MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_MINORS (1U << MINORBITS)
46 #define NVME_Q_DEPTH 1024
47 #define NVME_AQ_DEPTH 64
48 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT (admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int nvme_char_major;
69 module_param(nvme_char_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79
80 static struct class *nvme_class;
81
82 static void nvme_reset_failed_dev(struct work_struct *ws);
83 static int nvme_process_cq(struct nvme_queue *nvmeq);
84
85 struct async_cmd_info {
86 struct kthread_work work;
87 struct kthread_worker *worker;
88 struct request *req;
89 u32 result;
90 int status;
91 void *ctx;
92 };
93
94 /*
95 * An NVM Express queue. Each device has at least two (one for admin
96 * commands and one for I/O commands).
97 */
98 struct nvme_queue {
99 struct device *q_dmadev;
100 struct nvme_dev *dev;
101 char irqname[24]; /* nvme4294967295-65535\0 */
102 spinlock_t q_lock;
103 struct nvme_command *sq_cmds;
104 volatile struct nvme_completion *cqes;
105 dma_addr_t sq_dma_addr;
106 dma_addr_t cq_dma_addr;
107 u32 __iomem *q_db;
108 u16 q_depth;
109 s16 cq_vector;
110 u16 sq_head;
111 u16 sq_tail;
112 u16 cq_head;
113 u16 qid;
114 u8 cq_phase;
115 u8 cqe_seen;
116 struct async_cmd_info cmdinfo;
117 struct blk_mq_hw_ctx *hctx;
118 };
119
120 /*
121 * Check we didin't inadvertently grow the command struct
122 */
123 static inline void _nvme_check_size(void)
124 {
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143 nvme_completion_fn fn;
144 void *ctx;
145 int aborted;
146 struct nvme_queue *nvmeq;
147 struct nvme_iod iod[0];
148 };
149
150 /*
151 * Max size of iod being embedded in the request payload
152 */
153 #define NVME_INT_PAGES 2
154 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
155
156 /*
157 * Will slightly overestimate the number of pages needed. This is OK
158 * as it only leads to a small amount of wasted memory for the lifetime of
159 * the I/O.
160 */
161 static int nvme_npages(unsigned size, struct nvme_dev *dev)
162 {
163 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
164 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
165 }
166
167 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
168 {
169 unsigned int ret = sizeof(struct nvme_cmd_info);
170
171 ret += sizeof(struct nvme_iod);
172 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
173 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
174
175 return ret;
176 }
177
178 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
179 unsigned int hctx_idx)
180 {
181 struct nvme_dev *dev = data;
182 struct nvme_queue *nvmeq = dev->queues[0];
183
184 WARN_ON(nvmeq->hctx);
185 nvmeq->hctx = hctx;
186 hctx->driver_data = nvmeq;
187 return 0;
188 }
189
190 static int nvme_admin_init_request(void *data, struct request *req,
191 unsigned int hctx_idx, unsigned int rq_idx,
192 unsigned int numa_node)
193 {
194 struct nvme_dev *dev = data;
195 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
196 struct nvme_queue *nvmeq = dev->queues[0];
197
198 BUG_ON(!nvmeq);
199 cmd->nvmeq = nvmeq;
200 return 0;
201 }
202
203 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
204 {
205 struct nvme_queue *nvmeq = hctx->driver_data;
206
207 nvmeq->hctx = NULL;
208 }
209
210 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
211 unsigned int hctx_idx)
212 {
213 struct nvme_dev *dev = data;
214 struct nvme_queue *nvmeq = dev->queues[
215 (hctx_idx % dev->queue_count) + 1];
216
217 if (!nvmeq->hctx)
218 nvmeq->hctx = hctx;
219
220 /* nvmeq queues are shared between namespaces. We assume here that
221 * blk-mq map the tags so they match up with the nvme queue tags. */
222 WARN_ON(nvmeq->hctx->tags != hctx->tags);
223
224 hctx->driver_data = nvmeq;
225 return 0;
226 }
227
228 static int nvme_init_request(void *data, struct request *req,
229 unsigned int hctx_idx, unsigned int rq_idx,
230 unsigned int numa_node)
231 {
232 struct nvme_dev *dev = data;
233 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
234 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
235
236 BUG_ON(!nvmeq);
237 cmd->nvmeq = nvmeq;
238 return 0;
239 }
240
241 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
242 nvme_completion_fn handler)
243 {
244 cmd->fn = handler;
245 cmd->ctx = ctx;
246 cmd->aborted = 0;
247 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
248 }
249
250 static void *iod_get_private(struct nvme_iod *iod)
251 {
252 return (void *) (iod->private & ~0x1UL);
253 }
254
255 /*
256 * If bit 0 is set, the iod is embedded in the request payload.
257 */
258 static bool iod_should_kfree(struct nvme_iod *iod)
259 {
260 return (iod->private & 0x01) == 0;
261 }
262
263 /* Special values must be less than 0x1000 */
264 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
265 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
266 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
267 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
268
269 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
270 struct nvme_completion *cqe)
271 {
272 if (ctx == CMD_CTX_CANCELLED)
273 return;
274 if (ctx == CMD_CTX_COMPLETED) {
275 dev_warn(nvmeq->q_dmadev,
276 "completed id %d twice on queue %d\n",
277 cqe->command_id, le16_to_cpup(&cqe->sq_id));
278 return;
279 }
280 if (ctx == CMD_CTX_INVALID) {
281 dev_warn(nvmeq->q_dmadev,
282 "invalid id %d completed on queue %d\n",
283 cqe->command_id, le16_to_cpup(&cqe->sq_id));
284 return;
285 }
286 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
287 }
288
289 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
290 {
291 void *ctx;
292
293 if (fn)
294 *fn = cmd->fn;
295 ctx = cmd->ctx;
296 cmd->fn = special_completion;
297 cmd->ctx = CMD_CTX_CANCELLED;
298 return ctx;
299 }
300
301 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
302 struct nvme_completion *cqe)
303 {
304 struct request *req = ctx;
305
306 u32 result = le32_to_cpup(&cqe->result);
307 u16 status = le16_to_cpup(&cqe->status) >> 1;
308
309 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
310 ++nvmeq->dev->event_limit;
311 if (status == NVME_SC_SUCCESS)
312 dev_warn(nvmeq->q_dmadev,
313 "async event result %08x\n", result);
314
315 blk_mq_free_hctx_request(nvmeq->hctx, req);
316 }
317
318 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
319 struct nvme_completion *cqe)
320 {
321 struct request *req = ctx;
322
323 u16 status = le16_to_cpup(&cqe->status) >> 1;
324 u32 result = le32_to_cpup(&cqe->result);
325
326 blk_mq_free_hctx_request(nvmeq->hctx, req);
327
328 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
329 ++nvmeq->dev->abort_limit;
330 }
331
332 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
333 struct nvme_completion *cqe)
334 {
335 struct async_cmd_info *cmdinfo = ctx;
336 cmdinfo->result = le32_to_cpup(&cqe->result);
337 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
338 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
339 blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
340 }
341
342 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
343 unsigned int tag)
344 {
345 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
346 struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
347
348 return blk_mq_rq_to_pdu(req);
349 }
350
351 /*
352 * Called with local interrupts disabled and the q_lock held. May not sleep.
353 */
354 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
355 nvme_completion_fn *fn)
356 {
357 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
358 void *ctx;
359 if (tag >= nvmeq->q_depth) {
360 *fn = special_completion;
361 return CMD_CTX_INVALID;
362 }
363 if (fn)
364 *fn = cmd->fn;
365 ctx = cmd->ctx;
366 cmd->fn = special_completion;
367 cmd->ctx = CMD_CTX_COMPLETED;
368 return ctx;
369 }
370
371 /**
372 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
373 * @nvmeq: The queue to use
374 * @cmd: The command to send
375 *
376 * Safe to use from interrupt context
377 */
378 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
379 {
380 u16 tail = nvmeq->sq_tail;
381
382 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
383 if (++tail == nvmeq->q_depth)
384 tail = 0;
385 writel(tail, nvmeq->q_db);
386 nvmeq->sq_tail = tail;
387
388 return 0;
389 }
390
391 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
392 {
393 unsigned long flags;
394 int ret;
395 spin_lock_irqsave(&nvmeq->q_lock, flags);
396 ret = __nvme_submit_cmd(nvmeq, cmd);
397 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
398 return ret;
399 }
400
401 static __le64 **iod_list(struct nvme_iod *iod)
402 {
403 return ((void *)iod) + iod->offset;
404 }
405
406 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
407 unsigned nseg, unsigned long private)
408 {
409 iod->private = private;
410 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
411 iod->npages = -1;
412 iod->length = nbytes;
413 iod->nents = 0;
414 }
415
416 static struct nvme_iod *
417 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
418 unsigned long priv, gfp_t gfp)
419 {
420 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
421 sizeof(__le64 *) * nvme_npages(bytes, dev) +
422 sizeof(struct scatterlist) * nseg, gfp);
423
424 if (iod)
425 iod_init(iod, bytes, nseg, priv);
426
427 return iod;
428 }
429
430 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
431 gfp_t gfp)
432 {
433 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
434 sizeof(struct nvme_dsm_range);
435 unsigned long mask = 0;
436 struct nvme_iod *iod;
437
438 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
439 size <= NVME_INT_BYTES(dev)) {
440 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
441
442 iod = cmd->iod;
443 mask = 0x01;
444 iod_init(iod, size, rq->nr_phys_segments,
445 (unsigned long) rq | 0x01);
446 return iod;
447 }
448
449 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
450 (unsigned long) rq, gfp);
451 }
452
453 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
454 {
455 const int last_prp = dev->page_size / 8 - 1;
456 int i;
457 __le64 **list = iod_list(iod);
458 dma_addr_t prp_dma = iod->first_dma;
459
460 if (iod->npages == 0)
461 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
462 for (i = 0; i < iod->npages; i++) {
463 __le64 *prp_list = list[i];
464 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
465 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
466 prp_dma = next_prp_dma;
467 }
468
469 if (iod_should_kfree(iod))
470 kfree(iod);
471 }
472
473 static int nvme_error_status(u16 status)
474 {
475 switch (status & 0x7ff) {
476 case NVME_SC_SUCCESS:
477 return 0;
478 case NVME_SC_CAP_EXCEEDED:
479 return -ENOSPC;
480 default:
481 return -EIO;
482 }
483 }
484
485 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
486 {
487 if (be32_to_cpu(pi->ref_tag) == v)
488 pi->ref_tag = cpu_to_be32(p);
489 }
490
491 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
492 {
493 if (be32_to_cpu(pi->ref_tag) == p)
494 pi->ref_tag = cpu_to_be32(v);
495 }
496
497 /**
498 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
499 *
500 * The virtual start sector is the one that was originally submitted by the
501 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
502 * start sector may be different. Remap protection information to match the
503 * physical LBA on writes, and back to the original seed on reads.
504 *
505 * Type 0 and 3 do not have a ref tag, so no remapping required.
