NVMe: Bring up cdev on set feature failure
[deliverable/linux.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/types.h>
43 #include <scsi/sg.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46 #define NVME_Q_DEPTH 1024
47 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
48 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
49 #define NVME_MINORS 64
50 #define ADMIN_TIMEOUT (60 * HZ)
51
52 static int nvme_major;
53 module_param(nvme_major, int, 0);
54
55 static int use_threaded_interrupts;
56 module_param(use_threaded_interrupts, int, 0);
57
58 static DEFINE_SPINLOCK(dev_list_lock);
59 static LIST_HEAD(dev_list);
60 static struct task_struct *nvme_thread;
61
62 /*
63 * An NVM Express queue. Each device has at least two (one for admin
64 * commands and one for I/O commands).
65 */
66 struct nvme_queue {
67 struct device *q_dmadev;
68 struct nvme_dev *dev;
69 spinlock_t q_lock;
70 struct nvme_command *sq_cmds;
71 volatile struct nvme_completion *cqes;
72 dma_addr_t sq_dma_addr;
73 dma_addr_t cq_dma_addr;
74 wait_queue_head_t sq_full;
75 wait_queue_t sq_cong_wait;
76 struct bio_list sq_cong;
77 u32 __iomem *q_db;
78 u16 q_depth;
79 u16 cq_vector;
80 u16 sq_head;
81 u16 sq_tail;
82 u16 cq_head;
83 u8 cq_phase;
84 u8 cqe_seen;
85 unsigned long cmdid_data[];
86 };
87
88 /*
89 * Check we didin't inadvertently grow the command struct
90 */
91 static inline void _nvme_check_size(void)
92 {
93 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
94 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
95 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
96 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
97 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
98 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
99 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
100 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
101 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
102 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
103 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
104 }
105
106 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
107 struct nvme_completion *);
108
109 struct nvme_cmd_info {
110 nvme_completion_fn fn;
111 void *ctx;
112 unsigned long timeout;
113 };
114
115 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
116 {
117 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
118 }
119
120 /**
121 * alloc_cmdid() - Allocate a Command ID
122 * @nvmeq: The queue that will be used for this command
123 * @ctx: A pointer that will be passed to the handler
124 * @handler: The function to call on completion
125 *
126 * Allocate a Command ID for a queue. The data passed in will
127 * be passed to the completion handler. This is implemented by using
128 * the bottom two bits of the ctx pointer to store the handler ID.
129 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
130 * We can change this if it becomes a problem.
131 *
132 * May be called with local interrupts disabled and the q_lock held,
133 * or with interrupts enabled and no locks held.
134 */
135 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
136 nvme_completion_fn handler, unsigned timeout)
137 {
138 int depth = nvmeq->q_depth - 1;
139 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
140 int cmdid;
141
142 do {
143 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
144 if (cmdid >= depth)
145 return -EBUSY;
146 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
147
148 info[cmdid].fn = handler;
149 info[cmdid].ctx = ctx;
150 info[cmdid].timeout = jiffies + timeout;
151 return cmdid;
152 }
153
154 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
155 nvme_completion_fn handler, unsigned timeout)
156 {
157 int cmdid;
158 wait_event_killable(nvmeq->sq_full,
159 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
160 return (cmdid < 0) ? -EINTR : cmdid;
161 }
162
163 /* Special values must be less than 0x1000 */
164 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
165 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
166 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
167 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
168 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
169
170 static void special_completion(struct nvme_dev *dev, void *ctx,
171 struct nvme_completion *cqe)
172 {
173 if (ctx == CMD_CTX_CANCELLED)
174 return;
175 if (ctx == CMD_CTX_FLUSH)
176 return;
177 if (ctx == CMD_CTX_COMPLETED) {
178 dev_warn(&dev->pci_dev->dev,
179 "completed id %d twice on queue %d\n",
180 cqe->command_id, le16_to_cpup(&cqe->sq_id));
181 return;
182 }
183 if (ctx == CMD_CTX_INVALID) {
184 dev_warn(&dev->pci_dev->dev,
185 "invalid id %d completed on queue %d\n",
186 cqe->command_id, le16_to_cpup(&cqe->sq_id));
187 return;
188 }
189
190 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
191 }
192
193 /*
194 * Called with local interrupts disabled and the q_lock held. May not sleep.
195 */
196 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
197 nvme_completion_fn *fn)
198 {
199 void *ctx;
200 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
201
202 if (cmdid >= nvmeq->q_depth) {
203 *fn = special_completion;
204 return CMD_CTX_INVALID;
205 }
206 if (fn)
207 *fn = info[cmdid].fn;
208 ctx = info[cmdid].ctx;
209 info[cmdid].fn = special_completion;
210 info[cmdid].ctx = CMD_CTX_COMPLETED;
211 clear_bit(cmdid, nvmeq->cmdid_data);
212 wake_up(&nvmeq->sq_full);
213 return ctx;
214 }
215
216 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
217 nvme_completion_fn *fn)
218 {
219 void *ctx;
220 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
221 if (fn)
222 *fn = info[cmdid].fn;
223 ctx = info[cmdid].ctx;
224 info[cmdid].fn = special_completion;
225 info[cmdid].ctx = CMD_CTX_CANCELLED;
226 return ctx;
227 }
228
229 struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
230 {
231 return dev->queues[get_cpu() + 1];
232 }
233
234 void put_nvmeq(struct nvme_queue *nvmeq)
235 {
236 put_cpu();
237 }
238
239 /**
240 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
241 * @nvmeq: The queue to use
242 * @cmd: The command to send
243 *
244 * Safe to use from interrupt context
245 */
246 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
247 {
248 unsigned long flags;
249 u16 tail;
250 spin_lock_irqsave(&nvmeq->q_lock, flags);
251 tail = nvmeq->sq_tail;
252 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
253 if (++tail == nvmeq->q_depth)
254 tail = 0;
255 writel(tail, nvmeq->q_db);
256 nvmeq->sq_tail = tail;
257 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
258
259 return 0;
260 }
261
262 static __le64 **iod_list(struct nvme_iod *iod)
263 {
264 return ((void *)iod) + iod->offset;
265 }
266
267 /*
268 * Will slightly overestimate the number of pages needed. This is OK
269 * as it only leads to a small amount of wasted memory for the lifetime of
270 * the I/O.
