fb4b205317c68c369a8a8dd94f63e7314c6714b8
[deliverable/linux.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <scsi/sg.h>
42 #include <asm-generic/io-64-nonatomic-lo-hi.h>
43
44 #define NVME_Q_DEPTH 1024
45 #define NVME_AQ_DEPTH 64
46 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
48 #define ADMIN_TIMEOUT (admin_timeout * HZ)
49 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
50 #define IOD_TIMEOUT (retry_time * HZ)
51
52 static unsigned char admin_timeout = 60;
53 module_param(admin_timeout, byte, 0644);
54 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
55
56 unsigned char nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59
60 static unsigned char retry_time = 30;
61 module_param(retry_time, byte, 0644);
62 MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
63
64 static unsigned char shutdown_timeout = 5;
65 module_param(shutdown_timeout, byte, 0644);
66 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
67
68 static int nvme_major;
69 module_param(nvme_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79 static struct notifier_block nvme_nb;
80
81 static void nvme_reset_failed_dev(struct work_struct *ws);
82 static int nvme_process_cq(struct nvme_queue *nvmeq);
83
84 struct async_cmd_info {
85 struct kthread_work work;
86 struct kthread_worker *worker;
87 struct request *req;
88 u32 result;
89 int status;
90 void *ctx;
91 };
92
93 /*
94 * An NVM Express queue. Each device has at least two (one for admin
95 * commands and one for I/O commands).
96 */
97 struct nvme_queue {
98 struct llist_node node;
99 struct device *q_dmadev;
100 struct nvme_dev *dev;
101 char irqname[24]; /* nvme4294967295-65535\0 */
102 spinlock_t q_lock;
103 struct nvme_command *sq_cmds;
104 volatile struct nvme_completion *cqes;
105 dma_addr_t sq_dma_addr;
106 dma_addr_t cq_dma_addr;
107 u32 __iomem *q_db;
108 u16 q_depth;
109 u16 cq_vector;
110 u16 sq_head;
111 u16 sq_tail;
112 u16 cq_head;
113 u16 qid;
114 u8 cq_phase;
115 u8 cqe_seen;
116 struct async_cmd_info cmdinfo;
117 struct blk_mq_hw_ctx *hctx;
118 };
119
120 /*
121 * Check we didin't inadvertently grow the command struct
122 */
123 static inline void _nvme_check_size(void)
124 {
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143 nvme_completion_fn fn;
144 void *ctx;
145 int aborted;
146 struct nvme_queue *nvmeq;
147 };
148
149 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
150 unsigned int hctx_idx)
151 {
152 struct nvme_dev *dev = data;
153 struct nvme_queue *nvmeq = dev->queues[0];
154
155 WARN_ON(nvmeq->hctx);
156 nvmeq->hctx = hctx;
157 hctx->driver_data = nvmeq;
158 return 0;
159 }
160
161 static int nvme_admin_init_request(void *data, struct request *req,
162 unsigned int hctx_idx, unsigned int rq_idx,
163 unsigned int numa_node)
164 {
165 struct nvme_dev *dev = data;
166 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
167 struct nvme_queue *nvmeq = dev->queues[0];
168
169 BUG_ON(!nvmeq);
170 cmd->nvmeq = nvmeq;
171 return 0;
172 }
173
174 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
175 unsigned int hctx_idx)
176 {
177 struct nvme_dev *dev = data;
178 struct nvme_queue *nvmeq = dev->queues[
179 (hctx_idx % dev->queue_count) + 1];
180
181 if (!nvmeq->hctx)
182 nvmeq->hctx = hctx;
183
184 /* nvmeq queues are shared between namespaces. We assume here that
185 * blk-mq map the tags so they match up with the nvme queue tags. */
186 WARN_ON(nvmeq->hctx->tags != hctx->tags);
187
188 hctx->driver_data = nvmeq;
189 return 0;
190 }
191
192 static int nvme_init_request(void *data, struct request *req,
193 unsigned int hctx_idx, unsigned int rq_idx,
194 unsigned int numa_node)
195 {
196 struct nvme_dev *dev = data;
197 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
198 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
199
200 BUG_ON(!nvmeq);
201 cmd->nvmeq = nvmeq;
202 return 0;
203 }
204
205 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
206 nvme_completion_fn handler)
207 {
208 cmd->fn = handler;
209 cmd->ctx = ctx;
210 cmd->aborted = 0;
211 }
212
213 /* Special values must be less than 0x1000 */
214 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
215 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
216 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
217 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
218
219 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
220 struct nvme_completion *cqe)
221 {
222 if (ctx == CMD_CTX_CANCELLED)
223 return;
224 if (ctx == CMD_CTX_COMPLETED) {
225 dev_warn(nvmeq->q_dmadev,
226 "completed id %d twice on queue %d\n",
227 cqe->command_id, le16_to_cpup(&cqe->sq_id));
228 return;
229 }
230 if (ctx == CMD_CTX_INVALID) {
231 dev_warn(nvmeq->q_dmadev,
232 "invalid id %d completed on queue %d\n",
233 cqe->command_id, le16_to_cpup(&cqe->sq_id));
234 return;
235 }
236 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
237 }
238
239 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
240 {
241 void *ctx;
242
243 if (fn)
244 *fn = cmd->fn;
245 ctx = cmd->ctx;
246 cmd->fn = special_completion;
247 cmd->ctx = CMD_CTX_CANCELLED;
248 return ctx;
249 }
250
251 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
252 struct nvme_completion *cqe)
253 {
254 struct request *req = ctx;
255
256 u32 result = le32_to_cpup(&cqe->result);
257 u16 status = le16_to_cpup(&cqe->status) >> 1;
258
259 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
260 ++nvmeq->dev->event_limit;
261 if (status == NVME_SC_SUCCESS)
262 dev_warn(nvmeq->q_dmadev,
263 "async event result %08x\n", result);
264
265 blk_mq_free_hctx_request(nvmeq->hctx, req);
266 }
267
268 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
269 struct nvme_completion *cqe)
270 {
271 struct request *req = ctx;
272
273 u16 status = le16_to_cpup(&cqe->status) >> 1;
274 u32 result = le32_to_cpup(&cqe->result);
275
276 blk_mq_free_hctx_request(nvmeq->hctx, req);
277
278 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
279 ++nvmeq->dev->abort_limit;
280 }
281
282 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
283 struct nvme_completion *cqe)
284 {
285 struct async_cmd_info *cmdinfo = ctx;
286 cmdinfo->result = le32_to_cpup(&cqe->result);
287 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
288 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
289 blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
290 }
291
292 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
293 unsigned int tag)
294 {
295 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
296 struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
297
298 return blk_mq_rq_to_pdu(req);
299 }
300
301 /*
302 * Called with local interrupts disabled and the q_lock held. May not sleep.
303 */
304 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
305 nvme_completion_fn *fn)
306 {
307 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
308 void *ctx;
309 if (tag >= nvmeq->q_depth) {
310 *fn = special_completion;
311 return CMD_CTX_INVALID;
312 }
313 if (fn)
314 *fn = cmd->fn;
315 ctx = cmd->ctx;
316 cmd->fn = special_completion;
317 cmd->ctx = CMD_CTX_COMPLETED;
318 return ctx;
319 }
320
321 /**
322 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
323 * @nvmeq: The queue to use
324 * @cmd: The command to send
325 *
326 * Safe to use from interrupt context
327 */
328 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
329 {
330 u16 tail = nvmeq->sq_tail;
331
332 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
333 if (++tail == nvmeq->q_depth)
334 tail = 0;
335 writel(tail, nvmeq->q_db);
336 nvmeq->sq_tail = tail;
337
338 return 0;
339 }
340
341 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
342 {
343 unsigned long flags;
344 int ret;
345 spin_lock_irqsave(&nvmeq->q_lock, flags);
346 ret = __nvme_submit_cmd(nvmeq, cmd);
347 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
348 return ret;
349 }
350
351 static __le64 **iod_list(struct nvme_iod *iod)
352 {
353 return ((void *)iod) + iod->offset;
354 }
355
356 /*
357 * Will slightly overestimate the number of pages needed. This is OK
358 * as it only leads to a small amount of wasted memory for the lifetime of
359 * the I/O.
