Merge remote-tracking branches 'regmap/fix/irq', 'regmap/fix/rbtree' and 'regmap...
[deliverable/linux.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_MINORS (1U << MINORBITS)
46 #define NVME_Q_DEPTH 1024
47 #define NVME_AQ_DEPTH 64
48 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT (admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int nvme_char_major;
69 module_param(nvme_char_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79
80 static struct class *nvme_class;
81
82 static void nvme_reset_failed_dev(struct work_struct *ws);
83 static int nvme_process_cq(struct nvme_queue *nvmeq);
84
85 struct async_cmd_info {
86 struct kthread_work work;
87 struct kthread_worker *worker;
88 struct request *req;
89 u32 result;
90 int status;
91 void *ctx;
92 };
93
94 /*
95 * An NVM Express queue. Each device has at least two (one for admin
96 * commands and one for I/O commands).
97 */
98 struct nvme_queue {
99 struct device *q_dmadev;
100 struct nvme_dev *dev;
101 char irqname[24]; /* nvme4294967295-65535\0 */
102 spinlock_t q_lock;
103 struct nvme_command *sq_cmds;
104 volatile struct nvme_completion *cqes;
105 dma_addr_t sq_dma_addr;
106 dma_addr_t cq_dma_addr;
107 u32 __iomem *q_db;
108 u16 q_depth;
109 s16 cq_vector;
110 u16 sq_head;
111 u16 sq_tail;
112 u16 cq_head;
113 u16 qid;
114 u8 cq_phase;
115 u8 cqe_seen;
116 struct async_cmd_info cmdinfo;
117 struct blk_mq_hw_ctx *hctx;
118 };
119
120 /*
121 * Check we didin't inadvertently grow the command struct
122 */
123 static inline void _nvme_check_size(void)
124 {
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143 nvme_completion_fn fn;
144 void *ctx;
145 int aborted;
146 struct nvme_queue *nvmeq;
147 struct nvme_iod iod[0];
148 };
149
150 /*
151 * Max size of iod being embedded in the request payload
152 */
153 #define NVME_INT_PAGES 2
154 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
155
156 /*
157 * Will slightly overestimate the number of pages needed. This is OK
158 * as it only leads to a small amount of wasted memory for the lifetime of
159 * the I/O.
160 */
161 static int nvme_npages(unsigned size, struct nvme_dev *dev)
162 {
163 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
164 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
165 }
166
167 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
168 {
169 unsigned int ret = sizeof(struct nvme_cmd_info);
170
171 ret += sizeof(struct nvme_iod);
172 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
173 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
174
175 return ret;
176 }
177
178 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
179 unsigned int hctx_idx)
180 {
181 struct nvme_dev *dev = data;
182 struct nvme_queue *nvmeq = dev->queues[0];
183
184 WARN_ON(nvmeq->hctx);
185 nvmeq->hctx = hctx;
186 hctx->driver_data = nvmeq;
187 return 0;
188 }
189
190 static int nvme_admin_init_request(void *data, struct request *req,
191 unsigned int hctx_idx, unsigned int rq_idx,
192 unsigned int numa_node)
193 {
194 struct nvme_dev *dev = data;
195 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
196 struct nvme_queue *nvmeq = dev->queues[0];
197
198 BUG_ON(!nvmeq);
199 cmd->nvmeq = nvmeq;
200 return 0;
201 }
202
203 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
204 {
205 struct nvme_queue *nvmeq = hctx->driver_data;
206
207 nvmeq->hctx = NULL;
208 }
209
210 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
211 unsigned int hctx_idx)
212 {
213 struct nvme_dev *dev = data;
214 struct nvme_queue *nvmeq = dev->queues[
215 (hctx_idx % dev->queue_count) + 1];
216
217 if (!nvmeq->hctx)
218 nvmeq->hctx = hctx;
219
220 /* nvmeq queues are shared between namespaces. We assume here that
221 * blk-mq map the tags so they match up with the nvme queue tags. */
222 WARN_ON(nvmeq->hctx->tags != hctx->tags);
223
224 hctx->driver_data = nvmeq;
225 return 0;
226 }
227
228 static int nvme_init_request(void *data, struct request *req,
229 unsigned int hctx_idx, unsigned int rq_idx,
230 unsigned int numa_node)
231 {
232 struct nvme_dev *dev = data;
233 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
234 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
235
236 BUG_ON(!nvmeq);
237 cmd->nvmeq = nvmeq;
238 return 0;
239 }
240
241 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
242 nvme_completion_fn handler)
243 {
244 cmd->fn = handler;
245 cmd->ctx = ctx;
246 cmd->aborted = 0;
247 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
248 }
249
250 static void *iod_get_private(struct nvme_iod *iod)
251 {
252 return (void *) (iod->private & ~0x1UL);
253 }
254
255 /*
256 * If bit 0 is set, the iod is embedded in the request payload.
257 */
258 static bool iod_should_kfree(struct nvme_iod *iod)
259 {
260 return (iod->private & 0x01) == 0;
261 }
262
263 /* Special values must be less than 0x1000 */
264 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
265 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
266 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
267 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
268
269 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
270 struct nvme_completion *cqe)
271 {
272 if (ctx == CMD_CTX_CANCELLED)
273 return;
274 if (ctx == CMD_CTX_COMPLETED) {
275 dev_warn(nvmeq->q_dmadev,
276 "completed id %d twice on queue %d\n",
277 cqe->command_id, le16_to_cpup(&cqe->sq_id));
278 return;
279 }
280 if (ctx == CMD_CTX_INVALID) {
281 dev_warn(nvmeq->q_dmadev,
282 "invalid id %d completed on queue %d\n",
283 cqe->command_id, le16_to_cpup(&cqe->sq_id));
284 return;
285 }
286 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
287 }
288
289 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
290 {
291 void *ctx;
292
293 if (fn)
294 *fn = cmd->fn;
295 ctx = cmd->ctx;
296 cmd->fn = special_completion;
297 cmd->ctx = CMD_CTX_CANCELLED;
298 return ctx;
299 }
300
301 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
302 struct nvme_completion *cqe)
303 {
304 struct request *req = ctx;
305
306 u32 result = le32_to_cpup(&cqe->result);
307 u16 status = le16_to_cpup(&cqe->status) >> 1;
308
309 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
310 ++nvmeq->dev->event_limit;
311 if (status == NVME_SC_SUCCESS)
312 dev_warn(nvmeq->q_dmadev,
313 "async event result %08x\n", result);
314
315 blk_mq_free_hctx_request(nvmeq->hctx, req);
316 }
317
318 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
319 struct nvme_completion *cqe)
320 {
321 struct request *req = ctx;
322
323 u16 status = le16_to_cpup(&cqe->status) >> 1;
324 u32 result = le32_to_cpup(&cqe->result);
325
326 blk_mq_free_hctx_request(nvmeq->hctx, req);
327
328 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
329 ++nvmeq->dev->abort_limit;
330 }
331
332 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
333 struct nvme_completion *cqe)
334 {
335 struct async_cmd_info *cmdinfo = ctx;
336 cmdinfo->result = le32_to_cpup(&cqe->result);
337 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
338 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
339 blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
340 }
341
342 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
343 unsigned int tag)
344 {
345 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
346 struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
347
348 return blk_mq_rq_to_pdu(req);
349 }
350
351 /*
352 * Called with local interrupts disabled and the q_lock held. May not sleep.
353 */
354 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
355 nvme_completion_fn *fn)
356 {
357 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
358 void *ctx;
359 if (tag >= nvmeq->q_depth) {
360 *fn = special_completion;
361 return CMD_CTX_INVALID;
362 }
363 if (fn)
364 *fn = cmd->fn;
365 ctx = cmd->ctx;
366 cmd->fn = special_completion;
367 cmd->ctx = CMD_CTX_COMPLETED;
368 return ctx;
369 }
370
371 /**
372 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
373 * @nvmeq: The queue to use
374 * @cmd: The command to send
375 *
376 * Safe to use from interrupt context
377 */
378 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
379 {
380 u16 tail = nvmeq->sq_tail;
381
382 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
383 if (++tail == nvmeq->q_depth)
384 tail = 0;
385 writel(tail, nvmeq->q_db);
386 nvmeq->sq_tail = tail;
387
388 return 0;
389 }
390
391 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
392 {
393 unsigned long flags;
394 int ret;
395 spin_lock_irqsave(&nvmeq->q_lock, flags);
396 ret = __nvme_submit_cmd(nvmeq, cmd);
397 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
398 return ret;
399 }
400
401 static __le64 **iod_list(struct nvme_iod *iod)
402 {
403 return ((void *)iod) + iod->offset;
404 }
405
406 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
407 unsigned nseg, unsigned long private)
408 {
409 iod->private = private;
410 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
411 iod->npages = -1;
412 iod->length = nbytes;
413 iod->nents = 0;
414 }
415
416 static struct nvme_iod *
417 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
418 unsigned long priv, gfp_t gfp)
419 {
420 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
421 sizeof(__le64 *) * nvme_npages(bytes, dev) +
422 sizeof(struct scatterlist) * nseg, gfp);
423
424 if (iod)
425 iod_init(iod, bytes, nseg, priv);
426
427 return iod;
428 }
429
430 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
431 gfp_t gfp)
432 {
433 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
434 sizeof(struct nvme_dsm_range);
435 unsigned long mask = 0;
436 struct nvme_iod *iod;
437
438 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
439 size <= NVME_INT_BYTES(dev)) {
440 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
441
442 iod = cmd->iod;
443 mask = 0x01;
444 iod_init(iod, size, rq->nr_phys_segments,
445 (unsigned long) rq | 0x01);
446 return iod;
447 }
448
449 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
450 (unsigned long) rq, gfp);
451 }
452
453 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
454 {
455 const int last_prp = dev->page_size / 8 - 1;
456 int i;
457 __le64 **list = iod_list(iod);
458 dma_addr_t prp_dma = iod->first_dma;
459
460 if (iod->npages == 0)
461 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
462 for (i = 0; i < iod->npages; i++) {
463 __le64 *prp_list = list[i];
464 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
465 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
466 prp_dma = next_prp_dma;
467 }
468
469 if (iod_should_kfree(iod))
470 kfree(iod);
471 }
472
473 static int nvme_error_status(u16 status)
474 {
475 switch (status & 0x7ff) {
476 case NVME_SC_SUCCESS:
477 return 0;
478 case NVME_SC_CAP_EXCEEDED:
479 return -ENOSPC;
480 default:
481 return -EIO;
482 }
483 }
484
485 #ifdef CONFIG_BLK_DEV_INTEGRITY
486 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
487 {
488 if (be32_to_cpu(pi->ref_tag) == v)
489 pi->ref_tag = cpu_to_be32(p);
490 }
491
492 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
493 {
494 if (be32_to_cpu(pi->ref_tag) == p)
495 pi->ref_tag = cpu_to_be32(v);
496 }
497
498 /**
499 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
500 *
501 * The virtual start sector is the one that was originally submitted by the
502 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
503 * start sector may be different. Remap protection information to match the
504 * physical LBA on writes, and back to the original seed on reads.
505 *
506 * Type 0 and 3 do not have a ref tag, so no remapping required.
