptr, void *data)
1690 {
1691 struct loop_device *lo = ptr;
1692 struct loop_device **l = data;
1693
1694 if (lo->lo_state == Lo_unbound) {
1695 *l = lo;
1696 return 1;
1697 }
1698 return 0;
1699 }
1700
1701 static int loop_lookup(struct loop_device **l, int i)
1702 {
1703 struct loop_device *lo;
1704 int ret = -ENODEV;
1705
1706 if (i < 0) {
1707 int err;
1708
1709 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1710 if (err == 1) {
1711 *l = lo;
1712 ret = lo->lo_number;
1713 }
1714 goto out;
1715 }
1716
1717 /* lookup and return a specific i */
1718 lo = idr_find(&loop_index_idr, i);
1719 if (lo) {
1720 *l = lo;
1721 ret = lo->lo_number;
1722 }
1723 out:
1724 return ret;
1725 }
1726
1727 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1728 {
1729 struct loop_device *lo;
1730 struct kobject *kobj;
1731 int err;
1732
1733 mutex_lock(&loop_index_mutex);
1734 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1735 if (err < 0)
1736 err = loop_add(&lo, MINOR(dev) >> part_shift);
1737 if (err < 0)
1738 kobj = NULL;
1739 else
1740 kobj = get_disk(lo->lo_disk);
1741 mutex_unlock(&loop_index_mutex);
1742
1743 *part = 0;
1744 return kobj;
1745 }
1746
1747 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1748 unsigned long parm)
1749 {
1750 struct loop_device *lo;
1751 int ret = -ENOSYS;
1752
1753 mutex_lock(&loop_index_mutex);
1754 switch (cmd) {
1755 case LOOP_CTL_ADD:
1756 ret = loop_lookup(&lo, parm);
1757 if (ret >= 0) {
1758 ret = -EEXIST;
1759 break;
1760 }
1761 ret = loop_add(&lo, parm);
1762 break;
1763 case LOOP_CTL_REMOVE:
1764 ret = loop_lookup(&lo, parm);
1765 if (ret < 0)
1766 break;
1767 mutex_lock(&lo->lo_ctl_mutex);
1768 if (lo->lo_state != Lo_unbound) {
1769 ret = -EBUSY;
1770 mutex_unlock(&lo->lo_ctl_mutex);
1771 break;
1772 }
1773 if (lo->lo_refcnt > 0) {
1774 ret = -EBUSY;
1775 mutex_unlock(&lo->lo_ctl_mutex);
1776 break;
1777 }
1778 lo->lo_disk->private_data = NULL;
1779 mutex_unlock(&lo->lo_ctl_mutex);
1780 idr_remove(&loop_index_idr, lo->lo_number);
1781 loop_remove(lo);
1782 break;
1783 case LOOP_CTL_GET_FREE:
1784 ret = loop_lookup(&lo, -1);
1785 if (ret >= 0)
1786 break;
1787 ret = loop_add(&lo, -1);
1788 }
1789 mutex_unlock(&loop_index_mutex);
1790
1791 return ret;
1792 }
1793
1794 static const struct file_operations loop_ctl_fops = {
1795 .open = nonseekable_open,
1796 .unlocked_ioctl = loop_control_ioctl,
1797 .compat_ioctl = loop_control_ioctl,
1798 .owner = THIS_MODULE,
1799 .llseek = noop_llseek,
1800 };
1801
1802 static struct miscdevice loop_misc = {
1803 .minor = LOOP_CTRL_MINOR,
1804 .name = "loop-control",
1805 .fops = &loop_ctl_fops,
1806 };
1807
1808 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1809 MODULE_ALIAS("devname:loop-control");
1810
1811 static int __init loop_init(void)
1812 {
1813 int i, nr;
1814 unsigned long range;
1815 struct loop_device *lo;
1816 int err;
1817
1818 err = misc_register(&loop_misc);
1819 if (err < 0)
1820 return err;
1821
1822 part_shift = 0;
1823 if (max_part > 0) {
1824 part_shift = fls(max_part);
1825
1826 /*
1827 * Adjust max_part according to part_shift as it is exported
1828 * to user space so that user can decide correct minor number
1829 * if [s]he want to create more devices.
1830 *
1831 * Note that -1 is required because partition 0 is reserved
1832 * for the whole disk.
1833 */
1834 max_part = (1UL << part_shift) - 1;
1835 }
1836
1837 if ((1UL << part_shift) > DISK_MAX_PARTS) {
1838 err = -EINVAL;
1839 goto misc_out;
1840 }
1841
1842 if (max_loop > 1UL << (MINORBITS - part_shift)) {
1843 err = -EINVAL;
1844 goto misc_out;
1845 }
1846
1847 /*
1848 * If max_loop is specified, create that many devices upfront.
1849 * This also becomes a hard limit. If max_loop is not specified,
1850 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1851 * init time. Loop devices can be requested on-demand with the
1852 * /dev/loop-control interface, or be instantiated by accessing
1853 * a 'dead' device node.
1854 */
1855 if (max_loop) {
1856 nr = max_loop;
1857 range = max_loop << part_shift;
1858 } else {
1859 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1860 range = 1UL << MINORBITS;
1861 }
1862
1863 if (register_blkdev(LOOP_MAJOR, "loop")) {
1864 err = -EIO;
1865 goto misc_out;
1866 }
1867
1868 loop_wq = alloc_workqueue("kloopd",
1869 WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 0);
1870 if (!loop_wq) {
1871 err = -ENOMEM;
1872 goto misc_out;
1873 }
1874
1875 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1876 THIS_MODULE, loop_probe, NULL, NULL);
1877
1878 /* pre-create number of devices given by config or max_loop */
1879 mutex_lock(&loop_index_mutex);
1880 for (i = 0; i < nr; i++)
1881 loop_add(&lo, i);
1882 mutex_unlock(&loop_index_mutex);
1883
1884 printk(KERN_INFO "loop: module loaded\n");
1885 return 0;
1886
1887 misc_out:
1888 misc_deregister(&loop_misc);
1889 return err;
1890 }
1891
1892 static int loop_exit_cb(int id, void *ptr, void *data)
1893 {
1894 struct loop_device *lo = ptr;
1895
1896 loop_remove(lo);
1897 return 0;
1898 }
1899
1900 static void __exit loop_exit(void)
1901 {
1902 unsigned long range;
1903
1904 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1905
1906 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1907 idr_destroy(&loop_index_idr);
1908
1909 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1910 unregister_blkdev(LOOP_MAJOR, "loop");
1911
1912 destroy_workqueue(loop_wq);
1913
1914 misc_deregister(&loop_misc);
1915 }
1916
1917 module_init(loop_init);
1918 module_exit(loop_exit);
1919
1920 #ifndef MODULE
1921 static int __init max_loop_setup(char *str)
1922 {
1923 max_loop = simple_strtol(str, NULL, 0);
1924 return 1;
1925 }
1926
1927 __setup("max_loop=", max_loop_setup);
1928 #endif
This page took 0.069001 seconds and 5 git commands to generate.