360 */
361 static int nvme_npages(unsigned size, struct nvme_dev *dev)
362 {
363 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
364 return DIV_ROUND_UP(8 * nprps, dev->page_size - 8);
365 }
366
367 static struct nvme_iod *
368 nvme_alloc_iod(unsigned nseg, unsigned nbytes, struct nvme_dev *dev, gfp_t gfp)
369 {
370 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
371 sizeof(__le64 *) * nvme_npages(nbytes, dev) +
372 sizeof(struct scatterlist) * nseg, gfp);
373
374 if (iod) {
375 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
376 iod->npages = -1;
377 iod->length = nbytes;
378 iod->nents = 0;
379 iod->first_dma = 0ULL;
380 }
381
382 return iod;
383 }
384
385 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
386 {
387 const int last_prp = dev->page_size / 8 - 1;
388 int i;
389 __le64 **list = iod_list(iod);
390 dma_addr_t prp_dma = iod->first_dma;
391
392 if (iod->npages == 0)
393 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
394 for (i = 0; i < iod->npages; i++) {
395 __le64 *prp_list = list[i];
396 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
397 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
398 prp_dma = next_prp_dma;
399 }
400 kfree(iod);
401 }
402
403 static int nvme_error_status(u16 status)
404 {
405 switch (status & 0x7ff) {
406 case NVME_SC_SUCCESS:
407 return 0;
408 case NVME_SC_CAP_EXCEEDED:
409 return -ENOSPC;
410 default:
411 return -EIO;
412 }
413 }
414
415 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
416 struct nvme_completion *cqe)
417 {
418 struct nvme_iod *iod = ctx;
419 struct request *req = iod->private;
420 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
421
422 u16 status = le16_to_cpup(&cqe->status) >> 1;
423
424 if (unlikely(status)) {
425 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
426 && (jiffies - req->start_time) < req->timeout) {
427 blk_mq_requeue_request(req);
428 blk_mq_kick_requeue_list(req->q);
429 return;
430 }
431 req->errors = nvme_error_status(status);
432 } else
433 req->errors = 0;
434
435 if (cmd_rq->aborted)
436 dev_warn(&nvmeq->dev->pci_dev->dev,
437 "completing aborted command with status:%04x\n",
438 status);
439
440 if (iod->nents)
441 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
442 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
443 nvme_free_iod(nvmeq->dev, iod);
444
445 blk_mq_complete_request(req);
446 }
447
448 /* length is in bytes. gfp flags indicates whether we may sleep. */
449 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
450 gfp_t gfp)
451 {
452 struct dma_pool *pool;
453 int length = total_len;
454 struct scatterlist *sg = iod->sg;
455 int dma_len = sg_dma_len(sg);
456 u64 dma_addr = sg_dma_address(sg);
457 int offset = offset_in_page(dma_addr);
458 __le64 *prp_list;
459 __le64 **list = iod_list(iod);
460 dma_addr_t prp_dma;
461 int nprps, i;
462 u32 page_size = dev->page_size;
463
464 length -= (page_size - offset);
465 if (length <= 0)
466 return total_len;
467
468 dma_len -= (page_size - offset);
469 if (dma_len) {
470 dma_addr += (page_size - offset);
471 } else {
472 sg = sg_next(sg);
473 dma_addr = sg_dma_address(sg);
474 dma_len = sg_dma_len(sg);
475 }
476
477 if (length <= page_size) {
478 iod->first_dma = dma_addr;
479 return total_len;
480 }
481
482 nprps = DIV_ROUND_UP(length, page_size);
483 if (nprps <= (256 / 8)) {
484 pool = dev->prp_small_pool;
485 iod->npages = 0;
486 } else {
487 pool = dev->prp_page_pool;
488 iod->npages = 1;
489 }
490
491 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
492 if (!prp_list) {
493 iod->first_dma = dma_addr;
494 iod->npages = -1;
495 return (total_len - length) + page_size;
496 }
497 list[0] = prp_list;
498 iod->first_dma = prp_dma;
499 i = 0;
500 for (;;) {
501 if (i == page_size >> 3) {
502 __le64 *old_prp_list = prp_list;
503 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
504 if (!prp_list)
505 return total_len - length;
506 list[iod->npages++] = prp_list;
507 prp_list[0] = old_prp_list[i - 1];
508 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
509 i = 1;
510 }
511 prp_list[i++] = cpu_to_le64(dma_addr);
512 dma_len -= page_size;
513 dma_addr += page_size;
514 length -= page_size;
515 if (length <= 0)
516 break;
517 if (dma_len > 0)
518 continue;
519 BUG_ON(dma_len < 0);
520 sg = sg_next(sg);
521 dma_addr = sg_dma_address(sg);
522 dma_len = sg_dma_len(sg);
523 }
524
525 return total_len;
526 }
527
528 /*
529 * We reuse the small pool to allocate the 16-byte range here as it is not
530 * worth having a special pool for these or additional cases to handle freeing
531 * the iod.
532 */
533 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
534 struct request *req, struct nvme_iod *iod)
535 {
536 struct nvme_dsm_range *range =
537 (struct nvme_dsm_range *)iod_list(iod)[0];
538 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
539
540 range->cattr = cpu_to_le32(0);
541 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
542 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
543
544 memset(cmnd, 0, sizeof(*cmnd));
545 cmnd->dsm.opcode = nvme_cmd_dsm;
546 cmnd->dsm.command_id = req->tag;
547 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
548 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
549 cmnd->dsm.nr = 0;
550 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
551
552 if (++nvmeq->sq_tail == nvmeq->q_depth)
553 nvmeq->sq_tail = 0;
554 writel(nvmeq->sq_tail, nvmeq->q_db);
555 }
556
557 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
558 int cmdid)
559 {
560 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
561
562 memset(cmnd, 0, sizeof(*cmnd));
563 cmnd->common.opcode = nvme_cmd_flush;
564 cmnd->common.command_id = cmdid;
565 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
566
567 if (++nvmeq->sq_tail == nvmeq->q_depth)
568 nvmeq->sq_tail = 0;
569 writel(nvmeq->sq_tail, nvmeq->q_db);
570 }
571
572 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
573 struct nvme_ns *ns)
574 {
575 struct request *req = iod->private;
576 struct nvme_command *cmnd;
577 u16 control = 0;
578 u32 dsmgmt = 0;
579
580 if (req->cmd_flags & REQ_FUA)
581 control |= NVME_RW_FUA;
582 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
583 control |= NVME_RW_LR;
584
585 if (req->cmd_flags & REQ_RAHEAD)
586 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
587
588 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
589 memset(cmnd, 0, sizeof(*cmnd));
590
591 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
592 cmnd->rw.command_id = req->tag;
593 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
594 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
595 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
596 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
597 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
598 cmnd->rw.control = cpu_to_le16(control);
599 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
600
601 if (++nvmeq->sq_tail == nvmeq->q_depth)
602 nvmeq->sq_tail = 0;
603 writel(nvmeq->sq_tail, nvmeq->q_db);
604
605 return 0;
606 }
607
608 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
609 const struct blk_mq_queue_data *bd)
610 {
611 struct nvme_ns *ns = hctx->queue->queuedata;
612 struct nvme_queue *nvmeq = hctx->driver_data;
613 struct request *req = bd->rq;
614 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
615 struct nvme_iod *iod;
616 int psegs = req->nr_phys_segments;
617 int result = BLK_MQ_RQ_QUEUE_BUSY;
618 enum dma_data_direction dma_dir;
619 unsigned size = !(req->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(req) :
620 sizeof(struct nvme_dsm_range);
621
622 /*
623 * Requeued IO has already been prepped
624 */
625 iod = req->special;
626 if (iod)
627 goto submit_iod;
628
629 iod = nvme_alloc_iod(psegs, size, ns->dev, GFP_ATOMIC);
630 if (!iod)
631 return result;
632
633 iod->private = req;
634 req->special = iod;
635
636 nvme_set_info(cmd, iod, req_completion);
637
638 if (req->cmd_flags & REQ_DISCARD) {
639 void *range;
640 /*
641 * We reuse the small pool to allocate the 16-byte range here
642 * as it is not worth having a special pool for these or
643 * additional cases to handle freeing the iod.
644 */
645 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
646 GFP_ATOMIC,
647 &iod->first_dma);
648 if (!range)
649 goto finish_cmd;
650 iod_list(iod)[0] = (__le64 *)range;
651 iod->npages = 0;
652 } else if (psegs) {
653 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
654
655 sg_init_table(iod->sg, psegs);
656 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
657 if (!iod->nents) {
658 result = BLK_MQ_RQ_QUEUE_ERROR;
659 goto finish_cmd;
660 }
661
662 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
663 goto finish_cmd;
664
665 if (blk_rq_bytes(req) != nvme_setup_prps(nvmeq->dev, iod,
666 blk_rq_bytes(req), GFP_ATOMIC))
667 goto finish_cmd;
668 }
669
670 blk_mq_start_request(req);
671
672 submit_iod:
673 spin_lock_irq(&nvmeq->q_lock);
674 if (req->cmd_flags & REQ_DISCARD)
675 nvme_submit_discard(nvmeq, ns, req, iod);
676 else if (req->cmd_flags & REQ_FLUSH)
677 nvme_submit_flush(nvmeq, ns, req->tag);
678 else
679 nvme_submit_iod(nvmeq, iod, ns);
680
681 nvme_process_cq(nvmeq);
682 spin_unlock_irq(&nvmeq->q_lock);
683 return BLK_MQ_RQ_QUEUE_OK;
684
685 finish_cmd:
686 nvme_finish_cmd(nvmeq, req->tag, NULL);
687 nvme_free_iod(nvmeq->dev, iod);
688 return result;
689 }
690
691 static int nvme_process_cq(struct nvme_queue *nvmeq)
692 {
693 u16 head, phase;
694
695 head = nvmeq->cq_head;
696 phase = nvmeq->cq_phase;
697
698 for (;;) {
699 void *ctx;
700 nvme_completion_fn fn;
701 struct nvme_completion cqe = nvmeq->cqes[head];
702 if ((le16_to_cpu(cqe.status) & 1) != phase)
703 break;
704 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
705 if (++head == nvmeq->q_depth) {
706 head = 0;
707 phase = !phase;
708 }
709 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
710 fn(nvmeq, ctx, &cqe);
711 }
712
713 /* If the controller ignores the cq head doorbell and continuously
714 * writes to the queue, it is theoretically possible to wrap around
715 * the queue twice and mistakenly return IRQ_NONE. Linux only
716 * requires that 0.1% of your interrupts are handled, so this isn't
717 * a big problem.
