Merge tag 'omap-for-v3.10/fixes-for-merge-window' of git://git.kernel.org/pub/scm...
[deliverable/linux.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
79
80 #include <asm/uaccess.h>
81
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
84
85 static int max_part;
86 static int part_shift;
87
88 /*
89 * Transfer functions
90 */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 struct page *raw_page, unsigned raw_off,
93 struct page *loop_page, unsigned loop_off,
94 int size, sector_t real_block)
95 {
96 char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 char *loop_buf = kmap_atomic(loop_page) + loop_off;
98
99 if (cmd == READ)
100 memcpy(loop_buf, raw_buf, size);
101 else
102 memcpy(raw_buf, loop_buf, size);
103
104 kunmap_atomic(loop_buf);
105 kunmap_atomic(raw_buf);
106 cond_resched();
107 return 0;
108 }
109
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 struct page *raw_page, unsigned raw_off,
112 struct page *loop_page, unsigned loop_off,
113 int size, sector_t real_block)
114 {
115 char *raw_buf = kmap_atomic(raw_page) + raw_off;
116 char *loop_buf = kmap_atomic(loop_page) + loop_off;
117 char *in, *out, *key;
118 int i, keysize;
119
120 if (cmd == READ) {
121 in = raw_buf;
122 out = loop_buf;
123 } else {
124 in = loop_buf;
125 out = raw_buf;
126 }
127
128 key = lo->lo_encrypt_key;
129 keysize = lo->lo_encrypt_key_size;
130 for (i = 0; i < size; i++)
131 *out++ = *in++ ^ key[(i & 511) % keysize];
132
133 kunmap_atomic(loop_buf);
134 kunmap_atomic(raw_buf);
135 cond_resched();
136 return 0;
137 }
138
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 if (unlikely(info->lo_encrypt_key_size <= 0))
142 return -EINVAL;
143 return 0;
144 }
145
146 static struct loop_func_table none_funcs = {
147 .number = LO_CRYPT_NONE,
148 .transfer = transfer_none,
149 };
150
151 static struct loop_func_table xor_funcs = {
152 .number = LO_CRYPT_XOR,
153 .transfer = transfer_xor,
154 .init = xor_init
155 };
156
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 &none_funcs,
160 &xor_funcs
161 };
162
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164 {
165 loff_t loopsize;
166
167 /* Compute loopsize in bytes */
168 loopsize = i_size_read(file->f_mapping->host);
169 if (offset > 0)
170 loopsize -= offset;
171 /* offset is beyond i_size, weird but possible */
172 if (loopsize < 0)
173 return 0;
174
175 if (sizelimit > 0 && sizelimit < loopsize)
176 loopsize = sizelimit;
177 /*
178 * Unfortunately, if we want to do I/O on the device,
179 * the number of 512-byte sectors has to fit into a sector_t.
180 */
181 return loopsize >> 9;
182 }
183
184 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
185 {
186 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
187 }
188
189 static int
190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
191 {
192 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
193 sector_t x = (sector_t)size;
194 struct block_device *bdev = lo->lo_device;
195
196 if (unlikely((loff_t)x != size))
197 return -EFBIG;
198 if (lo->lo_offset != offset)
199 lo->lo_offset = offset;
200 if (lo->lo_sizelimit != sizelimit)
201 lo->lo_sizelimit = sizelimit;
202 set_capacity(lo->lo_disk, x);
203 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
204 /* let user-space know about the new size */
205 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
206 return 0;
207 }
208
209 static inline int
210 lo_do_transfer(struct loop_device *lo, int cmd,
211 struct page *rpage, unsigned roffs,
212 struct page *lpage, unsigned loffs,
213 int size, sector_t rblock)
214 {
215 if (unlikely(!lo->transfer))
216 return 0;
217
218 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
219 }
220
221 /**
222 * __do_lo_send_write - helper for writing data to a loop device
223 *
224 * This helper just factors out common code between do_lo_send_direct_write()
225 * and do_lo_send_write().
226 */
227 static int __do_lo_send_write(struct file *file,
228 u8 *buf, const int len, loff_t pos)
229 {
230 ssize_t bw;
231 mm_segment_t old_fs = get_fs();
232
233 set_fs(get_ds());
234 bw = file->f_op->write(file, buf, len, &pos);
235 set_fs(old_fs);
236 if (likely(bw == len))
237 return 0;
238 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
239 (unsigned long long)pos, len);
240 if (bw >= 0)
241 bw = -EIO;
242 return bw;
243 }
244
245 /**
246 * do_lo_send_direct_write - helper for writing data to a loop device
247 *
248 * This is the fast, non-transforming version that does not need double
249 * buffering.
250 */
251 static int do_lo_send_direct_write(struct loop_device *lo,
252 struct bio_vec *bvec, loff_t pos, struct page *page)
253 {
254 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
255 kmap(bvec->bv_page) + bvec->bv_offset,
256 bvec->bv_len, pos);
257 kunmap(bvec->bv_page);
258 cond_resched();
259 return bw;
260 }
261
262 /**
263 * do_lo_send_write - helper for writing data to a loop device
264 *
265 * This is the slow, transforming version that needs to double buffer the
266 * data as it cannot do the transformations in place without having direct
267 * access to the destination pages of the backing file.