271 */
272 static int nvme_npages(unsigned size)
273 {
274 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
275 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
276 }
277
278 static struct nvme_iod *
279 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
280 {
281 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
282 sizeof(__le64 *) * nvme_npages(nbytes) +
283 sizeof(struct scatterlist) * nseg, gfp);
284
285 if (iod) {
286 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
287 iod->npages = -1;
288 iod->length = nbytes;
289 iod->nents = 0;
290 iod->start_time = jiffies;
291 }
292
293 return iod;
294 }
295
296 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
297 {
298 const int last_prp = PAGE_SIZE / 8 - 1;
299 int i;
300 __le64 **list = iod_list(iod);
301 dma_addr_t prp_dma = iod->first_dma;
302
303 if (iod->npages == 0)
304 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
305 for (i = 0; i < iod->npages; i++) {
306 __le64 *prp_list = list[i];
307 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
308 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
309 prp_dma = next_prp_dma;
310 }
311 kfree(iod);
312 }
313
314 static void nvme_start_io_acct(struct bio *bio)
315 {
316 struct gendisk *disk = bio->bi_bdev->bd_disk;
317 const int rw = bio_data_dir(bio);
318 int cpu = part_stat_lock();
319 part_round_stats(cpu, &disk->part0);
320 part_stat_inc(cpu, &disk->part0, ios[rw]);
321 part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
322 part_inc_in_flight(&disk->part0, rw);
323 part_stat_unlock();
324 }
325
326 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
327 {
328 struct gendisk *disk = bio->bi_bdev->bd_disk;
329 const int rw = bio_data_dir(bio);
330 unsigned long duration = jiffies - start_time;
331 int cpu = part_stat_lock();
332 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
333 part_round_stats(cpu, &disk->part0);
334 part_dec_in_flight(&disk->part0, rw);
335 part_stat_unlock();
336 }
337
338 static void bio_completion(struct nvme_dev *dev, void *ctx,
339 struct nvme_completion *cqe)
340 {
341 struct nvme_iod *iod = ctx;
342 struct bio *bio = iod->private;
343 u16 status = le16_to_cpup(&cqe->status) >> 1;
344
345 if (iod->nents)
346 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
347 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
348
349 nvme_end_io_acct(bio, iod->start_time);
350 nvme_free_iod(dev, iod);
351 if (status)
352 bio_endio(bio, -EIO);
353 else
354 bio_endio(bio, 0);
355 }
356
357 /* length is in bytes. gfp flags indicates whether we may sleep. */
358 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
359 struct nvme_iod *iod, int total_len, gfp_t gfp)
360 {
361 struct dma_pool *pool;
362 int length = total_len;
363 struct scatterlist *sg = iod->sg;
364 int dma_len = sg_dma_len(sg);
365 u64 dma_addr = sg_dma_address(sg);
366 int offset = offset_in_page(dma_addr);
367 __le64 *prp_list;
368 __le64 **list = iod_list(iod);
369 dma_addr_t prp_dma;
370 int nprps, i;
371
372 cmd->prp1 = cpu_to_le64(dma_addr);
373 length -= (PAGE_SIZE - offset);
374 if (length <= 0)
375 return total_len;
376
377 dma_len -= (PAGE_SIZE - offset);
378 if (dma_len) {
379 dma_addr += (PAGE_SIZE - offset);
380 } else {
381 sg = sg_next(sg);
382 dma_addr = sg_dma_address(sg);
383 dma_len = sg_dma_len(sg);
384 }
385
386 if (length <= PAGE_SIZE) {
387 cmd->prp2 = cpu_to_le64(dma_addr);
388 return total_len;
389 }
390
391 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
392 if (nprps <= (256 / 8)) {
393 pool = dev->prp_small_pool;
394 iod->npages = 0;
395 } else {
396 pool = dev->prp_page_pool;
397 iod->npages = 1;
398 }
399
400 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
401 if (!prp_list) {
402 cmd->prp2 = cpu_to_le64(dma_addr);
403 iod->npages = -1;
404 return (total_len - length) + PAGE_SIZE;
405 }
406 list[0] = prp_list;
407 iod->first_dma = prp_dma;
408 cmd->prp2 = cpu_to_le64(prp_dma);
409 i = 0;
410 for (;;) {
411 if (i == PAGE_SIZE / 8) {
412 __le64 *old_prp_list = prp_list;
413 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
414 if (!prp_list)
415 return total_len - length;
416 list[iod->npages++] = prp_list;
417 prp_list[0] = old_prp_list[i - 1];
418 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
419 i = 1;
420 }
421 prp_list[i++] = cpu_to_le64(dma_addr);
422 dma_len -= PAGE_SIZE;
423 dma_addr += PAGE_SIZE;
424 length -= PAGE_SIZE;
425 if (length <= 0)
426 break;
427 if (dma_len > 0)
428 continue;
429 BUG_ON(dma_len < 0);
430 sg = sg_next(sg);
431 dma_addr = sg_dma_address(sg);
432 dma_len = sg_dma_len(sg);
433 }
434
435 return total_len;
436 }
437
438 struct nvme_bio_pair {
439 struct bio b1, b2, *parent;
440 struct bio_vec *bv1, *bv2;
441 int err;
442 atomic_t cnt;
443 };
444
445 static void nvme_bio_pair_endio(struct bio *bio, int err)
446 {
447 struct nvme_bio_pair *bp = bio->bi_private;
448
449 if (err)
450 bp->err = err;
451
452 if (atomic_dec_and_test(&bp->cnt)) {
453 bio_endio(bp->parent, bp->err);
454 kfree(bp->bv1);
455 kfree(bp->bv2);
456 kfree(bp);
457 }
458 }
459
460 static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
461 int len, int offset)
462 {
463 struct nvme_bio_pair *bp;
464
465 BUG_ON(len > bio->bi_size);
466 BUG_ON(idx > bio->bi_vcnt);
467
468 bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
469 if (!bp)
470 return NULL;
471 bp->err = 0;
472
473 bp->b1 = *bio;
474 bp->b2 = *bio;
475
476 bp->b1.bi_size = len;
477 bp->b2.bi_size -= len;
478 bp->b1.bi_vcnt = idx;
479 bp->b2.bi_idx = idx;
480 bp->b2.bi_sector += len >> 9;
481
482 if (offset) {
483 bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
484 GFP_ATOMIC);
485 if (!bp->bv1)
486 goto split_fail_1;
487
488 bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
489 GFP_ATOMIC);
490 if (!bp->bv2)
491 goto split_fail_2;
492
493 memcpy(bp->bv1, bio->bi_io_vec,
494 bio->bi_max_vecs * sizeof(struct bio_vec));
495 memcpy(bp->bv2, bio->bi_io_vec,
496 bio->bi_max_vecs * sizeof(struct bio_vec));
497
498 bp->b1.bi_io_vec = bp->bv1;
499 bp->b2.bi_io_vec = bp->bv2;
500 bp->b2.bi_io_vec[idx].bv_offset += offset;
501 bp->b2.bi_io_vec[idx].bv_len -= offset;
502 bp->b1.bi_io_vec[idx].bv_len = offset;
503 bp->b1.bi_vcnt++;
504 } else
505 bp->bv1 = bp->bv2 = NULL;
506
507 bp->b1.bi_private = bp;
508 bp->b2.bi_private = bp;
509
510 bp->b1.bi_end_io = nvme_bio_pair_endio;
511 bp->b2.bi_end_io = nvme_bio_pair_endio;
512
513 bp->parent = bio;
514 atomic_set(&bp->cnt, 2);
515
516 return bp;
517
518 split_fail_2:
519 kfree(bp->bv1);
520 split_fail_1:
521 kfree(bp);
522 return NULL;
523 }
524
525 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
526 int idx, int len, int offset)
527 {
528 struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
529 if (!bp)
530 return -ENOMEM;
531
532 if (bio_list_empty(&nvmeq->sq_cong))
533 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
534 bio_list_add(&nvmeq->sq_cong, &bp->b1);
535 bio_list_add(&nvmeq->sq_cong, &bp->b2);
536
537 return 0;
538 }
539
540 /* NVMe scatterlists require no holes in the virtual address */
541 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
542 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
543
544 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
545 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
546 {
547 struct bio_vec *bvec, *bvprv = NULL;
548 struct scatterlist *sg = NULL;
549 int i, length = 0, nsegs = 0, split_len = bio->bi_size;
550
551 if (nvmeq->dev->stripe_size)
552 split_len = nvmeq->dev->stripe_size -
553 ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
554
555 sg_init_table(iod->sg, psegs);
556 bio_for_each_segment(bvec, bio, i) {
557 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
558 sg->length += bvec->bv_len;
559 } else {
560 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
561 return nvme_split_and_submit(bio, nvmeq, i,
562 length, 0);
563
564 sg = sg ? sg + 1 : iod->sg;
565 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
566 bvec->bv_offset);
567 nsegs++;
568 }
569
570 if (split_len - length < bvec->bv_len)
571 return nvme_split_and_submit(bio, nvmeq, i, split_len,
572 split_len - length);
573 length += bvec->bv_len;
574 bvprv = bvec;
575 }
576 iod->nents = nsegs;
577 sg_mark_end(sg);
578 if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
579 return -ENOMEM;
580
581 BUG_ON(length != bio->bi_size);
582 return length;
583 }
584
585 /*
586 * We reuse the small pool to allocate the 16-byte range here as it is not
587 * worth having a special pool for these or additional cases to handle freeing
588 * the iod.