718 */
719 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
720 return 0;
721
722 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
723 nvmeq->cq_head = head;
724 nvmeq->cq_phase = phase;
725
726 nvmeq->cqe_seen = 1;
727 return 1;
728 }
729
730 /* Admin queue isn't initialized as a request queue. If at some point this
731 * happens anyway, make sure to notify the user */
732 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
733 const struct blk_mq_queue_data *bd)
734 {
735 WARN_ON_ONCE(1);
736 return BLK_MQ_RQ_QUEUE_ERROR;
737 }
738
739 static irqreturn_t nvme_irq(int irq, void *data)
740 {
741 irqreturn_t result;
742 struct nvme_queue *nvmeq = data;
743 spin_lock(&nvmeq->q_lock);
744 nvme_process_cq(nvmeq);
745 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
746 nvmeq->cqe_seen = 0;
747 spin_unlock(&nvmeq->q_lock);
748 return result;
749 }
750
751 static irqreturn_t nvme_irq_check(int irq, void *data)
752 {
753 struct nvme_queue *nvmeq = data;
754 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
755 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
756 return IRQ_NONE;
757 return IRQ_WAKE_THREAD;
758 }
759
760 static void nvme_abort_cmd_info(struct nvme_queue *nvmeq, struct nvme_cmd_info *
761 cmd_info)
762 {
763 spin_lock_irq(&nvmeq->q_lock);
764 cancel_cmd_info(cmd_info, NULL);
765 spin_unlock_irq(&nvmeq->q_lock);
766 }
767
768 struct sync_cmd_info {
769 struct task_struct *task;
770 u32 result;
771 int status;
772 };
773
774 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
775 struct nvme_completion *cqe)
776 {
777 struct sync_cmd_info *cmdinfo = ctx;
778 cmdinfo->result = le32_to_cpup(&cqe->result);
779 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
780 wake_up_process(cmdinfo->task);
781 }
782
783 /*
784 * Returns 0 on success. If the result is negative, it's a Linux error code;
785 * if the result is positive, it's an NVM Express status code
786 */
787 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
788 u32 *result, unsigned timeout)
789 {
790 int ret;
791 struct sync_cmd_info cmdinfo;
792 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
793 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
794
795 cmdinfo.task = current;
796 cmdinfo.status = -EINTR;
797
798 cmd->common.command_id = req->tag;
799
800 nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
801
802 set_current_state(TASK_KILLABLE);
803 ret = nvme_submit_cmd(nvmeq, cmd);
804 if (ret) {
805 nvme_finish_cmd(nvmeq, req->tag, NULL);
806 set_current_state(TASK_RUNNING);
807 }
808 schedule_timeout(timeout);
809
810 if (cmdinfo.status == -EINTR) {
811 nvme_abort_cmd_info(nvmeq, blk_mq_rq_to_pdu(req));
812 return -EINTR;
813 }
814
815 if (result)
816 *result = cmdinfo.result;
817
818 return cmdinfo.status;
819 }
820
821 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
822 {
823 struct nvme_queue *nvmeq = dev->queues[0];
824 struct nvme_command c;
825 struct nvme_cmd_info *cmd_info;
826 struct request *req;
827
828 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
829 if (IS_ERR(req))
830 return PTR_ERR(req);
831
832 cmd_info = blk_mq_rq_to_pdu(req);
833 nvme_set_info(cmd_info, req, async_req_completion);
834
835 memset(&c, 0, sizeof(c));
836 c.common.opcode = nvme_admin_async_event;
837 c.common.command_id = req->tag;
838
839 return __nvme_submit_cmd(nvmeq, &c);
840 }
841
842 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
843 struct nvme_command *cmd,
844 struct async_cmd_info *cmdinfo, unsigned timeout)
845 {
846 struct nvme_queue *nvmeq = dev->queues[0];
847 struct request *req;
848 struct nvme_cmd_info *cmd_rq;
849
850 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
851 if (IS_ERR(req))
852 return PTR_ERR(req);
853
854 req->timeout = timeout;
855 cmd_rq = blk_mq_rq_to_pdu(req);
856 cmdinfo->req = req;
857 nvme_set_info(cmd_rq, cmdinfo, async_completion);
858 cmdinfo->status = -EINTR;
859
860 cmd->common.command_id = req->tag;
861
862 return nvme_submit_cmd(nvmeq, cmd);
863 }
864
865 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
866 u32 *result, unsigned timeout)
867 {
868 int res;
869 struct request *req;
870
871 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
872 if (!req)
873 return -ENOMEM;
874 res = nvme_submit_sync_cmd(req, cmd, result, timeout);
875 blk_mq_free_request(req);
876 return res;
877 }
878
879 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
880 u32 *result)
881 {
882 return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
883 }
884
885 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
886 struct nvme_command *cmd, u32 *result)
887 {
888 int res;
889 struct request *req;
890
891 req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
892 false);
893 if (!req)
894 return -ENOMEM;
895 res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
896 blk_mq_free_request(req);
897 return res;
898 }
899
900 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
901 {
902 struct nvme_command c;
903
904 memset(&c, 0, sizeof(c));
905 c.delete_queue.opcode = opcode;
906 c.delete_queue.qid = cpu_to_le16(id);
907
908 return nvme_submit_admin_cmd(dev, &c, NULL);
909 }
910
911 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
912 struct nvme_queue *nvmeq)
913 {
914 struct nvme_command c;
915 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
916
917 memset(&c, 0, sizeof(c));
918 c.create_cq.opcode = nvme_admin_create_cq;
919 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
920 c.create_cq.cqid = cpu_to_le16(qid);
921 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
922 c.create_cq.cq_flags = cpu_to_le16(flags);
923 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
924
925 return nvme_submit_admin_cmd(dev, &c, NULL);
926 }
927
928 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
929 struct nvme_queue *nvmeq)
930 {
931 struct nvme_command c;
932 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
933
934 memset(&c, 0, sizeof(c));
935 c.create_sq.opcode = nvme_admin_create_sq;
936 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
937 c.create_sq.sqid = cpu_to_le16(qid);
938 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
939 c.create_sq.sq_flags = cpu_to_le16(flags);
940 c.create_sq.cqid = cpu_to_le16(qid);
941
942 return nvme_submit_admin_cmd(dev, &c, NULL);
943 }
944
945 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
946 {
947 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
948 }
949
950 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
951 {
952 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
953 }
954
955 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
956 dma_addr_t dma_addr)
957 {
958 struct nvme_command c;
959
960 memset(&c, 0, sizeof(c));
961 c.identify.opcode = nvme_admin_identify;
962 c.identify.nsid = cpu_to_le32(nsid);
963 c.identify.prp1 = cpu_to_le64(dma_addr);
964 c.identify.cns = cpu_to_le32(cns);
965
966 return nvme_submit_admin_cmd(dev, &c, NULL);
967 }
968
969 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
970 dma_addr_t dma_addr, u32 *result)
971 {
972 struct nvme_command c;
973
974 memset(&c, 0, sizeof(c));
975 c.features.opcode = nvme_admin_get_features;
976 c.features.nsid = cpu_to_le32(nsid);
977 c.features.prp1 = cpu_to_le64(dma_addr);
978 c.features.fid = cpu_to_le32(fid);
979
980 return nvme_submit_admin_cmd(dev, &c, result);
981 }
982
983 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
984 dma_addr_t dma_addr, u32 *result)
985 {
986 struct nvme_command c;
987
988 memset(&c, 0, sizeof(c));
989 c.features.opcode = nvme_admin_set_features;
990 c.features.prp1 = cpu_to_le64(dma_addr);
991 c.features.fid = cpu_to_le32(fid);
992 c.features.dword11 = cpu_to_le32(dword11);
993
994 return nvme_submit_admin_cmd(dev, &c, result);
995 }
996
997 /**
998 * nvme_abort_req - Attempt aborting a request
999 *
1000 * Schedule controller reset if the command was already aborted once before and
1001 * still hasn't been returned to the driver, or if this is the admin queue.
1002 */
1003 static void nvme_abort_req(struct request *req)
1004 {
1005 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1006 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1007 struct nvme_dev *dev = nvmeq->dev;
1008 struct request *abort_req;
1009 struct nvme_cmd_info *abort_cmd;
1010 struct nvme_command cmd;
1011
1012 if (!nvmeq->qid || cmd_rq->aborted) {
1013 if (work_busy(&dev->reset_work))
1014 return;
1015 list_del_init(&dev->node);
1016 dev_warn(&dev->pci_dev->dev,
1017 "I/O %d QID %d timeout, reset controller\n",
1018 req->tag, nvmeq->qid);
1019 dev->reset_workfn = nvme_reset_failed_dev;
1020 queue_work(nvme_workq, &dev->reset_work);
1021 return;
1022 }
1023
1024 if (!dev->abort_limit)
1025 return;
1026
1027 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1028 false);
1029 if (IS_ERR(abort_req))
1030 return;
1031
1032 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1033 nvme_set_info(abort_cmd, abort_req, abort_completion);
1034
1035 memset(&cmd, 0, sizeof(cmd));
1036 cmd.abort.opcode = nvme_admin_abort_cmd;
1037 cmd.abort.cid = req->tag;
1038 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1039 cmd.abort.command_id = abort_req->tag;
1040
1041 --dev->abort_limit;
1042 cmd_rq->aborted = 1;
1043
1044 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1045 nvmeq->qid);
1046 if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1047 dev_warn(nvmeq->q_dmadev,
1048 "Could not abort I/O %d QID %d",
1049 req->tag, nvmeq->qid);
1050 blk_mq_free_request(req);
1051 }
1052 }
1053
1054 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1055 struct request *req, void *data, bool reserved)
1056 {
1057 struct nvme_queue *nvmeq = data;
1058 void *ctx;
1059 nvme_completion_fn fn;
1060 struct nvme_cmd_info *cmd;
1061 static struct nvme_completion cqe = {
1062 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1063 };
1064
1065 cmd = blk_mq_rq_to_pdu(req);
1066
1067 if (cmd->ctx == CMD_CTX_CANCELLED)
1068 return;
1069
1070 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1071 req->tag, nvmeq->qid);
1072 ctx = cancel_cmd_info(cmd, &fn);
1073 fn(nvmeq, ctx, &cqe);
1074 }
1075
1076 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1077 {
1078 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1079 struct nvme_queue *nvmeq = cmd->nvmeq;
1080
1081 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1082 nvmeq->qid);
1083 if (nvmeq->dev->initialized)
1084 nvme_abort_req(req);
1085
1086 /*
1087 * The aborted req will be completed on receiving the abort req.
1088 * We enable the timer again. If hit twice, it'll cause a device reset,
1089 * as the device then is in a faulty state.
1090 */
1091 return BLK_EH_RESET_TIMER;
1092 }
1093
1094 static void nvme_free_queue(struct nvme_queue *nvmeq)
1095 {
1096 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1097 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1098 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1099 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1100 kfree(nvmeq);
1101 }
1102
1103 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1104 {
1105 LLIST_HEAD(q_list);
1106 struct nvme_queue *nvmeq, *next;
1107 struct llist_node *entry;
1108 int i;
1109
1110 for (i = dev->queue_count - 1; i >= lowest; i--) {
1111 struct nvme_queue *nvmeq = dev->queues[i];
1112 llist_add(&nvmeq->node, &q_list);
1113 dev->queue_count--;
1114 dev->queues[i] = NULL;
1115 }
1116 synchronize_rcu();
1117 entry = llist_del_all(&q_list);
1118 llist_for_each_entry_safe(nvmeq, next, entry, node)
1119 nvme_free_queue(nvmeq);
1120 }
1121
1122 /**
1123 * nvme_suspend_queue - put queue into suspended state
1124 * @nvmeq - queue to suspend
1125 */
1126 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1127 {
1128 int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1129
1130 spin_lock_irq(&nvmeq->q_lock);
1131 nvmeq->dev->online_queues--;
1132 spin_unlock_irq(&nvmeq->q_lock);
1133
1134 irq_set_affinity_hint(vector, NULL);
1135 free_irq(vector, nvmeq);
1136
1137 return 0;
1138 }
1139
1140 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1141 {
1142 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1143
1144 spin_lock_irq(&nvmeq->q_lock);
1145 nvme_process_cq(nvmeq);
1146 if (hctx && hctx->tags)
1147 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1148 spin_unlock_irq(&nvmeq->q_lock);
1149 }
1150
1151 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1152 {
1153 struct nvme_queue *nvmeq = dev->queues[qid];
1154
1155 if (!nvmeq)
1156 return;
1157 if (nvme_suspend_queue(nvmeq))
1158 return;
1159
1160 /* Don't tell the adapter to delete the admin queue.
