Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[deliverable/linux.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/nvme.h>
16 #include <linux/bio.h>
17 #include <linux/bitops.h>
18 #include <linux/blkdev.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/percpu.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #include <trace/events/block.h>
46
47 #define NVME_Q_DEPTH 1024
48 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT (admin_timeout * HZ)
51 #define IOD_TIMEOUT (retry_time * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char retry_time = 30;
62 module_param(retry_time, byte, 0644);
63 MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int use_threaded_interrupts;
69 module_param(use_threaded_interrupts, int, 0);
70
71 static DEFINE_SPINLOCK(dev_list_lock);
72 static LIST_HEAD(dev_list);
73 static struct task_struct *nvme_thread;
74 static struct workqueue_struct *nvme_workq;
75 static wait_queue_head_t nvme_kthread_wait;
76 static struct notifier_block nvme_nb;
77
78 static void nvme_reset_failed_dev(struct work_struct *ws);
79
80 struct async_cmd_info {
81 struct kthread_work work;
82 struct kthread_worker *worker;
83 u32 result;
84 int status;
85 void *ctx;
86 };
87
88 /*
89 * An NVM Express queue. Each device has at least two (one for admin
90 * commands and one for I/O commands).
91 */
92 struct nvme_queue {
93 struct rcu_head r_head;
94 struct device *q_dmadev;
95 struct nvme_dev *dev;
96 char irqname[24]; /* nvme4294967295-65535\0 */
97 spinlock_t q_lock;
98 struct nvme_command *sq_cmds;
99 volatile struct nvme_completion *cqes;
100 dma_addr_t sq_dma_addr;
101 dma_addr_t cq_dma_addr;
102 wait_queue_head_t sq_full;
103 wait_queue_t sq_cong_wait;
104 struct bio_list sq_cong;
105 struct list_head iod_bio;
106 u32 __iomem *q_db;
107 u16 q_depth;
108 u16 cq_vector;
109 u16 sq_head;
110 u16 sq_tail;
111 u16 cq_head;
112 u16 qid;
113 u8 cq_phase;
114 u8 cqe_seen;
115 u8 q_suspended;
116 cpumask_var_t cpu_mask;
117 struct async_cmd_info cmdinfo;
118 unsigned long cmdid_data[];
119 };
120
121 /*
122 * Check we didin't inadvertently grow the command struct
123 */
124 static inline void _nvme_check_size(void)
125 {
126 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
136 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
137 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
138 }
139
140 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
141 struct nvme_completion *);
142
143 struct nvme_cmd_info {
144 nvme_completion_fn fn;
145 void *ctx;
146 unsigned long timeout;
147 int aborted;
148 };
149
150 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
151 {
152 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
153 }
154
155 static unsigned nvme_queue_extra(int depth)
156 {
157 return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
158 }
159
160 /**
161 * alloc_cmdid() - Allocate a Command ID
162 * @nvmeq: The queue that will be used for this command
163 * @ctx: A pointer that will be passed to the handler
164 * @handler: The function to call on completion
165 *
166 * Allocate a Command ID for a queue. The data passed in will
167 * be passed to the completion handler. This is implemented by using
168 * the bottom two bits of the ctx pointer to store the handler ID.
169 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
170 * We can change this if it becomes a problem.
171 *
172 * May be called with local interrupts disabled and the q_lock held,
173 * or with interrupts enabled and no locks held.
174 */
175 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
176 nvme_completion_fn handler, unsigned timeout)
177 {
178 int depth = nvmeq->q_depth - 1;
179 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
180 int cmdid;
181
182 do {
183 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
184 if (cmdid >= depth)
185 return -EBUSY;
186 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
187
188 info[cmdid].fn = handler;
189 info[cmdid].ctx = ctx;
190 info[cmdid].timeout = jiffies + timeout;
191 info[cmdid].aborted = 0;
192 return cmdid;
193 }
194
195 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
196 nvme_completion_fn handler, unsigned timeout)
197 {
198 int cmdid;
199 wait_event_killable(nvmeq->sq_full,
200 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
201 return (cmdid < 0) ? -EINTR : cmdid;
202 }
203
204 /* Special values must be less than 0x1000 */
205 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
206 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
207 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
208 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
209 #define CMD_CTX_ABORT (0x318 + CMD_CTX_BASE)
210
211 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
212 struct nvme_completion *cqe)
213 {
214 if (ctx == CMD_CTX_CANCELLED)
215 return;
216 if (ctx == CMD_CTX_ABORT) {
217 ++nvmeq->dev->abort_limit;
218 return;
219 }
220 if (ctx == CMD_CTX_COMPLETED) {
221 dev_warn(nvmeq->q_dmadev,
222 "completed id %d twice on queue %d\n",
223 cqe->command_id, le16_to_cpup(&cqe->sq_id));
224 return;
225 }
226 if (ctx == CMD_CTX_INVALID) {
227 dev_warn(nvmeq->q_dmadev,
228 "invalid id %d completed on queue %d\n",
229 cqe->command_id, le16_to_cpup(&cqe->sq_id));
230 return;
231 }
232
233 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
234 }
235
236 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
237 struct nvme_completion *cqe)
238 {
239 struct async_cmd_info *cmdinfo = ctx;
240 cmdinfo->result = le32_to_cpup(&cqe->result);
241 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
242 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
243 }
244
245 /*
246 * Called with local interrupts disabled and the q_lock held. May not sleep.
247 */
248 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
249 nvme_completion_fn *fn)
250 {
251 void *ctx;
252 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
253
254 if (cmdid >= nvmeq->q_depth || !info[cmdid].fn) {
255 if (fn)
256 *fn = special_completion;
257 return CMD_CTX_INVALID;
258 }
259 if (fn)
260 *fn = info[cmdid].fn;
261 ctx = info[cmdid].ctx;
262 info[cmdid].fn = special_completion;
263 info[cmdid].ctx = CMD_CTX_COMPLETED;
264 clear_bit(cmdid, nvmeq->cmdid_data);
265 wake_up(&nvmeq->sq_full);
266 return ctx;
267 }
268
269 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
270 nvme_completion_fn *fn)
271 {
272 void *ctx;
273 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
274 if (fn)
275 *fn = info[cmdid].fn;
276 ctx = info[cmdid].ctx;
277 info[cmdid].fn = special_completion;
278 info[cmdid].ctx = CMD_CTX_CANCELLED;
279 return ctx;
280 }
281
282 static struct nvme_queue *raw_nvmeq(struct nvme_dev *dev, int qid)
283 {
284 return rcu_dereference_raw(dev->queues[qid]);
285 }
286
287 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) __acquires(RCU)
288 {
289 struct nvme_queue *nvmeq;
290 unsigned queue_id = get_cpu_var(*dev->io_queue);
291
292 rcu_read_lock();
293 nvmeq = rcu_dereference(dev->queues[queue_id]);
294 if (nvmeq)
295 return nvmeq;
296
297 rcu_read_unlock();
298 put_cpu_var(*dev->io_queue);
299 return NULL;
300 }
301
302 static void put_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
303 {
304 rcu_read_unlock();
305 put_cpu_var(nvmeq->dev->io_queue);
306 }
307
308 static struct nvme_queue *lock_nvmeq(struct nvme_dev *dev, int q_idx)
309 __acquires(RCU)
310 {
311 struct nvme_queue *nvmeq;
312
313 rcu_read_lock();
314 nvmeq = rcu_dereference(dev->queues[q_idx]);
315 if (nvmeq)
316 return nvmeq;
317
318 rcu_read_unlock();
319 return NULL;
320 }
321
322 static void unlock_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
323 {
324 rcu_read_unlock();
325 }
326
327 /**
328 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
329 * @nvmeq: The queue to use
330 * @cmd: The command to send
331 *
332 * Safe to use from interrupt context
333 */
334 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
335 {
336 unsigned long flags;
337 u16 tail;
338 spin_lock_irqsave(&nvmeq->q_lock, flags);
339 if (nvmeq->q_suspended) {
340 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
341 return -EBUSY;
342 }
343 tail = nvmeq->sq_tail;
344 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
345 if (++tail == nvmeq->q_depth)
346 tail = 0;
347 writel(tail, nvmeq->q_db);
348 nvmeq->sq_tail = tail;
349 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
350
351 return 0;
352 }
353
354 static __le64 **iod_list(struct nvme_iod *iod)
355 {
356 return ((void *)iod) + iod->offset;
357 }
358
359 /*
360 * Will slightly overestimate the number of pages needed. This is OK
361 * as it only leads to a small amount of wasted memory for the lifetime of
362 * the I/O.