506 */
507 static void nvme_dif_remap(struct request *req,
508 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
509 {
510 struct nvme_ns *ns = req->rq_disk->private_data;
511 struct bio_integrity_payload *bip;
512 struct t10_pi_tuple *pi;
513 void *p, *pmap;
514 u32 i, nlb, ts, phys, virt;
515
516 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
517 return;
518
519 bip = bio_integrity(req->bio);
520 if (!bip)
521 return;
522
523 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
524 if (!pmap)
525 return;
526
527 p = pmap;
528 virt = bip_get_seed(bip);
529 phys = nvme_block_nr(ns, blk_rq_pos(req));
530 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
531 ts = ns->disk->integrity->tuple_size;
532
533 for (i = 0; i < nlb; i++, virt++, phys++) {
534 pi = (struct t10_pi_tuple *)p;
535 dif_swap(phys, virt, pi);
536 p += ts;
537 }
538 kunmap_atomic(pmap);
539 }
540
541 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
542 struct nvme_completion *cqe)
543 {
544 struct nvme_iod *iod = ctx;
545 struct request *req = iod_get_private(iod);
546 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
547
548 u16 status = le16_to_cpup(&cqe->status) >> 1;
549
550 if (unlikely(status)) {
551 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
552 && (jiffies - req->start_time) < req->timeout) {
553 unsigned long flags;
554
555 blk_mq_requeue_request(req);
556 spin_lock_irqsave(req->q->queue_lock, flags);
557 if (!blk_queue_stopped(req->q))
558 blk_mq_kick_requeue_list(req->q);
559 spin_unlock_irqrestore(req->q->queue_lock, flags);
560 return;
561 }
562 req->errors = nvme_error_status(status);
563 } else
564 req->errors = 0;
565
566 if (cmd_rq->aborted)
567 dev_warn(&nvmeq->dev->pci_dev->dev,
568 "completing aborted command with status:%04x\n",
569 status);
570
571 if (iod->nents) {
572 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
573 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
574 if (blk_integrity_rq(req)) {
575 if (!rq_data_dir(req))
576 nvme_dif_remap(req, nvme_dif_complete);
577 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
578 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
579 }
580 }
581 nvme_free_iod(nvmeq->dev, iod);
582
583 blk_mq_complete_request(req);
584 }
585
586 /* length is in bytes. gfp flags indicates whether we may sleep. */
587 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
588 gfp_t gfp)
589 {
590 struct dma_pool *pool;
591 int length = total_len;
592 struct scatterlist *sg = iod->sg;
593 int dma_len = sg_dma_len(sg);
594 u64 dma_addr = sg_dma_address(sg);
595 int offset = offset_in_page(dma_addr);
596 __le64 *prp_list;
597 __le64 **list = iod_list(iod);
598 dma_addr_t prp_dma;
599 int nprps, i;
600 u32 page_size = dev->page_size;
601
602 length -= (page_size - offset);
603 if (length <= 0)
604 return total_len;
605
606 dma_len -= (page_size - offset);
607 if (dma_len) {
608 dma_addr += (page_size - offset);
609 } else {
610 sg = sg_next(sg);
611 dma_addr = sg_dma_address(sg);
612 dma_len = sg_dma_len(sg);
613 }
614
615 if (length <= page_size) {
616 iod->first_dma = dma_addr;
617 return total_len;
618 }
619
620 nprps = DIV_ROUND_UP(length, page_size);
621 if (nprps <= (256 / 8)) {
622 pool = dev->prp_small_pool;
623 iod->npages = 0;
624 } else {
625 pool = dev->prp_page_pool;
626 iod->npages = 1;
627 }
628
629 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
630 if (!prp_list) {
631 iod->first_dma = dma_addr;
632 iod->npages = -1;
633 return (total_len - length) + page_size;
634 }
635 list[0] = prp_list;
636 iod->first_dma = prp_dma;
637 i = 0;
638 for (;;) {
639 if (i == page_size >> 3) {
640 __le64 *old_prp_list = prp_list;
641 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
642 if (!prp_list)
643 return total_len - length;
644 list[iod->npages++] = prp_list;
645 prp_list[0] = old_prp_list[i - 1];
646 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
647 i = 1;
648 }
649 prp_list[i++] = cpu_to_le64(dma_addr);
650 dma_len -= page_size;
651 dma_addr += page_size;
652 length -= page_size;
653 if (length <= 0)
654 break;
655 if (dma_len > 0)
656 continue;
657 BUG_ON(dma_len < 0);
658 sg = sg_next(sg);
659 dma_addr = sg_dma_address(sg);
660 dma_len = sg_dma_len(sg);
661 }
662
663 return total_len;
664 }
665
666 /*
667 * We reuse the small pool to allocate the 16-byte range here as it is not
668 * worth having a special pool for these or additional cases to handle freeing
669 * the iod.
670 */
671 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
672 struct request *req, struct nvme_iod *iod)
673 {
674 struct nvme_dsm_range *range =
675 (struct nvme_dsm_range *)iod_list(iod)[0];
676 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
677
678 range->cattr = cpu_to_le32(0);
679 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
680 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
681
682 memset(cmnd, 0, sizeof(*cmnd));
683 cmnd->dsm.opcode = nvme_cmd_dsm;
684 cmnd->dsm.command_id = req->tag;
685 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
686 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
687 cmnd->dsm.nr = 0;
688 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
689
690 if (++nvmeq->sq_tail == nvmeq->q_depth)
691 nvmeq->sq_tail = 0;
692 writel(nvmeq->sq_tail, nvmeq->q_db);
693 }
694
695 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
696 int cmdid)
697 {
698 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
699
700 memset(cmnd, 0, sizeof(*cmnd));
701 cmnd->common.opcode = nvme_cmd_flush;
702 cmnd->common.command_id = cmdid;
703 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
704
705 if (++nvmeq->sq_tail == nvmeq->q_depth)
706 nvmeq->sq_tail = 0;
707 writel(nvmeq->sq_tail, nvmeq->q_db);
708 }
709
710 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
711 struct nvme_ns *ns)
712 {
713 struct request *req = iod_get_private(iod);
714 struct nvme_command *cmnd;
715 u16 control = 0;
716 u32 dsmgmt = 0;
717
718 if (req->cmd_flags & REQ_FUA)
719 control |= NVME_RW_FUA;
720 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
721 control |= NVME_RW_LR;
722
723 if (req->cmd_flags & REQ_RAHEAD)
724 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
725
726 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
727 memset(cmnd, 0, sizeof(*cmnd));
728
729 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
730 cmnd->rw.command_id = req->tag;
731 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
732 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
733 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
734 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
735 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
736
737 if (blk_integrity_rq(req)) {
738 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
739 switch (ns->pi_type) {
740 case NVME_NS_DPS_PI_TYPE3:
741 control |= NVME_RW_PRINFO_PRCHK_GUARD;
742 break;
743 case NVME_NS_DPS_PI_TYPE1:
744 case NVME_NS_DPS_PI_TYPE2:
745 control |= NVME_RW_PRINFO_PRCHK_GUARD |
746 NVME_RW_PRINFO_PRCHK_REF;
747 cmnd->rw.reftag = cpu_to_le32(
748 nvme_block_nr(ns, blk_rq_pos(req)));
749 break;
750 }
751 } else if (ns->ms)
752 control |= NVME_RW_PRINFO_PRACT;
753
754 cmnd->rw.control = cpu_to_le16(control);
755 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
756
757 if (++nvmeq->sq_tail == nvmeq->q_depth)
758 nvmeq->sq_tail = 0;
759 writel(nvmeq->sq_tail, nvmeq->q_db);
760
761 return 0;
762 }
763
764 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
765 const struct blk_mq_queue_data *bd)
766 {
767 struct nvme_ns *ns = hctx->queue->queuedata;
768 struct nvme_queue *nvmeq = hctx->driver_data;
769 struct request *req = bd->rq;
770 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
771 struct nvme_iod *iod;
772 enum dma_data_direction dma_dir;
773
774 /*
775 * If formated with metadata, require the block layer provide a buffer
776 * unless this namespace is formated such that the metadata can be
777 * stripped/generated by the controller with PRACT=1.
778 */
779 if (ns->ms && !blk_integrity_rq(req)) {
780 if (!(ns->pi_type && ns->ms == 8)) {
781 req->errors = -EFAULT;
782 blk_mq_complete_request(req);
783 return BLK_MQ_RQ_QUEUE_OK;
784 }
785 }
786
787 iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
788 if (!iod)
789 return BLK_MQ_RQ_QUEUE_BUSY;
790
791 if (req->cmd_flags & REQ_DISCARD) {
792 void *range;
793 /*
794 * We reuse the small pool to allocate the 16-byte range here
795 * as it is not worth having a special pool for these or
796 * additional cases to handle freeing the iod.
797 */
798 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
799 GFP_ATOMIC,
800 &iod->first_dma);
801 if (!range)
802 goto retry_cmd;
803 iod_list(iod)[0] = (__le64 *)range;
804 iod->npages = 0;
805 } else if (req->nr_phys_segments) {
806 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
807
808 sg_init_table(iod->sg, req->nr_phys_segments);
809 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
810 if (!iod->nents)
811 goto error_cmd;
812
813 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
814 goto retry_cmd;
815
816 if (blk_rq_bytes(req) !=
817 nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
818 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
819 iod->nents, dma_dir);
820 goto retry_cmd;
821 }
822 if (blk_integrity_rq(req)) {
823 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
824 goto error_cmd;
825
826 sg_init_table(iod->meta_sg, 1);
827 if (blk_rq_map_integrity_sg(
828 req->q, req->bio, iod->meta_sg) != 1)
829 goto error_cmd;
830
831 if (rq_data_dir(req))
832 nvme_dif_remap(req, nvme_dif_prep);
833
834 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
835 goto error_cmd;
836 }
837 }
838
839 nvme_set_info(cmd, iod, req_completion);
840 spin_lock_irq(&nvmeq->q_lock);
841 if (req->cmd_flags & REQ_DISCARD)
842 nvme_submit_discard(nvmeq, ns, req, iod);
843 else if (req->cmd_flags & REQ_FLUSH)
844 nvme_submit_flush(nvmeq, ns, req->tag);
845 else
846 nvme_submit_iod(nvmeq, iod, ns);
847
848 nvme_process_cq(nvmeq);
849 spin_unlock_irq(&nvmeq->q_lock);
850 return BLK_MQ_RQ_QUEUE_OK;
851
852 error_cmd:
853 nvme_free_iod(nvmeq->dev, iod);
854 return BLK_MQ_RQ_QUEUE_ERROR;
855 retry_cmd:
856 nvme_free_iod(nvmeq->dev, iod);
857 return BLK_MQ_RQ_QUEUE_BUSY;
858 }
859
860 static int nvme_process_cq(struct nvme_queue *nvmeq)
861 {
862 u16 head, phase;
863
864 head = nvmeq->cq_head;
865 phase = nvmeq->cq_phase;
866
867 for (;;) {
868 void *ctx;
869 nvme_completion_fn fn;
870 struct nvme_completion cqe = nvmeq->cqes[head];
871 if ((le16_to_cpu(cqe.status) & 1) != phase)
872 break;
873 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
874 if (++head == nvmeq->q_depth) {
875 head = 0;
876 phase = !phase;
877 }
878 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
879 fn(nvmeq, ctx, &cqe);
880 }
881
882 /* If the controller ignores the cq head doorbell and continuously
883 * writes to the queue, it is theoretically possible to wrap around
884 * the queue twice and mistakenly return IRQ_NONE. Linux only
885 * requires that 0.1% of your interrupts are handled, so this isn't
886 * a big problem.