268 */
269 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
270 loff_t pos, struct page *page)
271 {
272 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
273 bvec->bv_offset, bvec->bv_len, pos >> 9);
274 if (likely(!ret))
275 return __do_lo_send_write(lo->lo_backing_file,
276 page_address(page), bvec->bv_len,
277 pos);
278 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
279 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
280 if (ret > 0)
281 ret = -EIO;
282 return ret;
283 }
284
285 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
286 {
287 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
288 struct page *page);
289 struct bio_vec *bvec;
290 struct page *page = NULL;
291 int i, ret = 0;
292
293 if (lo->transfer != transfer_none) {
294 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
295 if (unlikely(!page))
296 goto fail;
297 kmap(page);
298 do_lo_send = do_lo_send_write;
299 } else {
300 do_lo_send = do_lo_send_direct_write;
301 }
302
303 bio_for_each_segment(bvec, bio, i) {
304 ret = do_lo_send(lo, bvec, pos, page);
305 if (ret < 0)
306 break;
307 pos += bvec->bv_len;
308 }
309 if (page) {
310 kunmap(page);
311 __free_page(page);
312 }
313 out:
314 return ret;
315 fail:
316 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
317 ret = -ENOMEM;
318 goto out;
319 }
320
321 struct lo_read_data {
322 struct loop_device *lo;
323 struct page *page;
324 unsigned offset;
325 int bsize;
326 };
327
328 static int
329 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
330 struct splice_desc *sd)
331 {
332 struct lo_read_data *p = sd->u.data;
333 struct loop_device *lo = p->lo;
334 struct page *page = buf->page;
335 sector_t IV;
336 int size;
337
338 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
339 (buf->offset >> 9);
340 size = sd->len;
341 if (size > p->bsize)
342 size = p->bsize;
343
344 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
345 printk(KERN_ERR "loop: transfer error block %ld\n",
346 page->index);
347 size = -EINVAL;
348 }
349
350 flush_dcache_page(p->page);
351
352 if (size > 0)
353 p->offset += size;
354
355 return size;
356 }
357
358 static int
359 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
360 {
361 return __splice_from_pipe(pipe, sd, lo_splice_actor);
362 }
363
364 static ssize_t
365 do_lo_receive(struct loop_device *lo,
366 struct bio_vec *bvec, int bsize, loff_t pos)
367 {
368 struct lo_read_data cookie;
369 struct splice_desc sd;
370 struct file *file;
371 ssize_t retval;
372
373 cookie.lo = lo;
374 cookie.page = bvec->bv_page;
375 cookie.offset = bvec->bv_offset;
376 cookie.bsize = bsize;
377
378 sd.len = 0;
379 sd.total_len = bvec->bv_len;
380 sd.flags = 0;
381 sd.pos = pos;
382 sd.u.data = &cookie;
383
384 file = lo->lo_backing_file;
385 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
386
387 return retval;
388 }
389
390 static int
391 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
392 {
393 struct bio_vec *bvec;
394 ssize_t s;
395 int i;
396
397 bio_for_each_segment(bvec, bio, i) {
398 s = do_lo_receive(lo, bvec, bsize, pos);
399 if (s < 0)
400 return s;
401
402 if (s != bvec->bv_len) {
403 zero_fill_bio(bio);
404 break;
405 }
406 pos += bvec->bv_len;
407 }
408 return 0;
409 }
410
411 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
412 {
413 loff_t pos;
414 int ret;
415
416 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
417
418 if (bio_rw(bio) == WRITE) {
419 struct file *file = lo->lo_backing_file;
420
421 if (bio->bi_rw & REQ_FLUSH) {
422 ret = vfs_fsync(file, 0);
423 if (unlikely(ret && ret != -EINVAL)) {
424 ret = -EIO;
425 goto out;
426 }
427 }
428
429 /*
430 * We use punch hole to reclaim the free space used by the
431 * image a.k.a. discard. However we do not support discard if
432 * encryption is enabled, because it may give an attacker
433 * useful information.
434 */
435 if (bio->bi_rw & REQ_DISCARD) {
436 struct file *file = lo->lo_backing_file;
437 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
438
439 if ((!file->f_op->fallocate) ||
440 lo->lo_encrypt_key_size) {
441 ret = -EOPNOTSUPP;
442 goto out;
443 }
444 ret = file->f_op->fallocate(file, mode, pos,
445 bio->bi_size);
446 if (unlikely(ret && ret != -EINVAL &&
447 ret != -EOPNOTSUPP))
448 ret = -EIO;
449 goto out;
450 }
451
452 ret = lo_send(lo, bio, pos);
453
454 if ((bio->bi_rw & REQ_FUA) && !ret) {
455 ret = vfs_fsync(file, 0);
456 if (unlikely(ret && ret != -EINVAL))
457 ret = -EIO;
458 }
459 } else
460 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
461
462 out:
463 return ret;
464 }
465
466 /*
467 * Add bio to back of pending list
468 */
469 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
470 {
471 lo->lo_bio_count++;
472 bio_list_add(&lo->lo_bio_list, bio);
473 }
474
475 /*
476 * Grab first pending buffer
477 */
478 static struct bio *loop_get_bio(struct loop_device *lo)
479 {
480 lo->lo_bio_count--;
481 return bio_list_pop(&lo->lo_bio_list);
482 }
483
484 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
485 {
486 struct loop_device *lo = q->queuedata;
487 int rw = bio_rw(old_bio);
488
489 if (rw == READA)
490 rw = READ;
491
492 BUG_ON(!lo || (rw != READ && rw != WRITE));
493
494 spin_lock_irq(&lo->lo_lock);
495 if (lo->lo_state != Lo_bound)
496 goto out;
497 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
498 goto out;
499 if (lo->lo_bio_count >= q->nr_congestion_on)
500 wait_event_lock_irq(lo->lo_req_wait,
501 lo->lo_bio_count < q->nr_congestion_off,
502 lo->lo_lock);
503 loop_add_bio(lo, old_bio);
504 wake_up(&lo->lo_event);
505 spin_unlock_irq(&lo->lo_lock);
506 return;
507
508 out:
509 spin_unlock_irq(&lo->lo_lock);
510 bio_io_error(old_bio);
511 }
512
513 struct switch_request {
514 struct file *file;
515 struct completion wait;
516 };
517
518 static void do_loop_switch(struct loop_device *, struct switch_request *);
519
520 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
521 {
522 if (unlikely(!bio->bi_bdev)) {
523 do_loop_switch(lo, bio->bi_private);
524 bio_put(bio);
525 } else {
526 int ret = do_bio_filebacked(lo, bio);
527 bio_endio(bio, ret);
528 }
529 }
530
531 /*
532 * worker thread that handles reads/writes to file backed loop devices,
533 * to avoid blocking in our make_request_fn. it also does loop decrypting
534 * on reads for block backed loop, as that is too heavy to do from
535 * b_end_io context where irqs may be disabled.
536 *
537 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
538 * calling kthread_stop(). Therefore once kthread_should_stop() is
539 * true, make_request will not place any more requests. Therefore
540 * once kthread_should_stop() is true and lo_bio is NULL, we are
541 * done with the loop.
542 */
543 static int loop_thread(void *data)
544 {
545 struct loop_device *lo = data;
546 struct bio *bio;
547
548 set_user_nice(current, -20);
549
550 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
551
552 wait_event_interruptible(lo->lo_event,
553 !bio_list_empty(&lo->lo_bio_list) ||
554 kthread_should_stop());
555
556 if (bio_list_empty(&lo->lo_bio_list))
557 continue;
558 spin_lock_irq(&lo->lo_lock);
559 bio = loop_get_bio(lo);
560 if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off)
561 wake_up(&lo->lo_req_wait);
562 spin_unlock_irq(&lo->lo_lock);
563
564 BUG_ON(!bio);
565 loop_handle_bio(lo, bio);
566 }
567
568 return 0;
569 }
570
571 /*
572 * loop_switch performs the hard work of switching a backing store.
573 * First it needs to flush existing IO, it does this by sending a magic
574 * BIO down the pipe. The completion of this BIO does the actual switch.