1161 * Don't tell a removed adapter to delete IO queues. */
1162 if (qid && readl(&dev->bar->csts) != -1) {
1163 adapter_delete_sq(dev, qid);
1164 adapter_delete_cq(dev, qid);
1165 }
1166 nvme_clear_queue(nvmeq);
1167 }
1168
1169 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1170 int depth, int vector)
1171 {
1172 struct device *dmadev = &dev->pci_dev->dev;
1173 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1174 if (!nvmeq)
1175 return NULL;
1176
1177 nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1178 &nvmeq->cq_dma_addr, GFP_KERNEL);
1179 if (!nvmeq->cqes)
1180 goto free_nvmeq;
1181
1182 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1183 &nvmeq->sq_dma_addr, GFP_KERNEL);
1184 if (!nvmeq->sq_cmds)
1185 goto free_cqdma;
1186
1187 nvmeq->q_dmadev = dmadev;
1188 nvmeq->dev = dev;
1189 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1190 dev->instance, qid);
1191 spin_lock_init(&nvmeq->q_lock);
1192 nvmeq->cq_head = 0;
1193 nvmeq->cq_phase = 1;
1194 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1195 nvmeq->q_depth = depth;
1196 nvmeq->cq_vector = vector;
1197 nvmeq->qid = qid;
1198 dev->queue_count++;
1199 dev->queues[qid] = nvmeq;
1200
1201 return nvmeq;
1202
1203 free_cqdma:
1204 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1205 nvmeq->cq_dma_addr);
1206 free_nvmeq:
1207 kfree(nvmeq);
1208 return NULL;
1209 }
1210
1211 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1212 const char *name)
1213 {
1214 if (use_threaded_interrupts)
1215 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1216 nvme_irq_check, nvme_irq, IRQF_SHARED,
1217 name, nvmeq);
1218 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1219 IRQF_SHARED, name, nvmeq);
1220 }
1221
1222 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1223 {
1224 struct nvme_dev *dev = nvmeq->dev;
1225
1226 spin_lock_irq(&nvmeq->q_lock);
1227 nvmeq->sq_tail = 0;
1228 nvmeq->cq_head = 0;
1229 nvmeq->cq_phase = 1;
1230 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1231 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1232 dev->online_queues++;
1233 spin_unlock_irq(&nvmeq->q_lock);
1234 }
1235
1236 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1237 {
1238 struct nvme_dev *dev = nvmeq->dev;
1239 int result;
1240
1241 result = adapter_alloc_cq(dev, qid, nvmeq);
1242 if (result < 0)
1243 return result;
1244
1245 result = adapter_alloc_sq(dev, qid, nvmeq);
1246 if (result < 0)
1247 goto release_cq;
1248
1249 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1250 if (result < 0)
1251 goto release_sq;
1252
1253 nvme_init_queue(nvmeq, qid);
1254 return result;
1255
1256 release_sq:
1257 adapter_delete_sq(dev, qid);
1258 release_cq:
1259 adapter_delete_cq(dev, qid);
1260 return result;
1261 }
1262
1263 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1264 {
1265 unsigned long timeout;
1266 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1267
1268 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1269
1270 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1271 msleep(100);
1272 if (fatal_signal_pending(current))
1273 return -EINTR;
1274 if (time_after(jiffies, timeout)) {
1275 dev_err(&dev->pci_dev->dev,
1276 "Device not ready; aborting %s\n", enabled ?
1277 "initialisation" : "reset");
1278 return -ENODEV;
1279 }
1280 }
1281
1282 return 0;
1283 }
1284
1285 /*
1286 * If the device has been passed off to us in an enabled state, just clear
1287 * the enabled bit. The spec says we should set the 'shutdown notification
1288 * bits', but doing so may cause the device to complete commands to the
1289 * admin queue ... and we don't know what memory that might be pointing at!
1290 */
1291 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1292 {
1293 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1294 dev->ctrl_config &= ~NVME_CC_ENABLE;
1295 writel(dev->ctrl_config, &dev->bar->cc);
1296
1297 return nvme_wait_ready(dev, cap, false);
1298 }
1299
1300 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1301 {
1302 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1303 dev->ctrl_config |= NVME_CC_ENABLE;
1304 writel(dev->ctrl_config, &dev->bar->cc);
1305
1306 return nvme_wait_ready(dev, cap, true);
1307 }
1308
1309 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1310 {
1311 unsigned long timeout;
1312
1313 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1314 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1315
1316 writel(dev->ctrl_config, &dev->bar->cc);
1317
1318 timeout = SHUTDOWN_TIMEOUT + jiffies;
1319 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1320 NVME_CSTS_SHST_CMPLT) {
1321 msleep(100);
1322 if (fatal_signal_pending(current))
1323 return -EINTR;
1324 if (time_after(jiffies, timeout)) {
1325 dev_err(&dev->pci_dev->dev,
1326 "Device shutdown incomplete; abort shutdown\n");
1327 return -ENODEV;
1328 }
1329 }
1330
1331 return 0;
1332 }
1333
1334 static struct blk_mq_ops nvme_mq_admin_ops = {
1335 .queue_rq = nvme_admin_queue_rq,
1336 .map_queue = blk_mq_map_queue,
1337 .init_hctx = nvme_admin_init_hctx,
1338 .init_request = nvme_admin_init_request,
1339 .timeout = nvme_timeout,
1340 };
1341
1342 static struct blk_mq_ops nvme_mq_ops = {
1343 .queue_rq = nvme_queue_rq,
1344 .map_queue = blk_mq_map_queue,
1345 .init_hctx = nvme_init_hctx,
1346 .init_request = nvme_init_request,
1347 .timeout = nvme_timeout,
1348 };
1349
1350 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1351 {
1352 if (!dev->admin_q) {
1353 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1354 dev->admin_tagset.nr_hw_queues = 1;
1355 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1356 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1357 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1358 dev->admin_tagset.cmd_size = sizeof(struct nvme_cmd_info);
1359 dev->admin_tagset.driver_data = dev;
1360
1361 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1362 return -ENOMEM;
1363
1364 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1365 if (!dev->admin_q) {
1366 blk_mq_free_tag_set(&dev->admin_tagset);
1367 return -ENOMEM;
1368 }
1369 }
1370
1371 return 0;
1372 }
1373
1374 static void nvme_free_admin_tags(struct nvme_dev *dev)
1375 {
1376 if (dev->admin_q)
1377 blk_mq_free_tag_set(&dev->admin_tagset);
1378 }
1379
1380 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1381 {
1382 int result;
1383 u32 aqa;
1384 u64 cap = readq(&dev->bar->cap);
1385 struct nvme_queue *nvmeq;
1386 unsigned page_shift = PAGE_SHIFT;
1387 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1388 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1389
1390 if (page_shift < dev_page_min) {
1391 dev_err(&dev->pci_dev->dev,
1392 "Minimum device page size (%u) too large for "
1393 "host (%u)\n", 1 << dev_page_min,
1394 1 << page_shift);
1395 return -ENODEV;
1396 }
1397 if (page_shift > dev_page_max) {
1398 dev_info(&dev->pci_dev->dev,
1399 "Device maximum page size (%u) smaller than "
1400 "host (%u); enabling work-around\n",
1401 1 << dev_page_max, 1 << page_shift);
1402 page_shift = dev_page_max;
1403 }
1404
1405 result = nvme_disable_ctrl(dev, cap);
1406 if (result < 0)
1407 return result;
1408
1409 nvmeq = dev->queues[0];
1410 if (!nvmeq) {
1411 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH, 0);
1412 if (!nvmeq)
1413 return -ENOMEM;
1414 }
1415
1416 aqa = nvmeq->q_depth - 1;
1417 aqa |= aqa << 16;
1418
1419 dev->page_size = 1 << page_shift;
1420
1421 dev->ctrl_config = NVME_CC_CSS_NVM;
1422 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1423 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1424 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1425
1426 writel(aqa, &dev->bar->aqa);
1427 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1428 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1429
1430 result = nvme_enable_ctrl(dev, cap);
1431 if (result)
1432 goto free_nvmeq;
1433
1434 result = nvme_alloc_admin_tags(dev);
1435 if (result)
1436 goto free_nvmeq;
1437
1438 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1439 if (result)
1440 goto free_tags;
1441
1442 return result;
1443
1444 free_tags:
1445 nvme_free_admin_tags(dev);
1446 free_nvmeq:
1447 nvme_free_queues(dev, 0);
1448 return result;
1449 }
1450
1451 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1452 unsigned long addr, unsigned length)
1453 {
1454 int i, err, count, nents, offset;
1455 struct scatterlist *sg;
1456 struct page **pages;
1457 struct nvme_iod *iod;
1458
1459 if (addr & 3)
1460 return ERR_PTR(-EINVAL);
1461 if (!length || length > INT_MAX - PAGE_SIZE)
1462 return ERR_PTR(-EINVAL);
1463
1464 offset = offset_in_page(addr);
1465 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1466 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1467 if (!pages)
1468 return ERR_PTR(-ENOMEM);
1469
1470 err = get_user_pages_fast(addr, count, 1, pages);
1471 if (err < count) {
1472 count = err;
1473 err = -EFAULT;
1474 goto put_pages;
1475 }
1476
1477 err = -ENOMEM;
1478 iod = nvme_alloc_iod(count, length, dev, GFP_KERNEL);
1479 if (!iod)
1480 goto put_pages;
1481
1482 sg = iod->sg;
1483 sg_init_table(sg, count);
1484 for (i = 0; i < count; i++) {
1485 sg_set_page(&sg[i], pages[i],
1486 min_t(unsigned, length, PAGE_SIZE - offset),
1487 offset);
1488 length -= (PAGE_SIZE - offset);
1489 offset = 0;
1490 }
1491 sg_mark_end(&sg[i - 1]);
1492 iod->nents = count;
1493