507 */
508 static void nvme_dif_remap(struct request *req,
509 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
510 {
511 struct nvme_ns *ns = req->rq_disk->private_data;
512 struct bio_integrity_payload *bip;
513 struct t10_pi_tuple *pi;
514 void *p, *pmap;
515 u32 i, nlb, ts, phys, virt;
516
517 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
518 return;
519
520 bip = bio_integrity(req->bio);
521 if (!bip)
522 return;
523
524 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
525 if (!pmap)
526 return;
527
528 p = pmap;
529 virt = bip_get_seed(bip);
530 phys = nvme_block_nr(ns, blk_rq_pos(req));
531 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
532 ts = ns->disk->integrity->tuple_size;
533
534 for (i = 0; i < nlb; i++, virt++, phys++) {
535 pi = (struct t10_pi_tuple *)p;
536 dif_swap(phys, virt, pi);
537 p += ts;
538 }
539 kunmap_atomic(pmap);
540 }
541
542 static int nvme_noop_verify(struct blk_integrity_iter *iter)
543 {
544 return 0;
545 }
546
547 static int nvme_noop_generate(struct blk_integrity_iter *iter)
548 {
549 return 0;
550 }
551
552 struct blk_integrity nvme_meta_noop = {
553 .name = "NVME_META_NOOP",
554 .generate_fn = nvme_noop_generate,
555 .verify_fn = nvme_noop_verify,
556 };
557
558 static void nvme_init_integrity(struct nvme_ns *ns)
559 {
560 struct blk_integrity integrity;
561
562 switch (ns->pi_type) {
563 case NVME_NS_DPS_PI_TYPE3:
564 integrity = t10_pi_type3_crc;
565 break;
566 case NVME_NS_DPS_PI_TYPE1:
567 case NVME_NS_DPS_PI_TYPE2:
568 integrity = t10_pi_type1_crc;
569 break;
570 default:
571 integrity = nvme_meta_noop;
572 break;
573 }
574 integrity.tuple_size = ns->ms;
575 blk_integrity_register(ns->disk, &integrity);
576 blk_queue_max_integrity_segments(ns->queue, 1);
577 }
578 #else /* CONFIG_BLK_DEV_INTEGRITY */
579 static void nvme_dif_remap(struct request *req,
580 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
581 {
582 }
583 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
584 {
585 }
586 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
587 {
588 }
589 static void nvme_init_integrity(struct nvme_ns *ns)
590 {
591 }
592 #endif
593
594 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
595 struct nvme_completion *cqe)
596 {
597 struct nvme_iod *iod = ctx;
598 struct request *req = iod_get_private(iod);
599 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
600
601 u16 status = le16_to_cpup(&cqe->status) >> 1;
602
603 if (unlikely(status)) {
604 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
605 && (jiffies - req->start_time) < req->timeout) {
606 unsigned long flags;
607
608 blk_mq_requeue_request(req);
609 spin_lock_irqsave(req->q->queue_lock, flags);
610 if (!blk_queue_stopped(req->q))
611 blk_mq_kick_requeue_list(req->q);
612 spin_unlock_irqrestore(req->q->queue_lock, flags);
613 return;
614 }
615 req->errors = nvme_error_status(status);
616 } else
617 req->errors = 0;
618
619 if (cmd_rq->aborted)
620 dev_warn(&nvmeq->dev->pci_dev->dev,
621 "completing aborted command with status:%04x\n",
622 status);
623
624 if (iod->nents) {
625 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
626 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
627 if (blk_integrity_rq(req)) {
628 if (!rq_data_dir(req))
629 nvme_dif_remap(req, nvme_dif_complete);
630 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
631 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
632 }
633 }
634 nvme_free_iod(nvmeq->dev, iod);
635
636 blk_mq_complete_request(req);
637 }
638
639 /* length is in bytes. gfp flags indicates whether we may sleep. */
640 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
641 gfp_t gfp)
642 {
643 struct dma_pool *pool;
644 int length = total_len;
645 struct scatterlist *sg = iod->sg;
646 int dma_len = sg_dma_len(sg);
647 u64 dma_addr = sg_dma_address(sg);
648 int offset = offset_in_page(dma_addr);
649 __le64 *prp_list;
650 __le64 **list = iod_list(iod);
651 dma_addr_t prp_dma;
652 int nprps, i;
653 u32 page_size = dev->page_size;
654
655 length -= (page_size - offset);
656 if (length <= 0)
657 return total_len;
658
659 dma_len -= (page_size - offset);
660 if (dma_len) {
661 dma_addr += (page_size - offset);
662 } else {
663 sg = sg_next(sg);
664 dma_addr = sg_dma_address(sg);
665 dma_len = sg_dma_len(sg);
666 }
667
668 if (length <= page_size) {
669 iod->first_dma = dma_addr;
670 return total_len;
671 }
672
673 nprps = DIV_ROUND_UP(length, page_size);
674 if (nprps <= (256 / 8)) {
675 pool = dev->prp_small_pool;
676 iod->npages = 0;
677 } else {
678 pool = dev->prp_page_pool;
679 iod->npages = 1;
680 }
681
682 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
683 if (!prp_list) {
684 iod->first_dma = dma_addr;
685 iod->npages = -1;
686 return (total_len - length) + page_size;
687 }
688 list[0] = prp_list;
689 iod->first_dma = prp_dma;
690 i = 0;
691 for (;;) {
692 if (i == page_size >> 3) {
693 __le64 *old_prp_list = prp_list;
694 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
695 if (!prp_list)
696 return total_len - length;
697 list[iod->npages++] = prp_list;
698 prp_list[0] = old_prp_list[i - 1];
699 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
700 i = 1;
701 }
702 prp_list[i++] = cpu_to_le64(dma_addr);
703 dma_len -= page_size;
704 dma_addr += page_size;
705 length -= page_size;
706 if (length <= 0)
707 break;
708 if (dma_len > 0)
709 continue;
710 BUG_ON(dma_len < 0);
711 sg = sg_next(sg);
712 dma_addr = sg_dma_address(sg);
713 dma_len = sg_dma_len(sg);
714 }
715
716 return total_len;
717 }
718
719 /*
720 * We reuse the small pool to allocate the 16-byte range here as it is not
721 * worth having a special pool for these or additional cases to handle freeing
722 * the iod.
723 */
724 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
725 struct request *req, struct nvme_iod *iod)
726 {
727 struct nvme_dsm_range *range =
728 (struct nvme_dsm_range *)iod_list(iod)[0];
729 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
730
731 range->cattr = cpu_to_le32(0);
732 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
733 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
734
735 memset(cmnd, 0, sizeof(*cmnd));
736 cmnd->dsm.opcode = nvme_cmd_dsm;
737 cmnd->dsm.command_id = req->tag;
738 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
739 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
740 cmnd->dsm.nr = 0;
741 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
742
743 if (++nvmeq->sq_tail == nvmeq->q_depth)
744 nvmeq->sq_tail = 0;
745 writel(nvmeq->sq_tail, nvmeq->q_db);
746 }
747
748 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
749 int cmdid)
750 {
751 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
752
753 memset(cmnd, 0, sizeof(*cmnd));
754 cmnd->common.opcode = nvme_cmd_flush;
755 cmnd->common.command_id = cmdid;
756 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
757
758 if (++nvmeq->sq_tail == nvmeq->q_depth)
759 nvmeq->sq_tail = 0;
760 writel(nvmeq->sq_tail, nvmeq->q_db);
761 }
762
763 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
764 struct nvme_ns *ns)
765 {
766 struct request *req = iod_get_private(iod);
767 struct nvme_command *cmnd;
768 u16 control = 0;
769 u32 dsmgmt = 0;
770
771 if (req->cmd_flags & REQ_FUA)
772 control |= NVME_RW_FUA;
773 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
774 control |= NVME_RW_LR;
775
776 if (req->cmd_flags & REQ_RAHEAD)
777 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
778
779 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
780 memset(cmnd, 0, sizeof(*cmnd));
781
782 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
783 cmnd->rw.command_id = req->tag;
784 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
785 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
786 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
787 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
788 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
789
790 if (blk_integrity_rq(req)) {
791 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
792 switch (ns->pi_type) {
793 case NVME_NS_DPS_PI_TYPE3:
794 control |= NVME_RW_PRINFO_PRCHK_GUARD;
795 break;
796 case NVME_NS_DPS_PI_TYPE1:
797 case NVME_NS_DPS_PI_TYPE2:
798 control |= NVME_RW_PRINFO_PRCHK_GUARD |
799 NVME_RW_PRINFO_PRCHK_REF;
800 cmnd->rw.reftag = cpu_to_le32(
801 nvme_block_nr(ns, blk_rq_pos(req)));
802 break;
803 }
804 } else if (ns->ms)
805 control |= NVME_RW_PRINFO_PRACT;
806
807 cmnd->rw.control = cpu_to_le16(control);
808 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
809
810 if (++nvmeq->sq_tail == nvmeq->q_depth)
811 nvmeq->sq_tail = 0;
812 writel(nvmeq->sq_tail, nvmeq->q_db);
813
814 return 0;
815 }
816
817 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
818 const struct blk_mq_queue_data *bd)
819 {
820 struct nvme_ns *ns = hctx->queue->queuedata;
821 struct nvme_queue *nvmeq = hctx->driver_data;
822 struct request *req = bd->rq;
823 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
824 struct nvme_iod *iod;
825 enum dma_data_direction dma_dir;
826
827 /*
828 * If formated with metadata, require the block layer provide a buffer
829 * unless this namespace is formated such that the metadata can be
830 * stripped/generated by the controller with PRACT=1.
831 */
832 if (ns->ms && !blk_integrity_rq(req)) {
833 if (!(ns->pi_type && ns->ms == 8)) {
834 req->errors = -EFAULT;
835 blk_mq_complete_request(req);
836 return BLK_MQ_RQ_QUEUE_OK;
837 }
838 }
839
840 iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
841 if (!iod)
842 return BLK_MQ_RQ_QUEUE_BUSY;
843
844 if (req->cmd_flags & REQ_DISCARD) {
845 void *range;
846 /*
847 * We reuse the small pool to allocate the 16-byte range here
848 * as it is not worth having a special pool for these or
849 * additional cases to handle freeing the iod.
850 */
851 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
852 GFP_ATOMIC,
853 &iod->first_dma);
854 if (!range)
855 goto retry_cmd;
856 iod_list(iod)[0] = (__le64 *)range;
857 iod->npages = 0;
858 } else if (req->nr_phys_segments) {
859 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
860
861 sg_init_table(iod->sg, req->nr_phys_segments);
862 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
863 if (!iod->nents)
864 goto error_cmd;
865
866 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
867 goto retry_cmd;
868
869 if (blk_rq_bytes(req) !=
870 nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
871 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
872 iod->nents, dma_dir);
873 goto retry_cmd;
874 }
875 if (blk_integrity_rq(req)) {
876 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
877 goto error_cmd;
878
879 sg_init_table(iod->meta_sg, 1);
880 if (blk_rq_map_integrity_sg(
881 req->q, req->bio, iod->meta_sg) != 1)
882 goto error_cmd;
883
884 if (rq_data_dir(req))
885 nvme_dif_remap(req, nvme_dif_prep);
886
887 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
888 goto error_cmd;
889 }
890 }
891
892 nvme_set_info(cmd, iod, req_completion);
893 spin_lock_irq(&nvmeq->q_lock);
894 if (req->cmd_flags & REQ_DISCARD)
895 nvme_submit_discard(nvmeq, ns, req, iod);
896 else if (req->cmd_flags & REQ_FLUSH)
897 nvme_submit_flush(nvmeq, ns, req->tag);
898 else
899 nvme_submit_iod(nvmeq, iod, ns);
900
901 nvme_process_cq(nvmeq);
902 spin_unlock_irq(&nvmeq->q_lock);
903 return BLK_MQ_RQ_QUEUE_OK;
904
905 error_cmd:
906 nvme_free_iod(nvmeq->dev, iod);
907 return BLK_MQ_RQ_QUEUE_ERROR;
908 retry_cmd:
909 nvme_free_iod(nvmeq->dev, iod);
910 return BLK_MQ_RQ_QUEUE_BUSY;
911 }
912
913 static int nvme_process_cq(struct nvme_queue *nvmeq)
914 {
915 u16 head, phase;
916
917 head = nvmeq->cq_head;
918 phase = nvmeq->cq_phase;
919
920 for (;;) {
921 void *ctx;
922 nvme_completion_fn fn;
923 struct nvme_completion cqe = nvmeq->cqes[head];
924 if ((le16_to_cpu(cqe.status) & 1) != phase)
925 break;
926 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
927 if (++head == nvmeq->q_depth) {
928 head = 0;
929 phase = !phase;
930 }
931 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
932 fn(nvmeq, ctx, &cqe);
933 }
934
935 /* If the controller ignores the cq head doorbell and continuously
936 * writes to the queue, it is theoretically possible to wrap around
937 * the queue twice and mistakenly return IRQ_NONE. Linux only
938 * requires that 0.1% of your interrupts are handled, so this isn't
939 * a big problem.