575 */
576 static int loop_switch(struct loop_device *lo, struct file *file)
577 {
578 struct switch_request w;
579 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
580 if (!bio)
581 return -ENOMEM;
582 init_completion(&w.wait);
583 w.file = file;
584 bio->bi_private = &w;
585 bio->bi_bdev = NULL;
586 loop_make_request(lo->lo_queue, bio);
587 wait_for_completion(&w.wait);
588 return 0;
589 }
590
591 /*
592 * Helper to flush the IOs in loop, but keeping loop thread running
593 */
594 static int loop_flush(struct loop_device *lo)
595 {
596 /* loop not yet configured, no running thread, nothing to flush */
597 if (!lo->lo_thread)
598 return 0;
599
600 return loop_switch(lo, NULL);
601 }
602
603 /*
604 * Do the actual switch; called from the BIO completion routine
605 */
606 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
607 {
608 struct file *file = p->file;
609 struct file *old_file = lo->lo_backing_file;
610 struct address_space *mapping;
611
612 /* if no new file, only flush of queued bios requested */
613 if (!file)
614 goto out;
615
616 mapping = file->f_mapping;
617 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
618 lo->lo_backing_file = file;
619 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
620 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
621 lo->old_gfp_mask = mapping_gfp_mask(mapping);
622 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
623 out:
624 complete(&p->wait);
625 }
626
627
628 /*
629 * loop_change_fd switched the backing store of a loopback device to
630 * a new file. This is useful for operating system installers to free up
631 * the original file and in High Availability environments to switch to
632 * an alternative location for the content in case of server meltdown.
633 * This can only work if the loop device is used read-only, and if the
634 * new backing store is the same size and type as the old backing store.
635 */
636 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
637 unsigned int arg)
638 {
639 struct file *file, *old_file;
640 struct inode *inode;
641 int error;
642
643 error = -ENXIO;
644 if (lo->lo_state != Lo_bound)
645 goto out;
646
647 /* the loop device has to be read-only */
648 error = -EINVAL;
649 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
650 goto out;
651
652 error = -EBADF;
653 file = fget(arg);
654 if (!file)
655 goto out;
656
657 inode = file->f_mapping->host;
658 old_file = lo->lo_backing_file;
659
660 error = -EINVAL;
661
662 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
663 goto out_putf;
664
665 /* size of the new backing store needs to be the same */
666 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
667 goto out_putf;
668
669 /* and ... switch */
670 error = loop_switch(lo, file);
671 if (error)
672 goto out_putf;
673
674 fput(old_file);
675 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
676 ioctl_by_bdev(bdev, BLKRRPART, 0);
677 return 0;
678
679 out_putf:
680 fput(file);
681 out:
682 return error;
683 }
684
685 static inline int is_loop_device(struct file *file)
686 {
687 struct inode *i = file->f_mapping->host;
688
689 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
690 }
691
692 /* loop sysfs attributes */
693
694 static ssize_t loop_attr_show(struct device *dev, char *page,
695 ssize_t (*callback)(struct loop_device *, char *))
696 {
697 struct gendisk *disk = dev_to_disk(dev);
698 struct loop_device *lo = disk->private_data;
699
700 return callback(lo, page);
701 }
702
703 #define LOOP_ATTR_RO(_name) \
704 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
705 static ssize_t loop_attr_do_show_##_name(struct device *d, \
706 struct device_attribute *attr, char *b) \
707 { \
708 return loop_attr_show(d, b, loop_attr_##_name##_show); \
709 } \
710 static struct device_attribute loop_attr_##_name = \
711 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
712
713 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
714 {
715 ssize_t ret;
716 char *p = NULL;
717
718 spin_lock_irq(&lo->lo_lock);
719 if (lo->lo_backing_file)
720 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
721 spin_unlock_irq(&lo->lo_lock);
722
723 if (IS_ERR_OR_NULL(p))
724 ret = PTR_ERR(p);
725 else {
726 ret = strlen(p);
727 memmove(buf, p, ret);
728 buf[ret++] = '\n';
729 buf[ret] = 0;
730 }
731
732 return ret;
733 }
734
735 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
736 {
737 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
738 }
739
740 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
741 {
742 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
743 }
744
745 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
746 {
747 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
748
749 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
750 }
751
752 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
753 {
754 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
755
756 return sprintf(buf, "%s\n", partscan ? "1" : "0");
757 }
758
759 LOOP_ATTR_RO(backing_file);
760 LOOP_ATTR_RO(offset);
761 LOOP_ATTR_RO(sizelimit);
762 LOOP_ATTR_RO(autoclear);
763 LOOP_ATTR_RO(partscan);
764
765 static struct attribute *loop_attrs[] = {
766 &loop_attr_backing_file.attr,
767 &loop_attr_offset.attr,
768 &loop_attr_sizelimit.attr,
769 &loop_attr_autoclear.attr,
770 &loop_attr_partscan.attr,
771 NULL,
772 };
773
774 static struct attribute_group loop_attribute_group = {
775 .name = "loop",
776 .attrs= loop_attrs,
777 };
778
779 static int loop_sysfs_init(struct loop_device *lo)
780 {
781 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
782 &loop_attribute_group);
783 }
784
785 static void loop_sysfs_exit(struct loop_device *lo)
786 {
787 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
788 &loop_attribute_group);
789 }
790
791 static void loop_config_discard(struct loop_device *lo)
792 {
793 struct file *file = lo->lo_backing_file;
794 struct inode *inode = file->f_mapping->host;
795 struct request_queue *q = lo->lo_queue;
796
797 /*
798 * We use punch hole to reclaim the free space used by the
799 * image a.k.a. discard. However we do support discard if
800 * encryption is enabled, because it may give an attacker
801 * useful information.
802 */
803 if ((!file->f_op->fallocate) ||
804 lo->lo_encrypt_key_size) {
805 q->limits.discard_granularity = 0;
806 q->limits.discard_alignment = 0;
807 q->limits.max_discard_sectors = 0;
808 q->limits.discard_zeroes_data = 0;
809 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
810 return;
811 }
812
813 q->limits.discard_granularity = inode->i_sb->s_blocksize;
814 q->limits.discard_alignment = 0;
815 q->limits.max_discard_sectors = UINT_MAX >> 9;
816 q->limits.discard_zeroes_data = 1;
817 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
818 }
819
820 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
821 struct block_device *bdev, unsigned int arg)
822 {
823 struct file *file, *f;
824 struct inode *inode;
825 struct address_space *mapping;
826 unsigned lo_blocksize;
827 int lo_flags = 0;
828 int error;
829 loff_t size;
830
831 /* This is safe, since we have a reference from open(). */
832 __module_get(THIS_MODULE);
833
834 error = -EBADF;
835 file = fget(arg);
836 if (!file)
837 goto out;
838
839 error = -EBUSY;
840 if (lo->lo_state != Lo_unbound)
841 goto out_putf;
842
843 /* Avoid recursion */
844 f = file;
845 while (is_loop_device(f)) {
846 struct loop_device *l;
847
848 if (f->f_mapping->host->i_bdev == bdev)
849 goto out_putf;
850
851 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
852 if (l->lo_state == Lo_unbound) {
853 error = -EINVAL;
854 goto out_putf;
855 }
856 f = l->lo_backing_file;
857 }
858
859 mapping = file->f_mapping;
860 inode = mapping->host;
861
862 error = -EINVAL;
863 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
864 goto out_putf;
865
866 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
867 !file->f_op->write)
868 lo_flags |= LO_FLAGS_READ_ONLY;
869
870 lo_blocksize = S_ISBLK(inode->i_mode) ?