1494 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1495 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1496 if (!nents)
1497 goto free_iod;
1498
1499 kfree(pages);
1500 return iod;
1501
1502 free_iod:
1503 kfree(iod);
1504 put_pages:
1505 for (i = 0; i < count; i++)
1506 put_page(pages[i]);
1507 kfree(pages);
1508 return ERR_PTR(err);
1509 }
1510
1511 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1512 struct nvme_iod *iod)
1513 {
1514 int i;
1515
1516 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1517 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1518
1519 for (i = 0; i < iod->nents; i++)
1520 put_page(sg_page(&iod->sg[i]));
1521 }
1522
1523 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1524 {
1525 struct nvme_dev *dev = ns->dev;
1526 struct nvme_user_io io;
1527 struct nvme_command c;
1528 unsigned length, meta_len;
1529 int status, i;
1530 struct nvme_iod *iod, *meta_iod = NULL;
1531 dma_addr_t meta_dma_addr;
1532 void *meta, *uninitialized_var(meta_mem);
1533
1534 if (copy_from_user(&io, uio, sizeof(io)))
1535 return -EFAULT;
1536 length = (io.nblocks + 1) << ns->lba_shift;
1537 meta_len = (io.nblocks + 1) * ns->ms;
1538
1539 if (meta_len && ((io.metadata & 3) || !io.metadata))
1540 return -EINVAL;
1541
1542 switch (io.opcode) {
1543 case nvme_cmd_write:
1544 case nvme_cmd_read:
1545 case nvme_cmd_compare:
1546 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1547 break;
1548 default:
1549 return -EINVAL;
1550 }
1551
1552 if (IS_ERR(iod))
1553 return PTR_ERR(iod);
1554
1555 memset(&c, 0, sizeof(c));
1556 c.rw.opcode = io.opcode;
1557 c.rw.flags = io.flags;
1558 c.rw.nsid = cpu_to_le32(ns->ns_id);
1559 c.rw.slba = cpu_to_le64(io.slba);
1560 c.rw.length = cpu_to_le16(io.nblocks);
1561 c.rw.control = cpu_to_le16(io.control);
1562 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1563 c.rw.reftag = cpu_to_le32(io.reftag);
1564 c.rw.apptag = cpu_to_le16(io.apptag);
1565 c.rw.appmask = cpu_to_le16(io.appmask);
1566
1567 if (meta_len) {
1568 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1569 meta_len);
1570 if (IS_ERR(meta_iod)) {
1571 status = PTR_ERR(meta_iod);
1572 meta_iod = NULL;
1573 goto unmap;
1574 }
1575
1576 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1577 &meta_dma_addr, GFP_KERNEL);
1578 if (!meta_mem) {
1579 status = -ENOMEM;
1580 goto unmap;
1581 }
1582
1583 if (io.opcode & 1) {
1584 int meta_offset = 0;
1585
1586 for (i = 0; i < meta_iod->nents; i++) {
1587 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1588 meta_iod->sg[i].offset;
1589 memcpy(meta_mem + meta_offset, meta,
1590 meta_iod->sg[i].length);
1591 kunmap_atomic(meta);
1592 meta_offset += meta_iod->sg[i].length;
1593 }
1594 }
1595
1596 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1597 }
1598
1599 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1600 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1601 c.rw.prp2 = cpu_to_le64(iod->first_dma);
1602
1603 if (length != (io.nblocks + 1) << ns->lba_shift)
1604 status = -ENOMEM;
1605 else
1606 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1607
1608 if (meta_len) {
1609 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1610 int meta_offset = 0;
1611
1612 for (i = 0; i < meta_iod->nents; i++) {
1613 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1614 meta_iod->sg[i].offset;
1615 memcpy(meta, meta_mem + meta_offset,
1616 meta_iod->sg[i].length);
1617 kunmap_atomic(meta);
1618 meta_offset += meta_iod->sg[i].length;
1619 }
1620 }
1621
1622 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1623 meta_dma_addr);
1624 }
1625
1626 unmap:
1627 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1628 nvme_free_iod(dev, iod);
1629
1630 if (meta_iod) {
1631 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1632 nvme_free_iod(dev, meta_iod);
1633 }
1634
1635 return status;
1636 }
1637
1638 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1639 struct nvme_passthru_cmd __user *ucmd)
1640 {
1641 struct nvme_passthru_cmd cmd;
1642 struct nvme_command c;
1643 int status, length;
1644 struct nvme_iod *uninitialized_var(iod);
1645 unsigned timeout;
1646
1647 if (!capable(CAP_SYS_ADMIN))
1648 return -EACCES;
1649 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1650 return -EFAULT;
1651
1652 memset(&c, 0, sizeof(c));
1653 c.common.opcode = cmd.opcode;
1654 c.common.flags = cmd.flags;
1655 c.common.nsid = cpu_to_le32(cmd.nsid);
1656 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1657 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1658 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1659 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1660 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1661 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1662 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1663 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1664
1665 length = cmd.data_len;
1666 if (cmd.data_len) {
1667 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1668 length);
1669 if (IS_ERR(iod))
1670 return PTR_ERR(iod);
1671 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1672 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1673 c.common.prp2 = cpu_to_le64(iod->first_dma);
1674 }
1675
1676 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1677 ADMIN_TIMEOUT;
1678
1679 if (length != cmd.data_len)
1680 status = -ENOMEM;
1681 else if (ns) {
1682 struct request *req;
1683
1684 req = blk_mq_alloc_request(ns->queue, WRITE,
1685 (GFP_KERNEL|__GFP_WAIT), false);
1686 if (!req)
1687 status = -ENOMEM;
1688 else {
1689 status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1690 timeout);
1691 blk_mq_free_request(req);
1692 }
1693 } else
1694 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1695
1696 if (cmd.data_len) {
1697 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1698 nvme_free_iod(dev, iod);
1699 }
1700
1701 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1702 sizeof(cmd.result)))
1703 status = -EFAULT;
1704
1705 return status;
1706 }
1707
1708 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1709 unsigned long arg)
1710 {
1711 struct nvme_ns *ns = bdev->bd_disk->private_data;
1712
1713 switch (cmd) {
1714 case NVME_IOCTL_ID:
1715 force_successful_syscall_return();
1716 return ns->ns_id;
1717 case NVME_IOCTL_ADMIN_CMD:
1718 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1719 case NVME_IOCTL_IO_CMD:
1720 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1721 case NVME_IOCTL_SUBMIT_IO:
1722 return nvme_submit_io(ns, (void __user *)arg);
1723 case SG_GET_VERSION_NUM:
1724 return nvme_sg_get_version_num((void __user *)arg);
1725 case SG_IO:
1726 return nvme_sg_io(ns, (void __user *)arg);
1727 default:
1728 return -ENOTTY;
1729 }
1730 }
1731
1732 #ifdef CONFIG_COMPAT
1733 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1734 unsigned int cmd, unsigned long arg)
1735 {
1736 switch (cmd) {
1737 case SG_IO:
1738 return -ENOIOCTLCMD;
1739 }
1740 return nvme_ioctl(bdev, mode, cmd, arg);
1741 }
1742 #else
1743 #define nvme_compat_ioctl NULL
1744 #endif
1745
1746 static int nvme_open(struct block_device *bdev, fmode_t mode)
1747 {
1748 int ret = 0;
1749 struct nvme_ns *ns;
1750
1751 spin_lock(&dev_list_lock);
1752 ns = bdev->bd_disk->private_data;
1753 if (!ns)
1754 ret = -ENXIO;
1755 else if (!kref_get_unless_zero(&ns->dev->kref))
1756 ret = -ENXIO;
1757 spin_unlock(&dev_list_lock);
1758
1759 return ret;
1760 }
1761
1762 static void nvme_free_dev(struct kref *kref);
1763
1764 static void nvme_release(struct gendisk *disk, fmode_t mode)
1765 {
1766 struct nvme_ns *ns = disk->private_data;
1767 struct nvme_dev *dev = ns->dev;
1768
1769 kref_put(&dev->kref, nvme_free_dev);
1770 }
1771
1772 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1773 {
1774 /* some standard values */
1775 geo->heads = 1 << 6;
1776 geo->sectors = 1 << 5;
1777 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1778 return 0;
1779 }
1780
1781 static int nvme_revalidate_disk(struct gendisk *disk)
1782 {
1783 struct nvme_ns *ns = disk->private_data;
1784 struct nvme_dev *dev = ns->dev;
1785 struct nvme_id_ns *id;
1786 dma_addr_t dma_addr;
1787 int lbaf;
1788
1789 id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
1790 GFP_KERNEL);
1791 if (!id) {
1792 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
1793 __func__);
1794 return 0;
1795 }
1796
1797 if (nvme_identify(dev, ns->ns_id, 0, dma_addr))
1798 goto free;
1799
1800 lbaf = id->flbas & 0xf;
1801 ns->lba_shift = id->lbaf[lbaf].ds;
1802
1803 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1804 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1805 free:
1806 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1807 return 0;
1808 }
1809
1810 static const struct block_device_operations nvme_fops = {
1811 .owner = THIS_MODULE,
1812 .ioctl = nvme_ioctl,
1813 .compat_ioctl = nvme_compat_ioctl,
1814 .open = nvme_open,
1815 .release = nvme_release,
1816 .getgeo = nvme_getgeo,
1817 .revalidate_disk= nvme_revalidate_disk,
1818 };
1819
1820 static int nvme_kthread(void *data)
1821 {
1822 struct nvme_dev *dev, *next;
1823
1824 while (!kthread_should_stop()) {
1825 set_current_state(TASK_INTERRUPTIBLE);
1826 spin_lock(&dev_list_lock);
1827 list_for_each_entry_safe(dev, next, &dev_list, node) {
1828 int i;
1829 if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1830 dev->initialized) {
1831 if (work_busy(&dev->reset_work))
1832 continue;
1833 list_del_init(&dev->node);
1834 dev_warn(&dev->pci_dev->dev,
