NVMe: Fix nvme get/put queue semantics
[deliverable/linux.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/nvme.h>
16 #include <linux/bio.h>
17 #include <linux/bitops.h>
18 #include <linux/blkdev.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/percpu.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #include <trace/events/block.h>
46
47 #define NVME_Q_DEPTH 1024
48 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT (admin_timeout * HZ)
51 #define IOD_TIMEOUT (retry_time * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char io_timeout = 30;
58 module_param(io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char retry_time = 30;
62 module_param(retry_time, byte, 0644);
63 MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int use_threaded_interrupts;
69 module_param(use_threaded_interrupts, int, 0);
70
71 static DEFINE_SPINLOCK(dev_list_lock);
72 static LIST_HEAD(dev_list);
73 static struct task_struct *nvme_thread;
74 static struct workqueue_struct *nvme_workq;
75 static wait_queue_head_t nvme_kthread_wait;
76
77 static void nvme_reset_failed_dev(struct work_struct *ws);
78
79 struct async_cmd_info {
80 struct kthread_work work;
81 struct kthread_worker *worker;
82 u32 result;
83 int status;
84 void *ctx;
85 };
86
87 /*
88 * An NVM Express queue. Each device has at least two (one for admin
89 * commands and one for I/O commands).
90 */
91 struct nvme_queue {
92 struct rcu_head r_head;
93 struct device *q_dmadev;
94 struct nvme_dev *dev;
95 char irqname[24]; /* nvme4294967295-65535\0 */
96 spinlock_t q_lock;
97 struct nvme_command *sq_cmds;
98 volatile struct nvme_completion *cqes;
99 dma_addr_t sq_dma_addr;
100 dma_addr_t cq_dma_addr;
101 wait_queue_head_t sq_full;
102 wait_queue_t sq_cong_wait;
103 struct bio_list sq_cong;
104 struct list_head iod_bio;
105 u32 __iomem *q_db;
106 u16 q_depth;
107 u16 cq_vector;
108 u16 sq_head;
109 u16 sq_tail;
110 u16 cq_head;
111 u16 qid;
112 u8 cq_phase;
113 u8 cqe_seen;
114 u8 q_suspended;
115 cpumask_var_t cpu_mask;
116 struct async_cmd_info cmdinfo;
117 unsigned long cmdid_data[];
118 };
119
120 /*
121 * Check we didin't inadvertently grow the command struct
122 */
123 static inline void _nvme_check_size(void)
124 {
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143 nvme_completion_fn fn;
144 void *ctx;
145 unsigned long timeout;
146 int aborted;
147 };
148
149 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
150 {
151 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
152 }
153
154 static unsigned nvme_queue_extra(int depth)
155 {
156 return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
157 }
158
159 /**
160 * alloc_cmdid() - Allocate a Command ID
161 * @nvmeq: The queue that will be used for this command
162 * @ctx: A pointer that will be passed to the handler
163 * @handler: The function to call on completion
164 *
165 * Allocate a Command ID for a queue. The data passed in will
166 * be passed to the completion handler. This is implemented by using
167 * the bottom two bits of the ctx pointer to store the handler ID.
168 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
169 * We can change this if it becomes a problem.
170 *
171 * May be called with local interrupts disabled and the q_lock held,
172 * or with interrupts enabled and no locks held.
173 */
174 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
175 nvme_completion_fn handler, unsigned timeout)
176 {
177 int depth = nvmeq->q_depth - 1;
178 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
179 int cmdid;
180
181 do {
182 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
183 if (cmdid >= depth)
184 return -EBUSY;
185 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
186
187 info[cmdid].fn = handler;
188 info[cmdid].ctx = ctx;
189 info[cmdid].timeout = jiffies + timeout;
190 info[cmdid].aborted = 0;
191 return cmdid;
192 }
193
194 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
195 nvme_completion_fn handler, unsigned timeout)
196 {
197 int cmdid;
198 wait_event_killable(nvmeq->sq_full,
199 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
200 return (cmdid < 0) ? -EINTR : cmdid;
201 }
202
203 /* Special values must be less than 0x1000 */
204 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
205 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
206 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
207 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
208 #define CMD_CTX_ABORT (0x318 + CMD_CTX_BASE)
209
210 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
211 struct nvme_completion *cqe)
212 {
213 if (ctx == CMD_CTX_CANCELLED)
214 return;
215 if (ctx == CMD_CTX_ABORT) {
216 ++nvmeq->dev->abort_limit;
217 return;
218 }
219 if (ctx == CMD_CTX_COMPLETED) {
220 dev_warn(nvmeq->q_dmadev,
221 "completed id %d twice on queue %d\n",
222 cqe->command_id, le16_to_cpup(&cqe->sq_id));
223 return;
224 }
225 if (ctx == CMD_CTX_INVALID) {
226 dev_warn(nvmeq->q_dmadev,
227 "invalid id %d completed on queue %d\n",
228 cqe->command_id, le16_to_cpup(&cqe->sq_id));
229 return;
230 }
231
232 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
233 }
234
235 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
236 struct nvme_completion *cqe)
237 {
238 struct async_cmd_info *cmdinfo = ctx;
239 cmdinfo->result = le32_to_cpup(&cqe->result);
240 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
241 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
242 }
243
244 /*
245 * Called with local interrupts disabled and the q_lock held. May not sleep.
246 */
247 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
248 nvme_completion_fn *fn)
249 {
250 void *ctx;
251 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
252
253 if (cmdid >= nvmeq->q_depth || !info[cmdid].fn) {
254 if (fn)
255 *fn = special_completion;
256 return CMD_CTX_INVALID;
257 }
258 if (fn)
259 *fn = info[cmdid].fn;
260 ctx = info[cmdid].ctx;
261 info[cmdid].fn = special_completion;
262 info[cmdid].ctx = CMD_CTX_COMPLETED;
263 clear_bit(cmdid, nvmeq->cmdid_data);
264 wake_up(&nvmeq->sq_full);
265 return ctx;
266 }
267
268 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
269 nvme_completion_fn *fn)
270 {
271 void *ctx;
272 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
273 if (fn)
274 *fn = info[cmdid].fn;
275 ctx = info[cmdid].ctx;
276 info[cmdid].fn = special_completion;
277 info[cmdid].ctx = CMD_CTX_CANCELLED;
278 return ctx;
279 }
280
281 static struct nvme_queue *raw_nvmeq(struct nvme_dev *dev, int qid)
282 {
283 return rcu_dereference_raw(dev->queues[qid]);
284 }
285
286 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) __acquires(RCU)
287 {
288 struct nvme_queue *nvmeq;
289 unsigned queue_id = get_cpu_var(*dev->io_queue);
290
291 rcu_read_lock();
292 nvmeq = rcu_dereference(dev->queues[queue_id]);
293 if (nvmeq)
294 return nvmeq;
295
296 rcu_read_unlock();
297 put_cpu_var(*dev->io_queue);
298 return NULL;
299 }
300
301 static void put_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
302 {
303 rcu_read_unlock();
304 put_cpu_var(nvmeq->dev->io_queue);
305 }
306
307 static struct nvme_queue *lock_nvmeq(struct nvme_dev *dev, int q_idx)
308 __acquires(RCU)
309 {
310 struct nvme_queue *nvmeq;
311
312 rcu_read_lock();
313 nvmeq = rcu_dereference(dev->queues[q_idx]);
314 if (nvmeq)
315 return nvmeq;
316
317 rcu_read_unlock();
318 return NULL;
319 }
320
321 static void unlock_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
322 {
323 rcu_read_unlock();
324 }
325
326 /**
327 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
328 * @nvmeq: The queue to use
329 * @cmd: The command to send
330 *
331 * Safe to use from interrupt context
332 */
333 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
334 {
335 unsigned long flags;
336 u16 tail;
337 spin_lock_irqsave(&nvmeq->q_lock, flags);
338 if (nvmeq->q_suspended) {
339 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
340 return -EBUSY;
341 }
342 tail = nvmeq->sq_tail;
343 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
344 if (++tail == nvmeq->q_depth)
345 tail = 0;
346 writel(tail, nvmeq->q_db);
347 nvmeq->sq_tail = tail;
348 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
349
350 return 0;
351 }
352
353 static __le64 **iod_list(struct nvme_iod *iod)
354 {
355 return ((void *)iod) + iod->offset;
356 }
357
358 /*
359 * Will slightly overestimate the number of pages needed. This is OK
360 * as it only leads to a small amount of wasted memory for the lifetime of
361 * the I/O.