940 */
941 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
942 return 0;
943
944 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
945 nvmeq->cq_head = head;
946 nvmeq->cq_phase = phase;
947
948 nvmeq->cqe_seen = 1;
949 return 1;
950 }
951
952 /* Admin queue isn't initialized as a request queue. If at some point this
953 * happens anyway, make sure to notify the user */
954 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
955 const struct blk_mq_queue_data *bd)
956 {
957 WARN_ON_ONCE(1);
958 return BLK_MQ_RQ_QUEUE_ERROR;
959 }
960
961 static irqreturn_t nvme_irq(int irq, void *data)
962 {
963 irqreturn_t result;
964 struct nvme_queue *nvmeq = data;
965 spin_lock(&nvmeq->q_lock);
966 nvme_process_cq(nvmeq);
967 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
968 nvmeq->cqe_seen = 0;
969 spin_unlock(&nvmeq->q_lock);
970 return result;
971 }
972
973 static irqreturn_t nvme_irq_check(int irq, void *data)
974 {
975 struct nvme_queue *nvmeq = data;
976 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
977 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
978 return IRQ_NONE;
979 return IRQ_WAKE_THREAD;
980 }
981
982 struct sync_cmd_info {
983 struct task_struct *task;
984 u32 result;
985 int status;
986 };
987
988 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
989 struct nvme_completion *cqe)
990 {
991 struct sync_cmd_info *cmdinfo = ctx;
992 cmdinfo->result = le32_to_cpup(&cqe->result);
993 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
994 wake_up_process(cmdinfo->task);
995 }
996
997 /*
998 * Returns 0 on success. If the result is negative, it's a Linux error code;
999 * if the result is positive, it's an NVM Express status code
1000 */
1001 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
1002 u32 *result, unsigned timeout)
1003 {
1004 struct sync_cmd_info cmdinfo;
1005 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1006 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1007
1008 cmdinfo.task = current;
1009 cmdinfo.status = -EINTR;
1010
1011 cmd->common.command_id = req->tag;
1012
1013 nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
1014
1015 set_current_state(TASK_UNINTERRUPTIBLE);
1016 nvme_submit_cmd(nvmeq, cmd);
1017 schedule();
1018
1019 if (result)
1020 *result = cmdinfo.result;
1021 return cmdinfo.status;
1022 }
1023
1024 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1025 {
1026 struct nvme_queue *nvmeq = dev->queues[0];
1027 struct nvme_command c;
1028 struct nvme_cmd_info *cmd_info;
1029 struct request *req;
1030
1031 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
1032 if (IS_ERR(req))
1033 return PTR_ERR(req);
1034
1035 req->cmd_flags |= REQ_NO_TIMEOUT;
1036 cmd_info = blk_mq_rq_to_pdu(req);
1037 nvme_set_info(cmd_info, req, async_req_completion);
1038
1039 memset(&c, 0, sizeof(c));
1040 c.common.opcode = nvme_admin_async_event;
1041 c.common.command_id = req->tag;
1042
1043 return __nvme_submit_cmd(nvmeq, &c);
1044 }
1045
1046 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1047 struct nvme_command *cmd,
1048 struct async_cmd_info *cmdinfo, unsigned timeout)
1049 {
1050 struct nvme_queue *nvmeq = dev->queues[0];
1051 struct request *req;
1052 struct nvme_cmd_info *cmd_rq;
1053
1054 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1055 if (IS_ERR(req))
1056 return PTR_ERR(req);
1057
1058 req->timeout = timeout;
1059 cmd_rq = blk_mq_rq_to_pdu(req);
1060 cmdinfo->req = req;
1061 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1062 cmdinfo->status = -EINTR;
1063
1064 cmd->common.command_id = req->tag;
1065
1066 return nvme_submit_cmd(nvmeq, cmd);
1067 }
1068
1069 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1070 u32 *result, unsigned timeout)
1071 {
1072 int res;
1073 struct request *req;
1074
1075 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1076 if (IS_ERR(req))
1077 return PTR_ERR(req);
1078 res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1079 blk_mq_free_request(req);
1080 return res;
1081 }
1082
1083 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1084 u32 *result)
1085 {
1086 return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1087 }
1088
1089 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1090 struct nvme_command *cmd, u32 *result)
1091 {
1092 int res;
1093 struct request *req;
1094
1095 req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1096 false);
1097 if (IS_ERR(req))
1098 return PTR_ERR(req);
1099 res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1100 blk_mq_free_request(req);
1101 return res;
1102 }
1103
1104 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1105 {
1106 struct nvme_command c;
1107
1108 memset(&c, 0, sizeof(c));
1109 c.delete_queue.opcode = opcode;
1110 c.delete_queue.qid = cpu_to_le16(id);
1111
1112 return nvme_submit_admin_cmd(dev, &c, NULL);
1113 }
1114
1115 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1116 struct nvme_queue *nvmeq)
1117 {
1118 struct nvme_command c;
1119 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1120
1121 memset(&c, 0, sizeof(c));
1122 c.create_cq.opcode = nvme_admin_create_cq;
1123 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1124 c.create_cq.cqid = cpu_to_le16(qid);
1125 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1126 c.create_cq.cq_flags = cpu_to_le16(flags);
1127 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1128
1129 return nvme_submit_admin_cmd(dev, &c, NULL);
1130 }
1131
1132 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1133 struct nvme_queue *nvmeq)
1134 {
1135 struct nvme_command c;
1136 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1137
1138 memset(&c, 0, sizeof(c));
1139 c.create_sq.opcode = nvme_admin_create_sq;
1140 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1141 c.create_sq.sqid = cpu_to_le16(qid);
1142 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1143 c.create_sq.sq_flags = cpu_to_le16(flags);
1144 c.create_sq.cqid = cpu_to_le16(qid);
1145
1146 return nvme_submit_admin_cmd(dev, &c, NULL);
1147 }
1148
1149 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1150 {
1151 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1152 }
1153
1154 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1155 {
1156 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1157 }
1158
1159 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1160 dma_addr_t dma_addr)
1161 {
1162 struct nvme_command c;
1163
1164 memset(&c, 0, sizeof(c));
1165 c.identify.opcode = nvme_admin_identify;
1166 c.identify.nsid = cpu_to_le32(nsid);
1167 c.identify.prp1 = cpu_to_le64(dma_addr);
1168 c.identify.cns = cpu_to_le32(cns);
1169
1170 return nvme_submit_admin_cmd(dev, &c, NULL);
1171 }
1172
1173 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1174 dma_addr_t dma_addr, u32 *result)
1175 {
1176 struct nvme_command c;
1177
1178 memset(&c, 0, sizeof(c));
1179 c.features.opcode = nvme_admin_get_features;
1180 c.features.nsid = cpu_to_le32(nsid);
1181 c.features.prp1 = cpu_to_le64(dma_addr);
1182 c.features.fid = cpu_to_le32(fid);
1183
1184 return nvme_submit_admin_cmd(dev, &c, result);
1185 }
1186
1187 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1188 dma_addr_t dma_addr, u32 *result)
1189 {
1190 struct nvme_command c;
1191
1192 memset(&c, 0, sizeof(c));
1193 c.features.opcode = nvme_admin_set_features;
1194 c.features.prp1 = cpu_to_le64(dma_addr);
1195 c.features.fid = cpu_to_le32(fid);
1196 c.features.dword11 = cpu_to_le32(dword11);
1197
1198 return nvme_submit_admin_cmd(dev, &c, result);
1199 }
1200
1201 /**
1202 * nvme_abort_req - Attempt aborting a request
1203 *
1204 * Schedule controller reset if the command was already aborted once before and
1205 * still hasn't been returned to the driver, or if this is the admin queue.
1206 */
1207 static void nvme_abort_req(struct request *req)
1208 {
1209 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1210 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1211 struct nvme_dev *dev = nvmeq->dev;
1212 struct request *abort_req;
1213 struct nvme_cmd_info *abort_cmd;
1214 struct nvme_command cmd;
1215
1216 if (!nvmeq->qid || cmd_rq->aborted) {
1217 unsigned long flags;
1218
1219 spin_lock_irqsave(&dev_list_lock, flags);
1220 if (work_busy(&dev->reset_work))
1221 goto out;
1222 list_del_init(&dev->node);
1223 dev_warn(&dev->pci_dev->dev,
1224 "I/O %d QID %d timeout, reset controller\n",
1225 req->tag, nvmeq->qid);
1226 dev->reset_workfn = nvme_reset_failed_dev;
1227 queue_work(nvme_workq, &dev->reset_work);
1228 out:
1229 spin_unlock_irqrestore(&dev_list_lock, flags);
1230 return;
1231 }
1232
1233 if (!dev->abort_limit)
1234 return;
1235
1236 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1237 false);
1238 if (IS_ERR(abort_req))
1239 return;
1240
1241 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1242 nvme_set_info(abort_cmd, abort_req, abort_completion);
1243
1244 memset(&cmd, 0, sizeof(cmd));
1245 cmd.abort.opcode = nvme_admin_abort_cmd;
1246 cmd.abort.cid = req->tag;
1247 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1248 cmd.abort.command_id = abort_req->tag;
1249
1250 --dev->abort_limit;
1251 cmd_rq->aborted = 1;
1252
1253 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1254 nvmeq->qid);
1255 if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1256 dev_warn(nvmeq->q_dmadev,
1257 "Could not abort I/O %d QID %d",
1258 req->tag, nvmeq->qid);
1259 blk_mq_free_request(abort_req);
1260 }
1261 }
1262
1263 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1264 struct request *req, void *data, bool reserved)
1265 {
1266 struct nvme_queue *nvmeq = data;
1267 void *ctx;
1268 nvme_completion_fn fn;
1269 struct nvme_cmd_info *cmd;
1270 struct nvme_completion cqe;
1271
1272 if (!blk_mq_request_started(req))
1273 return;
1274
1275 cmd = blk_mq_rq_to_pdu(req);
1276
1277 if (cmd->ctx == CMD_CTX_CANCELLED)
1278 return;
1279
1280 if (blk_queue_dying(req->q))
1281 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1282 else
1283 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1284
1285
1286 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1287 req->tag, nvmeq->qid);
1288 ctx = cancel_cmd_info(cmd, &fn);
1289 fn(nvmeq, ctx, &cqe);
1290 }
1291
1292 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1293 {
1294 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1295 struct nvme_queue *nvmeq = cmd->nvmeq;
1296
1297 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1298 nvmeq->qid);
1299 spin_lock_irq(&nvmeq->q_lock);
1300 nvme_abort_req(req);
1301 spin_unlock_irq(&nvmeq->q_lock);
1302
1303 /*
1304 * The aborted req will be completed on receiving the abort req.