887 */
888 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
889 return 0;
890
891 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
892 nvmeq->cq_head = head;
893 nvmeq->cq_phase = phase;
894
895 nvmeq->cqe_seen = 1;
896 return 1;
897 }
898
899 /* Admin queue isn't initialized as a request queue. If at some point this
900 * happens anyway, make sure to notify the user */
901 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
902 const struct blk_mq_queue_data *bd)
903 {
904 WARN_ON_ONCE(1);
905 return BLK_MQ_RQ_QUEUE_ERROR;
906 }
907
908 static irqreturn_t nvme_irq(int irq, void *data)
909 {
910 irqreturn_t result;
911 struct nvme_queue *nvmeq = data;
912 spin_lock(&nvmeq->q_lock);
913 nvme_process_cq(nvmeq);
914 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
915 nvmeq->cqe_seen = 0;
916 spin_unlock(&nvmeq->q_lock);
917 return result;
918 }
919
920 static irqreturn_t nvme_irq_check(int irq, void *data)
921 {
922 struct nvme_queue *nvmeq = data;
923 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
924 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
925 return IRQ_NONE;
926 return IRQ_WAKE_THREAD;
927 }
928
929 struct sync_cmd_info {
930 struct task_struct *task;
931 u32 result;
932 int status;
933 };
934
935 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
936 struct nvme_completion *cqe)
937 {
938 struct sync_cmd_info *cmdinfo = ctx;
939 cmdinfo->result = le32_to_cpup(&cqe->result);
940 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
941 wake_up_process(cmdinfo->task);
942 }
943
944 /*
945 * Returns 0 on success. If the result is negative, it's a Linux error code;
946 * if the result is positive, it's an NVM Express status code
947 */
948 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
949 u32 *result, unsigned timeout)
950 {
951 struct sync_cmd_info cmdinfo;
952 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
953 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
954
955 cmdinfo.task = current;
956 cmdinfo.status = -EINTR;
957
958 cmd->common.command_id = req->tag;
959
960 nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
961
962 set_current_state(TASK_UNINTERRUPTIBLE);
963 nvme_submit_cmd(nvmeq, cmd);
964 schedule();
965
966 if (result)
967 *result = cmdinfo.result;
968 return cmdinfo.status;
969 }
970
971 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
972 {
973 struct nvme_queue *nvmeq = dev->queues[0];
974 struct nvme_command c;
975 struct nvme_cmd_info *cmd_info;
976 struct request *req;
977
978 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
979 if (IS_ERR(req))
980 return PTR_ERR(req);
981
982 req->cmd_flags |= REQ_NO_TIMEOUT;
983 cmd_info = blk_mq_rq_to_pdu(req);
984 nvme_set_info(cmd_info, req, async_req_completion);
985
986 memset(&c, 0, sizeof(c));
987 c.common.opcode = nvme_admin_async_event;
988 c.common.command_id = req->tag;
989
990 return __nvme_submit_cmd(nvmeq, &c);
991 }
992
993 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
994 struct nvme_command *cmd,
995 struct async_cmd_info *cmdinfo, unsigned timeout)
996 {
997 struct nvme_queue *nvmeq = dev->queues[0];
998 struct request *req;
999 struct nvme_cmd_info *cmd_rq;
1000
1001 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1002 if (IS_ERR(req))
1003 return PTR_ERR(req);
1004
1005 req->timeout = timeout;
1006 cmd_rq = blk_mq_rq_to_pdu(req);
1007 cmdinfo->req = req;
1008 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1009 cmdinfo->status = -EINTR;
1010
1011 cmd->common.command_id = req->tag;
1012
1013 return nvme_submit_cmd(nvmeq, cmd);
1014 }
1015
1016 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1017 u32 *result, unsigned timeout)
1018 {
1019 int res;
1020 struct request *req;
1021
1022 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1023 if (IS_ERR(req))
1024 return PTR_ERR(req);
1025 res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1026 blk_mq_free_request(req);
1027 return res;
1028 }
1029
1030 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1031 u32 *result)
1032 {
1033 return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1034 }
1035
1036 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1037 struct nvme_command *cmd, u32 *result)
1038 {
1039 int res;
1040 struct request *req;
1041
1042 req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1043 false);
1044 if (IS_ERR(req))
1045 return PTR_ERR(req);
1046 res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1047 blk_mq_free_request(req);
1048 return res;
1049 }
1050
1051 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1052 {
1053 struct nvme_command c;
1054
1055 memset(&c, 0, sizeof(c));
1056 c.delete_queue.opcode = opcode;
1057 c.delete_queue.qid = cpu_to_le16(id);
1058
1059 return nvme_submit_admin_cmd(dev, &c, NULL);
1060 }
1061
1062 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1063 struct nvme_queue *nvmeq)
1064 {
1065 struct nvme_command c;
1066 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1067
1068 memset(&c, 0, sizeof(c));
1069 c.create_cq.opcode = nvme_admin_create_cq;
1070 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1071 c.create_cq.cqid = cpu_to_le16(qid);
1072 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1073 c.create_cq.cq_flags = cpu_to_le16(flags);
1074 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1075
1076 return nvme_submit_admin_cmd(dev, &c, NULL);
1077 }
1078
1079 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1080 struct nvme_queue *nvmeq)
1081 {
1082 struct nvme_command c;
1083 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1084
1085 memset(&c, 0, sizeof(c));
1086 c.create_sq.opcode = nvme_admin_create_sq;
1087 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1088 c.create_sq.sqid = cpu_to_le16(qid);
1089 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1090 c.create_sq.sq_flags = cpu_to_le16(flags);
1091 c.create_sq.cqid = cpu_to_le16(qid);
1092
1093 return nvme_submit_admin_cmd(dev, &c, NULL);
1094 }
1095
1096 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1097 {
1098 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1099 }
1100
1101 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1102 {
1103 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1104 }
1105
1106 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1107 dma_addr_t dma_addr)
1108 {
1109 struct nvme_command c;
1110
1111 memset(&c, 0, sizeof(c));
1112 c.identify.opcode = nvme_admin_identify;
1113 c.identify.nsid = cpu_to_le32(nsid);
1114 c.identify.prp1 = cpu_to_le64(dma_addr);
1115 c.identify.cns = cpu_to_le32(cns);
1116
1117 return nvme_submit_admin_cmd(dev, &c, NULL);
1118 }
1119
1120 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1121 dma_addr_t dma_addr, u32 *result)
1122 {
1123 struct nvme_command c;
1124
1125 memset(&c, 0, sizeof(c));
1126 c.features.opcode = nvme_admin_get_features;
1127 c.features.nsid = cpu_to_le32(nsid);
1128 c.features.prp1 = cpu_to_le64(dma_addr);
1129 c.features.fid = cpu_to_le32(fid);
1130
1131 return nvme_submit_admin_cmd(dev, &c, result);
1132 }
1133
1134 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1135 dma_addr_t dma_addr, u32 *result)
1136 {
1137 struct nvme_command c;
1138
1139 memset(&c, 0, sizeof(c));
1140 c.features.opcode = nvme_admin_set_features;
1141 c.features.prp1 = cpu_to_le64(dma_addr);
1142 c.features.fid = cpu_to_le32(fid);
1143 c.features.dword11 = cpu_to_le32(dword11);
1144
1145 return nvme_submit_admin_cmd(dev, &c, result);
1146 }
1147
1148 /**
1149 * nvme_abort_req - Attempt aborting a request
1150 *
1151 * Schedule controller reset if the command was already aborted once before and
1152 * still hasn't been returned to the driver, or if this is the admin queue.
1153 */
1154 static void nvme_abort_req(struct request *req)
1155 {
1156 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1157 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1158 struct nvme_dev *dev = nvmeq->dev;
1159 struct request *abort_req;
1160 struct nvme_cmd_info *abort_cmd;
1161 struct nvme_command cmd;
1162
1163 if (!nvmeq->qid || cmd_rq->aborted) {
1164 unsigned long flags;
1165
1166 spin_lock_irqsave(&dev_list_lock, flags);
1167 if (work_busy(&dev->reset_work))
1168 goto out;
1169 list_del_init(&dev->node);
1170 dev_warn(&dev->pci_dev->dev,
1171 "I/O %d QID %d timeout, reset controller\n",
1172 req->tag, nvmeq->qid);
1173 dev->reset_workfn = nvme_reset_failed_dev;
1174 queue_work(nvme_workq, &dev->reset_work);
1175 out:
1176 spin_unlock_irqrestore(&dev_list_lock, flags);
1177 return;
1178 }
1179
1180 if (!dev->abort_limit)
1181 return;
1182
1183 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1184 false);
1185 if (IS_ERR(abort_req))
1186 return;
1187
1188 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1189 nvme_set_info(abort_cmd, abort_req, abort_completion);
1190
1191 memset(&cmd, 0, sizeof(cmd));
1192 cmd.abort.opcode = nvme_admin_abort_cmd;
1193 cmd.abort.cid = req->tag;
1194 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1195 cmd.abort.command_id = abort_req->tag;
1196
1197 --dev->abort_limit;
1198 cmd_rq->aborted = 1;
1199
1200 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1201 nvmeq->qid);
1202 if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1203 dev_warn(nvmeq->q_dmadev,
1204 "Could not abort I/O %d QID %d",
1205 req->tag, nvmeq->qid);
1206 blk_mq_free_request(abort_req);
1207 }
1208 }
1209
1210 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1211 struct request *req, void *data, bool reserved)
1212 {
1213 struct nvme_queue *nvmeq = data;
1214 void *ctx;
1215 nvme_completion_fn fn;
1216 struct nvme_cmd_info *cmd;
1217 struct nvme_completion cqe;
1218
1219 if (!blk_mq_request_started(req))
1220 return;
1221
1222 cmd = blk_mq_rq_to_pdu(req);
1223
1224 if (cmd->ctx == CMD_CTX_CANCELLED)
1225 return;
1226
1227 if (blk_queue_dying(req->q))
1228 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1229 else
1230 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1231
1232
1233 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1234 req->tag, nvmeq->qid);
1235 ctx = cancel_cmd_info(cmd, &fn);
1236 fn(nvmeq, ctx, &cqe);
1237 }
1238
1239 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1240 {
1241 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1242 struct nvme_queue *nvmeq = cmd->nvmeq;
1243
1244 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1245 nvmeq->qid);
1246 spin_lock_irq(&nvmeq->q_lock);
1247 nvme_abort_req(req);
1248 spin_unlock_irq(&nvmeq->q_lock);
1249
1250 /*
1251 * The aborted req will be completed on receiving the abort req.
1252 * We enable the timer again. If hit twice, it'll cause a device reset,
1253 * as the device then is in a faulty state.
1254 */
1255 return BLK_EH_RESET_TIMER;
1256 }
1257
1258 static void nvme_free_queue(struct nvme_queue *nvmeq)
1259 {
1260 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1261 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1262 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1263 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1264 kfree(nvmeq);
1265 }
1266
1267 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1268 {
1269 int i;
1270
1271 for (i = dev->queue_count - 1; i >= lowest; i--) {
1272 struct nvme_queue *nvmeq = dev->queues[i];
1273 dev->queue_count--;
1274 dev->queues[i] = NULL;
1275 nvme_free_queue(nvmeq);
1276 }
1277 }
1278
1279 /**
1280 * nvme_suspend_queue - put queue into suspended state
1281 * @nvmeq - queue to suspend
1282 */
1283 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1284 {
1285 int vector;
1286
1287 spin_lock_irq(&nvmeq->q_lock);
1288 if (nvmeq->cq_vector == -1) {
1289 spin_unlock_irq(&nvmeq->q_lock);
1290 return 1;
1291 }
1292 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1293 nvmeq->dev->online_queues--;
1294 nvmeq->cq_vector = -1;
1295 spin_unlock_irq(&nvmeq->q_lock);
1296
1297 irq_set_affinity_hint(vector, NULL);
1298 free_irq(vector, nvmeq);
1299
1300 return 0;
1301 }
1302
1303 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1304 {
1305 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1306
1307 spin_lock_irq(&nvmeq->q_lock);
1308 if (hctx && hctx->tags)
1309 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1310 spin_unlock_irq(&nvmeq->q_lock);
1311 }
1312
1313 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1314 {
1315 struct nvme_queue *nvmeq = dev->queues[qid];
1316
1317 if (!nvmeq)
1318 return;
1319 if (nvme_suspend_queue(nvmeq))
1320 return;
1321
1322 /* Don't tell the adapter to delete the admin queue.