362 */
363 static int nvme_npages(unsigned size)
364 {
365 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
366 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
367 }
368
369 static struct nvme_iod *
370 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
371 {
372 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
373 sizeof(__le64 *) * nvme_npages(nbytes) +
374 sizeof(struct scatterlist) * nseg, gfp);
375
376 if (iod) {
377 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
378 iod->npages = -1;
379 iod->length = nbytes;
380 iod->nents = 0;
381 iod->first_dma = 0ULL;
382 iod->start_time = jiffies;
383 }
384
385 return iod;
386 }
387
388 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
389 {
390 const int last_prp = PAGE_SIZE / 8 - 1;
391 int i;
392 __le64 **list = iod_list(iod);
393 dma_addr_t prp_dma = iod->first_dma;
394
395 if (iod->npages == 0)
396 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
397 for (i = 0; i < iod->npages; i++) {
398 __le64 *prp_list = list[i];
399 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
400 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
401 prp_dma = next_prp_dma;
402 }
403 kfree(iod);
404 }
405
406 static void nvme_start_io_acct(struct bio *bio)
407 {
408 struct gendisk *disk = bio->bi_bdev->bd_disk;
409 const int rw = bio_data_dir(bio);
410 int cpu = part_stat_lock();
411 part_round_stats(cpu, &disk->part0);
412 part_stat_inc(cpu, &disk->part0, ios[rw]);
413 part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
414 part_inc_in_flight(&disk->part0, rw);
415 part_stat_unlock();
416 }
417
418 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
419 {
420 struct gendisk *disk = bio->bi_bdev->bd_disk;
421 const int rw = bio_data_dir(bio);
422 unsigned long duration = jiffies - start_time;
423 int cpu = part_stat_lock();
424 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
425 part_round_stats(cpu, &disk->part0);
426 part_dec_in_flight(&disk->part0, rw);
427 part_stat_unlock();
428 }
429
430 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
431 struct nvme_completion *cqe)
432 {
433 struct nvme_iod *iod = ctx;
434 struct bio *bio = iod->private;
435 u16 status = le16_to_cpup(&cqe->status) >> 1;
436 int error = 0;
437
438 if (unlikely(status)) {
439 if (!(status & NVME_SC_DNR ||
440 bio->bi_rw & REQ_FAILFAST_MASK) &&
441 (jiffies - iod->start_time) < IOD_TIMEOUT) {
442 if (!waitqueue_active(&nvmeq->sq_full))
443 add_wait_queue(&nvmeq->sq_full,
444 &nvmeq->sq_cong_wait);
445 list_add_tail(&iod->node, &nvmeq->iod_bio);
446 wake_up(&nvmeq->sq_full);
447 return;
448 }
449 error = -EIO;
450 }
451 if (iod->nents) {
452 dma_unmap_sg(nvmeq->q_dmadev, iod->sg, iod->nents,
453 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
454 nvme_end_io_acct(bio, iod->start_time);
455 }
456 nvme_free_iod(nvmeq->dev, iod);
457
458 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio, error);
459 bio_endio(bio, error);
460 }
461
462 /* length is in bytes. gfp flags indicates whether we may sleep. */
463 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
464 gfp_t gfp)
465 {
466 struct dma_pool *pool;
467 int length = total_len;
468 struct scatterlist *sg = iod->sg;
469 int dma_len = sg_dma_len(sg);
470 u64 dma_addr = sg_dma_address(sg);
471 int offset = offset_in_page(dma_addr);
472 __le64 *prp_list;
473 __le64 **list = iod_list(iod);
474 dma_addr_t prp_dma;
475 int nprps, i;
476
477 length -= (PAGE_SIZE - offset);
478 if (length <= 0)
479 return total_len;
480
481 dma_len -= (PAGE_SIZE - offset);
482 if (dma_len) {
483 dma_addr += (PAGE_SIZE - offset);
484 } else {
485 sg = sg_next(sg);
486 dma_addr = sg_dma_address(sg);
487 dma_len = sg_dma_len(sg);
488 }
489
490 if (length <= PAGE_SIZE) {
491 iod->first_dma = dma_addr;
492 return total_len;
493 }
494
495 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
496 if (nprps <= (256 / 8)) {
497 pool = dev->prp_small_pool;
498 iod->npages = 0;
499 } else {
500 pool = dev->prp_page_pool;
501 iod->npages = 1;
502 }
503
504 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
505 if (!prp_list) {
506 iod->first_dma = dma_addr;
507 iod->npages = -1;
508 return (total_len - length) + PAGE_SIZE;
509 }
510 list[0] = prp_list;
511 iod->first_dma = prp_dma;
512 i = 0;
513 for (;;) {
514 if (i == PAGE_SIZE / 8) {
515 __le64 *old_prp_list = prp_list;
516 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
517 if (!prp_list)
518 return total_len - length;
519 list[iod->npages++] = prp_list;
520 prp_list[0] = old_prp_list[i - 1];
521 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
522 i = 1;
523 }
524 prp_list[i++] = cpu_to_le64(dma_addr);
525 dma_len -= PAGE_SIZE;
526 dma_addr += PAGE_SIZE;
527 length -= PAGE_SIZE;
528 if (length <= 0)
529 break;
530 if (dma_len > 0)
531 continue;
532 BUG_ON(dma_len < 0);
533 sg = sg_next(sg);
534 dma_addr = sg_dma_address(sg);
535 dma_len = sg_dma_len(sg);
536 }
537
538 return total_len;
539 }
540
541 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
542 int len)
543 {
544 struct bio *split = bio_split(bio, len >> 9, GFP_ATOMIC, NULL);
545 if (!split)
546 return -ENOMEM;
547
548 trace_block_split(bdev_get_queue(bio->bi_bdev), bio,
549 split->bi_iter.bi_sector);
550 bio_chain(split, bio);
551
552 if (!waitqueue_active(&nvmeq->sq_full))
553 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
554 bio_list_add(&nvmeq->sq_cong, split);
555 bio_list_add(&nvmeq->sq_cong, bio);
556 wake_up(&nvmeq->sq_full);
557
558 return 0;
559 }
560
561 /* NVMe scatterlists require no holes in the virtual address */
562 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
563 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
564
565 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
566 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
567 {
568 struct bio_vec bvec, bvprv;
569 struct bvec_iter iter;
570 struct scatterlist *sg = NULL;
571 int length = 0, nsegs = 0, split_len = bio->bi_iter.bi_size;
572 int first = 1;
573
574 if (nvmeq->dev->stripe_size)
575 split_len = nvmeq->dev->stripe_size -
576 ((bio->bi_iter.bi_sector << 9) &
577 (nvmeq->dev->stripe_size - 1));
578
579 sg_init_table(iod->sg, psegs);
580 bio_for_each_segment(bvec, bio, iter) {
581 if (!first && BIOVEC_PHYS_MERGEABLE(&bvprv, &bvec)) {
582 sg->length += bvec.bv_len;
583 } else {
584 if (!first && BIOVEC_NOT_VIRT_MERGEABLE(&bvprv, &bvec))
585 return nvme_split_and_submit(bio, nvmeq,
586 length);
587
588 sg = sg ? sg + 1 : iod->sg;
589 sg_set_page(sg, bvec.bv_page,
590 bvec.bv_len, bvec.bv_offset);
591 nsegs++;
592 }
593
594 if (split_len - length < bvec.bv_len)
595 return nvme_split_and_submit(bio, nvmeq, split_len);
596 length += bvec.bv_len;
597 bvprv = bvec;
598 first = 0;
599 }
600 iod->nents = nsegs;
601 sg_mark_end(sg);
602 if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
603 return -ENOMEM;
604
605 BUG_ON(length != bio->bi_iter.bi_size);
606 return length;
607 }
608
609 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
610 struct bio *bio, struct nvme_iod *iod, int cmdid)
611 {
612 struct nvme_dsm_range *range =
613 (struct nvme_dsm_range *)iod_list(iod)[0];
614 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
615
616 range->cattr = cpu_to_le32(0);
617 range->nlb = cpu_to_le32(bio->bi_iter.bi_size >> ns->lba_shift);
618 range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
619
620 memset(cmnd, 0, sizeof(*cmnd));
621 cmnd->dsm.opcode = nvme_cmd_dsm;
622 cmnd->dsm.command_id = cmdid;
623 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
624 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
625 cmnd->dsm.nr = 0;
626 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
627
628 if (++nvmeq->sq_tail == nvmeq->q_depth)
629 nvmeq->sq_tail = 0;
630 writel(nvmeq->sq_tail, nvmeq->q_db);
631
632 return 0;
633 }
634
635 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
636 int cmdid)
637 {
638 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
639
640 memset(cmnd, 0, sizeof(*cmnd));
641 cmnd->common.opcode = nvme_cmd_flush;
642 cmnd->common.command_id = cmdid;
643 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
644
645 if (++nvmeq->sq_tail == nvmeq->q_depth)
646 nvmeq->sq_tail = 0;
647 writel(nvmeq->sq_tail, nvmeq->q_db);
648
649 return 0;
650 }
651
652 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod)
653 {
654 struct bio *bio = iod->private;
655 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
656 struct nvme_command *cmnd;
657 int cmdid;
658 u16 control;
659 u32 dsmgmt;
660
661 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
662 if (unlikely(cmdid < 0))
663 return cmdid;
664
665 if (bio->bi_rw & REQ_DISCARD)
666 return nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
667 if (bio->bi_rw & REQ_FLUSH)
668 return nvme_submit_flush(nvmeq, ns, cmdid);
669
670 control = 0;
671 if (bio->bi_rw & REQ_FUA)
672 control |= NVME_RW_FUA;
673 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
674 control |= NVME_RW_LR;
675
676 dsmgmt = 0;
677 if (bio->bi_rw & REQ_RAHEAD)
678 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
679
680 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
681 memset(cmnd, 0, sizeof(*cmnd));
682
683 cmnd->rw.opcode = bio_data_dir(bio) ? nvme_cmd_write : nvme_cmd_read;
684 cmnd->rw.command_id = cmdid;
685 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
686 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
687 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
688 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
689 cmnd->rw.length =
690 cpu_to_le16((bio->bi_iter.bi_size >> ns->lba_shift) - 1);
691 cmnd->rw.control = cpu_to_le16(control);
692 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
693
694 if (++nvmeq->sq_tail == nvmeq->q_depth)
695 nvmeq->sq_tail = 0;
696 writel(nvmeq->sq_tail, nvmeq->q_db);
697
698 return 0;
699 }
700
701 static int nvme_split_flush_data(struct nvme_queue *nvmeq, struct bio *bio)
702 {
703 struct bio *split = bio_clone(bio, GFP_ATOMIC);
704 if (!split)
705 return -ENOMEM;
706
707 split->bi_iter.bi_size = 0;
708 split->bi_phys_segments = 0;
709 bio->bi_rw &= ~REQ_FLUSH;
710 bio_chain(split, bio);
711
712 if (!waitqueue_active(&nvmeq->sq_full))
713 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
714 bio_list_add(&nvmeq->sq_cong, split);
715 bio_list_add(&nvmeq->sq_cong, bio);
716 wake_up_process(nvme_thread);
717
718 return 0;
719 }
720
721 /*
722 * Called with local interrupts disabled and the q_lock held. May not sleep.
723 */
724 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
725 struct bio *bio)
726 {
727 struct nvme_iod *iod;
728 int psegs = bio_phys_segments(ns->queue, bio);
729 int result;
730
731 if ((bio->bi_rw & REQ_FLUSH) && psegs)
732 return nvme_split_flush_data(nvmeq, bio);
733
734 iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, GFP_ATOMIC);
735 if (!iod)
736 return -ENOMEM;
737
738 iod->private = bio;
739 if (bio->bi_rw & REQ_DISCARD) {
740 void *range;
741 /*
742 * We reuse the small pool to allocate the 16-byte range here
743 * as it is not worth having a special pool for these or
744 * additional cases to handle freeing the iod.
745 */
746 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
747 GFP_ATOMIC,
748 &iod->first_dma);
749 if (!range) {
750 result = -ENOMEM;
751 goto free_iod;
752 }
753 iod_list(iod)[0] = (__le64 *)range;
754 iod->npages = 0;
755 } else if (psegs) {
756 result = nvme_map_bio(nvmeq, iod, bio,
757 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
758 psegs);
759 if (result <= 0)
760 goto free_iod;
761 if (nvme_setup_prps(nvmeq->dev, iod, result, GFP_ATOMIC) !=
762 result) {
763 result = -ENOMEM;
764 goto free_iod;
765 }
766 nvme_start_io_acct(bio);
767 }
768 if (unlikely(nvme_submit_iod(nvmeq, iod))) {
769 if (!waitqueue_active(&nvmeq->sq_full))
770 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
771 list_add_tail(&iod->node, &nvmeq->iod_bio);
772 }
773 return 0;
774
775 free_iod:
776 nvme_free_iod(nvmeq->dev, iod);
777 return result;
778 }
779
780 static int nvme_process_cq(struct nvme_queue *nvmeq)
781 {
782 u16 head, phase;
783
784 head = nvmeq->cq_head;
785 phase = nvmeq->cq_phase;
786
787 for (;;) {
788 void *ctx;
789 nvme_completion_fn fn;
790 struct nvme_completion cqe = nvmeq->cqes[head];
791 if ((le16_to_cpu(cqe.status) & 1) != phase)
792 break;
793 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
794 if (++head == nvmeq->q_depth) {
795 head = 0;
796 phase = !phase;
797 }
798
799 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
800 fn(nvmeq, ctx, &cqe);
801 }
802
803 /* If the controller ignores the cq head doorbell and continuously
804 * writes to the queue, it is theoretically possible to wrap around
805 * the queue twice and mistakenly return IRQ_NONE. Linux only
806 * requires that 0.1% of your interrupts are handled, so this isn't
807 * a big problem.