1305 * We enable the timer again. If hit twice, it'll cause a device reset,
1306 * as the device then is in a faulty state.
1307 */
1308 return BLK_EH_RESET_TIMER;
1309 }
1310
1311 static void nvme_free_queue(struct nvme_queue *nvmeq)
1312 {
1313 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1314 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1315 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1316 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1317 kfree(nvmeq);
1318 }
1319
1320 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1321 {
1322 int i;
1323
1324 for (i = dev->queue_count - 1; i >= lowest; i--) {
1325 struct nvme_queue *nvmeq = dev->queues[i];
1326 dev->queue_count--;
1327 dev->queues[i] = NULL;
1328 nvme_free_queue(nvmeq);
1329 }
1330 }
1331
1332 /**
1333 * nvme_suspend_queue - put queue into suspended state
1334 * @nvmeq - queue to suspend
1335 */
1336 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1337 {
1338 int vector;
1339
1340 spin_lock_irq(&nvmeq->q_lock);
1341 if (nvmeq->cq_vector == -1) {
1342 spin_unlock_irq(&nvmeq->q_lock);
1343 return 1;
1344 }
1345 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1346 nvmeq->dev->online_queues--;
1347 nvmeq->cq_vector = -1;
1348 spin_unlock_irq(&nvmeq->q_lock);
1349
1350 irq_set_affinity_hint(vector, NULL);
1351 free_irq(vector, nvmeq);
1352
1353 return 0;
1354 }
1355
1356 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1357 {
1358 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1359
1360 spin_lock_irq(&nvmeq->q_lock);
1361 if (hctx && hctx->tags)
1362 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1363 spin_unlock_irq(&nvmeq->q_lock);
1364 }
1365
1366 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1367 {
1368 struct nvme_queue *nvmeq = dev->queues[qid];
1369
1370 if (!nvmeq)
1371 return;
1372 if (nvme_suspend_queue(nvmeq))
1373 return;
1374
1375 /* Don't tell the adapter to delete the admin queue.
1376 * Don't tell a removed adapter to delete IO queues. */
1377 if (qid && readl(&dev->bar->csts) != -1) {
1378 adapter_delete_sq(dev, qid);
1379 adapter_delete_cq(dev, qid);
1380 }
1381 if (!qid && dev->admin_q)
1382 blk_mq_freeze_queue_start(dev->admin_q);
1383
1384 spin_lock_irq(&nvmeq->q_lock);
1385 nvme_process_cq(nvmeq);
1386 spin_unlock_irq(&nvmeq->q_lock);
1387 }
1388
1389 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1390 int depth)
1391 {
1392 struct device *dmadev = &dev->pci_dev->dev;
1393 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1394 if (!nvmeq)
1395 return NULL;
1396
1397 nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1398 &nvmeq->cq_dma_addr, GFP_KERNEL);
1399 if (!nvmeq->cqes)
1400 goto free_nvmeq;
1401
1402 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1403 &nvmeq->sq_dma_addr, GFP_KERNEL);
1404 if (!nvmeq->sq_cmds)
1405 goto free_cqdma;
1406
1407 nvmeq->q_dmadev = dmadev;
1408 nvmeq->dev = dev;
1409 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1410 dev->instance, qid);
1411 spin_lock_init(&nvmeq->q_lock);
1412 nvmeq->cq_head = 0;
1413 nvmeq->cq_phase = 1;
1414 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1415 nvmeq->q_depth = depth;
1416 nvmeq->qid = qid;
1417 dev->queue_count++;
1418 dev->queues[qid] = nvmeq;
1419
1420 return nvmeq;
1421
1422 free_cqdma:
1423 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1424 nvmeq->cq_dma_addr);
1425 free_nvmeq:
1426 kfree(nvmeq);
1427 return NULL;
1428 }
1429
1430 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1431 const char *name)
1432 {
1433 if (use_threaded_interrupts)
1434 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1435 nvme_irq_check, nvme_irq, IRQF_SHARED,
1436 name, nvmeq);
1437 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1438 IRQF_SHARED, name, nvmeq);
1439 }
1440
1441 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1442 {
1443 struct nvme_dev *dev = nvmeq->dev;
1444
1445 spin_lock_irq(&nvmeq->q_lock);
1446 nvmeq->sq_tail = 0;
1447 nvmeq->cq_head = 0;
1448 nvmeq->cq_phase = 1;
1449 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1450 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1451 dev->online_queues++;
1452 spin_unlock_irq(&nvmeq->q_lock);
1453 }
1454
1455 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1456 {
1457 struct nvme_dev *dev = nvmeq->dev;
1458 int result;
1459
1460 nvmeq->cq_vector = qid - 1;
1461 result = adapter_alloc_cq(dev, qid, nvmeq);
1462 if (result < 0)
1463 return result;
1464
1465 result = adapter_alloc_sq(dev, qid, nvmeq);
1466 if (result < 0)
1467 goto release_cq;
1468
1469 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1470 if (result < 0)
1471 goto release_sq;
1472
1473 nvme_init_queue(nvmeq, qid);
1474 return result;
1475
1476 release_sq:
1477 adapter_delete_sq(dev, qid);
1478 release_cq:
1479 adapter_delete_cq(dev, qid);
1480 return result;
1481 }
1482
1483 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1484 {
1485 unsigned long timeout;
1486 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1487
1488 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1489
1490 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1491 msleep(100);
1492 if (fatal_signal_pending(current))
1493 return -EINTR;
1494 if (time_after(jiffies, timeout)) {
1495 dev_err(&dev->pci_dev->dev,
1496 "Device not ready; aborting %s\n", enabled ?
1497 "initialisation" : "reset");
1498 return -ENODEV;
1499 }
1500 }
1501
1502 return 0;
1503 }
1504
1505 /*
1506 * If the device has been passed off to us in an enabled state, just clear
1507 * the enabled bit. The spec says we should set the 'shutdown notification
1508 * bits', but doing so may cause the device to complete commands to the
1509 * admin queue ... and we don't know what memory that might be pointing at!
1510 */
1511 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1512 {
1513 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1514 dev->ctrl_config &= ~NVME_CC_ENABLE;
1515 writel(dev->ctrl_config, &dev->bar->cc);
1516
1517 return nvme_wait_ready(dev, cap, false);
1518 }
1519
1520 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1521 {
1522 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1523 dev->ctrl_config |= NVME_CC_ENABLE;
1524 writel(dev->ctrl_config, &dev->bar->cc);
1525
1526 return nvme_wait_ready(dev, cap, true);
1527 }
1528
1529 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1530 {
1531 unsigned long timeout;
1532
1533 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1534 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1535
1536 writel(dev->ctrl_config, &dev->bar->cc);
1537
1538 timeout = SHUTDOWN_TIMEOUT + jiffies;
1539 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1540 NVME_CSTS_SHST_CMPLT) {
1541 msleep(100);
1542 if (fatal_signal_pending(current))
1543 return -EINTR;
1544 if (time_after(jiffies, timeout)) {
1545 dev_err(&dev->pci_dev->dev,
1546 "Device shutdown incomplete; abort shutdown\n");
1547 return -ENODEV;
1548 }
1549 }
1550
1551 return 0;
1552 }
1553
1554 static struct blk_mq_ops nvme_mq_admin_ops = {
1555 .queue_rq = nvme_admin_queue_rq,
1556 .map_queue = blk_mq_map_queue,
1557 .init_hctx = nvme_admin_init_hctx,
1558 .exit_hctx = nvme_exit_hctx,
1559 .init_request = nvme_admin_init_request,
1560 .timeout = nvme_timeout,
1561 };
1562
1563 static struct blk_mq_ops nvme_mq_ops = {
1564 .queue_rq = nvme_queue_rq,
1565 .map_queue = blk_mq_map_queue,
1566 .init_hctx = nvme_init_hctx,
1567 .exit_hctx = nvme_exit_hctx,
1568 .init_request = nvme_init_request,
1569 .timeout = nvme_timeout,
1570 };
1571
1572 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1573 {
1574 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1575 blk_cleanup_queue(dev->admin_q);
1576 blk_mq_free_tag_set(&dev->admin_tagset);
1577 }
1578 }
1579
1580 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1581 {
1582 if (!dev->admin_q) {
1583 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1584 dev->admin_tagset.nr_hw_queues = 1;
1585 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1586 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1587 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1588 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1589 dev->admin_tagset.driver_data = dev;
1590
1591 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1592 return -ENOMEM;
1593
1594 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1595 if (IS_ERR(dev->admin_q)) {
1596 blk_mq_free_tag_set(&dev->admin_tagset);
1597 return -ENOMEM;
1598 }
1599 if (!blk_get_queue(dev->admin_q)) {
1600 nvme_dev_remove_admin(dev);
1601 return -ENODEV;
1602 }
1603 } else
1604 blk_mq_unfreeze_queue(dev->admin_q);
1605
1606 return 0;
1607 }
1608
1609 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1610 {
1611 int result;
1612 u32 aqa;
1613 u64 cap = readq(&dev->bar->cap);
1614 struct nvme_queue *nvmeq;
1615 unsigned page_shift = PAGE_SHIFT;
1616 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1617 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1618
1619 if (page_shift < dev_page_min) {
1620 dev_err(&dev->pci_dev->dev,
1621 "Minimum device page size (%u) too large for "
1622 "host (%u)\n", 1 << dev_page_min,
1623 1 << page_shift);
1624 return -ENODEV;
1625 }
1626 if (page_shift > dev_page_max) {
1627 dev_info(&dev->pci_dev->dev,
1628 "Device maximum page size (%u) smaller than "
1629 "host (%u); enabling work-around\n",
1630 1 << dev_page_max, 1 << page_shift);
1631 page_shift = dev_page_max;
1632 }
1633
1634 result = nvme_disable_ctrl(dev, cap);
1635 if (result < 0)
1636 return result;
1637
1638 nvmeq = dev->queues[0];
1639 if (!nvmeq) {
1640 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1641 if (!nvmeq)
1642 return -ENOMEM;
1643 }
1644
1645 aqa = nvmeq->q_depth - 1;
1646 aqa |= aqa << 16;
1647
1648 dev->page_size = 1 << page_shift;
1649
1650 dev->ctrl_config = NVME_CC_CSS_NVM;
1651 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1652 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1653 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1654
1655 writel(aqa, &dev->bar->aqa);
1656 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1657 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1658
1659 result = nvme_enable_ctrl(dev, cap);
1660 if (result)
1661 goto free_nvmeq;
1662
1663 nvmeq->cq_vector = 0;
1664 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1665 if (result)
1666 goto free_nvmeq;
1667
1668 return result;
1669
1670 free_nvmeq:
1671 nvme_free_queues(dev, 0);
1672 return result;
1673 }
1674