363 */
364 static int nvme_npages(unsigned size)
365 {
366 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
367 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
368 }
369
370 static struct nvme_iod *
371 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
372 {
373 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
374 sizeof(__le64 *) * nvme_npages(nbytes) +
375 sizeof(struct scatterlist) * nseg, gfp);
376
377 if (iod) {
378 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
379 iod->npages = -1;
380 iod->length = nbytes;
381 iod->nents = 0;
382 iod->first_dma = 0ULL;
383 iod->start_time = jiffies;
384 }
385
386 return iod;
387 }
388
389 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
390 {
391 const int last_prp = PAGE_SIZE / 8 - 1;
392 int i;
393 __le64 **list = iod_list(iod);
394 dma_addr_t prp_dma = iod->first_dma;
395
396 if (iod->npages == 0)
397 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
398 for (i = 0; i < iod->npages; i++) {
399 __le64 *prp_list = list[i];
400 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
401 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
402 prp_dma = next_prp_dma;
403 }
404 kfree(iod);
405 }
406
407 static void nvme_start_io_acct(struct bio *bio)
408 {
409 struct gendisk *disk = bio->bi_bdev->bd_disk;
410 if (blk_queue_io_stat(disk->queue)) {
411 const int rw = bio_data_dir(bio);
412 int cpu = part_stat_lock();
413 part_round_stats(cpu, &disk->part0);
414 part_stat_inc(cpu, &disk->part0, ios[rw]);
415 part_stat_add(cpu, &disk->part0, sectors[rw],
416 bio_sectors(bio));
417 part_inc_in_flight(&disk->part0, rw);
418 part_stat_unlock();
419 }
420 }
421
422 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
423 {
424 struct gendisk *disk = bio->bi_bdev->bd_disk;
425 if (blk_queue_io_stat(disk->queue)) {
426 const int rw = bio_data_dir(bio);
427 unsigned long duration = jiffies - start_time;
428 int cpu = part_stat_lock();
429 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
430 part_round_stats(cpu, &disk->part0);
431 part_dec_in_flight(&disk->part0, rw);
432 part_stat_unlock();
433 }
434 }
435
436 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
437 struct nvme_completion *cqe)
438 {
439 struct nvme_iod *iod = ctx;
440 struct bio *bio = iod->private;
441 u16 status = le16_to_cpup(&cqe->status) >> 1;
442 int error = 0;
443
444 if (unlikely(status)) {
445 if (!(status & NVME_SC_DNR ||
446 bio->bi_rw & REQ_FAILFAST_MASK) &&
447 (jiffies - iod->start_time) < IOD_TIMEOUT) {
448 if (!waitqueue_active(&nvmeq->sq_full))
449 add_wait_queue(&nvmeq->sq_full,
450 &nvmeq->sq_cong_wait);
451 list_add_tail(&iod->node, &nvmeq->iod_bio);
452 wake_up(&nvmeq->sq_full);
453 return;
454 }
455 error = -EIO;
456 }
457 if (iod->nents) {
458 dma_unmap_sg(nvmeq->q_dmadev, iod->sg, iod->nents,
459 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
460 nvme_end_io_acct(bio, iod->start_time);
461 }
462 nvme_free_iod(nvmeq->dev, iod);
463
464 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio, error);
465 bio_endio(bio, error);
466 }
467
468 /* length is in bytes. gfp flags indicates whether we may sleep. */
469 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
470 gfp_t gfp)
471 {
472 struct dma_pool *pool;
473 int length = total_len;
474 struct scatterlist *sg = iod->sg;
475 int dma_len = sg_dma_len(sg);
476 u64 dma_addr = sg_dma_address(sg);
477 int offset = offset_in_page(dma_addr);
478 __le64 *prp_list;
479 __le64 **list = iod_list(iod);
480 dma_addr_t prp_dma;
481 int nprps, i;
482
483 length -= (PAGE_SIZE - offset);
484 if (length <= 0)
485 return total_len;
486
487 dma_len -= (PAGE_SIZE - offset);
488 if (dma_len) {
489 dma_addr += (PAGE_SIZE - offset);
490 } else {
491 sg = sg_next(sg);
492 dma_addr = sg_dma_address(sg);
493 dma_len = sg_dma_len(sg);
494 }
495
496 if (length <= PAGE_SIZE) {
497 iod->first_dma = dma_addr;
498 return total_len;
499 }
500
501 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
502 if (nprps <= (256 / 8)) {
503 pool = dev->prp_small_pool;
504 iod->npages = 0;
505 } else {
506 pool = dev->prp_page_pool;
507 iod->npages = 1;
508 }
509
510 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
511 if (!prp_list) {
512 iod->first_dma = dma_addr;
513 iod->npages = -1;
514 return (total_len - length) + PAGE_SIZE;
515 }
516 list[0] = prp_list;
517 iod->first_dma = prp_dma;
518 i = 0;
519 for (;;) {
520 if (i == PAGE_SIZE / 8) {
521 __le64 *old_prp_list = prp_list;
522 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
523 if (!prp_list)
524 return total_len - length;
525 list[iod->npages++] = prp_list;
526 prp_list[0] = old_prp_list[i - 1];
527 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
528 i = 1;
529 }
530 prp_list[i++] = cpu_to_le64(dma_addr);
531 dma_len -= PAGE_SIZE;
532 dma_addr += PAGE_SIZE;
533 length -= PAGE_SIZE;
534 if (length <= 0)
535 break;
536 if (dma_len > 0)
537 continue;
538 BUG_ON(dma_len < 0);
539 sg = sg_next(sg);
540 dma_addr = sg_dma_address(sg);
541 dma_len = sg_dma_len(sg);
542 }
543
544 return total_len;
545 }
546
547 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
548 int len)
549 {
550 struct bio *split = bio_split(bio, len >> 9, GFP_ATOMIC, NULL);
551 if (!split)
552 return -ENOMEM;
553
554 trace_block_split(bdev_get_queue(bio->bi_bdev), bio,
555 split->bi_iter.bi_sector);
556 bio_chain(split, bio);
557
558 if (!waitqueue_active(&nvmeq->sq_full))
559 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
560 bio_list_add(&nvmeq->sq_cong, split);
561 bio_list_add(&nvmeq->sq_cong, bio);
562 wake_up(&nvmeq->sq_full);
563
564 return 0;
565 }
566
567 /* NVMe scatterlists require no holes in the virtual address */
568 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
569 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
570
571 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
572 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
573 {
574 struct bio_vec bvec, bvprv;
575 struct bvec_iter iter;
576 struct scatterlist *sg = NULL;
577 int length = 0, nsegs = 0, split_len = bio->bi_iter.bi_size;
578 int first = 1;
579
580 if (nvmeq->dev->stripe_size)
581 split_len = nvmeq->dev->stripe_size -
582 ((bio->bi_iter.bi_sector << 9) &
583 (nvmeq->dev->stripe_size - 1));
584
585 sg_init_table(iod->sg, psegs);
586 bio_for_each_segment(bvec, bio, iter) {
587 if (!first && BIOVEC_PHYS_MERGEABLE(&bvprv, &bvec)) {
588 sg->length += bvec.bv_len;
589 } else {
590 if (!first && BIOVEC_NOT_VIRT_MERGEABLE(&bvprv, &bvec))
591 return nvme_split_and_submit(bio, nvmeq,
592 length);
593
594 sg = sg ? sg + 1 : iod->sg;
595 sg_set_page(sg, bvec.bv_page,
596 bvec.bv_len, bvec.bv_offset);
597 nsegs++;
598 }
599
600 if (split_len - length < bvec.bv_len)
601 return nvme_split_and_submit(bio, nvmeq, split_len);
602 length += bvec.bv_len;
603 bvprv = bvec;
604 first = 0;
605 }
606 iod->nents = nsegs;
607 sg_mark_end(sg);
608 if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
609 return -ENOMEM;
610
611 BUG_ON(length != bio->bi_iter.bi_size);
612 return length;
613 }
614
615 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
616 struct bio *bio, struct nvme_iod *iod, int cmdid)
617 {
618 struct nvme_dsm_range *range =
619 (struct nvme_dsm_range *)iod_list(iod)[0];
620 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
621
622 range->cattr = cpu_to_le32(0);
623 range->nlb = cpu_to_le32(bio->bi_iter.bi_size >> ns->lba_shift);
624 range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
625
626 memset(cmnd, 0, sizeof(*cmnd));
627 cmnd->dsm.opcode = nvme_cmd_dsm;
628 cmnd->dsm.command_id = cmdid;
629 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
630 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
631 cmnd->dsm.nr = 0;
632 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
633
634 if (++nvmeq->sq_tail == nvmeq->q_depth)
635 nvmeq->sq_tail = 0;
636 writel(nvmeq->sq_tail, nvmeq->q_db);
637
638 return 0;
639 }
640
641 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
642 int cmdid)
643 {
644 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
645
646 memset(cmnd, 0, sizeof(*cmnd));
647 cmnd->common.opcode = nvme_cmd_flush;
648 cmnd->common.command_id = cmdid;
649 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
650
651 if (++nvmeq->sq_tail == nvmeq->q_depth)
652 nvmeq->sq_tail = 0;
653 writel(nvmeq->sq_tail, nvmeq->q_db);
654
655 return 0;
656 }
657
658 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod)
659 {
660 struct bio *bio = iod->private;
661 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
662 struct nvme_command *cmnd;
663 int cmdid;
664 u16 control;
665 u32 dsmgmt;
666
667 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
668 if (unlikely(cmdid < 0))
669 return cmdid;
670
671 if (bio->bi_rw & REQ_DISCARD)
672 return nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
673 if (bio->bi_rw & REQ_FLUSH)
674 return nvme_submit_flush(nvmeq, ns, cmdid);
675
676 control = 0;
677 if (bio->bi_rw & REQ_FUA)
678 control |= NVME_RW_FUA;
679 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
680 control |= NVME_RW_LR;
681
682 dsmgmt = 0;
683 if (bio->bi_rw & REQ_RAHEAD)
684 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
685
686 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
687 memset(cmnd, 0, sizeof(*cmnd));
688
689 cmnd->rw.opcode = bio_data_dir(bio) ? nvme_cmd_write : nvme_cmd_read;
690 cmnd->rw.command_id = cmdid;
691 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
692 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
693 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
694 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
695 cmnd->rw.length =
696 cpu_to_le16((bio->bi_iter.bi_size >> ns->lba_shift) - 1);
697 cmnd->rw.control = cpu_to_le16(control);
698 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
699
700 if (++nvmeq->sq_tail == nvmeq->q_depth)
701 nvmeq->sq_tail = 0;
702 writel(nvmeq->sq_tail, nvmeq->q_db);
703
704 return 0;
705 }
706
707 static int nvme_split_flush_data(struct nvme_queue *nvmeq, struct bio *bio)
708 {
709 struct bio *split = bio_clone(bio, GFP_ATOMIC);
710 if (!split)
711 return -ENOMEM;
712
713 split->bi_iter.bi_size = 0;
714 split->bi_phys_segments = 0;
715 bio->bi_rw &= ~REQ_FLUSH;
716 bio_chain(split, bio);
717
718 if (!waitqueue_active(&nvmeq->sq_full))
719 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
720 bio_list_add(&nvmeq->sq_cong, split);
721 bio_list_add(&nvmeq->sq_cong, bio);
722 wake_up_process(nvme_thread);
723
724 return 0;
725 }
726
727 /*
728 * Called with local interrupts disabled and the q_lock held. May not sleep.
729 */
730 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
731 struct bio *bio)
732 {
733 struct nvme_iod *iod;
734 int psegs = bio_phys_segments(ns->queue, bio);
735 int result;
736
737 if ((bio->bi_rw & REQ_FLUSH) && psegs)
738 return nvme_split_flush_data(nvmeq, bio);
739
740 iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, GFP_ATOMIC);
741 if (!iod)
742 return -ENOMEM;
743
744 iod->private = bio;
745 if (bio->bi_rw & REQ_DISCARD) {
746 void *range;
747 /*
748 * We reuse the small pool to allocate the 16-byte range here
749 * as it is not worth having a special pool for these or
750 * additional cases to handle freeing the iod.
751 */
752 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
753 GFP_ATOMIC,
754 &iod->first_dma);
755 if (!range) {
756 result = -ENOMEM;
757 goto free_iod;
758 }
759 iod_list(iod)[0] = (__le64 *)range;
760 iod->npages = 0;
761 } else if (psegs) {
762 result = nvme_map_bio(nvmeq, iod, bio,
763 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
764 psegs);
765 if (result <= 0)
766 goto free_iod;
767 if (nvme_setup_prps(nvmeq->dev, iod, result, GFP_ATOMIC) !=
768 result) {
769 result = -ENOMEM;
770 goto free_iod;
771 }
772 nvme_start_io_acct(bio);
773 }
774 if (unlikely(nvme_submit_iod(nvmeq, iod))) {
775 if (!waitqueue_active(&nvmeq->sq_full))
776 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
777 list_add_tail(&iod->node, &nvmeq->iod_bio);
778 }
779 return 0;
780
781 free_iod:
782 nvme_free_iod(nvmeq->dev, iod);
783 return result;
784 }
785
786 static int nvme_process_cq(struct nvme_queue *nvmeq)
787 {
788 u16 head, phase;
789
790 head = nvmeq->cq_head;
791 phase = nvmeq->cq_phase;
792
793 for (;;) {
794 void *ctx;
795 nvme_completion_fn fn;
796 struct nvme_completion cqe = nvmeq->cqes[head];
797 if ((le16_to_cpu(cqe.status) & 1) != phase)
798 break;
799 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
800 if (++head == nvmeq->q_depth) {
801 head = 0;
802 phase = !phase;
803 }
804
805 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
806 fn(nvmeq, ctx, &cqe);
807 }
808
809 /* If the controller ignores the cq head doorbell and continuously
810 * writes to the queue, it is theoretically possible to wrap around
811 * the queue twice and mistakenly return IRQ_NONE. Linux only
812 * requires that 0.1% of your interrupts are handled, so this isn't
813 * a big problem.