808 */
809 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
810 return 0;
811
812 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
813 nvmeq->cq_head = head;
814 nvmeq->cq_phase = phase;
815
816 nvmeq->cqe_seen = 1;
817 return 1;
818 }
819
820 static void nvme_make_request(struct request_queue *q, struct bio *bio)
821 {
822 struct nvme_ns *ns = q->queuedata;
823 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
824 int result = -EBUSY;
825
826 if (!nvmeq) {
827 bio_endio(bio, -EIO);
828 return;
829 }
830
831 spin_lock_irq(&nvmeq->q_lock);
832 if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
833 result = nvme_submit_bio_queue(nvmeq, ns, bio);
834 if (unlikely(result)) {
835 if (!waitqueue_active(&nvmeq->sq_full))
836 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
837 bio_list_add(&nvmeq->sq_cong, bio);
838 }
839
840 nvme_process_cq(nvmeq);
841 spin_unlock_irq(&nvmeq->q_lock);
842 put_nvmeq(nvmeq);
843 }
844
845 static irqreturn_t nvme_irq(int irq, void *data)
846 {
847 irqreturn_t result;
848 struct nvme_queue *nvmeq = data;
849 spin_lock(&nvmeq->q_lock);
850 nvme_process_cq(nvmeq);
851 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
852 nvmeq->cqe_seen = 0;
853 spin_unlock(&nvmeq->q_lock);
854 return result;
855 }
856
857 static irqreturn_t nvme_irq_check(int irq, void *data)
858 {
859 struct nvme_queue *nvmeq = data;
860 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
861 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
862 return IRQ_NONE;
863 return IRQ_WAKE_THREAD;
864 }
865
866 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
867 {
868 spin_lock_irq(&nvmeq->q_lock);
869 cancel_cmdid(nvmeq, cmdid, NULL);
870 spin_unlock_irq(&nvmeq->q_lock);
871 }
872
873 struct sync_cmd_info {
874 struct task_struct *task;
875 u32 result;
876 int status;
877 };
878
879 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
880 struct nvme_completion *cqe)
881 {
882 struct sync_cmd_info *cmdinfo = ctx;
883 cmdinfo->result = le32_to_cpup(&cqe->result);
884 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
885 wake_up_process(cmdinfo->task);
886 }
887
888 /*
889 * Returns 0 on success. If the result is negative, it's a Linux error code;
890 * if the result is positive, it's an NVM Express status code
891 */
892 static int nvme_submit_sync_cmd(struct nvme_dev *dev, int q_idx,
893 struct nvme_command *cmd,
894 u32 *result, unsigned timeout)
895 {
896 int cmdid, ret;
897 struct sync_cmd_info cmdinfo;
898 struct nvme_queue *nvmeq;
899
900 nvmeq = lock_nvmeq(dev, q_idx);
901 if (!nvmeq)
902 return -ENODEV;
903
904 cmdinfo.task = current;
905 cmdinfo.status = -EINTR;
906
907 cmdid = alloc_cmdid(nvmeq, &cmdinfo, sync_completion, timeout);
908 if (cmdid < 0) {
909 unlock_nvmeq(nvmeq);
910 return cmdid;
911 }
912 cmd->common.command_id = cmdid;
913
914 set_current_state(TASK_KILLABLE);
915 ret = nvme_submit_cmd(nvmeq, cmd);
916 if (ret) {
917 free_cmdid(nvmeq, cmdid, NULL);
918 unlock_nvmeq(nvmeq);
919 set_current_state(TASK_RUNNING);
920 return ret;
921 }
922 unlock_nvmeq(nvmeq);
923 schedule_timeout(timeout);
924
925 if (cmdinfo.status == -EINTR) {
926 nvmeq = lock_nvmeq(dev, q_idx);
927 if (nvmeq) {
928 nvme_abort_command(nvmeq, cmdid);
929 unlock_nvmeq(nvmeq);
930 }
931 return -EINTR;
932 }
933
934 if (result)
935 *result = cmdinfo.result;
936
937 return cmdinfo.status;
938 }
939
940 static int nvme_submit_async_cmd(struct nvme_queue *nvmeq,
941 struct nvme_command *cmd,
942 struct async_cmd_info *cmdinfo, unsigned timeout)
943 {
944 int cmdid;
945
946 cmdid = alloc_cmdid_killable(nvmeq, cmdinfo, async_completion, timeout);
947 if (cmdid < 0)
948 return cmdid;
949 cmdinfo->status = -EINTR;
950 cmd->common.command_id = cmdid;
951 return nvme_submit_cmd(nvmeq, cmd);
952 }
953
954 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
955 u32 *result)
956 {
957 return nvme_submit_sync_cmd(dev, 0, cmd, result, ADMIN_TIMEOUT);
958 }
959
960 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
961 u32 *result)
962 {
963 return nvme_submit_sync_cmd(dev, smp_processor_id() + 1, cmd, result,
964 NVME_IO_TIMEOUT);
965 }
966
967 static int nvme_submit_admin_cmd_async(struct nvme_dev *dev,
968 struct nvme_command *cmd, struct async_cmd_info *cmdinfo)
969 {
970 return nvme_submit_async_cmd(raw_nvmeq(dev, 0), cmd, cmdinfo,
971 ADMIN_TIMEOUT);
972 }
973
974 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
975 {
976 int status;
977 struct nvme_command c;
978
979 memset(&c, 0, sizeof(c));
980 c.delete_queue.opcode = opcode;
981 c.delete_queue.qid = cpu_to_le16(id);
982
983 status = nvme_submit_admin_cmd(dev, &c, NULL);
984 if (status)
985 return -EIO;
986 return 0;
987 }
988
989 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
990 struct nvme_queue *nvmeq)
991 {
992 int status;
993 struct nvme_command c;
994 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
995
996 memset(&c, 0, sizeof(c));
997 c.create_cq.opcode = nvme_admin_create_cq;
998 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
999 c.create_cq.cqid = cpu_to_le16(qid);
1000 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1001 c.create_cq.cq_flags = cpu_to_le16(flags);
1002 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1003
1004 status = nvme_submit_admin_cmd(dev, &c, NULL);
1005 if (status)
1006 return -EIO;
1007 return 0;
1008 }
1009
1010 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1011 struct nvme_queue *nvmeq)
1012 {
1013 int status;
1014 struct nvme_command c;
1015 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1016
1017 memset(&c, 0, sizeof(c));
1018 c.create_sq.opcode = nvme_admin_create_sq;
1019 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1020 c.create_sq.sqid = cpu_to_le16(qid);
1021 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1022 c.create_sq.sq_flags = cpu_to_le16(flags);
1023 c.create_sq.cqid = cpu_to_le16(qid);
1024
1025 status = nvme_submit_admin_cmd(dev, &c, NULL);
1026 if (status)
1027 return -EIO;
1028 return 0;
1029 }
1030
1031 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1032 {
1033 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1034 }
1035
1036 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1037 {
1038 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1039 }
1040
1041 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1042 dma_addr_t dma_addr)
1043 {
1044 struct nvme_command c;
1045
1046 memset(&c, 0, sizeof(c));
1047 c.identify.opcode = nvme_admin_identify;
1048 c.identify.nsid = cpu_to_le32(nsid);
1049 c.identify.prp1 = cpu_to_le64(dma_addr);
1050 c.identify.cns = cpu_to_le32(cns);
1051
1052 return nvme_submit_admin_cmd(dev, &c, NULL);
1053 }
1054
1055 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1056 dma_addr_t dma_addr, u32 *result)
1057 {
1058 struct nvme_command c;
1059
1060 memset(&c, 0, sizeof(c));
1061 c.features.opcode = nvme_admin_get_features;
1062 c.features.nsid = cpu_to_le32(nsid);
1063 c.features.prp1 = cpu_to_le64(dma_addr);
1064 c.features.fid = cpu_to_le32(fid);
1065
1066 return nvme_submit_admin_cmd(dev, &c, result);
1067 }
1068
1069 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1070 dma_addr_t dma_addr, u32 *result)
1071 {
1072 struct nvme_command c;
1073
1074 memset(&c, 0, sizeof(c));
1075 c.features.opcode = nvme_admin_set_features;
1076 c.features.prp1 = cpu_to_le64(dma_addr);
1077 c.features.fid = cpu_to_le32(fid);
1078 c.features.dword11 = cpu_to_le32(dword11);
1079
1080 return nvme_submit_admin_cmd(dev, &c, result);
1081 }
1082
1083 /**
1084 * nvme_abort_cmd - Attempt aborting a command
1085 * @cmdid: Command id of a timed out IO
1086 * @queue: The queue with timed out IO
1087 *
1088 * Schedule controller reset if the command was already aborted once before and
1089 * still hasn't been returned to the driver, or if this is the admin queue.
1090 */
1091 static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq)
1092 {
1093 int a_cmdid;
1094 struct nvme_command cmd;
1095 struct nvme_dev *dev = nvmeq->dev;
1096 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1097 struct nvme_queue *adminq;
1098
1099 if (!nvmeq->qid || info[cmdid].aborted) {
1100 if (work_busy(&dev->reset_work))
1101 return;
1102 list_del_init(&dev->node);
1103 dev_warn(&dev->pci_dev->dev,
1104 "I/O %d QID %d timeout, reset controller\n", cmdid,
1105 nvmeq->qid);
1106 dev->reset_workfn = nvme_reset_failed_dev;
1107 queue_work(nvme_workq, &dev->reset_work);
1108 return;
1109 }
1110
1111 if (!dev->abort_limit)
1112 return;
1113
1114 adminq = rcu_dereference(dev->queues[0]);
1115 a_cmdid = alloc_cmdid(adminq, CMD_CTX_ABORT, special_completion,
1116 ADMIN_TIMEOUT);
1117 if (a_cmdid < 0)
1118 return;
1119
1120 memset(&cmd, 0, sizeof(cmd));
1121 cmd.abort.opcode = nvme_admin_abort_cmd;
1122 cmd.abort.cid = cmdid;
1123 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1124 cmd.abort.command_id = a_cmdid;
1125
1126 --dev->abort_limit;
1127 info[cmdid].aborted = 1;
1128 info[cmdid].timeout = jiffies + ADMIN_TIMEOUT;
1129
1130 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid,
1131 nvmeq->qid);
1132 nvme_submit_cmd(adminq, &cmd);
1133 }
1134
1135 /**
1136 * nvme_cancel_ios - Cancel outstanding I/Os
1137 * @queue: The queue to cancel I/Os on
1138 * @timeout: True to only cancel I/Os which have timed out
1139 */
1140 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1141 {
1142 int depth = nvmeq->q_depth - 1;
1143 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1144 unsigned long now = jiffies;
1145 int cmdid;
1146
1147 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1148 void *ctx;
1149 nvme_completion_fn fn;
1150 static struct nvme_completion cqe = {
1151 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1152 };
1153
1154 if (timeout && !time_after(now, info[cmdid].timeout))
1155 continue;
1156 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1157 continue;
1158 if (timeout && nvmeq->dev->initialized) {
1159 nvme_abort_cmd(cmdid, nvmeq);
1160 continue;
1161 }
1162 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid,
1163 nvmeq->qid);
1164 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1165 fn(nvmeq, ctx, &cqe);
1166 }
1167 }
1168
1169 static void nvme_free_queue(struct rcu_head *r)
1170 {
1171 struct nvme_queue *nvmeq = container_of(r, struct nvme_queue, r_head);
1172
1173 spin_lock_irq(&nvmeq->q_lock);
1174 while (bio_list_peek(&nvmeq->sq_cong)) {
1175 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1176 bio_endio(bio, -EIO);
1177 }
1178 while (!list_empty(&nvmeq->iod_bio)) {
1179 static struct nvme_completion cqe = {
1180 .status = cpu_to_le16(
1181 (NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1),
1182 };
1183 struct nvme_iod *iod = list_first_entry(&nvmeq->iod_bio,
1184 struct nvme_iod,
1185 node);
1186 list_del(&iod->node);
1187 bio_completion(nvmeq, iod, &cqe);
1188 }
1189 spin_unlock_irq(&nvmeq->q_lock);
1190
1191 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1192 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1193 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1194 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1195 if (nvmeq->qid)
1196 free_cpumask_var(nvmeq->cpu_mask);
1197 kfree(nvmeq);
1198 }
1199
1200 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1201 {
1202 int i;
1203
1204 for (i = dev->queue_count - 1; i >= lowest; i--) {
1205 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
1206 rcu_assign_pointer(dev->queues[i], NULL);
1207 call_rcu(&nvmeq->r_head, nvme_free_queue);
1208 dev->queue_count--;
1209 }
1210 }
1211
1212 /**
1213 * nvme_suspend_queue - put queue into suspended state
1214 * @nvmeq - queue to suspend
1215 *
1216 * Returns 1 if already suspended, 0 otherwise.