1675 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1676 unsigned long addr, unsigned length)
1677 {
1678 int i, err, count, nents, offset;
1679 struct scatterlist *sg;
1680 struct page **pages;
1681 struct nvme_iod *iod;
1682
1683 if (addr & 3)
1684 return ERR_PTR(-EINVAL);
1685 if (!length || length > INT_MAX - PAGE_SIZE)
1686 return ERR_PTR(-EINVAL);
1687
1688 offset = offset_in_page(addr);
1689 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1690 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1691 if (!pages)
1692 return ERR_PTR(-ENOMEM);
1693
1694 err = get_user_pages_fast(addr, count, 1, pages);
1695 if (err < count) {
1696 count = err;
1697 err = -EFAULT;
1698 goto put_pages;
1699 }
1700
1701 err = -ENOMEM;
1702 iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1703 if (!iod)
1704 goto put_pages;
1705
1706 sg = iod->sg;
1707 sg_init_table(sg, count);
1708 for (i = 0; i < count; i++) {
1709 sg_set_page(&sg[i], pages[i],
1710 min_t(unsigned, length, PAGE_SIZE - offset),
1711 offset);
1712 length -= (PAGE_SIZE - offset);
1713 offset = 0;
1714 }
1715 sg_mark_end(&sg[i - 1]);
1716 iod->nents = count;
1717
1718 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1719 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1720 if (!nents)
1721 goto free_iod;
1722
1723 kfree(pages);
1724 return iod;
1725
1726 free_iod:
1727 kfree(iod);
1728 put_pages:
1729 for (i = 0; i < count; i++)
1730 put_page(pages[i]);
1731 kfree(pages);
1732 return ERR_PTR(err);
1733 }
1734
1735 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1736 struct nvme_iod *iod)
1737 {
1738 int i;
1739
1740 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1741 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1742
1743 for (i = 0; i < iod->nents; i++)
1744 put_page(sg_page(&iod->sg[i]));
1745 }
1746
1747 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1748 {
1749 struct nvme_dev *dev = ns->dev;
1750 struct nvme_user_io io;
1751 struct nvme_command c;
1752 unsigned length, meta_len;
1753 int status, i;
1754 struct nvme_iod *iod, *meta_iod = NULL;
1755 dma_addr_t meta_dma_addr;
1756 void *meta, *uninitialized_var(meta_mem);
1757
1758 if (copy_from_user(&io, uio, sizeof(io)))
1759 return -EFAULT;
1760 length = (io.nblocks + 1) << ns->lba_shift;
1761 meta_len = (io.nblocks + 1) * ns->ms;
1762
1763 if (meta_len && ((io.metadata & 3) || !io.metadata))
1764 return -EINVAL;
1765
1766 switch (io.opcode) {
1767 case nvme_cmd_write:
1768 case nvme_cmd_read:
1769 case nvme_cmd_compare:
1770 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1771 break;
1772 default:
1773 return -EINVAL;
1774 }
1775
1776 if (IS_ERR(iod))
1777 return PTR_ERR(iod);
1778
1779 memset(&c, 0, sizeof(c));
1780 c.rw.opcode = io.opcode;
1781 c.rw.flags = io.flags;
1782 c.rw.nsid = cpu_to_le32(ns->ns_id);
1783 c.rw.slba = cpu_to_le64(io.slba);
1784 c.rw.length = cpu_to_le16(io.nblocks);
1785 c.rw.control = cpu_to_le16(io.control);
1786 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1787 c.rw.reftag = cpu_to_le32(io.reftag);
1788 c.rw.apptag = cpu_to_le16(io.apptag);
1789 c.rw.appmask = cpu_to_le16(io.appmask);
1790
1791 if (meta_len) {
1792 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1793 meta_len);
1794 if (IS_ERR(meta_iod)) {
1795 status = PTR_ERR(meta_iod);
1796 meta_iod = NULL;
1797 goto unmap;
1798 }
1799
1800 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1801 &meta_dma_addr, GFP_KERNEL);
1802 if (!meta_mem) {
1803 status = -ENOMEM;
1804 goto unmap;
1805 }
1806
1807 if (io.opcode & 1) {
1808 int meta_offset = 0;
1809
1810 for (i = 0; i < meta_iod->nents; i++) {
1811 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1812 meta_iod->sg[i].offset;
1813 memcpy(meta_mem + meta_offset, meta,
1814 meta_iod->sg[i].length);
1815 kunmap_atomic(meta);
1816 meta_offset += meta_iod->sg[i].length;
1817 }
1818 }
1819
1820 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1821 }
1822
1823 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1824 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1825 c.rw.prp2 = cpu_to_le64(iod->first_dma);
1826
1827 if (length != (io.nblocks + 1) << ns->lba_shift)
1828 status = -ENOMEM;
1829 else
1830 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1831
1832 if (meta_len) {
1833 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1834 int meta_offset = 0;
1835
1836 for (i = 0; i < meta_iod->nents; i++) {
1837 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1838 meta_iod->sg[i].offset;
1839 memcpy(meta, meta_mem + meta_offset,
1840 meta_iod->sg[i].length);
1841 kunmap_atomic(meta);
1842 meta_offset += meta_iod->sg[i].length;
1843 }
1844 }
1845
1846 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1847 meta_dma_addr);
1848 }
1849
1850 unmap:
1851 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1852 nvme_free_iod(dev, iod);
1853
1854 if (meta_iod) {
1855 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1856 nvme_free_iod(dev, meta_iod);
1857 }
1858
1859 return status;
1860 }
1861
1862 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1863 struct nvme_passthru_cmd __user *ucmd)
1864 {
1865 struct nvme_passthru_cmd cmd;
1866 struct nvme_command c;
1867 int status, length;
1868 struct nvme_iod *uninitialized_var(iod);
1869 unsigned timeout;
1870
1871 if (!capable(CAP_SYS_ADMIN))
1872 return -EACCES;
1873 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1874 return -EFAULT;
1875
1876 memset(&c, 0, sizeof(c));
1877 c.common.opcode = cmd.opcode;
1878 c.common.flags = cmd.flags;
1879 c.common.nsid = cpu_to_le32(cmd.nsid);
1880 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1881 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1882 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1883 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1884 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1885 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1886 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1887 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1888
1889 length = cmd.data_len;
1890 if (cmd.data_len) {
1891 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1892 length);
1893 if (IS_ERR(iod))
1894 return PTR_ERR(iod);
1895 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1896 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1897 c.common.prp2 = cpu_to_le64(iod->first_dma);
1898 }
1899
1900 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1901 ADMIN_TIMEOUT;
1902
1903 if (length != cmd.data_len)
1904 status = -ENOMEM;
1905 else if (ns) {
1906 struct request *req;
1907
1908 req = blk_mq_alloc_request(ns->queue, WRITE,
1909 (GFP_KERNEL|__GFP_WAIT), false);
1910 if (IS_ERR(req))
1911 status = PTR_ERR(req);
1912 else {
1913 status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1914 timeout);
1915 blk_mq_free_request(req);
1916 }
1917 } else
1918 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1919
1920 if (cmd.data_len) {
1921 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1922 nvme_free_iod(dev, iod);
1923 }
1924
1925 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1926 sizeof(cmd.result)))
1927 status = -EFAULT;
1928
1929 return status;
1930 }
1931
1932 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1933 unsigned long arg)
1934 {
1935 struct nvme_ns *ns = bdev->bd_disk->private_data;
1936
1937 switch (cmd) {
1938 case NVME_IOCTL_ID:
1939 force_successful_syscall_return();
1940 return ns->ns_id;
1941 case NVME_IOCTL_ADMIN_CMD:
1942 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1943 case NVME_IOCTL_IO_CMD:
1944 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1945 case NVME_IOCTL_SUBMIT_IO:
1946 return nvme_submit_io(ns, (void __user *)arg);
1947 case SG_GET_VERSION_NUM:
1948 return nvme_sg_get_version_num((void __user *)arg);
1949 case SG_IO:
1950 return nvme_sg_io(ns, (void __user *)arg);
1951 default:
1952 return -ENOTTY;
1953 }
1954 }
1955
1956 #ifdef CONFIG_COMPAT
1957 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1958 unsigned int cmd, unsigned long arg)
1959 {
1960 switch (cmd) {
1961 case SG_IO:
1962 return -ENOIOCTLCMD;
1963 }
1964 return nvme_ioctl(bdev, mode, cmd, arg);
1965 }
1966 #else
1967 #define nvme_compat_ioctl NULL
1968 #endif
1969
1970 static int nvme_open(struct block_device *bdev, fmode_t mode)
1971 {
1972 int ret = 0;
1973 struct nvme_ns *ns;
1974
1975 spin_lock(&dev_list_lock);
1976 ns = bdev->bd_disk->private_data;
1977 if (!ns)
1978 ret = -ENXIO;
1979 else if (!kref_get_unless_zero(&ns->dev->kref))
1980 ret = -ENXIO;
1981 spin_unlock(&dev_list_lock);
1982
1983 return ret;
1984 }
1985
1986 static void nvme_free_dev(struct kref *kref);
1987
1988 static void nvme_release(struct gendisk *disk, fmode_t mode)
1989 {
1990 struct nvme_ns *ns = disk->private_data;
1991 struct nvme_dev *dev = ns->dev;
1992
1993 kref_put(&dev->kref, nvme_free_dev);
1994 }
1995
1996 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1997 {
1998 /* some standard values */
1999 geo->heads = 1 << 6;
2000 geo->sectors = 1 << 5;
2001 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
2002 return 0;
2003 }
2004
2005 static void nvme_config_discard(struct nvme_ns *ns)
2006 {
2007 u32 logical_block_size = queue_logical_block_size(ns->queue);
2008 ns->queue->limits.discard_zeroes_data = 0;
2009 ns->queue->limits.discard_alignment = logical_block_size;
2010 ns->queue->limits.discard_granularity = logical_block_size;
2011 ns->queue->limits.max_discard_sectors = 0xffffffff;
2012 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
2013 }
2014
2015 static int nvme_revalidate_disk(struct gendisk *disk)
2016 {
2017 struct nvme_ns *ns = disk->private_data;
2018 struct nvme_dev *dev = ns->dev;
2019 struct nvme_id_ns *id;
2020 dma_addr_t dma_addr;
2021 int lbaf, pi_type, old_ms;
2022 unsigned short bs;
2023
2024 id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
2025 GFP_KERNEL);
2026 if (!id) {
2027 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2028 __func__);
2029 return 0;
2030 }
2031 if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2032 dev_warn(&dev->pci_dev->dev,
2033 "identify failed ns:%d, setting capacity to 0\n",
2034 ns->ns_id);
2035 memset(id, 0, sizeof(*id));
2036 }
2037
2038 old_ms = ns->ms;
2039 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2040 ns->lba_shift = id->lbaf[lbaf].ds;
2041 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2042
2043 /*
2044 * If identify namespace failed, use default 512 byte block size so
2045 * block layer can use before failing read/write for 0 capacity.