814 */
815 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
816 return 0;
817
818 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
819 nvmeq->cq_head = head;
820 nvmeq->cq_phase = phase;
821
822 nvmeq->cqe_seen = 1;
823 return 1;
824 }
825
826 static void nvme_make_request(struct request_queue *q, struct bio *bio)
827 {
828 struct nvme_ns *ns = q->queuedata;
829 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
830 int result = -EBUSY;
831
832 if (!nvmeq) {
833 bio_endio(bio, -EIO);
834 return;
835 }
836
837 spin_lock_irq(&nvmeq->q_lock);
838 if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
839 result = nvme_submit_bio_queue(nvmeq, ns, bio);
840 if (unlikely(result)) {
841 if (!waitqueue_active(&nvmeq->sq_full))
842 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
843 bio_list_add(&nvmeq->sq_cong, bio);
844 }
845
846 nvme_process_cq(nvmeq);
847 spin_unlock_irq(&nvmeq->q_lock);
848 put_nvmeq(nvmeq);
849 }
850
851 static irqreturn_t nvme_irq(int irq, void *data)
852 {
853 irqreturn_t result;
854 struct nvme_queue *nvmeq = data;
855 spin_lock(&nvmeq->q_lock);
856 nvme_process_cq(nvmeq);
857 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
858 nvmeq->cqe_seen = 0;
859 spin_unlock(&nvmeq->q_lock);
860 return result;
861 }
862
863 static irqreturn_t nvme_irq_check(int irq, void *data)
864 {
865 struct nvme_queue *nvmeq = data;
866 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
867 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
868 return IRQ_NONE;
869 return IRQ_WAKE_THREAD;
870 }
871
872 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
873 {
874 spin_lock_irq(&nvmeq->q_lock);
875 cancel_cmdid(nvmeq, cmdid, NULL);
876 spin_unlock_irq(&nvmeq->q_lock);
877 }
878
879 struct sync_cmd_info {
880 struct task_struct *task;
881 u32 result;
882 int status;
883 };
884
885 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
886 struct nvme_completion *cqe)
887 {
888 struct sync_cmd_info *cmdinfo = ctx;
889 cmdinfo->result = le32_to_cpup(&cqe->result);
890 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
891 wake_up_process(cmdinfo->task);
892 }
893
894 /*
895 * Returns 0 on success. If the result is negative, it's a Linux error code;
896 * if the result is positive, it's an NVM Express status code
897 */
898 static int nvme_submit_sync_cmd(struct nvme_dev *dev, int q_idx,
899 struct nvme_command *cmd,
900 u32 *result, unsigned timeout)
901 {
902 int cmdid, ret;
903 struct sync_cmd_info cmdinfo;
904 struct nvme_queue *nvmeq;
905
906 nvmeq = lock_nvmeq(dev, q_idx);
907 if (!nvmeq)
908 return -ENODEV;
909
910 cmdinfo.task = current;
911 cmdinfo.status = -EINTR;
912
913 cmdid = alloc_cmdid(nvmeq, &cmdinfo, sync_completion, timeout);
914 if (cmdid < 0) {
915 unlock_nvmeq(nvmeq);
916 return cmdid;
917 }
918 cmd->common.command_id = cmdid;
919
920 set_current_state(TASK_KILLABLE);
921 ret = nvme_submit_cmd(nvmeq, cmd);
922 if (ret) {
923 free_cmdid(nvmeq, cmdid, NULL);
924 unlock_nvmeq(nvmeq);
925 set_current_state(TASK_RUNNING);
926 return ret;
927 }
928 unlock_nvmeq(nvmeq);
929 schedule_timeout(timeout);
930
931 if (cmdinfo.status == -EINTR) {
932 nvmeq = lock_nvmeq(dev, q_idx);
933 if (nvmeq) {
934 nvme_abort_command(nvmeq, cmdid);
935 unlock_nvmeq(nvmeq);
936 }
937 return -EINTR;
938 }
939
940 if (result)
941 *result = cmdinfo.result;
942
943 return cmdinfo.status;
944 }
945
946 static int nvme_submit_async_cmd(struct nvme_queue *nvmeq,
947 struct nvme_command *cmd,
948 struct async_cmd_info *cmdinfo, unsigned timeout)
949 {
950 int cmdid;
951
952 cmdid = alloc_cmdid_killable(nvmeq, cmdinfo, async_completion, timeout);
953 if (cmdid < 0)
954 return cmdid;
955 cmdinfo->status = -EINTR;
956 cmd->common.command_id = cmdid;
957 return nvme_submit_cmd(nvmeq, cmd);
958 }
959
960 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
961 u32 *result)
962 {
963 return nvme_submit_sync_cmd(dev, 0, cmd, result, ADMIN_TIMEOUT);
964 }
965
966 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
967 u32 *result)
968 {
969 return nvme_submit_sync_cmd(dev, smp_processor_id() + 1, cmd, result,
970 NVME_IO_TIMEOUT);
971 }
972
973 static int nvme_submit_admin_cmd_async(struct nvme_dev *dev,
974 struct nvme_command *cmd, struct async_cmd_info *cmdinfo)
975 {
976 return nvme_submit_async_cmd(raw_nvmeq(dev, 0), cmd, cmdinfo,
977 ADMIN_TIMEOUT);
978 }
979
980 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
981 {
982 int status;
983 struct nvme_command c;
984
985 memset(&c, 0, sizeof(c));
986 c.delete_queue.opcode = opcode;
987 c.delete_queue.qid = cpu_to_le16(id);
988
989 status = nvme_submit_admin_cmd(dev, &c, NULL);
990 if (status)
991 return -EIO;
992 return 0;
993 }
994
995 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
996 struct nvme_queue *nvmeq)
997 {
998 int status;
999 struct nvme_command c;
1000 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1001
1002 memset(&c, 0, sizeof(c));
1003 c.create_cq.opcode = nvme_admin_create_cq;
1004 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1005 c.create_cq.cqid = cpu_to_le16(qid);
1006 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1007 c.create_cq.cq_flags = cpu_to_le16(flags);
1008 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1009
1010 status = nvme_submit_admin_cmd(dev, &c, NULL);
1011 if (status)
1012 return -EIO;
1013 return 0;
1014 }
1015
1016 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1017 struct nvme_queue *nvmeq)
1018 {
1019 int status;
1020 struct nvme_command c;
1021 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1022
1023 memset(&c, 0, sizeof(c));
1024 c.create_sq.opcode = nvme_admin_create_sq;
1025 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1026 c.create_sq.sqid = cpu_to_le16(qid);
1027 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1028 c.create_sq.sq_flags = cpu_to_le16(flags);
1029 c.create_sq.cqid = cpu_to_le16(qid);
1030
1031 status = nvme_submit_admin_cmd(dev, &c, NULL);
1032 if (status)
1033 return -EIO;
1034 return 0;
1035 }
1036
1037 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1038 {
1039 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1040 }
1041
1042 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1043 {
1044 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1045 }
1046
1047 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1048 dma_addr_t dma_addr)
1049 {
1050 struct nvme_command c;
1051
1052 memset(&c, 0, sizeof(c));
1053 c.identify.opcode = nvme_admin_identify;
1054 c.identify.nsid = cpu_to_le32(nsid);
1055 c.identify.prp1 = cpu_to_le64(dma_addr);
1056 c.identify.cns = cpu_to_le32(cns);
1057
1058 return nvme_submit_admin_cmd(dev, &c, NULL);
1059 }
1060
1061 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1062 dma_addr_t dma_addr, u32 *result)
1063 {
1064 struct nvme_command c;
1065
1066 memset(&c, 0, sizeof(c));
1067 c.features.opcode = nvme_admin_get_features;
1068 c.features.nsid = cpu_to_le32(nsid);
1069 c.features.prp1 = cpu_to_le64(dma_addr);
1070 c.features.fid = cpu_to_le32(fid);
1071
1072 return nvme_submit_admin_cmd(dev, &c, result);
1073 }
1074
1075 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1076 dma_addr_t dma_addr, u32 *result)
1077 {
1078 struct nvme_command c;
1079
1080 memset(&c, 0, sizeof(c));
1081 c.features.opcode = nvme_admin_set_features;
1082 c.features.prp1 = cpu_to_le64(dma_addr);
1083 c.features.fid = cpu_to_le32(fid);
1084 c.features.dword11 = cpu_to_le32(dword11);
1085
1086 return nvme_submit_admin_cmd(dev, &c, result);
1087 }
1088
1089 /**
1090 * nvme_abort_cmd - Attempt aborting a command
1091 * @cmdid: Command id of a timed out IO
1092 * @queue: The queue with timed out IO
1093 *
1094 * Schedule controller reset if the command was already aborted once before and
1095 * still hasn't been returned to the driver, or if this is the admin queue.
1096 */
1097 static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq)
1098 {
1099 int a_cmdid;
1100 struct nvme_command cmd;
1101 struct nvme_dev *dev = nvmeq->dev;
1102 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1103 struct nvme_queue *adminq;
1104
1105 if (!nvmeq->qid || info[cmdid].aborted) {
1106 if (work_busy(&dev->reset_work))
1107 return;
1108 list_del_init(&dev->node);
1109 dev_warn(&dev->pci_dev->dev,
1110 "I/O %d QID %d timeout, reset controller\n", cmdid,
1111 nvmeq->qid);
1112 dev->reset_workfn = nvme_reset_failed_dev;
1113 queue_work(nvme_workq, &dev->reset_work);
1114 return;
1115 }
1116
1117 if (!dev->abort_limit)
1118 return;
1119
1120 adminq = rcu_dereference(dev->queues[0]);
1121 a_cmdid = alloc_cmdid(adminq, CMD_CTX_ABORT, special_completion,
1122 ADMIN_TIMEOUT);
1123 if (a_cmdid < 0)
1124 return;
1125
1126 memset(&cmd, 0, sizeof(cmd));
1127 cmd.abort.opcode = nvme_admin_abort_cmd;
1128 cmd.abort.cid = cmdid;
1129 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1130 cmd.abort.command_id = a_cmdid;
1131
1132 --dev->abort_limit;
1133 info[cmdid].aborted = 1;
1134 info[cmdid].timeout = jiffies + ADMIN_TIMEOUT;
1135
1136 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid,
1137 nvmeq->qid);
1138 nvme_submit_cmd(adminq, &cmd);
1139 }
1140
1141 /**
1142 * nvme_cancel_ios - Cancel outstanding I/Os
1143 * @queue: The queue to cancel I/Os on
1144 * @timeout: True to only cancel I/Os which have timed out
1145 */
1146 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1147 {
1148 int depth = nvmeq->q_depth - 1;
1149 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1150 unsigned long now = jiffies;
1151 int cmdid;
1152
1153 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1154 void *ctx;
1155 nvme_completion_fn fn;
1156 static struct nvme_completion cqe = {
1157 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1158 };
1159
1160 if (timeout && !time_after(now, info[cmdid].timeout))
1161 continue;
1162 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1163 continue;
1164 if (timeout && nvmeq->dev->initialized) {
1165 nvme_abort_cmd(cmdid, nvmeq);
1166 continue;
1167 }
1168 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid,
1169 nvmeq->qid);
1170 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1171 fn(nvmeq, ctx, &cqe);
1172 }
1173 }
1174
1175 static void nvme_free_queue(struct rcu_head *r)
1176 {
1177 struct nvme_queue *nvmeq = container_of(r, struct nvme_queue, r_head);
1178
1179 spin_lock_irq(&nvmeq->q_lock);
1180 while (bio_list_peek(&nvmeq->sq_cong)) {
1181 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1182 bio_endio(bio, -EIO);
1183 }
1184 while (!list_empty(&nvmeq->iod_bio)) {
1185 static struct nvme_completion cqe = {
1186 .status = cpu_to_le16(
1187 (NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1),
1188 };
1189 struct nvme_iod *iod = list_first_entry(&nvmeq->iod_bio,
1190 struct nvme_iod,
1191 node);
1192 list_del(&iod->node);
1193 bio_completion(nvmeq, iod, &cqe);
1194 }
1195 spin_unlock_irq(&nvmeq->q_lock);
1196
1197 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1198 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1199 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1200 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1201 if (nvmeq->qid)
1202 free_cpumask_var(nvmeq->cpu_mask);
1203 kfree(nvmeq);
1204 }
1205
1206 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1207 {
1208 int i;
1209
1210 for (i = dev->queue_count - 1; i >= lowest; i--) {
1211 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
1212 rcu_assign_pointer(dev->queues[i], NULL);
1213 call_rcu(&nvmeq->r_head, nvme_free_queue);
1214 dev->queue_count--;
1215 }
1216 }
1217
1218 /**
1219 * nvme_suspend_queue - put queue into suspended state
1220 * @nvmeq - queue to suspend
1221 *
1222 * Returns 1 if already suspended, 0 otherwise.