1217 */
1218 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1219 {
1220 int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1221
1222 spin_lock_irq(&nvmeq->q_lock);
1223 if (nvmeq->q_suspended) {
1224 spin_unlock_irq(&nvmeq->q_lock);
1225 return 1;
1226 }
1227 nvmeq->q_suspended = 1;
1228 nvmeq->dev->online_queues--;
1229 spin_unlock_irq(&nvmeq->q_lock);
1230
1231 irq_set_affinity_hint(vector, NULL);
1232 free_irq(vector, nvmeq);
1233
1234 return 0;
1235 }
1236
1237 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1238 {
1239 spin_lock_irq(&nvmeq->q_lock);
1240 nvme_process_cq(nvmeq);
1241 nvme_cancel_ios(nvmeq, false);
1242 spin_unlock_irq(&nvmeq->q_lock);
1243 }
1244
1245 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1246 {
1247 struct nvme_queue *nvmeq = raw_nvmeq(dev, qid);
1248
1249 if (!nvmeq)
1250 return;
1251 if (nvme_suspend_queue(nvmeq))
1252 return;
1253
1254 /* Don't tell the adapter to delete the admin queue.
1255 * Don't tell a removed adapter to delete IO queues. */
1256 if (qid && readl(&dev->bar->csts) != -1) {
1257 adapter_delete_sq(dev, qid);
1258 adapter_delete_cq(dev, qid);
1259 }
1260 nvme_clear_queue(nvmeq);
1261 }
1262
1263 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1264 int depth, int vector)
1265 {
1266 struct device *dmadev = &dev->pci_dev->dev;
1267 unsigned extra = nvme_queue_extra(depth);
1268 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1269 if (!nvmeq)
1270 return NULL;
1271
1272 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1273 &nvmeq->cq_dma_addr, GFP_KERNEL);
1274 if (!nvmeq->cqes)
1275 goto free_nvmeq;
1276 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1277
1278 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1279 &nvmeq->sq_dma_addr, GFP_KERNEL);
1280 if (!nvmeq->sq_cmds)
1281 goto free_cqdma;
1282
1283 if (qid && !zalloc_cpumask_var(&nvmeq->cpu_mask, GFP_KERNEL))
1284 goto free_sqdma;
1285
1286 nvmeq->q_dmadev = dmadev;
1287 nvmeq->dev = dev;
1288 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1289 dev->instance, qid);
1290 spin_lock_init(&nvmeq->q_lock);
1291 nvmeq->cq_head = 0;
1292 nvmeq->cq_phase = 1;
1293 init_waitqueue_head(&nvmeq->sq_full);
1294 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1295 bio_list_init(&nvmeq->sq_cong);
1296 INIT_LIST_HEAD(&nvmeq->iod_bio);
1297 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1298 nvmeq->q_depth = depth;
1299 nvmeq->cq_vector = vector;
1300 nvmeq->qid = qid;
1301 nvmeq->q_suspended = 1;
1302 dev->queue_count++;
1303 rcu_assign_pointer(dev->queues[qid], nvmeq);
1304
1305 return nvmeq;
1306
1307 free_sqdma:
1308 dma_free_coherent(dmadev, SQ_SIZE(depth), (void *)nvmeq->sq_cmds,
1309 nvmeq->sq_dma_addr);
1310 free_cqdma:
1311 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1312 nvmeq->cq_dma_addr);
1313 free_nvmeq:
1314 kfree(nvmeq);
1315 return NULL;
1316 }
1317
1318 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1319 const char *name)
1320 {
1321 if (use_threaded_interrupts)
1322 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1323 nvme_irq_check, nvme_irq, IRQF_SHARED,
1324 name, nvmeq);
1325 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1326 IRQF_SHARED, name, nvmeq);
1327 }
1328
1329 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1330 {
1331 struct nvme_dev *dev = nvmeq->dev;
1332 unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1333
1334 nvmeq->sq_tail = 0;
1335 nvmeq->cq_head = 0;
1336 nvmeq->cq_phase = 1;
1337 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1338 memset(nvmeq->cmdid_data, 0, extra);
1339 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1340 nvme_cancel_ios(nvmeq, false);
1341 nvmeq->q_suspended = 0;
1342 dev->online_queues++;
1343 }
1344
1345 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1346 {
1347 struct nvme_dev *dev = nvmeq->dev;
1348 int result;
1349
1350 result = adapter_alloc_cq(dev, qid, nvmeq);
1351 if (result < 0)
1352 return result;
1353
1354 result = adapter_alloc_sq(dev, qid, nvmeq);
1355 if (result < 0)
1356 goto release_cq;
1357
1358 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1359 if (result < 0)
1360 goto release_sq;
1361
1362 spin_lock_irq(&nvmeq->q_lock);
1363 nvme_init_queue(nvmeq, qid);
1364 spin_unlock_irq(&nvmeq->q_lock);
1365
1366 return result;
1367
1368 release_sq:
1369 adapter_delete_sq(dev, qid);
1370 release_cq:
1371 adapter_delete_cq(dev, qid);
1372 return result;
1373 }
1374
1375 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1376 {
1377 unsigned long timeout;
1378 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1379
1380 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1381
1382 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1383 msleep(100);
1384 if (fatal_signal_pending(current))
1385 return -EINTR;
1386 if (time_after(jiffies, timeout)) {
1387 dev_err(&dev->pci_dev->dev,
1388 "Device not ready; aborting %s\n", enabled ?
1389 "initialisation" : "reset");
1390 return -ENODEV;
1391 }
1392 }
1393
1394 return 0;
1395 }
1396
1397 /*
1398 * If the device has been passed off to us in an enabled state, just clear
1399 * the enabled bit. The spec says we should set the 'shutdown notification
1400 * bits', but doing so may cause the device to complete commands to the
1401 * admin queue ... and we don't know what memory that might be pointing at!
1402 */
1403 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1404 {
1405 u32 cc = readl(&dev->bar->cc);
1406
1407 if (cc & NVME_CC_ENABLE)
1408 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1409 return nvme_wait_ready(dev, cap, false);
1410 }
1411
1412 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1413 {
1414 return nvme_wait_ready(dev, cap, true);
1415 }
1416
1417 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1418 {
1419 unsigned long timeout;
1420 u32 cc;
1421
1422 cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1423 writel(cc, &dev->bar->cc);
1424
1425 timeout = 2 * HZ + jiffies;
1426 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1427 NVME_CSTS_SHST_CMPLT) {
1428 msleep(100);
1429 if (fatal_signal_pending(current))
1430 return -EINTR;
1431 if (time_after(jiffies, timeout)) {
1432 dev_err(&dev->pci_dev->dev,
1433 "Device shutdown incomplete; abort shutdown\n");
1434 return -ENODEV;
1435 }
1436 }
1437
1438 return 0;
1439 }
1440
1441 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1442 {
1443 int result;
1444 u32 aqa;
1445 u64 cap = readq(&dev->bar->cap);
1446 struct nvme_queue *nvmeq;
1447
1448 result = nvme_disable_ctrl(dev, cap);
1449 if (result < 0)
1450 return result;
1451
1452 nvmeq = raw_nvmeq(dev, 0);
1453 if (!nvmeq) {
1454 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1455 if (!nvmeq)
1456 return -ENOMEM;
1457 }
1458
1459 aqa = nvmeq->q_depth - 1;
1460 aqa |= aqa << 16;
1461
1462 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1463 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1464 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1465 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1466
1467 writel(aqa, &dev->bar->aqa);
1468 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1469 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1470 writel(dev->ctrl_config, &dev->bar->cc);
1471
1472 result = nvme_enable_ctrl(dev, cap);
1473 if (result)
1474 return result;
1475
1476 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1477 if (result)
1478 return result;
1479
1480 spin_lock_irq(&nvmeq->q_lock);
1481 nvme_init_queue(nvmeq, 0);
1482 spin_unlock_irq(&nvmeq->q_lock);
1483 return result;
1484 }
1485
1486 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1487 unsigned long addr, unsigned length)
1488 {
1489 int i, err, count, nents, offset;
1490 struct scatterlist *sg;
1491 struct page **pages;
1492 struct nvme_iod *iod;
1493
1494 if (addr & 3)
1495 return ERR_PTR(-EINVAL);
1496 if (!length || length > INT_MAX - PAGE_SIZE)
1497 return ERR_PTR(-EINVAL);
1498
1499 offset = offset_in_page(addr);
1500 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1501 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1502 if (!pages)
1503 return ERR_PTR(-ENOMEM);
1504
1505 err = get_user_pages_fast(addr, count, 1, pages);
1506 if (err < count) {
1507 count = err;
1508 err = -EFAULT;
1509 goto put_pages;
1510 }
1511
1512 err = -ENOMEM;
1513 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1514 if (!iod)
1515 goto put_pages;
1516
1517 sg = iod->sg;
1518 sg_init_table(sg, count);
1519 for (i = 0; i < count; i++) {
1520 sg_set_page(&sg[i], pages[i],
1521 min_t(unsigned, length, PAGE_SIZE - offset),
1522 offset);
1523 length -= (PAGE_SIZE - offset);
1524 offset = 0;
1525 }
1526 sg_mark_end(&sg[i - 1]);
1527 iod->nents = count;
1528
1529 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1530 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1531 if (!nents)
1532 goto free_iod;
1533
1534 kfree(pages);
1535 return iod;
1536
1537 free_iod:
1538 kfree(iod);
1539 put_pages:
1540 for (i = 0; i < count; i++)
1541 put_page(pages[i]);
1542 kfree(pages);
1543 return ERR_PTR(err);
1544 }
1545
1546 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1547 struct nvme_iod *iod)
1548 {
1549 int i;
1550
1551 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1552 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1553
1554 for (i = 0; i < iod->nents; i++)
1555 put_page(sg_page(&iod->sg[i]));
1556 }
1557
1558 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1559 {
1560 struct nvme_dev *dev = ns->dev;
1561 struct nvme_user_io io;
1562 struct nvme_command c;
1563 unsigned length, meta_len;