589 */
590 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
591 struct bio *bio, struct nvme_iod *iod, int cmdid)
592 {
593 struct nvme_dsm_range *range;
594 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
595
596 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
597 &iod->first_dma);
598 if (!range)
599 return -ENOMEM;
600
601 iod_list(iod)[0] = (__le64 *)range;
602 iod->npages = 0;
603
604 range->cattr = cpu_to_le32(0);
605 range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
606 range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
607
608 memset(cmnd, 0, sizeof(*cmnd));
609 cmnd->dsm.opcode = nvme_cmd_dsm;
610 cmnd->dsm.command_id = cmdid;
611 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
612 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
613 cmnd->dsm.nr = 0;
614 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
615
616 if (++nvmeq->sq_tail == nvmeq->q_depth)
617 nvmeq->sq_tail = 0;
618 writel(nvmeq->sq_tail, nvmeq->q_db);
619
620 return 0;
621 }
622
623 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
624 int cmdid)
625 {
626 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
627
628 memset(cmnd, 0, sizeof(*cmnd));
629 cmnd->common.opcode = nvme_cmd_flush;
630 cmnd->common.command_id = cmdid;
631 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
632
633 if (++nvmeq->sq_tail == nvmeq->q_depth)
634 nvmeq->sq_tail = 0;
635 writel(nvmeq->sq_tail, nvmeq->q_db);
636
637 return 0;
638 }
639
640 int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
641 {
642 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
643 special_completion, NVME_IO_TIMEOUT);
644 if (unlikely(cmdid < 0))
645 return cmdid;
646
647 return nvme_submit_flush(nvmeq, ns, cmdid);
648 }
649
650 /*
651 * Called with local interrupts disabled and the q_lock held. May not sleep.
652 */
653 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
654 struct bio *bio)
655 {
656 struct nvme_command *cmnd;
657 struct nvme_iod *iod;
658 enum dma_data_direction dma_dir;
659 int cmdid, length, result;
660 u16 control;
661 u32 dsmgmt;
662 int psegs = bio_phys_segments(ns->queue, bio);
663
664 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
665 result = nvme_submit_flush_data(nvmeq, ns);
666 if (result)
667 return result;
668 }
669
670 result = -ENOMEM;
671 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
672 if (!iod)
673 goto nomem;
674 iod->private = bio;
675
676 result = -EBUSY;
677 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
678 if (unlikely(cmdid < 0))
679 goto free_iod;
680
681 if (bio->bi_rw & REQ_DISCARD) {
682 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
683 if (result)
684 goto free_cmdid;
685 return result;
686 }
687 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
688 return nvme_submit_flush(nvmeq, ns, cmdid);
689
690 control = 0;
691 if (bio->bi_rw & REQ_FUA)
692 control |= NVME_RW_FUA;
693 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
694 control |= NVME_RW_LR;
695
696 dsmgmt = 0;
697 if (bio->bi_rw & REQ_RAHEAD)
698 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
699
700 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
701
702 memset(cmnd, 0, sizeof(*cmnd));
703 if (bio_data_dir(bio)) {
704 cmnd->rw.opcode = nvme_cmd_write;
705 dma_dir = DMA_TO_DEVICE;
706 } else {
707 cmnd->rw.opcode = nvme_cmd_read;
708 dma_dir = DMA_FROM_DEVICE;
709 }
710
711 result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
712 if (result <= 0)
713 goto free_cmdid;
714 length = result;
715
716 cmnd->rw.command_id = cmdid;
717 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
718 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
719 GFP_ATOMIC);
720 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
721 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
722 cmnd->rw.control = cpu_to_le16(control);
723 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
724
725 nvme_start_io_acct(bio);
726 if (++nvmeq->sq_tail == nvmeq->q_depth)
727 nvmeq->sq_tail = 0;
728 writel(nvmeq->sq_tail, nvmeq->q_db);
729
730 return 0;
731
732 free_cmdid:
733 free_cmdid(nvmeq, cmdid, NULL);
734 free_iod:
735 nvme_free_iod(nvmeq->dev, iod);
736 nomem:
737 return result;
738 }
739
740 static int nvme_process_cq(struct nvme_queue *nvmeq)
741 {
742 u16 head, phase;
743
744 head = nvmeq->cq_head;
745 phase = nvmeq->cq_phase;
746
747 for (;;) {
748 void *ctx;
749 nvme_completion_fn fn;
750 struct nvme_completion cqe = nvmeq->cqes[head];
751 if ((le16_to_cpu(cqe.status) & 1) != phase)
752 break;
753 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
754 if (++head == nvmeq->q_depth) {
755 head = 0;
756 phase = !phase;
757 }
758
759 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
760 fn(nvmeq->dev, ctx, &cqe);
761 }
762
763 /* If the controller ignores the cq head doorbell and continuously
764 * writes to the queue, it is theoretically possible to wrap around
765 * the queue twice and mistakenly return IRQ_NONE. Linux only
766 * requires that 0.1% of your interrupts are handled, so this isn't
767 * a big problem.