1835 "Failed status: %x, reset controller\n",
1836 readl(&dev->bar->csts));
1837 dev->reset_workfn = nvme_reset_failed_dev;
1838 queue_work(nvme_workq, &dev->reset_work);
1839 continue;
1840 }
1841 for (i = 0; i < dev->queue_count; i++) {
1842 struct nvme_queue *nvmeq = dev->queues[i];
1843 if (!nvmeq)
1844 continue;
1845 spin_lock_irq(&nvmeq->q_lock);
1846 nvme_process_cq(nvmeq);
1847
1848 while ((i == 0) && (dev->event_limit > 0)) {
1849 if (nvme_submit_async_admin_req(dev))
1850 break;
1851 dev->event_limit--;
1852 }
1853 spin_unlock_irq(&nvmeq->q_lock);
1854 }
1855 }
1856 spin_unlock(&dev_list_lock);
1857 schedule_timeout(round_jiffies_relative(HZ));
1858 }
1859 return 0;
1860 }
1861
1862 static void nvme_config_discard(struct nvme_ns *ns)
1863 {
1864 u32 logical_block_size = queue_logical_block_size(ns->queue);
1865 ns->queue->limits.discard_zeroes_data = 0;
1866 ns->queue->limits.discard_alignment = logical_block_size;
1867 ns->queue->limits.discard_granularity = logical_block_size;
1868 ns->queue->limits.max_discard_sectors = 0xffffffff;
1869 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1870 }
1871
1872 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1873 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1874 {
1875 struct nvme_ns *ns;
1876 struct gendisk *disk;
1877 int node = dev_to_node(&dev->pci_dev->dev);
1878 int lbaf;
1879
1880 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1881 return NULL;
1882
1883 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1884 if (!ns)
1885 return NULL;
1886 ns->queue = blk_mq_init_queue(&dev->tagset);
1887 if (IS_ERR(ns->queue))
1888 goto out_free_ns;
1889 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1890 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1891 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
1892 queue_flag_clear_unlocked(QUEUE_FLAG_IO_STAT, ns->queue);
1893 ns->dev = dev;
1894 ns->queue->queuedata = ns;
1895
1896 disk = alloc_disk_node(0, node);
1897 if (!disk)
1898 goto out_free_queue;
1899
1900 ns->ns_id = nsid;
1901 ns->disk = disk;
1902 lbaf = id->flbas & 0xf;
1903 ns->lba_shift = id->lbaf[lbaf].ds;
1904 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1905 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1906 if (dev->max_hw_sectors)
1907 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1908 if (dev->stripe_size)
1909 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
1910 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
1911 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1912
1913 disk->major = nvme_major;
1914 disk->first_minor = 0;
1915 disk->fops = &nvme_fops;
1916 disk->private_data = ns;
1917 disk->queue = ns->queue;
1918 disk->driverfs_dev = &dev->pci_dev->dev;
1919 disk->flags = GENHD_FL_EXT_DEVT;
1920 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1921 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1922
1923 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1924 nvme_config_discard(ns);
1925
1926 return ns;
1927
1928 out_free_queue:
1929 blk_cleanup_queue(ns->queue);
1930 out_free_ns:
1931 kfree(ns);
1932 return NULL;
1933 }
1934
1935 static void nvme_create_io_queues(struct nvme_dev *dev)
1936 {
1937 unsigned i;
1938
1939 for (i = dev->queue_count; i <= dev->max_qid; i++)
1940 if (!nvme_alloc_queue(dev, i, dev->q_depth, i - 1))
1941 break;
1942
1943 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
1944 if (nvme_create_queue(dev->queues[i], i))
1945 break;
1946 }
1947
1948 static int set_queue_count(struct nvme_dev *dev, int count)
1949 {
1950 int status;
1951 u32 result;
1952 u32 q_count = (count - 1) | ((count - 1) << 16);
1953
1954 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1955 &result);
1956 if (status < 0)
1957 return status;
1958 if (status > 0) {
1959 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
1960 status);
1961 return 0;
1962 }
1963 return min(result & 0xffff, result >> 16) + 1;
1964 }
1965
1966 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1967 {
1968 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1969 }
1970
1971 static int nvme_setup_io_queues(struct nvme_dev *dev)
1972 {
1973 struct nvme_queue *adminq = dev->queues[0];
1974 struct pci_dev *pdev = dev->pci_dev;
1975 int result, i, vecs, nr_io_queues, size;
1976
1977 nr_io_queues = num_possible_cpus();
1978 result = set_queue_count(dev, nr_io_queues);
1979 if (result <= 0)
1980 return result;
1981 if (result < nr_io_queues)
1982 nr_io_queues = result;
1983
1984 size = db_bar_size(dev, nr_io_queues);
1985 if (size > 8192) {
1986 iounmap(dev->bar);
1987 do {
1988 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1989 if (dev->bar)
1990 break;
1991 if (!--nr_io_queues)
1992 return -ENOMEM;
1993 size = db_bar_size(dev, nr_io_queues);
1994 } while (1);
1995 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1996 adminq->q_db = dev->dbs;
1997 }
1998
1999 /* Deregister the admin queue's interrupt */
2000 free_irq(dev->entry[0].vector, adminq);
2001
2002 for (i = 0; i < nr_io_queues; i++)
2003 dev->entry[i].entry = i;
2004 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2005 if (vecs < 0) {
2006 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2007 if (vecs < 0) {
2008 vecs = 1;
2009 } else {
2010 for (i = 0; i < vecs; i++)
2011 dev->entry[i].vector = i + pdev->irq;
2012 }
2013 }
2014
2015 /*
2016 * Should investigate if there's a performance win from allocating
2017 * more queues than interrupt vectors; it might allow the submission
2018 * path to scale better, even if the receive path is limited by the
2019 * number of interrupts.
2020 */
2021 nr_io_queues = vecs;
2022 dev->max_qid = nr_io_queues;
2023
2024 result = queue_request_irq(dev, adminq, adminq->irqname);
2025 if (result)
2026 goto free_queues;
2027
2028 /* Free previously allocated queues that are no longer usable */
2029 nvme_free_queues(dev, nr_io_queues + 1);
2030 nvme_create_io_queues(dev);
2031
2032 return 0;
2033
2034 free_queues:
2035 nvme_free_queues(dev, 1);
2036 return result;
2037 }
2038
2039 /*
2040 * Return: error value if an error occurred setting up the queues or calling
2041 * Identify Device. 0 if these succeeded, even if adding some of the
2042 * namespaces failed. At the moment, these failures are silent. TBD which
2043 * failures should be reported.
2044 */
2045 static int nvme_dev_add(struct nvme_dev *dev)
2046 {
2047 struct pci_dev *pdev = dev->pci_dev;
2048 int res;
2049 unsigned nn, i;
2050 struct nvme_ns *ns;
2051 struct nvme_id_ctrl *ctrl;
2052 struct nvme_id_ns *id_ns;
2053 void *mem;
2054 dma_addr_t dma_addr;
2055 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2056
2057 mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2058 if (!mem)
2059 return -ENOMEM;
2060
2061 res = nvme_identify(dev, 0, 1, dma_addr);
2062 if (res) {
2063 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2064 res = -EIO;
2065 goto out;
2066 }
2067
2068 ctrl = mem;
2069 nn = le32_to_cpup(&ctrl->nn);
2070 dev->oncs = le16_to_cpup(&ctrl->oncs);
2071 dev->abort_limit = ctrl->acl + 1;
2072 dev->vwc = ctrl->vwc;
2073 dev->event_limit = min(ctrl->aerl + 1, 8);
2074 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2075 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2076 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2077 if (ctrl->mdts)
2078 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2079 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2080 (pdev->device == 0x0953) && ctrl->vs[3]) {
2081 unsigned int max_hw_sectors;
2082
2083 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2084 max_hw_sectors = dev->stripe_size >> (shift - 9);
2085 if (dev->max_hw_sectors) {
2086 dev->max_hw_sectors = min(max_hw_sectors,
2087 dev->max_hw_sectors);
2088 } else
2089 dev->max_hw_sectors = max_hw_sectors;
2090 }
2091
2092 dev->tagset.ops = &nvme_mq_ops;
2093 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2094 dev->tagset.timeout = NVME_IO_TIMEOUT;
2095 dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2096 dev->tagset.queue_depth =
2097 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2098 dev->tagset.cmd_size = sizeof(struct nvme_cmd_info);
2099 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2100 dev->tagset.driver_data = dev;
2101
2102 if (blk_mq_alloc_tag_set(&dev->tagset))
2103 goto out;
2104
2105 id_ns = mem;
2106 for (i = 1; i <= nn; i++) {
2107 res = nvme_identify(dev, i, 0, dma_addr);
2108 if (res)
2109 continue;
2110
2111 if (id_ns->ncap == 0)
2112 continue;
2113
2114 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2115 dma_addr + 4096, NULL);
2116 if (res)
2117 memset(mem + 4096, 0, 4096);
2118
2119 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2120 if (ns)
2121 list_add_tail(&ns->list, &dev->namespaces);
2122 }
2123 list_for_each_entry(ns, &dev->namespaces, list)
2124 add_disk(ns->disk);
2125 res = 0;
2126
2127 out:
2128 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2129 return res;
2130 }
2131
2132 static int nvme_dev_map(struct nvme_dev *dev)
2133 {
2134 u64 cap;
2135 int bars, result = -ENOMEM;
2136 struct pci_dev *pdev = dev->pci_dev;
2137
2138 if (pci_enable_device_mem(pdev))
2139 return result;
2140
2141 dev->entry[0].vector = pdev->irq;
2142 pci_set_master(pdev);
2143 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2144 if (pci_request_selected_regions(pdev, bars, "nvme"))
2145 goto disable_pci;
2146