871 inode->i_bdev->bd_block_size : PAGE_SIZE;
872
873 error = -EFBIG;
874 size = get_loop_size(lo, file);
875 if ((loff_t)(sector_t)size != size)
876 goto out_putf;
877
878 error = 0;
879
880 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
881
882 lo->lo_blocksize = lo_blocksize;
883 lo->lo_device = bdev;
884 lo->lo_flags = lo_flags;
885 lo->lo_backing_file = file;
886 lo->transfer = transfer_none;
887 lo->ioctl = NULL;
888 lo->lo_sizelimit = 0;
889 lo->lo_bio_count = 0;
890 lo->old_gfp_mask = mapping_gfp_mask(mapping);
891 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
892
893 bio_list_init(&lo->lo_bio_list);
894
895 /*
896 * set queue make_request_fn, and add limits based on lower level
897 * device
898 */
899 blk_queue_make_request(lo->lo_queue, loop_make_request);
900 lo->lo_queue->queuedata = lo;
901
902 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
903 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
904
905 set_capacity(lo->lo_disk, size);
906 bd_set_size(bdev, size << 9);
907 loop_sysfs_init(lo);
908 /* let user-space know about the new size */
909 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
910
911 set_blocksize(bdev, lo_blocksize);
912
913 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
914 lo->lo_number);
915 if (IS_ERR(lo->lo_thread)) {
916 error = PTR_ERR(lo->lo_thread);
917 goto out_clr;
918 }
919 lo->lo_state = Lo_bound;
920 wake_up_process(lo->lo_thread);
921 if (part_shift)
922 lo->lo_flags |= LO_FLAGS_PARTSCAN;
923 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
924 ioctl_by_bdev(bdev, BLKRRPART, 0);
925
926 /* Grab the block_device to prevent its destruction after we
927 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
928 */
929 bdgrab(bdev);
930 return 0;
931
932 out_clr:
933 loop_sysfs_exit(lo);
934 lo->lo_thread = NULL;
935 lo->lo_device = NULL;
936 lo->lo_backing_file = NULL;
937 lo->lo_flags = 0;
938 set_capacity(lo->lo_disk, 0);
939 invalidate_bdev(bdev);
940 bd_set_size(bdev, 0);
941 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
942 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
943 lo->lo_state = Lo_unbound;
944 out_putf:
945 fput(file);
946 out:
947 /* This is safe: open() is still holding a reference. */
948 module_put(THIS_MODULE);
949 return error;
950 }
951
952 static int
953 loop_release_xfer(struct loop_device *lo)
954 {
955 int err = 0;
956 struct loop_func_table *xfer = lo->lo_encryption;
957
958 if (xfer) {
959 if (xfer->release)
960 err = xfer->release(lo);
961 lo->transfer = NULL;
962 lo->lo_encryption = NULL;
963 module_put(xfer->owner);
964 }
965 return err;
966 }
967
968 static int
969 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
970 const struct loop_info64 *i)
971 {
972 int err = 0;
973
974 if (xfer) {
975 struct module *owner = xfer->owner;
976
977 if (!try_module_get(owner))
978 return -EINVAL;
979 if (xfer->init)
980 err = xfer->init(lo, i);
981 if (err)
982 module_put(owner);
983 else
984 lo->lo_encryption = xfer;
985 }
986 return err;
987 }
988
989 static int loop_clr_fd(struct loop_device *lo)
990 {
991 struct file *filp = lo->lo_backing_file;
992 gfp_t gfp = lo->old_gfp_mask;
993 struct block_device *bdev = lo->lo_device;
994
995 if (lo->lo_state != Lo_bound)
996 return -ENXIO;
997
998 /*
999 * If we've explicitly asked to tear down the loop device,
1000 * and it has an elevated reference count, set it for auto-teardown when
1001 * the last reference goes away. This stops $!~#$@ udev from
1002 * preventing teardown because it decided that it needs to run blkid on
1003 * the loopback device whenever they appear. xfstests is notorious for
1004 * failing tests because blkid via udev races with a losetup
1005 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1006 * command to fail with EBUSY.
1007 */
1008 if (lo->lo_refcnt > 1) {
1009 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1010 mutex_unlock(&lo->lo_ctl_mutex);
1011 return 0;
1012 }
1013
1014 if (filp == NULL)
1015 return -EINVAL;
1016
1017 spin_lock_irq(&lo->lo_lock);
1018 lo->lo_state = Lo_rundown;
1019 spin_unlock_irq(&lo->lo_lock);
1020
1021 kthread_stop(lo->lo_thread);
1022
1023 spin_lock_irq(&lo->lo_lock);
1024 lo->lo_backing_file = NULL;
1025 spin_unlock_irq(&lo->lo_lock);
1026
1027 loop_release_xfer(lo);
1028 lo->transfer = NULL;
1029 lo->ioctl = NULL;
1030 lo->lo_device = NULL;
1031 lo->lo_encryption = NULL;
1032 lo->lo_offset = 0;
1033 lo->lo_sizelimit = 0;
1034 lo->lo_encrypt_key_size = 0;
1035 lo->lo_thread = NULL;
1036 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1037 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1038 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1039 if (bdev) {
1040 bdput(bdev);
1041 invalidate_bdev(bdev);
1042 }
1043 set_capacity(lo->lo_disk, 0);
1044 loop_sysfs_exit(lo);
1045 if (bdev) {
1046 bd_set_size(bdev, 0);
1047 /* let user-space know about this change */
1048 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1049 }
1050 mapping_set_gfp_mask(filp->f_mapping, gfp);
1051 lo->lo_state = Lo_unbound;
1052 /* This is safe: open() is still holding a reference. */
1053 module_put(THIS_MODULE);
1054 lo->lo_flags = 0;
1055 if (!part_shift)
1056 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1057 mutex_unlock(&lo->lo_ctl_mutex);
1058
1059 /*
1060 * Remove all partitions, since BLKRRPART won't remove user
1061 * added partitions when max_part=0
1062 */
1063 if (bdev) {
1064 struct disk_part_iter piter;
1065 struct hd_struct *part;
1066
1067 mutex_lock_nested(&bdev->bd_mutex, 1);
1068 invalidate_partition(bdev->bd_disk, 0);
1069 disk_part_iter_init(&piter, bdev->bd_disk,
1070 DISK_PITER_INCL_EMPTY);
1071 while ((part = disk_part_iter_next(&piter)))
1072 delete_partition(bdev->bd_disk, part->partno);
1073 disk_part_iter_exit(&piter);
1074 mutex_unlock(&bdev->bd_mutex);
1075 }
1076
1077 /*
1078 * Need not hold lo_ctl_mutex to fput backing file.