1564 int status, i;
1565 struct nvme_iod *iod, *meta_iod = NULL;
1566 dma_addr_t meta_dma_addr;
1567 void *meta, *uninitialized_var(meta_mem);
1568
1569 if (copy_from_user(&io, uio, sizeof(io)))
1570 return -EFAULT;
1571 length = (io.nblocks + 1) << ns->lba_shift;
1572 meta_len = (io.nblocks + 1) * ns->ms;
1573
1574 if (meta_len && ((io.metadata & 3) || !io.metadata))
1575 return -EINVAL;
1576
1577 switch (io.opcode) {
1578 case nvme_cmd_write:
1579 case nvme_cmd_read:
1580 case nvme_cmd_compare:
1581 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1582 break;
1583 default:
1584 return -EINVAL;
1585 }
1586
1587 if (IS_ERR(iod))
1588 return PTR_ERR(iod);
1589
1590 memset(&c, 0, sizeof(c));
1591 c.rw.opcode = io.opcode;
1592 c.rw.flags = io.flags;
1593 c.rw.nsid = cpu_to_le32(ns->ns_id);
1594 c.rw.slba = cpu_to_le64(io.slba);
1595 c.rw.length = cpu_to_le16(io.nblocks);
1596 c.rw.control = cpu_to_le16(io.control);
1597 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1598 c.rw.reftag = cpu_to_le32(io.reftag);
1599 c.rw.apptag = cpu_to_le16(io.apptag);
1600 c.rw.appmask = cpu_to_le16(io.appmask);
1601
1602 if (meta_len) {
1603 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1604 meta_len);
1605 if (IS_ERR(meta_iod)) {
1606 status = PTR_ERR(meta_iod);
1607 meta_iod = NULL;
1608 goto unmap;
1609 }
1610
1611 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1612 &meta_dma_addr, GFP_KERNEL);
1613 if (!meta_mem) {
1614 status = -ENOMEM;
1615 goto unmap;
1616 }
1617
1618 if (io.opcode & 1) {
1619 int meta_offset = 0;
1620
1621 for (i = 0; i < meta_iod->nents; i++) {
1622 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1623 meta_iod->sg[i].offset;
1624 memcpy(meta_mem + meta_offset, meta,
1625 meta_iod->sg[i].length);
1626 kunmap_atomic(meta);
1627 meta_offset += meta_iod->sg[i].length;
1628 }
1629 }
1630
1631 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1632 }
1633
1634 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1635 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1636 c.rw.prp2 = cpu_to_le64(iod->first_dma);
1637
1638 if (length != (io.nblocks + 1) << ns->lba_shift)
1639 status = -ENOMEM;
1640 else
1641 status = nvme_submit_io_cmd(dev, &c, NULL);
1642
1643 if (meta_len) {
1644 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1645 int meta_offset = 0;
1646
1647 for (i = 0; i < meta_iod->nents; i++) {
1648 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1649 meta_iod->sg[i].offset;
1650 memcpy(meta, meta_mem + meta_offset,
1651 meta_iod->sg[i].length);
1652 kunmap_atomic(meta);
1653 meta_offset += meta_iod->sg[i].length;
1654 }
1655 }
1656
1657 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1658 meta_dma_addr);
1659 }
1660
1661 unmap:
1662 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1663 nvme_free_iod(dev, iod);
1664
1665 if (meta_iod) {
1666 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1667 nvme_free_iod(dev, meta_iod);
1668 }
1669
1670 return status;
1671 }
1672
1673 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1674 struct nvme_admin_cmd __user *ucmd)
1675 {
1676 struct nvme_admin_cmd cmd;
1677 struct nvme_command c;
1678 int status, length;
1679 struct nvme_iod *uninitialized_var(iod);
1680 unsigned timeout;
1681
1682 if (!capable(CAP_SYS_ADMIN))
1683 return -EACCES;
1684 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1685 return -EFAULT;
1686
1687 memset(&c, 0, sizeof(c));
1688 c.common.opcode = cmd.opcode;
1689 c.common.flags = cmd.flags;
1690 c.common.nsid = cpu_to_le32(cmd.nsid);
1691 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1692 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1693 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1694 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1695 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1696 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1697 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1698 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1699
1700 length = cmd.data_len;
1701 if (cmd.data_len) {
1702 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1703 length);
1704 if (IS_ERR(iod))
1705 return PTR_ERR(iod);
1706 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1707 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1708 c.common.prp2 = cpu_to_le64(iod->first_dma);
1709 }
1710
1711 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1712 ADMIN_TIMEOUT;
1713 if (length != cmd.data_len)
1714 status = -ENOMEM;
1715 else
1716 status = nvme_submit_sync_cmd(dev, 0, &c, &cmd.result, timeout);
1717
1718 if (cmd.data_len) {
1719 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1720 nvme_free_iod(dev, iod);
1721 }
1722
1723 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1724 sizeof(cmd.result)))
1725 status = -EFAULT;
1726
1727 return status;
1728 }
1729
1730 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1731 unsigned long arg)
1732 {
1733 struct nvme_ns *ns = bdev->bd_disk->private_data;
1734
1735 switch (cmd) {
1736 case NVME_IOCTL_ID:
1737 force_successful_syscall_return();
1738 return ns->ns_id;
1739 case NVME_IOCTL_ADMIN_CMD:
1740 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1741 case NVME_IOCTL_SUBMIT_IO:
1742 return nvme_submit_io(ns, (void __user *)arg);
1743 case SG_GET_VERSION_NUM:
1744 return nvme_sg_get_version_num((void __user *)arg);
1745 case SG_IO:
1746 return nvme_sg_io(ns, (void __user *)arg);
1747 default:
1748 return -ENOTTY;
1749 }
1750 }
1751
1752 #ifdef CONFIG_COMPAT
1753 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1754 unsigned int cmd, unsigned long arg)
1755 {
1756 struct nvme_ns *ns = bdev->bd_disk->private_data;
1757
1758 switch (cmd) {
1759 case SG_IO:
1760 return nvme_sg_io32(ns, arg);
1761 }
1762 return nvme_ioctl(bdev, mode, cmd, arg);
1763 }
1764 #else
1765 #define nvme_compat_ioctl NULL
1766 #endif
1767
1768 static int nvme_open(struct block_device *bdev, fmode_t mode)
1769 {
1770 struct nvme_ns *ns = bdev->bd_disk->private_data;
1771 struct nvme_dev *dev = ns->dev;
1772
1773 kref_get(&dev->kref);
1774 return 0;
1775 }
1776
1777 static void nvme_free_dev(struct kref *kref);
1778
1779 static void nvme_release(struct gendisk *disk, fmode_t mode)
1780 {
1781 struct nvme_ns *ns = disk->private_data;
1782 struct nvme_dev *dev = ns->dev;
1783
1784 kref_put(&dev->kref, nvme_free_dev);
1785 }
1786
1787 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1788 {
1789 /* some standard values */
1790 geo->heads = 1 << 6;
1791 geo->sectors = 1 << 5;
1792 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1793 return 0;
1794 }
1795
1796 static const struct block_device_operations nvme_fops = {
1797 .owner = THIS_MODULE,
1798 .ioctl = nvme_ioctl,
1799 .compat_ioctl = nvme_compat_ioctl,
1800 .open = nvme_open,
1801 .release = nvme_release,
1802 .getgeo = nvme_getgeo,
1803 };
1804
1805 static void nvme_resubmit_iods(struct nvme_queue *nvmeq)
1806 {
1807 struct nvme_iod *iod, *next;
1808
1809 list_for_each_entry_safe(iod, next, &nvmeq->iod_bio, node) {
1810 if (unlikely(nvme_submit_iod(nvmeq, iod)))
1811 break;
1812 list_del(&iod->node);
1813 if (bio_list_empty(&nvmeq->sq_cong) &&
1814 list_empty(&nvmeq->iod_bio))
1815 remove_wait_queue(&nvmeq->sq_full,
1816 &nvmeq->sq_cong_wait);
1817 }
1818 }
1819
1820 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1821 {
1822 while (bio_list_peek(&nvmeq->sq_cong)) {
1823 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1824 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1825
1826 if (bio_list_empty(&nvmeq->sq_cong) &&
1827 list_empty(&nvmeq->iod_bio))
1828 remove_wait_queue(&nvmeq->sq_full,
1829 &nvmeq->sq_cong_wait);
1830 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1831 if (!waitqueue_active(&nvmeq->sq_full))
1832 add_wait_queue(&nvmeq->sq_full,
1833 &nvmeq->sq_cong_wait);
1834 bio_list_add_head(&nvmeq->sq_cong, bio);
1835 break;
1836 }
1837 }
1838 }
1839
1840 static int nvme_kthread(void *data)
1841 {
1842 struct nvme_dev *dev, *next;
1843
1844 while (!kthread_should_stop()) {
1845 set_current_state(TASK_INTERRUPTIBLE);
1846 spin_lock(&dev_list_lock);
1847 list_for_each_entry_safe(dev, next, &dev_list, node) {
1848 int i;
1849 if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1850 dev->initialized) {
1851 if (work_busy(&dev->reset_work))
1852 continue;
1853 list_del_init(&dev->node);
1854 dev_warn(&dev->pci_dev->dev,
1855 "Failed status, reset controller\n");
1856 dev->reset_workfn = nvme_reset_failed_dev;
1857 queue_work(nvme_workq, &dev->reset_work);
1858 continue;
1859 }
1860 rcu_read_lock();
1861 for (i = 0; i < dev->queue_count; i++) {
1862 struct nvme_queue *nvmeq =
1863 rcu_dereference(dev->queues[i]);
1864 if (!nvmeq)
1865 continue;
1866 spin_lock_irq(&nvmeq->q_lock);
1867 if (nvmeq->q_suspended)
1868 goto unlock;
1869 nvme_process_cq(nvmeq);
1870 nvme_cancel_ios(nvmeq, true);
1871 nvme_resubmit_bios(nvmeq);
1872 nvme_resubmit_iods(nvmeq);
1873 unlock:
1874 spin_unlock_irq(&nvmeq->q_lock);
1875 }
1876 rcu_read_unlock();
1877 }
1878 spin_unlock(&dev_list_lock);
1879 schedule_timeout(round_jiffies_relative(HZ));
1880 }
1881 return 0;
1882 }
1883
1884 static void nvme_config_discard(struct nvme_ns *ns)
1885 {
1886 u32 logical_block_size = queue_logical_block_size(ns->queue);
1887 ns->queue->limits.discard_zeroes_data = 0;
1888 ns->queue->limits.discard_alignment = logical_block_size;
1889 ns->queue->limits.discard_granularity = logical_block_size;
1890 ns->queue->limits.max_discard_sectors = 0xffffffff;
1891 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1892 }