2046 */
2047 if (ns->lba_shift == 0)
2048 ns->lba_shift = 9;
2049 bs = 1 << ns->lba_shift;
2050
2051 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2052 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2053 id->dps & NVME_NS_DPS_PI_MASK : 0;
2054
2055 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2056 ns->ms != old_ms ||
2057 bs != queue_logical_block_size(disk->queue) ||
2058 (ns->ms && id->flbas & NVME_NS_FLBAS_META_EXT)))
2059 blk_integrity_unregister(disk);
2060
2061 ns->pi_type = pi_type;
2062 blk_queue_logical_block_size(ns->queue, bs);
2063
2064 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2065 !(id->flbas & NVME_NS_FLBAS_META_EXT))
2066 nvme_init_integrity(ns);
2067
2068 if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
2069 set_capacity(disk, 0);
2070 else
2071 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2072
2073 if (dev->oncs & NVME_CTRL_ONCS_DSM)
2074 nvme_config_discard(ns);
2075
2076 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2077 return 0;
2078 }
2079
2080 static const struct block_device_operations nvme_fops = {
2081 .owner = THIS_MODULE,
2082 .ioctl = nvme_ioctl,
2083 .compat_ioctl = nvme_compat_ioctl,
2084 .open = nvme_open,
2085 .release = nvme_release,
2086 .getgeo = nvme_getgeo,
2087 .revalidate_disk= nvme_revalidate_disk,
2088 };
2089
2090 static int nvme_kthread(void *data)
2091 {
2092 struct nvme_dev *dev, *next;
2093
2094 while (!kthread_should_stop()) {
2095 set_current_state(TASK_INTERRUPTIBLE);
2096 spin_lock(&dev_list_lock);
2097 list_for_each_entry_safe(dev, next, &dev_list, node) {
2098 int i;
2099 if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2100 if (work_busy(&dev->reset_work))
2101 continue;
2102 list_del_init(&dev->node);
2103 dev_warn(&dev->pci_dev->dev,
2104 "Failed status: %x, reset controller\n",
2105 readl(&dev->bar->csts));
2106 dev->reset_workfn = nvme_reset_failed_dev;
2107 queue_work(nvme_workq, &dev->reset_work);
2108 continue;
2109 }
2110 for (i = 0; i < dev->queue_count; i++) {
2111 struct nvme_queue *nvmeq = dev->queues[i];
2112 if (!nvmeq)
2113 continue;
2114 spin_lock_irq(&nvmeq->q_lock);
2115 nvme_process_cq(nvmeq);
2116
2117 while ((i == 0) && (dev->event_limit > 0)) {
2118 if (nvme_submit_async_admin_req(dev))
2119 break;
2120 dev->event_limit--;
2121 }
2122 spin_unlock_irq(&nvmeq->q_lock);
2123 }
2124 }
2125 spin_unlock(&dev_list_lock);
2126 schedule_timeout(round_jiffies_relative(HZ));
2127 }
2128 return 0;
2129 }
2130
2131 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2132 {
2133 struct nvme_ns *ns;
2134 struct gendisk *disk;
2135 int node = dev_to_node(&dev->pci_dev->dev);
2136
2137 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2138 if (!ns)
2139 return;
2140
2141 ns->queue = blk_mq_init_queue(&dev->tagset);
2142 if (IS_ERR(ns->queue))
2143 goto out_free_ns;
2144 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2145 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2146 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2147 ns->dev = dev;
2148 ns->queue->queuedata = ns;
2149
2150 disk = alloc_disk_node(0, node);
2151 if (!disk)
2152 goto out_free_queue;
2153
2154 ns->ns_id = nsid;
2155 ns->disk = disk;
2156 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2157 list_add_tail(&ns->list, &dev->namespaces);
2158
2159 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2160 if (dev->max_hw_sectors)
2161 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2162 if (dev->stripe_size)
2163 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2164 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2165 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2166
2167 disk->major = nvme_major;
2168 disk->first_minor = 0;
2169 disk->fops = &nvme_fops;
2170 disk->private_data = ns;
2171 disk->queue = ns->queue;
2172 disk->driverfs_dev = dev->device;
2173 disk->flags = GENHD_FL_EXT_DEVT;
2174 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2175
2176 /*
2177 * Initialize capacity to 0 until we establish the namespace format and
2178 * setup integrity extentions if necessary. The revalidate_disk after
2179 * add_disk allows the driver to register with integrity if the format
2180 * requires it.
2181 */
2182 set_capacity(disk, 0);
2183 nvme_revalidate_disk(ns->disk);
2184 add_disk(ns->disk);
2185 if (ns->ms)
2186 revalidate_disk(ns->disk);
2187 return;
2188 out_free_queue:
2189 blk_cleanup_queue(ns->queue);
2190 out_free_ns:
2191 kfree(ns);
2192 }
2193
2194 static void nvme_create_io_queues(struct nvme_dev *dev)
2195 {
2196 unsigned i;
2197
2198 for (i = dev->queue_count; i <= dev->max_qid; i++)
2199 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2200 break;
2201
2202 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2203 if (nvme_create_queue(dev->queues[i], i))
2204 break;
2205 }
2206
2207 static int set_queue_count(struct nvme_dev *dev, int count)
2208 {
2209 int status;
2210 u32 result;
2211 u32 q_count = (count - 1) | ((count - 1) << 16);
2212
2213 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2214 &result);
2215 if (status < 0)
2216 return status;
2217 if (status > 0) {
2218 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2219 status);
2220 return 0;
2221 }
2222 return min(result & 0xffff, result >> 16) + 1;
2223 }
2224
2225 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2226 {
2227 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2228 }
2229
2230 static int nvme_setup_io_queues(struct nvme_dev *dev)
2231 {
2232 struct nvme_queue *adminq = dev->queues[0];
2233 struct pci_dev *pdev = dev->pci_dev;
2234 int result, i, vecs, nr_io_queues, size;
2235
2236 nr_io_queues = num_possible_cpus();
2237 result = set_queue_count(dev, nr_io_queues);
2238 if (result <= 0)
2239 return result;
2240 if (result < nr_io_queues)
2241 nr_io_queues = result;
2242
2243 size = db_bar_size(dev, nr_io_queues);
2244 if (size > 8192) {
2245 iounmap(dev->bar);
2246 do {
2247 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2248 if (dev->bar)
2249 break;
2250 if (!--nr_io_queues)
2251 return -ENOMEM;
2252 size = db_bar_size(dev, nr_io_queues);
2253 } while (1);
2254 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2255 adminq->q_db = dev->dbs;
2256 }
2257
2258 /* Deregister the admin queue's interrupt */
2259 free_irq(dev->entry[0].vector, adminq);
2260
2261 /*
2262 * If we enable msix early due to not intx, disable it again before
2263 * setting up the full range we need.
2264 */
2265 if (!pdev->irq)
2266 pci_disable_msix(pdev);
2267
2268 for (i = 0; i < nr_io_queues; i++)
2269 dev->entry[i].entry = i;
2270 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2271 if (vecs < 0) {
2272 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2273 if (vecs < 0) {
2274 vecs = 1;
2275 } else {
2276 for (i = 0; i < vecs; i++)
2277 dev->entry[i].vector = i + pdev->irq;
2278 }
2279 }
2280
2281 /*
2282 * Should investigate if there's a performance win from allocating
2283 * more queues than interrupt vectors; it might allow the submission
2284 * path to scale better, even if the receive path is limited by the
2285 * number of interrupts.
2286 */
2287 nr_io_queues = vecs;
2288 dev->max_qid = nr_io_queues;
2289
2290 result = queue_request_irq(dev, adminq, adminq->irqname);
2291 if (result)
2292 goto free_queues;
2293
2294 /* Free previously allocated queues that are no longer usable */
2295 nvme_free_queues(dev, nr_io_queues + 1);
2296 nvme_create_io_queues(dev);
2297
2298 return 0;
2299
2300 free_queues:
2301 nvme_free_queues(dev, 1);
2302 return result;
2303 }
2304
2305 /*
2306 * Return: error value if an error occurred setting up the queues or calling
2307 * Identify Device. 0 if these succeeded, even if adding some of the
2308 * namespaces failed. At the moment, these failures are silent. TBD which
2309 * failures should be reported.
2310 */
2311 static int nvme_dev_add(struct nvme_dev *dev)
2312 {
2313 struct pci_dev *pdev = dev->pci_dev;
2314 int res;
2315 unsigned nn, i;
2316 struct nvme_id_ctrl *ctrl;
2317 void *mem;
2318 dma_addr_t dma_addr;
2319 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2320
2321 mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2322 if (!mem)
2323 return -ENOMEM;
2324
2325 res = nvme_identify(dev, 0, 1, dma_addr);
2326 if (res) {
2327 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2328 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2329 return -EIO;
2330 }
2331
2332 ctrl = mem;
2333 nn = le32_to_cpup(&ctrl->nn);
2334 dev->oncs = le16_to_cpup(&ctrl->oncs);
2335 dev->abort_limit = ctrl->acl + 1;
2336 dev->vwc = ctrl->vwc;
2337 dev->event_limit = min(ctrl->aerl + 1, 8);
2338 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2339 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2340 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2341 if (ctrl->mdts)
2342 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2343 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2344 (pdev->device == 0x0953) && ctrl->vs[3]) {
2345 unsigned int max_hw_sectors;
2346
2347 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2348 max_hw_sectors = dev->stripe_size >> (shift - 9);
2349 if (dev->max_hw_sectors) {
2350 dev->max_hw_sectors = min(max_hw_sectors,
2351 dev->max_hw_sectors);
2352 } else
2353 dev->max_hw_sectors = max_hw_sectors;
2354 }
2355 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2356
2357 dev->tagset.ops = &nvme_mq_ops;
2358 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2359 dev->tagset.timeout = NVME_IO_TIMEOUT;
2360 dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2361 dev->tagset.queue_depth =
2362 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2363 dev->tagset.cmd_size = nvme_cmd_size(dev);
2364 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2365 dev->tagset.driver_data = dev;
2366
2367 if (blk_mq_alloc_tag_set(&dev->tagset))
2368 return 0;
2369
2370 for (i = 1; i <= nn; i++)
2371 nvme_alloc_ns(dev, i);
2372
2373 return 0;
2374 }
2375
2376 static int nvme_dev_map(struct nvme_dev *dev)
2377 {
2378 u64 cap;
2379 int bars, result = -ENOMEM;
2380 struct pci_dev *pdev = dev->pci_dev;
2381
2382 if (pci_enable_device_mem(pdev))
2383 return result;
2384
2385 dev->entry[0].vector = pdev->irq;
2386 pci_set_master(pdev);
2387 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2388 if (!bars)
2389 goto disable_pci;
2390
2391 if (pci_request_selected_regions(pdev, bars, "nvme"))
2392 goto disable_pci;
2393
2394 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2395 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2396 goto disable;
2397
2398 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2399 if (!dev->bar)
2400 goto disable;
2401
2402 if (readl(&dev->bar->csts) == -1) {
2403 result = -ENODEV;
2404 goto unmap;
2405 }
2406
2407 /*
2408 * Some devices don't advertse INTx interrupts, pre-enable a single
2409 * MSIX vec for setup. We'll adjust this later.
2410 */
2411 if (!pdev->irq) {
2412 result = pci_enable_msix(pdev, dev->entry, 1);
2413 if (result < 0)
2414 goto unmap;
2415 }
2416
2417 cap = readq(&dev->bar->cap);
2418 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2419 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2420 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2421
2422 return 0;
2423
2424 unmap:
2425 iounmap(dev->bar);
2426 dev->bar = NULL;
2427 disable:
2428 pci_release_regions(pdev);
2429 disable_pci:
2430 pci_disable_device(pdev);
2431 return result;
2432 }
2433
2434 static void nvme_dev_unmap(struct nvme_dev *dev)
2435 {
2436 if (dev->pci_dev->msi_enabled)
2437 pci_disable_msi(dev->pci_dev);
2438 else if (dev->pci_dev->msix_enabled)
2439 pci_disable_msix(dev->pci_dev);
2440
2441 if (dev->bar) {
2442 iounmap(dev->bar);
2443 dev->bar = NULL;
2444 pci_release_regions(dev->pci_dev);
2445 }
2446
2447 if (pci_is_enabled(dev->pci_dev))
2448 pci_disable_device(dev->pci_dev);
2449 }
2450
2451 struct nvme_delq_ctx {
2452 struct task_struct *waiter;
2453 struct kthread_worker *worker;
2454 atomic_t refcount;
2455 };
2456
2457 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2458 {
2459 dq->waiter = current;
2460 mb();
2461
2462 for (;;) {
2463 set_current_state(TASK_KILLABLE);
2464 if (!atomic_read(&dq->refcount))
2465 break;
2466 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2467 fatal_signal_pending(current)) {
2468 /*
2469 * Disable the controller first since we can't trust it
2470 * at this point, but leave the admin queue enabled
2471 * until all queue deletion requests are flushed.