1223 */
1224 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1225 {
1226 int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1227
1228 spin_lock_irq(&nvmeq->q_lock);
1229 if (nvmeq->q_suspended) {
1230 spin_unlock_irq(&nvmeq->q_lock);
1231 return 1;
1232 }
1233 nvmeq->q_suspended = 1;
1234 nvmeq->dev->online_queues--;
1235 spin_unlock_irq(&nvmeq->q_lock);
1236
1237 irq_set_affinity_hint(vector, NULL);
1238 free_irq(vector, nvmeq);
1239
1240 return 0;
1241 }
1242
1243 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1244 {
1245 spin_lock_irq(&nvmeq->q_lock);
1246 nvme_process_cq(nvmeq);
1247 nvme_cancel_ios(nvmeq, false);
1248 spin_unlock_irq(&nvmeq->q_lock);
1249 }
1250
1251 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1252 {
1253 struct nvme_queue *nvmeq = raw_nvmeq(dev, qid);
1254
1255 if (!nvmeq)
1256 return;
1257 if (nvme_suspend_queue(nvmeq))
1258 return;
1259
1260 /* Don't tell the adapter to delete the admin queue.
1261 * Don't tell a removed adapter to delete IO queues. */
1262 if (qid && readl(&dev->bar->csts) != -1) {
1263 adapter_delete_sq(dev, qid);
1264 adapter_delete_cq(dev, qid);
1265 }
1266 nvme_clear_queue(nvmeq);
1267 }
1268
1269 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1270 int depth, int vector)
1271 {
1272 struct device *dmadev = &dev->pci_dev->dev;
1273 unsigned extra = nvme_queue_extra(depth);
1274 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1275 if (!nvmeq)
1276 return NULL;
1277
1278 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1279 &nvmeq->cq_dma_addr, GFP_KERNEL);
1280 if (!nvmeq->cqes)
1281 goto free_nvmeq;
1282 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1283
1284 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1285 &nvmeq->sq_dma_addr, GFP_KERNEL);
1286 if (!nvmeq->sq_cmds)
1287 goto free_cqdma;
1288
1289 if (qid && !zalloc_cpumask_var(&nvmeq->cpu_mask, GFP_KERNEL))
1290 goto free_sqdma;
1291
1292 nvmeq->q_dmadev = dmadev;
1293 nvmeq->dev = dev;
1294 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1295 dev->instance, qid);
1296 spin_lock_init(&nvmeq->q_lock);
1297 nvmeq->cq_head = 0;
1298 nvmeq->cq_phase = 1;
1299 init_waitqueue_head(&nvmeq->sq_full);
1300 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1301 bio_list_init(&nvmeq->sq_cong);
1302 INIT_LIST_HEAD(&nvmeq->iod_bio);
1303 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1304 nvmeq->q_depth = depth;
1305 nvmeq->cq_vector = vector;
1306 nvmeq->qid = qid;
1307 nvmeq->q_suspended = 1;
1308 dev->queue_count++;
1309 rcu_assign_pointer(dev->queues[qid], nvmeq);
1310
1311 return nvmeq;
1312
1313 free_sqdma:
1314 dma_free_coherent(dmadev, SQ_SIZE(depth), (void *)nvmeq->sq_cmds,
1315 nvmeq->sq_dma_addr);
1316 free_cqdma:
1317 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1318 nvmeq->cq_dma_addr);
1319 free_nvmeq:
1320 kfree(nvmeq);
1321 return NULL;
1322 }
1323
1324 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1325 const char *name)
1326 {
1327 if (use_threaded_interrupts)
1328 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1329 nvme_irq_check, nvme_irq, IRQF_SHARED,
1330 name, nvmeq);
1331 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1332 IRQF_SHARED, name, nvmeq);
1333 }
1334
1335 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1336 {
1337 struct nvme_dev *dev = nvmeq->dev;
1338 unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1339
1340 nvmeq->sq_tail = 0;
1341 nvmeq->cq_head = 0;
1342 nvmeq->cq_phase = 1;
1343 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1344 memset(nvmeq->cmdid_data, 0, extra);
1345 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1346 nvme_cancel_ios(nvmeq, false);
1347 nvmeq->q_suspended = 0;
1348 dev->online_queues++;
1349 }
1350
1351 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1352 {
1353 struct nvme_dev *dev = nvmeq->dev;
1354 int result;
1355
1356 result = adapter_alloc_cq(dev, qid, nvmeq);
1357 if (result < 0)
1358 return result;
1359
1360 result = adapter_alloc_sq(dev, qid, nvmeq);
1361 if (result < 0)
1362 goto release_cq;
1363
1364 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1365 if (result < 0)
1366 goto release_sq;
1367
1368 spin_lock_irq(&nvmeq->q_lock);
1369 nvme_init_queue(nvmeq, qid);
1370 spin_unlock_irq(&nvmeq->q_lock);
1371
1372 return result;
1373
1374 release_sq:
1375 adapter_delete_sq(dev, qid);
1376 release_cq:
1377 adapter_delete_cq(dev, qid);
1378 return result;
1379 }
1380
1381 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1382 {
1383 unsigned long timeout;
1384 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1385
1386 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1387
1388 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1389 msleep(100);
1390 if (fatal_signal_pending(current))
1391 return -EINTR;
1392 if (time_after(jiffies, timeout)) {
1393 dev_err(&dev->pci_dev->dev,
1394 "Device not ready; aborting %s\n", enabled ?
1395 "initialisation" : "reset");
1396 return -ENODEV;
1397 }
1398 }
1399
1400 return 0;
1401 }
1402
1403 /*
1404 * If the device has been passed off to us in an enabled state, just clear
1405 * the enabled bit. The spec says we should set the 'shutdown notification
1406 * bits', but doing so may cause the device to complete commands to the
1407 * admin queue ... and we don't know what memory that might be pointing at!
1408 */
1409 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1410 {
1411 u32 cc = readl(&dev->bar->cc);
1412
1413 if (cc & NVME_CC_ENABLE)
1414 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1415 return nvme_wait_ready(dev, cap, false);
1416 }
1417
1418 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1419 {
1420 return nvme_wait_ready(dev, cap, true);
1421 }
1422
1423 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1424 {
1425 unsigned long timeout;
1426 u32 cc;
1427
1428 cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1429 writel(cc, &dev->bar->cc);
1430
1431 timeout = 2 * HZ + jiffies;
1432 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1433 NVME_CSTS_SHST_CMPLT) {
1434 msleep(100);
1435 if (fatal_signal_pending(current))
1436 return -EINTR;
1437 if (time_after(jiffies, timeout)) {
1438 dev_err(&dev->pci_dev->dev,
1439 "Device shutdown incomplete; abort shutdown\n");
1440 return -ENODEV;
1441 }
1442 }
1443
1444 return 0;
1445 }
1446
1447 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1448 {
1449 int result;
1450 u32 aqa;
1451 u64 cap = readq(&dev->bar->cap);
1452 struct nvme_queue *nvmeq;
1453
1454 result = nvme_disable_ctrl(dev, cap);
1455 if (result < 0)
1456 return result;
1457
1458 nvmeq = raw_nvmeq(dev, 0);
1459 if (!nvmeq) {
1460 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1461 if (!nvmeq)
1462 return -ENOMEM;
1463 }
1464
1465 aqa = nvmeq->q_depth - 1;
1466 aqa |= aqa << 16;
1467
1468 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1469 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1470 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1471 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1472
1473 writel(aqa, &dev->bar->aqa);
1474 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1475 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1476 writel(dev->ctrl_config, &dev->bar->cc);
1477
1478 result = nvme_enable_ctrl(dev, cap);
1479 if (result)
1480 return result;
1481
1482 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1483 if (result)
1484 return result;
1485
1486 spin_lock_irq(&nvmeq->q_lock);
1487 nvme_init_queue(nvmeq, 0);
1488 spin_unlock_irq(&nvmeq->q_lock);
1489 return result;
1490 }
1491
1492 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1493 unsigned long addr, unsigned length)
1494 {
1495 int i, err, count, nents, offset;
1496 struct scatterlist *sg;
1497 struct page **pages;
1498 struct nvme_iod *iod;
1499
1500 if (addr & 3)
1501 return ERR_PTR(-EINVAL);
1502 if (!length || length > INT_MAX - PAGE_SIZE)
1503 return ERR_PTR(-EINVAL);
1504
1505 offset = offset_in_page(addr);
1506 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1507 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1508 if (!pages)
1509 return ERR_PTR(-ENOMEM);
1510
1511 err = get_user_pages_fast(addr, count, 1, pages);
1512 if (err < count) {
1513 count = err;
1514 err = -EFAULT;
1515 goto put_pages;
1516 }
1517
1518 err = -ENOMEM;
1519 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1520 if (!iod)
1521 goto put_pages;
1522
1523 sg = iod->sg;
1524 sg_init_table(sg, count);
1525 for (i = 0; i < count; i++) {
1526 sg_set_page(&sg[i], pages[i],
1527 min_t(unsigned, length, PAGE_SIZE - offset),
1528 offset);
1529 length -= (PAGE_SIZE - offset);
1530 offset = 0;
1531 }
1532 sg_mark_end(&sg[i - 1]);
1533 iod->nents = count;
1534
1535 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1536 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1537 if (!nents)
1538 goto free_iod;
1539
1540 kfree(pages);
1541 return iod;
1542
1543 free_iod:
1544 kfree(iod);
1545 put_pages:
1546 for (i = 0; i < count; i++)
1547 put_page(pages[i]);
1548 kfree(pages);
1549 return ERR_PTR(err);
1550 }
1551
1552 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1553 struct nvme_iod *iod)
1554 {
1555 int i;
1556
1557 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1558 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1559
1560 for (i = 0; i < iod->nents; i++)
1561 put_page(sg_page(&iod->sg[i]));
1562 }
1563
1564 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1565 {
1566 struct nvme_dev *dev = ns->dev;
1567 struct nvme_user_io io;
1568 struct nvme_command c;
1569 unsigned length, meta_len;
1570 int status, i;
1571 struct nvme_iod *iod, *meta_iod = NULL;