1323 * Don't tell a removed adapter to delete IO queues. */
1324 if (qid && readl(&dev->bar->csts) != -1) {
1325 adapter_delete_sq(dev, qid);
1326 adapter_delete_cq(dev, qid);
1327 }
1328 if (!qid && dev->admin_q)
1329 blk_mq_freeze_queue_start(dev->admin_q);
1330
1331 spin_lock_irq(&nvmeq->q_lock);
1332 nvme_process_cq(nvmeq);
1333 spin_unlock_irq(&nvmeq->q_lock);
1334 }
1335
1336 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1337 int depth)
1338 {
1339 struct device *dmadev = &dev->pci_dev->dev;
1340 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1341 if (!nvmeq)
1342 return NULL;
1343
1344 nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1345 &nvmeq->cq_dma_addr, GFP_KERNEL);
1346 if (!nvmeq->cqes)
1347 goto free_nvmeq;
1348
1349 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1350 &nvmeq->sq_dma_addr, GFP_KERNEL);
1351 if (!nvmeq->sq_cmds)
1352 goto free_cqdma;
1353
1354 nvmeq->q_dmadev = dmadev;
1355 nvmeq->dev = dev;
1356 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1357 dev->instance, qid);
1358 spin_lock_init(&nvmeq->q_lock);
1359 nvmeq->cq_head = 0;
1360 nvmeq->cq_phase = 1;
1361 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1362 nvmeq->q_depth = depth;
1363 nvmeq->qid = qid;
1364 dev->queue_count++;
1365 dev->queues[qid] = nvmeq;
1366
1367 return nvmeq;
1368
1369 free_cqdma:
1370 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1371 nvmeq->cq_dma_addr);
1372 free_nvmeq:
1373 kfree(nvmeq);
1374 return NULL;
1375 }
1376
1377 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1378 const char *name)
1379 {
1380 if (use_threaded_interrupts)
1381 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1382 nvme_irq_check, nvme_irq, IRQF_SHARED,
1383 name, nvmeq);
1384 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1385 IRQF_SHARED, name, nvmeq);
1386 }
1387
1388 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1389 {
1390 struct nvme_dev *dev = nvmeq->dev;
1391
1392 spin_lock_irq(&nvmeq->q_lock);
1393 nvmeq->sq_tail = 0;
1394 nvmeq->cq_head = 0;
1395 nvmeq->cq_phase = 1;
1396 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1397 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1398 dev->online_queues++;
1399 spin_unlock_irq(&nvmeq->q_lock);
1400 }
1401
1402 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1403 {
1404 struct nvme_dev *dev = nvmeq->dev;
1405 int result;
1406
1407 nvmeq->cq_vector = qid - 1;
1408 result = adapter_alloc_cq(dev, qid, nvmeq);
1409 if (result < 0)
1410 return result;
1411
1412 result = adapter_alloc_sq(dev, qid, nvmeq);
1413 if (result < 0)
1414 goto release_cq;
1415
1416 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1417 if (result < 0)
1418 goto release_sq;
1419
1420 nvme_init_queue(nvmeq, qid);
1421 return result;
1422
1423 release_sq:
1424 adapter_delete_sq(dev, qid);
1425 release_cq:
1426 adapter_delete_cq(dev, qid);
1427 return result;
1428 }
1429
1430 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1431 {
1432 unsigned long timeout;
1433 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1434
1435 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1436
1437 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1438 msleep(100);
1439 if (fatal_signal_pending(current))
1440 return -EINTR;
1441 if (time_after(jiffies, timeout)) {
1442 dev_err(&dev->pci_dev->dev,
1443 "Device not ready; aborting %s\n", enabled ?
1444 "initialisation" : "reset");
1445 return -ENODEV;
1446 }
1447 }
1448
1449 return 0;
1450 }
1451
1452 /*
1453 * If the device has been passed off to us in an enabled state, just clear
1454 * the enabled bit. The spec says we should set the 'shutdown notification
1455 * bits', but doing so may cause the device to complete commands to the
1456 * admin queue ... and we don't know what memory that might be pointing at!
1457 */
1458 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1459 {
1460 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1461 dev->ctrl_config &= ~NVME_CC_ENABLE;
1462 writel(dev->ctrl_config, &dev->bar->cc);
1463
1464 return nvme_wait_ready(dev, cap, false);
1465 }
1466
1467 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1468 {
1469 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1470 dev->ctrl_config |= NVME_CC_ENABLE;
1471 writel(dev->ctrl_config, &dev->bar->cc);
1472
1473 return nvme_wait_ready(dev, cap, true);
1474 }
1475
1476 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1477 {
1478 unsigned long timeout;
1479
1480 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1481 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1482
1483 writel(dev->ctrl_config, &dev->bar->cc);
1484
1485 timeout = SHUTDOWN_TIMEOUT + jiffies;
1486 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1487 NVME_CSTS_SHST_CMPLT) {
1488 msleep(100);
1489 if (fatal_signal_pending(current))
1490 return -EINTR;
1491 if (time_after(jiffies, timeout)) {
1492 dev_err(&dev->pci_dev->dev,
1493 "Device shutdown incomplete; abort shutdown\n");
1494 return -ENODEV;
1495 }
1496 }
1497
1498 return 0;
1499 }
1500
1501 static struct blk_mq_ops nvme_mq_admin_ops = {
1502 .queue_rq = nvme_admin_queue_rq,
1503 .map_queue = blk_mq_map_queue,
1504 .init_hctx = nvme_admin_init_hctx,
1505 .exit_hctx = nvme_exit_hctx,
1506 .init_request = nvme_admin_init_request,
1507 .timeout = nvme_timeout,
1508 };
1509
1510 static struct blk_mq_ops nvme_mq_ops = {
1511 .queue_rq = nvme_queue_rq,
1512 .map_queue = blk_mq_map_queue,
1513 .init_hctx = nvme_init_hctx,
1514 .exit_hctx = nvme_exit_hctx,
1515 .init_request = nvme_init_request,
1516 .timeout = nvme_timeout,
1517 };
1518
1519 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1520 {
1521 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1522 blk_cleanup_queue(dev->admin_q);
1523 blk_mq_free_tag_set(&dev->admin_tagset);
1524 }
1525 }
1526
1527 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1528 {
1529 if (!dev->admin_q) {
1530 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1531 dev->admin_tagset.nr_hw_queues = 1;
1532 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1533 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1534 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1535 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1536 dev->admin_tagset.driver_data = dev;
1537
1538 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1539 return -ENOMEM;
1540
1541 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1542 if (IS_ERR(dev->admin_q)) {
1543 blk_mq_free_tag_set(&dev->admin_tagset);
1544 return -ENOMEM;
1545 }
1546 if (!blk_get_queue(dev->admin_q)) {
1547 nvme_dev_remove_admin(dev);
1548 return -ENODEV;
1549 }
1550 } else
1551 blk_mq_unfreeze_queue(dev->admin_q);
1552
1553 return 0;
1554 }
1555
1556 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1557 {
1558 int result;
1559 u32 aqa;
1560 u64 cap = readq(&dev->bar->cap);
1561 struct nvme_queue *nvmeq;
1562 unsigned page_shift = PAGE_SHIFT;
1563 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1564 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1565
1566 if (page_shift < dev_page_min) {
1567 dev_err(&dev->pci_dev->dev,
1568 "Minimum device page size (%u) too large for "
1569 "host (%u)\n", 1 << dev_page_min,
1570 1 << page_shift);
1571 return -ENODEV;
1572 }
1573 if (page_shift > dev_page_max) {
1574 dev_info(&dev->pci_dev->dev,
1575 "Device maximum page size (%u) smaller than "
1576 "host (%u); enabling work-around\n",
1577 1 << dev_page_max, 1 << page_shift);
1578 page_shift = dev_page_max;
1579 }
1580
1581 result = nvme_disable_ctrl(dev, cap);
1582 if (result < 0)
1583 return result;
1584
1585 nvmeq = dev->queues[0];
1586 if (!nvmeq) {
1587 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1588 if (!nvmeq)
1589 return -ENOMEM;
1590 }
1591
1592 aqa = nvmeq->q_depth - 1;
1593 aqa |= aqa << 16;
1594
1595 dev->page_size = 1 << page_shift;
1596
1597 dev->ctrl_config = NVME_CC_CSS_NVM;
1598 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1599 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1600 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1601
1602 writel(aqa, &dev->bar->aqa);
1603 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1604 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1605
1606 result = nvme_enable_ctrl(dev, cap);
1607 if (result)
1608 goto free_nvmeq;
1609
1610 nvmeq->cq_vector = 0;
1611 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1612 if (result)
1613 goto free_nvmeq;
1614
1615 return result;
1616
1617 free_nvmeq:
1618 nvme_free_queues(dev, 0);
1619 return result;
1620 }
1621
1622 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1623 unsigned long addr, unsigned length)
1624 {
1625 int i, err, count, nents, offset;
1626 struct scatterlist *sg;
1627 struct page **pages;
1628 struct nvme_iod *iod;
1629
1630 if (addr & 3)
1631 return ERR_PTR(-EINVAL);
1632 if (!length || length > INT_MAX - PAGE_SIZE)
1633 return ERR_PTR(-EINVAL);
1634
1635 offset = offset_in_page(addr);
1636 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1637 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1638 if (!pages)
1639 return ERR_PTR(-ENOMEM);
1640
1641 err = get_user_pages_fast(addr, count, 1, pages);
1642 if (err < count) {
1643 count = err;
1644 err = -EFAULT;
1645 goto put_pages;
1646 }
1647
1648 err = -ENOMEM;
1649 iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1650 if (!iod)
1651 goto put_pages;
1652
1653 sg = iod->sg;
1654 sg_init_table(sg, count);
1655 for (i = 0; i < count; i++) {
1656 sg_set_page(&sg[i], pages[i],
1657 min_t(unsigned, length, PAGE_SIZE - offset),
1658 offset);
1659 length -= (PAGE_SIZE - offset);
1660 offset = 0;
1661 }
1662 sg_mark_end(&sg[i - 1]);
1663 iod->nents = count;
1664
1665 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1666 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1667 if (!nents)
1668 goto free_iod;
1669
1670 kfree(pages);
1671 return iod;
1672
1673 free_iod:
1674 kfree(iod);
1675 put_pages:
1676 for (i = 0; i < count; i++)
1677 put_page(pages[i]);