1893
1894 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1895 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1896 {
1897 struct nvme_ns *ns;
1898 struct gendisk *disk;
1899 int lbaf;
1900
1901 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1902 return NULL;
1903
1904 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1905 if (!ns)
1906 return NULL;
1907 ns->queue = blk_alloc_queue(GFP_KERNEL);
1908 if (!ns->queue)
1909 goto out_free_ns;
1910 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1911 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1912 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1913 blk_queue_make_request(ns->queue, nvme_make_request);
1914 ns->dev = dev;
1915 ns->queue->queuedata = ns;
1916
1917 disk = alloc_disk(0);
1918 if (!disk)
1919 goto out_free_queue;
1920 ns->ns_id = nsid;
1921 ns->disk = disk;
1922 lbaf = id->flbas & 0xf;
1923 ns->lba_shift = id->lbaf[lbaf].ds;
1924 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1925 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1926 if (dev->max_hw_sectors)
1927 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1928 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
1929 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1930
1931 disk->major = nvme_major;
1932 disk->first_minor = 0;
1933 disk->fops = &nvme_fops;
1934 disk->private_data = ns;
1935 disk->queue = ns->queue;
1936 disk->driverfs_dev = &dev->pci_dev->dev;
1937 disk->flags = GENHD_FL_EXT_DEVT;
1938 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1939 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1940
1941 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1942 nvme_config_discard(ns);
1943
1944 return ns;
1945
1946 out_free_queue:
1947 blk_cleanup_queue(ns->queue);
1948 out_free_ns:
1949 kfree(ns);
1950 return NULL;
1951 }
1952
1953 static int nvme_find_closest_node(int node)
1954 {
1955 int n, val, min_val = INT_MAX, best_node = node;
1956
1957 for_each_online_node(n) {
1958 if (n == node)
1959 continue;
1960 val = node_distance(node, n);
1961 if (val < min_val) {
1962 min_val = val;
1963 best_node = n;
1964 }
1965 }
1966 return best_node;
1967 }
1968
1969 static void nvme_set_queue_cpus(cpumask_t *qmask, struct nvme_queue *nvmeq,
1970 int count)
1971 {
1972 int cpu;
1973 for_each_cpu(cpu, qmask) {
1974 if (cpumask_weight(nvmeq->cpu_mask) >= count)
1975 break;
1976 if (!cpumask_test_and_set_cpu(cpu, nvmeq->cpu_mask))
1977 *per_cpu_ptr(nvmeq->dev->io_queue, cpu) = nvmeq->qid;
1978 }
1979 }
1980
1981 static void nvme_add_cpus(cpumask_t *mask, const cpumask_t *unassigned_cpus,
1982 const cpumask_t *new_mask, struct nvme_queue *nvmeq, int cpus_per_queue)
1983 {
1984 int next_cpu;
1985 for_each_cpu(next_cpu, new_mask) {
1986 cpumask_or(mask, mask, get_cpu_mask(next_cpu));
1987 cpumask_or(mask, mask, topology_thread_cpumask(next_cpu));
1988 cpumask_and(mask, mask, unassigned_cpus);
1989 nvme_set_queue_cpus(mask, nvmeq, cpus_per_queue);
1990 }
1991 }
1992
1993 static void nvme_create_io_queues(struct nvme_dev *dev)
1994 {
1995 unsigned i, max;
1996
1997 max = min(dev->max_qid, num_online_cpus());
1998 for (i = dev->queue_count; i <= max; i++)
1999 if (!nvme_alloc_queue(dev, i, dev->q_depth, i - 1))
2000 break;
2001
2002 max = min(dev->queue_count - 1, num_online_cpus());
2003 for (i = dev->online_queues; i <= max; i++)
2004 if (nvme_create_queue(raw_nvmeq(dev, i), i))
2005 break;
2006 }
2007
2008 /*
2009 * If there are fewer queues than online cpus, this will try to optimally
2010 * assign a queue to multiple cpus by grouping cpus that are "close" together:
2011 * thread siblings, core, socket, closest node, then whatever else is
2012 * available.
2013 */
2014 static void nvme_assign_io_queues(struct nvme_dev *dev)
2015 {
2016 unsigned cpu, cpus_per_queue, queues, remainder, i;
2017 cpumask_var_t unassigned_cpus;
2018
2019 nvme_create_io_queues(dev);
2020
2021 queues = min(dev->online_queues - 1, num_online_cpus());
2022 if (!queues)
2023 return;
2024
2025 cpus_per_queue = num_online_cpus() / queues;
2026 remainder = queues - (num_online_cpus() - queues * cpus_per_queue);
2027
2028 if (!alloc_cpumask_var(&unassigned_cpus, GFP_KERNEL))
2029 return;
2030
2031 cpumask_copy(unassigned_cpus, cpu_online_mask);
2032 cpu = cpumask_first(unassigned_cpus);
2033 for (i = 1; i <= queues; i++) {
2034 struct nvme_queue *nvmeq = lock_nvmeq(dev, i);
2035 cpumask_t mask;
2036
2037 cpumask_clear(nvmeq->cpu_mask);
2038 if (!cpumask_weight(unassigned_cpus)) {
2039 unlock_nvmeq(nvmeq);
2040 break;
2041 }
2042
2043 mask = *get_cpu_mask(cpu);
2044 nvme_set_queue_cpus(&mask, nvmeq, cpus_per_queue);
2045 if (cpus_weight(mask) < cpus_per_queue)
2046 nvme_add_cpus(&mask, unassigned_cpus,
2047 topology_thread_cpumask(cpu),
2048 nvmeq, cpus_per_queue);
2049 if (cpus_weight(mask) < cpus_per_queue)
2050 nvme_add_cpus(&mask, unassigned_cpus,
2051 topology_core_cpumask(cpu),
2052 nvmeq, cpus_per_queue);
2053 if (cpus_weight(mask) < cpus_per_queue)
2054 nvme_add_cpus(&mask, unassigned_cpus,
2055 cpumask_of_node(cpu_to_node(cpu)),
2056 nvmeq, cpus_per_queue);
2057 if (cpus_weight(mask) < cpus_per_queue)
2058 nvme_add_cpus(&mask, unassigned_cpus,
2059 cpumask_of_node(
2060 nvme_find_closest_node(
2061 cpu_to_node(cpu))),
2062 nvmeq, cpus_per_queue);
2063 if (cpus_weight(mask) < cpus_per_queue)
2064 nvme_add_cpus(&mask, unassigned_cpus,
2065 unassigned_cpus,
2066 nvmeq, cpus_per_queue);
2067
2068 WARN(cpumask_weight(nvmeq->cpu_mask) != cpus_per_queue,
2069 "nvme%d qid:%d mis-matched queue-to-cpu assignment\n",
2070 dev->instance, i);
2071
2072 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2073 nvmeq->cpu_mask);
2074 cpumask_andnot(unassigned_cpus, unassigned_cpus,
2075 nvmeq->cpu_mask);
2076 cpu = cpumask_next(cpu, unassigned_cpus);
2077 if (remainder && !--remainder)
2078 cpus_per_queue++;
2079 unlock_nvmeq(nvmeq);
2080 }
2081 WARN(cpumask_weight(unassigned_cpus), "nvme%d unassigned online cpus\n",
2082 dev->instance);
2083 i = 0;
2084 cpumask_andnot(unassigned_cpus, cpu_possible_mask, cpu_online_mask);
2085 for_each_cpu(cpu, unassigned_cpus)
2086 *per_cpu_ptr(dev->io_queue, cpu) = (i++ % queues) + 1;
2087 free_cpumask_var(unassigned_cpus);
2088 }
2089
2090 static int set_queue_count(struct nvme_dev *dev, int count)
2091 {
2092 int status;
2093 u32 result;
2094 u32 q_count = (count - 1) | ((count - 1) << 16);
2095
2096 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2097 &result);
2098 if (status < 0)
2099 return status;
2100 if (status > 0) {
2101 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2102 status);
2103 return -EBUSY;
2104 }
2105 return min(result & 0xffff, result >> 16) + 1;
2106 }
2107
2108 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2109 {
2110 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2111 }
2112
2113 static int nvme_cpu_notify(struct notifier_block *self,
2114 unsigned long action, void *hcpu)
2115 {
2116 struct nvme_dev *dev = container_of(self, struct nvme_dev, nb);
2117 switch (action) {
2118 case CPU_ONLINE:
2119 case CPU_DEAD:
2120 nvme_assign_io_queues(dev);
2121 break;
2122 }
2123 return NOTIFY_OK;
2124 }
2125
2126 static int nvme_setup_io_queues(struct nvme_dev *dev)
2127 {
2128 struct nvme_queue *adminq = raw_nvmeq(dev, 0);
2129 struct pci_dev *pdev = dev->pci_dev;
2130 int result, i, vecs, nr_io_queues, size;
2131
2132 nr_io_queues = num_possible_cpus();
2133 result = set_queue_count(dev, nr_io_queues);
2134 if (result < 0)
2135 return result;
2136 if (result < nr_io_queues)
2137 nr_io_queues = result;
2138
2139 size = db_bar_size(dev, nr_io_queues);
2140 if (size > 8192) {
2141 iounmap(dev->bar);
2142 do {
2143 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2144 if (dev->bar)
2145 break;
2146 if (!--nr_io_queues)
2147 return -ENOMEM;
2148 size = db_bar_size(dev, nr_io_queues);
2149 } while (1);
2150 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2151 adminq->q_db = dev->dbs;
2152 }
2153
2154 /* Deregister the admin queue's interrupt */
2155 free_irq(dev->entry[0].vector, adminq);
2156
2157 for (i = 0; i < nr_io_queues; i++)
2158 dev->entry[i].entry = i;
2159 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2160 if (vecs < 0) {
2161 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2162 if (vecs < 0) {
2163 vecs = 1;
2164 } else {
2165 for (i = 0; i < vecs; i++)
2166 dev->entry[i].vector = i + pdev->irq;
2167 }
2168 }
2169
2170 /*
2171 * Should investigate if there's a performance win from allocating
2172 * more queues than interrupt vectors; it might allow the submission
2173 * path to scale better, even if the receive path is limited by the
2174 * number of interrupts.
2175 */
2176 nr_io_queues = vecs;
2177 dev->max_qid = nr_io_queues;
2178
2179 result = queue_request_irq(dev, adminq, adminq->irqname);
2180 if (result) {
2181 adminq->q_suspended = 1;
2182 goto free_queues;
2183 }
2184
2185 /* Free previously allocated queues that are no longer usable */
2186 nvme_free_queues(dev, nr_io_queues + 1);
2187 nvme_assign_io_queues(dev);
2188
2189 dev->nb.notifier_call = &nvme_cpu_notify;
2190 result = register_hotcpu_notifier(&dev->nb);
2191 if (result)
2192 goto free_queues;
2193
2194 return 0;
2195
2196 free_queues:
2197 nvme_free_queues(dev, 1);
2198 return result;
2199 }
2200
2201 /*
2202 * Return: error value if an error occurred setting up the queues or calling
2203 * Identify Device. 0 if these succeeded, even if adding some of the
2204 * namespaces failed. At the moment, these failures are silent. TBD which
2205 * failures should be reported.