768 */
769 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
770 return 0;
771
772 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
773 nvmeq->cq_head = head;
774 nvmeq->cq_phase = phase;
775
776 nvmeq->cqe_seen = 1;
777 return 1;
778 }
779
780 static void nvme_make_request(struct request_queue *q, struct bio *bio)
781 {
782 struct nvme_ns *ns = q->queuedata;
783 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
784 int result = -EBUSY;
785
786 spin_lock_irq(&nvmeq->q_lock);
787 if (bio_list_empty(&nvmeq->sq_cong))
788 result = nvme_submit_bio_queue(nvmeq, ns, bio);
789 if (unlikely(result)) {
790 if (bio_list_empty(&nvmeq->sq_cong))
791 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
792 bio_list_add(&nvmeq->sq_cong, bio);
793 }
794
795 nvme_process_cq(nvmeq);
796 spin_unlock_irq(&nvmeq->q_lock);
797 put_nvmeq(nvmeq);
798 }
799
800 static irqreturn_t nvme_irq(int irq, void *data)
801 {
802 irqreturn_t result;
803 struct nvme_queue *nvmeq = data;
804 spin_lock(&nvmeq->q_lock);
805 nvme_process_cq(nvmeq);
806 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
807 nvmeq->cqe_seen = 0;
808 spin_unlock(&nvmeq->q_lock);
809 return result;
810 }
811
812 static irqreturn_t nvme_irq_check(int irq, void *data)
813 {
814 struct nvme_queue *nvmeq = data;
815 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
816 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
817 return IRQ_NONE;
818 return IRQ_WAKE_THREAD;
819 }
820
821 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
822 {
823 spin_lock_irq(&nvmeq->q_lock);
824 cancel_cmdid(nvmeq, cmdid, NULL);
825 spin_unlock_irq(&nvmeq->q_lock);
826 }
827
828 struct sync_cmd_info {
829 struct task_struct *task;
830 u32 result;
831 int status;
832 };
833
834 static void sync_completion(struct nvme_dev *dev, void *ctx,
835 struct nvme_completion *cqe)
836 {
837 struct sync_cmd_info *cmdinfo = ctx;
838 cmdinfo->result = le32_to_cpup(&cqe->result);
839 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
840 wake_up_process(cmdinfo->task);
841 }
842
843 /*
844 * Returns 0 on success. If the result is negative, it's a Linux error code;
845 * if the result is positive, it's an NVM Express status code
846 */
847 int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
848 u32 *result, unsigned timeout)
849 {
850 int cmdid;
851 struct sync_cmd_info cmdinfo;
852
853 cmdinfo.task = current;
854 cmdinfo.status = -EINTR;
855
856 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
857 timeout);
858 if (cmdid < 0)
859 return cmdid;
860 cmd->common.command_id = cmdid;
861
862 set_current_state(TASK_KILLABLE);
863 nvme_submit_cmd(nvmeq, cmd);
864 schedule_timeout(timeout);
865
866 if (cmdinfo.status == -EINTR) {
867 nvme_abort_command(nvmeq, cmdid);
868 return -EINTR;
869 }
870
871 if (result)
872 *result = cmdinfo.result;
873
874 return cmdinfo.status;
875 }
876
877 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
878 u32 *result)
879 {
880 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
881 }
882
883 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
884 {
885 int status;
886 struct nvme_command c;
887
888 memset(&c, 0, sizeof(c));
889 c.delete_queue.opcode = opcode;
890 c.delete_queue.qid = cpu_to_le16(id);
891
892 status = nvme_submit_admin_cmd(dev, &c, NULL);
893 if (status)
894 return -EIO;
895 return 0;
896 }
897
898 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
899 struct nvme_queue *nvmeq)
900 {
901 int status;
902 struct nvme_command c;
903 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
904
905 memset(&c, 0, sizeof(c));
906 c.create_cq.opcode = nvme_admin_create_cq;
907 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
908 c.create_cq.cqid = cpu_to_le16(qid);
909 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
910 c.create_cq.cq_flags = cpu_to_le16(flags);
911 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
912
913 status = nvme_submit_admin_cmd(dev, &c, NULL);
914 if (status)
915 return -EIO;
916 return 0;
917 }
918
919 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
920 struct nvme_queue *nvmeq)
921 {
922 int status;
923 struct nvme_command c;
924 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
925
926 memset(&c, 0, sizeof(c));
927 c.create_sq.opcode = nvme_admin_create_sq;
928 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
929 c.create_sq.sqid = cpu_to_le16(qid);
930 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
931 c.create_sq.sq_flags = cpu_to_le16(flags);
932 c.create_sq.cqid = cpu_to_le16(qid);
933
934 status = nvme_submit_admin_cmd(dev, &c, NULL);
935 if (status)
936 return -EIO;
937 return 0;
938 }
939
940 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
941 {
942 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
943 }
944
945 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
946 {
947 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
948 }
949
950 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
951 dma_addr_t dma_addr)
952 {
953 struct nvme_command c;
954
955 memset(&c, 0, sizeof(c));
956 c.identify.opcode = nvme_admin_identify;
957 c.identify.nsid = cpu_to_le32(nsid);
958 c.identify.prp1 = cpu_to_le64(dma_addr);
959 c.identify.cns = cpu_to_le32(cns);
960
961 return nvme_submit_admin_cmd(dev, &c, NULL);
962 }
963
964 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
965 dma_addr_t dma_addr, u32 *result)
966 {
967 struct nvme_command c;
968
969 memset(&c, 0, sizeof(c));
970 c.features.opcode = nvme_admin_get_features;
971 c.features.nsid = cpu_to_le32(nsid);
972 c.features.prp1 = cpu_to_le64(dma_addr);
973 c.features.fid = cpu_to_le32(fid);
974
975 return nvme_submit_admin_cmd(dev, &c, result);
976 }
977
978 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
979 dma_addr_t dma_addr, u32 *result)
980 {
981 struct nvme_command c;
982
983 memset(&c, 0, sizeof(c));
984 c.features.opcode = nvme_admin_set_features;
985 c.features.prp1 = cpu_to_le64(dma_addr);
986 c.features.fid = cpu_to_le32(fid);
987 c.features.dword11 = cpu_to_le32(dword11);
988
989 return nvme_submit_admin_cmd(dev, &c, result);
990 }
991
992 /**
993 * nvme_cancel_ios - Cancel outstanding I/Os
994 * @queue: The queue to cancel I/Os on
995 * @timeout: True to only cancel I/Os which have timed out
996 */
997 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
998 {
999 int depth = nvmeq->q_depth - 1;
1000 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1001 unsigned long now = jiffies;
1002 int cmdid;
1003
1004 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1005 void *ctx;
1006 nvme_completion_fn fn;
1007 static struct nvme_completion cqe = {
1008 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1009 };
1010
1011 if (timeout && !time_after(now, info[cmdid].timeout))
1012 continue;
1013 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1014 continue;
1015 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
1016 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1017 fn(nvmeq->dev, ctx, &cqe);
1018 }
1019 }
1020
1021 static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
1022 {
1023 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1024 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1025 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1026 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1027 kfree(nvmeq);
1028 }
1029
1030 static void nvme_free_queue(struct nvme_dev *dev, int qid)
1031 {
1032 struct nvme_queue *nvmeq = dev->queues[qid];
1033 int vector = dev->entry[nvmeq->cq_vector].vector;
1034
1035 spin_lock_irq(&nvmeq->q_lock);
1036 nvme_cancel_ios(nvmeq, false);
1037 while (bio_list_peek(&nvmeq->sq_cong)) {
1038 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1039 bio_endio(bio, -EIO);
1040 }
1041 spin_unlock_irq(&nvmeq->q_lock);
1042
1043 irq_set_affinity_hint(vector, NULL);
1044 free_irq(vector, nvmeq);
1045
1046 /* Don't tell the adapter to delete the admin queue */
1047 if (qid) {
1048 adapter_delete_sq(dev, qid);
1049 adapter_delete_cq(dev, qid);
1050 }
1051
1052 nvme_free_queue_mem(nvmeq);
1053 }
1054
1055 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1056 int depth, int vector)
1057 {
1058 struct device *dmadev = &dev->pci_dev->dev;
1059 unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1060 sizeof(struct nvme_cmd_info));
1061 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1062 if (!nvmeq)
1063 return NULL;
1064
1065 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1066 &nvmeq->cq_dma_addr, GFP_KERNEL);
1067 if (!nvmeq->cqes)
1068 goto free_nvmeq;
1069 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1070
1071 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1072 &nvmeq->sq_dma_addr, GFP_KERNEL);
1073 if (!nvmeq->sq_cmds)
1074 goto free_cqdma;
1075
1076 nvmeq->q_dmadev = dmadev;
1077 nvmeq->dev = dev;
1078 spin_lock_init(&nvmeq->q_lock);
1079 nvmeq->cq_head = 0;
1080 nvmeq->cq_phase = 1;
1081 init_waitqueue_head(&nvmeq->sq_full);
1082 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1083 bio_list_init(&nvmeq->sq_cong);
1084 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1085 nvmeq->q_depth = depth;
1086 nvmeq->cq_vector = vector;
1087
1088 return nvmeq;
1089
1090 free_cqdma:
1091 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1092 nvmeq->cq_dma_addr);
1093 free_nvmeq:
1094 kfree(nvmeq);
1095 return NULL;
1096 }
1097
1098 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1099 const char *name)
1100 {
1101 if (use_threaded_interrupts)
1102 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1103 nvme_irq_check, nvme_irq,
1104 IRQF_DISABLED | IRQF_SHARED,
1105 name, nvmeq);
1106 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1107 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1108 }
1109
1110 static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1111 int cq_size, int vector)
1112 {
1113 int result;
1114 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1115
1116 if (!nvmeq)
1117 return ERR_PTR(-ENOMEM);
1118
1119 result = adapter_alloc_cq(dev, qid, nvmeq);
1120 if (result < 0)
1121 goto free_nvmeq;
1122
1123 result = adapter_alloc_sq(dev, qid, nvmeq);
1124 if (result < 0)
1125 goto release_cq;
1126
1127 result = queue_request_irq(dev, nvmeq, "nvme");
1128 if (result < 0)
1129 goto release_sq;
1130
1131 return nvmeq;
1132
1133 release_sq:
1134 adapter_delete_sq(dev, qid);
1135 release_cq:
1136 adapter_delete_cq(dev, qid);
1137 free_nvmeq:
1138 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1139 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1140 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1141 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1142 kfree(nvmeq);
1143 return ERR_PTR(result);
1144 }
1145
1146 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1147 {
1148 unsigned long timeout;
1149 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1150
1151 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1152
1153 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1154 msleep(100);
1155 if (fatal_signal_pending(current))
1156 return -EINTR;
1157 if (time_after(jiffies, timeout)) {
1158 dev_err(&dev->pci_dev->dev,
1159 "Device not ready; aborting initialisation\n");
1160 return -ENODEV;
1161 }
1162 }
1163
1164 return 0;
1165 }
1166
1167 /*
1168 * If the device has been passed off to us in an enabled state, just clear
1169 * the enabled bit. The spec says we should set the 'shutdown notification
1170 * bits', but doing so may cause the device to complete commands to the
1171 * admin queue ... and we don't know what memory that might be pointing at!