1678 kfree(pages);
1679 return ERR_PTR(err);
1680 }
1681
1682 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1683 struct nvme_iod *iod)
1684 {
1685 int i;
1686
1687 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1688 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1689
1690 for (i = 0; i < iod->nents; i++)
1691 put_page(sg_page(&iod->sg[i]));
1692 }
1693
1694 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1695 {
1696 struct nvme_dev *dev = ns->dev;
1697 struct nvme_user_io io;
1698 struct nvme_command c;
1699 unsigned length, meta_len;
1700 int status, i;
1701 struct nvme_iod *iod, *meta_iod = NULL;
1702 dma_addr_t meta_dma_addr;
1703 void *meta, *uninitialized_var(meta_mem);
1704
1705 if (copy_from_user(&io, uio, sizeof(io)))
1706 return -EFAULT;
1707 length = (io.nblocks + 1) << ns->lba_shift;
1708 meta_len = (io.nblocks + 1) * ns->ms;
1709
1710 if (meta_len && ((io.metadata & 3) || !io.metadata))
1711 return -EINVAL;
1712
1713 switch (io.opcode) {
1714 case nvme_cmd_write:
1715 case nvme_cmd_read:
1716 case nvme_cmd_compare:
1717 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1718 break;
1719 default:
1720 return -EINVAL;
1721 }
1722
1723 if (IS_ERR(iod))
1724 return PTR_ERR(iod);
1725
1726 memset(&c, 0, sizeof(c));
1727 c.rw.opcode = io.opcode;
1728 c.rw.flags = io.flags;
1729 c.rw.nsid = cpu_to_le32(ns->ns_id);
1730 c.rw.slba = cpu_to_le64(io.slba);
1731 c.rw.length = cpu_to_le16(io.nblocks);
1732 c.rw.control = cpu_to_le16(io.control);
1733 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1734 c.rw.reftag = cpu_to_le32(io.reftag);
1735 c.rw.apptag = cpu_to_le16(io.apptag);
1736 c.rw.appmask = cpu_to_le16(io.appmask);
1737
1738 if (meta_len) {
1739 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1740 meta_len);
1741 if (IS_ERR(meta_iod)) {
1742 status = PTR_ERR(meta_iod);
1743 meta_iod = NULL;
1744 goto unmap;
1745 }
1746
1747 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1748 &meta_dma_addr, GFP_KERNEL);
1749 if (!meta_mem) {
1750 status = -ENOMEM;
1751 goto unmap;
1752 }
1753
1754 if (io.opcode & 1) {
1755 int meta_offset = 0;
1756
1757 for (i = 0; i < meta_iod->nents; i++) {
1758 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1759 meta_iod->sg[i].offset;
1760 memcpy(meta_mem + meta_offset, meta,
1761 meta_iod->sg[i].length);
1762 kunmap_atomic(meta);
1763 meta_offset += meta_iod->sg[i].length;
1764 }
1765 }
1766
1767 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1768 }
1769
1770 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1771 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1772 c.rw.prp2 = cpu_to_le64(iod->first_dma);
1773
1774 if (length != (io.nblocks + 1) << ns->lba_shift)
1775 status = -ENOMEM;
1776 else
1777 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1778
1779 if (meta_len) {
1780 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1781 int meta_offset = 0;
1782
1783 for (i = 0; i < meta_iod->nents; i++) {
1784 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1785 meta_iod->sg[i].offset;
1786 memcpy(meta, meta_mem + meta_offset,
1787 meta_iod->sg[i].length);
1788 kunmap_atomic(meta);
1789 meta_offset += meta_iod->sg[i].length;
1790 }
1791 }
1792
1793 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1794 meta_dma_addr);
1795 }
1796
1797 unmap:
1798 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1799 nvme_free_iod(dev, iod);
1800
1801 if (meta_iod) {
1802 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1803 nvme_free_iod(dev, meta_iod);
1804 }
1805
1806 return status;
1807 }
1808
1809 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1810 struct nvme_passthru_cmd __user *ucmd)
1811 {
1812 struct nvme_passthru_cmd cmd;
1813 struct nvme_command c;
1814 int status, length;
1815 struct nvme_iod *uninitialized_var(iod);
1816 unsigned timeout;
1817
1818 if (!capable(CAP_SYS_ADMIN))
1819 return -EACCES;
1820 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1821 return -EFAULT;
1822
1823 memset(&c, 0, sizeof(c));
1824 c.common.opcode = cmd.opcode;
1825 c.common.flags = cmd.flags;
1826 c.common.nsid = cpu_to_le32(cmd.nsid);
1827 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1828 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1829 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1830 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1831 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1832 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1833 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1834 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1835
1836 length = cmd.data_len;
1837 if (cmd.data_len) {
1838 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1839 length);
1840 if (IS_ERR(iod))
1841 return PTR_ERR(iod);
1842 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1843 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1844 c.common.prp2 = cpu_to_le64(iod->first_dma);
1845 }
1846
1847 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1848 ADMIN_TIMEOUT;
1849
1850 if (length != cmd.data_len)
1851 status = -ENOMEM;
1852 else if (ns) {
1853 struct request *req;
1854
1855 req = blk_mq_alloc_request(ns->queue, WRITE,
1856 (GFP_KERNEL|__GFP_WAIT), false);
1857 if (IS_ERR(req))
1858 status = PTR_ERR(req);
1859 else {
1860 status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1861 timeout);
1862 blk_mq_free_request(req);
1863 }
1864 } else
1865 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1866
1867 if (cmd.data_len) {
1868 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1869 nvme_free_iod(dev, iod);
1870 }
1871
1872 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1873 sizeof(cmd.result)))
1874 status = -EFAULT;
1875
1876 return status;
1877 }
1878
1879 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1880 unsigned long arg)
1881 {
1882 struct nvme_ns *ns = bdev->bd_disk->private_data;
1883
1884 switch (cmd) {
1885 case NVME_IOCTL_ID:
1886 force_successful_syscall_return();
1887 return ns->ns_id;
1888 case NVME_IOCTL_ADMIN_CMD:
1889 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1890 case NVME_IOCTL_IO_CMD:
1891 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1892 case NVME_IOCTL_SUBMIT_IO:
1893 return nvme_submit_io(ns, (void __user *)arg);
1894 case SG_GET_VERSION_NUM:
1895 return nvme_sg_get_version_num((void __user *)arg);
1896 case SG_IO:
1897 return nvme_sg_io(ns, (void __user *)arg);
1898 default:
1899 return -ENOTTY;
1900 }
1901 }
1902
1903 #ifdef CONFIG_COMPAT
1904 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1905 unsigned int cmd, unsigned long arg)
1906 {
1907 switch (cmd) {
1908 case SG_IO:
1909 return -ENOIOCTLCMD;
1910 }
1911 return nvme_ioctl(bdev, mode, cmd, arg);
1912 }
1913 #else
1914 #define nvme_compat_ioctl NULL
1915 #endif
1916
1917 static int nvme_open(struct block_device *bdev, fmode_t mode)
1918 {
1919 int ret = 0;
1920 struct nvme_ns *ns;
1921
1922 spin_lock(&dev_list_lock);
1923 ns = bdev->bd_disk->private_data;
1924 if (!ns)
1925 ret = -ENXIO;
1926 else if (!kref_get_unless_zero(&ns->dev->kref))
1927 ret = -ENXIO;
1928 spin_unlock(&dev_list_lock);
1929
1930 return ret;
1931 }
1932
1933 static void nvme_free_dev(struct kref *kref);
1934
1935 static void nvme_release(struct gendisk *disk, fmode_t mode)
1936 {
1937 struct nvme_ns *ns = disk->private_data;
1938 struct nvme_dev *dev = ns->dev;
1939
1940 kref_put(&dev->kref, nvme_free_dev);
1941 }
1942
1943 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1944 {
1945 /* some standard values */
1946 geo->heads = 1 << 6;
1947 geo->sectors = 1 << 5;
1948 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1949 return 0;
1950 }
1951
1952 static void nvme_config_discard(struct nvme_ns *ns)
1953 {
1954 u32 logical_block_size = queue_logical_block_size(ns->queue);
1955 ns->queue->limits.discard_zeroes_data = 0;
1956 ns->queue->limits.discard_alignment = logical_block_size;
1957 ns->queue->limits.discard_granularity = logical_block_size;
1958 ns->queue->limits.max_discard_sectors = 0xffffffff;
1959 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1960 }
1961
1962 static int nvme_noop_verify(struct blk_integrity_iter *iter)
1963 {
1964 return 0;
1965 }
1966
1967 static int nvme_noop_generate(struct blk_integrity_iter *iter)
1968 {
1969 return 0;
1970 }
1971
1972 struct blk_integrity nvme_meta_noop = {
1973 .name = "NVME_META_NOOP",
1974 .generate_fn = nvme_noop_generate,
1975 .verify_fn = nvme_noop_verify,
1976 };
1977
1978 static void nvme_init_integrity(struct nvme_ns *ns)
1979 {
1980 struct blk_integrity integrity;
1981
1982 switch (ns->pi_type) {
1983 case NVME_NS_DPS_PI_TYPE3:
1984 integrity = t10_pi_type3_crc;
1985 break;
1986 case NVME_NS_DPS_PI_TYPE1:
1987 case NVME_NS_DPS_PI_TYPE2:
1988 integrity = t10_pi_type1_crc;
1989 break;
1990 default:
1991 integrity = nvme_meta_noop;
1992 break;
1993 }
1994 integrity.tuple_size = ns->ms;
1995 blk_integrity_register(ns->disk, &integrity);
1996 blk_queue_max_integrity_segments(ns->queue, 1);
1997 }
1998
1999 static int nvme_revalidate_disk(struct gendisk *disk)
2000 {
2001 struct nvme_ns *ns = disk->private_data;
2002 struct nvme_dev *dev = ns->dev;
2003 struct nvme_id_ns *id;
2004 dma_addr_t dma_addr;
2005 int lbaf, pi_type, old_ms;
2006 unsigned short bs;
2007
2008 id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
2009 GFP_KERNEL);
2010 if (!id) {
2011 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2012 __func__);
2013 return 0;
2014 }
2015 if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2016 dev_warn(&dev->pci_dev->dev,
2017 "identify failed ns:%d, setting capacity to 0\n",
2018 ns->ns_id);
2019 memset(id, 0, sizeof(*id));
2020 }
2021
2022 old_ms = ns->ms;
2023 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2024 ns->lba_shift = id->lbaf[lbaf].ds;
2025 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2026
2027 /*
2028 * If identify namespace failed, use default 512 byte block size so
2029 * block layer can use before failing read/write for 0 capacity.