1079 * Calling fput holding lo_ctl_mutex triggers a circular
1080 * lock dependency possibility warning as fput can take
1081 * bd_mutex which is usually taken before lo_ctl_mutex.
1082 */
1083 fput(filp);
1084 return 0;
1085 }
1086
1087 static int
1088 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1089 {
1090 int err;
1091 struct loop_func_table *xfer;
1092 kuid_t uid = current_uid();
1093
1094 if (lo->lo_encrypt_key_size &&
1095 !uid_eq(lo->lo_key_owner, uid) &&
1096 !capable(CAP_SYS_ADMIN))
1097 return -EPERM;
1098 if (lo->lo_state != Lo_bound)
1099 return -ENXIO;
1100 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1101 return -EINVAL;
1102
1103 err = loop_release_xfer(lo);
1104 if (err)
1105 return err;
1106
1107 if (info->lo_encrypt_type) {
1108 unsigned int type = info->lo_encrypt_type;
1109
1110 if (type >= MAX_LO_CRYPT)
1111 return -EINVAL;
1112 xfer = xfer_funcs[type];
1113 if (xfer == NULL)
1114 return -EINVAL;
1115 } else
1116 xfer = NULL;
1117
1118 err = loop_init_xfer(lo, xfer, info);
1119 if (err)
1120 return err;
1121
1122 if (lo->lo_offset != info->lo_offset ||
1123 lo->lo_sizelimit != info->lo_sizelimit)
1124 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1125 return -EFBIG;
1126
1127 loop_config_discard(lo);
1128
1129 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1130 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1131 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1132 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1133
1134 if (!xfer)
1135 xfer = &none_funcs;
1136 lo->transfer = xfer->transfer;
1137 lo->ioctl = xfer->ioctl;
1138
1139 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1140 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1141 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1142
1143 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1144 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1145 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1146 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1147 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1148 }
1149
1150 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1151 lo->lo_init[0] = info->lo_init[0];
1152 lo->lo_init[1] = info->lo_init[1];
1153 if (info->lo_encrypt_key_size) {
1154 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1155 info->lo_encrypt_key_size);
1156 lo->lo_key_owner = uid;
1157 }
1158
1159 return 0;
1160 }
1161
1162 static int
1163 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1164 {
1165 struct file *file = lo->lo_backing_file;
1166 struct kstat stat;
1167 int error;
1168
1169 if (lo->lo_state != Lo_bound)
1170 return -ENXIO;
1171 error = vfs_getattr(&file->f_path, &stat);
1172 if (error)
1173 return error;
1174 memset(info, 0, sizeof(*info));
1175 info->lo_number = lo->lo_number;
1176 info->lo_device = huge_encode_dev(stat.dev);
1177 info->lo_inode = stat.ino;
1178 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1179 info->lo_offset = lo->lo_offset;
1180 info->lo_sizelimit = lo->lo_sizelimit;
1181 info->lo_flags = lo->lo_flags;
1182 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1183 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1184 info->lo_encrypt_type =
1185 lo->lo_encryption ? lo->lo_encryption->number : 0;
1186 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1187 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1188 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1189 lo->lo_encrypt_key_size);
1190 }
1191 return 0;
1192 }
1193
1194 static void
1195 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1196 {
1197 memset(info64, 0, sizeof(*info64));
1198 info64->lo_number = info->lo_number;
1199 info64->lo_device = info->lo_device;
1200 info64->lo_inode = info->lo_inode;
1201 info64->lo_rdevice = info->lo_rdevice;
1202 info64->lo_offset = info->lo_offset;
1203 info64->lo_sizelimit = 0;
1204 info64->lo_encrypt_type = info->lo_encrypt_type;
1205 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1206 info64->lo_flags = info->lo_flags;
1207 info64->lo_init[0] = info->lo_init[0];
1208 info64->lo_init[1] = info->lo_init[1];
1209 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1210 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1211 else
1212 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1213 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1214 }
1215
1216 static int
1217 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1218 {
1219 memset(info, 0, sizeof(*info));
1220 info->lo_number = info64->lo_number;
1221 info->lo_device = info64->lo_device;
1222 info->lo_inode = info64->lo_inode;
1223 info->lo_rdevice = info64->lo_rdevice;
1224 info->lo_offset = info64->lo_offset;
1225 info->lo_encrypt_type = info64->lo_encrypt_type;
1226 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1227 info->lo_flags = info64->lo_flags;
1228 info->lo_init[0] = info64->lo_init[0];
1229 info->lo_init[1] = info64->lo_init[1];
1230 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1231 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1232 else
1233 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1234 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1235
1236 /* error in case values were truncated */
1237 if (info->lo_device != info64->lo_device ||
1238 info->lo_rdevice != info64->lo_rdevice ||
1239 info->lo_inode != info64->lo_inode ||
1240 info->lo_offset != info64->lo_offset)
1241 return -EOVERFLOW;
1242
1243 return 0;
1244 }
1245
1246 static int
1247 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1248 {
1249 struct loop_info info;
1250 struct loop_info64 info64;
1251
1252 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1253 return -EFAULT;
1254 loop_info64_from_old(&info, &info64);
1255 return loop_set_status(lo, &info64);
1256 }
1257
1258 static int
1259 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1260 {
1261 struct loop_info64 info64;
1262
1263 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1264 return -EFAULT;
1265 return loop_set_status(lo, &info64);
1266 }
1267
1268 static int
1269 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1270 struct loop_info info;
1271 struct loop_info64 info64;
1272 int err = 0;
1273
1274 if (!arg)
1275 err = -EINVAL;
1276 if (!err)
1277 err = loop_get_status(lo, &info64);
1278 if (!err)
1279 err = loop_info64_to_old(&info64, &info);
1280 if (!err && copy_to_user(arg, &info, sizeof(info)))
1281 err = -EFAULT;
1282
1283 return err;
1284 }
1285
1286 static int
1287 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1288 struct loop_info64 info64;
1289 int err = 0;
1290
1291 if (!arg)
1292 err = -EINVAL;
1293 if (!err)
1294 err = loop_get_status(lo, &info64);
1295 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1296 err = -EFAULT;
1297
1298 return err;
1299 }
1300
1301 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1302 {
1303 if (unlikely(lo->lo_state != Lo_bound))
1304 return -ENXIO;
1305
1306 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1307 }
1308
1309 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1310 unsigned int cmd, unsigned long arg)