2147 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2148 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2149 goto disable;
2150
2151 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2152 if (!dev->bar)
2153 goto disable;
2154 if (readl(&dev->bar->csts) == -1) {
2155 result = -ENODEV;
2156 goto unmap;
2157 }
2158 cap = readq(&dev->bar->cap);
2159 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2160 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2161 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2162
2163 return 0;
2164
2165 unmap:
2166 iounmap(dev->bar);
2167 dev->bar = NULL;
2168 disable:
2169 pci_release_regions(pdev);
2170 disable_pci:
2171 pci_disable_device(pdev);
2172 return result;
2173 }
2174
2175 static void nvme_dev_unmap(struct nvme_dev *dev)
2176 {
2177 if (dev->pci_dev->msi_enabled)
2178 pci_disable_msi(dev->pci_dev);
2179 else if (dev->pci_dev->msix_enabled)
2180 pci_disable_msix(dev->pci_dev);
2181
2182 if (dev->bar) {
2183 iounmap(dev->bar);
2184 dev->bar = NULL;
2185 pci_release_regions(dev->pci_dev);
2186 }
2187
2188 if (pci_is_enabled(dev->pci_dev))
2189 pci_disable_device(dev->pci_dev);
2190 }
2191
2192 struct nvme_delq_ctx {
2193 struct task_struct *waiter;
2194 struct kthread_worker *worker;
2195 atomic_t refcount;
2196 };
2197
2198 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2199 {
2200 dq->waiter = current;
2201 mb();
2202
2203 for (;;) {
2204 set_current_state(TASK_KILLABLE);
2205 if (!atomic_read(&dq->refcount))
2206 break;
2207 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2208 fatal_signal_pending(current)) {
2209 set_current_state(TASK_RUNNING);
2210
2211 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2212 nvme_disable_queue(dev, 0);
2213
2214 send_sig(SIGKILL, dq->worker->task, 1);
2215 flush_kthread_worker(dq->worker);
2216 return;
2217 }
2218 }
2219 set_current_state(TASK_RUNNING);
2220 }
2221
2222 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2223 {
2224 atomic_dec(&dq->refcount);
2225 if (dq->waiter)
2226 wake_up_process(dq->waiter);
2227 }
2228
2229 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2230 {
2231 atomic_inc(&dq->refcount);
2232 return dq;
2233 }
2234
2235 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2236 {
2237 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2238
2239 nvme_clear_queue(nvmeq);
2240 nvme_put_dq(dq);
2241 }
2242
2243 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2244 kthread_work_func_t fn)
2245 {
2246 struct nvme_command c;
2247
2248 memset(&c, 0, sizeof(c));
2249 c.delete_queue.opcode = opcode;
2250 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2251
2252 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2253 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2254 ADMIN_TIMEOUT);
2255 }
2256
2257 static void nvme_del_cq_work_handler(struct kthread_work *work)
2258 {
2259 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2260 cmdinfo.work);
2261 nvme_del_queue_end(nvmeq);
2262 }
2263
2264 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2265 {
2266 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2267 nvme_del_cq_work_handler);
2268 }
2269
2270 static void nvme_del_sq_work_handler(struct kthread_work *work)
2271 {
2272 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2273 cmdinfo.work);
2274 int status = nvmeq->cmdinfo.status;
2275
2276 if (!status)
2277 status = nvme_delete_cq(nvmeq);
2278 if (status)
2279 nvme_del_queue_end(nvmeq);
2280 }
2281
2282 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2283 {
2284 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2285 nvme_del_sq_work_handler);
2286 }
2287
2288 static void nvme_del_queue_start(struct kthread_work *work)
2289 {
2290 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2291 cmdinfo.work);
2292 allow_signal(SIGKILL);
2293 if (nvme_delete_sq(nvmeq))
2294 nvme_del_queue_end(nvmeq);
2295 }
2296
2297 static void nvme_disable_io_queues(struct nvme_dev *dev)
2298 {
2299 int i;
2300 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2301 struct nvme_delq_ctx dq;
2302 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2303 &worker, "nvme%d", dev->instance);
2304
2305 if (IS_ERR(kworker_task)) {
2306 dev_err(&dev->pci_dev->dev,
2307 "Failed to create queue del task\n");
2308 for (i = dev->queue_count - 1; i > 0; i--)
2309 nvme_disable_queue(dev, i);
2310 return;
2311 }
2312
2313 dq.waiter = NULL;
2314 atomic_set(&dq.refcount, 0);
2315 dq.worker = &worker;
2316 for (i = dev->queue_count - 1; i > 0; i--) {
2317 struct nvme_queue *nvmeq = dev->queues[i];
2318
2319 if (nvme_suspend_queue(nvmeq))
2320 continue;
2321 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2322 nvmeq->cmdinfo.worker = dq.worker;
2323 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2324 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2325 }
2326 nvme_wait_dq(&dq, dev);
2327 kthread_stop(kworker_task);
2328 }
2329
2330 /*
2331 * Remove the node from the device list and check
2332 * for whether or not we need to stop the nvme_thread.
2333 */
2334 static void nvme_dev_list_remove(struct nvme_dev *dev)
2335 {
2336 struct task_struct *tmp = NULL;
2337
2338 spin_lock(&dev_list_lock);
2339 list_del_init(&dev->node);
2340 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2341 tmp = nvme_thread;
2342 nvme_thread = NULL;
2343 }
2344 spin_unlock(&dev_list_lock);
2345
2346 if (tmp)
2347 kthread_stop(tmp);
2348 }
2349
2350 static void nvme_dev_shutdown(struct nvme_dev *dev)
2351 {
2352 int i;
2353 u32 csts = -1;
2354
2355 dev->initialized = 0;
2356 nvme_dev_list_remove(dev);
2357
2358 if (dev->bar)
2359 csts = readl(&dev->bar->csts);
2360 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2361 for (i = dev->queue_count - 1; i >= 0; i--) {
2362 struct nvme_queue *nvmeq = dev->queues[i];
2363 nvme_suspend_queue(nvmeq);
2364 nvme_clear_queue(nvmeq);
2365 }
2366 } else {
2367 nvme_disable_io_queues(dev);
2368 nvme_shutdown_ctrl(dev);
2369 nvme_disable_queue(dev, 0);
2370 }
2371 nvme_dev_unmap(dev);
2372 }
2373
2374 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2375 {
2376 if (dev->admin_q && !blk_queue_dying(dev->admin_q))
2377 blk_cleanup_queue(dev->admin_q);
2378 }
2379
2380 static void nvme_dev_remove(struct nvme_dev *dev)
2381 {
2382 struct nvme_ns *ns;
2383
2384 list_for_each_entry(ns, &dev->namespaces, list) {
2385 if (ns->disk->flags & GENHD_FL_UP)
2386 del_gendisk(ns->disk);
2387 if (!blk_queue_dying(ns->queue))
2388 blk_cleanup_queue(ns->queue);
2389 }
2390 }
2391
2392 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2393 {
2394 struct device *dmadev = &dev->pci_dev->dev;
2395 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2396 PAGE_SIZE, PAGE_SIZE, 0);
2397 if (!dev->prp_page_pool)
2398 return -ENOMEM;
2399
2400 /* Optimisation for I/Os between 4k and 128k */
2401 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2402 256, 256, 0);
2403 if (!dev->prp_small_pool) {
2404 dma_pool_destroy(dev->prp_page_pool);
2405 return -ENOMEM;
2406 }
2407 return 0;
2408 }
2409
2410 static void nvme_release_prp_pools(struct nvme_dev *dev)
2411 {
2412 dma_pool_destroy(dev->prp_page_pool);
2413 dma_pool_destroy(dev->prp_small_pool);
2414 }
2415
2416 static DEFINE_IDA(nvme_instance_ida);
2417
2418 static int nvme_set_instance(struct nvme_dev *dev)
2419 {
2420 int instance, error;
2421
2422 do {
2423 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2424 return -ENODEV;
2425
2426 spin_lock(&dev_list_lock);
2427 error = ida_get_new(&nvme_instance_ida, &instance);
2428 spin_unlock(&dev_list_lock);
2429 } while (error == -EAGAIN);
2430
2431 if (error)
2432 return -ENODEV;
2433
2434 dev->instance = instance;
2435 return 0;
2436 }
2437
2438 static void nvme_release_instance(struct nvme_dev *dev)
2439 {
2440 spin_lock(&dev_list_lock);
2441 ida_remove(&nvme_instance_ida, dev->instance);
2442 spin_unlock(&dev_list_lock);
2443 }
2444
2445 static void nvme_free_namespaces(struct nvme_dev *dev)
2446 {
2447 struct nvme_ns *ns, *next;
2448
2449 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2450 list_del(&ns->list);
2451
2452 spin_lock(&dev_list_lock);
2453 ns->disk->private_data = NULL;
2454 spin_unlock(&dev_list_lock);
2455
2456 put_disk(ns->disk);
2457 kfree(ns);
2458 }
2459 }
2460
2461 static void nvme_free_dev(struct kref *kref)
2462 {
2463 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2464
2465 pci_dev_put(dev->pci_dev);
2466 nvme_free_namespaces(dev);
2467 blk_mq_free_tag_set(&dev->tagset);
2468 kfree(dev->queues);
2469 kfree(dev->entry);
2470 kfree(dev);
2471 }
2472
2473 static int nvme_dev_open(struct inode *inode, struct file *f)
2474 {
2475 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2476 miscdev);
2477 kref_get(&dev->kref);
2478 f->private_data = dev;
2479 return 0;
2480 }
2481
2482 static int nvme_dev_release(struct inode *inode, struct file *f)
2483 {
2484 struct nvme_dev *dev = f->private_data;
2485 kref_put(&dev->kref, nvme_free_dev);
2486 return 0;
2487 }
2488
2489 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2490 {
2491 struct nvme_dev *dev = f->private_data;
2492 struct nvme_ns *ns;
2493
2494 switch (cmd) {
2495 case NVME_IOCTL_ADMIN_CMD:
2496 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2497 case NVME_IOCTL_IO_CMD:
2498 if (list_empty(&dev->namespaces))
2499 return -ENOTTY;
2500 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2501 return nvme_user_cmd(dev, ns, (void __user *)arg);
2502 default:
2503 return -ENOTTY;