1172 */
1173 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1174 {
1175 u32 cc = readl(&dev->bar->cc);
1176
1177 if (cc & NVME_CC_ENABLE)
1178 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1179 return nvme_wait_ready(dev, cap, false);
1180 }
1181
1182 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1183 {
1184 return nvme_wait_ready(dev, cap, true);
1185 }
1186
1187 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1188 {
1189 int result;
1190 u32 aqa;
1191 u64 cap = readq(&dev->bar->cap);
1192 struct nvme_queue *nvmeq;
1193
1194 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1195 dev->db_stride = NVME_CAP_STRIDE(cap);
1196
1197 result = nvme_disable_ctrl(dev, cap);
1198 if (result < 0)
1199 return result;
1200
1201 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1202 if (!nvmeq)
1203 return -ENOMEM;
1204
1205 aqa = nvmeq->q_depth - 1;
1206 aqa |= aqa << 16;
1207
1208 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1209 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1210 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1211 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1212
1213 writel(aqa, &dev->bar->aqa);
1214 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1215 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1216 writel(dev->ctrl_config, &dev->bar->cc);
1217
1218 result = nvme_enable_ctrl(dev, cap);
1219 if (result)
1220 goto free_q;
1221
1222 result = queue_request_irq(dev, nvmeq, "nvme admin");
1223 if (result)
1224 goto free_q;
1225
1226 dev->queues[0] = nvmeq;
1227 return result;
1228
1229 free_q:
1230 nvme_free_queue_mem(nvmeq);
1231 return result;
1232 }
1233
1234 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1235 unsigned long addr, unsigned length)
1236 {
1237 int i, err, count, nents, offset;
1238 struct scatterlist *sg;
1239 struct page **pages;
1240 struct nvme_iod *iod;
1241
1242 if (addr & 3)
1243 return ERR_PTR(-EINVAL);
1244 if (!length || length > INT_MAX - PAGE_SIZE)
1245 return ERR_PTR(-EINVAL);
1246
1247 offset = offset_in_page(addr);
1248 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1249 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1250 if (!pages)
1251 return ERR_PTR(-ENOMEM);
1252
1253 err = get_user_pages_fast(addr, count, 1, pages);
1254 if (err < count) {
1255 count = err;
1256 err = -EFAULT;
1257 goto put_pages;
1258 }
1259
1260 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1261 sg = iod->sg;
1262 sg_init_table(sg, count);
1263 for (i = 0; i < count; i++) {
1264 sg_set_page(&sg[i], pages[i],
1265 min_t(unsigned, length, PAGE_SIZE - offset),
1266 offset);
1267 length -= (PAGE_SIZE - offset);
1268 offset = 0;
1269 }
1270 sg_mark_end(&sg[i - 1]);
1271 iod->nents = count;
1272
1273 err = -ENOMEM;
1274 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1275 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1276 if (!nents)
1277 goto free_iod;
1278
1279 kfree(pages);
1280 return iod;
1281
1282 free_iod:
1283 kfree(iod);
1284 put_pages:
1285 for (i = 0; i < count; i++)
1286 put_page(pages[i]);
1287 kfree(pages);
1288 return ERR_PTR(err);
1289 }
1290
1291 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1292 struct nvme_iod *iod)
1293 {
1294 int i;
1295
1296 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1297 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1298
1299 for (i = 0; i < iod->nents; i++)
1300 put_page(sg_page(&iod->sg[i]));
1301 }
1302
1303 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1304 {
1305 struct nvme_dev *dev = ns->dev;
1306 struct nvme_queue *nvmeq;
1307 struct nvme_user_io io;
1308 struct nvme_command c;
1309 unsigned length, meta_len;
1310 int status, i;
1311 struct nvme_iod *iod, *meta_iod = NULL;
1312 dma_addr_t meta_dma_addr;
1313 void *meta, *uninitialized_var(meta_mem);
1314
1315 if (copy_from_user(&io, uio, sizeof(io)))
1316 return -EFAULT;
1317 length = (io.nblocks + 1) << ns->lba_shift;
1318 meta_len = (io.nblocks + 1) * ns->ms;
1319
1320 if (meta_len && ((io.metadata & 3) || !io.metadata))
1321 return -EINVAL;
1322
1323 switch (io.opcode) {
1324 case nvme_cmd_write:
1325 case nvme_cmd_read:
1326 case nvme_cmd_compare:
1327 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1328 break;
1329 default:
1330 return -EINVAL;
1331 }
1332
1333 if (IS_ERR(iod))
1334 return PTR_ERR(iod);
1335
1336 memset(&c, 0, sizeof(c));
1337 c.rw.opcode = io.opcode;
1338 c.rw.flags = io.flags;
1339 c.rw.nsid = cpu_to_le32(ns->ns_id);
1340 c.rw.slba = cpu_to_le64(io.slba);
1341 c.rw.length = cpu_to_le16(io.nblocks);
1342 c.rw.control = cpu_to_le16(io.control);
1343 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1344 c.rw.reftag = cpu_to_le32(io.reftag);
1345 c.rw.apptag = cpu_to_le16(io.apptag);
1346 c.rw.appmask = cpu_to_le16(io.appmask);
1347
1348 if (meta_len) {
1349 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1350 meta_len);
1351 if (IS_ERR(meta_iod)) {
1352 status = PTR_ERR(meta_iod);
1353 meta_iod = NULL;
1354 goto unmap;
1355 }
1356
1357 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1358 &meta_dma_addr, GFP_KERNEL);
1359 if (!meta_mem) {
1360 status = -ENOMEM;
1361 goto unmap;
1362 }
1363
1364 if (io.opcode & 1) {
1365 int meta_offset = 0;
1366
1367 for (i = 0; i < meta_iod->nents; i++) {
1368 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1369 meta_iod->sg[i].offset;
1370 memcpy(meta_mem + meta_offset, meta,
1371 meta_iod->sg[i].length);
1372 kunmap_atomic(meta);
1373 meta_offset += meta_iod->sg[i].length;
1374 }
1375 }
1376
1377 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1378 }
1379
1380 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1381
1382 nvmeq = get_nvmeq(dev);
1383 /*
1384 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1385 * disabled. We may be preempted at any point, and be rescheduled
1386 * to a different CPU. That will cause cacheline bouncing, but no
1387 * additional races since q_lock already protects against other CPUs.