1572 dma_addr_t meta_dma_addr;
1573 void *meta, *uninitialized_var(meta_mem);
1574
1575 if (copy_from_user(&io, uio, sizeof(io)))
1576 return -EFAULT;
1577 length = (io.nblocks + 1) << ns->lba_shift;
1578 meta_len = (io.nblocks + 1) * ns->ms;
1579
1580 if (meta_len && ((io.metadata & 3) || !io.metadata))
1581 return -EINVAL;
1582
1583 switch (io.opcode) {
1584 case nvme_cmd_write:
1585 case nvme_cmd_read:
1586 case nvme_cmd_compare:
1587 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1588 break;
1589 default:
1590 return -EINVAL;
1591 }
1592
1593 if (IS_ERR(iod))
1594 return PTR_ERR(iod);
1595
1596 memset(&c, 0, sizeof(c));
1597 c.rw.opcode = io.opcode;
1598 c.rw.flags = io.flags;
1599 c.rw.nsid = cpu_to_le32(ns->ns_id);
1600 c.rw.slba = cpu_to_le64(io.slba);
1601 c.rw.length = cpu_to_le16(io.nblocks);
1602 c.rw.control = cpu_to_le16(io.control);
1603 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1604 c.rw.reftag = cpu_to_le32(io.reftag);
1605 c.rw.apptag = cpu_to_le16(io.apptag);
1606 c.rw.appmask = cpu_to_le16(io.appmask);
1607
1608 if (meta_len) {
1609 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1610 meta_len);
1611 if (IS_ERR(meta_iod)) {
1612 status = PTR_ERR(meta_iod);
1613 meta_iod = NULL;
1614 goto unmap;
1615 }
1616
1617 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1618 &meta_dma_addr, GFP_KERNEL);
1619 if (!meta_mem) {
1620 status = -ENOMEM;
1621 goto unmap;
1622 }
1623
1624 if (io.opcode & 1) {
1625 int meta_offset = 0;
1626
1627 for (i = 0; i < meta_iod->nents; i++) {
1628 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1629 meta_iod->sg[i].offset;
1630 memcpy(meta_mem + meta_offset, meta,
1631 meta_iod->sg[i].length);
1632 kunmap_atomic(meta);
1633 meta_offset += meta_iod->sg[i].length;
1634 }
1635 }
1636
1637 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1638 }
1639
1640 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1641 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1642 c.rw.prp2 = cpu_to_le64(iod->first_dma);
1643
1644 if (length != (io.nblocks + 1) << ns->lba_shift)
1645 status = -ENOMEM;
1646 else
1647 status = nvme_submit_io_cmd(dev, &c, NULL);
1648
1649 if (meta_len) {
1650 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1651 int meta_offset = 0;
1652
1653 for (i = 0; i < meta_iod->nents; i++) {
1654 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1655 meta_iod->sg[i].offset;
1656 memcpy(meta, meta_mem + meta_offset,
1657 meta_iod->sg[i].length);
1658 kunmap_atomic(meta);
1659 meta_offset += meta_iod->sg[i].length;
1660 }
1661 }
1662
1663 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1664 meta_dma_addr);
1665 }
1666
1667 unmap:
1668 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1669 nvme_free_iod(dev, iod);
1670
1671 if (meta_iod) {
1672 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1673 nvme_free_iod(dev, meta_iod);
1674 }
1675
1676 return status;
1677 }
1678
1679 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1680 struct nvme_admin_cmd __user *ucmd)
1681 {
1682 struct nvme_admin_cmd cmd;
1683 struct nvme_command c;
1684 int status, length;
1685 struct nvme_iod *uninitialized_var(iod);
1686 unsigned timeout;
1687
1688 if (!capable(CAP_SYS_ADMIN))
1689 return -EACCES;
1690 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1691 return -EFAULT;
1692
1693 memset(&c, 0, sizeof(c));
1694 c.common.opcode = cmd.opcode;
1695 c.common.flags = cmd.flags;
1696 c.common.nsid = cpu_to_le32(cmd.nsid);
1697 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1698 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1699 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1700 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1701 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1702 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1703 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1704 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1705
1706 length = cmd.data_len;
1707 if (cmd.data_len) {
1708 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1709 length);
1710 if (IS_ERR(iod))
1711 return PTR_ERR(iod);
1712 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1713 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1714 c.common.prp2 = cpu_to_le64(iod->first_dma);
1715 }
1716
1717 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1718 ADMIN_TIMEOUT;
1719 if (length != cmd.data_len)
1720 status = -ENOMEM;
1721 else
1722 status = nvme_submit_sync_cmd(dev, 0, &c, &cmd.result, timeout);
1723
1724 if (cmd.data_len) {
1725 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1726 nvme_free_iod(dev, iod);
1727 }
1728
1729 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1730 sizeof(cmd.result)))
1731 status = -EFAULT;
1732
1733 return status;
1734 }
1735
1736 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1737 unsigned long arg)
1738 {
1739 struct nvme_ns *ns = bdev->bd_disk->private_data;
1740
1741 switch (cmd) {
1742 case NVME_IOCTL_ID:
1743 force_successful_syscall_return();
1744 return ns->ns_id;
1745 case NVME_IOCTL_ADMIN_CMD:
1746 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1747 case NVME_IOCTL_SUBMIT_IO:
1748 return nvme_submit_io(ns, (void __user *)arg);
1749 case SG_GET_VERSION_NUM:
1750 return nvme_sg_get_version_num((void __user *)arg);
1751 case SG_IO:
1752 return nvme_sg_io(ns, (void __user *)arg);
1753 default:
1754 return -ENOTTY;
1755 }
1756 }
1757
1758 #ifdef CONFIG_COMPAT
1759 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1760 unsigned int cmd, unsigned long arg)
1761 {
1762 struct nvme_ns *ns = bdev->bd_disk->private_data;
1763
1764 switch (cmd) {
1765 case SG_IO:
1766 return nvme_sg_io32(ns, arg);
1767 }
1768 return nvme_ioctl(bdev, mode, cmd, arg);
1769 }
1770 #else
1771 #define nvme_compat_ioctl NULL
1772 #endif
1773
1774 static int nvme_open(struct block_device *bdev, fmode_t mode)
1775 {
1776 struct nvme_ns *ns = bdev->bd_disk->private_data;
1777 struct nvme_dev *dev = ns->dev;
1778
1779 kref_get(&dev->kref);
1780 return 0;
1781 }
1782
1783 static void nvme_free_dev(struct kref *kref);
1784
1785 static void nvme_release(struct gendisk *disk, fmode_t mode)
1786 {
1787 struct nvme_ns *ns = disk->private_data;
1788 struct nvme_dev *dev = ns->dev;
1789
1790 kref_put(&dev->kref, nvme_free_dev);
1791 }
1792
1793 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1794 {
1795 /* some standard values */
1796 geo->heads = 1 << 6;
1797 geo->sectors = 1 << 5;
1798 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1799 return 0;
1800 }
1801
1802 static const struct block_device_operations nvme_fops = {
1803 .owner = THIS_MODULE,
1804 .ioctl = nvme_ioctl,
1805 .compat_ioctl = nvme_compat_ioctl,
1806 .open = nvme_open,
1807 .release = nvme_release,
1808 .getgeo = nvme_getgeo,
1809 };
1810
1811 static void nvme_resubmit_iods(struct nvme_queue *nvmeq)
1812 {
1813 struct nvme_iod *iod, *next;
1814
1815 list_for_each_entry_safe(iod, next, &nvmeq->iod_bio, node) {
1816 if (unlikely(nvme_submit_iod(nvmeq, iod)))
1817 break;
1818 list_del(&iod->node);
1819 if (bio_list_empty(&nvmeq->sq_cong) &&
1820 list_empty(&nvmeq->iod_bio))
1821 remove_wait_queue(&nvmeq->sq_full,
1822 &nvmeq->sq_cong_wait);
1823 }
1824 }
1825
1826 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1827 {
1828 while (bio_list_peek(&nvmeq->sq_cong)) {
1829 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1830 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1831
1832 if (bio_list_empty(&nvmeq->sq_cong) &&
1833 list_empty(&nvmeq->iod_bio))
1834 remove_wait_queue(&nvmeq->sq_full,
1835 &nvmeq->sq_cong_wait);
1836 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1837 if (!waitqueue_active(&nvmeq->sq_full))
1838 add_wait_queue(&nvmeq->sq_full,
1839 &nvmeq->sq_cong_wait);
1840 bio_list_add_head(&nvmeq->sq_cong, bio);
1841 break;
1842 }
1843 }
1844 }
1845
1846 static int nvme_kthread(void *data)
1847 {
1848 struct nvme_dev *dev, *next;
1849
1850 while (!kthread_should_stop()) {
1851 set_current_state(TASK_INTERRUPTIBLE);
1852 spin_lock(&dev_list_lock);
1853 list_for_each_entry_safe(dev, next, &dev_list, node) {
1854 int i;
1855 if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1856 dev->initialized) {
1857 if (work_busy(&dev->reset_work))
1858 continue;
1859 list_del_init(&dev->node);
1860 dev_warn(&dev->pci_dev->dev,
1861 "Failed status, reset controller\n");
1862 dev->reset_workfn = nvme_reset_failed_dev;
1863 queue_work(nvme_workq, &dev->reset_work);
1864 continue;
1865 }
1866 rcu_read_lock();
1867 for (i = 0; i < dev->queue_count; i++) {
1868 struct nvme_queue *nvmeq =
1869 rcu_dereference(dev->queues[i]);
1870 if (!nvmeq)
1871 continue;
1872 spin_lock_irq(&nvmeq->q_lock);
1873 if (nvmeq->q_suspended)
1874 goto unlock;
1875 nvme_process_cq(nvmeq);
1876 nvme_cancel_ios(nvmeq, true);
1877 nvme_resubmit_bios(nvmeq);
1878 nvme_resubmit_iods(nvmeq);
1879 unlock:
1880 spin_unlock_irq(&nvmeq->q_lock);
1881 }
1882 rcu_read_unlock();
1883 }
1884 spin_unlock(&dev_list_lock);
1885 schedule_timeout(round_jiffies_relative(HZ));
1886 }
1887 return 0;
1888 }
1889
1890 static void nvme_config_discard(struct nvme_ns *ns)
1891 {
1892 u32 logical_block_size = queue_logical_block_size(ns->queue);
1893 ns->queue->limits.discard_zeroes_data = 0;
1894 ns->queue->limits.discard_alignment = logical_block_size;
1895 ns->queue->limits.discard_granularity = logical_block_size;
1896 ns->queue->limits.max_discard_sectors = 0xffffffff;
1897 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1898 }
1899
1900 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1901 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1902 {