2472 * FIXME: This may take a while if there are more h/w
2473 * queues than admin tags.
2474 */
2475 set_current_state(TASK_RUNNING);
2476 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2477 nvme_clear_queue(dev->queues[0]);
2478 flush_kthread_worker(dq->worker);
2479 nvme_disable_queue(dev, 0);
2480 return;
2481 }
2482 }
2483 set_current_state(TASK_RUNNING);
2484 }
2485
2486 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2487 {
2488 atomic_dec(&dq->refcount);
2489 if (dq->waiter)
2490 wake_up_process(dq->waiter);
2491 }
2492
2493 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2494 {
2495 atomic_inc(&dq->refcount);
2496 return dq;
2497 }
2498
2499 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2500 {
2501 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2502 nvme_put_dq(dq);
2503 }
2504
2505 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2506 kthread_work_func_t fn)
2507 {
2508 struct nvme_command c;
2509
2510 memset(&c, 0, sizeof(c));
2511 c.delete_queue.opcode = opcode;
2512 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2513
2514 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2515 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2516 ADMIN_TIMEOUT);
2517 }
2518
2519 static void nvme_del_cq_work_handler(struct kthread_work *work)
2520 {
2521 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2522 cmdinfo.work);
2523 nvme_del_queue_end(nvmeq);
2524 }
2525
2526 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2527 {
2528 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2529 nvme_del_cq_work_handler);
2530 }
2531
2532 static void nvme_del_sq_work_handler(struct kthread_work *work)
2533 {
2534 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2535 cmdinfo.work);
2536 int status = nvmeq->cmdinfo.status;
2537
2538 if (!status)
2539 status = nvme_delete_cq(nvmeq);
2540 if (status)
2541 nvme_del_queue_end(nvmeq);
2542 }
2543
2544 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2545 {
2546 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2547 nvme_del_sq_work_handler);
2548 }
2549
2550 static void nvme_del_queue_start(struct kthread_work *work)
2551 {
2552 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2553 cmdinfo.work);
2554 if (nvme_delete_sq(nvmeq))
2555 nvme_del_queue_end(nvmeq);
2556 }
2557
2558 static void nvme_disable_io_queues(struct nvme_dev *dev)
2559 {
2560 int i;
2561 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2562 struct nvme_delq_ctx dq;
2563 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2564 &worker, "nvme%d", dev->instance);
2565
2566 if (IS_ERR(kworker_task)) {
2567 dev_err(&dev->pci_dev->dev,
2568 "Failed to create queue del task\n");
2569 for (i = dev->queue_count - 1; i > 0; i--)
2570 nvme_disable_queue(dev, i);
2571 return;
2572 }
2573
2574 dq.waiter = NULL;
2575 atomic_set(&dq.refcount, 0);
2576 dq.worker = &worker;
2577 for (i = dev->queue_count - 1; i > 0; i--) {
2578 struct nvme_queue *nvmeq = dev->queues[i];
2579
2580 if (nvme_suspend_queue(nvmeq))
2581 continue;
2582 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2583 nvmeq->cmdinfo.worker = dq.worker;
2584 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2585 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2586 }
2587 nvme_wait_dq(&dq, dev);
2588 kthread_stop(kworker_task);
2589 }
2590
2591 /*
2592 * Remove the node from the device list and check
2593 * for whether or not we need to stop the nvme_thread.
2594 */
2595 static void nvme_dev_list_remove(struct nvme_dev *dev)
2596 {
2597 struct task_struct *tmp = NULL;
2598
2599 spin_lock(&dev_list_lock);
2600 list_del_init(&dev->node);
2601 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2602 tmp = nvme_thread;
2603 nvme_thread = NULL;
2604 }
2605 spin_unlock(&dev_list_lock);
2606
2607 if (tmp)
2608 kthread_stop(tmp);
2609 }
2610
2611 static void nvme_freeze_queues(struct nvme_dev *dev)
2612 {
2613 struct nvme_ns *ns;
2614
2615 list_for_each_entry(ns, &dev->namespaces, list) {
2616 blk_mq_freeze_queue_start(ns->queue);
2617
2618 spin_lock(ns->queue->queue_lock);
2619 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2620 spin_unlock(ns->queue->queue_lock);
2621
2622 blk_mq_cancel_requeue_work(ns->queue);
2623 blk_mq_stop_hw_queues(ns->queue);
2624 }
2625 }
2626
2627 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2628 {
2629 struct nvme_ns *ns;
2630
2631 list_for_each_entry(ns, &dev->namespaces, list) {
2632 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2633 blk_mq_unfreeze_queue(ns->queue);
2634 blk_mq_start_stopped_hw_queues(ns->queue, true);
2635 blk_mq_kick_requeue_list(ns->queue);
2636 }
2637 }
2638
2639 static void nvme_dev_shutdown(struct nvme_dev *dev)
2640 {
2641 int i;
2642 u32 csts = -1;
2643
2644 nvme_dev_list_remove(dev);
2645
2646 if (dev->bar) {
2647 nvme_freeze_queues(dev);
2648 csts = readl(&dev->bar->csts);
2649 }
2650 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2651 for (i = dev->queue_count - 1; i >= 0; i--) {
2652 struct nvme_queue *nvmeq = dev->queues[i];
2653 nvme_suspend_queue(nvmeq);
2654 }
2655 } else {
2656 nvme_disable_io_queues(dev);
2657 nvme_shutdown_ctrl(dev);
2658 nvme_disable_queue(dev, 0);
2659 }
2660 nvme_dev_unmap(dev);
2661
2662 for (i = dev->queue_count - 1; i >= 0; i--)
2663 nvme_clear_queue(dev->queues[i]);
2664 }
2665
2666 static void nvme_dev_remove(struct nvme_dev *dev)
2667 {
2668 struct nvme_ns *ns;
2669
2670 list_for_each_entry(ns, &dev->namespaces, list) {
2671 if (ns->disk->flags & GENHD_FL_UP) {
2672 if (blk_get_integrity(ns->disk))
2673 blk_integrity_unregister(ns->disk);
2674 del_gendisk(ns->disk);
2675 }
2676 if (!blk_queue_dying(ns->queue)) {
2677 blk_mq_abort_requeue_list(ns->queue);
2678 blk_cleanup_queue(ns->queue);
2679 }
2680 }
2681 }
2682
2683 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2684 {
2685 struct device *dmadev = &dev->pci_dev->dev;
2686 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2687 PAGE_SIZE, PAGE_SIZE, 0);
2688 if (!dev->prp_page_pool)
2689 return -ENOMEM;
2690
2691 /* Optimisation for I/Os between 4k and 128k */
2692 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2693 256, 256, 0);
2694 if (!dev->prp_small_pool) {
2695 dma_pool_destroy(dev->prp_page_pool);
2696 return -ENOMEM;
2697 }
2698 return 0;
2699 }
2700
2701 static void nvme_release_prp_pools(struct nvme_dev *dev)
2702 {
2703 dma_pool_destroy(dev->prp_page_pool);
2704 dma_pool_destroy(dev->prp_small_pool);
2705 }
2706
2707 static DEFINE_IDA(nvme_instance_ida);
2708
2709 static int nvme_set_instance(struct nvme_dev *dev)
2710 {
2711 int instance, error;
2712
2713 do {
2714 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2715 return -ENODEV;
2716
2717 spin_lock(&dev_list_lock);
2718 error = ida_get_new(&nvme_instance_ida, &instance);
2719 spin_unlock(&dev_list_lock);
2720 } while (error == -EAGAIN);
2721
2722 if (error)
2723 return -ENODEV;
2724
2725 dev->instance = instance;
2726 return 0;
2727 }
2728
2729 static void nvme_release_instance(struct nvme_dev *dev)
2730 {
2731 spin_lock(&dev_list_lock);
2732 ida_remove(&nvme_instance_ida, dev->instance);
2733 spin_unlock(&dev_list_lock);
2734 }
2735
2736 static void nvme_free_namespaces(struct nvme_dev *dev)
2737 {
2738 struct nvme_ns *ns, *next;
2739
2740 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2741 list_del(&ns->list);
2742
2743 spin_lock(&dev_list_lock);
2744 ns->disk->private_data = NULL;
2745 spin_unlock(&dev_list_lock);
2746
2747 put_disk(ns->disk);
2748 kfree(ns);
2749 }
2750 }
2751
2752 static void nvme_free_dev(struct kref *kref)
2753 {
2754 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2755
2756 pci_dev_put(dev->pci_dev);
2757 put_device(dev->device);
2758 nvme_free_namespaces(dev);
2759 nvme_release_instance(dev);
2760 blk_mq_free_tag_set(&dev->tagset);
2761 blk_put_queue(dev->admin_q);
2762 kfree(dev->queues);
2763 kfree(dev->entry);
2764 kfree(dev);
2765 }
2766
2767 static int nvme_dev_open(struct inode *inode, struct file *f)
2768 {
2769 struct nvme_dev *dev;
2770 int instance = iminor(inode);
2771 int ret = -ENODEV;
2772
2773 spin_lock(&dev_list_lock);
2774 list_for_each_entry(dev, &dev_list, node) {
2775 if (dev->instance == instance) {
2776 if (!dev->admin_q) {
2777 ret = -EWOULDBLOCK;
2778 break;
2779 }
2780 if (!kref_get_unless_zero(&dev->kref))
2781 break;
2782 f->private_data = dev;
2783 ret = 0;
2784 break;
2785 }
2786 }
2787 spin_unlock(&dev_list_lock);
2788
2789 return ret;
2790 }
2791
2792 static int nvme_dev_release(struct inode *inode, struct file *f)
2793 {
2794 struct nvme_dev *dev = f->private_data;
2795 kref_put(&dev->kref, nvme_free_dev);
2796 return 0;
2797 }
2798
2799 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2800 {
2801 struct nvme_dev *dev = f->private_data;
2802 struct nvme_ns *ns;
2803
2804 switch (cmd) {
2805 case NVME_IOCTL_ADMIN_CMD:
2806 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2807 case NVME_IOCTL_IO_CMD:
2808 if (list_empty(&dev->namespaces))
2809 return -ENOTTY;
2810 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2811 return nvme_user_cmd(dev, ns, (void __user *)arg);
2812 default:
2813 return -ENOTTY;
2814 }
2815 }
2816
2817 static const struct file_operations nvme_dev_fops = {
2818 .owner = THIS_MODULE,
2819 .open = nvme_dev_open,
2820 .release = nvme_dev_release,
2821 .unlocked_ioctl = nvme_dev_ioctl,
2822 .compat_ioctl = nvme_dev_ioctl,
2823 };
2824
2825 static void nvme_set_irq_hints(struct nvme_dev *dev)
2826 {
2827 struct nvme_queue *nvmeq;
2828 int i;
2829
2830 for (i = 0; i < dev->online_queues; i++) {
2831 nvmeq = dev->queues[i];
2832
2833 if (!nvmeq->hctx)
2834 continue;
2835
2836 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2837 nvmeq->hctx->cpumask);