1388 */
1389 put_nvmeq(nvmeq);
1390 if (length != (io.nblocks + 1) << ns->lba_shift)
1391 status = -ENOMEM;
1392 else
1393 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1394
1395 if (meta_len) {
1396 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1397 int meta_offset = 0;
1398
1399 for (i = 0; i < meta_iod->nents; i++) {
1400 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1401 meta_iod->sg[i].offset;
1402 memcpy(meta, meta_mem + meta_offset,
1403 meta_iod->sg[i].length);
1404 kunmap_atomic(meta);
1405 meta_offset += meta_iod->sg[i].length;
1406 }
1407 }
1408
1409 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1410 meta_dma_addr);
1411 }
1412
1413 unmap:
1414 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1415 nvme_free_iod(dev, iod);
1416
1417 if (meta_iod) {
1418 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1419 nvme_free_iod(dev, meta_iod);
1420 }
1421
1422 return status;
1423 }
1424
1425 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1426 struct nvme_admin_cmd __user *ucmd)
1427 {
1428 struct nvme_admin_cmd cmd;
1429 struct nvme_command c;
1430 int status, length;
1431 struct nvme_iod *uninitialized_var(iod);
1432 unsigned timeout;
1433
1434 if (!capable(CAP_SYS_ADMIN))
1435 return -EACCES;
1436 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1437 return -EFAULT;
1438
1439 memset(&c, 0, sizeof(c));
1440 c.common.opcode = cmd.opcode;
1441 c.common.flags = cmd.flags;
1442 c.common.nsid = cpu_to_le32(cmd.nsid);
1443 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1444 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1445 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1446 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1447 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1448 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1449 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1450 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1451
1452 length = cmd.data_len;
1453 if (cmd.data_len) {
1454 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1455 length);
1456 if (IS_ERR(iod))
1457 return PTR_ERR(iod);
1458 length = nvme_setup_prps(dev, &c.common, iod, length,
1459 GFP_KERNEL);
1460 }
1461
1462 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1463 ADMIN_TIMEOUT;
1464 if (length != cmd.data_len)
1465 status = -ENOMEM;
1466 else
1467 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1468 timeout);
1469
1470 if (cmd.data_len) {
1471 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1472 nvme_free_iod(dev, iod);
1473 }
1474
1475 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1476 sizeof(cmd.result)))
1477 status = -EFAULT;
1478
1479 return status;
1480 }
1481
1482 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1483 unsigned long arg)
1484 {
1485 struct nvme_ns *ns = bdev->bd_disk->private_data;
1486
1487 switch (cmd) {
1488 case NVME_IOCTL_ID:
1489 force_successful_syscall_return();
1490 return ns->ns_id;
1491 case NVME_IOCTL_ADMIN_CMD:
1492 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1493 case NVME_IOCTL_SUBMIT_IO:
1494 return nvme_submit_io(ns, (void __user *)arg);
1495 case SG_GET_VERSION_NUM:
1496 return nvme_sg_get_version_num((void __user *)arg);
1497 case SG_IO:
1498 return nvme_sg_io(ns, (void __user *)arg);
1499 default:
1500 return -ENOTTY;
1501 }
1502 }
1503
1504 static const struct block_device_operations nvme_fops = {
1505 .owner = THIS_MODULE,
1506 .ioctl = nvme_ioctl,
1507 .compat_ioctl = nvme_ioctl,
1508 };
1509
1510 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1511 {
1512 while (bio_list_peek(&nvmeq->sq_cong)) {
1513 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1514 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1515
1516 if (bio_list_empty(&nvmeq->sq_cong))
1517 remove_wait_queue(&nvmeq->sq_full,
1518 &nvmeq->sq_cong_wait);
1519 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1520 if (bio_list_empty(&nvmeq->sq_cong))
1521 add_wait_queue(&nvmeq->sq_full,
1522 &nvmeq->sq_cong_wait);
1523 bio_list_add_head(&nvmeq->sq_cong, bio);
1524 break;
1525 }
1526 }
1527 }
1528
1529 static int nvme_kthread(void *data)
1530 {
1531 struct nvme_dev *dev;
1532
1533 while (!kthread_should_stop()) {
1534 set_current_state(TASK_INTERRUPTIBLE);
1535 spin_lock(&dev_list_lock);
1536 list_for_each_entry(dev, &dev_list, node) {
1537 int i;
1538 for (i = 0; i < dev->queue_count; i++) {
1539 struct nvme_queue *nvmeq = dev->queues[i];
1540 if (!nvmeq)
1541 continue;
1542 spin_lock_irq(&nvmeq->q_lock);
1543 nvme_process_cq(nvmeq);
1544 nvme_cancel_ios(nvmeq, true);
1545 nvme_resubmit_bios(nvmeq);
1546 spin_unlock_irq(&nvmeq->q_lock);
1547 }
1548 }
1549 spin_unlock(&dev_list_lock);
1550 schedule_timeout(round_jiffies_relative(HZ));
1551 }
1552 return 0;
1553 }
1554
1555 static DEFINE_IDA(nvme_index_ida);
1556
1557 static int nvme_get_ns_idx(void)
1558 {
1559 int index, error;
1560
1561 do {
1562 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1563 return -1;
1564
1565 spin_lock(&dev_list_lock);
1566 error = ida_get_new(&nvme_index_ida, &index);
1567 spin_unlock(&dev_list_lock);
1568 } while (error == -EAGAIN);
1569
1570 if (error)
1571 index = -1;
1572 return index;
1573 }
1574
1575 static void nvme_put_ns_idx(int index)
1576 {
1577 spin_lock(&dev_list_lock);
1578 ida_remove(&nvme_index_ida, index);
1579 spin_unlock(&dev_list_lock);
1580 }
1581
1582 static void nvme_config_discard(struct nvme_ns *ns)
1583 {
1584 u32 logical_block_size = queue_logical_block_size(ns->queue);
1585 ns->queue->limits.discard_zeroes_data = 0;
1586 ns->queue->limits.discard_alignment = logical_block_size;
1587 ns->queue->limits.discard_granularity = logical_block_size;
1588 ns->queue->limits.max_discard_sectors = 0xffffffff;
1589 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1590 }
1591
1592 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1593 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1594 {
1595 struct nvme_ns *ns;
1596 struct gendisk *disk;
1597 int lbaf;
1598
1599 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1600 return NULL;
1601
1602 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1603 if (!ns)
1604 return NULL;
1605 ns->queue = blk_alloc_queue(GFP_KERNEL);
1606 if (!ns->queue)
1607 goto out_free_ns;
1608 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1609 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1610 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1611 blk_queue_make_request(ns->queue, nvme_make_request);
1612 ns->dev = dev;
1613 ns->queue->queuedata = ns;
1614
1615 disk = alloc_disk(NVME_MINORS);
1616 if (!disk)
1617 goto out_free_queue;
1618 ns->ns_id = nsid;
1619 ns->disk = disk;
1620 lbaf = id->flbas & 0xf;
1621 ns->lba_shift = id->lbaf[lbaf].ds;
1622 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1623 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1624 if (dev->max_hw_sectors)
1625 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1626
1627 disk->major = nvme_major;
1628 disk->minors = NVME_MINORS;