1903 struct nvme_ns *ns;
1904 struct gendisk *disk;
1905 int lbaf;
1906
1907 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1908 return NULL;
1909
1910 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1911 if (!ns)
1912 return NULL;
1913 ns->queue = blk_alloc_queue(GFP_KERNEL);
1914 if (!ns->queue)
1915 goto out_free_ns;
1916 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1917 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1918 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1919 blk_queue_make_request(ns->queue, nvme_make_request);
1920 ns->dev = dev;
1921 ns->queue->queuedata = ns;
1922
1923 disk = alloc_disk(0);
1924 if (!disk)
1925 goto out_free_queue;
1926 ns->ns_id = nsid;
1927 ns->disk = disk;
1928 lbaf = id->flbas & 0xf;
1929 ns->lba_shift = id->lbaf[lbaf].ds;
1930 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1931 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1932 if (dev->max_hw_sectors)
1933 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1934 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
1935 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1936
1937 disk->major = nvme_major;
1938 disk->first_minor = 0;
1939 disk->fops = &nvme_fops;
1940 disk->private_data = ns;
1941 disk->queue = ns->queue;
1942 disk->driverfs_dev = &dev->pci_dev->dev;
1943 disk->flags = GENHD_FL_EXT_DEVT;
1944 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1945 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1946
1947 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1948 nvme_config_discard(ns);
1949
1950 return ns;
1951
1952 out_free_queue:
1953 blk_cleanup_queue(ns->queue);
1954 out_free_ns:
1955 kfree(ns);
1956 return NULL;
1957 }
1958
1959 static int nvme_find_closest_node(int node)
1960 {
1961 int n, val, min_val = INT_MAX, best_node = node;
1962
1963 for_each_online_node(n) {
1964 if (n == node)
1965 continue;
1966 val = node_distance(node, n);
1967 if (val < min_val) {
1968 min_val = val;
1969 best_node = n;
1970 }
1971 }
1972 return best_node;
1973 }
1974
1975 static void nvme_set_queue_cpus(cpumask_t *qmask, struct nvme_queue *nvmeq,
1976 int count)
1977 {
1978 int cpu;
1979 for_each_cpu(cpu, qmask) {
1980 if (cpumask_weight(nvmeq->cpu_mask) >= count)
1981 break;
1982 if (!cpumask_test_and_set_cpu(cpu, nvmeq->cpu_mask))
1983 *per_cpu_ptr(nvmeq->dev->io_queue, cpu) = nvmeq->qid;
1984 }
1985 }
1986
1987 static void nvme_add_cpus(cpumask_t *mask, const cpumask_t *unassigned_cpus,
1988 const cpumask_t *new_mask, struct nvme_queue *nvmeq, int cpus_per_queue)
1989 {
1990 int next_cpu;
1991 for_each_cpu(next_cpu, new_mask) {
1992 cpumask_or(mask, mask, get_cpu_mask(next_cpu));
1993 cpumask_or(mask, mask, topology_thread_cpumask(next_cpu));
1994 cpumask_and(mask, mask, unassigned_cpus);
1995 nvme_set_queue_cpus(mask, nvmeq, cpus_per_queue);
1996 }
1997 }
1998
1999 static void nvme_create_io_queues(struct nvme_dev *dev)
2000 {
2001 unsigned i, max;
2002
2003 max = min(dev->max_qid, num_online_cpus());
2004 for (i = dev->queue_count; i <= max; i++)
2005 if (!nvme_alloc_queue(dev, i, dev->q_depth, i - 1))
2006 break;
2007
2008 max = min(dev->queue_count - 1, num_online_cpus());
2009 for (i = dev->online_queues; i <= max; i++)
2010 if (nvme_create_queue(raw_nvmeq(dev, i), i))
2011 break;
2012 }
2013
2014 /*
2015 * If there are fewer queues than online cpus, this will try to optimally
2016 * assign a queue to multiple cpus by grouping cpus that are "close" together:
2017 * thread siblings, core, socket, closest node, then whatever else is
2018 * available.
2019 */
2020 static void nvme_assign_io_queues(struct nvme_dev *dev)
2021 {
2022 unsigned cpu, cpus_per_queue, queues, remainder, i;
2023 cpumask_var_t unassigned_cpus;
2024
2025 nvme_create_io_queues(dev);
2026
2027 queues = min(dev->online_queues - 1, num_online_cpus());
2028 if (!queues)
2029 return;
2030
2031 cpus_per_queue = num_online_cpus() / queues;
2032 remainder = queues - (num_online_cpus() - queues * cpus_per_queue);
2033
2034 if (!alloc_cpumask_var(&unassigned_cpus, GFP_KERNEL))
2035 return;
2036
2037 cpumask_copy(unassigned_cpus, cpu_online_mask);
2038 cpu = cpumask_first(unassigned_cpus);
2039 for (i = 1; i <= queues; i++) {
2040 struct nvme_queue *nvmeq = lock_nvmeq(dev, i);
2041 cpumask_t mask;
2042
2043 cpumask_clear(nvmeq->cpu_mask);
2044 if (!cpumask_weight(unassigned_cpus)) {
2045 unlock_nvmeq(nvmeq);
2046 break;
2047 }
2048
2049 mask = *get_cpu_mask(cpu);
2050 nvme_set_queue_cpus(&mask, nvmeq, cpus_per_queue);
2051 if (cpus_weight(mask) < cpus_per_queue)
2052 nvme_add_cpus(&mask, unassigned_cpus,
2053 topology_thread_cpumask(cpu),
2054 nvmeq, cpus_per_queue);
2055 if (cpus_weight(mask) < cpus_per_queue)
2056 nvme_add_cpus(&mask, unassigned_cpus,
2057 topology_core_cpumask(cpu),
2058 nvmeq, cpus_per_queue);
2059 if (cpus_weight(mask) < cpus_per_queue)
2060 nvme_add_cpus(&mask, unassigned_cpus,
2061 cpumask_of_node(cpu_to_node(cpu)),
2062 nvmeq, cpus_per_queue);
2063 if (cpus_weight(mask) < cpus_per_queue)
2064 nvme_add_cpus(&mask, unassigned_cpus,
2065 cpumask_of_node(
2066 nvme_find_closest_node(
2067 cpu_to_node(cpu))),
2068 nvmeq, cpus_per_queue);
2069 if (cpus_weight(mask) < cpus_per_queue)
2070 nvme_add_cpus(&mask, unassigned_cpus,
2071 unassigned_cpus,
2072 nvmeq, cpus_per_queue);
2073
2074 WARN(cpumask_weight(nvmeq->cpu_mask) != cpus_per_queue,
2075 "nvme%d qid:%d mis-matched queue-to-cpu assignment\n",
2076 dev->instance, i);
2077
2078 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2079 nvmeq->cpu_mask);
2080 cpumask_andnot(unassigned_cpus, unassigned_cpus,
2081 nvmeq->cpu_mask);
2082 cpu = cpumask_next(cpu, unassigned_cpus);
2083 if (remainder && !--remainder)
2084 cpus_per_queue++;
2085 unlock_nvmeq(nvmeq);
2086 }
2087 WARN(cpumask_weight(unassigned_cpus), "nvme%d unassigned online cpus\n",
2088 dev->instance);
2089 i = 0;
2090 cpumask_andnot(unassigned_cpus, cpu_possible_mask, cpu_online_mask);
2091 for_each_cpu(cpu, unassigned_cpus)
2092 *per_cpu_ptr(dev->io_queue, cpu) = (i++ % queues) + 1;
2093 free_cpumask_var(unassigned_cpus);
2094 }
2095
2096 static int set_queue_count(struct nvme_dev *dev, int count)
2097 {
2098 int status;
2099 u32 result;
2100 u32 q_count = (count - 1) | ((count - 1) << 16);
2101
2102 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2103 &result);
2104 if (status < 0)
2105 return status;
2106 if (status > 0) {
2107 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2108 status);
2109 return -EBUSY;
2110 }
2111 return min(result & 0xffff, result >> 16) + 1;
2112 }
2113
2114 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2115 {
2116 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2117 }
2118
2119 static void nvme_cpu_workfn(struct work_struct *work)
2120 {
2121 struct nvme_dev *dev = container_of(work, struct nvme_dev, cpu_work);
2122 if (dev->initialized)
2123 nvme_assign_io_queues(dev);
2124 }
2125
2126 static int nvme_cpu_notify(struct notifier_block *self,
2127 unsigned long action, void *hcpu)
2128 {
2129 struct nvme_dev *dev;
2130
2131 switch (action) {
2132 case CPU_ONLINE:
2133 case CPU_DEAD:
2134 spin_lock(&dev_list_lock);
2135 list_for_each_entry(dev, &dev_list, node)
2136 schedule_work(&dev->cpu_work);
2137 spin_unlock(&dev_list_lock);
2138 break;
2139 }
2140 return NOTIFY_OK;
2141 }
2142
2143 static int nvme_setup_io_queues(struct nvme_dev *dev)
2144 {
2145 struct nvme_queue *adminq = raw_nvmeq(dev, 0);
2146 struct pci_dev *pdev = dev->pci_dev;
2147 int result, i, vecs, nr_io_queues, size;
2148
2149 nr_io_queues = num_possible_cpus();
2150 result = set_queue_count(dev, nr_io_queues);
2151 if (result < 0)
2152 return result;
2153 if (result < nr_io_queues)
2154 nr_io_queues = result;
2155
2156 size = db_bar_size(dev, nr_io_queues);
2157 if (size > 8192) {
2158 iounmap(dev->bar);
2159 do {
2160 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2161 if (dev->bar)
2162 break;
2163 if (!--nr_io_queues)
2164 return -ENOMEM;
2165 size = db_bar_size(dev, nr_io_queues);
2166 } while (1);
2167 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2168 adminq->q_db = dev->dbs;
2169 }
2170
2171 /* Deregister the admin queue's interrupt */
2172 free_irq(dev->entry[0].vector, adminq);
2173
2174 for (i = 0; i < nr_io_queues; i++)
2175 dev->entry[i].entry = i;
2176 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2177 if (vecs < 0) {
2178 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2179 if (vecs < 0) {
2180 vecs = 1;
2181 } else {
2182 for (i = 0; i < vecs; i++)
2183 dev->entry[i].vector = i + pdev->irq;
2184 }
2185 }
2186
2187 /*
2188 * Should investigate if there's a performance win from allocating
2189 * more queues than interrupt vectors; it might allow the submission
2190 * path to scale better, even if the receive path is limited by the
2191 * number of interrupts.
2192 */
2193 nr_io_queues = vecs;
2194 dev->max_qid = nr_io_queues;
2195
2196 result = queue_request_irq(dev, adminq, adminq->irqname);
2197 if (result) {
2198 adminq->q_suspended = 1;
2199 goto free_queues;
2200 }
2201
2202 /* Free previously allocated queues that are no longer usable */
2203 nvme_free_queues(dev, nr_io_queues + 1);
2204 nvme_assign_io_queues(dev);
2205
2206 return 0;
2207
2208 free_queues:
2209 nvme_free_queues(dev, 1);
2210 return result;
2211 }
2212
2213 /*
2214 * Return: error value if an error occurred setting up the queues or calling
2215 * Identify Device. 0 if these succeeded, even if adding some of the
2216 * namespaces failed. At the moment, these failures are silent. TBD which
2217 * failures should be reported.