2030 */
2031 if (ns->lba_shift == 0)
2032 ns->lba_shift = 9;
2033 bs = 1 << ns->lba_shift;
2034
2035 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2036 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2037 id->dps & NVME_NS_DPS_PI_MASK : 0;
2038
2039 if (disk->integrity && (ns->pi_type != pi_type || ns->ms != old_ms ||
2040 bs != queue_logical_block_size(disk->queue) ||
2041 (ns->ms && id->flbas & NVME_NS_FLBAS_META_EXT)))
2042 blk_integrity_unregister(disk);
2043
2044 ns->pi_type = pi_type;
2045 blk_queue_logical_block_size(ns->queue, bs);
2046
2047 if (ns->ms && !disk->integrity && (disk->flags & GENHD_FL_UP) &&
2048 !(id->flbas & NVME_NS_FLBAS_META_EXT))
2049 nvme_init_integrity(ns);
2050
2051 if (id->ncap == 0 || (ns->ms && !disk->integrity))
2052 set_capacity(disk, 0);
2053 else
2054 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2055
2056 if (dev->oncs & NVME_CTRL_ONCS_DSM)
2057 nvme_config_discard(ns);
2058
2059 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2060 return 0;
2061 }
2062
2063 static const struct block_device_operations nvme_fops = {
2064 .owner = THIS_MODULE,
2065 .ioctl = nvme_ioctl,
2066 .compat_ioctl = nvme_compat_ioctl,
2067 .open = nvme_open,
2068 .release = nvme_release,
2069 .getgeo = nvme_getgeo,
2070 .revalidate_disk= nvme_revalidate_disk,
2071 };
2072
2073 static int nvme_kthread(void *data)
2074 {
2075 struct nvme_dev *dev, *next;
2076
2077 while (!kthread_should_stop()) {
2078 set_current_state(TASK_INTERRUPTIBLE);
2079 spin_lock(&dev_list_lock);
2080 list_for_each_entry_safe(dev, next, &dev_list, node) {
2081 int i;
2082 if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2083 if (work_busy(&dev->reset_work))
2084 continue;
2085 list_del_init(&dev->node);
2086 dev_warn(&dev->pci_dev->dev,
2087 "Failed status: %x, reset controller\n",
2088 readl(&dev->bar->csts));
2089 dev->reset_workfn = nvme_reset_failed_dev;
2090 queue_work(nvme_workq, &dev->reset_work);
2091 continue;
2092 }
2093 for (i = 0; i < dev->queue_count; i++) {
2094 struct nvme_queue *nvmeq = dev->queues[i];
2095 if (!nvmeq)
2096 continue;
2097 spin_lock_irq(&nvmeq->q_lock);
2098 nvme_process_cq(nvmeq);
2099
2100 while ((i == 0) && (dev->event_limit > 0)) {
2101 if (nvme_submit_async_admin_req(dev))
2102 break;
2103 dev->event_limit--;
2104 }
2105 spin_unlock_irq(&nvmeq->q_lock);
2106 }
2107 }
2108 spin_unlock(&dev_list_lock);
2109 schedule_timeout(round_jiffies_relative(HZ));
2110 }
2111 return 0;
2112 }
2113
2114 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2115 {
2116 struct nvme_ns *ns;
2117 struct gendisk *disk;
2118 int node = dev_to_node(&dev->pci_dev->dev);
2119
2120 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2121 if (!ns)
2122 return;
2123
2124 ns->queue = blk_mq_init_queue(&dev->tagset);
2125 if (IS_ERR(ns->queue))
2126 goto out_free_ns;
2127 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2128 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2129 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2130 ns->dev = dev;
2131 ns->queue->queuedata = ns;
2132
2133 disk = alloc_disk_node(0, node);
2134 if (!disk)
2135 goto out_free_queue;
2136
2137 ns->ns_id = nsid;
2138 ns->disk = disk;
2139 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2140 list_add_tail(&ns->list, &dev->namespaces);
2141
2142 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2143 if (dev->max_hw_sectors)
2144 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2145 if (dev->stripe_size)
2146 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2147 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2148 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2149
2150 disk->major = nvme_major;
2151 disk->first_minor = 0;
2152 disk->fops = &nvme_fops;
2153 disk->private_data = ns;
2154 disk->queue = ns->queue;
2155 disk->driverfs_dev = dev->device;
2156 disk->flags = GENHD_FL_EXT_DEVT;
2157 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2158
2159 /*
2160 * Initialize capacity to 0 until we establish the namespace format and
2161 * setup integrity extentions if necessary. The revalidate_disk after
2162 * add_disk allows the driver to register with integrity if the format
2163 * requires it.
2164 */
2165 set_capacity(disk, 0);
2166 nvme_revalidate_disk(ns->disk);
2167 add_disk(ns->disk);
2168 if (ns->ms)
2169 revalidate_disk(ns->disk);
2170 return;
2171 out_free_queue:
2172 blk_cleanup_queue(ns->queue);
2173 out_free_ns:
2174 kfree(ns);
2175 }
2176
2177 static void nvme_create_io_queues(struct nvme_dev *dev)
2178 {
2179 unsigned i;
2180
2181 for (i = dev->queue_count; i <= dev->max_qid; i++)
2182 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2183 break;
2184
2185 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2186 if (nvme_create_queue(dev->queues[i], i))
2187 break;
2188 }
2189
2190 static int set_queue_count(struct nvme_dev *dev, int count)
2191 {
2192 int status;
2193 u32 result;
2194 u32 q_count = (count - 1) | ((count - 1) << 16);
2195
2196 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2197 &result);
2198 if (status < 0)
2199 return status;
2200 if (status > 0) {
2201 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2202 status);
2203 return 0;
2204 }
2205 return min(result & 0xffff, result >> 16) + 1;
2206 }
2207
2208 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2209 {
2210 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2211 }
2212
2213 static int nvme_setup_io_queues(struct nvme_dev *dev)
2214 {
2215 struct nvme_queue *adminq = dev->queues[0];
2216 struct pci_dev *pdev = dev->pci_dev;
2217 int result, i, vecs, nr_io_queues, size;
2218
2219 nr_io_queues = num_possible_cpus();
2220 result = set_queue_count(dev, nr_io_queues);
2221 if (result <= 0)
2222 return result;
2223 if (result < nr_io_queues)
2224 nr_io_queues = result;
2225
2226 size = db_bar_size(dev, nr_io_queues);
2227 if (size > 8192) {
2228 iounmap(dev->bar);
2229 do {
2230 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2231 if (dev->bar)
2232 break;
2233 if (!--nr_io_queues)
2234 return -ENOMEM;
2235 size = db_bar_size(dev, nr_io_queues);
2236 } while (1);
2237 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2238 adminq->q_db = dev->dbs;
2239 }
2240
2241 /* Deregister the admin queue's interrupt */
2242 free_irq(dev->entry[0].vector, adminq);
2243
2244 /*
2245 * If we enable msix early due to not intx, disable it again before
2246 * setting up the full range we need.
2247 */
2248 if (!pdev->irq)
2249 pci_disable_msix(pdev);
2250
2251 for (i = 0; i < nr_io_queues; i++)
2252 dev->entry[i].entry = i;
2253 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2254 if (vecs < 0) {
2255 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2256 if (vecs < 0) {
2257 vecs = 1;
2258 } else {
2259 for (i = 0; i < vecs; i++)
2260 dev->entry[i].vector = i + pdev->irq;
2261 }
2262 }
2263
2264 /*
2265 * Should investigate if there's a performance win from allocating
2266 * more queues than interrupt vectors; it might allow the submission
2267 * path to scale better, even if the receive path is limited by the
2268 * number of interrupts.
2269 */
2270 nr_io_queues = vecs;
2271 dev->max_qid = nr_io_queues;
2272
2273 result = queue_request_irq(dev, adminq, adminq->irqname);
2274 if (result)
2275 goto free_queues;
2276
2277 /* Free previously allocated queues that are no longer usable */
2278 nvme_free_queues(dev, nr_io_queues + 1);
2279 nvme_create_io_queues(dev);
2280
2281 return 0;
2282
2283 free_queues:
2284 nvme_free_queues(dev, 1);
2285 return result;
2286 }
2287
2288 /*
2289 * Return: error value if an error occurred setting up the queues or calling
2290 * Identify Device. 0 if these succeeded, even if adding some of the
2291 * namespaces failed. At the moment, these failures are silent. TBD which
2292 * failures should be reported.
2293 */
2294 static int nvme_dev_add(struct nvme_dev *dev)
2295 {
2296 struct pci_dev *pdev = dev->pci_dev;
2297 int res;
2298 unsigned nn, i;
2299 struct nvme_id_ctrl *ctrl;
2300 void *mem;
2301 dma_addr_t dma_addr;
2302 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2303
2304 mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2305 if (!mem)
2306 return -ENOMEM;
2307
2308 res = nvme_identify(dev, 0, 1, dma_addr);
2309 if (res) {
2310 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2311 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2312 return -EIO;
2313 }
2314
2315 ctrl = mem;
2316 nn = le32_to_cpup(&ctrl->nn);
2317 dev->oncs = le16_to_cpup(&ctrl->oncs);
2318 dev->abort_limit = ctrl->acl + 1;
2319 dev->vwc = ctrl->vwc;
2320 dev->event_limit = min(ctrl->aerl + 1, 8);
2321 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2322 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2323 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2324 if (ctrl->mdts)
2325 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2326 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2327 (pdev->device == 0x0953) && ctrl->vs[3]) {
2328 unsigned int max_hw_sectors;
2329
2330 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2331 max_hw_sectors = dev->stripe_size >> (shift - 9);
2332 if (dev->max_hw_sectors) {
2333 dev->max_hw_sectors = min(max_hw_sectors,
2334 dev->max_hw_sectors);
2335 } else
2336 dev->max_hw_sectors = max_hw_sectors;
2337 }
2338 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2339
2340 dev->tagset.ops = &nvme_mq_ops;
2341 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2342 dev->tagset.timeout = NVME_IO_TIMEOUT;
2343 dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2344 dev->tagset.queue_depth =
2345 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2346 dev->tagset.cmd_size = nvme_cmd_size(dev);
2347 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2348 dev->tagset.driver_data = dev;
2349
2350 if (blk_mq_alloc_tag_set(&dev->tagset))
2351 return 0;
2352
2353 for (i = 1; i <= nn; i++)
2354 nvme_alloc_ns(dev, i);
2355
2356 return 0;
2357 }
2358
2359 static int nvme_dev_map(struct nvme_dev *dev)
2360 {
2361 u64 cap;
2362 int bars, result = -ENOMEM;
2363 struct pci_dev *pdev = dev->pci_dev;
2364
2365 if (pci_enable_device_mem(pdev))
2366 return result;
2367
2368 dev->entry[0].vector = pdev->irq;
2369 pci_set_master(pdev);
2370 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2371 if (!bars)
2372 goto disable_pci;
2373
2374 if (pci_request_selected_regions(pdev, bars, "nvme"))
2375 goto disable_pci;
2376
2377 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2378 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2379 goto disable;
2380
2381 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2382 if (!dev->bar)
2383 goto disable;
2384
2385 if (readl(&dev->bar->csts) == -1) {
2386 result = -ENODEV;
2387 goto unmap;
2388 }
2389
2390 /*
2391 * Some devices don't advertse INTx interrupts, pre-enable a single
2392 * MSIX vec for setup. We'll adjust this later.
2393 */
2394 if (!pdev->irq) {
2395 result = pci_enable_msix(pdev, dev->entry, 1);
2396 if (result < 0)
2397 goto unmap;
2398 }
2399
2400 cap = readq(&dev->bar->cap);
2401 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2402 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2403 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2404
2405 return 0;
2406
2407 unmap:
2408 iounmap(dev->bar);
2409 dev->bar = NULL;
2410 disable:
2411 pci_release_regions(pdev);
2412 disable_pci:
2413 pci_disable_device(pdev);
2414 return result;
2415 }
2416
2417 static void nvme_dev_unmap(struct nvme_dev *dev)
2418 {
2419 if (dev->pci_dev->msi_enabled)
2420 pci_disable_msi(dev->pci_dev);
2421 else if (dev->pci_dev->msix_enabled)
2422 pci_disable_msix(dev->pci_dev);
2423
2424 if (dev->bar) {
2425 iounmap(dev->bar);
2426 dev->bar = NULL;
2427 pci_release_regions(dev->pci_dev);
2428 }
2429
2430 if (pci_is_enabled(dev->pci_dev))
2431 pci_disable_device(dev->pci_dev);
2432 }
2433
2434 struct nvme_delq_ctx {
2435 struct task_struct *waiter;
2436 struct kthread_worker *worker;
2437 atomic_t refcount;
2438 };
2439
2440 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2441 {
2442 dq->waiter = current;
2443 mb();
2444
2445 for (;;) {
2446 set_current_state(TASK_KILLABLE);
2447 if (!atomic_read(&dq->refcount))
2448 break;
2449 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2450 fatal_signal_pending(current)) {
2451 /*
2452 * Disable the controller first since we can't trust it
2453 * at this point, but leave the admin queue enabled
2454 * until all queue deletion requests are flushed.