2838 }
2839 }
2840
2841 static int nvme_dev_start(struct nvme_dev *dev)
2842 {
2843 int result;
2844 bool start_thread = false;
2845
2846 result = nvme_dev_map(dev);
2847 if (result)
2848 return result;
2849
2850 result = nvme_configure_admin_queue(dev);
2851 if (result)
2852 goto unmap;
2853
2854 spin_lock(&dev_list_lock);
2855 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2856 start_thread = true;
2857 nvme_thread = NULL;
2858 }
2859 list_add(&dev->node, &dev_list);
2860 spin_unlock(&dev_list_lock);
2861
2862 if (start_thread) {
2863 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2864 wake_up_all(&nvme_kthread_wait);
2865 } else
2866 wait_event_killable(nvme_kthread_wait, nvme_thread);
2867
2868 if (IS_ERR_OR_NULL(nvme_thread)) {
2869 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2870 goto disable;
2871 }
2872
2873 nvme_init_queue(dev->queues[0], 0);
2874 result = nvme_alloc_admin_tags(dev);
2875 if (result)
2876 goto disable;
2877
2878 result = nvme_setup_io_queues(dev);
2879 if (result)
2880 goto free_tags;
2881
2882 nvme_set_irq_hints(dev);
2883
2884 return result;
2885
2886 free_tags:
2887 nvme_dev_remove_admin(dev);
2888 disable:
2889 nvme_disable_queue(dev, 0);
2890 nvme_dev_list_remove(dev);
2891 unmap:
2892 nvme_dev_unmap(dev);
2893 return result;
2894 }
2895
2896 static int nvme_remove_dead_ctrl(void *arg)
2897 {
2898 struct nvme_dev *dev = (struct nvme_dev *)arg;
2899 struct pci_dev *pdev = dev->pci_dev;
2900
2901 if (pci_get_drvdata(pdev))
2902 pci_stop_and_remove_bus_device_locked(pdev);
2903 kref_put(&dev->kref, nvme_free_dev);
2904 return 0;
2905 }
2906
2907 static void nvme_remove_disks(struct work_struct *ws)
2908 {
2909 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2910
2911 nvme_free_queues(dev, 1);
2912 nvme_dev_remove(dev);
2913 }
2914
2915 static int nvme_dev_resume(struct nvme_dev *dev)
2916 {
2917 int ret;
2918
2919 ret = nvme_dev_start(dev);
2920 if (ret)
2921 return ret;
2922 if (dev->online_queues < 2) {
2923 spin_lock(&dev_list_lock);
2924 dev->reset_workfn = nvme_remove_disks;
2925 queue_work(nvme_workq, &dev->reset_work);
2926 spin_unlock(&dev_list_lock);
2927 } else {
2928 nvme_unfreeze_queues(dev);
2929 nvme_set_irq_hints(dev);
2930 }
2931 return 0;
2932 }
2933
2934 static void nvme_dev_reset(struct nvme_dev *dev)
2935 {
2936 nvme_dev_shutdown(dev);
2937 if (nvme_dev_resume(dev)) {
2938 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2939 kref_get(&dev->kref);
2940 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2941 dev->instance))) {
2942 dev_err(&dev->pci_dev->dev,
2943 "Failed to start controller remove task\n");
2944 kref_put(&dev->kref, nvme_free_dev);
2945 }
2946 }
2947 }
2948
2949 static void nvme_reset_failed_dev(struct work_struct *ws)
2950 {
2951 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2952 nvme_dev_reset(dev);
2953 }
2954
2955 static void nvme_reset_workfn(struct work_struct *work)
2956 {
2957 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2958 dev->reset_workfn(work);
2959 }
2960
2961 static void nvme_async_probe(struct work_struct *work);
2962 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2963 {
2964 int node, result = -ENOMEM;
2965 struct nvme_dev *dev;
2966
2967 node = dev_to_node(&pdev->dev);
2968 if (node == NUMA_NO_NODE)
2969 set_dev_node(&pdev->dev, 0);
2970
2971 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2972 if (!dev)
2973 return -ENOMEM;
2974 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2975 GFP_KERNEL, node);
2976 if (!dev->entry)
2977 goto free;
2978 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2979 GFP_KERNEL, node);
2980 if (!dev->queues)
2981 goto free;
2982
2983 INIT_LIST_HEAD(&dev->namespaces);
2984 dev->reset_workfn = nvme_reset_failed_dev;
2985 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2986 dev->pci_dev = pci_dev_get(pdev);
2987 pci_set_drvdata(pdev, dev);
2988 result = nvme_set_instance(dev);
2989 if (result)
2990 goto put_pci;
2991
2992 result = nvme_setup_prp_pools(dev);
2993 if (result)
2994 goto release;
2995
2996 kref_init(&dev->kref);
2997 dev->device = device_create(nvme_class, &pdev->dev,
2998 MKDEV(nvme_char_major, dev->instance),
2999 dev, "nvme%d", dev->instance);
3000 if (IS_ERR(dev->device)) {
3001 result = PTR_ERR(dev->device);
3002 goto release_pools;
3003 }
3004 get_device(dev->device);
3005
3006 INIT_WORK(&dev->probe_work, nvme_async_probe);
3007 schedule_work(&dev->probe_work);
3008 return 0;
3009
3010 release_pools:
3011 nvme_release_prp_pools(dev);
3012 release:
3013 nvme_release_instance(dev);
3014 put_pci:
3015 pci_dev_put(dev->pci_dev);
3016 free:
3017 kfree(dev->queues);
3018 kfree(dev->entry);
3019 kfree(dev);
3020 return result;
3021 }
3022
3023 static void nvme_async_probe(struct work_struct *work)
3024 {
3025 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3026 int result;
3027
3028 result = nvme_dev_start(dev);
3029 if (result)
3030 goto reset;
3031
3032 if (dev->online_queues > 1)
3033 result = nvme_dev_add(dev);
3034 if (result)
3035 goto reset;
3036
3037 nvme_set_irq_hints(dev);
3038 return;
3039 reset:
3040 if (!work_busy(&dev->reset_work)) {
3041 dev->reset_workfn = nvme_reset_failed_dev;
3042 queue_work(nvme_workq, &dev->reset_work);
3043 }
3044 }
3045
3046 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3047 {
3048 struct nvme_dev *dev = pci_get_drvdata(pdev);
3049
3050 if (prepare)
3051 nvme_dev_shutdown(dev);
3052 else
3053 nvme_dev_resume(dev);
3054 }
3055
3056 static void nvme_shutdown(struct pci_dev *pdev)
3057 {
3058 struct nvme_dev *dev = pci_get_drvdata(pdev);
3059 nvme_dev_shutdown(dev);
3060 }
3061
3062 static void nvme_remove(struct pci_dev *pdev)
3063 {
3064 struct nvme_dev *dev = pci_get_drvdata(pdev);
3065
3066 spin_lock(&dev_list_lock);
3067 list_del_init(&dev->node);
3068 spin_unlock(&dev_list_lock);
3069
3070 pci_set_drvdata(pdev, NULL);
3071 flush_work(&dev->probe_work);
3072 flush_work(&dev->reset_work);
3073 nvme_dev_shutdown(dev);
3074 nvme_dev_remove(dev);
3075 nvme_dev_remove_admin(dev);
3076 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3077 nvme_free_queues(dev, 0);
3078 nvme_release_prp_pools(dev);
3079 kref_put(&dev->kref, nvme_free_dev);
3080 }
3081
3082 /* These functions are yet to be implemented */
3083 #define nvme_error_detected NULL
3084 #define nvme_dump_registers NULL
3085 #define nvme_link_reset NULL
3086 #define nvme_slot_reset NULL
3087 #define nvme_error_resume NULL
3088
3089 #ifdef CONFIG_PM_SLEEP
3090 static int nvme_suspend(struct device *dev)
3091 {
3092 struct pci_dev *pdev = to_pci_dev(dev);
3093 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3094
3095 nvme_dev_shutdown(ndev);
3096 return 0;
3097 }
3098
3099 static int nvme_resume(struct device *dev)
3100 {
3101 struct pci_dev *pdev = to_pci_dev(dev);
3102 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3103
3104 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3105 ndev->reset_workfn = nvme_reset_failed_dev;
3106 queue_work(nvme_workq, &ndev->reset_work);
3107 }
3108 return 0;
3109 }
3110 #endif
3111
3112 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3113
3114 static const struct pci_error_handlers nvme_err_handler = {
3115 .error_detected = nvme_error_detected,
3116 .mmio_enabled = nvme_dump_registers,
3117 .link_reset = nvme_link_reset,
3118 .slot_reset = nvme_slot_reset,
3119 .resume = nvme_error_resume,
3120 .reset_notify = nvme_reset_notify,
3121 };
3122
3123 /* Move to pci_ids.h later */
3124 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
3125
3126 static const struct pci_device_id nvme_id_table[] = {
3127 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3128 { 0, }
3129 };
3130 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3131
3132 static struct pci_driver nvme_driver = {
3133 .name = "nvme",
3134 .id_table = nvme_id_table,
3135 .probe = nvme_probe,
3136 .remove = nvme_remove,
3137 .shutdown = nvme_shutdown,
3138 .driver = {
3139 .pm = &nvme_dev_pm_ops,
3140 },
3141 .err_handler = &nvme_err_handler,
3142 };
3143
3144 static int __init nvme_init(void)
3145 {
3146 int result;
3147
3148 init_waitqueue_head(&nvme_kthread_wait);
3149
3150 nvme_workq = create_singlethread_workqueue("nvme");
3151 if (!nvme_workq)
3152 return -ENOMEM;
3153
3154 result = register_blkdev(nvme_major, "nvme");
3155 if (result < 0)
3156 goto kill_workq;
3157 else if (result > 0)
3158 nvme_major = result;
3159
3160 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3161 &nvme_dev_fops);
3162 if (result < 0)
3163 goto unregister_blkdev;
3164 else if (result > 0)
3165 nvme_char_major = result;
3166
3167 nvme_class = class_create(THIS_MODULE, "nvme");
3168 if (!nvme_class)
3169 goto unregister_chrdev;
3170
3171 result = pci_register_driver(&nvme_driver);
3172 if (result)
3173 goto destroy_class;
3174 return 0;
3175
3176 destroy_class:
3177 class_destroy(nvme_class);
3178 unregister_chrdev:
3179 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3180 unregister_blkdev:
3181 unregister_blkdev(nvme_major, "nvme");
3182 kill_workq:
3183 destroy_workqueue(nvme_workq);
3184 return result;
3185 }
3186
3187 static void __exit nvme_exit(void)
3188 {
3189 pci_unregister_driver(&nvme_driver);
3190 unregister_blkdev(nvme_major, "nvme");
3191 destroy_workqueue(nvme_workq);
3192 class_destroy(nvme_class);
3193 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3194 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3195 _nvme_check_size();
3196 }
3197
3198 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3199 MODULE_LICENSE("GPL");
3200 MODULE_VERSION("1.0");
3201 module_init(nvme_init);
3202 module_exit(nvme_exit);
This page took 0.125517 seconds and 5 git commands to generate.