2218 */
2219 static int nvme_dev_add(struct nvme_dev *dev)
2220 {
2221 struct pci_dev *pdev = dev->pci_dev;
2222 int res;
2223 unsigned nn, i;
2224 struct nvme_ns *ns;
2225 struct nvme_id_ctrl *ctrl;
2226 struct nvme_id_ns *id_ns;
2227 void *mem;
2228 dma_addr_t dma_addr;
2229 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2230
2231 mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2232 if (!mem)
2233 return -ENOMEM;
2234
2235 res = nvme_identify(dev, 0, 1, dma_addr);
2236 if (res) {
2237 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2238 res = -EIO;
2239 goto out;
2240 }
2241
2242 ctrl = mem;
2243 nn = le32_to_cpup(&ctrl->nn);
2244 dev->oncs = le16_to_cpup(&ctrl->oncs);
2245 dev->abort_limit = ctrl->acl + 1;
2246 dev->vwc = ctrl->vwc;
2247 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2248 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2249 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2250 if (ctrl->mdts)
2251 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2252 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2253 (pdev->device == 0x0953) && ctrl->vs[3])
2254 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2255
2256 id_ns = mem;
2257 for (i = 1; i <= nn; i++) {
2258 res = nvme_identify(dev, i, 0, dma_addr);
2259 if (res)
2260 continue;
2261
2262 if (id_ns->ncap == 0)
2263 continue;
2264
2265 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2266 dma_addr + 4096, NULL);
2267 if (res)
2268 memset(mem + 4096, 0, 4096);
2269
2270 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2271 if (ns)
2272 list_add_tail(&ns->list, &dev->namespaces);
2273 }
2274 list_for_each_entry(ns, &dev->namespaces, list)
2275 add_disk(ns->disk);
2276 res = 0;
2277
2278 out:
2279 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2280 return res;
2281 }
2282
2283 static int nvme_dev_map(struct nvme_dev *dev)
2284 {
2285 u64 cap;
2286 int bars, result = -ENOMEM;
2287 struct pci_dev *pdev = dev->pci_dev;
2288
2289 if (pci_enable_device_mem(pdev))
2290 return result;
2291
2292 dev->entry[0].vector = pdev->irq;
2293 pci_set_master(pdev);
2294 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2295 if (pci_request_selected_regions(pdev, bars, "nvme"))
2296 goto disable_pci;
2297
2298 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2299 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2300 goto disable;
2301
2302 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2303 if (!dev->bar)
2304 goto disable;
2305 if (readl(&dev->bar->csts) == -1) {
2306 result = -ENODEV;
2307 goto unmap;
2308 }
2309 cap = readq(&dev->bar->cap);
2310 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2311 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2312 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2313
2314 return 0;
2315
2316 unmap:
2317 iounmap(dev->bar);
2318 dev->bar = NULL;
2319 disable:
2320 pci_release_regions(pdev);
2321 disable_pci:
2322 pci_disable_device(pdev);
2323 return result;
2324 }
2325
2326 static void nvme_dev_unmap(struct nvme_dev *dev)
2327 {
2328 if (dev->pci_dev->msi_enabled)
2329 pci_disable_msi(dev->pci_dev);
2330 else if (dev->pci_dev->msix_enabled)
2331 pci_disable_msix(dev->pci_dev);
2332
2333 if (dev->bar) {
2334 iounmap(dev->bar);
2335 dev->bar = NULL;
2336 pci_release_regions(dev->pci_dev);
2337 }
2338
2339 if (pci_is_enabled(dev->pci_dev))
2340 pci_disable_device(dev->pci_dev);
2341 }
2342
2343 struct nvme_delq_ctx {
2344 struct task_struct *waiter;
2345 struct kthread_worker *worker;
2346 atomic_t refcount;
2347 };
2348
2349 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2350 {
2351 dq->waiter = current;
2352 mb();
2353
2354 for (;;) {
2355 set_current_state(TASK_KILLABLE);
2356 if (!atomic_read(&dq->refcount))
2357 break;
2358 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2359 fatal_signal_pending(current)) {
2360 set_current_state(TASK_RUNNING);
2361
2362 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2363 nvme_disable_queue(dev, 0);
2364
2365 send_sig(SIGKILL, dq->worker->task, 1);
2366 flush_kthread_worker(dq->worker);
2367 return;
2368 }
2369 }
2370 set_current_state(TASK_RUNNING);
2371 }
2372
2373 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2374 {
2375 atomic_dec(&dq->refcount);
2376 if (dq->waiter)
2377 wake_up_process(dq->waiter);
2378 }
2379
2380 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2381 {
2382 atomic_inc(&dq->refcount);
2383 return dq;
2384 }
2385
2386 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2387 {
2388 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2389
2390 nvme_clear_queue(nvmeq);
2391 nvme_put_dq(dq);
2392 }
2393
2394 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2395 kthread_work_func_t fn)
2396 {
2397 struct nvme_command c;
2398
2399 memset(&c, 0, sizeof(c));
2400 c.delete_queue.opcode = opcode;
2401 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2402
2403 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2404 return nvme_submit_admin_cmd_async(nvmeq->dev, &c, &nvmeq->cmdinfo);
2405 }
2406
2407 static void nvme_del_cq_work_handler(struct kthread_work *work)
2408 {
2409 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2410 cmdinfo.work);
2411 nvme_del_queue_end(nvmeq);
2412 }
2413
2414 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2415 {
2416 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2417 nvme_del_cq_work_handler);
2418 }
2419
2420 static void nvme_del_sq_work_handler(struct kthread_work *work)
2421 {
2422 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2423 cmdinfo.work);
2424 int status = nvmeq->cmdinfo.status;
2425
2426 if (!status)
2427 status = nvme_delete_cq(nvmeq);
2428 if (status)
2429 nvme_del_queue_end(nvmeq);
2430 }
2431
2432 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2433 {
2434 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2435 nvme_del_sq_work_handler);
2436 }
2437
2438 static void nvme_del_queue_start(struct kthread_work *work)
2439 {
2440 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2441 cmdinfo.work);
2442 allow_signal(SIGKILL);
2443 if (nvme_delete_sq(nvmeq))
2444 nvme_del_queue_end(nvmeq);
2445 }
2446
2447 static void nvme_disable_io_queues(struct nvme_dev *dev)
2448 {
2449 int i;
2450 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2451 struct nvme_delq_ctx dq;
2452 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2453 &worker, "nvme%d", dev->instance);
2454
2455 if (IS_ERR(kworker_task)) {
2456 dev_err(&dev->pci_dev->dev,
2457 "Failed to create queue del task\n");
2458 for (i = dev->queue_count - 1; i > 0; i--)
2459 nvme_disable_queue(dev, i);
2460 return;
2461 }
2462
2463 dq.waiter = NULL;
2464 atomic_set(&dq.refcount, 0);
2465 dq.worker = &worker;
2466 for (i = dev->queue_count - 1; i > 0; i--) {
2467 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2468
2469 if (nvme_suspend_queue(nvmeq))
2470 continue;
2471 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2472 nvmeq->cmdinfo.worker = dq.worker;
2473 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2474 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2475 }
2476 nvme_wait_dq(&dq, dev);
2477 kthread_stop(kworker_task);
2478 }
2479
2480 /*
2481 * Remove the node from the device list and check
2482 * for whether or not we need to stop the nvme_thread.
2483 */
2484 static void nvme_dev_list_remove(struct nvme_dev *dev)
2485 {
2486 struct task_struct *tmp = NULL;
2487
2488 spin_lock(&dev_list_lock);
2489 list_del_init(&dev->node);
2490 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2491 tmp = nvme_thread;
2492 nvme_thread = NULL;
2493 }
2494 spin_unlock(&dev_list_lock);
2495
2496 if (tmp)
2497 kthread_stop(tmp);
2498 }
2499
2500 static void nvme_dev_shutdown(struct nvme_dev *dev)
2501 {
2502 int i;
2503
2504 dev->initialized = 0;
2505 nvme_dev_list_remove(dev);
2506
2507 if (!dev->bar || (dev->bar && readl(&dev->bar->csts) == -1)) {
2508 for (i = dev->queue_count - 1; i >= 0; i--) {
2509 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2510 nvme_suspend_queue(nvmeq);
2511 nvme_clear_queue(nvmeq);
2512 }
2513 } else {
2514 nvme_disable_io_queues(dev);
2515 nvme_shutdown_ctrl(dev);
2516 nvme_disable_queue(dev, 0);
2517 }
2518 nvme_dev_unmap(dev);
2519 }
2520
2521 static void nvme_dev_remove(struct nvme_dev *dev)
2522 {
2523 struct nvme_ns *ns;
2524
2525 list_for_each_entry(ns, &dev->namespaces, list) {
2526 if (ns->disk->flags & GENHD_FL_UP)
2527 del_gendisk(ns->disk);
2528 if (!blk_queue_dying(ns->queue))
2529 blk_cleanup_queue(ns->queue);
2530 }
2531 }
2532
2533 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2534 {
2535 struct device *dmadev = &dev->pci_dev->dev;
2536 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2537 PAGE_SIZE, PAGE_SIZE, 0);
2538 if (!dev->prp_page_pool)
2539 return -ENOMEM;
2540
2541 /* Optimisation for I/Os between 4k and 128k */
2542 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2543 256, 256, 0);
2544 if (!dev->prp_small_pool) {
2545 dma_pool_destroy(dev->prp_page_pool);
2546 return -ENOMEM;
2547 }
2548 return 0;
2549 }
2550
2551 static void nvme_release_prp_pools(struct nvme_dev *dev)
2552 {
2553 dma_pool_destroy(dev->prp_page_pool);
2554 dma_pool_destroy(dev->prp_small_pool);
2555 }
2556
2557 static DEFINE_IDA(nvme_instance_ida);
2558
2559 static int nvme_set_instance(struct nvme_dev *dev)
2560 {
2561 int instance, error;
2562
2563 do {
2564 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2565 return -ENODEV;
2566
2567 spin_lock(&dev_list_lock);
2568 error = ida_get_new(&nvme_instance_ida, &instance);
2569 spin_unlock(&dev_list_lock);
2570 } while (error == -EAGAIN);
2571
2572 if (error)
2573 return -ENODEV;
2574
2575 dev->instance = instance;
2576 return 0;
2577 }
2578
2579 static void nvme_release_instance(struct nvme_dev *dev)
2580 {
2581 spin_lock(&dev_list_lock);
2582 ida_remove(&nvme_instance_ida, dev->instance);
2583 spin_unlock(&dev_list_lock);
2584 }
2585
2586 static void nvme_free_namespaces(struct nvme_dev *dev)
2587 {
2588 struct nvme_ns *ns, *next;
2589
2590 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2591 list_del(&ns->list);
2592 put_disk(ns->disk);