2455 * FIXME: This may take a while if there are more h/w
2456 * queues than admin tags.
2457 */
2458 set_current_state(TASK_RUNNING);
2459 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2460 nvme_clear_queue(dev->queues[0]);
2461 flush_kthread_worker(dq->worker);
2462 nvme_disable_queue(dev, 0);
2463 return;
2464 }
2465 }
2466 set_current_state(TASK_RUNNING);
2467 }
2468
2469 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2470 {
2471 atomic_dec(&dq->refcount);
2472 if (dq->waiter)
2473 wake_up_process(dq->waiter);
2474 }
2475
2476 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2477 {
2478 atomic_inc(&dq->refcount);
2479 return dq;
2480 }
2481
2482 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2483 {
2484 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2485 nvme_put_dq(dq);
2486 }
2487
2488 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2489 kthread_work_func_t fn)
2490 {
2491 struct nvme_command c;
2492
2493 memset(&c, 0, sizeof(c));
2494 c.delete_queue.opcode = opcode;
2495 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2496
2497 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2498 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2499 ADMIN_TIMEOUT);
2500 }
2501
2502 static void nvme_del_cq_work_handler(struct kthread_work *work)
2503 {
2504 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2505 cmdinfo.work);
2506 nvme_del_queue_end(nvmeq);
2507 }
2508
2509 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2510 {
2511 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2512 nvme_del_cq_work_handler);
2513 }
2514
2515 static void nvme_del_sq_work_handler(struct kthread_work *work)
2516 {
2517 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2518 cmdinfo.work);
2519 int status = nvmeq->cmdinfo.status;
2520
2521 if (!status)
2522 status = nvme_delete_cq(nvmeq);
2523 if (status)
2524 nvme_del_queue_end(nvmeq);
2525 }
2526
2527 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2528 {
2529 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2530 nvme_del_sq_work_handler);
2531 }
2532
2533 static void nvme_del_queue_start(struct kthread_work *work)
2534 {
2535 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2536 cmdinfo.work);
2537 if (nvme_delete_sq(nvmeq))
2538 nvme_del_queue_end(nvmeq);
2539 }
2540
2541 static void nvme_disable_io_queues(struct nvme_dev *dev)
2542 {
2543 int i;
2544 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2545 struct nvme_delq_ctx dq;
2546 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2547 &worker, "nvme%d", dev->instance);
2548
2549 if (IS_ERR(kworker_task)) {
2550 dev_err(&dev->pci_dev->dev,
2551 "Failed to create queue del task\n");
2552 for (i = dev->queue_count - 1; i > 0; i--)
2553 nvme_disable_queue(dev, i);
2554 return;
2555 }
2556
2557 dq.waiter = NULL;
2558 atomic_set(&dq.refcount, 0);
2559 dq.worker = &worker;
2560 for (i = dev->queue_count - 1; i > 0; i--) {
2561 struct nvme_queue *nvmeq = dev->queues[i];
2562
2563 if (nvme_suspend_queue(nvmeq))
2564 continue;
2565 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2566 nvmeq->cmdinfo.worker = dq.worker;
2567 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2568 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2569 }
2570 nvme_wait_dq(&dq, dev);
2571 kthread_stop(kworker_task);
2572 }
2573
2574 /*
2575 * Remove the node from the device list and check
2576 * for whether or not we need to stop the nvme_thread.
2577 */
2578 static void nvme_dev_list_remove(struct nvme_dev *dev)
2579 {
2580 struct task_struct *tmp = NULL;
2581
2582 spin_lock(&dev_list_lock);
2583 list_del_init(&dev->node);
2584 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2585 tmp = nvme_thread;
2586 nvme_thread = NULL;
2587 }
2588 spin_unlock(&dev_list_lock);
2589
2590 if (tmp)
2591 kthread_stop(tmp);
2592 }
2593
2594 static void nvme_freeze_queues(struct nvme_dev *dev)
2595 {
2596 struct nvme_ns *ns;
2597
2598 list_for_each_entry(ns, &dev->namespaces, list) {
2599 blk_mq_freeze_queue_start(ns->queue);
2600
2601 spin_lock(ns->queue->queue_lock);
2602 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2603 spin_unlock(ns->queue->queue_lock);
2604
2605 blk_mq_cancel_requeue_work(ns->queue);
2606 blk_mq_stop_hw_queues(ns->queue);
2607 }
2608 }
2609
2610 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2611 {
2612 struct nvme_ns *ns;
2613
2614 list_for_each_entry(ns, &dev->namespaces, list) {
2615 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2616 blk_mq_unfreeze_queue(ns->queue);
2617 blk_mq_start_stopped_hw_queues(ns->queue, true);
2618 blk_mq_kick_requeue_list(ns->queue);
2619 }
2620 }
2621
2622 static void nvme_dev_shutdown(struct nvme_dev *dev)
2623 {
2624 int i;
2625 u32 csts = -1;
2626
2627 nvme_dev_list_remove(dev);
2628
2629 if (dev->bar) {
2630 nvme_freeze_queues(dev);
2631 csts = readl(&dev->bar->csts);
2632 }
2633 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2634 for (i = dev->queue_count - 1; i >= 0; i--) {
2635 struct nvme_queue *nvmeq = dev->queues[i];
2636 nvme_suspend_queue(nvmeq);
2637 }
2638 } else {
2639 nvme_disable_io_queues(dev);
2640 nvme_shutdown_ctrl(dev);
2641 nvme_disable_queue(dev, 0);
2642 }
2643 nvme_dev_unmap(dev);
2644
2645 for (i = dev->queue_count - 1; i >= 0; i--)
2646 nvme_clear_queue(dev->queues[i]);
2647 }
2648
2649 static void nvme_dev_remove(struct nvme_dev *dev)
2650 {
2651 struct nvme_ns *ns;
2652
2653 list_for_each_entry(ns, &dev->namespaces, list) {
2654 if (ns->disk->flags & GENHD_FL_UP) {
2655 if (ns->disk->integrity)
2656 blk_integrity_unregister(ns->disk);
2657 del_gendisk(ns->disk);
2658 }
2659 if (!blk_queue_dying(ns->queue)) {
2660 blk_mq_abort_requeue_list(ns->queue);
2661 blk_cleanup_queue(ns->queue);
2662 }
2663 }
2664 }
2665
2666 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2667 {
2668 struct device *dmadev = &dev->pci_dev->dev;
2669 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2670 PAGE_SIZE, PAGE_SIZE, 0);
2671 if (!dev->prp_page_pool)
2672 return -ENOMEM;
2673
2674 /* Optimisation for I/Os between 4k and 128k */
2675 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2676 256, 256, 0);
2677 if (!dev->prp_small_pool) {
2678 dma_pool_destroy(dev->prp_page_pool);
2679 return -ENOMEM;
2680 }
2681 return 0;
2682 }
2683
2684 static void nvme_release_prp_pools(struct nvme_dev *dev)
2685 {
2686 dma_pool_destroy(dev->prp_page_pool);
2687 dma_pool_destroy(dev->prp_small_pool);
2688 }
2689
2690 static DEFINE_IDA(nvme_instance_ida);
2691
2692 static int nvme_set_instance(struct nvme_dev *dev)
2693 {
2694 int instance, error;
2695
2696 do {
2697 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2698 return -ENODEV;
2699
2700 spin_lock(&dev_list_lock);
2701 error = ida_get_new(&nvme_instance_ida, &instance);
2702 spin_unlock(&dev_list_lock);
2703 } while (error == -EAGAIN);
2704
2705 if (error)
2706 return -ENODEV;
2707
2708 dev->instance = instance;
2709 return 0;
2710 }
2711
2712 static void nvme_release_instance(struct nvme_dev *dev)
2713 {
2714 spin_lock(&dev_list_lock);
2715 ida_remove(&nvme_instance_ida, dev->instance);
2716 spin_unlock(&dev_list_lock);
2717 }
2718
2719 static void nvme_free_namespaces(struct nvme_dev *dev)
2720 {
2721 struct nvme_ns *ns, *next;
2722
2723 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2724 list_del(&ns->list);
2725
2726 spin_lock(&dev_list_lock);
2727 ns->disk->private_data = NULL;
2728 spin_unlock(&dev_list_lock);
2729
2730 put_disk(ns->disk);
2731 kfree(ns);
2732 }
2733 }
2734
2735 static void nvme_free_dev(struct kref *kref)
2736 {
2737 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2738
2739 pci_dev_put(dev->pci_dev);
2740 put_device(dev->device);
2741 nvme_free_namespaces(dev);
2742 nvme_release_instance(dev);
2743 blk_mq_free_tag_set(&dev->tagset);
2744 blk_put_queue(dev->admin_q);
2745 kfree(dev->queues);
2746 kfree(dev->entry);
2747 kfree(dev);
2748 }
2749
2750 static int nvme_dev_open(struct inode *inode, struct file *f)
2751 {
2752 struct nvme_dev *dev;
2753 int instance = iminor(inode);
2754 int ret = -ENODEV;
2755
2756 spin_lock(&dev_list_lock);
2757 list_for_each_entry(dev, &dev_list, node) {
2758 if (dev->instance == instance) {
2759 if (!dev->admin_q) {
2760 ret = -EWOULDBLOCK;
2761 break;
2762 }
2763 if (!kref_get_unless_zero(&dev->kref))
2764 break;
2765 f->private_data = dev;
2766 ret = 0;
2767 break;
2768 }
2769 }
2770 spin_unlock(&dev_list_lock);
2771
2772 return ret;
2773 }
2774
2775 static int nvme_dev_release(struct inode *inode, struct file *f)
2776 {
2777 struct nvme_dev *dev = f->private_data;
2778 kref_put(&dev->kref, nvme_free_dev);
2779 return 0;
2780 }
2781
2782 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2783 {
2784 struct nvme_dev *dev = f->private_data;
2785 struct nvme_ns *ns;
2786
2787 switch (cmd) {
2788 case NVME_IOCTL_ADMIN_CMD:
2789 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2790 case NVME_IOCTL_IO_CMD:
2791 if (list_empty(&dev->namespaces))
2792 return -ENOTTY;
2793 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2794 return nvme_user_cmd(dev, ns, (void __user *)arg);
2795 default:
2796 return -ENOTTY;
2797 }
2798 }
2799
2800 static const struct file_operations nvme_dev_fops = {
2801 .owner = THIS_MODULE,
2802 .open = nvme_dev_open,
2803 .release = nvme_dev_release,
2804 .unlocked_ioctl = nvme_dev_ioctl,
2805 .compat_ioctl = nvme_dev_ioctl,
2806 };
2807
2808 static void nvme_set_irq_hints(struct nvme_dev *dev)
2809 {
2810 struct nvme_queue *nvmeq;
2811 int i;
2812
2813 for (i = 0; i < dev->online_queues; i++) {
2814 nvmeq = dev->queues[i];
2815
2816 if (!nvmeq->hctx)
2817 continue;
2818
2819 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2820 nvmeq->hctx->cpumask);