1311 {
1312 struct loop_device *lo = bdev->bd_disk->private_data;
1313 int err;
1314
1315 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1316 switch (cmd) {
1317 case LOOP_SET_FD:
1318 err = loop_set_fd(lo, mode, bdev, arg);
1319 break;
1320 case LOOP_CHANGE_FD:
1321 err = loop_change_fd(lo, bdev, arg);
1322 break;
1323 case LOOP_CLR_FD:
1324 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1325 err = loop_clr_fd(lo);
1326 if (!err)
1327 goto out_unlocked;
1328 break;
1329 case LOOP_SET_STATUS:
1330 err = -EPERM;
1331 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1332 err = loop_set_status_old(lo,
1333 (struct loop_info __user *)arg);
1334 break;
1335 case LOOP_GET_STATUS:
1336 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1337 break;
1338 case LOOP_SET_STATUS64:
1339 err = -EPERM;
1340 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1341 err = loop_set_status64(lo,
1342 (struct loop_info64 __user *) arg);
1343 break;
1344 case LOOP_GET_STATUS64:
1345 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1346 break;
1347 case LOOP_SET_CAPACITY:
1348 err = -EPERM;
1349 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1350 err = loop_set_capacity(lo, bdev);
1351 break;
1352 default:
1353 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1354 }
1355 mutex_unlock(&lo->lo_ctl_mutex);
1356
1357 out_unlocked:
1358 return err;
1359 }
1360
1361 #ifdef CONFIG_COMPAT
1362 struct compat_loop_info {
1363 compat_int_t lo_number; /* ioctl r/o */
1364 compat_dev_t lo_device; /* ioctl r/o */
1365 compat_ulong_t lo_inode; /* ioctl r/o */
1366 compat_dev_t lo_rdevice; /* ioctl r/o */
1367 compat_int_t lo_offset;
1368 compat_int_t lo_encrypt_type;
1369 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1370 compat_int_t lo_flags; /* ioctl r/o */
1371 char lo_name[LO_NAME_SIZE];
1372 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1373 compat_ulong_t lo_init[2];
1374 char reserved[4];
1375 };
1376
1377 /*
1378 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1379 * - noinlined to reduce stack space usage in main part of driver
1380 */
1381 static noinline int
1382 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1383 struct loop_info64 *info64)
1384 {
1385 struct compat_loop_info info;
1386
1387 if (copy_from_user(&info, arg, sizeof(info)))
1388 return -EFAULT;
1389
1390 memset(info64, 0, sizeof(*info64));
1391 info64->lo_number = info.lo_number;
1392 info64->lo_device = info.lo_device;
1393 info64->lo_inode = info.lo_inode;
1394 info64->lo_rdevice = info.lo_rdevice;
1395 info64->lo_offset = info.lo_offset;
1396 info64->lo_sizelimit = 0;
1397 info64->lo_encrypt_type = info.lo_encrypt_type;
1398 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1399 info64->lo_flags = info.lo_flags;
1400 info64->lo_init[0] = info.lo_init[0];
1401 info64->lo_init[1] = info.lo_init[1];
1402 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1403 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1404 else
1405 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1406 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1407 return 0;
1408 }
1409
1410 /*
1411 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1412 * - noinlined to reduce stack space usage in main part of driver
1413 */
1414 static noinline int
1415 loop_info64_to_compat(const struct loop_info64 *info64,
1416 struct compat_loop_info __user *arg)
1417 {
1418 struct compat_loop_info info;
1419
1420 memset(&info, 0, sizeof(info));
1421 info.lo_number = info64->lo_number;
1422 info.lo_device = info64->lo_device;
1423 info.lo_inode = info64->lo_inode;
1424 info.lo_rdevice = info64->lo_rdevice;
1425 info.lo_offset = info64->lo_offset;
1426 info.lo_encrypt_type = info64->lo_encrypt_type;
1427 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1428 info.lo_flags = info64->lo_flags;
1429 info.lo_init[0] = info64->lo_init[0];
1430 info.lo_init[1] = info64->lo_init[1];
1431 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1432 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1433 else
1434 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1435 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1436
1437 /* error in case values were truncated */
1438 if (info.lo_device != info64->lo_device ||
1439 info.lo_rdevice != info64->lo_rdevice ||
1440 info.lo_inode != info64->lo_inode ||
1441 info.lo_offset != info64->lo_offset ||
1442 info.lo_init[0] != info64->lo_init[0] ||
1443 info.lo_init[1] != info64->lo_init[1])
1444 return -EOVERFLOW;
1445
1446 if (copy_to_user(arg, &info, sizeof(info)))
1447 return -EFAULT;
1448 return 0;
1449 }
1450
1451 static int
1452 loop_set_status_compat(struct loop_device *lo,
1453 const struct compat_loop_info __user *arg)
1454 {
1455 struct loop_info64 info64;
1456 int ret;
1457
1458 ret = loop_info64_from_compat(arg, &info64);
1459 if (ret < 0)
1460 return ret;
1461 return loop_set_status(lo, &info64);
1462 }
1463
1464 static int
1465 loop_get_status_compat(struct loop_device *lo,
1466 struct compat_loop_info __user *arg)
1467 {
1468 struct loop_info64 info64;
1469 int err = 0;
1470
1471 if (!arg)
1472 err = -EINVAL;
1473 if (!err)
1474 err = loop_get_status(lo, &info64);
1475 if (!err)
1476 err = loop_info64_to_compat(&info64, arg);
1477 return err;
1478 }
1479
1480 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1481 unsigned int cmd, unsigned long arg)
1482 {
1483 struct loop_device *lo = bdev->bd_disk->private_data;
1484 int err;
1485
1486 switch(cmd) {
1487 case LOOP_SET_STATUS:
1488 mutex_lock(&lo->lo_ctl_mutex);
1489 err = loop_set_status_compat(
1490 lo, (const struct compat_loop_info __user *) arg);
1491 mutex_unlock(&lo->lo_ctl_mutex);
1492 break;
1493 case LOOP_GET_STATUS:
1494 mutex_lock(&lo->lo_ctl_mutex);
1495 err = loop_get_status_compat(
1496 lo, (struct compat_loop_info __user *) arg);
1497 mutex_unlock(&lo->lo_ctl_mutex);
1498 break;
1499 case LOOP_SET_CAPACITY:
1500 case LOOP_CLR_FD:
1501 case LOOP_GET_STATUS64:
1502 case LOOP_SET_STATUS64:
1503 arg = (unsigned long) compat_ptr(arg);
1504 case LOOP_SET_FD:
1505 case LOOP_CHANGE_FD:
1506 err = lo_ioctl(bdev, mode, cmd, arg);
1507 break;
1508 default:
1509 err = -ENOIOCTLCMD;
1510 break;
1511 }
1512 return err;
1513 }
1514 #endif
1515
1516 static int lo_open(struct block_device *bdev, fmode_t mode)
1517 {
1518 struct loop_device *lo;
1519 int err = 0;
1520
1521 mutex_lock(&loop_index_mutex);
1522 lo = bdev->bd_disk->private_data;
1523 if (!lo) {
1524 err = -ENXIO;
1525 goto out;
1526 }
1527
1528 mutex_lock(&lo->lo_ctl_mutex);
1529 lo->lo_refcnt++;
1530 mutex_unlock(&lo->lo_ctl_mutex);
1531 out:
1532 mutex_unlock(&loop_index_mutex);
1533 return err;
1534 }
1535
1536 static int lo_release(struct gendisk *disk, fmode_t mode)
1537 {
1538 struct loop_device *lo = disk->private_data;
1539 int err;
1540
1541 mutex_lock(&lo->lo_ctl_mutex);
1542
1543 if (--lo->lo_refcnt)
1544 goto out;
1545
1546 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1547 /*
1548 * In autoclear mode, stop the loop thread
1549 * and remove configuration after last close.