2206 */
2207 static int nvme_dev_add(struct nvme_dev *dev)
2208 {
2209 struct pci_dev *pdev = dev->pci_dev;
2210 int res;
2211 unsigned nn, i;
2212 struct nvme_ns *ns;
2213 struct nvme_id_ctrl *ctrl;
2214 struct nvme_id_ns *id_ns;
2215 void *mem;
2216 dma_addr_t dma_addr;
2217 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2218
2219 mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2220 if (!mem)
2221 return -ENOMEM;
2222
2223 res = nvme_identify(dev, 0, 1, dma_addr);
2224 if (res) {
2225 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2226 res = -EIO;
2227 goto out;
2228 }
2229
2230 ctrl = mem;
2231 nn = le32_to_cpup(&ctrl->nn);
2232 dev->oncs = le16_to_cpup(&ctrl->oncs);
2233 dev->abort_limit = ctrl->acl + 1;
2234 dev->vwc = ctrl->vwc;
2235 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2236 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2237 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2238 if (ctrl->mdts)
2239 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2240 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2241 (pdev->device == 0x0953) && ctrl->vs[3])
2242 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2243
2244 id_ns = mem;
2245 for (i = 1; i <= nn; i++) {
2246 res = nvme_identify(dev, i, 0, dma_addr);
2247 if (res)
2248 continue;
2249
2250 if (id_ns->ncap == 0)
2251 continue;
2252
2253 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2254 dma_addr + 4096, NULL);
2255 if (res)
2256 memset(mem + 4096, 0, 4096);
2257
2258 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2259 if (ns)
2260 list_add_tail(&ns->list, &dev->namespaces);
2261 }
2262 list_for_each_entry(ns, &dev->namespaces, list)
2263 add_disk(ns->disk);
2264 res = 0;
2265
2266 out:
2267 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2268 return res;
2269 }
2270
2271 static int nvme_dev_map(struct nvme_dev *dev)
2272 {
2273 u64 cap;
2274 int bars, result = -ENOMEM;
2275 struct pci_dev *pdev = dev->pci_dev;
2276
2277 if (pci_enable_device_mem(pdev))
2278 return result;
2279
2280 dev->entry[0].vector = pdev->irq;
2281 pci_set_master(pdev);
2282 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2283 if (pci_request_selected_regions(pdev, bars, "nvme"))
2284 goto disable_pci;
2285
2286 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2287 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2288 goto disable;
2289
2290 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2291 if (!dev->bar)
2292 goto disable;
2293 if (readl(&dev->bar->csts) == -1) {
2294 result = -ENODEV;
2295 goto unmap;
2296 }
2297 cap = readq(&dev->bar->cap);
2298 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2299 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2300 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2301
2302 return 0;
2303
2304 unmap:
2305 iounmap(dev->bar);
2306 dev->bar = NULL;
2307 disable:
2308 pci_release_regions(pdev);
2309 disable_pci:
2310 pci_disable_device(pdev);
2311 return result;
2312 }
2313
2314 static void nvme_dev_unmap(struct nvme_dev *dev)
2315 {
2316 if (dev->pci_dev->msi_enabled)
2317 pci_disable_msi(dev->pci_dev);
2318 else if (dev->pci_dev->msix_enabled)
2319 pci_disable_msix(dev->pci_dev);
2320
2321 if (dev->bar) {
2322 iounmap(dev->bar);
2323 dev->bar = NULL;
2324 pci_release_regions(dev->pci_dev);
2325 }
2326
2327 if (pci_is_enabled(dev->pci_dev))
2328 pci_disable_device(dev->pci_dev);
2329 }
2330
2331 struct nvme_delq_ctx {
2332 struct task_struct *waiter;
2333 struct kthread_worker *worker;
2334 atomic_t refcount;
2335 };
2336
2337 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2338 {
2339 dq->waiter = current;
2340 mb();
2341
2342 for (;;) {
2343 set_current_state(TASK_KILLABLE);
2344 if (!atomic_read(&dq->refcount))
2345 break;
2346 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2347 fatal_signal_pending(current)) {
2348 set_current_state(TASK_RUNNING);
2349
2350 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2351 nvme_disable_queue(dev, 0);
2352
2353 send_sig(SIGKILL, dq->worker->task, 1);
2354 flush_kthread_worker(dq->worker);
2355 return;
2356 }
2357 }
2358 set_current_state(TASK_RUNNING);
2359 }
2360
2361 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2362 {
2363 atomic_dec(&dq->refcount);
2364 if (dq->waiter)
2365 wake_up_process(dq->waiter);
2366 }
2367
2368 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2369 {
2370 atomic_inc(&dq->refcount);
2371 return dq;
2372 }
2373
2374 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2375 {
2376 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2377
2378 nvme_clear_queue(nvmeq);
2379 nvme_put_dq(dq);
2380 }
2381
2382 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2383 kthread_work_func_t fn)
2384 {
2385 struct nvme_command c;
2386
2387 memset(&c, 0, sizeof(c));
2388 c.delete_queue.opcode = opcode;
2389 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2390
2391 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2392 return nvme_submit_admin_cmd_async(nvmeq->dev, &c, &nvmeq->cmdinfo);
2393 }
2394
2395 static void nvme_del_cq_work_handler(struct kthread_work *work)
2396 {
2397 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2398 cmdinfo.work);
2399 nvme_del_queue_end(nvmeq);
2400 }
2401
2402 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2403 {
2404 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2405 nvme_del_cq_work_handler);
2406 }
2407
2408 static void nvme_del_sq_work_handler(struct kthread_work *work)
2409 {
2410 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2411 cmdinfo.work);
2412 int status = nvmeq->cmdinfo.status;
2413
2414 if (!status)
2415 status = nvme_delete_cq(nvmeq);
2416 if (status)
2417 nvme_del_queue_end(nvmeq);
2418 }
2419
2420 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2421 {
2422 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2423 nvme_del_sq_work_handler);
2424 }
2425
2426 static void nvme_del_queue_start(struct kthread_work *work)
2427 {
2428 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2429 cmdinfo.work);
2430 allow_signal(SIGKILL);
2431 if (nvme_delete_sq(nvmeq))
2432 nvme_del_queue_end(nvmeq);
2433 }
2434
2435 static void nvme_disable_io_queues(struct nvme_dev *dev)
2436 {
2437 int i;
2438 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2439 struct nvme_delq_ctx dq;
2440 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2441 &worker, "nvme%d", dev->instance);
2442
2443 if (IS_ERR(kworker_task)) {
2444 dev_err(&dev->pci_dev->dev,
2445 "Failed to create queue del task\n");
2446 for (i = dev->queue_count - 1; i > 0; i--)
2447 nvme_disable_queue(dev, i);
2448 return;
2449 }
2450
2451 dq.waiter = NULL;
2452 atomic_set(&dq.refcount, 0);
2453 dq.worker = &worker;
2454 for (i = dev->queue_count - 1; i > 0; i--) {
2455 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2456
2457 if (nvme_suspend_queue(nvmeq))
2458 continue;
2459 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2460 nvmeq->cmdinfo.worker = dq.worker;
2461 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2462 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2463 }
2464 nvme_wait_dq(&dq, dev);
2465 kthread_stop(kworker_task);
2466 }
2467
2468 /*
2469 * Remove the node from the device list and check
2470 * for whether or not we need to stop the nvme_thread.
2471 */
2472 static void nvme_dev_list_remove(struct nvme_dev *dev)
2473 {
2474 struct task_struct *tmp = NULL;
2475
2476 spin_lock(&dev_list_lock);
2477 list_del_init(&dev->node);
2478 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2479 tmp = nvme_thread;
2480 nvme_thread = NULL;
2481 }
2482 spin_unlock(&dev_list_lock);
2483
2484 if (tmp)
2485 kthread_stop(tmp);
2486 }
2487
2488 static void nvme_dev_shutdown(struct nvme_dev *dev)
2489 {
2490 int i;
2491
2492 dev->initialized = 0;
2493 unregister_hotcpu_notifier(&dev->nb);
2494
2495 nvme_dev_list_remove(dev);
2496
2497 if (!dev->bar || (dev->bar && readl(&dev->bar->csts) == -1)) {
2498 for (i = dev->queue_count - 1; i >= 0; i--) {
2499 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2500 nvme_suspend_queue(nvmeq);
2501 nvme_clear_queue(nvmeq);
2502 }
2503 } else {
2504 nvme_disable_io_queues(dev);
2505 nvme_shutdown_ctrl(dev);
2506 nvme_disable_queue(dev, 0);
2507 }
2508 nvme_dev_unmap(dev);
2509 }
2510
2511 static void nvme_dev_remove(struct nvme_dev *dev)
2512 {
2513 struct nvme_ns *ns;
2514
2515 list_for_each_entry(ns, &dev->namespaces, list) {
2516 if (ns->disk->flags & GENHD_FL_UP)
2517 del_gendisk(ns->disk);
2518 if (!blk_queue_dying(ns->queue))
2519 blk_cleanup_queue(ns->queue);
2520 }
2521 }
2522
2523 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2524 {
2525 struct device *dmadev = &dev->pci_dev->dev;
2526 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2527 PAGE_SIZE, PAGE_SIZE, 0);
2528 if (!dev->prp_page_pool)
2529 return -ENOMEM;
2530
2531 /* Optimisation for I/Os between 4k and 128k */
2532 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2533 256, 256, 0);
2534 if (!dev->prp_small_pool) {
2535 dma_pool_destroy(dev->prp_page_pool);
2536 return -ENOMEM;
2537 }
2538 return 0;
2539 }
2540
2541 static void nvme_release_prp_pools(struct nvme_dev *dev)
2542 {
2543 dma_pool_destroy(dev->prp_page_pool);
2544 dma_pool_destroy(dev->prp_small_pool);
2545 }
2546
2547 static DEFINE_IDA(nvme_instance_ida);
2548
2549 static int nvme_set_instance(struct nvme_dev *dev)
2550 {
2551 int instance, error;
2552
2553 do {
2554 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2555 return -ENODEV;
2556
2557 spin_lock(&dev_list_lock);
2558 error = ida_get_new(&nvme_instance_ida, &instance);
2559 spin_unlock(&dev_list_lock);
2560 } while (error == -EAGAIN);
2561
2562 if (error)
2563 return -ENODEV;
2564
2565 dev->instance = instance;
2566 return 0;
2567 }
2568
2569 static void nvme_release_instance(struct nvme_dev *dev)
2570 {
2571 spin_lock(&dev_list_lock);