2821 }
2822 }
2823
2824 static int nvme_dev_start(struct nvme_dev *dev)
2825 {
2826 int result;
2827 bool start_thread = false;
2828
2829 result = nvme_dev_map(dev);
2830 if (result)
2831 return result;
2832
2833 result = nvme_configure_admin_queue(dev);
2834 if (result)
2835 goto unmap;
2836
2837 spin_lock(&dev_list_lock);
2838 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2839 start_thread = true;
2840 nvme_thread = NULL;
2841 }
2842 list_add(&dev->node, &dev_list);
2843 spin_unlock(&dev_list_lock);
2844
2845 if (start_thread) {
2846 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2847 wake_up_all(&nvme_kthread_wait);
2848 } else
2849 wait_event_killable(nvme_kthread_wait, nvme_thread);
2850
2851 if (IS_ERR_OR_NULL(nvme_thread)) {
2852 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2853 goto disable;
2854 }
2855
2856 nvme_init_queue(dev->queues[0], 0);
2857 result = nvme_alloc_admin_tags(dev);
2858 if (result)
2859 goto disable;
2860
2861 result = nvme_setup_io_queues(dev);
2862 if (result)
2863 goto free_tags;
2864
2865 nvme_set_irq_hints(dev);
2866
2867 return result;
2868
2869 free_tags:
2870 nvme_dev_remove_admin(dev);
2871 disable:
2872 nvme_disable_queue(dev, 0);
2873 nvme_dev_list_remove(dev);
2874 unmap:
2875 nvme_dev_unmap(dev);
2876 return result;
2877 }
2878
2879 static int nvme_remove_dead_ctrl(void *arg)
2880 {
2881 struct nvme_dev *dev = (struct nvme_dev *)arg;
2882 struct pci_dev *pdev = dev->pci_dev;
2883
2884 if (pci_get_drvdata(pdev))
2885 pci_stop_and_remove_bus_device_locked(pdev);
2886 kref_put(&dev->kref, nvme_free_dev);
2887 return 0;
2888 }
2889
2890 static void nvme_remove_disks(struct work_struct *ws)
2891 {
2892 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2893
2894 nvme_free_queues(dev, 1);
2895 nvme_dev_remove(dev);
2896 }
2897
2898 static int nvme_dev_resume(struct nvme_dev *dev)
2899 {
2900 int ret;
2901
2902 ret = nvme_dev_start(dev);
2903 if (ret)
2904 return ret;
2905 if (dev->online_queues < 2) {
2906 spin_lock(&dev_list_lock);
2907 dev->reset_workfn = nvme_remove_disks;
2908 queue_work(nvme_workq, &dev->reset_work);
2909 spin_unlock(&dev_list_lock);
2910 } else {
2911 nvme_unfreeze_queues(dev);
2912 nvme_set_irq_hints(dev);
2913 }
2914 return 0;
2915 }
2916
2917 static void nvme_dev_reset(struct nvme_dev *dev)
2918 {
2919 nvme_dev_shutdown(dev);
2920 if (nvme_dev_resume(dev)) {
2921 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2922 kref_get(&dev->kref);
2923 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2924 dev->instance))) {
2925 dev_err(&dev->pci_dev->dev,
2926 "Failed to start controller remove task\n");
2927 kref_put(&dev->kref, nvme_free_dev);
2928 }
2929 }
2930 }
2931
2932 static void nvme_reset_failed_dev(struct work_struct *ws)
2933 {
2934 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2935 nvme_dev_reset(dev);
2936 }
2937
2938 static void nvme_reset_workfn(struct work_struct *work)
2939 {
2940 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2941 dev->reset_workfn(work);
2942 }
2943
2944 static void nvme_async_probe(struct work_struct *work);
2945 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2946 {
2947 int node, result = -ENOMEM;
2948 struct nvme_dev *dev;
2949
2950 node = dev_to_node(&pdev->dev);
2951 if (node == NUMA_NO_NODE)
2952 set_dev_node(&pdev->dev, 0);
2953
2954 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2955 if (!dev)
2956 return -ENOMEM;
2957 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2958 GFP_KERNEL, node);
2959 if (!dev->entry)
2960 goto free;
2961 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2962 GFP_KERNEL, node);
2963 if (!dev->queues)
2964 goto free;
2965
2966 INIT_LIST_HEAD(&dev->namespaces);
2967 dev->reset_workfn = nvme_reset_failed_dev;
2968 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2969 dev->pci_dev = pci_dev_get(pdev);
2970 pci_set_drvdata(pdev, dev);
2971 result = nvme_set_instance(dev);
2972 if (result)
2973 goto put_pci;
2974
2975 result = nvme_setup_prp_pools(dev);
2976 if (result)
2977 goto release;
2978
2979 kref_init(&dev->kref);
2980 dev->device = device_create(nvme_class, &pdev->dev,
2981 MKDEV(nvme_char_major, dev->instance),
2982 dev, "nvme%d", dev->instance);
2983 if (IS_ERR(dev->device)) {
2984 result = PTR_ERR(dev->device);
2985 goto release_pools;
2986 }
2987 get_device(dev->device);
2988
2989 INIT_WORK(&dev->probe_work, nvme_async_probe);
2990 schedule_work(&dev->probe_work);
2991 return 0;
2992
2993 release_pools:
2994 nvme_release_prp_pools(dev);
2995 release:
2996 nvme_release_instance(dev);
2997 put_pci:
2998 pci_dev_put(dev->pci_dev);
2999 free:
3000 kfree(dev->queues);
3001 kfree(dev->entry);
3002 kfree(dev);
3003 return result;
3004 }
3005
3006 static void nvme_async_probe(struct work_struct *work)
3007 {
3008 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3009 int result;
3010
3011 result = nvme_dev_start(dev);
3012 if (result)
3013 goto reset;
3014
3015 if (dev->online_queues > 1)
3016 result = nvme_dev_add(dev);
3017 if (result)
3018 goto reset;
3019
3020 nvme_set_irq_hints(dev);
3021 return;
3022 reset:
3023 if (!work_busy(&dev->reset_work)) {
3024 dev->reset_workfn = nvme_reset_failed_dev;
3025 queue_work(nvme_workq, &dev->reset_work);
3026 }
3027 }
3028
3029 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3030 {
3031 struct nvme_dev *dev = pci_get_drvdata(pdev);
3032
3033 if (prepare)
3034 nvme_dev_shutdown(dev);
3035 else
3036 nvme_dev_resume(dev);
3037 }
3038
3039 static void nvme_shutdown(struct pci_dev *pdev)
3040 {
3041 struct nvme_dev *dev = pci_get_drvdata(pdev);
3042 nvme_dev_shutdown(dev);
3043 }
3044
3045 static void nvme_remove(struct pci_dev *pdev)
3046 {
3047 struct nvme_dev *dev = pci_get_drvdata(pdev);
3048
3049 spin_lock(&dev_list_lock);
3050 list_del_init(&dev->node);
3051 spin_unlock(&dev_list_lock);
3052
3053 pci_set_drvdata(pdev, NULL);
3054 flush_work(&dev->probe_work);
3055 flush_work(&dev->reset_work);
3056 nvme_dev_shutdown(dev);
3057 nvme_dev_remove(dev);
3058 nvme_dev_remove_admin(dev);
3059 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3060 nvme_free_queues(dev, 0);
3061 nvme_release_prp_pools(dev);
3062 kref_put(&dev->kref, nvme_free_dev);
3063 }
3064
3065 /* These functions are yet to be implemented */
3066 #define nvme_error_detected NULL
3067 #define nvme_dump_registers NULL
3068 #define nvme_link_reset NULL
3069 #define nvme_slot_reset NULL
3070 #define nvme_error_resume NULL
3071
3072 #ifdef CONFIG_PM_SLEEP
3073 static int nvme_suspend(struct device *dev)
3074 {
3075 struct pci_dev *pdev = to_pci_dev(dev);
3076 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3077
3078 nvme_dev_shutdown(ndev);
3079 return 0;
3080 }
3081
3082 static int nvme_resume(struct device *dev)
3083 {
3084 struct pci_dev *pdev = to_pci_dev(dev);
3085 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3086
3087 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3088 ndev->reset_workfn = nvme_reset_failed_dev;
3089 queue_work(nvme_workq, &ndev->reset_work);
3090 }
3091 return 0;
3092 }
3093 #endif
3094
3095 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3096
3097 static const struct pci_error_handlers nvme_err_handler = {
3098 .error_detected = nvme_error_detected,
3099 .mmio_enabled = nvme_dump_registers,
3100 .link_reset = nvme_link_reset,
3101 .slot_reset = nvme_slot_reset,
3102 .resume = nvme_error_resume,
3103 .reset_notify = nvme_reset_notify,
3104 };
3105
3106 /* Move to pci_ids.h later */
3107 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
3108
3109 static const struct pci_device_id nvme_id_table[] = {
3110 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3111 { 0, }
3112 };
3113 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3114
3115 static struct pci_driver nvme_driver = {
3116 .name = "nvme",
3117 .id_table = nvme_id_table,
3118 .probe = nvme_probe,
3119 .remove = nvme_remove,
3120 .shutdown = nvme_shutdown,
3121 .driver = {
3122 .pm = &nvme_dev_pm_ops,
3123 },
3124 .err_handler = &nvme_err_handler,
3125 };
3126
3127 static int __init nvme_init(void)
3128 {
3129 int result;
3130
3131 init_waitqueue_head(&nvme_kthread_wait);
3132
3133 nvme_workq = create_singlethread_workqueue("nvme");
3134 if (!nvme_workq)
3135 return -ENOMEM;
3136
3137 result = register_blkdev(nvme_major, "nvme");
3138 if (result < 0)
3139 goto kill_workq;
3140 else if (result > 0)
3141 nvme_major = result;
3142
3143 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3144 &nvme_dev_fops);
3145 if (result < 0)
3146 goto unregister_blkdev;
3147 else if (result > 0)
3148 nvme_char_major = result;
3149
3150 nvme_class = class_create(THIS_MODULE, "nvme");
3151 if (!nvme_class)
3152 goto unregister_chrdev;
3153
3154 result = pci_register_driver(&nvme_driver);
3155 if (result)
3156 goto destroy_class;
3157 return 0;
3158
3159 destroy_class:
3160 class_destroy(nvme_class);
3161 unregister_chrdev:
3162 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3163 unregister_blkdev:
3164 unregister_blkdev(nvme_major, "nvme");
3165 kill_workq:
3166 destroy_workqueue(nvme_workq);
3167 return result;
3168 }
3169
3170 static void __exit nvme_exit(void)
3171 {
3172 pci_unregister_driver(&nvme_driver);
3173 unregister_blkdev(nvme_major, "nvme");
3174 destroy_workqueue(nvme_workq);
3175 class_destroy(nvme_class);
3176 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3177 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3178 _nvme_check_size();
3179 }
3180
3181 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3182 MODULE_LICENSE("GPL");
3183 MODULE_VERSION("1.0");
3184 module_init(nvme_init);
3185 module_exit(nvme_exit);
This page took 0.103156 seconds and 5 git commands to generate.