1629 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1630 disk->fops = &nvme_fops;
1631 disk->private_data = ns;
1632 disk->queue = ns->queue;
1633 disk->driverfs_dev = &dev->pci_dev->dev;
1634 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1635 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1636
1637 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1638 nvme_config_discard(ns);
1639
1640 return ns;
1641
1642 out_free_queue:
1643 blk_cleanup_queue(ns->queue);
1644 out_free_ns:
1645 kfree(ns);
1646 return NULL;
1647 }
1648
1649 static void nvme_ns_free(struct nvme_ns *ns)
1650 {
1651 int index = ns->disk->first_minor / NVME_MINORS;
1652 put_disk(ns->disk);
1653 nvme_put_ns_idx(index);
1654 blk_cleanup_queue(ns->queue);
1655 kfree(ns);
1656 }
1657
1658 static int set_queue_count(struct nvme_dev *dev, int count)
1659 {
1660 int status;
1661 u32 result;
1662 u32 q_count = (count - 1) | ((count - 1) << 16);
1663
1664 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1665 &result);
1666 if (status)
1667 return status < 0 ? -EIO : -EBUSY;
1668 return min(result & 0xffff, result >> 16) + 1;
1669 }
1670
1671 static int nvme_setup_io_queues(struct nvme_dev *dev)
1672 {
1673 struct pci_dev *pdev = dev->pci_dev;
1674 int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
1675
1676 nr_io_queues = num_online_cpus();
1677 result = set_queue_count(dev, nr_io_queues);
1678 if (result < 0)
1679 return result;
1680 if (result < nr_io_queues)
1681 nr_io_queues = result;
1682
1683 /* Deregister the admin queue's interrupt */
1684 free_irq(dev->entry[0].vector, dev->queues[0]);
1685
1686 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1687 if (db_bar_size > 8192) {
1688 iounmap(dev->bar);
1689 dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
1690 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1691 dev->queues[0]->q_db = dev->dbs;
1692 }
1693
1694 vecs = nr_io_queues;
1695 for (i = 0; i < vecs; i++)
1696 dev->entry[i].entry = i;
1697 for (;;) {
1698 result = pci_enable_msix(pdev, dev->entry, vecs);
1699 if (result <= 0)
1700 break;
1701 vecs = result;
1702 }
1703
1704 if (result < 0) {
1705 vecs = nr_io_queues;
1706 if (vecs > 32)
1707 vecs = 32;
1708 for (;;) {
1709 result = pci_enable_msi_block(pdev, vecs);
1710 if (result == 0) {
1711 for (i = 0; i < vecs; i++)
1712 dev->entry[i].vector = i + pdev->irq;
1713 break;
1714 } else if (result < 0) {
1715 vecs = 1;
1716 break;
1717 }
1718 vecs = result;
1719 }
1720 }
1721
1722 /*
1723 * Should investigate if there's a performance win from allocating
1724 * more queues than interrupt vectors; it might allow the submission
1725 * path to scale better, even if the receive path is limited by the
1726 * number of interrupts.
1727 */
1728 nr_io_queues = vecs;
1729
1730 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1731 /* XXX: handle failure here */
1732
1733 cpu = cpumask_first(cpu_online_mask);
1734 for (i = 0; i < nr_io_queues; i++) {
1735 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1736 cpu = cpumask_next(cpu, cpu_online_mask);
1737 }
1738
1739 q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1740 NVME_Q_DEPTH);
1741 for (i = 0; i < nr_io_queues; i++) {
1742 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1743 if (IS_ERR(dev->queues[i + 1]))
1744 return PTR_ERR(dev->queues[i + 1]);
1745 dev->queue_count++;
1746 }
1747
1748 for (; i < num_possible_cpus(); i++) {
1749 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1750 dev->queues[i + 1] = dev->queues[target + 1];
1751 }
1752
1753 return 0;
1754 }
1755
1756 static void nvme_free_queues(struct nvme_dev *dev)
1757 {
1758 int i;
1759
1760 for (i = dev->queue_count - 1; i >= 0; i--)
1761 nvme_free_queue(dev, i);
1762 }
1763
1764 /*
1765 * Return: error value if an error occurred setting up the queues or calling
1766 * Identify Device. 0 if these succeeded, even if adding some of the
1767 * namespaces failed. At the moment, these failures are silent. TBD which
1768 * failures should be reported.
1769 */
1770 static int nvme_dev_add(struct nvme_dev *dev)
1771 {
1772 int res;
1773 unsigned nn, i;
1774 struct nvme_ns *ns;
1775 struct nvme_id_ctrl *ctrl;
1776 struct nvme_id_ns *id_ns;
1777 void *mem;
1778 dma_addr_t dma_addr;
1779 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1780
1781 res = nvme_setup_io_queues(dev);
1782 if (res)
1783 return res;
1784
1785 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1786 GFP_KERNEL);
1787 if (!mem)
1788 return -ENOMEM;
1789
1790 res = nvme_identify(dev, 0, 1, dma_addr);
1791 if (res) {
1792 res = -EIO;
1793 goto out;
1794 }
1795
1796 ctrl = mem;
1797 nn = le32_to_cpup(&ctrl->nn);
1798 dev->oncs = le16_to_cpup(&ctrl->oncs);
1799 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1800 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1801 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1802 if (ctrl->mdts)
1803 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1804 if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1805 (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1806 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
1807
1808 id_ns = mem;
1809 for (i = 1; i <= nn; i++) {
1810 res = nvme_identify(dev, i, 0, dma_addr);
1811 if (res)
1812 continue;
1813
1814 if (id_ns->ncap == 0)
1815 continue;
1816
1817 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1818 dma_addr + 4096, NULL);
1819 if (res)
1820 memset(mem + 4096, 0, 4096);
1821
1822 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1823 if (ns)
1824 list_add_tail(&ns->list, &dev->namespaces);
1825 }
1826 list_for_each_entry(ns, &dev->namespaces, list)
1827 add_disk(ns->disk);
1828 res = 0;
1829
1830 out:
1831 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1832 return res;
1833 }
1834
1835 static int nvme_dev_remove(struct nvme_dev *dev)
1836 {
1837 struct nvme_ns *ns, *next;
1838
1839 spin_lock(&dev_list_lock);
1840 list_del(&dev->node);
1841 spin_unlock(&dev_list_lock);
1842
1843 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1844 list_del(&ns->list);
1845 del_gendisk(ns->disk);
1846 nvme_ns_free(ns);
1847 }
1848
1849 nvme_free_queues(dev);
1850
1851 return 0;
1852 }
1853
1854 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1855 {
1856 struct device *dmadev = &dev->pci_dev->dev;
1857 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1858 PAGE_SIZE, PAGE_SIZE, 0);
1859 if (!dev->prp_page_pool)
1860 return -ENOMEM;
1861
1862 /* Optimisation for I/Os between 4k and 128k */
1863 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1864 256, 256, 0);
1865 if (!dev->prp_small_pool) {
1866 dma_pool_destroy(dev->prp_page_pool);
1867 return -ENOMEM;
1868 }
1869 return 0;
1870 }
1871
1872 static void nvme_release_prp_pools(struct nvme_dev *dev)
1873 {
1874 dma_pool_destroy(dev->prp_page_pool);
1875 dma_pool_destroy(dev->prp_small_pool);
1876 }
1877
1878 static DEFINE_IDA(nvme_instance_ida);
1879
1880 static int nvme_set_instance(struct nvme_dev *dev)
1881 {
1882 int instance, error;
1883
1884 do {
1885 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1886 return -ENODEV;