2593 kfree(ns);
2594 }
2595 }
2596
2597 static void nvme_free_dev(struct kref *kref)
2598 {
2599 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2600
2601 nvme_free_namespaces(dev);
2602 free_percpu(dev->io_queue);
2603 kfree(dev->queues);
2604 kfree(dev->entry);
2605 kfree(dev);
2606 }
2607
2608 static int nvme_dev_open(struct inode *inode, struct file *f)
2609 {
2610 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2611 miscdev);
2612 kref_get(&dev->kref);
2613 f->private_data = dev;
2614 return 0;
2615 }
2616
2617 static int nvme_dev_release(struct inode *inode, struct file *f)
2618 {
2619 struct nvme_dev *dev = f->private_data;
2620 kref_put(&dev->kref, nvme_free_dev);
2621 return 0;
2622 }
2623
2624 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2625 {
2626 struct nvme_dev *dev = f->private_data;
2627 switch (cmd) {
2628 case NVME_IOCTL_ADMIN_CMD:
2629 return nvme_user_admin_cmd(dev, (void __user *)arg);
2630 default:
2631 return -ENOTTY;
2632 }
2633 }
2634
2635 static const struct file_operations nvme_dev_fops = {
2636 .owner = THIS_MODULE,
2637 .open = nvme_dev_open,
2638 .release = nvme_dev_release,
2639 .unlocked_ioctl = nvme_dev_ioctl,
2640 .compat_ioctl = nvme_dev_ioctl,
2641 };
2642
2643 static int nvme_dev_start(struct nvme_dev *dev)
2644 {
2645 int result;
2646 bool start_thread = false;
2647
2648 result = nvme_dev_map(dev);
2649 if (result)
2650 return result;
2651
2652 result = nvme_configure_admin_queue(dev);
2653 if (result)
2654 goto unmap;
2655
2656 spin_lock(&dev_list_lock);
2657 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2658 start_thread = true;
2659 nvme_thread = NULL;
2660 }
2661 list_add(&dev->node, &dev_list);
2662 spin_unlock(&dev_list_lock);
2663
2664 if (start_thread) {
2665 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2666 wake_up(&nvme_kthread_wait);
2667 } else
2668 wait_event_killable(nvme_kthread_wait, nvme_thread);
2669
2670 if (IS_ERR_OR_NULL(nvme_thread)) {
2671 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2672 goto disable;
2673 }
2674
2675 result = nvme_setup_io_queues(dev);
2676 if (result && result != -EBUSY)
2677 goto disable;
2678
2679 return result;
2680
2681 disable:
2682 nvme_disable_queue(dev, 0);
2683 nvme_dev_list_remove(dev);
2684 unmap:
2685 nvme_dev_unmap(dev);
2686 return result;
2687 }
2688
2689 static int nvme_remove_dead_ctrl(void *arg)
2690 {
2691 struct nvme_dev *dev = (struct nvme_dev *)arg;
2692 struct pci_dev *pdev = dev->pci_dev;
2693
2694 if (pci_get_drvdata(pdev))
2695 pci_stop_and_remove_bus_device(pdev);
2696 kref_put(&dev->kref, nvme_free_dev);
2697 return 0;
2698 }
2699
2700 static void nvme_remove_disks(struct work_struct *ws)
2701 {
2702 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2703
2704 nvme_dev_remove(dev);
2705 nvme_free_queues(dev, 1);
2706 }
2707
2708 static int nvme_dev_resume(struct nvme_dev *dev)
2709 {
2710 int ret;
2711
2712 ret = nvme_dev_start(dev);
2713 if (ret && ret != -EBUSY)
2714 return ret;
2715 if (ret == -EBUSY) {
2716 spin_lock(&dev_list_lock);
2717 dev->reset_workfn = nvme_remove_disks;
2718 queue_work(nvme_workq, &dev->reset_work);
2719 spin_unlock(&dev_list_lock);
2720 }
2721 dev->initialized = 1;
2722 return 0;
2723 }
2724
2725 static void nvme_dev_reset(struct nvme_dev *dev)
2726 {
2727 nvme_dev_shutdown(dev);
2728 if (nvme_dev_resume(dev)) {
2729 dev_err(&dev->pci_dev->dev, "Device failed to resume\n");
2730 kref_get(&dev->kref);
2731 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2732 dev->instance))) {
2733 dev_err(&dev->pci_dev->dev,
2734 "Failed to start controller remove task\n");
2735 kref_put(&dev->kref, nvme_free_dev);
2736 }
2737 }
2738 }
2739
2740 static void nvme_reset_failed_dev(struct work_struct *ws)
2741 {
2742 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2743 nvme_dev_reset(dev);
2744 }
2745
2746 static void nvme_reset_workfn(struct work_struct *work)
2747 {
2748 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2749 dev->reset_workfn(work);
2750 }
2751
2752 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2753 {
2754 int result = -ENOMEM;
2755 struct nvme_dev *dev;
2756
2757 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2758 if (!dev)
2759 return -ENOMEM;
2760 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2761 GFP_KERNEL);
2762 if (!dev->entry)
2763 goto free;
2764 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2765 GFP_KERNEL);
2766 if (!dev->queues)
2767 goto free;
2768 dev->io_queue = alloc_percpu(unsigned short);
2769 if (!dev->io_queue)
2770 goto free;
2771
2772 INIT_LIST_HEAD(&dev->namespaces);
2773 dev->reset_workfn = nvme_reset_failed_dev;
2774 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2775 INIT_WORK(&dev->cpu_work, nvme_cpu_workfn);
2776 dev->pci_dev = pdev;
2777 pci_set_drvdata(pdev, dev);
2778 result = nvme_set_instance(dev);
2779 if (result)
2780 goto free;
2781
2782 result = nvme_setup_prp_pools(dev);
2783 if (result)
2784 goto release;
2785
2786 kref_init(&dev->kref);
2787 result = nvme_dev_start(dev);
2788 if (result) {
2789 if (result == -EBUSY)
2790 goto create_cdev;
2791 goto release_pools;
2792 }
2793
2794 result = nvme_dev_add(dev);
2795 if (result)
2796 goto shutdown;
2797
2798 create_cdev:
2799 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2800 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2801 dev->miscdev.parent = &pdev->dev;
2802 dev->miscdev.name = dev->name;
2803 dev->miscdev.fops = &nvme_dev_fops;
2804 result = misc_register(&dev->miscdev);
2805 if (result)
2806 goto remove;
2807
2808 dev->initialized = 1;
2809 return 0;
2810
2811 remove:
2812 nvme_dev_remove(dev);
2813 nvme_free_namespaces(dev);
2814 shutdown:
2815 nvme_dev_shutdown(dev);
2816 release_pools:
2817 nvme_free_queues(dev, 0);
2818 nvme_release_prp_pools(dev);
2819 release:
2820 nvme_release_instance(dev);
2821 free:
2822 free_percpu(dev->io_queue);
2823 kfree(dev->queues);
2824 kfree(dev->entry);
2825 kfree(dev);
2826 return result;
2827 }
2828
2829 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2830 {
2831 struct nvme_dev *dev = pci_get_drvdata(pdev);
2832
2833 if (prepare)
2834 nvme_dev_shutdown(dev);
2835 else
2836 nvme_dev_resume(dev);
2837 }
2838
2839 static void nvme_shutdown(struct pci_dev *pdev)
2840 {
2841 struct nvme_dev *dev = pci_get_drvdata(pdev);
2842 nvme_dev_shutdown(dev);
2843 }
2844
2845 static void nvme_remove(struct pci_dev *pdev)
2846 {
2847 struct nvme_dev *dev = pci_get_drvdata(pdev);
2848
2849 spin_lock(&dev_list_lock);
2850 list_del_init(&dev->node);
2851 spin_unlock(&dev_list_lock);
2852
2853 pci_set_drvdata(pdev, NULL);
2854 flush_work(&dev->reset_work);
2855 flush_work(&dev->cpu_work);
2856 misc_deregister(&dev->miscdev);
2857 nvme_dev_remove(dev);
2858 nvme_dev_shutdown(dev);
2859 nvme_free_queues(dev, 0);
2860 rcu_barrier();
2861 nvme_release_instance(dev);
2862 nvme_release_prp_pools(dev);
2863 kref_put(&dev->kref, nvme_free_dev);
2864 }
2865
2866 /* These functions are yet to be implemented */
2867 #define nvme_error_detected NULL
2868 #define nvme_dump_registers NULL
2869 #define nvme_link_reset NULL
2870 #define nvme_slot_reset NULL
2871 #define nvme_error_resume NULL
2872
2873 #ifdef CONFIG_PM_SLEEP
2874 static int nvme_suspend(struct device *dev)
2875 {
2876 struct pci_dev *pdev = to_pci_dev(dev);
2877 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2878
2879 nvme_dev_shutdown(ndev);
2880 return 0;
2881 }
2882
2883 static int nvme_resume(struct device *dev)
2884 {
2885 struct pci_dev *pdev = to_pci_dev(dev);
2886 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2887
2888 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2889 ndev->reset_workfn = nvme_reset_failed_dev;
2890 queue_work(nvme_workq, &ndev->reset_work);
2891 }
2892 return 0;
2893 }
2894 #endif
2895
2896 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2897
2898 static const struct pci_error_handlers nvme_err_handler = {
2899 .error_detected = nvme_error_detected,
2900 .mmio_enabled = nvme_dump_registers,
2901 .link_reset = nvme_link_reset,
2902 .slot_reset = nvme_slot_reset,
2903 .resume = nvme_error_resume,
2904 .reset_notify = nvme_reset_notify,
2905 };
2906
2907 /* Move to pci_ids.h later */
2908 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2909
2910 static const struct pci_device_id nvme_id_table[] = {
2911 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2912 { 0, }
2913 };
2914 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2915
2916 static struct pci_driver nvme_driver = {
2917 .name = "nvme",
2918 .id_table = nvme_id_table,
2919 .probe = nvme_probe,
2920 .remove = nvme_remove,
2921 .shutdown = nvme_shutdown,
2922 .driver = {
2923 .pm = &nvme_dev_pm_ops,
2924 },
2925 .err_handler = &nvme_err_handler,
2926 };
2927
2928 static int __init nvme_init(void)
2929 {
2930 int result;
2931
2932 init_waitqueue_head(&nvme_kthread_wait);
2933
2934 nvme_workq = create_singlethread_workqueue("nvme");
2935 if (!nvme_workq)
2936 return -ENOMEM;
2937
2938 result = register_blkdev(nvme_major, "nvme");
2939 if (result < 0)
2940 goto kill_workq;
2941 else if (result > 0)
2942 nvme_major = result;
2943
2944 nvme_nb.notifier_call = &nvme_cpu_notify;
2945 result = register_hotcpu_notifier(&nvme_nb);
2946 if (result)
2947 goto unregister_blkdev;
2948
2949 result = pci_register_driver(&nvme_driver);
2950 if (result)
2951 goto unregister_hotcpu;
2952 return 0;
2953
2954 unregister_hotcpu:
2955 unregister_hotcpu_notifier(&nvme_nb);
2956 unregister_blkdev:
2957 unregister_blkdev(nvme_major, "nvme");
2958 kill_workq:
2959 destroy_workqueue(nvme_workq);
2960 return result;
2961 }
2962
2963 static void __exit nvme_exit(void)
2964 {
2965 pci_unregister_driver(&nvme_driver);
2966 unregister_hotcpu_notifier(&nvme_nb);
2967 unregister_blkdev(nvme_major, "nvme");
2968 destroy_workqueue(nvme_workq);
2969 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2970 _nvme_check_size();
2971 }
2972
2973 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2974 MODULE_LICENSE("GPL");
2975 MODULE_VERSION("0.9");
2976 module_init(nvme_init);
2977 module_exit(nvme_exit);
This page took 0.092895 seconds and 6 git commands to generate.