1550 */
1551 err = loop_clr_fd(lo);
1552 if (!err)
1553 goto out_unlocked;
1554 } else {
1555 /*
1556 * Otherwise keep thread (if running) and config,
1557 * but flush possible ongoing bios in thread.
1558 */
1559 loop_flush(lo);
1560 }
1561
1562 out:
1563 mutex_unlock(&lo->lo_ctl_mutex);
1564 out_unlocked:
1565 return 0;
1566 }
1567
1568 static const struct block_device_operations lo_fops = {
1569 .owner = THIS_MODULE,
1570 .open = lo_open,
1571 .release = lo_release,
1572 .ioctl = lo_ioctl,
1573 #ifdef CONFIG_COMPAT
1574 .compat_ioctl = lo_compat_ioctl,
1575 #endif
1576 };
1577
1578 /*
1579 * And now the modules code and kernel interface.
1580 */
1581 static int max_loop;
1582 module_param(max_loop, int, S_IRUGO);
1583 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1584 module_param(max_part, int, S_IRUGO);
1585 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1586 MODULE_LICENSE("GPL");
1587 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1588
1589 int loop_register_transfer(struct loop_func_table *funcs)
1590 {
1591 unsigned int n = funcs->number;
1592
1593 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1594 return -EINVAL;
1595 xfer_funcs[n] = funcs;
1596 return 0;
1597 }
1598
1599 static int unregister_transfer_cb(int id, void *ptr, void *data)
1600 {
1601 struct loop_device *lo = ptr;
1602 struct loop_func_table *xfer = data;
1603
1604 mutex_lock(&lo->lo_ctl_mutex);
1605 if (lo->lo_encryption == xfer)
1606 loop_release_xfer(lo);
1607 mutex_unlock(&lo->lo_ctl_mutex);
1608 return 0;
1609 }
1610
1611 int loop_unregister_transfer(int number)
1612 {
1613 unsigned int n = number;
1614 struct loop_func_table *xfer;
1615
1616 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1617 return -EINVAL;
1618
1619 xfer_funcs[n] = NULL;
1620 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1621 return 0;
1622 }
1623
1624 EXPORT_SYMBOL(loop_register_transfer);
1625 EXPORT_SYMBOL(loop_unregister_transfer);
1626
1627 static int loop_add(struct loop_device **l, int i)
1628 {
1629 struct loop_device *lo;
1630 struct gendisk *disk;
1631 int err;
1632
1633 err = -ENOMEM;
1634 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1635 if (!lo)
1636 goto out;
1637
1638 /* allocate id, if @id >= 0, we're requesting that specific id */
1639 if (i >= 0) {
1640 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1641 if (err == -ENOSPC)
1642 err = -EEXIST;
1643 } else {
1644 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1645 }
1646 if (err < 0)
1647 goto out_free_dev;
1648 i = err;
1649
1650 err = -ENOMEM;
1651 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1652 if (!lo->lo_queue)
1653 goto out_free_dev;
1654
1655 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1656 if (!disk)
1657 goto out_free_queue;
1658
1659 /*
1660 * Disable partition scanning by default. The in-kernel partition
1661 * scanning can be requested individually per-device during its
1662 * setup. Userspace can always add and remove partitions from all
1663 * devices. The needed partition minors are allocated from the
1664 * extended minor space, the main loop device numbers will continue
1665 * to match the loop minors, regardless of the number of partitions
1666 * used.
1667 *
1668 * If max_part is given, partition scanning is globally enabled for
1669 * all loop devices. The minors for the main loop devices will be
1670 * multiples of max_part.
1671 *
1672 * Note: Global-for-all-devices, set-only-at-init, read-only module
1673 * parameteters like 'max_loop' and 'max_part' make things needlessly
1674 * complicated, are too static, inflexible and may surprise
1675 * userspace tools. Parameters like this in general should be avoided.