2504 }
2505 }
2506
2507 static const struct file_operations nvme_dev_fops = {
2508 .owner = THIS_MODULE,
2509 .open = nvme_dev_open,
2510 .release = nvme_dev_release,
2511 .unlocked_ioctl = nvme_dev_ioctl,
2512 .compat_ioctl = nvme_dev_ioctl,
2513 };
2514
2515 static void nvme_set_irq_hints(struct nvme_dev *dev)
2516 {
2517 struct nvme_queue *nvmeq;
2518 int i;
2519
2520 for (i = 0; i < dev->online_queues; i++) {
2521 nvmeq = dev->queues[i];
2522
2523 if (!nvmeq->hctx)
2524 continue;
2525
2526 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2527 nvmeq->hctx->cpumask);
2528 }
2529 }
2530
2531 static int nvme_dev_start(struct nvme_dev *dev)
2532 {
2533 int result;
2534 bool start_thread = false;
2535
2536 result = nvme_dev_map(dev);
2537 if (result)
2538 return result;
2539
2540 result = nvme_configure_admin_queue(dev);
2541 if (result)
2542 goto unmap;
2543
2544 spin_lock(&dev_list_lock);
2545 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2546 start_thread = true;
2547 nvme_thread = NULL;
2548 }
2549 list_add(&dev->node, &dev_list);
2550 spin_unlock(&dev_list_lock);
2551
2552 if (start_thread) {
2553 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2554 wake_up_all(&nvme_kthread_wait);
2555 } else
2556 wait_event_killable(nvme_kthread_wait, nvme_thread);
2557
2558 if (IS_ERR_OR_NULL(nvme_thread)) {
2559 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2560 goto disable;
2561 }
2562
2563 nvme_init_queue(dev->queues[0], 0);
2564
2565 result = nvme_setup_io_queues(dev);
2566 if (result)
2567 goto disable;
2568
2569 nvme_set_irq_hints(dev);
2570
2571 return result;
2572
2573 disable:
2574 nvme_disable_queue(dev, 0);
2575 nvme_dev_list_remove(dev);
2576 unmap:
2577 nvme_dev_unmap(dev);
2578 return result;
2579 }
2580
2581 static int nvme_remove_dead_ctrl(void *arg)
2582 {
2583 struct nvme_dev *dev = (struct nvme_dev *)arg;
2584 struct pci_dev *pdev = dev->pci_dev;
2585
2586 if (pci_get_drvdata(pdev))
2587 pci_stop_and_remove_bus_device_locked(pdev);
2588 kref_put(&dev->kref, nvme_free_dev);
2589 return 0;
2590 }
2591
2592 static void nvme_remove_disks(struct work_struct *ws)
2593 {
2594 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2595
2596 nvme_free_queues(dev, 1);
2597 nvme_dev_remove(dev);
2598 }
2599
2600 static int nvme_dev_resume(struct nvme_dev *dev)
2601 {
2602 int ret;
2603
2604 ret = nvme_dev_start(dev);
2605 if (ret)
2606 return ret;
2607 if (dev->online_queues < 2) {
2608 spin_lock(&dev_list_lock);
2609 dev->reset_workfn = nvme_remove_disks;
2610 queue_work(nvme_workq, &dev->reset_work);
2611 spin_unlock(&dev_list_lock);
2612 }
2613 dev->initialized = 1;
2614 return 0;
2615 }
2616
2617 static void nvme_dev_reset(struct nvme_dev *dev)
2618 {
2619 nvme_dev_shutdown(dev);
2620 if (nvme_dev_resume(dev)) {
2621 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2622 kref_get(&dev->kref);
2623 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2624 dev->instance))) {
2625 dev_err(&dev->pci_dev->dev,
2626 "Failed to start controller remove task\n");
2627 kref_put(&dev->kref, nvme_free_dev);
2628 }
2629 }
2630 }
2631
2632 static void nvme_reset_failed_dev(struct work_struct *ws)
2633 {
2634 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2635 nvme_dev_reset(dev);
2636 }
2637
2638 static void nvme_reset_workfn(struct work_struct *work)
2639 {
2640 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2641 dev->reset_workfn(work);
2642 }
2643
2644 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2645 {
2646 int node, result = -ENOMEM;
2647 struct nvme_dev *dev;
2648
2649 node = dev_to_node(&pdev->dev);
2650 if (node == NUMA_NO_NODE)
2651 set_dev_node(&pdev->dev, 0);
2652
2653 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2654 if (!dev)
2655 return -ENOMEM;
2656 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2657 GFP_KERNEL, node);
2658 if (!dev->entry)
2659 goto free;
2660 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2661 GFP_KERNEL, node);
2662 if (!dev->queues)
2663 goto free;
2664
2665 INIT_LIST_HEAD(&dev->namespaces);
2666 dev->reset_workfn = nvme_reset_failed_dev;
2667 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2668 dev->pci_dev = pci_dev_get(pdev);
2669 pci_set_drvdata(pdev, dev);
2670 result = nvme_set_instance(dev);
2671 if (result)
2672 goto put_pci;
2673
2674 result = nvme_setup_prp_pools(dev);
2675 if (result)
2676 goto release;
2677
2678 kref_init(&dev->kref);
2679 result = nvme_dev_start(dev);
2680 if (result)
2681 goto release_pools;
2682
2683 if (dev->online_queues > 1)
2684 result = nvme_dev_add(dev);
2685 if (result)
2686 goto shutdown;
2687
2688 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2689 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2690 dev->miscdev.parent = &pdev->dev;
2691 dev->miscdev.name = dev->name;
2692 dev->miscdev.fops = &nvme_dev_fops;
2693 result = misc_register(&dev->miscdev);
2694 if (result)
2695 goto remove;
2696
2697 nvme_set_irq_hints(dev);
2698
2699 dev->initialized = 1;
2700 return 0;
2701
2702 remove:
2703 nvme_dev_remove(dev);
2704 nvme_dev_remove_admin(dev);
2705 nvme_free_namespaces(dev);
2706 shutdown:
2707 nvme_dev_shutdown(dev);
2708 release_pools:
2709 nvme_free_queues(dev, 0);
2710 nvme_release_prp_pools(dev);
2711 release:
2712 nvme_release_instance(dev);
2713 put_pci:
2714 pci_dev_put(dev->pci_dev);
2715 free:
2716 kfree(dev->queues);
2717 kfree(dev->entry);
2718 kfree(dev);
2719 return result;
2720 }
2721
2722 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2723 {
2724 struct nvme_dev *dev = pci_get_drvdata(pdev);
2725
2726 if (prepare)
2727 nvme_dev_shutdown(dev);
2728 else
2729 nvme_dev_resume(dev);
2730 }
2731
2732 static void nvme_shutdown(struct pci_dev *pdev)
2733 {
2734 struct nvme_dev *dev = pci_get_drvdata(pdev);
2735 nvme_dev_shutdown(dev);
2736 }
2737
2738 static void nvme_remove(struct pci_dev *pdev)
2739 {
2740 struct nvme_dev *dev = pci_get_drvdata(pdev);
2741
2742 spin_lock(&dev_list_lock);
2743 list_del_init(&dev->node);
2744 spin_unlock(&dev_list_lock);
2745
2746 pci_set_drvdata(pdev, NULL);
2747 flush_work(&dev->reset_work);
2748 misc_deregister(&dev->miscdev);
2749 nvme_dev_remove(dev);
2750 nvme_dev_shutdown(dev);
2751 nvme_dev_remove_admin(dev);
2752 nvme_free_queues(dev, 0);
2753 nvme_free_admin_tags(dev);
2754 nvme_release_instance(dev);
2755 nvme_release_prp_pools(dev);
2756 kref_put(&dev->kref, nvme_free_dev);
2757 }
2758
2759 /* These functions are yet to be implemented */
2760 #define nvme_error_detected NULL
2761 #define nvme_dump_registers NULL
2762 #define nvme_link_reset NULL
2763 #define nvme_slot_reset NULL
2764 #define nvme_error_resume NULL
2765
2766 #ifdef CONFIG_PM_SLEEP
2767 static int nvme_suspend(struct device *dev)
2768 {
2769 struct pci_dev *pdev = to_pci_dev(dev);
2770 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2771
2772 nvme_dev_shutdown(ndev);
2773 return 0;
2774 }
2775
2776 static int nvme_resume(struct device *dev)
2777 {
2778 struct pci_dev *pdev = to_pci_dev(dev);
2779 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2780
2781 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2782 ndev->reset_workfn = nvme_reset_failed_dev;
2783 queue_work(nvme_workq, &ndev->reset_work);
2784 }
2785 return 0;
2786 }
2787 #endif
2788
2789 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2790
2791 static const struct pci_error_handlers nvme_err_handler = {
2792 .error_detected = nvme_error_detected,
2793 .mmio_enabled = nvme_dump_registers,
2794 .link_reset = nvme_link_reset,
2795 .slot_reset = nvme_slot_reset,
2796 .resume = nvme_error_resume,
2797 .reset_notify = nvme_reset_notify,
2798 };
2799
2800 /* Move to pci_ids.h later */
2801 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2802
2803 static const struct pci_device_id nvme_id_table[] = {
2804 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2805 { 0, }
2806 };
2807 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2808
2809 static struct pci_driver nvme_driver = {
2810 .name = "nvme",
2811 .id_table = nvme_id_table,
2812 .probe = nvme_probe,
2813 .remove = nvme_remove,
2814 .shutdown = nvme_shutdown,
2815 .driver = {
2816 .pm = &nvme_dev_pm_ops,
2817 },
2818 .err_handler = &nvme_err_handler,
2819 };
2820
2821 static int __init nvme_init(void)
2822 {
2823 int result;
2824
2825 init_waitqueue_head(&nvme_kthread_wait);
2826
2827 nvme_workq = create_singlethread_workqueue("nvme");
2828 if (!nvme_workq)
2829 return -ENOMEM;
2830
2831 result = register_blkdev(nvme_major, "nvme");
2832 if (result < 0)
2833 goto kill_workq;
2834 else if (result > 0)
2835 nvme_major = result;
2836
2837 result = pci_register_driver(&nvme_driver);
2838 if (result)
2839 goto unregister_blkdev;
2840 return 0;
2841
2842 unregister_blkdev:
2843 unregister_blkdev(nvme_major, "nvme");
2844 kill_workq:
2845 destroy_workqueue(nvme_workq);
2846 return result;
2847 }
2848
2849 static void __exit nvme_exit(void)
2850 {
2851 pci_unregister_driver(&nvme_driver);
2852 unregister_hotcpu_notifier(&nvme_nb);
2853 unregister_blkdev(nvme_major, "nvme");
2854 destroy_workqueue(nvme_workq);
2855 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2856 _nvme_check_size();
2857 }
2858
2859 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2860 MODULE_LICENSE("GPL");
2861 MODULE_VERSION("0.9");
2862 module_init(nvme_init);
2863 module_exit(nvme_exit);
This page took 0.0872540000000001 seconds and 4 git commands to generate.