2572 ida_remove(&nvme_instance_ida, dev->instance);
2573 spin_unlock(&dev_list_lock);
2574 }
2575
2576 static void nvme_free_namespaces(struct nvme_dev *dev)
2577 {
2578 struct nvme_ns *ns, *next;
2579
2580 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2581 list_del(&ns->list);
2582 put_disk(ns->disk);
2583 kfree(ns);
2584 }
2585 }
2586
2587 static void nvme_free_dev(struct kref *kref)
2588 {
2589 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2590
2591 nvme_free_namespaces(dev);
2592 free_percpu(dev->io_queue);
2593 kfree(dev->queues);
2594 kfree(dev->entry);
2595 kfree(dev);
2596 }
2597
2598 static int nvme_dev_open(struct inode *inode, struct file *f)
2599 {
2600 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2601 miscdev);
2602 kref_get(&dev->kref);
2603 f->private_data = dev;
2604 return 0;
2605 }
2606
2607 static int nvme_dev_release(struct inode *inode, struct file *f)
2608 {
2609 struct nvme_dev *dev = f->private_data;
2610 kref_put(&dev->kref, nvme_free_dev);
2611 return 0;
2612 }
2613
2614 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2615 {
2616 struct nvme_dev *dev = f->private_data;
2617 switch (cmd) {
2618 case NVME_IOCTL_ADMIN_CMD:
2619 return nvme_user_admin_cmd(dev, (void __user *)arg);
2620 default:
2621 return -ENOTTY;
2622 }
2623 }
2624
2625 static const struct file_operations nvme_dev_fops = {
2626 .owner = THIS_MODULE,
2627 .open = nvme_dev_open,
2628 .release = nvme_dev_release,
2629 .unlocked_ioctl = nvme_dev_ioctl,
2630 .compat_ioctl = nvme_dev_ioctl,
2631 };
2632
2633 static int nvme_dev_start(struct nvme_dev *dev)
2634 {
2635 int result;
2636 bool start_thread = false;
2637
2638 result = nvme_dev_map(dev);
2639 if (result)
2640 return result;
2641
2642 result = nvme_configure_admin_queue(dev);
2643 if (result)
2644 goto unmap;
2645
2646 spin_lock(&dev_list_lock);
2647 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2648 start_thread = true;
2649 nvme_thread = NULL;
2650 }
2651 list_add(&dev->node, &dev_list);
2652 spin_unlock(&dev_list_lock);
2653
2654 if (start_thread) {
2655 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2656 wake_up(&nvme_kthread_wait);
2657 } else
2658 wait_event_killable(nvme_kthread_wait, nvme_thread);
2659
2660 if (IS_ERR_OR_NULL(nvme_thread)) {
2661 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2662 goto disable;
2663 }
2664
2665 result = nvme_setup_io_queues(dev);
2666 if (result && result != -EBUSY)
2667 goto disable;
2668
2669 return result;
2670
2671 disable:
2672 nvme_disable_queue(dev, 0);
2673 nvme_dev_list_remove(dev);
2674 unmap:
2675 nvme_dev_unmap(dev);
2676 return result;
2677 }
2678
2679 static int nvme_remove_dead_ctrl(void *arg)
2680 {
2681 struct nvme_dev *dev = (struct nvme_dev *)arg;
2682 struct pci_dev *pdev = dev->pci_dev;
2683
2684 if (pci_get_drvdata(pdev))
2685 pci_stop_and_remove_bus_device(pdev);
2686 kref_put(&dev->kref, nvme_free_dev);
2687 return 0;
2688 }
2689
2690 static void nvme_remove_disks(struct work_struct *ws)
2691 {
2692 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2693
2694 nvme_dev_remove(dev);
2695 nvme_free_queues(dev, 1);
2696 }
2697
2698 static int nvme_dev_resume(struct nvme_dev *dev)
2699 {
2700 int ret;
2701
2702 ret = nvme_dev_start(dev);
2703 if (ret && ret != -EBUSY)
2704 return ret;
2705 if (ret == -EBUSY) {
2706 spin_lock(&dev_list_lock);
2707 dev->reset_workfn = nvme_remove_disks;
2708 queue_work(nvme_workq, &dev->reset_work);
2709 spin_unlock(&dev_list_lock);
2710 }
2711 dev->initialized = 1;
2712 return 0;
2713 }
2714
2715 static void nvme_dev_reset(struct nvme_dev *dev)
2716 {
2717 nvme_dev_shutdown(dev);
2718 if (nvme_dev_resume(dev)) {
2719 dev_err(&dev->pci_dev->dev, "Device failed to resume\n");
2720 kref_get(&dev->kref);
2721 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2722 dev->instance))) {
2723 dev_err(&dev->pci_dev->dev,
2724 "Failed to start controller remove task\n");
2725 kref_put(&dev->kref, nvme_free_dev);
2726 }
2727 }
2728 }
2729
2730 static void nvme_reset_failed_dev(struct work_struct *ws)
2731 {
2732 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2733 nvme_dev_reset(dev);
2734 }
2735
2736 static void nvme_reset_workfn(struct work_struct *work)
2737 {
2738 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2739 dev->reset_workfn(work);
2740 }
2741
2742 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2743 {
2744 int result = -ENOMEM;
2745 struct nvme_dev *dev;
2746
2747 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2748 if (!dev)
2749 return -ENOMEM;
2750 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2751 GFP_KERNEL);
2752 if (!dev->entry)
2753 goto free;
2754 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2755 GFP_KERNEL);
2756 if (!dev->queues)
2757 goto free;
2758 dev->io_queue = alloc_percpu(unsigned short);
2759 if (!dev->io_queue)
2760 goto free;
2761
2762 INIT_LIST_HEAD(&dev->namespaces);
2763 dev->reset_workfn = nvme_reset_failed_dev;
2764 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2765 dev->pci_dev = pdev;
2766 pci_set_drvdata(pdev, dev);
2767 result = nvme_set_instance(dev);
2768 if (result)
2769 goto free;
2770
2771 result = nvme_setup_prp_pools(dev);
2772 if (result)
2773 goto release;
2774
2775 kref_init(&dev->kref);
2776 result = nvme_dev_start(dev);
2777 if (result) {
2778 if (result == -EBUSY)
2779 goto create_cdev;
2780 goto release_pools;
2781 }
2782
2783 result = nvme_dev_add(dev);
2784 if (result)
2785 goto shutdown;
2786
2787 create_cdev:
2788 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2789 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2790 dev->miscdev.parent = &pdev->dev;
2791 dev->miscdev.name = dev->name;
2792 dev->miscdev.fops = &nvme_dev_fops;
2793 result = misc_register(&dev->miscdev);
2794 if (result)
2795 goto remove;
2796
2797 dev->initialized = 1;
2798 return 0;
2799
2800 remove:
2801 nvme_dev_remove(dev);
2802 nvme_free_namespaces(dev);
2803 shutdown:
2804 nvme_dev_shutdown(dev);
2805 release_pools:
2806 nvme_free_queues(dev, 0);
2807 nvme_release_prp_pools(dev);
2808 release:
2809 nvme_release_instance(dev);
2810 free:
2811 free_percpu(dev->io_queue);
2812 kfree(dev->queues);
2813 kfree(dev->entry);
2814 kfree(dev);
2815 return result;
2816 }
2817
2818 static void nvme_shutdown(struct pci_dev *pdev)
2819 {
2820 struct nvme_dev *dev = pci_get_drvdata(pdev);
2821 nvme_dev_shutdown(dev);
2822 }
2823
2824 static void nvme_remove(struct pci_dev *pdev)
2825 {
2826 struct nvme_dev *dev = pci_get_drvdata(pdev);
2827
2828 spin_lock(&dev_list_lock);
2829 list_del_init(&dev->node);
2830 spin_unlock(&dev_list_lock);
2831
2832 pci_set_drvdata(pdev, NULL);
2833 flush_work(&dev->reset_work);
2834 misc_deregister(&dev->miscdev);
2835 nvme_dev_remove(dev);
2836 nvme_dev_shutdown(dev);
2837 nvme_free_queues(dev, 0);
2838 rcu_barrier();
2839 nvme_release_instance(dev);
2840 nvme_release_prp_pools(dev);
2841 kref_put(&dev->kref, nvme_free_dev);
2842 }
2843
2844 /* These functions are yet to be implemented */
2845 #define nvme_error_detected NULL
2846 #define nvme_dump_registers NULL
2847 #define nvme_link_reset NULL
2848 #define nvme_slot_reset NULL
2849 #define nvme_error_resume NULL
2850
2851 #ifdef CONFIG_PM_SLEEP
2852 static int nvme_suspend(struct device *dev)
2853 {
2854 struct pci_dev *pdev = to_pci_dev(dev);
2855 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2856
2857 nvme_dev_shutdown(ndev);
2858 return 0;
2859 }
2860
2861 static int nvme_resume(struct device *dev)
2862 {
2863 struct pci_dev *pdev = to_pci_dev(dev);
2864 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2865
2866 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2867 ndev->reset_workfn = nvme_reset_failed_dev;
2868 queue_work(nvme_workq, &ndev->reset_work);
2869 }
2870 return 0;
2871 }
2872 #endif
2873
2874 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2875
2876 static const struct pci_error_handlers nvme_err_handler = {
2877 .error_detected = nvme_error_detected,
2878 .mmio_enabled = nvme_dump_registers,
2879 .link_reset = nvme_link_reset,
2880 .slot_reset = nvme_slot_reset,
2881 .resume = nvme_error_resume,
2882 };
2883
2884 /* Move to pci_ids.h later */
2885 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2886
2887 static const struct pci_device_id nvme_id_table[] = {
2888 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2889 { 0, }
2890 };
2891 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2892
2893 static struct pci_driver nvme_driver = {
2894 .name = "nvme",
2895 .id_table = nvme_id_table,
2896 .probe = nvme_probe,
2897 .remove = nvme_remove,
2898 .shutdown = nvme_shutdown,
2899 .driver = {
2900 .pm = &nvme_dev_pm_ops,
2901 },
2902 .err_handler = &nvme_err_handler,
2903 };
2904
2905 static int __init nvme_init(void)
2906 {
2907 int result;
2908
2909 init_waitqueue_head(&nvme_kthread_wait);
2910
2911 nvme_workq = create_singlethread_workqueue("nvme");
2912 if (!nvme_workq)
2913 return -ENOMEM;
2914
2915 result = register_blkdev(nvme_major, "nvme");
2916 if (result < 0)
2917 goto kill_workq;
2918 else if (result > 0)
2919 nvme_major = result;
2920
2921 result = pci_register_driver(&nvme_driver);
2922 if (result)
2923 goto unregister_blkdev;
2924 return 0;
2925
2926 unregister_blkdev:
2927 unregister_blkdev(nvme_major, "nvme");
2928 kill_workq:
2929 destroy_workqueue(nvme_workq);
2930 return result;
2931 }
2932
2933 static void __exit nvme_exit(void)
2934 {
2935 pci_unregister_driver(&nvme_driver);
2936 unregister_blkdev(nvme_major, "nvme");
2937 destroy_workqueue(nvme_workq);
2938 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2939 _nvme_check_size();
2940 }
2941
2942 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2943 MODULE_LICENSE("GPL");
2944 MODULE_VERSION("0.9");
2945 module_init(nvme_init);
2946 module_exit(nvme_exit);
This page took 0.149725 seconds and 5 git commands to generate.