1676 */
1677 if (!part_shift)
1678 disk->flags |= GENHD_FL_NO_PART_SCAN;
1679 disk->flags |= GENHD_FL_EXT_DEVT;
1680 mutex_init(&lo->lo_ctl_mutex);
1681 lo->lo_number = i;
1682 lo->lo_thread = NULL;
1683 init_waitqueue_head(&lo->lo_event);
1684 init_waitqueue_head(&lo->lo_req_wait);
1685 spin_lock_init(&lo->lo_lock);
1686 disk->major = LOOP_MAJOR;
1687 disk->first_minor = i << part_shift;
1688 disk->fops = &lo_fops;
1689 disk->private_data = lo;
1690 disk->queue = lo->lo_queue;
1691 sprintf(disk->disk_name, "loop%d", i);
1692 add_disk(disk);
1693 *l = lo;
1694 return lo->lo_number;
1695
1696 out_free_queue:
1697 blk_cleanup_queue(lo->lo_queue);
1698 out_free_dev:
1699 kfree(lo);
1700 out:
1701 return err;
1702 }
1703
1704 static void loop_remove(struct loop_device *lo)
1705 {
1706 del_gendisk(lo->lo_disk);
1707 blk_cleanup_queue(lo->lo_queue);
1708 put_disk(lo->lo_disk);
1709 kfree(lo);
1710 }
1711
1712 static int find_free_cb(int id, void *ptr, void *data)
1713 {
1714 struct loop_device *lo = ptr;
1715 struct loop_device **l = data;
1716
1717 if (lo->lo_state == Lo_unbound) {
1718 *l = lo;
1719 return 1;
1720 }
1721 return 0;
1722 }
1723
1724 static int loop_lookup(struct loop_device **l, int i)
1725 {
1726 struct loop_device *lo;
1727 int ret = -ENODEV;
1728
1729 if (i < 0) {
1730 int err;
1731
1732 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1733 if (err == 1) {
1734 *l = lo;
1735 ret = lo->lo_number;
1736 }
1737 goto out;
1738 }
1739
1740 /* lookup and return a specific i */
1741 lo = idr_find(&loop_index_idr, i);
1742 if (lo) {
1743 *l = lo;
1744 ret = lo->lo_number;
1745 }
1746 out:
1747 return ret;
1748 }
1749
1750 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1751 {
1752 struct loop_device *lo;
1753 struct kobject *kobj;
1754 int err;
1755
1756 mutex_lock(&loop_index_mutex);
1757 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1758 if (err < 0)
1759 err = loop_add(&lo, MINOR(dev) >> part_shift);
1760 if (err < 0)
1761 kobj = ERR_PTR(err);
1762 else
1763 kobj = get_disk(lo->lo_disk);
1764 mutex_unlock(&loop_index_mutex);
1765
1766 *part = 0;
1767 return kobj;
1768 }
1769
1770 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1771 unsigned long parm)
1772 {
1773 struct loop_device *lo;
1774 int ret = -ENOSYS;
1775
1776 mutex_lock(&loop_index_mutex);
1777 switch (cmd) {
1778 case LOOP_CTL_ADD:
1779 ret = loop_lookup(&lo, parm);
1780 if (ret >= 0) {
1781 ret = -EEXIST;
1782 break;
1783 }
1784 ret = loop_add(&lo, parm);
1785 break;
1786 case LOOP_CTL_REMOVE:
1787 ret = loop_lookup(&lo, parm);
1788 if (ret < 0)
1789 break;
1790 mutex_lock(&lo->lo_ctl_mutex);
1791 if (lo->lo_state != Lo_unbound) {
1792 ret = -EBUSY;
1793 mutex_unlock(&lo->lo_ctl_mutex);
1794 break;
1795 }
1796 if (lo->lo_refcnt > 0) {
1797 ret = -EBUSY;
1798 mutex_unlock(&lo->lo_ctl_mutex);
1799 break;
1800 }
1801 lo->lo_disk->private_data = NULL;
1802 mutex_unlock(&lo->lo_ctl_mutex);
1803 idr_remove(&loop_index_idr, lo->lo_number);
1804 loop_remove(lo);
1805 break;
1806 case LOOP_CTL_GET_FREE:
1807 ret = loop_lookup(&lo, -1);
1808 if (ret >= 0)
1809 break;
1810 ret = loop_add(&lo, -1);
1811 }
1812 mutex_unlock(&loop_index_mutex);
1813
1814 return ret;
1815 }
1816
1817 static const struct file_operations loop_ctl_fops = {
1818 .open = nonseekable_open,
1819 .unlocked_ioctl = loop_control_ioctl,
1820 .compat_ioctl = loop_control_ioctl,
1821 .owner = THIS_MODULE,
1822 .llseek = noop_llseek,
1823 };
1824
1825 static struct miscdevice loop_misc = {
1826 .minor = LOOP_CTRL_MINOR,
1827 .name = "loop-control",
1828 .fops = &loop_ctl_fops,
1829 };
1830
1831 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1832 MODULE_ALIAS("devname:loop-control");
1833
1834 static int __init loop_init(void)
1835 {
1836 int i, nr;
1837 unsigned long range;
1838 struct loop_device *lo;
1839 int err;
1840
1841 err = misc_register(&loop_misc);
1842 if (err < 0)
1843 return err;
1844
1845 part_shift = 0;
1846 if (max_part > 0) {
1847 part_shift = fls(max_part);
1848
1849 /*
1850 * Adjust max_part according to part_shift as it is exported
1851 * to user space so that user can decide correct minor number
1852 * if [s]he want to create more devices.
1853 *
1854 * Note that -1 is required because partition 0 is reserved
1855 * for the whole disk.
1856 */
1857 max_part = (1UL << part_shift) - 1;
1858 }
1859
1860 if ((1UL << part_shift) > DISK_MAX_PARTS) {
1861 err = -EINVAL;
1862 goto misc_out;
1863 }
1864
1865 if (max_loop > 1UL << (MINORBITS - part_shift)) {
1866 err = -EINVAL;
1867 goto misc_out;
1868 }
1869
1870 /*
1871 * If max_loop is specified, create that many devices upfront.
1872 * This also becomes a hard limit. If max_loop is not specified,
1873 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1874 * init time. Loop devices can be requested on-demand with the
1875 * /dev/loop-control interface, or be instantiated by accessing
1876 * a 'dead' device node.
1877 */
1878 if (max_loop) {
1879 nr = max_loop;
1880 range = max_loop << part_shift;
1881 } else {
1882 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1883 range = 1UL << MINORBITS;
1884 }
1885
1886 if (register_blkdev(LOOP_MAJOR, "loop")) {
1887 err = -EIO;
1888 goto misc_out;
1889 }
1890
1891 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1892 THIS_MODULE, loop_probe, NULL, NULL);
1893
1894 /* pre-create number of devices given by config or max_loop */
1895 mutex_lock(&loop_index_mutex);
1896 for (i = 0; i < nr; i++)
1897 loop_add(&lo, i);
1898 mutex_unlock(&loop_index_mutex);
1899
1900 printk(KERN_INFO "loop: module loaded\n");
1901 return 0;
1902
1903 misc_out:
1904 misc_deregister(&loop_misc);
1905 return err;
1906 }
1907
1908 static int loop_exit_cb(int id, void *ptr, void *data)
1909 {
1910 struct loop_device *lo = ptr;
1911
1912 loop_remove(lo);
1913 return 0;
1914 }
1915
1916 static void __exit loop_exit(void)
1917 {
1918 unsigned long range;
1919
1920 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1921
1922 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1923 idr_destroy(&loop_index_idr);
1924
1925 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1926 unregister_blkdev(LOOP_MAJOR, "loop");
1927
1928 misc_deregister(&loop_misc);
1929 }
1930
1931 module_init(loop_init);
1932 module_exit(loop_exit);
1933
1934 #ifndef MODULE
1935 static int __init max_loop_setup(char *str)
1936 {
1937 max_loop = simple_strtol(str, NULL, 0);
1938 return 1;
1939 }
1940
1941 __setup("max_loop=", max_loop_setup);
1942 #endif
This page took 0.068717 seconds and 6 git commands to generate.