1887
1888 spin_lock(&dev_list_lock);
1889 error = ida_get_new(&nvme_instance_ida, &instance);
1890 spin_unlock(&dev_list_lock);
1891 } while (error == -EAGAIN);
1892
1893 if (error)
1894 return -ENODEV;
1895
1896 dev->instance = instance;
1897 return 0;
1898 }
1899
1900 static void nvme_release_instance(struct nvme_dev *dev)
1901 {
1902 spin_lock(&dev_list_lock);
1903 ida_remove(&nvme_instance_ida, dev->instance);
1904 spin_unlock(&dev_list_lock);
1905 }
1906
1907 static void nvme_free_dev(struct kref *kref)
1908 {
1909 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1910 nvme_dev_remove(dev);
1911 if (dev->pci_dev->msi_enabled)
1912 pci_disable_msi(dev->pci_dev);
1913 else if (dev->pci_dev->msix_enabled)
1914 pci_disable_msix(dev->pci_dev);
1915 iounmap(dev->bar);
1916 nvme_release_instance(dev);
1917 nvme_release_prp_pools(dev);
1918 pci_disable_device(dev->pci_dev);
1919 pci_release_regions(dev->pci_dev);
1920 kfree(dev->queues);
1921 kfree(dev->entry);
1922 kfree(dev);
1923 }
1924
1925 static int nvme_dev_open(struct inode *inode, struct file *f)
1926 {
1927 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1928 miscdev);
1929 kref_get(&dev->kref);
1930 f->private_data = dev;
1931 return 0;
1932 }
1933
1934 static int nvme_dev_release(struct inode *inode, struct file *f)
1935 {
1936 struct nvme_dev *dev = f->private_data;
1937 kref_put(&dev->kref, nvme_free_dev);
1938 return 0;
1939 }
1940
1941 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1942 {
1943 struct nvme_dev *dev = f->private_data;
1944 switch (cmd) {
1945 case NVME_IOCTL_ADMIN_CMD:
1946 return nvme_user_admin_cmd(dev, (void __user *)arg);
1947 default:
1948 return -ENOTTY;
1949 }
1950 }
1951
1952 static const struct file_operations nvme_dev_fops = {
1953 .owner = THIS_MODULE,
1954 .open = nvme_dev_open,
1955 .release = nvme_dev_release,
1956 .unlocked_ioctl = nvme_dev_ioctl,
1957 .compat_ioctl = nvme_dev_ioctl,
1958 };
1959
1960 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1961 {
1962 int bars, result = -ENOMEM;
1963 struct nvme_dev *dev;
1964
1965 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1966 if (!dev)
1967 return -ENOMEM;
1968 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1969 GFP_KERNEL);
1970 if (!dev->entry)
1971 goto free;
1972 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1973 GFP_KERNEL);
1974 if (!dev->queues)
1975 goto free;
1976
1977 if (pci_enable_device_mem(pdev))
1978 goto free;
1979 pci_set_master(pdev);
1980 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1981 if (pci_request_selected_regions(pdev, bars, "nvme"))
1982 goto disable;
1983
1984 INIT_LIST_HEAD(&dev->namespaces);
1985 dev->pci_dev = pdev;
1986 pci_set_drvdata(pdev, dev);
1987
1988 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1989 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1990 else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1991 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1992 else
1993 goto disable;
1994
1995 result = nvme_set_instance(dev);
1996 if (result)
1997 goto disable;
1998
1999 dev->entry[0].vector = pdev->irq;
2000
2001 result = nvme_setup_prp_pools(dev);
2002 if (result)
2003 goto disable_msix;
2004
2005 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2006 if (!dev->bar) {
2007 result = -ENOMEM;
2008 goto disable_msix;
2009 }
2010
2011 result = nvme_configure_admin_queue(dev);
2012 if (result)
2013 goto unmap;
2014 dev->queue_count++;
2015
2016 spin_lock(&dev_list_lock);
2017 list_add(&dev->node, &dev_list);
2018 spin_unlock(&dev_list_lock);
2019
2020 result = nvme_dev_add(dev);
2021 if (result && result != -EBUSY)
2022 goto delete;
2023
2024 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2025 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2026 dev->miscdev.parent = &pdev->dev;
2027 dev->miscdev.name = dev->name;
2028 dev->miscdev.fops = &nvme_dev_fops;
2029 result = misc_register(&dev->miscdev);
2030 if (result)
2031 goto remove;
2032
2033 kref_init(&dev->kref);
2034 return 0;
2035
2036 remove:
2037 nvme_dev_remove(dev);
2038 delete:
2039 spin_lock(&dev_list_lock);
2040 list_del(&dev->node);
2041 spin_unlock(&dev_list_lock);
2042
2043 nvme_free_queues(dev);
2044 unmap:
2045 iounmap(dev->bar);
2046 disable_msix:
2047 if (dev->pci_dev->msi_enabled)
2048 pci_disable_msi(dev->pci_dev);
2049 else if (dev->pci_dev->msix_enabled)
2050 pci_disable_msix(dev->pci_dev);
2051 nvme_release_instance(dev);
2052 nvme_release_prp_pools(dev);
2053 disable:
2054 pci_disable_device(pdev);
2055 pci_release_regions(pdev);
2056 free:
2057 kfree(dev->queues);
2058 kfree(dev->entry);
2059 kfree(dev);
2060 return result;
2061 }
2062
2063 static void nvme_remove(struct pci_dev *pdev)
2064 {
2065 struct nvme_dev *dev = pci_get_drvdata(pdev);
2066 misc_deregister(&dev->miscdev);
2067 kref_put(&dev->kref, nvme_free_dev);
2068 }
2069
2070 /* These functions are yet to be implemented */
2071 #define nvme_error_detected NULL
2072 #define nvme_dump_registers NULL
2073 #define nvme_link_reset NULL
2074 #define nvme_slot_reset NULL
2075 #define nvme_error_resume NULL
2076 #define nvme_suspend NULL
2077 #define nvme_resume NULL
2078
2079 static const struct pci_error_handlers nvme_err_handler = {
2080 .error_detected = nvme_error_detected,
2081 .mmio_enabled = nvme_dump_registers,
2082 .link_reset = nvme_link_reset,
2083 .slot_reset = nvme_slot_reset,
2084 .resume = nvme_error_resume,
2085 };
2086
2087 /* Move to pci_ids.h later */
2088 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2089
2090 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2091 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2092 { 0, }
2093 };
2094 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2095
2096 static struct pci_driver nvme_driver = {
2097 .name = "nvme",
2098 .id_table = nvme_id_table,
2099 .probe = nvme_probe,
2100 .remove = nvme_remove,
2101 .suspend = nvme_suspend,
2102 .resume = nvme_resume,
2103 .err_handler = &nvme_err_handler,
2104 };
2105
2106 static int __init nvme_init(void)
2107 {
2108 int result;
2109
2110 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2111 if (IS_ERR(nvme_thread))
2112 return PTR_ERR(nvme_thread);
2113
2114 result = register_blkdev(nvme_major, "nvme");
2115 if (result < 0)
2116 goto kill_kthread;
2117 else if (result > 0)
2118 nvme_major = result;
2119
2120 result = pci_register_driver(&nvme_driver);
2121 if (result)
2122 goto unregister_blkdev;
2123 return 0;
2124
2125 unregister_blkdev:
2126 unregister_blkdev(nvme_major, "nvme");
2127 kill_kthread:
2128 kthread_stop(nvme_thread);
2129 return result;
2130 }
2131
2132 static void __exit nvme_exit(void)
2133 {
2134 pci_unregister_driver(&nvme_driver);
2135 unregister_blkdev(nvme_major, "nvme");
2136 kthread_stop(nvme_thread);
2137 }
2138
2139 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2140 MODULE_LICENSE("GPL");
2141 MODULE_VERSION("0.8");
2142 module_init(nvme_init);
2143 module_exit(nvme_exit);
This page took 0.080725 seconds and 5 git commands to generate.